Science.gov

Sample records for aerial regional-scale environmental

  1. The Aerial Regional-scale Environmental Survey (ARES) Mission to Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    2005-01-01

    ARES is an exploration mission concept for an Aerial Regional-scale Environmental Survey of Mars designed to fly an instrumented platform over the surface of Mars at very low altitudes (1-3 km) for distances of hundreds to thousands of kilometers to obtain scientific data to address fundamental problems in Mars science. ARES helps to fill a gap in the scale and perspective of the Mars Exploration Program and addresses many key COMPLEX/MEPAG questions (e.g., nature and origin of crustal magnetic anomalies) not readily pursued in other parts of the exploration program. ARES supports the human exploration program through key environmental measurements and high-resolution contiguous data essential to reference mission design. Here we describe the major types of scientific goals, candidate instruments, and reference mission profiles.

  2. Mars Aerial Regional-Scale Environmental Survey (ARES) Coordinate Systems Definitions and Transformations

    NASA Technical Reports Server (NTRS)

    Kuhl, Christoper A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  3. A Planetary Protection Strategy for the Mars Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a Mars exploration mission concept designed to send an airplane to fly through the lower atmosphere of Mars, with the goal of taking scientific measurements of the atmosphere, surface, and subsurface phenomenon. ARES was first proposed to the Mars Scout program in December 2002 for a 2007 launch opportunity and was selected to proceed with a Phase A study, step-2 proposal which was submitted in May 2003. ARES was not selected for the Scout mission, but efforts continued on risk reduction of the atmospheric flight system in preparation for the next Mars Scout opportunity in 2006. The ARES concept was again proposed in July 2006 to the Mars Scout program but was not selected to proceed into Phase A. This document describes the Planetary Protection strategy that was developed in ARES Pre Phase-A activities to help identify, early in the design process, certain hardware, assemblies, and/or subsystems that will require unique design considerations based on constraints imposed by Planetary Protection requirements. Had ARES been selected as an exploration project, information in this document would make up the ARES Project Planetary Protection Plan.

  4. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  5. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  6. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  7. Renewable biomass energy: Understanding regional scale environmental impacts

    SciTech Connect

    Graham, R.L.; Downing, M.

    1993-12-31

    If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass.

  8. Earth observation for regional scale environmental and natural resources management

    NASA Astrophysics Data System (ADS)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.

    2013-12-01

    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet

  9. Environmental determinants of woody plant diversity at a regional scale in China.

    PubMed

    Qian, Hong

    2013-01-01

    Understanding what drives the geographic variation of species richness across the globe is a fundamental goal of ecology and biogeography. Environmental variables have been considered as drivers of global diversity patterns but there is no consensus among ecologists on what environmental variables are primary drivers of the geographic variation of species richness. Here, I examine the relationship of woody plant species richness at a regional scale in China with sixteen environmental variables representing energy availability, water availability, energy-water balance, seasonality, and habitat heterogeneity. I found that temperature seasonality is the best predictor of woody species richness in China. Other important environmental variables include annual precipitation, mean temperature of the coldest month, and potential evapotranspiration. The best model explains 85% of the variation in woody plant species richness at the regional scale in China.

  10. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    NASA Astrophysics Data System (ADS)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  11. Environmental application of aerial reconnaissance to search for open dumps

    NASA Astrophysics Data System (ADS)

    Getz, Thomas J.; Randolph, J. C.; Echelberger, Wayne F.

    1983-11-01

    Three approaches to using aerial photography are evaluated for searching for open dumps in the state of Indiana. Photography with hand-held cameras from a small airplane proved more effective and flexible than either photo-interpretation of existing air photos or subcontracting to a federal agency for new aerial photography. The rationale for our choice of aerial reconnaissance, other uses of low-level aerial surveillance, the utility of small-format camera aerial photography for environmental analysis, and methods used for locating open dumps are discussed.

  12. Geographical Pattern and Environmental Correlates of Regional-Scale General Flowering in Peninsular Malaysia

    PubMed Central

    Numata, Shinya; Yasuda, Masatoshi; Suzuki, Ryo O.; Hosaka, Tetsuro; Noor, Nur Supardi Md.; Fletcher, Christine D.; Hashim, Mazlan

    2013-01-01

    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF. PMID:24260159

  13. Geographical pattern and environmental correlates of regional-scale general flowering in Peninsular Malaysia.

    PubMed

    Numata, Shinya; Yasuda, Masatoshi; Suzuki, Ryo O; Hosaka, Tetsuro; Noor, Nur Supardi Md; Fletcher, Christine D; Hashim, Mazlan

    2013-01-01

    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF. PMID:24260159

  14. Environmental Controls on River Assemblages at the Regional Scale: An Application of the Elements of Metacommunity Structure Framework

    PubMed Central

    Tonkin, Jonathan D.; Sundermann, Andrea

    2015-01-01

    Understanding factors that structure regional biodiversity is important for linking ecological and biogeographic processes. Our objective was to explore regional patterns in riverine benthic invertebrate assemblages in relation to their broad positioning along the river network and examine differences in composition, biodiversity (alpha and beta diversity), and environmental drivers. We up-scaled methods used to examine patterns in metacommunity structure (Elements of Metacommunity Structure framework) to examine faunal distribution patterns at the regional extent for 168 low-mountain stream invertebrate assemblages in central Germany. We then identified the most influential environmental factors using boosted regression trees. Faunal composition patterns were compartmentalised (Clementsian or quasi-Clementsian), with little difference from headwaters to large rivers, potentially reflecting the regional scale of the study, by crossing major catchment boundaries and incorporating different species pools. While idealised structures did not vary, environmental drivers of composition varied considerably between river sections and with alpha diversity. Prediction was substantially weaker, and the importance of space was greater, in large rivers compared to other sections suggesting a weakening in species sorting downstream. Further, there was a stronger transition in composition than for alpha diversity downstream. The stronger links with regional faunal composition than with richness further emphasises the importance of considering the alternative ways in which anthropogenic stressors are operating to affect biodiversity patterns. Our approach allowed bridging the gap between local (or metacommunity) and regional scales, providing key insights into drivers of regional biodiversity patterns. PMID:26270550

  15. Environmental Controls on River Assemblages at the Regional Scale: An Application of the Elements of Metacommunity Structure Framework.

    PubMed

    Tonkin, Jonathan D; Sundermann, Andrea; Jähnig, Sonja C; Haase, Peter

    2015-01-01

    Understanding factors that structure regional biodiversity is important for linking ecological and biogeographic processes. Our objective was to explore regional patterns in riverine benthic invertebrate assemblages in relation to their broad positioning along the river network and examine differences in composition, biodiversity (alpha and beta diversity), and environmental drivers. We up-scaled methods used to examine patterns in metacommunity structure (Elements of Metacommunity Structure framework) to examine faunal distribution patterns at the regional extent for 168 low-mountain stream invertebrate assemblages in central Germany. We then identified the most influential environmental factors using boosted regression trees. Faunal composition patterns were compartmentalised (Clementsian or quasi-Clementsian), with little difference from headwaters to large rivers, potentially reflecting the regional scale of the study, by crossing major catchment boundaries and incorporating different species pools. While idealised structures did not vary, environmental drivers of composition varied considerably between river sections and with alpha diversity. Prediction was substantially weaker, and the importance of space was greater, in large rivers compared to other sections suggesting a weakening in species sorting downstream. Further, there was a stronger transition in composition than for alpha diversity downstream. The stronger links with regional faunal composition than with richness further emphasises the importance of considering the alternative ways in which anthropogenic stressors are operating to affect biodiversity patterns. Our approach allowed bridging the gap between local (or metacommunity) and regional scales, providing key insights into drivers of regional biodiversity patterns. PMID:26270550

  16. A study of methods for lowering aerial environmental survey cost

    NASA Technical Reports Server (NTRS)

    Stansberry, J. R.

    1973-01-01

    The results are presented of a study of methods for lowering the cost of environmental aerial surveys. A wide range of low cost techniques were investigated for possible application to current pressing urban and rural problems. The objective of the study is to establish a definition of the technical problems associated with conducting aerial surveys using various low cost techniques, to conduct a survey of equipment which may be used in low cost systems, and to establish preliminary estimates of cost. A set of candidate systems were selected and described for the environmental survey tasks.

  17. Defining environmental flows requirements at regional scale by using meso-scale habitat models and catchments classification

    NASA Astrophysics Data System (ADS)

    Vezza, Paolo; Comoglio, Claudio; Rosso, Maurizio

    2010-05-01

    The alterations of the natural flow regime and in-stream channel modification due to abstraction from watercourses act on biota through an hydraulic template, which is mediated by channel morphology. Modeling channel hydro-morphology is needed in order to evaluate how much habitat is available for selected fauna under specific environmental conditions, and consequently to assist decision makers in planning options for regulated river management. Meso-scale habitat modeling methods (e.g., MesoHABSIM) offer advantages over the traditional physical habitat evaluation, involving a larger range of habitat variables, allowing longer length of surveyed rivers and enabling understanding of fish behavior at larger spatial scale. In this study we defined a bottom-up method for the ecological discharge evaluation at regional scale, focusing on catchments smaller than 50 km2, most of them located within mountainous areas of Apennines and Alps mountain range in Piedmont (NW Italy). Within the regional study domain we identified 30 representative catchments not affected by water abstractions in order to build up the habitat-flow relationship, to be used as reference when evaluating regulated watercourses or new projects. For each stream we chose a representative reach and obtained fish data by sampling every single functional habitat (i.e. meso-habitat) within the site, keeping separated each area by using nets. The target species were brown trout (Salmo trutta), marble trout (Salmo trutta marmoratus), bullhead (Cottus gobius), chub (Leuciscus cephalus), barbel (Barbus barbus), vairone (Leuciscus souffia) and other rheophilic Cyprinids. The fish habitat suitability criteria was obtained from the observation of habitat use by a selected organism described with a multivariate relationship between habitat characteristics and fish presence. Habitat type, mean slope, cover, biotic choriotop and substrate, stream depth and velocity, water pH, temperature and percentage of dissolved

  18. Aerial monitoring and environmental protection: aerial photography as an instrument for checking landscape damage

    NASA Astrophysics Data System (ADS)

    Tartara, Patrizia

    2009-09-01

    C.N.R. and University of Salento have realized a Geographical Information System for heritage management of the national territory (landscape) and historical urban settlements. Informations come from bibliography, archives, direct and systematic field survey, different kind of aerial photographs analysis, with the primary aim of knowledge for the establishment of an in existence Cultural Heritage Cadastre, focused to legal protection and exploitation of the sites, not last the correct territory planning.

  19. A Regional-Scale Evaluation on Environmental Stability Conditions for Convective Rain under Climate Change from Super-High-Resolution GCM Simulations

    NASA Astrophysics Data System (ADS)

    Takemi, T.; Nomura, S.; Oku, Y.; Ishikawa, H.

    2011-12-01

    Understanding and forecasting of convective rain due to intense thunderstorms, which develop under conditions both with and without significant synoptic-scale and/or mesoscale forcings, are critical in dealing with disaster prevention/mitigation and developing urban planning appropriate for disaster management. Thunderstorms rapidly develop even during the daytimes of fair weather conditions without any external forcings, and sometimes become strong enough to induce local-scale meteorological disasters such as torrential rain, flush flooding, high winds, and tornadoes/gusts. With the growing interests in climate change, future changes in the behavior of such convectively generated extreme events have gained scientific and societal interests. This study conducted the regional-scale evaluations on the environmental stability conditions for convective rain that develops under synoptically undisturbed, summertime conditions by using the outputs of super-high-resolution AGCM simulations, at a 20-km resolution, for the present, the near-future, and the future climates under global warming with IPCC A1B emission scenario. The GCM, MRI-AGCM3.2S, was developed by Meteorological Research Institute of Japan Meteorological Agency under the KAKUSHIN program funded by the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The climate simulation outputs that were used in this study corresponded to three 25-year periods: 1980-2004 for the present climate; 2020-2044 for the near-future climate; and 2075-2099 for the future climate. The Kanto Plain that includes the Tokyo metropolitan area was chosen as the study area, since the Tokyo metropolitan area is one of the largest metropolises in the world and is vulnerable to extreme weather events. Therefore, one of the purposes of this study was to examine how regional-scale evaluations are performed from the super-high-resolution GCM outputs. After verifying the usefulness of the GCM present-climate outputs with

  20. Forensic aerial photography: projected 3-D exhibits facilitating rapid environmental justice

    NASA Astrophysics Data System (ADS)

    Pope, Robert A.

    2009-02-01

    Forensic stereoscopic analysis of historical aerial photography is successfully identifying the causes of environmental degradation, including erosion and unlawful releases of hazardous wastes into the environment. The photogrammetric evidence can successfully pinpoint the specific locations of undocumented hazardous waste landfills and other types of unlawful releases of chemicals and wastes into the environment, providing location data for targeted investigation, characterization, and subsequent remediation. The findings of these studies are being effectively communicated in a simple, memorable, and compelling way by projecting the three-dimensional (3-D) sequences of historical aerial photography utilizing polarized 3-D presentation methods.

  1. An aerial radiological survey of the Fernald Environmental Management Project and surrounding area, Fernald, Ohio

    SciTech Connect

    Phoenix, K.A.

    1997-04-01

    An aerial radiological survey was conducted from May 17--22, 1994, over a 36 square mile (93 square kilometer) area centered on the Fernald Environmental Management Project located in Fernald, Ohio. The purpose of the survey was to detect anomalous gamma radiation in the environment surrounding the plant. The survey was conducted at a nominal altitude of 150 feet (46 meters) with a line spacing of 250 feet (76 meters). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter (3.3 feet) above ground was prepared and overlaid on an aerial photograph of the area. Analysis of the data for man made sources showed five sites within the boundaries of the Fernald Environmental Management Project having elevated readings. The exposure rates outside the plant boundary were typical of naturally occurring background radiation. Soil samples and pressurized ion chamber measurements were obtained at four locations within the survey boundaries to supplement the aerial data. It was concluded that although the radionuclides identified in the high-exposure-rate areas are naturally occurring, the levels encountered are greatly enhanced due to industrial activities at the plant.

  2. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species.

    PubMed

    Schmelzle, Molly C; Kinziger, Andrew P

    2016-07-01

    Environmental DNA (eDNA) monitoring approaches promise to greatly improve detection of rare, endangered and invasive species in comparison with traditional field approaches. Herein, eDNA approaches and traditional seining methods were applied at 29 research locations to compare method-specific estimates of detection and occupancy probabilities for endangered tidewater goby (Eucyclogobius newberryi). At each location, multiple paired seine hauls and water samples for eDNA analysis were taken, ranging from two to 23 samples per site, depending upon habitat size. Analysis using a multimethod occupancy modelling framework indicated that the probability of detection using eDNA was nearly double (0.74) the rate of detection for seining (0.39). The higher detection rates afforded by eDNA allowed determination of tidewater goby occupancy at two locations where they have not been previously detected and at one location considered to be locally extirpated. Additionally, eDNA concentration was positively related to tidewater goby catch per unit effort, suggesting eDNA could potentially be used as a proxy for local tidewater goby abundance. Compared to traditional field sampling, eDNA provided improved occupancy parameter estimates and can be applied to increase management efficiency across a broad spatial range and within a diversity of habitats.

  3. A new Permian bivalve-dominated assemblage in the Rio do Rasto Formation, Paraná Basin, Brazil: Faunal turnover driven by regional-scale environmental changes in a vast epeiric sea

    NASA Astrophysics Data System (ADS)

    Simões, Marcello Guimarães; Matos, Suzana Aparecida; Anelli, Luiz Eduardo; Rohn, Rosemarie; Warren, Lucas Veríssimo; David, Juliana Machado

    2015-12-01

    The basal portion of the Permian Rio do Rasto Formation (Serrinha Member), Passa Dois Group, Paraná Basin, Brazil, records an entirely new bivalve fauna intercalated between the underlying Pinzonella neotropica assemblage (uppermost portion of the Teresina Formation) and the overlying Leinzia similis assemblage (Rio do Rasto Formation). Mollusks of these assemblages lived in marginal shallow-water habitats of an immense epeiric sea and were dominated by endemic bivalve species. Taxonomic analysis revealed the presence of Terraia curvata (60.61%), Astartellopsis prosoclina (19.70%), Cowperesia emerita (10.61%), Leinzia curta (4.55%), Terraia bipleura (3.03%) and Beurlenella elongatella (1.52%), which are associated with conchostracans and plant remains. Species composition, abundance, and dominance in this novel assemblage differ notably from the preceding ones, suggesting a substantial evolutionary turnover. Regional-scale environmental changes recognized based on taphonomy, facies analysis, and geochemical data consist of progressive freshening of the marginal habitats of the Paraná Basin and taxic changes that include the following: (a) loss of genera, (b) decrease in bivalve abundance and ecological guilds, (c) disappearance of the dominant bivalve group (Pinzonellinae) and (d) diversification of Terrainae bivalves. The ecological signature also changed notably because only infaunal suspension-feeding bivalves are present, indicating a significant loss of functional diversity at the regional scale. Likely stressor factors (among others) are tied to freshening events, suggesting profound changes in (a) salinity, (b) primary productivity and (c) a lack of coarse, stable substrates coupled with high bioturbation rates. Hence, our regional example could offer valuable clues to benthic (bivalve) community responses in a habitat subjected to (a) rapid climate changes and (b) freshening events in shallow-water settings. Finally, the stratigraphic range of the

  4. Evaluating local and regional scales of environmental change from sediment characteristics of a tributary of the upper Chesapeake Bay: a geospatial approach to understanding the role of humans on elemental transport and fate

    NASA Astrophysics Data System (ADS)

    Krahforst, C.; Hartman, S.; Eisen-Cuadra, A.; Bruce, S.; Sherman, L.; Kehm, K.

    2013-12-01

    Most of our coastal systems have experienced changes in ecosystem quality due to increased anthropogenic activities, often resulting in the degradation of water and habitat quality. Estuaries are often the first of marine systems that experience these changes. The distribution of trace elements (V, Cr, Cu, Ni, Pb, As, Sn, Ag, Zn, and Cd) and other sediment characteristics in surface sediments and sediment cores from the Chester River - an estuary located in a predominantly agricultural watershed of the upper Chesapeake Bay, USA - is being determined in order to add to the understanding of contaminant transport and fate and evaluate the likelihood for success of strategies designed to meet or improve the ecological condition of estuaries. The high amount of suspended sediment in the Chester River (10-20 mg L-1) is an important factor controlling water quality conditions and a prime focus for environmental management. Sources of suspended mater and its elemental composition are the result of local runoff, atmospheric deposition, local resuspension, and exchange with the Chesapeake Bay. Preliminary results from multivariate analytic and geospatial mapping analyses of sediment surface grabs display significant covariance with Al for many of the elements investigated which may indicate limited exogenic sources of contamination for of sediments of this watershed. For example total Pb sediment concentrations were mostly below the NOAA's low toxic effects level (94%) and appear to be dominated by crustal weathering or from accelerated soil erosion (Pb vs. Al, r2 = 0.84). These analyses, coupled with sequential leaching of elements from these sediments, sediment organic carbon, activities of selected radionuclides of sediment cores and main stem water quality surveys provide added information of the roles of local land use and region scale processes on ecosystem condition and may direct future management for improving environmental quality of estuaries.

  5. A Simplified Ecological Footprint At A Regional Scale

    EPA Science Inventory

    We calculated an Ecological Footprint Analysis (EFA) at a regional scale. EFA captures the human impact on the environmental system by identifying the amount of biologically productive land necessary to support a person’s level of consumption and waste generation. EFA is a comm...

  6. Geological Interpretation of PSInSAR Data at Regional Scale

    PubMed Central

    Meisina, Claudia; Zucca, Francesco; Notti, Davide; Colombo, Alessio; Cucchi, Anselmo; Savio, Giuliano; Giannico, Chiara; Bianchi, Marco

    2008-01-01

    Results of a PSInSAR™ project carried out by the Regional Agency for Environmental Protection (ARPA) in Piemonte Region (Northern Italy) are presented and discussed. A methodology is proposed for the interpretation of the PSInSAR™ data at the regional scale, easy to use by the public administrations and by civil protection authorities. Potential and limitations of the PSInSAR™ technique for ground movement detection on a regional scale and monitoring are then estimated in relationship with different geological processes and various geological environments.

  7. Groundwater- Surface Water Interaction at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Barthel, Roland; Banzhaf, Stefan

    2014-05-01

    Today, both scientists and practitioners agree that management of water resources has to be performed in an integrated way. At the same time there is an increasing need for research at the regional scale (here 103 to 106 km2), because (i) this is the scale where interaction between environmental and human systems is fully developed through various links between supply and consumption, sources and sinks, etc. and (ii) the regional scale links global change to local impacts and action. The regional scale is the scale of management - to acknowledge this might be an important first step in finding the appropriate ways to address it. In any case, it is of utmost importance, that groundwater-surface water (GW-SW) interaction - as a central process of the hydrological cycle - is considered on the regional scale too. The starting point for the present contribution is two regional integrated models developed by the first author and the problems encountered in the attempt to implement adequately the GW-SW interaction therein. To evaluate if solutions to these problems were available from other studies, the available knowledge and tools were reviewed to extract common findings and guidance on how to analyse, describe and finally model GW-SW on the regional scale. Here we compare the characteristics of GW-SW interaction at different scales, the particularities of the regional scale, the available knowledge on how to regionalize and/or upscale processes, properties and parameters from smaller to larger scales and the model concepts available to describe GW-SW interaction at the regional scale. The overall conclusions are somewhat disillusioning: A large variety of research efforts has addressed the underlying problem setting and a plethora of tools were developed, yet GW-SW interaction at the regional scale is rarely explicitly addressed in a systematic way. It is evident that regional scale hydrological research on coupled surface-subsurface systems has to deal with high

  8. Bioenergy Sustainability at the Regional-Scale

    SciTech Connect

    Dale, Virginia H; Mulholland, Patrick J; Lowrance, Richard; Robertson, G. Phillip

    2010-01-01

    The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide.

  9. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  10. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    SciTech Connect

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-04-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico.

  11. Characteristics of chlorophyll formation of the aerial microalga Coelastrella striolata var. multistriata and its application for environmental biomonitoring.

    PubMed

    Abe, Katsuya; Takizawa, Hiroyuki; Kimura, Seiko; Hirano, Morio

    2004-01-01

    The growth and ammonium uptake of the aerial microalga Coelastrella striolata var. multistriata, which was isolated from the surface of rocks, were characterized in this study. The specific growth rate of the alga was mu=0.3 d(-1), as calculated in the growth logarithmic phase. The algal cells were able to remove almost 100% of the ammonium ions from medium in 5 d, with the removal rate of ammonium-N being 0.4 mg/l/h. It was shown that the alga has a unique ability to be a reddish orange to green color depending on the nitrogen source concentration in the medium. Astaxanthin, adonixanthin, canthaxanthin, and beta-carotene were found in the reddish orange cells of the alga. The assessment of water pollution was attempted using this aerial microalga. When the reddish orange alga was incubated in the experimental medium with added ammonium-, nitrate-, or urea-N as a nitrogen source, an approximately linear relationship existed between the nitrogen concentration and chlorophyll formation. Using the chlorophyll formation of the alga, for example, it was possible to estimate spectrophotometrically the total nitrogen content in water collected from aquatic systems. Biofunctional materials for environmental biomonitoring using photosynthetic microorganisms are called green devices in this study.

  12. Environmental waste site characterization utilizing aerial photographs, remote sensing, and surface geophysics

    SciTech Connect

    Pope, P.; Van Eeckhout, E.; Rofer, C.; Baldridge, S.; Ferguson, J.; Jiracek, G.; Balick, L.; Josten, N.; Carpenter, M.

    1996-04-18

    Six different techniques were used to delineate 40 year old trench boundary at Los Alamos National Laboratory. Data from historical aerial photographs, a magnetic gradient survey, airborne multispectral and thermal infra-red imagery, seismic refraction, DC resistivity, and total field magnetometry were utilized in this process. Each data set indicated a southern and northern edge for the trench. Average locations and 95% confidence limits for each edge were determined along a survey line perpendicular to the trench. Trench edge locations were fairly consistent among all six techniques. Results from a modeling effort performed with the total magnetic field data was the least consistent. However, each method provided unique and complementary information, and the integration of all this information led to a more complete characterization of the trench boundaries and contents.

  13. AERIAL PHOTO INTERPRETATION FOR SITE CHARACTERIZATION, ENVIRONMENTAL PHOTOGRAPHIC INTERPRETATION CENTER (EPIC)

    EPA Science Inventory

    The Environmental Photographic Interpretation Center (EPIC) is a field station of the Landscape Ecology Branch (LEB), Environmental Sciences Division - Las Vegas, Office of Research and Development EPIC provides remote sensing technical support to help the Agency achieve its mult...

  14. Bioenergy Sustainability at the Regional Scale

    SciTech Connect

    Kline, Keith L; Dale, Virginia H; Mulholland, Patrick J; Lowrance, Richard; Robertson, G. Phillip

    2010-11-01

    To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

  15. U.S. ENVIRONMENTAL PROTECTION AGENCY'S PM SUPERSITES PROGRAM - A MAJOR SUCCESSFUL COLLABORATIVE AIR QUALITY PROGRAM SUPPORTING STATES AND REGIONAL ORGANIZATIONS IN THEIR APPROACHES TO REDUCE PM LEVELS IN AIR ON URBAN AND REGIONAL SCALES

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Particulate Matter (PM) Supersites Program (Program) is a nationwide air quality methods, measurement, modeling, and data analysis program initiated through cooperative agreements with leading universities in the United States. The Progr...

  16. Unmanned Aerial Systems as Versatile Tools for Atmospheric and Environmental Research

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos; Levin, Zev

    2013-04-01

    Unmanned Aerial Systems (UASs) are increasingly recognized as versatile tools for different earth-sciences applications providing chiefly a link between in-situ ground based measurements and satellite remote sensing observations. Based on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute (APAESO is co-financed by the European Development Fund and the Republic of Cyprus through the Cyprus Research Promotion Foundation: ΝΕΑ ΥΠΟΔΟΜΗ/ΝΕΚΥΠ/0308/09), we have acquired four CRUISERS (ET-Air, Slovakia) as UAS platforms and a substantial range of scientific instruments to be employed on these platforms. The APAESO platforms are aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the (Eastern) Mediterranean They will enable 3D measurements for determining physical, chemical and radiative atmospheric properties, aerosol and dust concentrations and atmospheric dynamics as well as 2D investigations into land management practices, vegetation and agricultural mapping, contaminant detection and the monitoring and assessment of hydrological parameters and processes of a given region at high spatial resolution. Currently, we are building up an Unmanned Airplane Facility at CyI. In the process of reaching full operational capacity, we have initiated and carried out first test missions involving highly specialized and specifically adapted instrumentation for atmospheric investigations. The first scientific mission involves the employment of a DOAS-system (Differential Optical Absorption Spectroscopy) in cooperation with colleagues from Heidelberg and Mainz, Germany and has been successfully completed. More recently, we started work on a new collaborative project aimed at measuring vertical profiles of aerosols in the Eastern Mediterranean. The project involves colleagues from the University of Frankfurt

  17. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  18. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  19. A REGIONAL SCALE TOXICITY ASSESSMENT OF SEDIMENT IN THE MID-ATLANTIC AND SOUTHERN ROCKIES, USA

    EPA Science Inventory

    As part of the Environmental Monitoring and Assessment Program (EMAP), sediment samples were collected to assess toxicity on a regional scale in streams and rivers in the Mid-Atlantic U.S. in 1994, 1997 and 1998, and in the Colorado Rocky Mountains in 1994 and 1995. Sample sites...

  20. USING RELATIVE RISK TO COMPARE THE EFFECTS OF AQUATIC STRESSORS AT A REGIONAL SCALE

    EPA Science Inventory

    The regional-scale importance of an aquatic stressor depends both on its regional extent (i.e., how widespread it is) and on the severity of its effects in ecosystems where it is found. Sample surveys, such as those developed by the U.S. Environmental Protection Agency¿s Environm...

  1. Environmental geophysics and sequential aerial photo study at Sunfish and Marsden Lakes, Twin Cities Army Ammunition Plant

    SciTech Connect

    Padar, C.A.; McGinnis, L.D.; Thompson, M.D.; Anderson, A.W.; Benson, M.A.; Stevanov, J.E.; Daudt, C.R.; Miller, S.F.; Knight, D.E. |

    1995-08-01

    Geophysical studies at Site H of Twin Cities Army Ammunition Plant have delineated specific areas of dumping and waste disposal. Anomalous areas noted in the geophysical data sets have been correlated with features visible in a chronological sequence of aerial photos. The photos aid in dating the anthropogenic changes and in interpreting the geophysical anomalies observed at Site H and across Sunfish Lake. Specifically, two burn cages and what has been interpreted as their surrounding debris have been delineated. The areal extent of another waste site has been defined in the southwest corner of Area H-1. Depth estimates to the top of the Area H-1 anomalies show that the anomalies lie below lake level, indicative of dumping directly into Sunfish Lake. Except for these areas along the northwestern shore, there is no evidence of waste disposal along the shoreline or within the present-day lake margins. Magnetic, electromagnetic, and ground-penetrating-radar data have pinpointed the locations of mounds, observable in aerial photos, around the first burn cage. The second burn cage and its surrounding area have also been clearly defined from aerial photos, with support from further geophysical data. Additional analysis of the data has yielded volumetric estimates of the amount of material that would need removal in the event of excavation of the anomalous areas. Magnetic and electromagnetic profiles were also run across Marsden Lake. On the basis of these data, it has been concluded that no large-scale dumping has occurred in or around Marsden Lake.

  2. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  3. A simplified ecological footprint at a regional scale.

    PubMed

    Hopton, Matthew E; White, Denis

    2012-11-30

    We calculated an Ecological Footprint Analysis (EFA) at a regional scale. EFA captures the human impact on the environmental system by identifying the amount of biologically productive land necessary to support a person's level of consumption and waste generation. EFA is a commonly used metric of sustainability because it is easy to conceptualize and the calculation is relatively straightforward. Utilizing free, readily available data, we calculated an EFA for a region in southern Colorado. Gathering existing data at a regional scale is difficult because data are often collected at national or state levels. The lack of data is further confounded by the fact that data are often collected at intervals greater than one year. Variables that were missing data for certain years were estimated using linear interpolation. Data not available by county were scaled to the region from state or national level data. Thirty-five variables from 1980 to 2005 (26 years) were collected and used to calculate a time-dependent EFA and the resulting trend was visually examined. The available biocapacity in the region did not decrease during the period, but per capita biocapacity decreased due to population growth. Per capita biocapacity was at a period high of nearly 41 ha per person (ha/ca) in 1980 and steadily decreased to a low around 31 ha/ca in 2005. Ecological footprint remained constant over the 26-year period, varying from a low of 5.1 ha/ca in 1997 to a high of 5.5 ha/ca in 1985. A steady ecological footprint combined with a decreasing per capita biocapacity, implies the ecological reserve is decreasing and, thus, the region is moving away from sustainability. Although per capita consumption did not increase substantially during the 26 years, more people are drawing on a fixed quantity of resources. Our methodology is a simplified approach to EFA and does not follow standards that are currently being established. Adhering to the suggested standards would require obtaining data

  4. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  5. Strategies for Measuring Wind Erosion for Regional Scale Modeling

    NASA Astrophysics Data System (ADS)

    Youssef, F.; Visser, S.; Karssenberg, D.,; Slingerland, E.; Erpul, G.; Ziadat, F.; Stroosnijder, L.

    2012-04-01

    Windblown sediment transport is mostly measured at field or plot scale due to the high spatial variability over the study area. Regional scale measurements are often limited to measurements of the change in the elevation providing information on net erosion or deposition. For the calibration and validation of regional scale wind erosion models insight in windblown mass fluxes at the regional scale is essential. The objective of this research is to develop a measurement strategy that provides insight in regional scale windblown mass fluxes, and observational data that can be used to calibrate and validate a regional scale wind erosion model. So far, equipment for direct observation of windblown mass fluxes at the regional scale does not exist. Instead, to retrieve insight into mass transport at the regional scale information needs to be collected on mass fluxes at various land use types found in the region, and information on the effects of the borders between present land uses. This information can be combined by using model units of the size of arable fields in a regional scale model in order to predict the mass flux and soil loss at the regional scale. Here, we use a portable plot strategy to maximize the total number of measurement plots with limited equipment, time and budget. Measurements on windblown mass transport were executed at 17 plots in agricultural stability zones 4 and 5 in Khanasser valley, Syria in 2009 and 2010. At each plot 16 MWAC (Modified Wilson and Cooke) sediment catchers were installed. In addition to the sediment catchers, a full metrological station to record wind regime, temperature and relative humidity was installed at each plot during the measurement period. The results of this research show that with the strategy of portable equipment installed on different plots, information on mass transport for different land uses in the region can be obtained. Consequently, this knowledge is adequate to be used for calibration and validation of a

  6. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  7. Aerial Application of Mancozeb and Urinary Ethylene Thiourea (ETU) Concentrations among Pregnant Women in Costa Rica: The Infants’ Environmental Health Study (ISA)

    PubMed Central

    Mora, Ana María; Córdoba, Leonel; Cano, Juan Camilo; Quesada, Rosario; Faniband, Moosa; Wesseling, Catharina; Ruepert, Clemens; Öberg, Mattias; Eskenazi, Brenda; Mergler, Donna; Lindh, Christian H.

    2014-01-01

    Background: Mancozeb and its main metabolite ethylene thiourea (ETU) may alter thyroid function; thyroid hormones are essential for fetal brain development. In Costa Rica, mancozeb is aerially sprayed at large-scale banana plantations on a weekly basis. Objectives: Our goals were to evaluate urinary ETU concentrations in pregnant women living near large-scale banana plantations, compare their estimated daily intake (EDI) with established reference doses (RfDs), and identify factors that predict their urinary ETU concentrations. Methods: We enrolled 451 pregnant women from Matina County, Costa Rica, which has large-scale banana production. We visited 445 women up to three times during pregnancy to obtain urine samples (n = 872) and information on factors that possibly influence exposure. We determined urinary ETU concentrations using liquid chromatography mass spectrometry. Results: Pregnant women’s median urinary ETU concentrations were more than five times higher than those reported for other general populations. Seventy-two percent of the women had EDIs above the RfD. Women who lived closest (1st quartile, < 48 m) to banana plantations on average had a 45% (95% CI: 23, 72%) higher urinary ETU compared with women who lived farthest away (4th quartile, ≥ 565 m). Compared with the other women, ETU was also higher in women who washed agricultural work clothes on the day before sampling (11%; 95% CI: 4.9, 17%), women who worked in agriculture during pregnancy (19%; 95% CI: 9.3, 29%), and immigrant women (6.2%; 95% CI: 1.0, 13%). Conclusions: The pregnant women’s urinary ETU concentrations are of concern, and the principal source of exposure is likely to be aerial spraying of mancozeb. The factors predicting ETU provide insight into possibilities for exposure reduction. Citation: van Wendel de Joode B, Mora AM, Córdoba L, Cano JC, Quesada R, Faniband M, Wesseling C, Ruepert C, Öberg M, Eskenazi B, Mergler D, Lindh CH. 2014. Aerial application of mancozeb and

  8. Rapid, Repeat-sample Monitoring of Crustal Deformations and Environmental Phenomena with the Uninhabited Aerial Vehicle Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Smith, Robert C.

    2006-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.

  9. Manganese concentrations in drinking water from villages near banana plantations with aerial mancozeb spraying in Costa Rica: Results from the Infants' Environmental Health Study (ISA).

    PubMed

    van Wendel de Joode, Berna; Barbeau, Benoit; Bouchard, Maryse F; Mora, Ana María; Skytt, Åsa; Córdoba, Leonel; Quesada, Rosario; Lundh, Thomas; Lindh, Christian H; Mergler, Donna

    2016-08-01

    Elevated manganese (Mn) in drinking water has been reported worldwide. While, naturally occurring Mn in groundwater is generally the major source, anthropogenic contamination by Mn-containing fungicides such as mancozeb may also occur. The main objective of this study was to examine factors associated with Mn and ethylenethiourea (ETU), a degradation product of mancozeb, in drinking water samples from villages situated near banana plantations with aerial spraying of mancozeb. Drinking water samples (n = 126) were obtained from 124 homes of women participating in the Infants' Environmental Health Study (ISA, for its acronym in Spanish), living nearby large-scale banana plantations. Concentrations of Mn, iron (Fe), arsenic (As), lead (Pb), cadmium (Cd) and ethylenethiourea (ETU), a degradation product of mancozeb, were measured in water samples. Only six percent of samples had detectable ETU concentrations (limit of detection (LOD) = 0.15 μg/L), whereas 94% of the samples had detectable Mn (LOD = 0.05 μg/L). Mn concentrations were higher than 100 and 500 μg/L in 22% and 7% of the samples, respectively. Mn was highest in samples from private and banana farm wells. Distance from a banana plantation was inversely associated with Mn concentrations, with a 61.5% decrease (95% CI: -97.0, -26.0) in Mn concentrations for each km increase in distance. Mn concentrations in water transported with trucks from one village to another were almost 1000 times higher than Mn in water obtained from taps in houses supplied by the same well but not transported, indicating environmental Mn contamination. Elevated Mn in drinking water may be partly explained by aerial spraying of mancozeb; however, naturally occurring Mn in groundwater, and intensive agriculture may also contribute. Drinking water risk assessment for mancozeb should consider Mn as a health hazard. The findings of this study evidence the need for health-based World Health Organization (WHO) guidelines on Mn in

  10. Manganese concentrations in drinking water from villages near banana plantations with aerial mancozeb spraying in Costa Rica: Results from the Infants' Environmental Health Study (ISA).

    PubMed

    van Wendel de Joode, Berna; Barbeau, Benoit; Bouchard, Maryse F; Mora, Ana María; Skytt, Åsa; Córdoba, Leonel; Quesada, Rosario; Lundh, Thomas; Lindh, Christian H; Mergler, Donna

    2016-08-01

    Elevated manganese (Mn) in drinking water has been reported worldwide. While, naturally occurring Mn in groundwater is generally the major source, anthropogenic contamination by Mn-containing fungicides such as mancozeb may also occur. The main objective of this study was to examine factors associated with Mn and ethylenethiourea (ETU), a degradation product of mancozeb, in drinking water samples from villages situated near banana plantations with aerial spraying of mancozeb. Drinking water samples (n = 126) were obtained from 124 homes of women participating in the Infants' Environmental Health Study (ISA, for its acronym in Spanish), living nearby large-scale banana plantations. Concentrations of Mn, iron (Fe), arsenic (As), lead (Pb), cadmium (Cd) and ethylenethiourea (ETU), a degradation product of mancozeb, were measured in water samples. Only six percent of samples had detectable ETU concentrations (limit of detection (LOD) = 0.15 μg/L), whereas 94% of the samples had detectable Mn (LOD = 0.05 μg/L). Mn concentrations were higher than 100 and 500 μg/L in 22% and 7% of the samples, respectively. Mn was highest in samples from private and banana farm wells. Distance from a banana plantation was inversely associated with Mn concentrations, with a 61.5% decrease (95% CI: -97.0, -26.0) in Mn concentrations for each km increase in distance. Mn concentrations in water transported with trucks from one village to another were almost 1000 times higher than Mn in water obtained from taps in houses supplied by the same well but not transported, indicating environmental Mn contamination. Elevated Mn in drinking water may be partly explained by aerial spraying of mancozeb; however, naturally occurring Mn in groundwater, and intensive agriculture may also contribute. Drinking water risk assessment for mancozeb should consider Mn as a health hazard. The findings of this study evidence the need for health-based World Health Organization (WHO) guidelines on Mn in

  11. INDICATORS OF ECOLOGICAL STRESS AND THEIR EXTENT IN THE POPULATION OF NORTHEASTERN LAKES: A REGIONAL-SCALE ASSESSMENT

    EPA Science Inventory

    One of the Environmental Monitoring and Assessment Program's first projects was a survey of 345 lakes in the eight states of the Northeast, during summers of 1991-1996. This survey was the first regional-scale attempt to use a probability-based sampling design to collect biolog...

  12. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    PubMed

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  13. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale

    PubMed Central

    Serafy, Joseph E.; Shideler, Geoffrey S.; Araújo, Rafael J.; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as “mangrove-dependent”. Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  14. Tropical deforestation: Modeling local- to regional-scale climate change

    SciTech Connect

    Henderson-Sellers, A.; Durbidge, T.B.; Pitman, A.J. ); Dickinson, R.E. ); Kennedy, P.J. ); McGuffie, K. )

    1993-04-20

    The authors report results from a model study using the National Center for Atmospheric Research Community Climate Model (Version 1) general circulation model to assess the impact of regional scale deforestation on climate change. In the model a large parcel in the Amazon basin is changed from tropical rain forest to scrub grassland. Impacts can include adding CO[sub 2] to the atmosphere by biomass burning, increasing surface albedo, changing precipitation and evaporation rates, impacting soil moisture, and general weather patterns. They compare their model results with earlier work which has looked at this same problem.

  15. Regional-scale assembly rules and biodiversity of coral reefs.

    PubMed

    Bellwood, D R; Hughes, T P

    2001-05-25

    Tropical reef fishes and corals exhibit highly predictable patterns of taxonomic composition across the Indian and Pacific Oceans. Despite steep longitudinal and latitudinal gradients in total species richness, the composition of these key taxa is constrained within a remarkably narrow range of values. Regional-scale variation in reef biodiversity is best explained by large-scale patterns in the availability of shallow-water habitat. Once habitat area is accounted for, there is surprisingly little residual effect of latitude or longitude. Low-diversity regions are most vulnerable to human impacts such as global warming, underscoring the urgent need for integrated management at multinational scales.

  16. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  17. Adaptive planning of emergency aerial photogrammetric mission

    NASA Astrophysics Data System (ADS)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  18. Regional scale hydrology with a new land surface processes model

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Crosson, William

    1995-01-01

    Through the CaPE Hydrometeorology Project, we have developed an understanding of some of the unique data quality issues involved in assimilating data of disparate types for regional-scale hydrologic modeling within a GIS framework. Among others, the issues addressed here include the development of adequate validation of the surface water budget, implementation of the STATSGO soil data set, and implementation of a remote sensing-derived landcover data set to account for surface heterogeneity. A model of land surface processes has been developed and used in studies of the sensitivity of surface fluxes and runoff to soil and landcover characterization. Results of these experiments have raised many questions about how to treat the scale-dependence of land surface-atmosphere interactions on spatial and temporal variability. In light of these questions, additional modifications are being considered for the Marshall Land Surface Processes Model. It is anticipated that these techniques can be tested and applied in conjunction with GCIP activities over regional scales.

  19. Forest fragmentation and bird community dynamics: inference at regional scales

    USGS Publications Warehouse

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These

  20. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  1. REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS

    SciTech Connect

    Glascoe, L G; Glaser, R E; Chin, H S; Loosmore, G A

    2004-06-17

    The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goal of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.

  2. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  3. Sea cliff instability susceptibility at regional scale: A statistically based assessment in southern Algarve, Portugal.

    NASA Astrophysics Data System (ADS)

    Marques, F.; Matildes, R.; Redweik, P.

    2012-04-01

    /year in strong sandstones to 5x10-2m/year in Miocene calcarenites with frequent karst sinkholes filled with Plio-pleistocene silty sands, reflecting the strength variations of the rock masses that compose the cliffs. The maximum value of local retreat of the cliff top was up to 33m, in man induced failure, with more frequent values in the range of 2m to 6m. For the susceptibility assessment a set of predisposing factors was studied using two statistical methods, the bi-variate Information Value method, and the multi-variate Logistic Regression method, along successive constant length stretches of cliffs. The predisposing factors included: a) major lithostratigraphical units adapted from existing geological surveys; b) rock mass structure based in field observations; c) cliff height measured in 1:2,000 scale aerophotogrammetric surveys; d) general cliff slope angle generated from photogrammetric stereoploting of cliff top and toe; e) maximum cliff slope angle derived from the 1:2,000 scale aerophotogrammetric surveys; f) presence and type of cliff toe protection (plunging cliffs, fallen blocks, beaches, wave cut platforms) obtained in aerial photo interpretation and field work; g) land use; h) cliff exposure; i) cliff face aspect; j) presence of faults or dykes. The two instability assessment models produced were validated using standard Receiver Operator Curves using the cliff failures inventory, and provided very promising results, indicating that these methods are adequate to assess cliff instability susceptibility at regional scale, enabling an objective and validated assessment in this highly complex natural environment.

  4. Do climate factors govern soil microbial community composition and biomass at a regional scale?

    NASA Astrophysics Data System (ADS)

    Ma, L.; Guo, C.; Lü, X.; Yuan, S.; Wang, R.

    2014-12-01

    Soil microbial communities play important role in organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about factors driving soil microbial community composition at large scales. The objective of this study was to determine whether climate dominates among environmental factors governing microbial community composition and biomass at a regional scale. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations in North-East China Transect (850 km x 50 km). The results showed that soil water availability and land use changes exhibited the dominant effects on soil microbial community composition and biomass at the regional scale, while climate factors (expressed as a function of large-scale spatial variation) did not show strong relationships with distribution of microbial community composition. Likewise, factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Wetter soils had higher contributions of gram-positive bacteria, whereas drier soils had higher contributions of gram-negative bacteria and fungi. Heavily disturbed soils had lower contributions of gram-negative bacteria and fungi than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate factors, commonly known to structure distribution of macroorganisms, were not the most important drivers governing regional pattern of microbial communities because of inclusion of irrigated and managed practices. In comparison, soil water regime and land use types appear to be primary determinants of microbial community composition and biomass.

  5. Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales.

    PubMed

    Donohue, Ian; Jackson, Andrew L; Pusch, Martin T; Irvine, Kenneth

    2009-12-01

    The compositional heterogeneity of biotic assemblages among sites, or beta-diversity, regulates the relationship between local and regional species diversity across scales. Recent work has suggested that increased harshness of environmental conditions tends to reduce beta-diversity by decreasing the importance of stochastic processes in structuring assemblages. We investigated the effect of nutrient enrichment on the compositional heterogeneity of lake benthic invertebrate assemblages in Ireland at both local (within-lake) and regional (among-lake) scales. At local scales, we found that the compositional heterogeneity of benthic assemblages was related inversely to the extent of nutrient enrichment (as indicated by measurements of water column total phosphorus, total nitrogen, and chlorophyll a), after effects of lake morphology (i.e., surface area, connectivity, and depth of sampling) and alkalinity were accounted for. At regional scales, we found that nutrient-rich lakes had significantly more homogenous benthic assemblages than nutrient-poor lakes, over and above the effect of alkalinity and across a similar range of lake morphologies. These findings have profound implications for global aquatic biodiversity, as the homogenization of benthic assemblages at both local and regional scales may have important and unpredictable effects on whole aquatic ecosystems, with potentially considerable ecological and evolutionary consequences. PMID:20120814

  6. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  7. Comparative study of nitrate leaching models on a regional scale.

    PubMed

    Roelsma, J; Hendriks, R F A

    2014-11-15

    In Europe and North America the application of high levels of manure and fertilisers on agricultural land has led to high levels of nitrate concentrations in groundwater, in particular on sandy soils. For the evaluation of the development of the quality of groundwater a sound quantitative basis is needed. In this paper a comparison has been made between observations of nitrate concentrations in the upper groundwater and predictions of nitrate leaching models. Observations of nitrate concentrations in the upper groundwater at three different locations in regions with mainly sandy soils in the eastern and northern part of the Netherlands were used to test the performance of the simulation models to predict nitrate leaching to the upper groundwater. Four different types of simulation models of different levels of complexity and input data requirement were tested. These models are ANIMO (dynamic complex process oriented model), MM-WSV (meta-model), WOG (simple process oriented model) and NURP (semi-empiric model). The performance of the different simulation models was evaluated using statistical criteria. The dynamic complex process oriented ANIMO model showed the best model performance. The MM-WSV meta-model was the second best model, whilst the simple process oriented WOG model produced the worst model performance. The best model performance showed the dynamic complex process oriented ANIMO model in predicting the nitrate concentrations in the upper groundwater of the Klooster catchment. The good performance of the ANIMO model for this catchment can be explained by the additional information about the use of manure and fertilisers at farm level in this study area. The ANIMO model may be a good tool to predict nitrate concentrations in the upper groundwater on a regional scale. However, the use of a detailed process oriented simulation model requires a comprehensive set of input data. If such a comprehensive data-set is not available the MM-WSV model (meta

  8. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  9. Geographical patterns in cyanobacteria distribution: climate influence at regional scale.

    PubMed

    Pitois, Frédéric; Thoraval, Isabelle; Baurès, Estelle; Thomas, Olivier

    2014-01-28

    Cyanobacteria are a component of public health hazards in freshwater environments because of their potential as toxin producers. Eutrophication has long been considered the main cause of cyanobacteria outbreak and proliferation, whereas many studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell growth rate or toxin production. In view of the growing concerns of global change consequences on public health parameters, this study attempts to enlighten climate influence on cyanobacteria at regional scale in Brittany (NW France). The results show that homogeneous cyanobacteria groups are associated with climatic domains related to temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences are only correlated to local cyanobacteria species composition. As the regional climatic gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a comparison between the present NW and SE situations was used to extrapolate the evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria composition should shift toward species associated with more frequent Microcystins occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should transition to species (mainly Nostocales) associated with lower MCs detection frequencies.

  10. Invasive lionfish reduce native fish abundance on a regional scale.

    PubMed

    Ballew, Nicholas G; Bacheler, Nathan M; Kellison, G Todd; Schueller, Amy M

    2016-01-01

    Invasive lionfish pose an unprecedented threat to biodiversity and fisheries throughout Atlantic waters off of the southeastern United States, the Caribbean, and the Gulf of Mexico. Here, we employ a spatially replicated Before-After-Control-Impact analysis with temporal pairing to quantify for the first time the impact of the lionfish invasion on native fish abundance across a broad regional scale and over the entire duration of the lionfish invasion (1990-2014). Our results suggest that 1) lionfish-impacted areas off of the southeastern United States are most prevalent off-shore near the continental shelf-break but are also common near-shore and 2) in impacted areas, lionfish have reduced tomtate (a native forage fish) abundance by 45% since the invasion began. Tomtate served as a model native fish species in our analysis, and as such, it is likely that the lionfish invasion has had similar impacts on other species, some of which may be of economic importance. Barring the development of a control strategy that reverses the lionfish invasion, the abundance of lionfish in the Atlantic, Caribbean, and Gulf of Mexico will likely remain at or above current levels. Consequently, the effect of lionfish on native fish abundance will likely continue for the foreseeable future. PMID:27578096

  11. A regional-scale Ocean Health Index for Brazil.

    PubMed

    Elfes, Cristiane T; Longo, Catherine; Halpern, Benjamin S; Hardy, Darren; Scarborough, Courtney; Best, Benjamin D; Pinheiro, Tiago; Dutra, Guilherme F

    2014-01-01

    Brazil has one of the largest and fastest growing economies and one of the largest coastlines in the world, making human use and enjoyment of coastal and marine resources of fundamental importance to the country. Integrated assessments of ocean health are needed to understand the condition of a range of benefits that humans derive from marine systems and to evaluate where attention should be focused to improve the health of these systems. Here we describe the first such assessment for Brazil at both national and state levels. We applied the Ocean Health Index framework, which evaluates ten public goals for healthy oceans. Despite refinements of input data and model formulations, the national score of 60 (out of 100) was highly congruent with the previous global assessment for Brazil of 62. Variability in scores among coastal states was most striking for goals related to mariculture, protected areas, tourism, and clean waters. Extractive goals, including Food Provision, received low scores relative to habitat-related goals, such as Biodiversity. This study demonstrates the applicability of the Ocean Health Index at a regional scale, and its usefulness in highlighting existing data and knowledge gaps and identifying key policy and management recommendations. To improve Brazil's ocean health, this study suggests that future actions should focus on: enhancing fisheries management, expanding marine protected areas, and monitoring coastal habitats.

  12. Predicting redox conditions in groundwater at a regional scale

    USGS Publications Warehouse

    Tesoriero, Anthony J.; Terziotti, Silvia; Abrams, Daniel B.

    2015-01-01

    Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved O2 concentrations in groundwater samples to indicators of residence time and/or electron donor availability using logistic regression. Variables that describe surficial geology, position in the flow system, and soil drainage were important predictors of oxic water. The probability of encountering oxic groundwater at a 30 m depth and the depth to the bottom of the oxic layer were predicted for the Chesapeake Bay watershed. The influence of depth to the bottom of the oxic layer on stream nitrate concentrations and time lags (i.e., time period between land application of nitrogen and its effect on streams) are illustrated using model simulations for hypothetical basins. Regional maps of the probability of oxic groundwater should prove useful as indicators of groundwater susceptibility and stream susceptibility to contaminant sources derived from groundwater.

  13. A regional-scale Ocean Health Index for Brazil.

    PubMed

    Elfes, Cristiane T; Longo, Catherine; Halpern, Benjamin S; Hardy, Darren; Scarborough, Courtney; Best, Benjamin D; Pinheiro, Tiago; Dutra, Guilherme F

    2014-01-01

    Brazil has one of the largest and fastest growing economies and one of the largest coastlines in the world, making human use and enjoyment of coastal and marine resources of fundamental importance to the country. Integrated assessments of ocean health are needed to understand the condition of a range of benefits that humans derive from marine systems and to evaluate where attention should be focused to improve the health of these systems. Here we describe the first such assessment for Brazil at both national and state levels. We applied the Ocean Health Index framework, which evaluates ten public goals for healthy oceans. Despite refinements of input data and model formulations, the national score of 60 (out of 100) was highly congruent with the previous global assessment for Brazil of 62. Variability in scores among coastal states was most striking for goals related to mariculture, protected areas, tourism, and clean waters. Extractive goals, including Food Provision, received low scores relative to habitat-related goals, such as Biodiversity. This study demonstrates the applicability of the Ocean Health Index at a regional scale, and its usefulness in highlighting existing data and knowledge gaps and identifying key policy and management recommendations. To improve Brazil's ocean health, this study suggests that future actions should focus on: enhancing fisheries management, expanding marine protected areas, and monitoring coastal habitats. PMID:24695103

  14. Geographical Patterns in Cyanobacteria Distribution: Climate Influence at Regional Scale

    PubMed Central

    Pitois, Frédéric; Thoraval, Isabelle; Baurès, Estelle; Thomas, Olivier

    2014-01-01

    Cyanobacteria are a component of public health hazards in freshwater environments because of their potential as toxin producers. Eutrophication has long been considered the main cause of cyanobacteria outbreak and proliferation, whereas many studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell growth rate or toxin production. In view of the growing concerns of global change consequences on public health parameters, this study attempts to enlighten climate influence on cyanobacteria at regional scale in Brittany (NW France). The results show that homogeneous cyanobacteria groups are associated with climatic domains related to temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences are only correlated to local cyanobacteria species composition. As the regional climatic gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a comparison between the present NW and SE situations was used to extrapolate the evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria composition should shift toward species associated with more frequent Microcystins occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should transition to species (mainly Nostocales) associated with lower MCs detection frequencies. PMID:24476711

  15. Quantifying river gain and loss at regional scales

    NASA Astrophysics Data System (ADS)

    Cook, Peter G.

    2015-12-01

    River-aquifer exchange is highly spatially variable. For this reason, methods that estimate river gain or loss over small scales cannot be easily extrapolated to provide flux estimates over the tens to hundreds of kilometres of river length required for regional water management. Flux estimates at large scales can be provided by analysis of head gradients, differential flow gauging, river chemistry and groundwater chemistry. Hydraulic gradients allow estimation of exchange fluxes over scales of hundreds of metres or more, if piezometers located at similar distances from the river are available for measurement of aquifer heads. However, the difficulty of measuring hydraulic conductivity at this scale, and the need for piezometers at regular intervals along the river, mean that this method is likely to be inaccurate and difficult to apply in many catchments. Flow gauging has the potential to estimate fluxes over large scales, although it is difficult to apply in rivers where there is significant surface water pumping or where there are large numbers of tributaries. River chemistry can potentially provide estimates of exchange flux over distances of tens to hundreds of kilometres with a spatial resolution of hundreds of metres. Groundwater chemistry can provide estimates of loss rates at small to regional scales, depending upon the availability of piezometers for groundwater sampling, and the tracers that are used. Each method has its own advantages and limitations, and a combination of methods will usually provide most reliable flux estimates.

  16. Invasive lionfish reduce native fish abundance on a regional scale

    PubMed Central

    Ballew, Nicholas G.; Bacheler, Nathan M.; Kellison, G. Todd; Schueller, Amy M.

    2016-01-01

    Invasive lionfish pose an unprecedented threat to biodiversity and fisheries throughout Atlantic waters off of the southeastern United States, the Caribbean, and the Gulf of Mexico. Here, we employ a spatially replicated Before-After-Control-Impact analysis with temporal pairing to quantify for the first time the impact of the lionfish invasion on native fish abundance across a broad regional scale and over the entire duration of the lionfish invasion (1990–2014). Our results suggest that 1) lionfish-impacted areas off of the southeastern United States are most prevalent off-shore near the continental shelf-break but are also common near-shore and 2) in impacted areas, lionfish have reduced tomtate (a native forage fish) abundance by 45% since the invasion began. Tomtate served as a model native fish species in our analysis, and as such, it is likely that the lionfish invasion has had similar impacts on other species, some of which may be of economic importance. Barring the development of a control strategy that reverses the lionfish invasion, the abundance of lionfish in the Atlantic, Caribbean, and Gulf of Mexico will likely remain at or above current levels. Consequently, the effect of lionfish on native fish abundance will likely continue for the foreseeable future. PMID:27578096

  17. Predicting Redox Conditions in Groundwater at a Regional Scale.

    PubMed

    Tesoriero, Anthony J; Terziotti, Silvia; Abrams, Daniel B

    2015-08-18

    Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved O2 concentrations in groundwater samples to indicators of residence time and/or electron donor availability using logistic regression. Variables that describe surficial geology, position in the flow system, and soil drainage were important predictors of oxic water. The probability of encountering oxic groundwater at a 30 m depth and the depth to the bottom of the oxic layer were predicted for the Chesapeake Bay watershed. The influence of depth to the bottom of the oxic layer on stream nitrate concentrations and time lags (i.e., time period between land application of nitrogen and its effect on streams) are illustrated using model simulations for hypothetical basins. Regional maps of the probability of oxic groundwater should prove useful as indicators of groundwater susceptibility and stream susceptibility to contaminant sources derived from groundwater. PMID:26230618

  18. A Regional-Scale Ocean Health Index for Brazil

    PubMed Central

    Elfes, Cristiane T.; Longo, Catherine; Halpern, Benjamin S.; Hardy, Darren; Scarborough, Courtney; Best, Benjamin D.; Pinheiro, Tiago; Dutra, Guilherme F.

    2014-01-01

    Brazil has one of the largest and fastest growing economies and one of the largest coastlines in the world, making human use and enjoyment of coastal and marine resources of fundamental importance to the country. Integrated assessments of ocean health are needed to understand the condition of a range of benefits that humans derive from marine systems and to evaluate where attention should be focused to improve the health of these systems. Here we describe the first such assessment for Brazil at both national and state levels. We applied the Ocean Health Index framework, which evaluates ten public goals for healthy oceans. Despite refinements of input data and model formulations, the national score of 60 (out of 100) was highly congruent with the previous global assessment for Brazil of 62. Variability in scores among coastal states was most striking for goals related to mariculture, protected areas, tourism, and clean waters. Extractive goals, including Food Provision, received low scores relative to habitat-related goals, such as Biodiversity. This study demonstrates the applicability of the Ocean Health Index at a regional scale, and its usefulness in highlighting existing data and knowledge gaps and identifying key policy and management recommendations. To improve Brazil's ocean health, this study suggests that future actions should focus on: enhancing fisheries management, expanding marine protected areas, and monitoring coastal habitats. PMID:24695103

  19. Predicting Redox Conditions in Groundwater at a Regional Scale.

    PubMed

    Tesoriero, Anthony J; Terziotti, Silvia; Abrams, Daniel B

    2015-08-18

    Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved O2 concentrations in groundwater samples to indicators of residence time and/or electron donor availability using logistic regression. Variables that describe surficial geology, position in the flow system, and soil drainage were important predictors of oxic water. The probability of encountering oxic groundwater at a 30 m depth and the depth to the bottom of the oxic layer were predicted for the Chesapeake Bay watershed. The influence of depth to the bottom of the oxic layer on stream nitrate concentrations and time lags (i.e., time period between land application of nitrogen and its effect on streams) are illustrated using model simulations for hypothetical basins. Regional maps of the probability of oxic groundwater should prove useful as indicators of groundwater susceptibility and stream susceptibility to contaminant sources derived from groundwater.

  20. Spatial units of land use potential evaluation on regional scales

    NASA Astrophysics Data System (ADS)

    Yang, Zhiheng; Zhu, Shisong; Li, Feixue; Chen, Dong

    2007-06-01

    In the course of studying on regional land use potential evaluation a certain spatial basic unit is often used as the analysis groundwork. The analysis result relies on unit division methods and research scales. In the same area space unit characters correlate with the space scales. In geography, the conclusions made on a scale can't be applied to other scales. Modifiable Area Unit Problem, MAUP, is the classical theory to solve the effects of spatial scale, that is, there are many different ways to divide the surface into non-overlapping million units for spatial analysis. This paper studies on the spatial unit scale transformation process of land use potential evaluation in the same area on different scales, such as at local, regional and global levels .etc. Characteristic Scales is defined in the transformation process from large scale to Small Scale. Then the fractal characteristic of spatial unit is raised on different scales to form land use potential geospatial hierarchy. Using geo-statistical procedures, we mainly study on the transformation progress of SUs of land use potential evaluation on different scales in the same area, define the eigenvalue of SUs on each scale. We find the definition of spatial units (SUs) makes a point of the spatial analyses results on regional scales. Finally, aiding the fractal dimension, the fractal characteristic of spatial unit is raised in a broader area. Land use potential geospatial hierarchical structure is explored to aid the regional development policymaking.

  1. Spatial data analysis for exploration of regional scale geothermal resources

    NASA Astrophysics Data System (ADS)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  2. 11. Photocopy of aerial photograph (original aerial located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of aerial photograph (original aerial located in the U.S. Forest Service, Toiyabe National Forest, Carson District Office). AERIAL VIEW OF THE GENOA PEAK ROAD, SPUR. - Genoa Peak Road, Spur, Glenbrook, Douglas County, NV

  3. Regional scale framework for modeling water resources and health risk problems

    NASA Astrophysics Data System (ADS)

    Pelmulder, Susan D.; Yeh, William W.-G.; Kastenberg, William E.

    A framework of simulation models for including human exposure to contaminants in regional scale aquifer management problems is presented. The framework includes horizontal flow and transport of contaminant plumes in the aquifer and multiple-pathway human exposure. Well water from the aquifer simulation model is used as the source of contaminant in the human exposure model. The exposure pathways considered for regional analysis are ingestion of foods grown using well water as part of the irrigation supply; ingestion and dermal absorption of contaminants in tap water; and inhalation of vaporized contaminants while bathing. An environmental compartment model is used to track the contaminant in irrigation water into the soil layers in contact with food products. The simulation framework is demonstrated in a study of the sensitivity of exposure to various aquifer and water supply parameters. The region used is hypothetical; however, the parameters are typical of California.

  4. Regional-Scale Modeling at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Baker, D.; Braun, S.; Chou, M.-D.; Jasinski, M. F.; Jia, Y.; Kakar, R.; Karyampudi, M.; Lang, S.

    2003-01-01

    Over the past decade, the Goddard Mesoscale Modeling and Dynamics Group has used a popular regional scale model, MM5, to study precipitation processes. Our group is making contributions to the MM5 by incorporating the following physical and numerical packages: improved Goddard cloud processes, a land processes model (Parameterization for Land-Atmosphere-Cloud Exchange - PLACE), efficient but sophisticated radiative processes, conservation of hydrometeor mass (water budget), four-dimensional data assimilation for rainfall, and better computational methods for trace gas transport. At NASA Goddard, the MM5 has been used to study: (1) the impact of initial conditions, assimilation of satellite-derived rainfall, and cumulus parameterizations on rapidly intensifying oceanic cyclones, hurricanes and typhoons, (2) the dynamic and thermodynamic processes associated with the development of narrow cold frontal rainbands, (3) regional climate and water cycles, (4) the impact of vertical transport by clouds and lightning on trace gas distributiodproduction associated with South and North American mesoscale convective systems, (5) the development of a westerly wind burst (WWB) that occurred during the TOGA COARE and the diurnal variation of precipitation in the tropics, (6) a Florida sea breeze convective event and a Mid-US flood event using a sophisticated land surface model, (7) the influence of soil heterogeneity on land surface energy balance in the southwest GCIP region, (8) explicit simulations (with 1.33 to 4 km horizontal resolution) of hurricanes Bob (1991) and Bonnie (1998), (9) a heavy precipitation event over Taiwan, and (10) to make real time forecasts for a major NASA field program. In this paper, the modifications and simulated cases will be described and discussed.

  5. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  6. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  7. Application of a simplified ecological footprint at a regional scale

    EPA Science Inventory

    Ecological Footprint (EF) is a commonly used metric of environmental sustainability because it is straightforward in theory and easy to conceptualize. EF attempts to capture anthropogenic influence on resources by identifying the amount of biologically-productive land required t...

  8. BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)

    EPA Science Inventory

    We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...

  9. Quantitative Earthquake Prediction on Global and Regional Scales

    SciTech Connect

    Kossobokov, Vladimir G.

    2006-03-23

    for mega-earthquakes of M9.0+. The monitoring at regional scales may require application of a recently proposed scheme for the spatial stabilization of the intermediate-term middle-range predictions. The scheme guarantees a more objective and reliable diagnosis of times of increased probability and is less restrictive to input seismic data. It makes feasible reestablishment of seismic monitoring aimed at prediction of large magnitude earthquakes in Caucasus and Central Asia, which to our regret, has been discontinued in 1991. The first results of the monitoring (1986-1990) were encouraging, at least for M6.5+.

  10. Detection of atypical seismic events on a regional scale

    NASA Astrophysics Data System (ADS)

    Solano-Hernandez, E. A.; Hjorleifsdottir, V.; Perez-Campos, X.; Iglesias, A.

    2013-12-01

    We propose an event-detection algorithm to locate seismic events on a regional scale. Our goal is to identify non-impulsive or 'atypical' events which are not detected by regional or global networks, due to their low P-wave amplitude. Ekstrom (2006) has developed and implemented a method to detect and locate sources of long-period seismic surface waves on a global scale. Atypical events are generated by, for example, rapid glacial movements (Ekstrom, et al., 2003; Ekstrom, et al., 2006), volcanic events (Schuler and Ekstrom, 2009) and landslides (Ekstrom and Stark, 2013). Furthermore, non-impulsive earthquakes have been located on oceanic transform faults (Abercrombie and Ekstrom, 2001). The current method (Ekstrom, 2006), that is applied on the scale of the globe, routinely detects events with magnitudes around Mw 5 and larger. In this work we wish to lower the detection threshold by using shorter period records registered by regional networks. The difficulty lies in that the shorter period records are strongly influenced by the heterogeneous crust and upper mantle, which need to be accounted for in the modeling process. Our proposed method involves first computing full waveforms, Green's functions or moment tensor responses, between a grid of test locations and existing seismic stations in a 3D medium. We then effectively back propagate observed data through cross correlation with the responses, obtaining a function that localizes in time and space at the source. Our method is a variant of the timereversal method presented by, for example, McMechan (1982), Tromp et al. (2005), Larmat et al. (2006), Gajewski and Tessmer (2005) and Kim et al. (2010). To calibrate the various parameters used by the detection method, we use the aftershocks sequence of the March 20, 2012 Ometepec, Guerrero, Mexico earthquake, recorded by the SSN (Mexican National Network). The lively aftershock sequence provided us with many events of different magnitudes, all occurring approximately

  11. Daytime multispectral scanner aerial surveys of the Oak Ridge Reservation, 1992--1994: Overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal year 1995

    SciTech Connect

    Smyre, J.L.; Hodgson, M.E.; Moll, B.W.; King, A.L.; Cheng, Yang

    1995-11-01

    Environmental Restoration (ER) Remote Sensing and Special Surveys Program was in 1992 to apply the benefits of remote sensing technologies to Environmental Restoration Management (ERWM) programs at all of the five United States Department of Energy facilities operated and managed by Martin Marietta Energy Systems, Inc. (now Lockheed Martin Energy Systems)-the three Oak Ridge Reservation (ORR) facilities, the Paducah Gaseous Diffusion Plant (PGDP), the Portsmouth Gaseous Diffusion Plant (PORTS)-and adjacent off-site areas. The Remote Sensing Program includes the management of routine and special surveys at these sites, application of state-of-the-art remote sensing and geophysical technologies, and data transformation, integration, and analyses required to make the information valuable to ER. Remotely-sensed data collected of the ORR include natural color and color infrared (IR) aerial photography, 12-band multispectral scanner imagery, predawn thermal IR sensor imagery, magnetic and electromagnetic geophysical surveys, and gamma radiological data.

  12. Ground cover rice production system facilitates soil carbon and nitrogen stocks at regional scale

    NASA Astrophysics Data System (ADS)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-02-01

    Rice production is increasingly challenged by irrigation water scarcity, however covering paddy rice soils with films (ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the vegetation period resulting in increased grain yields in colder regions of rice production with seasonal water shortages. It has been speculated that the increased soil aeration and temperature under GCRPS may result in losses of soil organic carbon and nitrogen stocks. Here we report on a regional scale experiment, conducted by sampling paired adjacent Paddy and GCRPS fields at 49 representative sites in the Shiyan region, which is typical for many mountainous areas across China. Parameters evaluated included soil C and N stocks, soil physical and chemical properties, potential carbon mineralization rates, fractions of soil organic carbon and stable carbon isotopic composition of plant leaves. Furthermore, root biomass was quantified at maximum tillering stage at one of our paired sites. Against expectations the study showed that: (1) GCRPS significantly increased soil organic C and N stocks 5-20 years following conversion of production systems, (2) there were no differences between GCRPS and Paddy in soil physical and chemical properties for the various soil depths with the exception of soil bulk density, (3) GCRPS had lower mineralization potential for soil organic C compared with Paddy over the incubation period, (4) GCRPS showed lower δ15N in the soils and plant leafs indicating less NH3 volatilization in GCRPS than in Paddy; and (5) GCRPS increased yields and root biomass in all soil layers down to 40 cm depth. Our results suggest that GCRPS is an innovative rice production technique that not only increases yields using less irrigation water, but that it also is environmentally beneficial due to increased soil C and N stocks at regional scale.

  13. THEMATIC ACCURACY ASSESSMENT OF REGIONAL SCALE LAND COVER DATA

    EPA Science Inventory

    The Multi-Resolution Land Characteristics (MRLC) consortium, a cooperative effort of several U .S. federal agencies, including. the U.S. Geological Survey (USGS) EROS Data Center (EDC) and the U.S. Environmental Protection Agency (EP A), have jointly conducted the National Land C...

  14. Development and application of methods for regional scaling and normalization in life-cycle impact assessment

    SciTech Connect

    Tolle, D.A.

    1995-12-31

    Life-cycle impact assessment (LCIA) is a technical, quantitative and/or qualitative method to classify, characterize, and valuate potential impacts on human health, ecosystems, and natural resources, based on the environmental burdens identified in a life-cycle inventory. Research described here for two LCIAs included development and application of regional scaling methods for the following 5 of 14 relevant impact categories: Suspended (PM{sub 10}) particulate effects, water use, acid deposition, smog creation, and eutrophication. Normalization is recommended after characterization, because aggregated sums per impact category need to be expressed in equivalent terms before assigning valuation weight factors. The normalization approach described here involves determination of factors that represent the total, geographically-relevant impact for a given impact category. The goal for the 14 normalization factors developed and applied to two LCIAS, was to make them scientifically defensible, while utilizing existing data on emission or resource extraction quantities for three spatial perspectives. Data on the total environmental burden for each inventory item under a given impact category were obtained for normalization factors. Since the boundaries of the two LCIAs were primarily in the US, the data for the regional or local impact category perspectives were restricted to appropriate areas in the US. Normalization factors were developed and applied in the two LCIAs for 11 impact categories involving chemical emissions, water use, solid waste volume, and resource extraction/production land use.

  15. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    PubMed

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  16. Future of Applied Watershed Science at Regional Scales

    NASA Astrophysics Data System (ADS)

    Benda, Lee; Miller, Daniel; Lanigan, Steve; Reeves, Gordon

    2009-05-01

    The Internet-driven evolution of communication and science technologies coincides with a parallel evolution in environmental policy and natural resource management. Resource managers must deal increasingly with land use and conservation plans applied at large spatial scales (watersheds, landscapes, states, regions) involving multiple interacting agencies and stakeholders. Many federal, state, and private organizations have similar objectives, questions, and data and analysis needs. This is motivating the development of community-supported watershed databases and analysis systems of common structure and function across large geographic areas. Numerous state and regional analysis systems are targeting natural resource issues involving management of forests, freshwater fishes, wildlife, and water quality and supply.

  17. Pacific Continental Shelf Environmental Assessment (PaCSEA): aerial seabird and marine mammal surveys off northern California, Oregon, and Washington, 2011-2012

    USGS Publications Warehouse

    Adams, Josh; Felis, Jonathan J.; Mason, John W.; Takekawa, John Y.

    2014-01-01

    Marine birds and mammals comprise an important community of meso- and upper-trophic-level predators within the northern California Current System (NCCS). The NCCS is located within one of the world’s four major eastern boundary currents and is characterized by an abundant and diverse marine ecosystem fuelled seasonally by wind-driven upwelling which supplies nutrient-rich water to abundant phytoplankton inhabiting the surface euphotic zone. The oceanographic conditions throughout the NCCS fluctuate according to well-described seasonal, inter-annual, and decadal cycles. Such oceanographic variability can influence patterns in the distribution, abundance, and habitat use among marine birds and mammals. Although there are an increasing number of studies documenting distributions and abundances among birds and mammals in various portions of the NCCS, there have been no comprehensive, large-scale, multi-seasonal surveys completed throughout this region since the early 1980s (off northern California; Briggs et al. 1987) and early 1990s (off Oregon and Washington; Bonnell et al. 1992, Briggs et al. 1992, Green et al. 1992). During 2011 and 2012, we completed the Pacific Continental Shelf Environmental Assessment (PaCSEA) which included replicated surveys over the continental shelfslope from shore to the 2000-meter (m) isobath along 32 broad-scale transects from Fort Bragg, California (39° N) through Grays Harbor, Washington (47° N). Additionally, surveys at a finer scale were conducted over the continental shelf within six designated Focal Areas: Fort Bragg, CA; Eureka, CA; Siltcoos Bank, OR; Newport, OR; Nehalem Bank, OR; and Grays Harbor, WA. We completed a total of 26,752 km of standardized, low-elevation aerial survey effort across three bathymetric domains: inner-shelf waters ( Overall, we recorded 15,403 sightings of 59,466 individual marine birds (12 families, 54 species). During winter, seven species groupings comprised >90% of the total number of birds

  18. 80. PHOTOCOPY OF 1976 AERIAL PHOTO OF BULLFROG MINE. From ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. PHOTOCOPY OF 1976 AERIAL PHOTO OF BULLFROG MINE. From National Park Service Environmental Review and Analysis, Bullfrog Mine Plan of Operations, Death Valley Nat'l Monument (24 March 1976) - Bullfrog Mine, Rhyolite, Nye County, NV

  19. 81. PHOTOCOPY OF 1978 AERIAL PHOTO OF BULLFROG MINE. From ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. PHOTOCOPY OF 1978 AERIAL PHOTO OF BULLFROG MINE. From National Park Service Environmental Review and Analysis, BullfroG Mine Plan of Operations, Death Valley Nat'l Monument (24 August 1978) - Bullfrog Mine, Rhyolite, Nye County, NV

  20. Host and parasite recruitment correlated at a regional scale.

    PubMed

    Byers, James E; Rogers, Tanya L; Grabowski, Jonathan H; Hughes, A Randall; Piehler, Michael F; Kimbro, David L

    2014-03-01

    Drivers of large-scale variability in parasite prevalence are not well understood. For logistical reasons, explorations of spatial patterns in parasites are often performed as observational studies. However, to understand the mechanisms that underlie these spatial patterns, standardized and controlled comparisons are needed. Here, we examined spatial variability in infection of an important fishery species and ecosystem engineer, the oyster (Crassostrea virginica) by its pea crab parasite (Zaops ostreus) across 700 km of the southeastern USA coastline. To minimize the influence of host genetics on infection patterns, we obtained juvenile oysters from a homogeneous source stock and raised them in situ for 3 months at multiple sites with similar environmental characteristics. We found that prevalence of pea crab infection varied between 24 and 73% across sites, but not systematically across latitude. Of all measured environmental variables, oyster recruitment correlated most strongly (and positively) with pea crab infection, explaining 92% of the variability in infection across sites. Our data ostensibly suggest that regional processes driving variation in oyster recruitment similarly affect the recruitment of one of its common parasites.

  1. Aerial infrared surveys in the investigation of geothermal and volcanic heat sources

    USGS Publications Warehouse

    ,

    1995-01-01

    This factsheet briefly summarizes and clarifies the application of aerial infrared surveys in geophysical exploration for geothermal energy sources and environmental monitoring for potential volcanic hazards.

  2. Aerial radiation survey at a military range.

    SciTech Connect

    Williams, G. P.; Martino, L. E.; Wrobel, J.; Environmental Assessment; U.S. Army Aberdeen Proving Ground

    2001-04-01

    Aberdeen Proving Ground (APG) is currently listed on the Superfund National Priorities List because of past waste handling practices at 13 'study areas.' Concern has been expressed that anthropogenic radioisotopes may have been released at some of the study areas, with the potential of posing health risks to human or ecological receptors. This concern was addressed by thoroughly searching archival records, sampling and analyzing environmental media, and performing an aerial radiation survey. The aerial radiation survey techniques employed have been used over all U.S. Department of Energy and commercial reactor sites. Use of the Aerial Measurement System (AMS) allowed investigators to safely survey areas where surveys using hand-held instruments would be difficult to perform. In addition, the AMS delivered a full spectrum of the measured gamma radiation, thereby providing a means of determining which radioisotopes were present at the surface. As a quality check on the aerial measurements, four ground truth measurements were made at selected locations and compared with the aerial data for the same locations. The results of the survey revealed no evidence of surface radioactive contamination. The measured background radiation, including the cosmic contribution, ranged from 4 to 11 {mu}R/h.

  3. Pacific Continental Shelf Environmental Assessment (PaCSEA): aerial seabird and marine mammal surveys off northern California, Oregon, and Washington, 2011-2012

    USGS Publications Warehouse

    Adams, Josh; Felis, Jonathan J.; Mason, John W.; Takekawa, John Y.

    2014-01-01

    Marine birds and mammals comprise an important community of meso- and upper-trophic-level predators within the northern California Current System (NCCS). The NCCS is located within one of the world’s four major eastern boundary currents and is characterized by an abundant and diverse marine ecosystem fuelled seasonally by wind-driven upwelling which supplies nutrient-rich water to abundant phytoplankton inhabiting the surface euphotic zone. The oceanographic conditions throughout the NCCS fluctuate according to well-described seasonal, inter-annual, and decadal cycles. Such oceanographic variability can influence patterns in the distribution, abundance, and habitat use among marine birds and mammals. Although there are an increasing number of studies documenting distributions and abundances among birds and mammals in various portions of the NCCS, there have been no comprehensive, large-scale, multi-seasonal surveys completed throughout this region since the early 1980s (off northern California; Briggs et al. 1987) and early 1990s (off Oregon and Washington; Bonnell et al. 1992, Briggs et al. 1992, Green et al. 1992). During 2011 and 2012, we completed the Pacific Continental Shelf Environmental Assessment (PaCSEA) which included replicated surveys over the continental shelfslope from shore to the 2000-meter (m) isobath along 32 broad-scale transects from Fort Bragg, California (39° N) through Grays Harbor, Washington (47° N). Additionally, surveys at a finer scale were conducted over the continental shelf within six designated Focal Areas: Fort Bragg, CA; Eureka, CA; Siltcoos Bank, OR; Newport, OR; Nehalem Bank, OR; and Grays Harbor, WA. We completed a total of 26,752 km of standardized, low-elevation aerial survey effort across three bathymetric domains: inner-shelf waters ( Overall, we recorded 15,403 sightings of 59,466 individual marine birds (12 families, 54 species). During winter, seven species groupings comprised >90% of the total number of birds

  4. Nitrate contamination risk assessment in groundwater at regional scale

    NASA Astrophysics Data System (ADS)

    Daniela, Ducci

    2016-04-01

    Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully

  5. Regional Scaling of Airborne Eddy Covariance Flux Observation

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  6. Capturing field-scale variability in crop performance across a regional-scale climosequence

    NASA Astrophysics Data System (ADS)

    Brooks, E. S.; Poggio, M.; Anderson, T. R.; Gasch, C.; Yourek, M. A.; Ward, N. K.; Magney, T. S.; Brown, D. J.; Huggins, D. R.

    2014-12-01

    With the increasing availability of variable rate technology for applying fertilizers and other agrichemicals in dryland agricultural production systems there is a growing need to better capture and understand the processes driving field scale variability in crop yield and soil water. This need for a better understanding of field scale variability has led to the recent designation of the R. J. Cook Agronomy Farm (CAF) (Pullman, WA, USA) as a United States Department of Agriculture Long-Term Agro-Ecosystem Research (LTAR) site. Field scale variability at the CAF is closely monitored using extensive environmental sensor networks and intensive hand sampling. As investigating land-soil-water dynamics at CAF is essential for improving precision agriculture, transferring this knowledge across the regional-scale climosequence is challenging. In this study we describe the hydropedologic functioning of the CAF in relation to five extensively instrumented field sites located within 50 km in the same climatic region. The formation of restrictive argillic soil horizons in the wetter, cooler eastern edge of the region results in the development of extensive perched water tables, surface saturation, and surface runoff, whereas excess water is not an issue in the warmer, drier, western edge of the region. Similarly, crop and tillage management varies across the region as well. We discuss the implications of these regional differences on field scale management decisions and demonstrate how we are using proximal soil sensing and remote sensing imagery to better understand and capture field scale variability at a particular field site.

  7. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  8. Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

    2011-12-01

    Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed

  9. Regional scale cropland carbon budgets: evaluating a geospatial agricultural modeling system using inventory data

    SciTech Connect

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; Sahajpal, Ritvik; West, Tristram O.; Thomson, Allison M.; Xu, Min; Zhao, Kaiguang; LeDuc, Stephen D.; Williams, Jimmy R.

    2015-01-01

    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000–2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input

  10. Regional Scale Photochemical Model Evaluation of Total Mercury Wet Deposition and Speciated Ambient Mercury

    EPA Science Inventory

    Methylmercury is a known neurotoxin with deleterious health effects on humans and wildlife. Atmospheric deposition is the largest source of mercury loading to most terrestrial and aquatic ecosystems. Regional scale air quality models are needed to quantify mercury deposition resu...

  11. Urban and rural transport of semivolatile organic compounds at regional scale: A multimedia model approach.

    PubMed

    Song, Shuai; Su, Chao; Lu, Yonglong; Wang, Tieyu; Zhang, Yueqing; Liu, Shijie

    2016-01-01

    Urban areas are generally regarded as major sources of some semivolatile organic compounds and other persistent organic pollutants (POPs) to the surrounding regions. Huge differences in contaminant emissions between urban and rural areas directly affect their fate in environmental media. Little is known about POPs behavior between urban and rural areas at a regional scale. A spatially resolved Berkeley-Trent-Urban-Rural Fate Model (BETR-UR) was designed by coupling land cover information to simulate the transport of POPs between urban and rural areas, and the Bohai Rim was used as a case study to estimate Polycyclic Aromatic Hydrocarbon (PAH) fate. The processes of contaminant fate including emission, inter-compartmental transfer, advection and degradation in urban and rural areas were simulated in the model. Simulated PAH concentrations in environmental media of urban and rural areas were very close to measured values. The model accuracy was highly improved, with the average absolute relative error for PAH concentrations reduced from 37% to 3% compared with unimproved model results. PAH concentrations in urban soil and air were considerably higher than those in rural areas. Sensitivity analysis showed temperature was the most influential parameter for Phen rather than for Bap, whose fate was more influenced by emission rate, compartment dimension, transport velocity and chemical persistence. Uncertainty analysis indicated modeled results in urban media had higher uncertainty than those in rural areas due to larger variations of emissions in urban areas. The differences in urban and rural areas provided us with valuable guidance on policy setting for urban-rural POP control.

  12. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  13. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  14. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  15. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  16. CONTEMPORARY ENVIRONMENTAL APPLICATIONS OF PHOTOGRAPHIC INTERPRETATION

    EPA Science Inventory

    Aerial Photographic Interpretation is a timed-tested technique for extracting landscape- level information from aerial photographs and other types of remotely sensed images. The U.S. Environmental Protection Agency's Environmental Photographic Interpretation Center (EPIC) has a 2...

  17. Using attributable risk to assess the regional-scale impacts of environmental stressors

    EPA Science Inventory

    We describe the application of population attributable risk (AR) for assessing the relative importance of aquatic stressors across large regions. A stressor's importance depends on its regional extent (e.g., the total length of stream with elevated stressor levels), and also on i...

  18. Regional scale groundwater resource assessment in the Australian outback - Geophysics is the only way.

    NASA Astrophysics Data System (ADS)

    Munday, T. J.; Davis, A. C.; Gilfedder, M.; Annetts, D.

    2015-12-01

    Resource development, whether in agriculture, mining and/or energy, is set to have significant consequences for the groundwater resources of Australia in the short to medium term. These industry sectors are of significant economic value to the country and consequently their support remains a priority for State and Federal Governments alike. The scale of potential developments facilitated in large part by the Government Programs, like the West Australian (WA) Government's "Water for Food" program, and the South Australian's Government's PACE program, will result in an increase in infrastructure requirements, including access to water resources and Aboriginal lands to support these developments. However, the increased demand for water, particularly groundwater, is likely to be compromised by the limited information we have about these resources. This is particularly so for remote parts of the country which are targeted as primary development areas. There is a recognised need to expand this knowledge so that water availability is not a limiting factor to development. Governments of all persuasions have therefore adopted geophysical technologies, particularly airborne electromagnetics (AEM), as a basis for extending the hydrogeological knowledge of data poor areas. In WA, the State Government has employed regional-scale AEM surveys as a basis for defining groundwater resources to support mining, regional agricultural developments whilst aiming to safeguard regional population centres, and environmental assets. A similar approach is being employed in South Australia. These surveys are being used to underpin conceptual hydrogeological frameworks, define basin-scale hydrogeological models, delimit the extent of saltwater intrusion in coastal areas, and to determine the groundwater resource potential of remote alluvial systems aimed at supporting new, irrigation-based, agricultural developments in arid parts of the Australian outback. In the absence of conventional

  19. Monitoring and Modeling Water and Energy Fluxes in North China Plain: From Field to Regional Scales

    NASA Astrophysics Data System (ADS)

    Shen, Y.

    2012-12-01

    North China Plain is one of the mostly water deficit region in the world. Even though the total water withdrawal from surface and groundwater exceeded its renewable ability for long years, due to its importance to balance the food budget in China, large amount of groundwater is still extracted every year for intensive irrigation. With winter wheat and summer maize double-cropping system, the grain yield of NCP can reach a very high level of around 15 t/ha annually, which is largely depended on timely irrigation. As a result, the ceaseless over exploitation of groundwater caused serious environmental and ecological problems, e.g. nearly all the rivers run drying-up at plain areas, groundwater declined, land subsidence, and wetland shrank. The decrease in precipitation over past half century reinforced the water shortage in NCP. The sustainability of both the water resources and agriculture became the most important issue in this region. A key issue to the sustainable use of water resources is to improve the water use efficiency and reduce agricultural water consumptions. This study will introduce the efforts we put to clarify the water and heat balances in irrigated agricultural lands and its implications to crop yield, hydrology, and water resources evolution in NCP. We established a multi-scale observation system in NCP to study the surface water and heat processes and agricultural aspect of hydrological cycle in past years. Multi-disciplinary methods are adopted into this research such as micro-meteorologic, isotopic, soil hydrologic methods at the field scale, and remote sensing and modeling for study the water fluxes over regional scale. Detailed research activities and interesting as well as some initial results will be introduced at the workshop.

  20. On the simulation of allergenic pollen exposition and its atmospheric transport on regional scale

    NASA Astrophysics Data System (ADS)

    Biernath, Christian; Klein, Christian; Hoffmann, Peter; Gayler, Sebastian; Priesack, Eckart

    2013-04-01

    In Germany approximately 30% of the population is vulnerable to pollinosis (hay fever). Exposure to allergenic pollen affects vulnerable persons recurring seasonally, but depending on the individual susceptibility to individual pollen species. To prevent the suffering the patients usually use preventive drugs and rely on the current pollen forecast. However, recently used pollen forecast models mainly consider temperature sums to predict pollen exposition by different plant species. The models often fail to describe the impact of regionally variable environmental conditions on plant growth which depends on the soil characteristics that affect the water and nutrient availability. Furthermore, water and nutrient availability may significantly affect the pollen yield and its allergenic potential. Thus, the improvement of the simulations of the exposition of allergenic pollen by plants and atmospheric pollen loads on the regional scale could improve the preventive medication of vulnerable persons. We propose a new soil-plant-atmosphere model system that allows a dynamic ressource aquisition for the plant biomass growth to account for the allergenic potential of exposed pollen and the subsequent pollen transport in the atmosphere. Therefore, to simulate pollen exposure the land surface model Expert-N (soil-plant-system model) was coupled to the Weather Research and Forecast model (WRF). Expert-N uses site specific physical soil properties to simulate the nutrient and water transport, and the carbon and nitrogen turnover, as well as the interactions between plant and soil. The allergenic potential of pollen yield is simulated using a new C- and N-allocation model which accounts for the production of carbon-based secondary compounds (CBSCs). These CBSCs are involved in the determination of the allergenic potential of pollen. The WRF model is used to predict the weather conditions for plant growth. Depending on the weather conditions pollen exposed by the plants is then

  1. Towards an Integrated Methodology for Measuring and Monitoring Soil Carbon at Regional Scales (Invited)

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.

    2009-12-01

    Soil carbon accounts for the second largest stock of the biosphere. Agricultural soils contain an important fraction of the total stock and depending on management and environmental conditions can behave as sources or sinks of atmospheric carbon dioxide. Implementation of improved agricultural practices and restoration of land productivity can lead to soil carbon sequestration and therefore contribute not only to mitigate climate change but also satisfy the food, fiber, and bioenergy demands of future generations. Further, increasing soil carbon and, thus, soil organic matter, would improve the adaptive capacity of agricultural soils to withstand or attenuate the negative effects of climate change. At the site scale, soil carbon—at times with great precision—has been measured, monitored, and modeled often using long-term observations. At the regional level, however, soil carbon changes are usually modeled using accounting methods, biogeochemical simulations, and remotely sensed data. These procedures usually generate uncertainty in the estimation of soil carbon change due to the lack of local observations, spatial or temporal scales that these studies are conducted, and lack of information concerning the kinetic status of the soil carbon pools. Recent advances in techniques to measure and map soil carbon, conduct spatial simulations of soil carbon, and remotely sense biophysical variables such as yield, net primary productivity, residue cover, and soil moisture promise to enhance our capability to develop an integrated methodology to measure and monitor soil carbon changes at regional scales. Implementation and testing of this type of integrated technologies will be crucial for building robust soil carbon accounting systems be these of regional or national nature.

  2. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  3. Investigating the Influence of Climate Changes on Rodent Communities at a Regional-Scale (MIS 1-3, Southwestern France)

    PubMed Central

    Royer, Aurélien; Montuire, Sophie; Legendre, Serge; Discamps, Emmanuel; Jeannet, Marcel; Lécuyer, Christophe

    2016-01-01

    Terrestrial ecosystems have continuously evolved throughout the Late Pleistocene and the Holocene, deeply affected by both progressive environmental and climatic modifications, as well as by abrupt and large climatic changes such as the Heinrich or Dansgaard-Oeschger events. Yet, the impacts of these different events on terrestrial mammalian communities are poorly known, as is the role played by potential refugia on geographical species distributions. This study examines community changes in rodents of southwestern France between 50 and 10 ky BP by integrating 94 dated faunal assemblages coming from 37 archaeological sites. This work reveals that faunal distributions were modified in response to abrupt and brief climatic events, such as Heinrich events, without actually modifying the rodent community on a regional scale. However, the succession of events which operated between the Late Pleistocene and the Holocene gradually led to establishing a new rodent community at the regional scale, with intermediate communities occurring between the Bølling and the Allerød. PMID:26789523

  4. Investigating the Influence of Climate Changes on Rodent Communities at a Regional-Scale (MIS 1-3, Southwestern France).

    PubMed

    Royer, Aurélien; Montuire, Sophie; Legendre, Serge; Discamps, Emmanuel; Jeannet, Marcel; Lécuyer, Christophe

    2016-01-01

    Terrestrial ecosystems have continuously evolved throughout the Late Pleistocene and the Holocene, deeply affected by both progressive environmental and climatic modifications, as well as by abrupt and large climatic changes such as the Heinrich or Dansgaard-Oeschger events. Yet, the impacts of these different events on terrestrial mammalian communities are poorly known, as is the role played by potential refugia on geographical species distributions. This study examines community changes in rodents of southwestern France between 50 and 10 ky BP by integrating 94 dated faunal assemblages coming from 37 archaeological sites. This work reveals that faunal distributions were modified in response to abrupt and brief climatic events, such as Heinrich events, without actually modifying the rodent community on a regional scale. However, the succession of events which operated between the Late Pleistocene and the Holocene gradually led to establishing a new rodent community at the regional scale, with intermediate communities occurring between the Bølling and the Allerød. PMID:26789523

  5. Enviropod handbook: A guide to preparation and use of the Environmental Protection Agency's light-weight aerial camera system. [Weber River, Utah

    NASA Technical Reports Server (NTRS)

    Brower, S. J.; Ridd, M. K.

    1984-01-01

    The use of the Environmental Protection Agency (EPA) Enviropod camera system is detailed in this handbook which contains a step-by-step guide for mission planning, flights, film processing, indexing, and documentation. Information regarding Enviropod equipment and specifications is included.

  6. Aerial Observation Needs Workshop, May 13-14, 2015

    SciTech Connect

    Nasiri, Shaima; Serbin, Shawn; Lesmes, David; Petty, Rick; Schmid, Beat; Vogelmann, Andrew; de Boer, Gijs; Dafflon, Baptiste; Guenther, Alex; Moore, David

    2015-10-01

    The mission of the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE) Office of Science is "to advance a robust, predictive understanding of Earth's climate and environmental systems and to inform the development of sustainable solutions to the nation's energy and environmental challenges." Accomplishing this mission requires aerial observations of the atmospheric and terrestrial components of the climate system. CESD is assessing its current and future aerial observation needs to develop a strategy and roadmap of capability requirements for the next decade. To facilitate this process, a workshop was convened that consisted of invited experts in the atmospheric and terrestrial sciences, airborne observations, and modeling. This workshop report summarizes the community input prior to and during the workshop on research challenges and opportunities, as well as specific science questions and observational needs that require aerial observations to address.

  7. Spatial disaggregation of complex soil map units at regional scale based on soil-landscape relationships

    NASA Astrophysics Data System (ADS)

    Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian

    2015-04-01

    Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted

  8. A Framework for Evaluating Regional-Scale Numerical Photochemical Modeling Systems

    EPA Science Inventory

    This paper discusses the need for critically evaluating regional-scale (~ 200-2000 km) three dimensional numerical photochemical air quality modeling systems to establish a model's credibility in simulating the spatio-temporal features embedded in the observations. Because of li...

  9. Validation of the ANOCOVA model for regional scale ECa-ECe calibration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past decade two approaches have emerged as the preferred means for assessing salinity at regional scale: (1) vegetative indices from satellite imagery (e.g., MODIS enhanced vegetative index, NDVI, etc.) and (2) analysis of covariance (ANOCOVA) calibration of apparent soil electrical conduct...

  10. Has the Performance of Regional-Scale Photochemical Modelling Systems Changed over the Past Decade?

    EPA Science Inventory

    This study analyzed summertime ozone concentrations that have been simulated by various regional-scale photochemical modelling systems over the Eastern U.S. as part of more than ten independent studies. Results indicate that there has been a reduction of root mean square errors ...

  11. Mapping land-surface fluxes of carbon, water and energy from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for routine mapping of land-surface fluxes of carbon, water, and energy at the field to regional scales has been established for drought monitoring, water resource management, yield forecasting and crop-growth monitoring. The framework uses the ALEXI/DisALEXI suite of land-surface model...

  12. Moving forward on remote sensing of soil salinity at regional scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil salinity undermines global agriculture by reducing crop yield and soil quality. Irrigation management can help control salinity levels within the root-zone. To best allocate water resources, accurate regional-scale inventories are needed. Two remote sensing approaches are currently used to moni...

  13. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  14. Water Quality and Quantity Implications of Biofuel Intercropping at a Regional Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J.

    2010-12-01

    Because of a strong national interest in greater energy independence and concern for the role of fossil fuels in global climate change, the importance of biofuels as an alternative renewable energy source has developed rapidly. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, which compromises 15 % of U.S. liquid transportation fuels. Large-scale production of corn-based ethanol often requires irrigation and is associated with erosion, excess sediment export, and leaching of nitrogen and phosphorus. Production of cellulosic biomass offers a promising alternative to corn-based systems. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern US. While ongoing research is determining efficient operational techniques, information needed to evaluate the effects of these practices on water resources, such as field-scale evapotranspiration rates, nutrient cycling, and soil erosion rates are being examined in a large watershed study. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data, with forest-based biofuel treatments to be installed in 2011 and 2012. These watershed studies will give us detailed information to understand processes and guide management decisions. However, environmental implications of these systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine various scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of

  15. Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale.

    PubMed

    Liu, Shijie; Lu, Yonglong; Wang, Tieyu; Xie, Shuangwei; Jones, Kevin C; Sweetman, Andrew J

    2014-02-01

    Predicting the environmental multimedia fate is an essential step in the process of assessing the human exposure and health impacts of chemicals released into the environment. Multimedia fate models have been widely applied to calculate the fate and distribution of chemicals in the environment, which can serve as input to a human exposure model. In this study, a grid based multimedia fugacity model at regional scale was developed together with a case study modeling the fate and transfer of Benzo[α]pyrene (BaP) in Bohai coastal region, China. Based on the estimated emission and in-site survey in 2008, the BaP concentrations in air, vegetation, soil, fresh water, fresh water sediment and coastal water as well as the transfer fluxes were derived under the steady-state assumption. The model results were validated through comparison between the measured and modeled concentrations of BaP. The model results indicated that the predicted concentrations of BaP in air, fresh water, soil and sediment generally agreed with field observations. Model predictions suggest that soil was the dominant sink of BaP in terrestrial systems. Flow from air to soil, vegetation and costal water were three major pathways of BaP inter-media transport processes. Most of the BaP entering the sea was transferred by air flow, which was also the crucial driving force in the spatial distribution processes of BaP. The Yellow River, Liaohe River and Daliao River played an important role in the spatial transformation processes of BaP. Compared with advection outflow, degradation was more important in removal processes of BaP. Sensitivities of the model estimates to input parameters were tested. The result showed that emission rates, compartment dimensions, transport velocity and degradation rates of BaP were the most influential parameters for the model output. Monte Carlo simulation was carried out to determine parameter uncertainty, from which the coefficients of variation for the estimated Ba

  16. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  17. A methodology for the assessment of flood hazards at the regional scale

    NASA Astrophysics Data System (ADS)

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Marcomini, Antonio

    2013-04-01

    , population density, economic activities) of several case studies in order to develop risk maps that identify and prioritize relative hot-spot areas and targets at risk at the regional scale. The main outputs of the RRA are receptor-based maps of risks useful to communicate the potential implications of floods in non-monetary terms to stakeholders and administrations. These maps can be a basis for the management of flood risks as they can provide information about the indicative number of inhabitants, the type of economic activities, natural systems and cultural heritages potentially affected by flooding. Moreover, they can provide suitable information about flood risk in the considered area in order to define priorities for prevention measures, for land use planning and management. Finally, the outputs of the RRA methodology can be used as data input in the Socio- Economic Regional Risk Assessment methodology for the economic evaluation of different damages (e.g. tangible costs, intangible costs) and for the social assessment considering the benefits of the human dimension of vulnerability (i.e. adaptive and coping capacity). Within the KULTURisk project, the methodology has been applied and validated in several European case studies. Moreover, its generalization to address other types of natural hazards (e.g. earthquakes, forest fires) will be evaluated. The preliminary results of the RRA application in the KULTURisk project will be here presented and discussed.

  18. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  19. The CYCOFOS new forecasting systems at regional and sub-regional scales for supporting the marine safety

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Radhakrishnan, Hari; Galanis, George; Nikolaidis, Andreas; Emmanouil, George; Nikolaidis, Georgios; Lardner, Robin; Sofianos, Sarantis; Stylianou, Stavros; Nikolaidis, Marios

    2016-04-01

    The CYCOFOS new forecasting systems at regional and sub-regional scales for supporting the marine safety George Zodiatis1, Hari Radhakrishnan1, George Galanis1,2, Andreas Nikolaidis1, George Emmanouil1,2, Georgios Nikolaidis1, Robin Lardner1, Sarantis Sofianos3, Stavros Stylianou1 and Marios Nikolaidis1 1Oceanography Centre, University of Cyprus, Nicosia 1678, Cyprus 2 Hellenic Naval Academy, Section of Mathematics, Piraeus 18539, Greece 3 University of Athens, Ocean Physics and Modeling Group, Athens 15784, Greece The Cyprus Coastal Ocean FOrecasting System-CYCOFOS has been providing operational hydrodynamic and sea state forecasts in the Eastern Mediterranean since early 2002. Recently, it has been improved with the implementation of new hydrodynamic, wave and atmospheric models, targeting larger and higher resolution domains at regional and sub-regional scales. For the new CYCOFOS hydrodynamic system a novel parallel version of POM has been implemented. The new flow model covers the Eastern Mediterranean with a resolution of 2 km and the Levantine with 500 m, both nested in Copernicus Marine Environmental Monitoring Service-CMEMS. The CYCOFOS hydrodynamic model is coupled with the latest ECMWF WAM model. The surface currents produced from the Copernicus marine service and CYCOFOS has been incorporated in the wave integration, providing a second independent forcing input to the new CYCOFOS wave model, in addition to the winds. The Weather Research and Forecasting atmospheric model-WRF has been implemented in the same domain as SKIRON atmospheric model, in order to provide the backup forcing for the CYCOFOS models. The improved CYCOFOS forecasting data are used for the EU CISE 2020 project to establish an ΕU Common Information Sharing Environment to improve the Maritime Situational Awareness, particularly for SAR operations, as well as for the MEDESS4MS multi model oil spill prediction service, for operational oil spill predictions in the Mediterranean.

  20. Ecological Energetics of an Abundant Aerial Insectivore, the Purple Martin

    PubMed Central

    Kelly, Jeffrey F.; Bridge, Eli S.; Frick, Winifred F.; Chilson, Phillip B.

    2013-01-01

    The atmospheric boundary layer and lower free atmosphere, or aerosphere, is increasingly important for human transportation, communication, environmental monitoring, and energy production. The impacts of anthropogenic encroachment into aerial habitats are not well understood. Insectivorous birds and bats are inherently valuable components of biodiversity and play an integral role in aerial trophic dynamics. Many of these insectivores are experiencing range-wide population declines. As a first step toward gaging the potential impacts of these declines on the aerosphere’s trophic system, estimates of the biomass and energy consumed by aerial insectivores are needed. We developed a suite of energetics models for one of the largest and most common avian aerial insectivores in North America, the Purple Martin (Prognesubis). The base model estimated that Purple Martins consumed 412 (± 104) billion insects*y-1 with a biomass of 115,860 (± 29,192) metric tonnes*y-1. During the breeding season Purple Martins consume 10.3 (+ 3.0) kg of prey biomass per km3 of aerial habitat, equal to about 36,000 individual insects*km-3. Based on these calculations, the cumulative seasonal consumption of insects*km-3 is greater in North America during the breeding season than during other phases of the annual cycle, however the maximum daily insect consumption*km-3 occurs during fall migration. This analysis provides the first range-wide quantitative estimate of the magnitude of the trophic impact of this large and common aerial insectivore. Future studies could use a similar modeling approach to estimate impacts of the entire guild of aerial insectivores at a variety of temporal and spatial scales. These analyses would inform our understanding of the impact of population declines among aerial insectivores on the aerosphere’s trophic dynamics. PMID:24086755

  1. An interdisciplinary assessment of regional-scale nonpoint source ground-water vulnerability; theory and application

    USGS Publications Warehouse

    Bernknopf, Richard L.; Dinitz, Laura B.; Loague, Keith

    2001-01-01

    An integrated earth science-economics model, developed within a geographic information system (GIS), combines a regional-scale nonpoint source vulnerability assessment with a specific remediation measure to avoid unnecessary agricultural production costs associated with the use of agrochemicals in the Pearl Harbor basin on the island of Oahu, Hawaii. This approach forms the core of a risk-based regulation for the application of agrochemicals and estimates the benefits of an information-based approach to decisionmaking.

  2. Linking landslide susceptibility to sediment yield at regional scale: application to Romania

    NASA Astrophysics Data System (ADS)

    Broeckx, Jente; Vanmaercke, Matthias; Bălteanu, Dan; Chendeş, Viorel; Sima, Mihaela; Enciu, Petru; Poesen, Jean

    2016-09-01

    It is generally accepted that catchment sediment yield (SY, t km- 2 y- 1) can be strongly influenced by landsliding. Nevertheless, due to data requirements, only few studies investigated this effect at a regional scale. The objective of this study is therefore to explore the potential of a landslide susceptibility map for explaining the spatial variation of SY in Romania. We selected 133 catchments in Romania for which SY was measured during a period of at least 10 years. For each catchment, we derived a variety of proxies that potentially explain SY, including several indicators of landslide occurrence. The latter were derived from a published landslide susceptibility map. Results show that SY is significantly correlated with mean landslide susceptibility (r2 = 0.30). Estimates of average sheet and rill erosion rates showed a much weaker correlation with SY (r2 = 0.06). Further analyses showed that the strong correlation between SY and landslide susceptibility is mainly attributed to regional variations in lithology and seismicity. Especially the latter may play a crucial role in understanding denudation rates at regional scales, e.g. by facilitating the occurrence of landslides. Using landslide proxies that also account for sediment connectivity did not result in stronger correlations. Overall, our results show that landslide susceptibility maps can be a highly useful tool to predict SY at regional scales, provided that they incorporate all relevant factors.

  3. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  4. Regional Sustainable Environmental Management

    EPA Science Inventory

    Regional sustainable environmental management is an interdisciplinary effort to develop a sufficient understanding of the interactions between ecosystems, the economy, law, and technology to formulate effective long-term management strategies on a regional scale. Regional sustai...

  5. Regional-scale controls of periglacial rockfalls (Turtmann valley, Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Messenzehl, Karoline; Hoffmann, Thomas; Meyer, Hanna; Dikau, Richard

    2015-04-01

    Rockfalls are among the most hazardous processes in mountain regions and of major importance for landform evolution and sediment budgets. The rockfall activity varies significantly in space and time, driven by the complex interplay between locally dynamic variables (i.e. discontinuities, freeze-thaw processes) as well as system inherent predisposing factors dominating at a regional scale. Many studies focus on small-scale triggering conditions for rockfalls, but the effects of regional-scale controls leading to a basic instability of alpine rockwalls, such as topo-climatic settings, lithology and i.e. tectonic structures as well as paraglacial adjustments, are poorly understood. In this study, we aim to understand the role of regional-scale controls of rockfalls in the Turtmann Valley, which covers 110 km2 in the Swiss Alps. Based on an inventory of 220 talus slopes (Otto et al. 2009), rockfall source areas were determined and their causal relationship between ten different prediction variables was assessed. By combining two multivariate statistical models, we (i) explained the spatial pattern of rockfalls, (ii) evaluated the relative importance of potential predisposing factors (iii) and discuss these regional-scale controls in the light of the local-scale geomorphic and rock mechanical settings. Major finding are: (i) A stepwise logistic regression (LR) based on principal components and a random forests (RF) model were performed and validated using a 75%-subset of the rockfall source areas. Given the area under the ROC curves for both approaches, LR: 0.92, RF: 0.99, respectively, the RF model performs slightly better to explain the large-scale variability of rockfalls in our study area. (ii) Both, the LR and RF model reveal that lithology and joint orientation have the strongest causal influence on rockfalls at regional scale. In contrast, topo-climatic factors (elevation, slope, solar radiation) might be of secondary importance. Additionally, the regional

  6. Classification as a generic tool for characterising status and changes of regional scale groundwater systems

    NASA Astrophysics Data System (ADS)

    Barthel, Roland; Haaf, Ezra

    2016-04-01

    Regional hydrogeology is becoming increasingly important, but at the same time, scientifically sound, universal solutions for typical groundwater problems encountered on the regional scale are hard to find. While managers, decision-makers and state agencies operating on regional and national levels have always shown a strong interest in regional scale hydrogeology, researchers from academia tend to avoid the subject, focusing instead on local scales. Additionally, hydrogeology has always had a tendency to regard every problem as unique to its own site- and problem-specific context. Regional scale hydrogeology is therefore pragmatic rather than aiming at developing generic methodology (Barthel, 2014; Barthel and Banzhaf, 2016). One of the main challenges encountered on the regional scale in hydrogeology is the extreme heterogeneity that generally increases with the size of the studied area - paired with relative data scarcity. Even in well-monitored regions of the world, groundwater observations are usually clustered, leaving large areas without any direct data. However, there are many good reasons for assessing the status and predicting the behavior of groundwater systems under conditions of global change even for those areas and aquifers without observations. This is typically done by using rather coarsely discretized and / or poorly parameterized numerical models, or by using very simplistic conceptual hydrological models that do not take into account the complex three-dimensional geological setup. Numerical models heavily rely on local data and are resource-demanding. Conceptual hydrological models only deliver reliable information on groundwater if the geology is extremely simple. In this contribution, we present an approach to derive statistically relevant information for un-monitored areas, making use of existing information from similar localities that are or have been monitored. The approach combines site-specific knowledge with conceptual assumptions on

  7. Probabilistic forecasts of debris-flow hazard at the regional scale with a combination of models.

    NASA Astrophysics Data System (ADS)

    Malet, Jean-Philippe; Remaître, Alexandre

    2015-04-01

    Debris flows are one of the many active slope-forming processes in the French Alps, where rugged and steep slopes mantled by various slope deposits offer a great potential for triggering hazardous events. A quantitative assessment of debris-flow hazard requires the estimation, in a probabilistic framework, of the spatial probability of occurrence of source areas, the spatial probability of runout areas, the temporal frequency of events, and their intensity. The main objective of this research is to propose a pipeline for the estimation of these quantities at the region scale using a chain of debris-flow models. The work uses the experimental site of the Barcelonnette Basin (South French Alps), where 26 active torrents have produced more than 150 debris-flow events since 1850 to develop and validate the methodology. First, a susceptibility assessment is performed to identify the debris-flow prone source areas. The most frequently used approach is the combination of environmental factors with GIS procedures and statistical techniques, integrating or not, detailed event inventories. Based on a 5m-DEM and derivatives, and information on slope lithology, engineering soils and landcover, the possible source areas are identified with a statistical logistic regression model. The performance of the statistical model is evaluated with the observed distribution of debris-flow events recorded after 1850 in the study area. The source areas in the three most active torrents (Riou-Bourdoux, Faucon, Sanières) are well identified by the model. Results are less convincing for three other active torrents (Bourget, La Valette and Riou-Chanal); this could be related to the type of debris-flow triggering mechanism as the model seems to better spot the open slope debris-flow source areas (e.g. scree slopes), but appears to be less efficient for the identification of landslide-induced debris flows. Second, a susceptibility assessment is performed to estimate the possible runout distance

  8. A GIS-based approach to prevent contamination of groundwater at regional scale

    NASA Astrophysics Data System (ADS)

    Balderacchi, M.; Vischetti, C.; di Guardo, A.; Trevisan, M.

    2009-04-01

    Sustainable development is a fundamental objective of the European Union. Since 1991, the use of numerical models has been used to assess the environmental fate of pesticides (directive 91/414 EC). Since then, new approaches to assess pesticide contamination have been developed. This is an ongoing process, with approaches getting increasingly close to reality. Actually, there is a new challenge to integrate the most advanced and cost-effective monitoring strategies with simulation models so that reliable indicators of unsaturated flow and transport can be suitably mapped and coupled with other indicators related to productivity and sustainability. The most relevant role of GIS in the analysis of pesticide fate in soil is its application to process together input data and the results of distribution model based simulations of pesticide transport. FitoMarche is a GIS-based software tool that estimates pesticide movement in the unsaturated zone using MACRO 5 and it is able to simulate complex and real crop rotations at the regional scale. Crop rotation involves the sequential production of different plant species on the same land, every crop is characterized by different agricultural practices that involve the use of different pesticides at different doses. FitoMarche extracts MACRO input data from a series of geographic data sets (shapefiles) and an internal database, writes input files for MACRO, executes the simulation and extracts solute and water fluxes from MACRO output files. The study has been performed in the Marche region, located in central Italy along the Adriatic coast. Soil, climate, land use shapefiles were provided from public authorities, crop rotation schemes were estimated from ISTAT (the national statistics institute) 5th agricultural census database using a municipality detail and agricultural practices following the local customs. Two herbicides have been tested: "A" is employed on maize crop, and "B" on maize, sunflower and sugarbeet. In the

  9. Global change impact on water resources at the regional scale - a reflection on participatory modeling

    NASA Astrophysics Data System (ADS)

    Barthel, Roland; Büttner, Hannah; Nickel, Darla; Seidl, Roman

    2015-04-01

    discussion we therefore focus on the following three questions: • Can a stakeholder dialogue be successfully used to support the development of new, complex modelling systems, in particular at the regional scale? • What is the right timing for stakeholder interaction in the case of unclear problem definition - i.e. global (climate) change impact on regions where climate is not (yet) a threat to water or land use related demands and activities? • To what degree can scientists be motivated to carry out participatory research at all? We conclude that the PM process in GD was only partly successful because the project set overambitious goals, including the application of fundamentally new approaches to interdisciplinary science, the use of new modelling technologies, the focus upon and evaluation of potential and therefore characteristically uncertain future problems, including stakeholder demands, and the development of a ready-to-use, user-friendly tool. Furthermore, GD also showed that an externally and professionally moderated stakeholder dialogue is an absolute necessity to achieve successful participation of stakeholders in model development. The modelers themselves neither had the time, the skills and the ambitions to do this. Furthermore, there is a lack of incentives for scientists, particularly natural scientists, to commit to PM activities. Given the fact that the outcomes of PM are supposed to be relevant for societal decision making, this issue needs further attention.

  10. Estimating the Influence of Biological Ice Nuclei on Clouds with Regional Scale Simulations

    NASA Astrophysics Data System (ADS)

    Hummel, Matthias; Hoose, Corinna; Schaupp, Caroline; Möhler, Ottmar

    2014-05-01

    Cloud properties are largely influenced by the atmospheric formation of ice particles. Some primary biological aerosol particles (PBAP), e.g. certain bacteria, fungal spores or pollen, have been identified as effective ice nuclei (IN). The work presented here quantifies the IN concentrations originating from PBAP in order to estimate their influences on clouds with the regional scale atmospheric model COSMO-ART in a six day case study for Western Europe. The atmospheric particle distribution is calculated for three different PBAP (bacteria, fungal spores and birch pollen). The parameterizations for heterogeneous ice nucleation of PBAP are derived from AIDA cloud chamber experiments with Pseudomonas syringae bacteria and birch pollen (Schaupp, 2013) and from published data on Cladosporium spores (Iannone et al., 2011). A constant fraction of ice-active bacteria and fungal spores relative to the total bacteria and spore concentration had to be assumed. At cloud altitude, average simulated PBAP number concentrations are ~17 L-1 for bacteria and fungal spores and ~0.03 L-1 for birch pollen, including large temporal and spatial variations of more than one order of magnitude. Thus, the average, 'diagnostic' in-cloud PBAP IN concentrations, which only depend on the PBAP concentrations and temperature, without applying dynamics and cloud microphysics, lie at the lower end of the range of typically observed atmospheric IN concentrations . Average PBAP IN concentrations are between 10-6 L-1 and 10-4 L-1. Locally but not very frequently, PBAP IN concentrations can be as high as 0.2 L-1 at -10° C. Two simulations are compared to estimate the cloud impact of PBAP IN, both including mineral dust as an additional background IN with a constant concentration of 100 L-1. One of the simulations includes additional PBAP IN which can alter the cloud properties compared to the reference simulation without PBAP IN. The difference in ice particle and cloud droplet concentration between

  11. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  12. 8. PHOTOGRAPHIC COPY OF AERIAL PHOTOGRAPH, DATED CA. 19201925, FORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. PHOTOGRAPHIC COPY OF AERIAL PHOTOGRAPH, DATED CA. 1920-1925, FORT BLISS, ARROW POINTS TO 7TH CAVALRY CANTONMENT, COPY ON FILE IN THE ENVIRONMENTAL MANAGEMENT OFFICE, FORT BLISS - Fort Bliss, 7th Cavalry Buildings, U.S. Army Air Defence Artillery Center & Fort Bliss, El Paso, El Paso County, TX

  13. Apply Pesticides Correctly, A Guide for Commercial Applicators: Aerial Application.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the calibration of dry and liquid pesticide systems for aerial application. Additionally, dispersal equipment is discussed with considerations for environmental and safety factors. (CS)

  14. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  15. Two Different Applications of Surface Energy Balance System (SEBS) Based on Point and Regional Scale Datasets

    NASA Astrophysics Data System (ADS)

    Byun, K.

    2013-12-01

    Accurate estimation of evapotranspiration (ET) has been considered as one of the most essential components for understanding of interaction between the land surface and atmosphere in terms of water and energy cycles. In practical aspect, ET is also significant for planning of water resource management such as water-saving irrigation and drought mitigation especially in semi and arid environments where the shortage of water is the most critical issue. Although conventional field measurements of ET including Bowen ratio (BR), eddy covariance (EC), and lysimeter systems can be utilized over a homogeneous area, there is a crucial limitation because field measurements can be hardly extended to regional scale. Numerous algorithms have been developed for accurate estimation of ET in regional scale using remotely sensed data acquired by sensors onboard satellites. As one of the primary remote sensing based ET model, the surface energy balance system (SEBS) determines atmospheric turbulent fluxes based on (1) land surface physical properties such as albedo, emissivity, land surface temperature and vegetation cover etc. (2) the determination of roughness length for heat transfer and (3) a new formulation for determining the evaporative fraction from energy balance at limiting cases. This study focused on the application of SEBS in Korean Peninsula where few researches on ET using remote sensing model have been conducted and evaluation of this model in this region by comparing its estimates with field measurements from EC systems on two topographically different catchments. In addition, two different scale applications of SEBS were assessed based on forcing dataset, i.e. point measurements and GLDAS, respectively. The results of this study show that SEBS estimates latent heat flux in acceptable range of error (7~11 % of relative bias) and can be applied for both irrigated and mixed forest areas. Furthermore, the results of both SEBS application (point and regional) are

  16. Soil mapping at regional scale using Remote Sensing - integrating multiple research methods

    NASA Astrophysics Data System (ADS)

    Mulder, V. L.; de Bruin, S.; Schaepman, M. E.

    2012-04-01

    Initiated by renewed interest in soil resources because of their role in supporting food security and climate change adaptation and mitigation, this research aims to provide a coherent methodology for soil and terrain mapping using remote sensing data. The work particularly addresses data acquisition for extensive areas where information about soils is sparse while at the same time resources are limited. The methodology aims to fully exploit data from current missions as well as the Sentinel-2 satellite mission (to be launched in 2014) for delivering soil data. The project aims to establish a coherent methodology where RS is integrated within each part of the soil mapping process on a regional scale; (1) A sampling method (constrained Latin hypercube sampling) that aims to acquire soil sample data representing soil variability in the study area under time and budgetary constraints. (2) Retrieval of composite soil mineralogy from spectroscopic data using linear mixing and non-linear methods. (3) Soil property prediction at regional scale using remote sensing data and a small primary data set. Employing regression trees and related methods along with spatial interpolation, this part integrates the above components and produces soil property maps as well as confidence intervals for these. The methodologies are demonstrated in a 1500 km2 study area in Northern Morocco offering a combination of landscape diversity, sparse vegetation cover and limited availability of existing data. With this research, we demonstrate that remote sensing plays a fundamental role for delivering detailed soil data on global and regional scale which is required for research focussing on food security and climate change adaptation and mitigation.

  17. Review of the SAFARI 2000 RC-10 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Myers, Jeff; Shelton, Gary; Annegarn, Harrold; Peterson, David L. (Technical Monitor)

    2001-01-01

    This presentation will review the aerial photography collected by the NASA ER-2 aircraft during the SAFARI (Southern African Regional Science Initiative) year 2000 campaign. It will include specifications on the camera and film, and will show examples of the imagery. It will also detail the extent of coverage, and the procedures to obtain film products from the South African government. Also included will be some sample applications of aerial photography for various environmental applications, and its use in augmenting other SAFARI data sets.

  18. Regional-Scale Flows in Complex Terrain: AN Observational and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Bossert, James E.

    1990-01-01

    An observational program has been conducted to investigate thermally-driven flows in complex terrain on meso-beta to meso-alpha scales (100-500 km). Data were collected from exposed mountaintop locations, throughout the state of Colorado, over the summers of 1984-1988. These field experiments have been called the Rocky Mountain Peaks Experiments (ROMPEX). The observations have shown the development of a recurrent "regional-scale" circulation system across the Colorado mountain barrier, operating on a diurnal time scale. The basic structure of this flow system consists of a daytime flow toward the mountains along the Continental Divide, and nocturnal winds away from this high terrain. Long -term averages show this circulation system to be the dominant wind pattern at several high altitude stations, revealing its climatological significance. Numerical simulations have been performed with the Colorado State University Regional Atmospheric Modelling System (CSU-RAMS) to provide further insight into the physical mechanisms forcing the observed regional-scale circulation system. An idealized three-dimensional experiment demonstrated that the late afternoon evolution of a deep mountain-plains solenoid above the Front Range crest into a shallow, westward propagating density current, generates strong nocturnal outflow winds along the western slope, similar to those found in the ROMPEX observations. Sensitivity experiments show that the thermal gradient produced by differential heating of the topography across Colorado is the primary driving force in the density current evolution. Additional sensitivity experiments show that the simulated diurnal evolution of the regional-scale circulation system is a robust feature which can occur over a range of ambient flow, stratification, and soil moisture conditions. A case study simulation revealed that synoptic-scale forcing can enhance the evolving regional-scale circulations in preferential areas along the eastern slope of the

  19. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity. PMID:24803003

  20. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity.

  1. Isoprene and terpene gas-phase mechanisms and their effect on ozone formation over the regional scale

    SciTech Connect

    Stockwell, W.R.; Kuhn, M.; Seefeld, S.; Kirchner, F.

    1997-12-31

    Ozone is produced through the photo-oxidation of nitrogen oxides and volatile organic compounds. Biogenic emissions are an important source of reactive organic compounds such as isoprene and terpenes. Their reactions contribute to the production of ozone and aerosol particles. The photo-oxidation of isoprene and terpene affect the atmosphere`s nitrogen budget through the formation of nitrates and peroxyacetyl nitrates (PAN). Biogenic compounds also affect hydroperoxide formation rates. The authors have developed new oxidation mechanisms for isoprene, a-pinene and d-limonene based upon recent laboratory results. However, many unknowns remain in the experimental data and it was necessary to complete the a-pinene and d-limonene mechanism by using reactions that were analogous to known reactions for alkenes of lower carbon number. The new mechanism for isoprene, a-pinene and d-limonene was successfully tested against smog chamber runs. The authors will present the new biogenic mechanisms, compare simulations with environmental chamber runs and show results of simulations for typical urban, rural and remote conditions. They will show evaluations of the influence of biogenic emissions on the concentrations of ozone, nitrates, hydroperoxides and peroxynitrates over the regional scale.

  2. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    PubMed

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. PMID:26796918

  3. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    PubMed

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability.

  4. Regional-scale calculation of the LS factor using parallel processing

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong

    2015-05-01

    With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.

  5. Capturing Crop Response to Climate and Management Variability in Models: Evaluation Using FLUXNET Data with Applications at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Kucharik, C. J.

    2009-12-01

    Dynamic global vegetation models (DGVMs) simulate the response of ecosystems to environmental drivers at multiple time scales (e.g., a fast response to diurnal variations in radiation and a slower response to interannual variations in climate). Until recently, these models only represented natural ecosystems, which neglected the approximately 30% of Earth’s land surface covered by managed ecosystems. We have incorporated the representation of four major crops of the United States (i.e., maize, soybean, spring wheat, and winter wheat) into the Agro-IBIS DGVM and have tested the model at the site level and regional scale. Here we present results of an evaluation of carbon, energy, and water fluxes from a multi-year simulation of maize and soybean at FLUXNET sites in Minnesota and Illinois. These two sites are not only located along a climate gradient, allowing evaluation of model sensitivity to climate variation, they also have different land use histories and are currently under different tillage management. As an application of the model at the regional scale, we examined the relationship of temperature and precipitation trends to net primary productivity (NPP) changes from 1982-2002 over both natural and managed ecosystems across the central and eastern U.S. In order to isolate the vegetation growth response to climate trends, we minimized the representation of management for agroecosystems and forested ecosystems by removing nitrogen stress and irrigation from the model. Maize had the largest NPP trend of 6.43 g C m-2 yr-2, followed by soybean, spring wheat, deciduous forest, then grassland. Winter wheat had a trend of -0.64 g C m-2 yr-2 and evergreen needleleaf forest had a negligible NPP trend. We found that 19% of maize and 11% of soybean NPP trends could be explained by temperature trends while 23% of corn and 44% of soybean trends could be explained by precipitation trends. Our results provide further evidence supporting observational results that suggest

  6. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    USGS Publications Warehouse

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  7. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    NASA Astrophysics Data System (ADS)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-07-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  8. Macroecological evidence for competitive regional-scale interactions between the two major clades of mammal carnivores (Feliformia and Caniformia).

    PubMed

    Pedersen, Rasmus Østergaard; Sandel, Brody; Svenning, Jens-Christian

    2014-01-01

    Geographical gradients in species diversity are often explained by environmental factors such as climate and productivity. Biotic interactions play a key role in evolutionary diversification and may therefore also affect diversity patterns, but this has rarely been assessed. Here, we investigate whether negative competitive interactions shape the diversity patterns of the two major mammalian clades of carnivores, the suborders Caniformia (dogs and allies) and Feliformia (cats and allies) within the order Carnivora. We specifically test for a negative effect of feliform species richness on caniform species richness by a natural experiment, The Great American Interchange, which due to biogeographic lineage history and climate patterns caused tropical South America to be colonized by most caniform families, but only one feliform family. To this end we used regression modelling to investigate feliform and caniform richness patterns and their determinants with emphasis on contrasting the Old and New World tropics. We find that feliform richness is elevated in the Old World Tropics, while caniform richness is elevated in the New World Tropics. Models based on environmental variables alone underpredict caniform richness and overpredict feliform richness in the New World and vice versa in the Old World. We further show that models including feliform richness as a predictor for caniform species richness significantly improve predictions at the continental scale, albeit not at finer scales. Our results are consistent with a negative effect of feliforms on regional-scale caniform diversification within the tropics, probably indicating that niche space occupancy by the one clade constrains diversification in the other in the build-up of regional faunas, while negative interactions at smaller scales may be unimportant due to niche differentiation within the regional faunas.

  9. A GIS-based approach to prevent contamination of groundwater at regional scale

    NASA Astrophysics Data System (ADS)

    Balderacchi, M.; Vischetti, C.; di Guardo, A.; Trevisan, M.

    2009-04-01

    Sustainable development is a fundamental objective of the European Union. Since 1991, the use of numerical models has been used to assess the environmental fate of pesticides (directive 91/414 EC). Since then, new approaches to assess pesticide contamination have been developed. This is an ongoing process, with approaches getting increasingly close to reality. Actually, there is a new challenge to integrate the most advanced and cost-effective monitoring strategies with simulation models so that reliable indicators of unsaturated flow and transport can be suitably mapped and coupled with other indicators related to productivity and sustainability. The most relevant role of GIS in the analysis of pesticide fate in soil is its application to process together input data and the results of distribution model based simulations of pesticide transport. FitoMarche is a GIS-based software tool that estimates pesticide movement in the unsaturated zone using MACRO 5 and it is able to simulate complex and real crop rotations at the regional scale. Crop rotation involves the sequential production of different plant species on the same land, every crop is characterized by different agricultural practices that involve the use of different pesticides at different doses. FitoMarche extracts MACRO input data from a series of geographic data sets (shapefiles) and an internal database, writes input files for MACRO, executes the simulation and extracts solute and water fluxes from MACRO output files. The study has been performed in the Marche region, located in central Italy along the Adriatic coast. Soil, climate, land use shapefiles were provided from public authorities, crop rotation schemes were estimated from ISTAT (the national statistics institute) 5th agricultural census database using a municipality detail and agricultural practices following the local customs. Two herbicides have been tested: "A" is employed on maize crop, and "B" on maize, sunflower and sugarbeet. In the

  10. Quantitative assessment of changes in landslide risk using a regional scale run-out model

    NASA Astrophysics Data System (ADS)

    Hussin, Haydar; Chen, Lixia; Ciurean, Roxana; van Westen, Cees; Reichenbach, Paola; Sterlacchini, Simone

    2015-04-01

    The risk of landslide hazard continuously changes in time and space and is rarely a static or constant phenomena in an affected area. However one of the main challenges of quantitatively assessing changes in landslide risk is the availability of multi-temporal data for the different components of risk. Furthermore, a truly "quantitative" landslide risk analysis requires the modeling of the landslide intensity (e.g. flow depth, velocities or impact pressures) affecting the elements at risk. Such a quantitative approach is often lacking in medium to regional scale studies in the scientific literature or is left out altogether. In this research we modelled the temporal and spatial changes of debris flow risk in a narrow alpine valley in the North Eastern Italian Alps. The debris flow inventory from 1996 to 2011 and multi-temporal digital elevation models (DEMs) were used to assess the susceptibility of debris flow triggering areas and to simulate debris flow run-out using the Flow-R regional scale model. In order to determine debris flow intensities, we used a linear relationship that was found between back calibrated physically based Flo-2D simulations (local scale models of five debris flows from 2003) and the probability values of the Flow-R software. This gave us the possibility to assign flow depth to a total of 10 separate classes on a regional scale. Debris flow vulnerability curves from the literature and one curve specifically for our case study area were used to determine the damage for different material and building types associated with the elements at risk. The building values were obtained from the Italian Revenue Agency (Agenzia delle Entrate) and were classified per cadastral zone according to the Real Estate Observatory data (Osservatorio del Mercato Immobiliare, Agenzia Entrate - OMI). The minimum and maximum market value for each building was obtained by multiplying the corresponding land-use value (€/msq) with building area and number of floors

  11. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  12. Delivering Climate Projections at Regional Scales to Support Decisionmakers: a new NOAA effort

    NASA Astrophysics Data System (ADS)

    Anderson, D. E.; Ray, A. J.; MacDonald, A. E.; Rood, R. B.; Schneider, J. P.

    2010-12-01

    NOAA is developing a pilot effort for a capability to deliver climate projections at regional scales across the nation, in order to support a wide range of public policy and planning decisionmaking, from urban planning to ecosystems sustainability and management. The initial pilot effort will utilize model output and analyses from previous IPCC studies, such as those available from the DOE LLNL PCMDI archive and the NARCCAP datasets. New global model datasets applicable to US decision support will be generated through access to IPCC-vetted, publically available and documented models. Application of downscaling approaches will be evaluated through community interaction in order to support decisions at regional scales. Over the longer-term, this effort will evolve into a capability to support state-of-the-art approaches and applications of downscaled climate projection information to support regional decision making, including facilitating better connectivity of high resolution data with decision processes and models. This effort addresses the need articulated by the White House Interagency Climate Change Adaptation Task Force for science inputs to adaptation decisions and policy. The effort has considerable science challenges as well as challenges in meeting the needs of the end user community. This talk will discuss plans for addressing near-term and longer-term needs for regional climate information, defined for this effort as decision-scale climate projections over time scales ranging from seasonal to inter-annual out to a century or so. Initially, this effort will engage three key user communities through collaborative efforts: the Regional Integrated Science and Assessment network and other NOAA regional networks, the National Assessment, and the Department of Interior (DOI) via a recently signed DOI-Department of Commerce (DOC) Memorandum of Understanding to cooperate on climate-related activities. In summary, this effort is envisioned as an intellectual

  13. Flash-Flood hydrological simulations at regional scale. Scale signature on road flooding vulnerability

    NASA Astrophysics Data System (ADS)

    Anquetin, Sandrine; Vannier, Olivier; Ollagnier, Mélody; Braud, Isabelle

    2015-04-01

    This work contributes to the evaluation of the dynamics of the human exposure during flash-flood events in the Mediterranean region. Understanding why and how the commuters modify their daily mobility in the Cévennes - Vivarais area (France) is the long-term objective of the study. To reach this objective, the methodology relies on three steps: i) evaluation of daily travel patterns, ii) reconstitution of road flooding events in the region based on hydrological simulation at regional scale in order to capture the time evolution and the intensity of flood and iii) identification of the daily fluctuation of the exposition according to road flooding scenarios and the time evolution of mobility patterns. This work deals with the second step. To do that, the physically based and non-calibrated hydrological model CVN (Vannier, 2013) is implemented to retrieve the hydrological signature of past flash-flood events in Southern France. Four past events are analyzed (September 2002; September 2005 (split in 2 different events); October 2008). Since the regional scale is investigated, the scales of the studied catchments range from few km2 to few hundreds of km2 where many catchments are ungauged. The evaluation is based on a multi-scale approach using complementary observations coming from post-flood experiments (for small and/or ungaugged catchments) and operational hydrological network (for larger catchments). The scales of risk (time and location of the road flooding) are also compared to observed data of road cuts. The discussion aims at improving our understanding on the hydrological processes associated with road flooding vulnerability. We specifically analyze runoff coefficient and the ratio between surface and groundwater flows at regional scale. The results show that on the overall, the three regional simulations provide good scores for the probability of detection and false alarms concerning road flooding (1600 points are analyzed for the whole region). Our

  14. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  15. Using Satellite Measurements to Investigate Regional-scale Chemistry: The Case for Geostationary Observations

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Wozniak, Amy; Creilson, Jack

    2007-01-01

    One of the recommendations of the Decadal Survey that was recently released by the National Academy of Science was that of a geostationary platform from which to obtain trace gas measurements. The use of such a platform is particularly advantageous when applied to understanding the formation of regional air pollution. This study demonstrates the challenges of trying to utilize information from instruments on satellites in low-earth orbit (LEO). We also demonstrate the advantage gained through a simulation that would provide hourly observations. In this case study, we take advantage of the high resolution Level-2 orbital data available from the Ozone Monitoring Instrument (OMI), in conjunction with assimilated stratospheric column ozone fields, to evaluate if meaningful tropospheric ozone information can be obtained on a regional scale. We focus on a period on late June 2005 when a widespread pollution episode enveloped the Houston metropolitan area as well as a large region in southeast Texas.

  16. Regional scale analysis for the design of storage tanks for domestic rainwater harvesting systems.

    PubMed

    Campisano, A; Modica, C

    2012-01-01

    A regional scale analysis for the design of storage tanks for domestic rain water harvesting systems is presented. The analysis is based on the daily water balance simulation of the storage tank by the yield-after-spillage algorithm as tank release rule. Water balances are applied to 17 rainfall gauging stations in Sicily (Italy). Compared with literature existing methods, a novel dimensionless parameter is proposed to better describe the intra-annual character of the rainfall patterns. As a result, easy-to-use regional regressive models to evaluate the water saving performance and the overflow discharges from the tank are provided along with a stepwise procedure for practical application. The regional models demonstrate good fits between model predictions and simulated values of both water savings and overflows from the tank.

  17. A new health check of the ozone layer at global and regional scales

    NASA Astrophysics Data System (ADS)

    Coldewey-Egbers, Melanie; Loyola R., Diego G.; Braesicke, Peter; Dameris, Martin; Roozendael, Michel; Lerot, Christophe; Zimmer, Walter

    2014-06-01

    In this study, we provide a new perspective on the current state of the ozone layer using a comprehensive long-term total ozone data record which has been recently released within the framework of the European Space Agency's Climate Change Initiative. Based on a multivariate regression analysis, we disentangle various aspects of ozone change and variability on global and regional scales, thus enabling the monitoring of the effectiveness of the Montreal Protocol. Given dominant natural variability the expected midlatitude onset of ozone recovery is still not significant and would need additional 5 years of observations to be unequivocally detectable. A regional increase in the tropics is a likely manifestation of a long-term change in El Niño-Southern Oscillation intensity over the last two decades induced by strong El Niño in 1997/1998 and strong La Niña in 2010/2011.

  18. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

    USGS Publications Warehouse

    Pointing, Stephen B.; Belnap, Jayne

    2014-01-01

    This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

  19. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  20. Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    A review is presented of numerical models which were developed to interpret thermal IR data and to identify the governing parameters and surface energy fluxes recorded in the images. Analytic, predictive, diagnostic and empirical models are described. The limitations of each type of modeling approach are explored in terms of the error sources and inherent constraints due to theoretical or measurement limitations. Sample results of regional-scale soil moisture or evaporation patterns derived from the Heat Capacity Mapping Mission and GOES satellite data through application of the predictive model devised by Carlson (1981) are discussed. The analysis indicates that pattern recognition will probably be highest when data are collected over flat, arid, sparsely vegetated terrain. The soil moisture data then obtained may be accurate to within 10-20 percent.

  1. Empirical assessment of debris flow risk on a regional scale in Yunnan province, southwestern China.

    PubMed

    Liu, Xilin; Yue, Zhong Qi; Tham, Lesliw George; Lee, Chack Fan

    2002-08-01

    Adopting the definition suggested by the United Nations, a risk model for regional debris flow assessment is presented. Risk is defined as the product of hazard and vulnerability, both of which are necessary for evaluation. A Multiple-Factor Composite Assessment Model is developed for quantifying regional debris flow hazard by taking into account eight variables that contribute to debris flow magnitude and its frequency of occurrence. Vulnerability is a measure of the potential total losses. On a regional scale, it can be measured by the fixed asset, gross domestic product, land resources, population density, as well as the age, education, and wealth of the inhabitants. A nonlinear power-function assessment model that accounts for these indexes is developed. As a case study, the model is applied to compute the hazard, vulnerability and risk for each prefecture of the Yunnan province in southwestern China. PMID:12105765

  2. On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.

    2016-10-01

    A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.

  3. Regional-scale analysis of the geothermal regime in the western Canada sedimentary basin

    SciTech Connect

    Bachu, S. ); Burwash, R.A. )

    1991-01-01

    This paper reports that radiogenic heat generation at the top of the crystalline Precambrian basement underneath the Western Canada Sedimentary Basin is highly variable, on average higher than for the exposed Canadian Shield, and reflects the basement tectonic structure. The areal distribution of the geothermal gradient across the sediments shows a regional-scale northerly increase, with intermediate- and local-state features correlating with anomalies in heat generation at the top of the basement. Only in the northeast and southeast corners of the basin can high geothermal gradients not be explained by heat generation; there they may be caused by convective fluid flow effects. The temperature distribution at the base of the sediments is highly correlated with the thickness of the sedimentary cover and reflects major topographic and basement features. Overall, the characteristics of the geothermal regime in the Western Canada Sedimentary Basin are indicative of a conduction dominated system.

  4. On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.

    2016-05-01

    A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.

  5. Prioritization of constituents for national- and regional-scale ambient monitoring of water and sediment in the United States

    USGS Publications Warehouse

    Olsen, Lisa D.; Valder, Joshua F.; Carter, Janet M.; Zogorski, John S.

    2013-01-01

    A total of 2,541 constituents were evaluated and prioritized for national- and regional-scale ambient monitoring of water and sediment in the United States. This prioritization was done by the U.S. Geological Survey (USGS) in preparation for the upcoming third decade (Cycle 3; 2013–23) of the National Water-Quality Assessment (NAWQA) Program. This report provides the methods used to prioritize the constituents and the results of that prioritization. Constituents were prioritized by the NAWQA National Target Analyte Strategy (NTAS) work group on the basis of available information on physical and chemical properties, observed or predicted environmental occurrence and fate, and observed or anticipated adverse effects on human health or aquatic life. Constituents were evaluated within constituent groups that were determined on the basis of physical or chemical properties or on uses or sources. Some constituents were evaluated within more than one constituent group. Although comparable objectives were used in the prioritization of constituents within the different constituent groups, differences in the availability of information accessed for each constituent group led to the development of separate prioritization approaches adapted to each constituent group to make best use of available resources. Constituents were assigned to one of three prioritization tiers: Tier 1, those having the highest priority for inclusion in ambient monitoring of water or sediment on a national or regional scale (including NAWQA Cycle 3 monitoring) on the basis of their likelihood of environmental occurrence in ambient water or sediment, or likelihood of effects on human health or aquatic life; Tier 2, those having intermediate priority for monitoring on the basis of their lower likelihood of environmental occurrence or lower likelihood of effects on human health or aquatic life; and Tier 3, those having low or no priority for monitoring on the basis of evidence of nonoccurrence or lack of

  6. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  7. A new biogeochemical model to simulate regional scale carbon emission from lakes, ponds and wetlands

    NASA Astrophysics Data System (ADS)

    Bayer, Tina; Brakebusch, Matthias; Gustafsson, Erik; Beer, Christian

    2016-04-01

    Small aquatic systems are receiving increasing attention for their role in global carbon cycling. For instance, lakes and ponds in permafrost are net emitters of carbon to the atmosphere, and their capacity to process and emit carbon is significant on a landscape scale, with a global flux of 8-103 Tg methane per year which amounts to 5%-30% of all natural methane emissions (Bastviken et al 2011). However, due to the spatial and temporal highly localised character of freshwater methane emissions, fluxes remain poorly qualified and are difficult to upscale based on field data alone. While many models exist to model carbon cycling in individual lakes and ponds, we perceived a lack of models that can work on a larger scale, over a range of latitudes, and simulate regional carbon emission from a large number of lakes, ponds and wetlands. Therefore our objective was to develop a model that can simulate carbon dioxide and methane emission from freshwaters on a regional scale. Our resulting model provides an additional tool to assess current aquatic carbon emissions as well as project future responses to changes in climatic drivers. To this effect, we have combined an existing large-scale hydrological model (the Variable Infiltration Capacity Macroscale Hydrologic Model (VIC), Liang & Lettenmaier 1994), an aquatic biogeochemical model (BALTSEM, Savchuk et al., 2012; Gustafsson et al., 2014) and developed a new methane module for lakes. The resulting new process-based biogeochemical model is designed to model aquatic carbon emission on a regional scale, and to perform well in high-latitude environments. Our model includes carbon, oxygen and nutrient cycling in lake water and sediments, primary production and methanogenesis. Results of calibration and validation of the model in two catchments (Torne-Kalix in Northern Sweden and of a large arctic river catchment) will be presented.

  8. Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales

    NASA Technical Reports Server (NTRS)

    Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel

    2015-01-01

    An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

  9. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale

    NASA Astrophysics Data System (ADS)

    Haaf, Ezra; Barthel, Roland

    2015-04-01

    Conducting groundwater modelling and resource analysis on the regional scale is often complicated by the scarcity and uneven distribution of observations over space and time, the uncertainty of structures, inputs and processes as well as the inherent heterogeneity and variability of hydrogeological conditions. In order to improve modelling and prediction of poorly-observed groundwater systems, information could be transferred from similar, but more well-explored and better understood systems analogous to PUB (Prediction in ungauged catchments). To achieve this, the overarching goal of this study is to develop an approach to statistically extract relevant information on structure and state from observed and well characterized locations in order to derive a classification scheme of functionally similar groups. At the core of the approach will be the classification of (i) static hydrogeological characteristics (such as aquifer geometry and hydraulic properties) (ii) dynamic changes of the boundary conditions (such as recharge) and (iii) dynamic groundwater system responses (groundwater head and chemical parameters) as well as the systematic use of the dependencies of system responses on explanatory factors. With a classification framework in place, insight can be gained into the behavior of less well-observed groundwater systems and underlying processes can be better understood. Furthermore, it is expected that regional conceptual models can be checked without the need of numerical groundwater models as well as that missing values in time series can be filled. Apart from illustrating the general approach and the main ideas of groundwater systems classification, we show a number of promising methods that can be used to establish a classification framework for groundwater systems assessment. The focus at the current stage is on finding relevant statistical methods that can be used for identifying and quantifying similarities/dissimilarities of groundwater hydrographs

  10. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and

  11. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs

    NASA Astrophysics Data System (ADS)

    Haaf, Ezra; Barthel, Roland

    2016-04-01

    When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes

  12. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data

    NASA Astrophysics Data System (ADS)

    Mulder, V. L.; de Bruin, S.; Schaepman, M. E.

    2013-04-01

    This paper presents a sparse, remote sensing-based sampling approach making use of conditioned Latin Hypercube Sampling (cLHS) to assess variability in soil properties at regional scale. The method optimizes the sampling scheme for a defined spatial population based on selected covariates, which are assumed to represent the variability of the target variables. The optimization also accounts for specific constraints and costs expressing the field sampling effort. The approach is demonstrated using a case study in Morocco, where a small but representative sample record had to be collected over a 15,000 km2 area within 2 weeks. The covariate space of the Latin Hypercube consisted of the first three principal components of ASTER imagery as well as elevation. Comparison of soil properties taken from the topsoil with the existing soil map, a geological map and lithological data showed that the sampling approach was successful in representing major soil variability. The cLHS sample failed to express spatial correlation; constraining the LHS by a distance criterion favoured large spatial variability within a short distances resulting in an overestimation of the variograms nugget and short distance variability. However, the exhaustive covariate data appeared to be spatially correlated which supports our premise that once the relation between spatially explicit remote sensing data and soil properties has been modelled, the latter can be spatially predicted based on the densely sampled remotely sensed data. Therefore, the LHS approach is considered as time and cost efficient for regional scale surveys that rely on remote sensing-based prediction of soil properties.

  13. Towards the 1 mm/y stability of the radial orbit error at regional scales

    NASA Astrophysics Data System (ADS)

    Couhert, Alexandre; Cerri, Luca; Legeais, Jean-François; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel

    2015-01-01

    An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West “order-1” pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

  14. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-01

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  15. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China

    NASA Astrophysics Data System (ADS)

    Ma, L.; Guo, C.; Lü, X.; Yuan, S.; Wang, R.

    2015-04-01

    Global environmental factors impact soil microbial communities and further affect organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about the relative contributions of climate factors, soil properties, vegetation types, land management practices and spatial structure (which serves as a proxy for underlying effects of temperature and precipitation for spatial variation) on soil microbial community composition and biomass at large spatial scales. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations at a regional scale in northeastern China (850 × 50 km). The results showed that soil moisture and land use changes were most closely related to microbial community composition and biomass at the regional scale, while soil total C content and climate effects were weaker but still significant. Factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Higher contributions of gram-positive bacteria were found in wetter soils, whereas higher contributions of gram-negative bacteria and fungi were observed in drier soils. The contributions of gram-negative bacteria and fungi were lower in heavily disturbed soils than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate and soil properties were not the most important drivers governing microbial community composition and biomass because of inclusion of irrigated and managed practices, and thus soil moisture and land use appear to be primary determinants of microbial community composition and biomass at the regional scale in northeastern China.

  16. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  17. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions.

    PubMed

    Schulze, Jule; Frank, Karin; Priess, Joerg A; Meyer, Markus A

    2016-01-01

    Meeting the world's growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape. This

  18. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions.

    PubMed

    Schulze, Jule; Frank, Karin; Priess, Joerg A; Meyer, Markus A

    2016-01-01

    Meeting the world's growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape. This

  19. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions

    PubMed Central

    Schulze, Jule; Frank, Karin; Priess, Joerg A.; Meyer, Markus A.

    2016-01-01

    Meeting the world’s growing energy demand through bioenergy production involves extensive land-use change which could have severe environmental and social impacts. Second generation bioenergy feedstocks offer a possible solution to this problem. They have the potential to reduce land-use conflicts between food and bioenergy production as they can be grown on low quality land not suitable for food production. However, a comprehensive impact assessment that considers multiple ecosystem services (ESS) and biodiversity is needed to identify the environmentally best feedstock option, as trade-offs are inherent. In this study, we simulate the spatial distribution of short rotation coppices (SRCs) in the landscape of the Mulde watershed in Central Germany by modeling profit-maximizing farmers under different economic and policy-driven scenarios using a spatially explicit economic simulation model. This allows to derive general insights and a mechanistic understanding of regional-scale impacts on multiple ESS in the absence of large-scale implementation. The modeled distribution of SRCs, required to meet the regional demand of combined heat and power (CHP) plants for solid biomass, had little or no effect on the provided ESS. In the policy-driven scenario, placing SRCs on low or high quality soils to provide ecological focus areas, as required within the Common Agricultural Policy in the EU, had little effect on ESS. Only a substantial increase in the SRC production area, beyond the regional demand of CHP plants, had a relevant effect, namely a negative impact on food production as well as a positive impact on biodiversity and regulating ESS. Beneficial impacts occurred for single ESS. However, the number of sites with balanced ESS supply hardly increased due to larger shares of SRCs in the landscape. Regression analyses showed that the occurrence of sites with balanced ESS supply was more strongly driven by biophysical factors than by the SRC share in the landscape

  20. Regional-scale identification of groundwater-surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand

    NASA Astrophysics Data System (ADS)

    Guggenmos, M. R.; Daughney, C. J.; Jackson, B. M.; Morgenstern, U.

    2011-11-01

    shown that multivariate statistics can be used as a rapid method to identify groundwater-surface water interaction at a regional scale using existing hydrochemical datasets.

  1. Regional-scale identification of groundwater-surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand

    NASA Astrophysics Data System (ADS)

    Guggenmos, M. R.; Daughney, C. J.; Jackson, B. M.; Morgenstern, U.

    2011-07-01

    shown that multivariate statistics can be used as a rapid method to identify groundwater-surface water interaction at a regional scale using existing hydrochemical datasets.

  2. Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; McIntyre, Cameron; Zell, Claudia; Walthert, Lorenz; Schleppi, Patrick; Feng, Xiaojuan; Eglinton, Timothy Ian

    2016-06-01

    Soil organic matter (SOM) forms the largest terrestrial pool of carbon outside of sedimentary rocks. Radiocarbon is a powerful tool for assessing soil organic matter dynamics. However, due to the nature of the measurement, extensive 14C studies of soil systems remain relatively rare. In particular, information on the extent of spatial and temporal variability in 14C contents of soils is limited, yet this information is crucial for establishing the range of baseline properties and for detecting potential modifications to the SOM pool. This study describes a comprehensive approach to explore heterogeneity in bulk SOM 14C in Swiss forest soils that encompass diverse landscapes and climates. We examine spatial variability in soil organic carbon (SOC) 14C, SOC content and C : N ratios over both regional climatic and geologic gradients, on the watershed- and plot-scale and within soil profiles. Results reveal (1) a relatively uniform radiocarbon signal across climatic and geologic gradients in Swiss forest topsoils (0-5 cm, Δ14C = 130 ± 28.6, n = 12 sites), (2) similar radiocarbon trends with soil depth despite dissimilar environmental conditions, and (3) micro-topography dependent, plot-scale variability that is similar in magnitude to regional-scale variability (e.g., Gleysol, 0-5 cm, Δ14C 126 ± 35.2, n = 8 adjacent plots of 10 × 10 m). Statistical analyses have additionally shown that Δ14C signature in the topsoil is not significantly correlated to climatic parameters (precipitation, elevation, primary production) except mean annual temperature at 0-5 cm. These observations have important consequences for SOM carbon stability modelling assumptions, as well as for the understanding of controls on past and current soil carbon dynamics.

  3. Regional-Scale Migrations and Habitat Use of Juvenile Lemon Sharks (Negaprion brevirostris) in the US South Atlantic

    PubMed Central

    Reyier, Eric A.; Franks, Bryan R.; Chapman, Demian D.; Scheidt, Douglas M.; Stolen, Eric D.; Gruber, Samuel H.

    2014-01-01

    Resolving the geographic extent and timing of coastal shark migrations, as well as their environmental cues, is essential for refining shark management strategies in anticipation of increasing anthropogenic stressors to coastal ecosystems. We employed a regional-scale passive acoustic telemetry array encompassing 300 km of the east Florida coast to assess what factors influence site fidelity of juvenile lemon sharks (Negaprion brevirostris) to an exposed coastal nursery at Cape Canaveral, and to document the timing and rate of their seasonal migrations. Movements of 54 juvenile lemon sharks were monitored for three years with individuals tracked for up to 751 days. While most sharks demonstrated site fidelity to the Cape Canaveral region December through February under typical winter water temperatures, historically extreme declines in ocean temperature were accompanied by rapid and often temporary, southward displacements of up to 190 km along the Florida east coast. From late February through April each year, most sharks initiated a northward migration at speeds of up to 64 km day−1 with several individuals then detected in compatible estuarine telemetry arrays in Georgia and South Carolina up to 472 km from release locations. Nineteen sharks returned for a second or even third consecutive winter, thus demonstrating strong seasonal philopatry to the Cape Canaveral region. The long distance movements and habitat associations of immature lemon sharks along the US southeast coast contrast sharply with the natal site fidelity observed in this species at other sites in the western Atlantic Ocean. These findings validate the existing multi-state management strategies now in place. Results also affirm the value of collaborative passive arrays for resolving seasonal movements and habitat preferences of migratory coastal shark species not easily studied with other tagging techniques. PMID:24586329

  4. Regional-scale migrations and habitat use of juvenile lemon sharks (Negaprion brevirostris) in the US South Atlantic.

    PubMed

    Reyier, Eric A; Franks, Bryan R; Chapman, Demian D; Scheidt, Douglas M; Stolen, Eric D; Gruber, Samuel H

    2014-01-01

    Resolving the geographic extent and timing of coastal shark migrations, as well as their environmental cues, is essential for refining shark management strategies in anticipation of increasing anthropogenic stressors to coastal ecosystems. We employed a regional-scale passive acoustic telemetry array encompassing 300 km of the east Florida coast to assess what factors influence site fidelity of juvenile lemon sharks (Negaprion brevirostris) to an exposed coastal nursery at Cape Canaveral, and to document the timing and rate of their seasonal migrations. Movements of 54 juvenile lemon sharks were monitored for three years with individuals tracked for up to 751 days. While most sharks demonstrated site fidelity to the Cape Canaveral region December through February under typical winter water temperatures, historically extreme declines in ocean temperature were accompanied by rapid and often temporary, southward displacements of up to 190 km along the Florida east coast. From late February through April each year, most sharks initiated a northward migration at speeds of up to 64 km day(-1) with several individuals then detected in compatible estuarine telemetry arrays in Georgia and South Carolina up to 472 km from release locations. Nineteen sharks returned for a second or even third consecutive winter, thus demonstrating strong seasonal philopatry to the Cape Canaveral region. The long distance movements and habitat associations of immature lemon sharks along the US southeast coast contrast sharply with the natal site fidelity observed in this species at other sites in the western Atlantic Ocean. These findings validate the existing multi-state management strategies now in place. Results also affirm the value of collaborative passive arrays for resolving seasonal movements and habitat preferences of migratory coastal shark species not easily studied with other tagging techniques.

  5. Variation in carbon isotope discrimination in Cleistogenes squarrosa (Trin.) Keng: patterns and drivers at tiller, local, catchment, and regional scales.

    PubMed

    Yang, Hao; Auerswald, Karl; Bai, Yongfei; Wittmer, Maximilian H O M; Schnyder, Hans

    2011-08-01

    Understanding the patterns and drivers of carbon isotope discrimination in C(4) species is critical for predicting the effects of global change on C(3)/C(4) ratio of plant community and consequently on ecosystem functioning and services. Cleistogenes squarrosa (Trin.) Keng is a dominant C(4) perennial bunchgrass of arid and semi-arid ecosystems across the Mongolian plateau of the Eurasian steppe. Its carbon isotope discrimination (((13))Δ) during photosynthesis is relatively large among C(4) species and it is variable. Here the ((13))Δ of C. squarrosa and its potential drivers at a nested set of scales were examined. Within cohorts of tillers, ((13))Δ of leaves increased from 5.1‰ to 8.1‰ from old to young leaves. At the local scale, ((13))Δ of mature leaves varied from 5.8‰ to 8.4‰, increasing with decreasing grazing intensity. At the catchment scale, ((13))Δ of mature leaves varied from 6.2‰ to 8.5‰ and increased with topsoil silt content. At the regional scale, ((13))Δ of mature leaves varied from 5.5‰ to 8.9‰, increasing with growing-season precipitation. At all scales, ((13))Δ decreased with increasing leaf nitrogen content (N(leaf)). N(leaf) was positively correlated with grazing intensity and leaf position along tillers, but negatively correlated with precipitation. The presence of the correlations across a range of different environmental contexts strongly implicates N(leaf) as a major driver of ((13))Δ in C. squarrosa and, possibly, other C(4) species.

  6. Variation in carbon isotope discrimination in Cleistogenes squarrosa (Trin.) Keng: patterns and drivers at tiller, local, catchment, and regional scales

    PubMed Central

    Yang, Hao; Auerswald, Karl; Bai, Yongfei; Wittmer, Maximilian H. O. M.; Schnyder, Hans

    2011-01-01

    Understanding the patterns and drivers of carbon isotope discrimination in C4 species is critical for predicting the effects of global change on C3/C4 ratio of plant community and consequently on ecosystem functioning and services. Cleistogenes squarrosa (Trin.) Keng is a dominant C4 perennial bunchgrass of arid and semi-arid ecosystems across the Mongolian plateau of the Eurasian steppe. Its carbon isotope discrimination (13Δ) during photosynthesis is relatively large among C4 species and it is variable. Here the 13Δ of C. squarrosa and its potential drivers at a nested set of scales were examined. Within cohorts of tillers, 13Δ of leaves increased from 5.1‰ to 8.1‰ from old to young leaves. At the local scale, 13Δ of mature leaves varied from 5.8‰ to 8.4‰, increasing with decreasing grazing intensity. At the catchment scale, 13Δ of mature leaves varied from 6.2‰ to 8.5‰ and increased with topsoil silt content. At the regional scale, 13Δ of mature leaves varied from 5.5‰ to 8.9‰, increasing with growing-season precipitation. At all scales, 13Δ decreased with increasing leaf nitrogen content (Nleaf). Nleaf was positively correlated with grazing intensity and leaf position along tillers, but negatively correlated with precipitation. The presence of the correlations across a range of different environmental contexts strongly implicates Nleaf as a major driver of 13Δ in C. squarrosa and, possibly, other C4 species. PMID:21527626

  7. Reconciling bottom-up and top-down estimates of regional scale carbon budgets through geostatistical inverse modeling

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Yadav, V.; Mueller, K. L.; Gourdji, S. M.; Michalak, A. M.; Law, B. E.

    2011-12-01

    We designed a framework to train biogeophysics-biogeochemistry process models using atmospheric inverse modeling, multiple databases characterizing biosphere-atmosphere exchange, and advanced geostatistics. Our main objective is to reduce uncertainties in carbon cycle and climate projections by exploring the full spectrum of process representation, data assimilation and statistical tools currently available. Incorporating multiple high-quality data sources like eddy-covariance flux databases or biometric inventories has the potential to produce a rigorous data-constrained process model implementation. However, representation errors may bias spatially explicit model output when upscaling to regional to global scales. Atmospheric inverse modeling can be used to validate the regional representativeness of the fluxes, but each piece of prior information from the surface databases limits the ability of the inverse model to characterize the carbon cycle from the perspective of the atmospheric observations themselves. The use of geostatistical inverse modeling (GIM) holds the potential to overcome these limitations, replacing rigid prior patterns with information on how flux fields are correlated across time and space, as well as ancillary environmental data related to the carbon fluxes. We present results from a regional scale data assimilation study that focuses on generating terrestrial CO2 fluxes at high spatial and temporal resolution in the Pacific Northwest United States. Our framework couples surface fluxes from different biogeochemistry process models to very high resolution atmospheric transport using mesoscale modeling (WRF) and Lagrangian Particle dispersion (STILT). We use GIM to interpret the spatiotemporal differences between bottom-up and top-down flux fields. GIM results make it possible to link those differences to input parameters and processes, strengthening model parameterization and process understanding. Results are compared against independent

  8. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  9. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-03-17

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  10. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  11. Using high-resolution digital aerial imagery to map land cover

    USGS Publications Warehouse

    Dieck, J.J.; Robinson, Larry

    2014-01-01

    The Upper Midwest Environmental Sciences Center (UMESC) has used aerial photography to map land cover/land use on federally owned and managed lands for over 20 years. Until recently, that process used 23- by 23-centimeter (9- by 9-inch) analog aerial photos to classify vegetation along the Upper Mississippi River System, on National Wildlife Refuges, and in National Parks. With digital aerial cameras becoming more common and offering distinct advantages over analog film, UMESC transitioned to an entirely digital mapping process in 2009. Though not without challenges, this method has proven to be much more accurate and efficient when compared to the analog process.

  12. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  13. A study of regional-scale aerosol assimilation using a Stretch-NICAM

    NASA Astrophysics Data System (ADS)

    Misawa, S.; Dai, T.; Schutgens, N.; Nakajima, T.

    2013-12-01

    Although aerosol is considered to be harmful to human health and it became a social issue, aerosol models and emission inventories include large uncertainties. In recent studies, data assimilation is applied to aerosol simulation to get more accurate aerosol field and emission inventory. Most of these studies, however, are carried out only on global scale, and there are only a few researches about regional scale aerosol assimilation. In this study, we have created and verified an aerosol assimilation system on regional scale, in hopes to reduce an error associated with the aerosol emission inventory. Our aerosol assimilation system has been developed using an atmospheric climate model, NICAM (Non-hydrostaric ICosahedral Atmospheric Model; Satoh et al., 2008) with a stretch grid system and coupled with an aerosol transport model, SPRINTARS (Takemura et al., 2000). Also, this assimilation system is based on local ensemble transform Kalman filter (LETKF). To validate this system, we used a simulated observational data by adding some artificial errors to the surface aerosol fields constructed by Stretch-NICAM-SPRINTARS. We also included a small perturbation in original emission inventory. This assimilation with modified observational data and emission inventory was performed in Kanto-plane region around Tokyo, Japan, and the result indicates the system reducing a relative error of aerosol concentration by 20%. Furthermore, we examined a sensitivity of the aerosol assimilation system by varying the number of total ensemble (5, 10 and 15 ensembles) and local patch (domain) size (radius of 50km, 100km and 200km), both of which are the tuning parameters in LETKF. The result of the assimilation with different ensemble number 5, 10 and 15 shows that the larger the number of ensemble is, the smaller the relative error become. This is consistent with ensemble Kalman filter theory and imply that this assimilation system works properly. Also we found that assimilation system

  14. Risk prediction of Critical Infrastructures against extreme natural hazards: local and regional scale analysis

    NASA Astrophysics Data System (ADS)

    Rosato, Vittorio; Hounjet, Micheline; Burzel, Andreas; Di Pietro, Antonio; Tofani, Alberto; Pollino, Maurizio; Giovinazzi, Sonia

    2016-04-01

    Natural hazard events can induce severe impacts on the built environment; they can hit wide and densely populated areas, where there is a large number of (inter)dependent technological systems whose damages could cause the failure or malfunctioning of further different services, spreading the impacts on wider geographical areas. The EU project CIPRNet (Critical Infrastructures Preparedness and Resilience Research Network) is realizing an unprecedented Decision Support System (DSS) which enables to operationally perform risk prediction on Critical Infrastructures (CI) by predicting the occurrence of natural events (from long term weather to short nowcast predictions, correlating intrinsic vulnerabilities of CI elements with the different events' manifestation strengths, and analysing the resulting Damage Scenario. The Damage Scenario is then transformed into an Impact Scenario, where punctual CI element damages are transformed into micro (local area) or meso (regional) scale Services Outages. At the smaller scale, the DSS simulates detailed city models (where CI dependencies are explicitly accounted for) that are of important input for crisis management organizations whereas, at the regional scale by using approximate System-of-Systems model describing systemic interactions, the focus is on raising awareness. The DSS has allowed to develop a novel simulation framework for predicting earthquakes shake maps originating from a given seismic event, considering the shock wave propagation in inhomogeneous media and the subsequent produced damages by estimating building vulnerabilities on the basis of a phenomenological model [1, 2]. Moreover, in presence of areas containing river basins, when abundant precipitations are expected, the DSS solves the hydrodynamic 1D/2D models of the river basins for predicting the flux runoff and the corresponding flood dynamics. This calculation allows the estimation of the Damage Scenario and triggers the evaluation of the Impact Scenario

  15. Collaborative experiment on intercomparison of regional-scale hydrological models for climate impact assessment

    NASA Astrophysics Data System (ADS)

    Krysanova, Valentina; Hattermann, Fred

    2015-04-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) is a community-driven modelling effort bringing together impact modellers across sectors and scales to create more consistent and comprehensive projections of the impacts of climate change. This project is aimed in establishing a long-term, systematic, cross-sectoral impact model intercomparison process, including comparison of climate change impacts for multiple sectors using ensemble of climate scenarios and applying global and regional impact models. The project is coordinated by the Potsdam Institute for Climate Impact Research. An overview of this project and collaborative experiment related to the regional-scale water sector model intercomparison in ISI-MIP will be presented. The regional-scale water sector modelling includes eleven models applied to eleven large-scale river basins worldwide (not every model is applied to every of eleven basins). In total, 60-65 model applications will be done by several collaborating groups from different Institutions. The modelling tools include: ECOMAG, HBV, HBV-light, HYPE, LASCAM, LISFLOOD, mHM, SWAT, SWIM, VIC and WaterGAP. Eleven river basins chosen for the model application and intercomparison are: the Rhine and Tagus in Europe, the Niger and Blue Nile in Africa, the Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, the Upper Mississippi and Upper Amazon in America, and the Murray-Darling in Australia. Their drainage areas range between 67,490 km2 (Tagus) to 2,460,000 km2 (Lena). Data from global and regional datasets are used for the model setup and calibration. The model calibration and validation was done using the WATCH climate data for all cases, also checking the representation of high and low percentiles of river discharge. For most of the basins, also intermediate gauge stations were included in the calibration. The calibration and validation results, evaluated with the Nash and Sutcliffe efficiency (NSE) and percent bias (PBIAS), are mostly

  16. Impact of meteorological forcing datasets on regional scale water fluxes and drought characteristics over Germany

    NASA Astrophysics Data System (ADS)

    Kumar, Rohini; Samaniego, Luis; Livneh, Ben; Zink, Matthias; Schäfer, David

    2014-05-01

    Accurate representation of regional-scale water fluxes is crucial for hydrological assessments of societally relevant events such as droughts. Hydrologic models are now commonly used to derive gridded estimates of land surface water budgets, i.e. soil moisture, runoff, in the absence of long-term observations. Consequently, the skill of such models depends on the quality of their driving data, particularly the choice of meteorological forcing data. In this study, we provide a comprehensive assessment of regional-scale water fluxes and states over Germany since 1950 using a well-established mesoscale hydrologic model (mHM). The goal is to analyze uncertainties in the representation of hydrologic fluxes and large-scale drought characteristics based on the choice of meteorological forcing data. A long-term (1950-2012) country wide hydrological simulation of the land surface water budgets at a 0.25° spatial resolution was carried out with mHM using (a) the publicly free E-OBS data set (v8.0) from the European Climate Assessment & Dataset project and (b) the gridded product based on the relatively dense station network (over 5500 rainfall gauges and 1100 weather stations) operated by the German Weather Service (DWD). These simulations serve to characterize historical agricultural and hydrological drought events based on soil moisture (SMI), and surface runoff (SRI) indices, respectively. Simulated water fluxes and states (e.g., runoff, evapotranspiration, soil moisture) with different meteorological data sets generally showed a high degree of correspondence to each other at annual and seasonal time scales. However, substantial regional differences emerged in the northeast part of Germany (in the Elbe river basin), where the E-OBS-based simulations produced drier conditions than those of the DWD based simulation. Despite similar covariances between both data sets for major historical drought events (1953-54, 1959-60, 1962-65, 1972-74, 1975-78, 1991-93, 1995-97, 2003

  17. Multiple satellite estimates of urban fractions and climate effects at regional scale

    NASA Astrophysics Data System (ADS)

    Jia, G.; Xu, R.; He, Y.

    2014-12-01

    Regional climate is controlled by large scale forcing at lateral boundary and physical processes within the region. Landuse in East Asia has been changed substantially in the last three decades, featured with expansion of urban built-up at unprecedented scale and speed. The fast expansion of urban areas could contribute to local even regional climate change. However, current spatial datasets of urban fractions do not well represent extend and expansion of urban areas in the regions, and the best available satellite data and remote sensing techniques have not been well applied to serve regional modeling of urbanization impacts on near surface temperature and other climate variables. Better estimates of localized urban fractions and urban climate effects are badly needed. Here we use high and mid resolution satellite data to estimate urban fractions and to assess effects of urban heat islands at local and regional scales. With our fractional cover, data fusion, and differentiated threshold approaches, estimated urban extent was greater than previously reported in many global datasets. Many city clusters were merging into each other, with gradual blurring boundaries and disappearing of gaps among member cities. Cities and towns were more connected with roads and commercial corridors, while wildland and urban greens became more isolated as patches among built-up areas. Those new estimates are expected to effectively improve climate simulation at local and regional scales in East Asia. There were significant positive relations between urban fraction and urban heat island effects as demonstrated by VNIR and TIR data from multiple satellites. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in

  18. Use of mobile gammaspectrometry for estimation of texture at regional scale

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2012-04-01

    In the last years gamma-ray measurements from air and ground were increasingly used for spatial mapping of physical soil parameters. Many applications of gamma-ray measurements for soil characterisation and in digital soil mapping (DSM) are known from Australia or single once from Northern America. During the last years there are attempts to use that method in Europe as well. The measured isotope concentration of the gamma emitter 40K, 238U and 232Th in soils depends on different soil parameters, which are the result of composition and properties of parent rock and processes during soil geneses under different climatic conditions. Grain size distribution, type of clay minerals and organic matter are soil parameters which influence directly the gamma-ray concentration. From former studies we know, that there are site specific relationships at the field scale between gamma-ray measurements and soil properties. One of the target soil properties in DSM is for e.g. the spatial distribution of texture at the landscape scale. Thus there is a need of more regional understanding of gamma-ray concentration and soil properties with regard to the complex geology of Europe. We did systematic measurements at different field sites across Europe to investigate the relationship between the concentrations of gamma radiant and grain size. The areas are characterised by different pedogenesis and varying clay content. For the measurement we used a mobile 4l Na(I) detector with GPS connection, which is mounted on a sledge and can be towed across the agricultural used plane. Additionally we selected points for soil sampling and analysis of soil texture. For the interpretation we used the single nuclide concentration as well as the ratios. The results show site specific relationships dependent from source material. At soils developed from alluvial sediments the K/Th ratio is an indicator for clay content at regional scale. At soils developed from loess sediments Th can be used do

  19. Using a mesoscale prognostic model to construct a regional scale transport climatology. Part 2: Transport patterns

    SciTech Connect

    Seely, S.L.; Dean, D.; Atchison, M.K.

    1998-12-31

    This study continues an investigation of the use of a prognostic mesoscale meteorological model to construct a regional scale climatology of pollution transport patterns around a site suffering from sparse data. In Part 1 of this study, the authors examined the accuracy of the RAMS model in simulating the weather at an eastern Mediterranean site. For this part of the investigation, they examined the effect of varying types of weather data on the transport climatology results. Due to the large amounts of data generated by a lengthy weather simulation, they also attempted to reduce the amount of required simulation time by using samples of weather data. Five months (1990--1994) of NCAR/NCEP reanalysis gridded wind data are subjected to an S-mode eigenvector analysis to produce a set of 12 two-dimensional wind patterns over a 1000 km square region in the eastern Mediterranean. The five months are then clustered on the basis of similarity to these 12 patterns. A set of days is selected from each of the groups to form a sample. This set of days is considered representative of the wind patterns during the five months period. The authors will compare transport climatology results obtained using the full set of RAMS forecast data from Part 1 to those obtained using representative and random samples of the data. They also examine the effect of using sparse data on the transport climatology results.

  20. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    PubMed Central

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  1. Differential sensitivity to regional-scale drought in six central US grasslands.

    PubMed

    Knapp, Alan K; Carroll, Charles J W; Denton, Elsie M; La Pierre, Kimberly J; Collins, Scott L; Smith, Melinda D

    2015-04-01

    Terrestrial ecosystems often vary dramatically in their responses to drought, but the reasons for this are unclear. With climate change forecasts for more frequent and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central US experienced the fourth largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity is inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 years) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per millimeter reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than twofold among the six grasslands, despite all sites experiencing 40% reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. A more comprehensive understanding of the mechanisms leading to differences in drought sensitivity will require multi-site manipulative experiments designed to assess both biotic and abiotic determinants of ecosystem sensitivity.

  2. Evaluating and improving CLM hydrologic processes for integrated earth system modeling at regional scales

    NASA Astrophysics Data System (ADS)

    Huang, M.; Leung, L.; Wigmosta, M. S.; Coleman, A. M.; Ke, Y.; Tesfa, T. K.; Li, H.

    2010-12-01

    The community land model (CLM) was designed for coupling with atmospheric models to simulate water, energy, and carbon fluxes between the land surface and atmosphere. These fluxes are regulated in various degrees by its hydrologic processes, which have not been vigorously evaluated for applications at watershed or regional scales. In the framework of an integrated regional earth system model being developed, accurate hydrologic information in all of its components including socio-economy, atmosphere, land, and energy infrastructure is needed to represent the interactions between human and earth system processes. Applying CLM in this framework requires evaluation and model improvement so that CLM could be used to represent hydrology, soil, managed and unmanaged ecosystems, and biogeochemical processes across scales in a single modeling framework. In this presentation, we will report preliminary results on the development of CLM featuring: (1) improved land surface hydrology that incorporates hydrologic processes from the Variable Infiltration Capacity (VIC) land surface model, including the parameterizations of subgrid variability, dynamic surface- and groundwater interactions, and hydraulic redistribution; (2) a semi-distributed extension of CLM (DCLM) for more spatially-explicit hydrologic modeling, which is critical for regional land and water management decisions under climate change mitigation and adaptation scenarios. The model development will be evaluated at flux towers and watersheds at various scales.

  3. An AHP-derived method for mapping the physical vulnerability of coastal areas at regional scales

    NASA Astrophysics Data System (ADS)

    Le Cozannet, G.; Garcin, M.; Bulteau, T.; Mirgon, C.; Yates, M. L.; Méndez, M.; Baills, A.; Idier, D.; Oliveros, C.

    2013-05-01

    Assessing coastal vulnerability to climate change at regional scales is now mandatory in France since the adoption of recent laws to support adaptation to climate change. However, there is presently no commonly recognised method to assess accurately how sea level rise will modify coastal processes in the coming decades. Therefore, many assessments of the physical component of coastal vulnerability are presently based on a combined use of data (e.g. digital elevation models, historical shoreline and coastal geomorphology datasets), simple models and expert opinion. In this study, we assess the applicability and usefulness of a multi-criteria decision-mapping method (the analytical hierarchy process, AHP) to map physical coastal vulnerability to erosion and flooding in a structured way. We apply the method in two regions of France: the coastal zones of Languedoc-Roussillon (north-western Mediterranean, France) and the island of La Réunion (south-western Indian Ocean), notably using the regional geological maps. As expected, the results show not only the greater vulnerability of sand spits, estuaries and low-lying areas near to coastal lagoons in both regions, but also that of a thin strip of erodible cliffs exposed to waves in La Réunion. Despite gaps in knowledge and data, the method is found to provide a flexible and transportable framework to represent and aggregate existing knowledge and to support long-term coastal zone planning through the integration of such studies into existing adaptation schemes.

  4. Regional-scale forcing of precipitation in selected modern volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Yim, W. W.-S.

    2009-04-01

    Major volcanic eruptions are known to lower the Earth's surface temperature but their regional-scale forcing of precipitation is poorly understood. In this presentation, three modern volcanic eruptions have been selected for investigation. The three eruptions are the February 1963 Agung eruption in Indonesia, the March 1982 El Chichón eruption in Mexico and the June 1991 Pinatubo eruption in the Philippines. Abnormally low annual rainfall was found in the southern China region during 1963 and 1991 respectively. Based on the total annual rainfall recorded at the Hong Kong Station, the rainfall was the driest and the tenth driest since record began in 1884 respectively. In contrast, abnormally high annual rainfall was found in southern China in 1982 with the Hong Kong Station recording the second wettest year since record began. Based on the pattern of rainfall observed, near-field major volcanic eruptions located in the Indonesian-Pacific gateway may lead to abnormally dry conditions in southern China through a shift of wind direction to predominantly offshore. On the other hand, major far-field volcanic eruptions in the eastern Pacific may give rise to abnormally wet conditions through the spread of the volcanic cloud across the globe. In the El Chichón eruption, the spread of volcanic cloud across the Pacific Ocean was tracked by satellite images. Heavy rainfall occurred when the volcanic cloud reached the coastal regions of southern China. Volcanic eruptions are therefore a possible causative factor in monsoonal variability.

  5. Estimation of aquifer scale proportion using equal area grids: assessment of regional scale groundwater quality

    USGS Publications Warehouse

    Belitz, Kenneth; Jurgens, Bryant C.; Landon, Matthew K.; Fram, Miranda S.; Johnson, Tyler D.

    2010-01-01

    The proportion of an aquifer with constituent concentrations above a specified threshold (high concentrations) is taken as a nondimensional measure of regional scale water quality. If computed on the basis of area, it can be referred to as the aquifer scale proportion. A spatially unbiased estimate of aquifer scale proportion and a confidence interval for that estimate are obtained through the use of equal area grids and the binomial distribution. Traditionally, the confidence interval for a binomial proportion is computed using either the standard interval or the exact interval. Research from the statistics literature has shown that the standard interval should not be used and that the exact interval is overly conservative. On the basis of coverage probability and interval width, the Jeffreys interval is preferred. If more than one sample per cell is available, cell declustering is used to estimate the aquifer scale proportion, and Kish's design effect may be useful for estimating an effective number of samples. The binomial distribution is also used to quantify the adequacy of a grid with a given number of cells for identifying a small target, defined as a constituent that is present at high concentrations in a small proportion of the aquifer. Case studies illustrate a consistency between approaches that use one well per grid cell and many wells per cell. The methods presented in this paper provide a quantitative basis for designing a sampling program and for utilizing existing data.

  6. Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia

    PubMed Central

    Higgins, Mark A.; Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Knapp, David E.; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso

    2015-01-01

    Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest. PMID:25793602

  7. Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?.

    PubMed

    Wilcox, Kevin R; Blair, John M; Smith, Melinda D; Knapp, Alan K

    2016-03-01

    Central to understanding global C cycle dynamics is the functional relationship between precipitation and net primary production (NPP). At large spatial (regional) scales, the responsiveness of aboveground NPP (ANPP) to interannual variation in annual precipitation (AP; ANPPsens) is inversely related to site-level ANPP, coinciding with turnover of plant communities along precipitation gradients. Within ecosystems experiencing chronic alterations in water availability, plant community change will also occur with unknown consequences for ANPPsens. To examine the role plant community shifts may play in determining alterations in site-level ANPPPsens, we experimentally increased precipitation by approximately 35% for two decades in a native Central U.S. grassland. Consistent with regional models, ANPPsens decreased initially as water availability and ANPP increased. However, ANPPsens shifted back to ambient levels when mesic species increased in abundance in the plant community. Similarly, in grassland sites with distinct mesic and xeric plant communities and corresponding 50% differences in ANPP, ANPPsens did not differ over almost three decades. We conclude that responses in ANPPsens to chronic alterations in water availability within an ecosystem may not conform to regional AP-ANPP patterns, despite expected changes in ANPP and plant communities. The result is unanticipated functional resistance to climate change at the site scale. PMID:27197383

  8. Regional Scale Meteorological Analysis and Prediction Using GPS Occultation and EOS Data

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Shum, C. K.; Zhao, Changyin; Kuo, Bill; Rocken, Chris

    2004-01-01

    The main objective of the research under this award is to improve regional meteorological analysis and prediction for traditionally data limited regions, particularly over the Southern Ocean and Antarctica, using the remote sensing observations from current and upcoming GPS radio occultation missions and the EOS instrument suite. The major components of this project are: 1.Develop and improve the methods for retrieving temperature, moisture, and pressure profiles from GPS radio occultation data and EOS radiometer data. 2. Develop and improve a regional scale data assimilation system (MM5 4DVAR). 3. Perform case studies involving data analysis and numerical modeling to investigate the impact of different data for regional meteorological analysis and the importance of data assimilation for regional meteorological simulation over the Antarctic region. 4. Apply the findings and improvements from the above studies to weather forecasting experiments. 5. In the third year of the award we made significant progress toward the remaining goals of the project. The work included carefully evaluating the performance of an atmospheric mesoscale model, the Polar MM5 in Antarctic applications and improving the upper boundary condition.

  9. A risk-based approach to assess projected yield changes at regional scale

    NASA Astrophysics Data System (ADS)

    Lissner, Tabea; Schleussner, Carl-Friedrich; Mueller, Christoph

    2015-04-01

    Impacts of climate change on agricultural production are likely to negatively affect food security. However, large uncertainties exist in future projections of agricultural yields as well as regional differences in the direction and magnitude of the projected changes. An important question with regard to uncertainties in future crop yield projections is how to translate the modelling range into results meaningful for impact analyses and provide policy-relevant information. One way of addressing this question is to use a risk-based approach, analysing the risk of yield reductions at different levels of temperature increase on the basis of modelling intercomparison data (AgMIP). To assess regional scale differences in yield changes, we look at aggregates of agricultural production within the 26 regions defined in the IPCC SREX report. Using the available output of the AgMIP project, we assess the projected risk of regional yield reductions for maize, rice, wheat and soy at incremental steps of 0.5°C warming. Based on production areas of the year 2000 (MIRCA2000, Portmann, 2011), we assess projected yield changes only within current production areas, thereby excluding potential cropland expansion. Our approach provides an additional view-point to the existing analyses of the output of the AgMIP project. References: Portmann, F.T. (2011): Global estimation of monthly irrigated and rainfed crop areas on a 5 arc-minute grid. Frankfurt Hydrology Paper 09, Institute of Physical Geography, University of Frankfurt, Frankfurt am Main, Germany.

  10. Fruits eaten by woolly monkeys (Lagothrix lagothricha) at local and regional scales.

    PubMed

    Gonzalez, Marcos; Clavijo, Laura; Betancur, Julio; Stevenson, Pablo R

    2016-04-01

    Woolly monkeys are endangered New World Primates whose natural ecological requirements are known from few sites. This study aimed to investigate the diet of woolly monkeys (Lagothrix lagothricha, Atelidae) to examine how availability determines fruit choice at local and regional scales. We followed two groups of woolly monkeys in the Mosiro Itajura-Caparú biological station in the Colombian Amazon for 16 months, and then compared our observations with previous studies for this and other sites in the Amazon and eastern Andes. We found a high prevalence of fruits in the diet of woolly monkeys in Caparú, which was supplemented with arthropods and leaves. This pattern was observed in all age/sex classes, although juveniles ate more arthropods, and females with dependent young ate more leaves than other classes. We suggest these differences might be due to intragroup competition and particular nutritional requirements in each age/sex class. When comparing the fruit diet composition in Caparú (>190 species) with four other places, we found that Moraceae, Fabaceae, and Sapotaceae were consistently important tree families in the Amazonian sites, and that forest richness is a good predictor of the diet richness. Overall, the results support the hypothesis that woolly monkeys are opportunistic frugivores that are able to adapt their diet to the forest supply and to the temporal variation in resource availability. PMID:26910234

  11. Risk-based prioritization of ground water threatening point sources at catchment and regional scales.

    PubMed

    Overheu, Niels Døssing; Tuxen, Nina; Flyvbjerg, John; Aabling, Jens; Andersen, Jens Asger; Pedersen, Jørn K; Thyregod, Tina; Binning, Philip J; Bjerg, Poul L

    2014-07-01

    Contaminated sites threaten ground water resources all over the world. The available resources for investigation and remediation are limited compared to the scope of the problem, so prioritization is crucial to ensure that resources are allocated to the sites posing the greatest risk. A flexible framework has been developed to enable a systematic and transparent risk assessment and prioritization of contaminant point sources, considering the local, catchment, or regional scales (Danish EPA, 2011, 2012). The framework has been tested in several catchments in Denmark with different challenges and needs, and two of these are presented. Based on the lessons learned, the Danish EPA has prepared a handbook to guide the user through the steps in a risk-based prioritization (Danish EPA, 2012). It provides guidance on prioritization both in an administratively defined area such as a Danish Region, and within the bounds of a specified ground water catchment. The handbook presents several approaches in order to prevent the prioritization from foundering because of a lack of data or an inappropriate level of complexity. The developed prioritization tools, possible graphical presentation and use of the results are presented using the case studies as examples. The methodology was developed by a broad industry group including the Danish EPA, the Danish Regions, the Danish Nature Agency, the Technical University of Denmark, and consultants - and the framework has been widely accepted by the professional community in Denmark. The concepts are quite general and can be applied in other countries facing similar challenges. PMID:24739894

  12. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh

    USGS Publications Warehouse

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.

  13. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-02-23

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness.

  14. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  15. δ-SUNSPOT FORMATION IN SIMULATION OF ACTIVE-REGION-SCALE FLUX EMERGENCE

    SciTech Connect

    Fang, Fang; Fan, Yuhong

    2015-06-10

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  16. A monitoring protocol to assess tidal restoration of salt marshes on local and regional scales

    USGS Publications Warehouse

    Neckles, H.A.; Dionne, M.D.; Burdick, D.M.; Roman, C.T.; Buchsbaum, R.; Hutchins, E.

    2002-01-01

    Assessing the response of salt marshes to tidal restoration relies on comparisons of ecosystem attributes between restored and reference marshes. Although this approach provides an objective basis for judging project success, inferences can be constrained if the high variability of natural marshes masks differences in sampled attributes between restored and reference sites. Furthermore, such assessments are usually focused on a small number of restoration projects in a local area, limiting the ability to address questions regarding the effectiveness of restoration within a broad region. We developed a hierarchical approach to evaluate the performance of tidal restorations at local and regional scales throughout the Gulf of Maine. The cornerstone of the approach is a standard protocol for monitoring restored and reference salt marshes throughout the region. The monitoring protocol was developed by consensus among nearly 50 restoration scientists and practitioners. The protocol is based on a suite of core structural measures that can be applied to any tidal restoration project. The protocol also includes additional functional measures for application to specific projects. Consistent use of the standard protocol to monitor local projects will enable pooling information for regional assessments. Ultimately, it will be possible to establish a range of reference conditions characterizing natural tidal wetlands in the region and to compare performance curves between populations of restored and reference marshes for assessing regional restoration effectiveness.

  17. Regional-scale drivers of forest structure and function in northwestern Amazonia.

    PubMed

    Higgins, Mark A; Asner, Gregory P; Anderson, Christopher B; Martin, Roberta E; Knapp, David E; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso

    2015-01-01

    Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.

  18. A subordinated advection model for uniform bed load transport from local to regional scales

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Martin, Raleigh L.; Chen, Dong; Baeumer, Boris; Sun, Hongguang; Chen, Li

    2014-12-01

    Sediment tracers moving as bed load can exhibit anomalous dispersion behavior deviating from Fickian diffusion. The presence of heavy-tailed resting time distributions and thin-tailed step length distributions motivate adoption of fractional-derivative models (FDMs) to describe sediment dispersion, but these models require many parameters that are difficult to quantify. Here we propose a considerably simplified FDM for anomalous transport of uniformly sized grains along straight channels, the subordinated advection equation (SAE), which is based on the concept of time subordination. Unlike previous FDM models with time index γ between 0 and 1, our SAE model adopts a value of γ between 1 and 2. This γ describes random velocities deviating significantly from the mean velocity and models both long resting periods and relatively fast displacements. We show that the model quantifies the dynamics of four bed load transport experiments recorded in the literature. In addition to γ, SAE model parameters—velocity and capacity coefficient—are related to the mean and variance of particle velocities, respectively. Successful application of the SAE model also implies a universal probability density for the heavy-tailed waiting time distribution (with finite mean) and a relatively lighter tailed step length distribution for uniform bed load transport from local to regional scales.

  19. Regional-scale drivers of forest structure and function in northwestern Amazonia.

    PubMed

    Higgins, Mark A; Asner, Gregory P; Anderson, Christopher B; Martin, Roberta E; Knapp, David E; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso

    2015-01-01

    Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest. PMID:25793602

  20. Regional-scale climate-variability synchrony of cholera epidemics in West Africa

    PubMed Central

    Constantin de Magny, Guillaume; Guégan, Jean-François; Petit, Michel; Cazelles, Bernard

    2007-01-01

    Background The relationship between cholera and climate was explored in Africa, the continent with the most reported cases, by analyzing monthly 20-year cholera time series for five coastal adjoining West African countries: Côte d'Ivoire, Ghana, Togo, Benin and Nigeria. Methods We used wavelet analyses and derived methods because these are useful mathematical tools to provide information on the evolution of the periodic component over time and allow quantification of non-stationary associations between time series. Results The temporal variability of cholera incidence exhibits an interannual component, and a significant synchrony in cholera epidemics is highlighted at the end of the 1980's. This observed synchrony across countries, even if transient through time, is also coherent with both the local variability of rainfall and the global climate variability quantified by the Indian Oscillation Index. Conclusion Results of this study suggest that large and regional scale climate variability influence both the temporal dynamics and the spatial synchrony of cholera epidemics in human populations in the Gulf of Guinea, as has been described for two other tropical regions of the world, western South America and Bangladesh. PMID:17371602

  1. Modeling and spatially distributing forest net primary production at the regional scale.

    PubMed

    Mickler, Robert A; Earnhardt, Todd S; Moore, Jennifer A

    2002-04-01

    Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area's ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service's Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.

  2. Risk-based prioritization of ground water threatening point sources at catchment and regional scales.

    PubMed

    Overheu, Niels Døssing; Tuxen, Nina; Flyvbjerg, John; Aabling, Jens; Andersen, Jens Asger; Pedersen, Jørn K; Thyregod, Tina; Binning, Philip J; Bjerg, Poul L

    2014-07-01

    Contaminated sites threaten ground water resources all over the world. The available resources for investigation and remediation are limited compared to the scope of the problem, so prioritization is crucial to ensure that resources are allocated to the sites posing the greatest risk. A flexible framework has been developed to enable a systematic and transparent risk assessment and prioritization of contaminant point sources, considering the local, catchment, or regional scales (Danish EPA, 2011, 2012). The framework has been tested in several catchments in Denmark with different challenges and needs, and two of these are presented. Based on the lessons learned, the Danish EPA has prepared a handbook to guide the user through the steps in a risk-based prioritization (Danish EPA, 2012). It provides guidance on prioritization both in an administratively defined area such as a Danish Region, and within the bounds of a specified ground water catchment. The handbook presents several approaches in order to prevent the prioritization from foundering because of a lack of data or an inappropriate level of complexity. The developed prioritization tools, possible graphical presentation and use of the results are presented using the case studies as examples. The methodology was developed by a broad industry group including the Danish EPA, the Danish Regions, the Danish Nature Agency, the Technical University of Denmark, and consultants - and the framework has been widely accepted by the professional community in Denmark. The concepts are quite general and can be applied in other countries facing similar challenges.

  3. U. S. Department of Energy Aerial Measuring Systems

    SciTech Connect

    J. J. Lease

    1998-10-01

    The Aerial Measuring Systems (AMS) is an aerial surveillance system. This system consists of remote sensing equipment to include radiation detectors; multispectral, thermal, radar, and laser scanners; precision cameras; and electronic imaging and still video systems. This equipment, in varying combinations, is mounted in an airplane or helicopter and flown at different heights in specific patterns to gather various types of data. This system is a key element in the US Department of Energy's (DOE) national emergency response assets. The mission of the AMS program is twofold--first, to respond to emergencies involving radioactive materials by conducting aerial surveys to rapidly track and map the contamination that may exist over a large ground area and second, to conduct routinely scheduled, aerial surveys for environmental monitoring and compliance purposes through the use of credible science and technology. The AMS program evolved from an early program, begun by a predecessor to the DOE--the Atomic Energy Commission--to map the radiation that may have existed within and around the terrestrial environments of DOE facilities, which produced, used, or stored radioactive materials.

  4. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  5. Analysis of regional-scale vegetation dynamics of Mexico using stratified AVHRR NDVI data. [Normalized Difference Vegetaion Index

    NASA Technical Reports Server (NTRS)

    Turcotte, Kevin M.; Kramber, William J.; Venugopal, Gopalan; Lulla, Kamlesh

    1989-01-01

    Previous studies have shown that a good relationship exists between AVHRR Normalized Difference Vegetation Index (NDVI) measurements, and both regional-scale patterns of vegetation seasonality and productivity. Most of these studies used known samples of vegetation types. An alternative approach, and the objective was to examine the above relationships by analyzing one year of AVHRR NDVI data that was stratified using a small-scale vegetation map of Mexico. The results show that there is a good relationship between AVHRR NDVI measurements and regional-scale vegetation dynamics of Mexico.

  6. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  7. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  8. Performance analysis of landslide early warning systems at regional scale: the EDuMaP method

    NASA Astrophysics Data System (ADS)

    Piciullo, Luca; Calvello, Michele

    2016-04-01

    Landslide early warning systems (LEWSs) reduce landslide risk by disseminating timely and meaningful warnings when the level of risk is judged intolerably high. Two categories of LEWSs, can be defined on the basis of their scale of analysis: "local" systems and "regional" systems. LEWSs at regional scale (ReLEWSs) are used to assess the probability of occurrence of landslides over appropriately-defined homogeneous warning zones of relevant extension, typically through the prediction and monitoring of meteorological variables, in order to give generalized warnings to the public. Despite many studies on ReLEWSs, no standard requirements exist for assessing their performance. Empirical evaluations are often carried out by simply analysing the time frames during which significant high-consequence landslides occurred in the test area. Alternatively, the performance evaluation is based on 2x2 contingency tables computed for the joint frequency distribution of landslides and alerts, both considered as dichotomous variables. In all these cases, model performance is assessed neglecting some important aspects which are peculiar to ReLEWSs, among which: the possible occurrence of multiple landslides in the warning zone; the duration of the warnings in relation to the time of occurrence of the landslides; the level of the warning issued in relation to the landslide spatial density in the warning zone; the relative importance system managers attribute to different types of errors. An original approach, called EDuMaP method, is proposed to assess the performance of landslide early warning models operating at regional scale. The method is composed by three main phases: Events analysis, Duration Matrix, Performance analysis. The events analysis phase focuses on the definition of landslide (LEs) and warning events (WEs), which are derived from available landslides and warnings databases according to their spatial and temporal characteristics by means of ten input parameters. The

  9. Characterization of volcanic and land subsidence hazards at regional scales: Contributions from space geodesy

    NASA Astrophysics Data System (ADS)

    Chaussard, Estelle

    Remote sensing techniques have shown their capabilities in detecting ground deformation associated with a variety of natural hazards. However, most studies focus on relatively small areas, providing only spatially limited information, and many rely only on conventional Interferometric Synthetic Aperture Radar (InSAR), which lacks temporal resolution. The goal of this work is to perform systematic InSAR time series surveys at regional scales to improve volcanic and land subsidence hazards characterization in Indonesia and central Mexico. An arc-wide InSAR time series survey along the west-Sunda arc, Indonesia, revealed unambiguous evidence that six dangerous explosive volcanoes inflated during 2007-2009, three of which erupted afterward (Chapter 2). A similar survey along the Trans-Mexican Volcanic Belt (TMVB), Mexico, did not reveal any volcanic inflation, reflecting a lower activity level (Chapter 3). Comparison between the two regions allowed characterization of the cases where InSAR can be used as a forecast tool for volcanic unrest. Closed volcanic systems present deformation cycles, as observed in the west-Sunda arc, eruptions being preceded by edifice inflation, while no significant ground deformation occurs prior to unrest at open volcanic systems (Chapter 3). The TMVB survey also revealed subsidence in the Paricutin lava field (Chapter 5). Detailed study highlighted that processes related to lava emplacement, even decades ago, especially due to cooling result in several centimeters per year of ground deformation. Such processes need to be considered to avoid misinterpretation of deformation fields in terms of changes in the magma plumbing systems at polygenetic volcanoes. Magma reservoir depths were estimated using inverse modeling and regional trends in storage depths were revealed (Chapter 2). A global data compilation showed that these trends are explained by the crustal structure and stress regime of volcanic arcs (Chapter 4). Shallow magma reservoirs

  10. Mapping erosion-sensitive areas after wildfires using fieldwork, remote sensing, and geographic information systems techniques on a regional scale

    NASA Astrophysics Data System (ADS)

    PéRez-Cabello, F.; de La Riva FernáNdez, J.; Montorio LloveríA, R.; GarcíA-MartíN, A.

    2006-12-01

    Alterations in the hydrological cycle following wildfire due to the loss of ground cover vegetation and changes in soil properties have been documented in many studies. Nevertheless, the rapid process of vegetation recovery reduces such negative effects. Vegetation cover before fire, fire severity, and geophysical properties are important factors that control spatial discontinuities involved in the vegetation-covering process. The objective of this study was to estimate the probability of high erosion in order to map erosion-sensitive areas after fire. The analysis was carried out in different plant communities burnt by summer wildfires in the pre-Pyrenean area (Spain). Three-year Landsat Thematic Mapper (TM) images have been used for mapping wildfire areas and severity levels. Conversion to spectral reflectance has been applied for radiometric correction by normalizing topographic and atmospheric effects. Likewise, other physical variables have also been incorporated into the geographic information system (GIS): vegetation types, parent material, illumination, slope, aspect, and precipitation. The dependent variable has been characterized by means of fieldwork and a photointerpretation process based on high-resolution digital aerial orthophotographs taken 11-12 years after the fire. Different logistic regression models have been used for mapping the probability of erosion. Results indicate that prefire normalized difference vegetation index values and aspect are the most important variables for estimating erosion-sensitive areas after fire (Nagelkerke r2 = 0.66; Kappa values = 0.65). Finally, the use of nonparametric models with environmental digital information based on GIS can facilitate the management of burnt areas.

  11. Observing snow cover using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  12. Quantifying Carbon-Climate Processes at the Regional Scale Using Atmospheric Carbonyl Sulfide

    SciTech Connect

    Campbell, Elliott; Berry, Joe; Torn, Margaret; David, Billesbach; Seibt, Ulrike

    2013-10-08

    Atmospheric carbonyl sulfide (COS) analysis has the potentially transformative capability for partitioning the regional carbon flux into respiration and photosynthesis components. This emerging approach is based on the observation that continental atmospheric CO2 gradients are dominated by net ecosystem fluxes while continental atmospheric COS gradients are dominated by photosynthesis-related plant uptake. Regional flux partitioning represents a critical knowledge gap due to a lack of robust methods for regional-scale flux partitioning and large uncertainties in forecasting carbon-climate feedbacks. Our completed project characterized the relationship between COS and CO2 surface fluxes using a novel measurement and modeling system in a winter wheat field at the U.S. Department of Energy?s Atmospheric and Radiation Measurement program Central Facility (DOE-ARM CF). The scope of this project included canopy flux measurements, soil flux measurements, regional atmospheric modeling, and analysis of COS and CO2 airborne observations at SGP. Three critical discoveries emerged from this investigation: (1) the new measurement system provided the first field evidence of a robust relationship between COS leaf fluxes and GPP; (2) a previously unknown seasonal soil source of COS was observed and characterized; (3) the regional atmospheric analysis of airborne measurements provided the first COS-based constraints on GPP parameterizations used in earth systems models. Dissemination of these results includes three publications [Billesbach et al., In Press; Campbell et al., In Preparation; Seibt et al., In Review], three presentations at the AGU Fall Meeting (2012), and four invited presentations to department seminars. We have leveraged this foundational project to continue our work on understanding carbon cycle processes at large scales through one funded project (DOE Lab Fee, 2012-2015) and one proposal that is under review (DOE/NASA/USDA/NOAA, 2014-2016).

  13. Meta-modeling soil organic carbon sequestration potential and its application at regional scale.

    PubMed

    Luo, Zhongkui; Wang, Enli; Bryan, Brett A; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike

    2013-03-01

    Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.

  14. Modeling fence location and density at a regional scale for use in wildlife management.

    PubMed

    Poor, Erin E; Jakes, Andrew; Loucks, Colby; Suitor, Mike

    2014-01-01

    Barbed and woven wire fences, common structures across western North America, act as impediments to wildlife movements. In particular, fencing influences pronghorn (Antilocapra americana) daily and seasonal movements, as well as modifying habitat selection. Because of fencing's impacts to pronghorn and other wildlife, it is a potentially important factor in both wildlife movement and habitat selection models. At this time, no geospatial fencing data is available at regional scales. Consequently, we constructed a regional fence model using a series of land tenure assumptions for the Hi-Line region of northern Montana--an area consisting of 13 counties over 103,400 km(2). Randomized 3.2 km long transects (n = 738) on both paved and unpaved roads were driven to collect information on habitat, fence densities and fence type. Using GIS, we constructed a fence location and a density model incorporating ownership, size, neighboring parcels, township boundaries and roads. Local knowledge of land ownership and land use assisted in improving the final models. We predict there is greater than 263,300 km of fencing in the Hi-Line region, with a maximum density of 6.8 km of fencing per km(2) and mean density of 2.4 km of fencing per km(2). Using field data to assess model accuracy, Cohen's Kappa was measured at 0.40. On-the-ground fence modification or removal could be prioritized by identifying high fence densities in critical wildlife areas such as pronghorn migratory pathways or sage grouse lekking habitat. Such novel fence data can assist wildlife and land managers to assess effects of anthropogenic features to wildlife at various scales; which in turn may help conserve declining grassland species and overall ecological functionality. PMID:24416180

  15. Numerical simulations of active region scale flux emergence: From spot formation to decay

    SciTech Connect

    Rempel, M.; Cheung, M. C. M.

    2014-04-20

    We present numerical simulations of active region scale flux emergence covering a time span of up to 6 days. Flux emergence is driven by a bottom boundary condition that advects a semi-torus of magnetic field with 1.7 × 10{sup 22} Mx flux into the computational domain. The simulations show that, even in the absence of twist, the magnetic flux is able the rise through the upper 15.5 Mm of the convection zone and emerge into the photosphere to form spots. We find that spot formation is sensitive to the persistence of upflows at the bottom boundary footpoints, i.e., a continuing upflow would prevent spot formation. In addition, the presence of a torus-aligned flow (such flow into the retrograde direction is expected from angular momentum conservation during the rise of flux ropes through the convection zone) leads to a significant asymmetry between the pair of spots, with the spot corresponding to the leading spot on the Sun being more axisymmetric and coherent, but also forming with a delay relative to the following spot. The spot formation phase transitions directly into a decay phase. Subsurface flows fragment the magnetic field and lead to intrusions of almost field free plasma underneath the photosphere. When such intrusions reach photospheric layers, the spot fragments. The timescale for spot decay is comparable to the longest convective timescales present in the simulation domain. We find that the dispersal of flux from a simulated spot in the first two days of the decay phase is consistent with self-similar decay by turbulent diffusion.

  16. Strain History of a Regional-Scale Decollement Fold, Northeast Mexico

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Latta, D. K.; Kodama, K. P.

    2006-12-01

    Structural analysis of outcrop and anisotropy of magnetic susceptibility (AMS) data from the Sierra del Fraile anticlinorium (25°80'N / 100°30'W), Coahuila Marginal Folded Province, northeast Mexico, elucidates complex fold kinematics in an orogenic foreland. Sierra del Fraile is a regional-scale décollement fold, with a ~4.5 km clastic and carbonate section deformed above a ~3 km thick evaporite unit. Mesoscopic structures, including extensional (joints and veins) and shear fractures, stylolites, and cleavage, were measured in diverse lithologies in both limb and hinge positions to constrain fold kinematics. These mesoscopic structures were also used to validate the use of AMS as a proxy for penetrative tectonic strain orientations. AMS was determined on oriented samples from limb and hinge positions in multiple facies in the thin-bedded shales of the La Casita, La Peña, and Cuesta del Cura Fms., and the thick-bedded carbonates of the Cupido and Taraises Fms. In this study, only the orientation of the AMS fabric ellipsoid is considered, since the magnitude of magnetic susceptibility varied between carbonate facies from the same structural position. In general, strain geometry as determined by mesoscopic structural analysis agreed with that determined by AMS. In combination, the mesoscopic structures and AMS geometries record a strain history of diagenetic compaction followed by early layer-parallel shortening, then progressive limb rotation and hingeward shear about pinned anticlinal and synclinal hinges with constant limb length and a mobile décollement and finally late fold flattening. This study shows that AMS is a sensitive proxy for nascent penetrative strain orientations in clastic and carbonate sedimentary rocks.

  17. Climatic Signals from Intra-annual Density Fluctuation Frequency in Mediterranean Pines at a Regional Scale

    PubMed Central

    Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna

    2016-01-01

    Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution. PMID:27200052

  18. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America.

    PubMed

    Malick, Michael J; Cox, Sean P

    2016-01-01

    Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510

  19. ICON-ART - A new online coupled model system for the global to regional scale

    NASA Astrophysics Data System (ADS)

    Rieger, Daniel; Ruhnke, Roland; Förstner, Jochen; Bischoff-Gauss, Ingeborg; Reinert, Daniel; Vogel, Heike; Vogel, Bernhard

    2014-05-01

    regional scale. Atmos. Chem. Phys., 9, 8661-8680.

  20. Assessing the influence of watershed characteristics on chlorophyll a in waterbodies at global and regional scales

    USGS Publications Warehouse

    Woelmer, Whitney; Kao, Yu-Chun; Bunnell, David; Deines, Andrew M.; Bennion, David; Rogers, Mark W.; Brooks, Colin N.; Sayers, Michael J.; Banach, David M.; Grimm, Amanda G.; Shuchman, Robert A.

    2016-01-01

    Prediction of primary production of lentic water bodies (i.e., lakes and reservoirs) is valuable to researchers and resource managers alike, but is very rarely done at the global scale. With the development of remote sensing technologies, it is now feasible to gather large amounts of data across the world, including understudied and remote regions. To determine which factors were most important in explaining the variation of chlorophyll a (Chl-a), an indicator of primary production in water bodies, at global and regional scales, we first developed a geospatial database of 227 water bodies and watersheds with corresponding Chl-a, nutrient, hydrogeomorphic, and climate data. Then we used a generalized additive modeling approach and developed model selection criteria to select models that most parsimoniously related Chl-a to predictor variables for all 227 water bodies and for 51 lakes in the Laurentian Great Lakes region in the data set. Our best global model contained two hydrogeomorphic variables (water body surface area and the ratio of watershed to water body surface area) and a climate variable (average temperature in the warmest model selection criteria to select models that most parsimoniously related Chl-a to predictor variables quarter) and explained ~ 30% of variation in Chl-a. Our regional model contained one hydrogeomorphic variable (flow accumulation) and the same climate variable, but explained substantially more variation (58%). Our results indicate that a regional approach to watershed modeling may be more informative to predicting Chl-a, and that nearly a third of global variability in Chl-a may be explained using hydrogeomorphic and climate variables.

  1. Climatic Signals from Intra-annual Density Fluctuation Frequency in Mediterranean Pines at a Regional Scale.

    PubMed

    Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna

    2016-01-01

    Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution. PMID:27200052

  2. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America

    PubMed Central

    Malick, Michael J.; Cox, Sean P.

    2016-01-01

    Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510

  3. Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Venkatesan, R.; Baskaran, R.; Rajagopal, V.; Venkatraman, B.

    2012-12-01

    This paper presents the results of regional scale atmospheric dispersion simulation of accidental emission of radionuclides from the Fukushima Daiichi Reactor, Japan following the Tohoku earthquake and tsunami event on 11 March 2011. The objective was to study the temporal behaviour of plume trajectory, concentration, deposition and radiation dose pattern over an 80 km range around the reactor. The time-varying meteorological parameters during the release period were simulated with a multi-scale nested atmospheric model WRF ARW and the trajectory, plume dispersion were computed with Lagrangian Particle Dispersion models HYSPLIT, FLEXPART using the available information on accidental source term. The simulations indicated that the wind flow over Japan during the release period was driven by the large scale extra-tropical westerly waves and associated low pressure systems. In the lower levels, the flow was influenced by the local topography/sea breeze causing occasional landward wind shift on the east coast of Japan. Simulated airflow trajectories revealed that the plume stayed over the ocean by westerly winds on most days and the radioactivity dispersed over sea surface. Landward trajectories were found on a few days due to southeasterly, easterly and northeasterly flow (15-17, 19-21 March 2011) during which much of the radionuclides deposited over the land region. The hotspot of depositions occurred over east Pacific Ocean near to Japan. Over the land relatively high depositions were simulated in a narrow zone of 20 km width and 80 km length in the northwest sector in agreement with monitor data. Simulations showed wet depositions over the land to be higher than the dry depositions during 12-30 March due to occurrence of rainfall on some days. Comparison of activity deposition and air dose values with available observations confirmed that the plume pattern in a finer length scale around the site could be simulated realistically and agree with the measurements

  4. Detecting Disturbance and its Impact on Ecosystem Carbon Balance from Global to Regional Scales

    NASA Astrophysics Data System (ADS)

    Ballantyne, A.; Jacobson, A. R.; Anderegg, W.; Poulter, B.; Cooper, L. A.; Smith, W. K.; Miller, J. B.

    2015-12-01

    One of the most vital ecosystem services currently provided by the terrestrial biosphere is the removal of approximately one quarter of the anthropogenic CO2 emitted to the atmosphere. However, as patterns of temperature and precipitation change so is the frequency and intensity of ecosystem disturbance. Despite evidence that ecosystem disturbance regimes have shifted leading to widespread forest mortality, the net effect of disturbance on the carbon (C) balance of forest ecosystems remains uncertain. We will use satellite and atmospheric observations to deconvolve net carbon exchange (NEE) into its component fluxes of gross primary productivity and total respiration (e.g. NEE= GPP - R) at global to regional scales. At the global scale we find that NEE has increased over the last 50 years and appears to have accelerated as a result of diminished R over the last 15 years. However the variance in global NEE has also increased perhaps due to inter-annual variability in R, especially within semi-arid ecosystems. These global trends are not necessarily consistent with regional patterns in the net carbon balance, especially across the western US. Atmospheric mass balance suggests that ecosystems of North America have shifted from a net C sink to a net C source. While prolonged drought across the Western US has likely caused this shift in continental scale NEE, attributing this shift in the net C balance to any one mechanism of disturbance (e.g. drought, insect infestation, and fire) or their interactions is challenging. Lastly, we will evaluate existing observing networks, such as NOAA/ESRL and Ameriflux, and how they can be combined with nascent networks, such as NEON, EarthNetworks, and OCO-2, to identify regional disturbance processes that may be causing increasing variance in the global C cycle.

  5. Modeling Fence Location and Density at a Regional Scale for Use in Wildlife Management

    PubMed Central

    Poor, Erin E.; Jakes, Andrew; Loucks, Colby; Suitor, Mike

    2014-01-01

    Barbed and woven wire fences, common structures across western North America, act as impediments to wildlife movements. In particular, fencing influences pronghorn (Antilocapra americana) daily and seasonal movements, as well as modifying habitat selection. Because of fencing's impacts to pronghorn and other wildlife, it is a potentially important factor in both wildlife movement and habitat selection models. At this time, no geospatial fencing data is available at regional scales. Consequently, we constructed a regional fence model using a series of land tenure assumptions for the Hi-Line region of northern Montana – an area consisting of 13 counties over 103,400 km2. Randomized 3.2 km long transects (n = 738) on both paved and unpaved roads were driven to collect information on habitat, fence densities and fence type. Using GIS, we constructed a fence location and a density model incorporating ownership, size, neighboring parcels, township boundaries and roads. Local knowledge of land ownership and land use assisted in improving the final models. We predict there is greater than 263,300 km of fencing in the Hi-Line region, with a maximum density of 6.8 km of fencing per km2 and mean density of 2.4 km of fencing per km2. Using field data to assess model accuracy, Cohen's Kappa was measured at 0.40. On-the-ground fence modification or removal could be prioritized by identifying high fence densities in critical wildlife areas such as pronghorn migratory pathways or sage grouse lekking habitat. Such novel fence data can assist wildlife and land managers to assess effects of anthropogenic features to wildlife at various scales; which in turn may help conserve declining grassland species and overall ecological functionality. PMID:24416180

  6. Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale

    NASA Astrophysics Data System (ADS)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D. E.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-08-01

    Rice production is increasingly limited by water scarcity. Covering paddy rice soils with films (so-called ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the growing season, which results in greater grain yields in relatively cold regions and also in those suffering from seasonal water shortages. However, it has been speculated that both increased soil aeration and temperature under GCRPS result in lower soil organic carbon and nitrogen stocks. Here we report on a regional-scale experiment conducted in Shiyan, a typical rice-producing mountainous area of China. We sampled paired adjacent paddy and GCRPS fields at 49 representative sites. Measured parameters included soil carbon (C) and nitrogen (N) stocks (to 1 m depth), soil physical and chemical properties, δ15N composition of plants and soils, potential C mineralization rates, and soil organic carbon (SOC) fractions at all sampling sites. Root biomass was also quantified at one intensively monitored site. The study showed that: (1) GCRPS increased SOC and N stocks 5-20 years following conversion from traditional paddy systems; (2) there were no differences between GCRPS and paddy systems in soil physical and chemical properties for the various soil depths, with the exception of soil bulk density; (3) GCRPS increased above-ground and root biomass in all soil layers down to a 40 cm depth; (4) δ15N values were lower in soils and plant leaves indicating lower NH3 volatilization losses from GCRPS than in paddy systems; and (5) GCRPS had lower C mineralization potential than that observed in paddy systems over a 200-day incubation period. Our results suggest that GCRPS is an innovative production technique that not only increases rice yields using less irrigation water, but that it also increases SOC and N stocks.

  7. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-08-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity ( K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  8. Regional-scale variation in size and abundance of the bivalve Varicorbula (Middle Miocene, Central Paratethys)

    NASA Astrophysics Data System (ADS)

    Fuksi, Tomáš; Tomašových, Adam; Rušin, Luboš

    2016-04-01

    Varicorbula gibba (Olivi, 1792) is a geologically long-ranging and ecologically generalistic bivalve species that appears in the Oligocene and persists to present, occurring in the tropical and northern temperate Eastern Atlantic and in the Mediterranean. Although it is one of the most frequent species in the benthic communities in the Paratethys during the Middle Miocene, spatial variation in its abundance, size, and shape is poorly known. Using bulk samples sieved with 1 mm mesh size, we investigate size and abundance variation of this taxon in molluscan communities in two basins in the Middle Miocene (Serravalian) sediments of the Central Paratethys. Bulk samples are derived from boreholes from the western (Vienna Basin) and eastern (Danube Basin) margins of the Malé Karpaty Mountains (Slovakia). We find that this taxon shows significant regional-scale differences in size distribution between the Vienna and Danube basins. In subtidal muds in the northern parts of the Vienna Basin, it achieves very high proportional community-level abundance and its median shell width ranges between 6-10 mm. In contrast, in muddy sands on the northeastern margin of the Danube Basin, community composition is more even and median width ranges just between 3-4 mm. The higher sandy content and lower sedimentation rates (as evidenced by higher taphonomic damage, with higher proportion of bored specimens, in the Danube Basin) imply that the size can partly positively correlate with nutrient supply. Morphometric analyses indicate that height and width of individuals of this taxon undergo significant allometry and that smaller-sized individuals in the Danube Basin have a smaller width/height ratio, suggesting that some shape differences between the two basins are unrelated to size differences.

  9. Regional scale ozone data assimilation using an ensemble Kalman filter and the CHIMERE chemical transport model

    NASA Astrophysics Data System (ADS)

    Gaubert, B.; Coman, A.; Foret, G.; Meleux, F.; Ung, A.; Rouil, L.; Ionescu, A.; Candau, Y.; Beekmann, M.

    2014-02-01

    An ensemble Kalman filter (EnKF) has been coupled to the CHIMERE chemical transport model in order to assimilate ozone ground-based measurements on a regional scale. The number of ensembles is reduced to 20, which allows for future operational use of the system for air quality analysis and forecast. Observation sites of the European ozone monitoring network have been classified using criteria on ozone temporal variability, based on previous work by Flemming et al. (2005). This leads to the choice of specific subsets of suburban, rural and remote sites for data assimilation and for evaluation of the reference run and the assimilation system. For a 10-day experiment during an ozone pollution event over Western Europe, data assimilation allows for a significant improvement in ozone fields: the RMSE is reduced by about a third with respect to the reference run, and the hourly correlation coefficient is increased from 0.75 to 0.87. Several sensitivity tests focus on an a posteriori diagnostic estimation of errors associated with the background estimate and with the spatial representativeness of observations. A strong diurnal cycle of both these errors with an amplitude up to a factor of 2 is made evident. Therefore, the hourly ozone background error and the observation error variances are corrected online in separate assimilation experiments. These adjusted background and observational error variances provide a better uncertainty estimate, as verified by using statistics based on the reduced centered random variable. Over the studied 10-day period the overall EnKF performance over evaluation stations is found relatively unaffected by different formulations of observation and simulation errors, probably due to the large density of observation sites. From these sensitivity tests, an optimal configuration was chosen for an assimilation experiment extended over a three-month summer period. It shows a similarly good performance as the 10-day experiment.

  10. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This

  11. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE PAGES

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  12. Some Techniques for the Objective Analysis of Humidity for Regional Scale Numerical Weather Prediction.

    NASA Astrophysics Data System (ADS)

    Rasmussen, Robert Gary

    Several topics relating to the objective analysis of humidity for regional scale numerical weather prediction are investigated. These include: (1) sampling the humidity field; (2) choosing an analysis scheme; (3) choosing an analysis variable; (4) using surface data to diagnose upper -air humidity (SFC-DIAG); (5) using cloud analysis data to diagnose surface and upper-air humidities (3DNEPH-DIAG); and (6) modeling the humidity lateral autocorrelation function. Regression equations for the diagnosed humidities and several correlation models are developed and validated. Four types of data are used in a preliminary demonstration: observations (radiosonde and surface), SFC-DIAG data, 3DNEPH-DIAG data, and forecast data from the Drexel/NCAR Limited-Area and Mesoscale Prediction System (LAMPS). The major conclusions are: (1) independent samples of relative humidity can be obtained by sampling at intervals of two days and 1750 km, on the average; (2) Gandin's optimum interpolation (OI) is preferable to Cressman's successive correction and Panofsky's surface fitting schemes; (3) relative humidity (RH) is a better analysis variable than dew-point depression; (4) RH*, the square root of (1-RH), is better than RH; (5) both surface and cloud analysis data can be used to diagnose the upper-air humidity; (6) pooling dense data prior to OI analysis can improve the quality of the analysis and reduce its computational burden; (7) iteratively pooling data is economical; (8) for the types of data considered, use of more than about eight data in an OI point analysis cannot be justified by expectations of further reducing the analysis error variance; and (9) the statistical model in OI is faulty in that an analyzed humidity can be biased too much toward the first guess.

  13. Regional-scale flow of formation waters in the Williston basin

    SciTech Connect

    Bachu, S.; Hitchon, B.

    1996-02-01

    The Williston basin is a structurally simple intracratonic sedimentary basin that straddles the United States-Canada border east of the Rocky Mountains and that contains an almost continuous stratigraphic record since the Middle Cambrian. Based on the wealth of data generated by the oil industry, the regional-scale characteristics of the flow of formation waters were analyzed for the Canadian side of the basin, and integrated with previous studies performed on the American side. Several aquifers and aquifer systems identified in the basin were separated by intervening aquitards and aquicludes. The Basal, Devonian, and Mannville (Dakota) aquifers are open systems, being exposed at the land surface in both recharge and discharge areas. Recharge takes place in the west-southwest at relatively high altitude in the Bighorn and Big Snowy mountains and at the Black Hills and Central Montana uplifts, whereas discharge takes place in the east and northeast at outcrop along the Canadian Precambrian shield in Manitoba and the Dakotas. The Mississippian and Pennsylvanian aquifer systems are semi-open, cropping out only in the west-southwest where they recharge, but discharging in the northeast into adjacent aquifers through confining aquitards. On regional and geological scales, the entire system seems to be at steady-state, although locally transient flow is present in places due to water use and hydrocarbon exploitation, and to some erosional rebound in the uppermost confining shales. On the western flank of the basin, the interplay between the northeastward structural downdip direction and the northeastward flow of formation waters creates conditions favorable for hydrodynamic oil entrapment.

  14. Soil organic matter change - analysis on a regional scale of Austria

    NASA Astrophysics Data System (ADS)

    Gruendling, Ralf; Franko, Uwe; Sedy, Katrin; Freudenschuß, Alexandra; Spiegel, Adelheid; Formayer, Herbert

    2014-05-01

    Soil organic matter (SOM) is an important resource in agriculture. It influences soil fertility, erosion processes and prevents soil degradation. However, SOM is strongly affected by climate change, soil conditions and management alterations. The presented study analyzes SOM changes in Austria on a regional scale in the "Marchfeld" and the "Muehlviertel". For quantification these SOM changes the model CCB (Candy Carbon Balance) was used. Based on a 1 square kilometer raster, the impact of specific site conditions on SOM are determined to characterize the study areas. Used as a main indicator for these conditions is the biologic active time (BAT). BAT describes the biologic activity for carbon cycling in top soils depending on soil and climatic conditions. High values of BAT indicate fast SOM reproduction rates. Hence, BAT changes over last years signpost the risk of SOM loss and can be used as an on-farm decision tool. The change of risks of SOM loss due to climate change is assessed by model results. Therefore, three climate scenarios are used to compute reproduction rates of SOM. "High risk-regions" can be identified for policy consulting. Different climate scenarios can help to develop best case and worst case results. First results show that the region "Marchfeld" had a higher change in BAT during last 2 decades comparing to the "Muehlviertel". A higher risk of SOM loosing is evident. Nevertheless, future scenarios predict a higher change of BAT for the "Muehlviertel". Apparently, the sensitivity of "Marchfeld" sites regard to climate change has been higher in the past and most BAT changes took place until now. With this method an evaluation of farm management in regard to SOM reproduction and recommendation of crop rotations for the future are possible. In conclusion, the aim of the project is a tool box for farmers and policy makers to evaluate present and future agricultural management. An examination of additional regions in Austria is planned.

  15. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    USGS Publications Warehouse

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-01-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  16. Flood risk assessment at the regional scale: Computational challenges and the monster of uncertainty

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Papalexiou, Simon-Michael; Markonis, Yiannis; Koukouvinos, Antonis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios

    2016-04-01

    We present a methodological framework for flood risk assessment at the regional scale, developed within the implementation of the EU Directive 2007/60 in Greece. This comprises three phases: (a) statistical analysis of extreme rainfall data, resulting to spatially-distributed parameters of intensity-duration-frequency (IDF) relationships and their confidence intervals, (b) hydrological simulations, using event-based semi-distributed rainfall-runoff approaches, and (c) hydraulic simulations, employing the propagation of flood hydrographs across the river network and the mapping of inundated areas. The flood risk assessment procedure is employed over the River Basin District of Thessaly, Greece, which requires schematization and modelling of hundreds of sub-catchments, each one examined for several risk scenarios. This is a challenging task, involving multiple computational issues to handle, such as the organization, control and processing of huge amount of hydrometeorological and geographical data, the configuration of model inputs and outputs, and the co-operation of several software tools. In this context, we have developed supporting applications allowing massive data processing and effective model coupling, thus drastically reducing the need for manual interventions and, consequently, the time of the study. Within flood risk computations we also account for three major sources of uncertainty, in an attempt to provide upper and lower confidence bounds of flood maps, i.e. (a) statistical uncertainty of IDF curves, (b) structural uncertainty of hydrological models, due to varying anteceded soil moisture conditions, and (c) parameter uncertainty of hydraulic models, with emphasis to roughness coefficients. Our investigations indicate that the combined effect of the above uncertainties (which are certainly not the unique ones) result to extremely large bounds of potential inundation, thus rising many questions about the interpretation and usefulness of current flood

  17. Numerical Simulations of Active Region Scale Flux Emergence: From Spot Formation to Decay

    NASA Astrophysics Data System (ADS)

    Rempel, M.; Cheung, M. C. M.

    2014-04-01

    We present numerical simulations of active region scale flux emergence covering a time span of up to 6 days. Flux emergence is driven by a bottom boundary condition that advects a semi-torus of magnetic field with 1.7 × 1022 Mx flux into the computational domain. The simulations show that, even in the absence of twist, the magnetic flux is able the rise through the upper 15.5 Mm of the convection zone and emerge into the photosphere to form spots. We find that spot formation is sensitive to the persistence of upflows at the bottom boundary footpoints, i.e., a continuing upflow would prevent spot formation. In addition, the presence of a torus-aligned flow (such flow into the retrograde direction is expected from angular momentum conservation during the rise of flux ropes through the convection zone) leads to a significant asymmetry between the pair of spots, with the spot corresponding to the leading spot on the Sun being more axisymmetric and coherent, but also forming with a delay relative to the following spot. The spot formation phase transitions directly into a decay phase. Subsurface flows fragment the magnetic field and lead to intrusions of almost field free plasma underneath the photosphere. When such intrusions reach photospheric layers, the spot fragments. The timescale for spot decay is comparable to the longest convective timescales present in the simulation domain. We find that the dispersal of flux from a simulated spot in the first two days of the decay phase is consistent with self-similar decay by turbulent diffusion.

  18. Combining a two-sourcepatch model with satellite data to monitor daily evapotranspiration at a regional scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, we present a micro-meteorological approach for estimating surface energy fluxes that can be operationally used together with satellite images to monitor surface energy fluxes at a regional scale. In particular we will focus on the retrieval of daily evapotranspiration. The feasibility ...

  19. Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants

    EPA Science Inventory

    This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII) and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA) and Eur...

  20. EVALUATING THE PERFORMANCE OF REGIONAL-SCALE PHOTOCHEMICAL MODELING SYSTEMS: PART II--OZONE PREDICTIONS. (R825260)

    EPA Science Inventory

    In this paper, the concept of scale analysis is applied to evaluate ozone predictions from two regional-scale air quality models. To this end, seasonal time series of observations and predictions from the RAMS3b/UAM-V and MM5/MAQSIP (SMRAQ) modeling systems for ozone were spectra...

  1. EVALUATING THE PERFORMANCE OF REGIONAL-SCALE PHOTOCHEMICAL MODELING SYSTEMS: PART I--METEOROLOGICAL PREDICTIONS. (R825260)

    EPA Science Inventory

    In this study, the concept of scale analysis is applied to evaluate two state-of-science meteorological models, namely MM5 and RAMS3b, currently being used to drive regional-scale air quality models. To this end, seasonal time series of observations and predictions for temperatur...

  2. Eight years of regional scale, benthic assessments of the U.S. West Coast: Lessons learned and future directions

    EPA Science Inventory

    The EPA National Coastal Assessment (NCA) conducted regional scale assessments of benthic condition for the US West Coast from Washington to California, several regions of Alaska, Hawaii, and the Trust Territories of Guam and American Samoa. Over an 8-year period, studies focuse...

  3. EVALUATING THE PERFORMANCE OF REGIONAL-SCALE PHOTOCHEMICAL MODELING SYSTEMS. PART III-PRECURSOR PREDICTIONS. (R825260)

    EPA Science Inventory

    Abstract

    Two regional-scale photochemical modeling systems, RAMS/UAM-V and MM5/MAQSIP, are used to simulate precursor concentrations for 4 June¯31 August 1995 period. The time series of simulated and observed precursor concentrations are spectrally deco...

  4. Revisiting the contemporary sea-level budget on global and regional scales.

    PubMed

    Rietbroek, Roelof; Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-02-01

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002-2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y(2)) are offset by a negative hydrological component (-0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to -2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations.

  5. Aerosols and Convection: Global scale, MJO Scale and Regional Scale Analyses

    NASA Astrophysics Data System (ADS)

    Rutledge, S. A.

    2014-12-01

    We have investigated interactions between atmospheric thermodynamics, boundary layer aerosol (CCN) concentrations, convective intensity and lightning flash rates (from the TRMM LIS and the Vaisala GLD 360 global network) on three distinct scales, including the global tropical ocean and land masses, the Madden Julian Oscillation genesis region over the central Indian Ocean (CIO) region, and four regions in the U.S., Washington D.C., northern Alabama, central Oklahoma and eastern Colorado. The U.S. locations are each supported by VHF Lightning Mapping Arrays. Total lightning density is shown to increase by a factor of 2-3 as a function of CCN concentration over tropical land and ocean regions. The greatest sensitivity in the lightning vs. aerosol relationship was found in more unstable environments and where warm-cloud depth was intermediate (deep) over land (ocean). The maximum height of 30 dBZ echo tops in lightning producing convective features was found to be insensitive to changes in CCN concentration. However, the vertical profile of radar reflectivity (VPRR) showed a consistent increase of 2-4 dBZ for convective features that developed in more polluted environments, suggesting that aerosols may act to intensify the convection, but not necessarily make the convection deeper. These findings are consistent with the hypothesis that aerosols act to invigorate convection by influencing the evolution of a cloud's hydrometeor populations. For the regional scale analysis, storms in Colorado have favorable thermodynamics (high cloud bases, shallow warm cloud depths and large CAPE's) that aerosols (CCN) appear to have little effect in a bulk sense. For the three remaining regions, storms forming in environments with CCN concentrations between 700 and 1200 cm-3 have notably stronger VPRR and larger flash rates. For aerosol concentrations below and above this range, storms have less vigor and reduced flash rates, consistent with the Rosenfeld et al. (2008) study. Finally

  6. Revisiting the contemporary sea-level budget on global and regional scales

    PubMed Central

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-01-01

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002–2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y2) are offset by a negative hydrological component (−0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to −2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations. PMID:26811469

  7. Debris-flow susceptibility and hazard assessment at a regional scale from GIS analysis

    NASA Astrophysics Data System (ADS)

    Bertrand, M.; Liébault, F.; Piégay, H.

    2012-12-01

    Small torrents of the Southern French Alps are prone to extreme events. Depending on the rainfall conditions, the sediment supply from hillslopes, and the gravitational energy, these events can occur under different forms, from floods to debris-flows. Debris-flows are recognized as the most dangerous phenomena and may have dramatic consequences for exposed people and infrastructures. As a first step of hazard assessment, we evaluated the debris-flow susceptibility, i.e. the likelihood that an event occurs in an area under particular physical conditions, not including the temporal dimension. The susceptibility is determined by (i) the morphometric controls of small upland catchments for debris-flows triggering and propagation, and by (ii) sediment supply conditions, i.e. erosion patterns feeding the channels. The morphometric controls are evaluated with indicators calculated from basic topographic variables. The sediment supply is evaluated by considering the cumulated surface of erosion area connected to the hydrographic network. We developed a statistical model to predict the geomorphic responses of the catchments (fluvial vs. debris-flow) and we apply this model within a GIS for regional-scale prediction. The model is based on two morphometric indicators, i.e. fan / channel slope and the Melton ruggedness index, and is based on a wide set of data including the Southern French Alps. We developed a GIS procedure to extract the indicators automatically using a 25m DEM and the hydrographic network as raw data. This model and its application have been validated with historical data. Sediment sources feeding debris-flow prone torrents are identified by first automatically mapping the erosion patches from the infrared orthophotos analysis then identifying the ones connected to the stream network. A classification method has been developed (segmentation into homogeneous objects classified with a neural network algorithm) and validated with expert interpretation on the

  8. Modeling the impact of topography on seismic amplification at regional scale

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad; Anggraeni, Dita; Bakker, Wim; van der Meijde, Mark

    2010-05-01

    The intensity of earthquake triggered ground shaking is influenced by the characteristics of earthquake source, medium and site effects. These site effects are often not included in the regional ground shaking models, especially the local topography. It is being experimentally proved and noticed during many previous earthquakes, that topography has significant impact on variation of ground shaking and subsequent building damages. Majority of the previous studies investigating the topographic impact on seismic response are limited to synthetic environments or isolated hills. This study deals with exploring the impact of topography on variation of ground shaking caused by the 2005 Kashmir earthquake, at a regional scale. With the proliferation of remote sensing technologies, digital elevation models (DEMs) are freely and readily available at medium resolution, and with global cover. DEMs derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), with 30m resolution, and Shuttle Radar Topography Mission (SRTM), with 90m resolution, can therefore be utilized to model and predict the impact of topography on seismic response, also quickly after a seismic event. The topography of the 2005 Kashmir earthquake affected area is derived from ASTER and SRTM DEMs and analyzed using a 3D spectral finite element code (SPECFEM3D). SPECFEM3D takes into account the seismic source parameters, medium and topography to generate shake maps and earthquake simulations. The ground shaking simulations and peak ground acceleration maps were generated initially assuming the homogenous ground surface and later by including the topography to assess the role of topography in seismic amplification. Topography derived from ASTER and SRTM DEMs were simulated separately to predict the impact of DEM resolution on computed ground shaking simulations and maps. The preliminary result from the model simulations shows that seismic waves were dispersed at topographic

  9. Effects of grid size and aggregation on regional scale landuse scenario calculations using SVAT schemes

    NASA Astrophysics Data System (ADS)

    Bormann, H.

    2006-09-01

    This paper analyses the effect of spatial input data resolution on the simulated effects of regional scale landuse scenarios using the TOPLATS model. A data set of 25 m resolution of the central German Dill catchment (693 km2) and three different landuse scenarios are used for the investigation. Landuse scenarios in this study are field size scenarios, and depending on a specific target field size (0.5 ha, 1.5 ha and 5.0 ha) landuse is determined by optimising economic outcome of agricultural used areas and forest. After an aggregation of digital elevation model, soil map, current landuse and landuse scenarios to 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m, 1 km and 2 km, water balances and water flow components for a 20 years time period are calculated for the entire Dill catchment as well as for 3 subcatchments without any recalibration. Additionally water balances based on the three landuse scenarios as well as changes between current conditions and scenarios are calculated. The study reveals that both model performance measures (for current landuse) as well as water balances (for current landuse and landuse scenarios) almost remain constant for most of the aggregation steps for all investigated catchments. Small deviations are detected at the resolution of 50 m to 500 m, while significant differences occur at the resolution of 1 km and 2 km which can be explained by changes in the statistics of the input data. Calculating the scenario effects based on increasing grid sizes yields similar results. However, the change effects react more sensitive to data aggregation than simple water balance calculations. Increasing deviations between simulations based on small grid sizes and simulations using grid sizes of 300 m and more are observed. Summarizing, this study indicates that an aggregation of input data for the calculation of regional water balances using TOPLATS type models does not lead to significant errors up to a resolution of 500 m. Focusing on scenario

  10. Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Kottmeier, C.; Vogel, B.; Vogel, H.

    2011-01-01

    We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterise the PDF of subgrid-scale cloud updraft velocity in the activation parameterisations of climate models. The simulations show that the presence of CCN and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with an hourly resolution. The distribution function of β is slightly skewed to positive values and has a mean of 0

  11. Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Kottmeier, C.; Vogel, B.; Vogel, H.

    2011-05-01

    We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterize the probability density function, PDF, of subgrid-scale cloud updraft velocity in the activation parameterizations of climate models. The simulations show that the presence of cloud condensation nuclei (CCN) and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with an hourly resolution. The distribution function of

  12. Validation and evaluation of epistemic uncertainty in rainfall thresholds for regional scale landslide forecasting

    NASA Astrophysics Data System (ADS)

    Gariano, Stefano Luigi; Brunetti, Maria Teresa; Iovine, Giulio; Melillo, Massimo; Peruccacci, Silvia; Terranova, Oreste Giuseppe; Vennari, Carmela; Guzzetti, Fausto

    2015-04-01

    Prediction of rainfall-induced landslides can rely on empirical rainfall thresholds. These are obtained from the analysis of past rainfall events that have (or have not) resulted in slope failures. Accurate prediction requires reliable thresholds, which need to be validated before their use in operational landslide warning systems. Despite the clear relevance of validation, only a few studies have addressed the problem, and have proposed and tested robust validation procedures. We propose a validation procedure that allows for the definition of optimal thresholds for early warning purposes. The validation is based on contingency table, skill scores, and receiver operating characteristic (ROC) analysis. To establish the optimal threshold, which maximizes the correct landslide predictions and minimizes the incorrect predictions, we propose an index that results from the linear combination of three weighted skill scores. Selection of the optimal threshold depends on the scope and the operational characteristics of the early warning system. The choice is made by selecting appropriately the weights, and by searching for the optimal (maximum) value of the index. We discuss weakness in the validation procedure caused by the inherent lack of information (epistemic uncertainty) on landslide occurrence typical of large study areas. When working at the regional scale, landslides may have occurred and may have not been reported. This results in biases and variations in the contingencies and the skill scores. We introduce two parameters to represent the unknown proportion of rainfall events (above and below the threshold) for which landslides occurred and went unreported. We show that even a very small underestimation in the number of landslides can result in a significant decrease in the performance of a threshold measured by the skill scores. We show that the variations in the skill scores are different for different uncertainty of events above or below the threshold. This

  13. Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale

    NASA Astrophysics Data System (ADS)

    Richardson, Thomas; Forster, Piers; Parker, Doug; Andrews, Tim

    2015-04-01

    increases occurring over central Africa, Southern Asia, the Maritime Continent and western South America, due to warmer land surface temperatures driving enhanced moist convection. Over the tropical oceans, reduced tropospheric cooling combined with a general shift of convection to over land, results in large reductions in precipitation. Over mid-latitude land regions a lack of moisture prevents enhanced convection, and reduced tropospheric cooling causes precipitation to decrease. These findings explain the mechanisms which drive the rapid precipitation response on regional scales, and demonstrate the importance of rapid land surface temperature changes.

  14. Regional scale landslide risk assessment with a dynamic physical model - development, application and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Luna, Byron Quan; Vidar Vangelsten, Bjørn; Liu, Zhongqiang; Eidsvig, Unni; Nadim, Farrokh

    2013-04-01

    Landslide risk must be assessed at the appropriate scale in order to allow effective risk management. At the moment, few deterministic models exist that can do all the computations required for a complete landslide risk assessment at a regional scale. This arises from the difficulty to precisely define the location and volume of the released mass and from the inability of the models to compute the displacement with a large amount of individual initiation areas (computationally exhaustive). This paper presents a medium-scale, dynamic physical model for rapid mass movements in mountainous and volcanic areas. The deterministic nature of the approach makes it possible to apply it to other sites since it considers the frictional equilibrium conditions for the initiation process, the rheological resistance of the displaced flow for the run-out process and fragility curve that links intensity to economic loss for each building. The model takes into account the triggering effect of an earthquake, intense rainfall and a combination of both (spatial and temporal). The run-out module of the model considers the flow as a 2-D continuum medium solving the equations of mass balance and momentum conservation. The model is embedded in an open source environment geographical information system (GIS), it is computationally efficient and it is transparent (understandable and comprehensible) for the end-user. The model was applied to a virtual region, assessing landslide hazard, vulnerability and risk. A Monte Carlo simulation scheme was applied to quantify, propagate and communicate the effects of uncertainty in input parameters on the final results. In this technique, the input distributions are recreated through sampling and the failure criteria are calculated for each stochastic realisation of the site properties. The model is able to identify the released volumes of the critical slopes and the areas threatened by the run-out intensity. The obtained final outcome is the estimation

  15. A regional-scale study of chromium and nickel in soils of northern California, USA

    USGS Publications Warehouse

    Morrison, J.M.; Goldhaber, M.B.; Lee, L.; Holloway, J.M.; Wanty, R.B.; Wolf, R.E.; Ranville, J.F.

    2009-01-01

    during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.

  16. Upscaling a catchment-scale ecohydrology model for regional-scale earth system modeling

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Tague, C.; Liu, M.; Garcia, E.; Choate, J.; Mullis, T.; Hull, R.; Vaughan, J. K.; Kalyanaraman, A.; Nguyen, T.

    2014-12-01

    With a focus on the U.S. Pacific Northwest (PNW), BioEarth is an Earth System Model (EaSM) currently in development that explores the interactions between coupled C:N:H2O dynamics and resource management actions at the regional scale. Capturing coupled biogeochemical processes within EaSMs like BioEarth is important for exploring the response of the land surface to changes in climate and resource management actions; information that is important for shaping decisions that promote sustainable use of our natural resources. However, many EaSM frameworks do not adequately represent landscape-scale (< 1 km) spatial heterogeneity that influences land surface response, as relatively coarse resolution simulations (> 10 km) are necessitated by computational limitations. Spatial heterogeneity in a landscape arises due to spatial differences in underlying soil and vegetation properties that control moisture, energy and nutrient fluxes; as well as differences that arise due to spatially-organized connections that may drive an ecohydrologic response by the land surface. While many land surface models used in EaSM frameworks capture the first type of heterogeneity, few account for the influence of lateral connectivity on land surface processes. This type of connectivity can be important when considering soil moisture and nutrient redistribution. The RHESSys model is utilized by BioEarth to enable a "bottom-up" approach that preserves fine spatial-scale sensitivities and lateral connectivity that may be important for coupled C:N:H2O dynamics over larger scales. RHESSys is a distributed eco-hydrologic model that was originally developed to run at relatively fine but computationally intensive spatial resolutions over small catchments. The objective of this presentation is to describe two developments to enable implementation of RHESSys over the PNW. 1) RHESSys is being adapted for BioEarth to allow for moderately coarser resolutions and the flexibility to capture both types of

  17. Revisiting the contemporary sea-level budget on global and regional scales.

    PubMed

    Rietbroek, Roelof; Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-02-01

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002-2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y(2)) are offset by a negative hydrological component (-0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to -2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations. PMID:26811469

  18. Parameterization of heterogeneous ice nucleation on mineral dust particles: An application in a regional scale model

    NASA Astrophysics Data System (ADS)

    Niemand, M.; Vogel, B.; Vogel, H.; Connolly, P.; Klein, H.; Bingemer, H.; Hoose, C.; Moehler, O.; Leisner, T.

    2010-12-01

    In climate and weather models, the quantitative description of aerosol and cloud processes relies on simplified assumptions. This contributes major uncertainties to the prediction of global and regional climate change. The parameterization of heterogeneous ice nucleation is a step towards improving our current knowledge of the importance of the cloud ice phase in weather and climate models and can aid in the theoretical understanding of such processes. This contribution presents a new parameterization derived from a large number of experiments carried out at the aerosol and cloud chamber facility AIDA [1] of Karlsruhe Institute of Technology. AIDA is especially suitable to study ice nucleation processes at tropospheric and stratospheric cloud conditions covering a wide range of temperature and pressure. During pumping expansion, cooling rates between -0.3 and -5.0 K/min, equating to vertical wind velocities of 0.5 to 8 m/s, and a relative humidity range of up to more than 200% with respect to ice can be reached. The parameterization is valid for the temperature range -35°C to -15°C. In order to derive and test the parameterization a parameter called the ice-active surface site density was calculated for a number of different experiments with mineral dust acting as ice nuclei in the immersion and/or deposition mode. An exponential function was fitted to this data of ice-active surface site density vs. temperature. The curve fit was then used within the bin microphysical model ACPIM [2] to simulate the ice formation rates from the experiments. The major dust outbreak over the Sahara in May 2008 which was followed by a dust transport over the Mediterranean and Western Europe was simulated using the regional scale online coupled model system COSMO-ART (Vogel et al., 2009). Based on the model results the exponential curve fit was used to calculate the ice nuclei number concentration at Kleiner Feldberg (Germany). The results will be compared to measurements from

  19. Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe

    NASA Astrophysics Data System (ADS)

    Moemken, Julia; Reyers, Mark; Buldmann, Benjamin; Pinto, Joaquim G.

    2016-04-01

    Regional climate predictions on timescales from one year to one decade are gaining importance since this time frame falls within the planning horizon of politics, economy, and society. In this context, decadal predictions are of particular interest for the development of renewable energies such as wind energy. The present study examines the decadal predictability of regional scale wind speed and wind energy potentials in the framework of the MiKlip consortium ("Mittelfristige Klimaprognosen"; www.fona-miklip.de). This consortium aims to develop a model system based on the Max-Planck-Institute Earth System Model (MPI-ESM) that can provide skilful decadal predictions on regional and global scales. Three generations of the decadal prediction system, which differ primarily in their ocean initialisation, are analysed here. Ensembles of uninitialised historical and yearly initialised hindcast experiments are used to assess different skill scores for 10m wind speeds and wind energy output (Eout) over Central Europe, with special focus given to Germany. With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation of the global datasets. Its added value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD simulated regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind speed and Eout over Central Europe on yearly and multi-yearly time scales. The forecast skill is mostly limited to the first years after initialisation. Differences between the three ensemble generations are generally small. The regionalisation preserves and sometimes increases the forecast skill of the global runs but results depend on lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal Eout skills are generally lower than for annual means. Skill scores are lowest during summer, and persist longest in autumn. A large-scale westerly

  20. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop

  1. Assessment of management systems according to their impact on SOM turnover on regional scale

    NASA Astrophysics Data System (ADS)

    Franko, Uwe; Gründling, Ralf; Witing, Felix

    2016-04-01

    Models are widely used to predict SOM dynamics as reaction on management and climate. But the predicted SOM dynamics depend also on the initial conditions that on field scale are much better available from direct measurements than on regional scale. In the case of the models CANDY and CCB that are both build upon the same turnover equations it is possible to predict the steady state amount of SOM from the carbon reproduction flux (Crep) -the amount of carbon from fresh organic matter that is incorporated into SOM - and from the average turnover conditions that are expressed as Biologic Active Time (BAT). Both variables are combined to a new indicator, the reproduction index: REP_IX= Crep / BAT The required data base comprises climate data (air temperature and rainfall), topsoil texture (clay and fine silt) as well as crop yield and amount of organic amendments. An implicit information base comes from the model parameters that describe the relation between yield and amount of crop residues and root material as well as the quality of the different sources of fresh organic matter. According to the models the time course of SOM for a given management system is completely defined by the initial SOM content and the REP_IX. Any change in climate or management leading to a different REP_IX can be compensated by appropriate measures that will restore the previous value of REP_IX. This concept was applied for two regions in Austria (Mühlviertel and Marchfeld) and for the federal state Saxony in Germany in order to identify possible changes in carbon cycling and to identify adaptation messages. Depending on the individual situation it may be sufficient to have an increase in crop yields to stabilize SOM storage against climate change - as it has been shown in some long term experiments. In other cases it may be recommended to introduce additional intercrops to increase the Crep flux or to increase areas with conservation tillage to decrease BAT. Those measures may also be

  2. Evaluation of the impacts of urban development on groundwater storage at the regional scale

    NASA Astrophysics Data System (ADS)

    Bhaskar, A. S.; Welty, C.; Maxwell, R. M.; Miller, A. J.

    2013-12-01

    Urban development results in a myriad of changes to the natural environment; these changes can give rise to a range of effects on the groundwater system. We have used the integrated subsurface - surface - land surface hydrologic model ParFlow.CLM to evaluate and isolate the impacts of urban development on groundwater storage at the regional scale. We have applied the model to the 13,216 sq km Baltimore metropolitan area at a 500 m horizontal and 5 m vertical discretization, incorporating realistic estimates of anthropogenic fluxes (lawn watering, leakage from water supply pipes, infiltration into sewer pipes, withdrawals for water supply) as well as any available hydrogeologic data. We developed a base-case model, where all urban fluxes and features are incorporated, followed by model scenarios in which urban features were modified one-at-a time to evaluate the effects of each feature. The scenarios presented are: (1) the vegetated city, in which urban land is represented as natural vegetation mosaic in the land surface model; (2) the pervious city, in which low hydraulic conductivity values representing impervious surfaces are replaced with higher soil hydraulic conductivities; (3) the intact-sewer scenario, in which infiltration and inflow (I/I) of groundwater and stormwater into wastewater sewer pipes is removed; and (4) the no-anthropogenic- discharge-and-recharge scenario, in which all anthropogenic input and output fluxes are removed. We compared the subsurface storage of these scenarios to the base case model. We found that the pervious city subsurface storage was slightly greater than the subsurface storage in the base case, which is expected due to additional infiltration associated higher hydraulic conductivity values. The magnitude of this increase in subsurface storage was surprisingly small compared to changes found in other scenarios. The intact-sewer scenario eliminated the large quantity of groundwater infiltrating into wastewater pipes in the

  3. Mapping snow depth in alpine terrain with remotely piloted aerial systems and structure-from-motion photogrammetry - first results from a pilot study

    NASA Astrophysics Data System (ADS)

    Adams, Marc; Fromm, Reinhard; Bühler, Yves; Bösch, Ruedi; Ginzler, Christian

    2016-04-01

    Detailed information on the spatio-temporal distribution of seasonal snow in the alpine terrain plays a major role for the hydrological cycle, natural hazard management, flora and fauna, as well as tourism. Current methods are mostly only valid on a regional scale or require a trade-off between the data's availability, cost and resolution. During a one-year pilot study, we investigated the potential of remotely piloted aerial systems (RPAS) and structure-from-motion photogrammetry for snow depth mapping. We employed multi-copter and fixed-wing RPAS, equipped with different low-cost, off-the shelf sensors, at four test sites in Austria and Switzerland. Over 30 flights were performed during the winter 2014/15, where different camera settings, filters and lenses, as well as data collection routines were tested. Orthophotos and digital surface models (DSM) where calculated from the imagery using structure-from-motion photogrammetry software. Snow height was derived by subtracting snow-free from snow-covered DSMs. The RPAS-results were validated against data collected using a variety of well-established remote sensing (i.e. terrestrial laser scanning, large frame aerial sensors) and in-situ measurement techniques. The results show, that RPAS i) are able to map snow depth within accuracies of 0.07-0.15 m root mean square error (RMSE), when compared to traditional in-situ data; ii) can be operated at lower cost, easier repeatability, less operational constraints and higher GSD than large frame aerial sensors on-board manned aircraft, while achieving significantly higher accuracies; iii) are able to acquire meaningful data even under harsh environmental conditions above 2000 m a.s.l. (turbulence, low temperature and high irradiance, low air density). While providing a first prove-of-concept, the study also showed future challenges and limitations of RPAS-based snow depth mapping, including a high dependency on correct co-registration of snow-free and snow-covered height

  4. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  5. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  6. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  7. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2011-07-01 2011-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  8. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2014-07-01 2014-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  9. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  10. Aerial shaking performance of wet Anna's hummingbirds.

    PubMed

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2012-05-01

    External wetting poses problems of immediate heat loss and long-term pathogen growth for vertebrates. Beyond these risks, the locomotor ability of smaller animals, and particularly of fliers, may be impaired by water adhering to the body. Here, we report on the remarkable ability of hummingbirds to perform rapid shakes in order to expel water from their plumage even while in flight. Kinematic performance of aerial versus non-aerial shakes (i.e. those performed while perching) was compared. Oscillation frequencies of the head, body and tail were lower in aerial shakes. Tangential speeds and accelerations of the trunk and tail were roughly similar in aerial and non-aerial shakes, but values for head motions while perching were twice as high when compared with aerial shakes [corrected] . Azimuthal angular amplitudes for both aerial and non-aerial shakes reached values greater than 180° for the head, greater than 45° for the body trunk and slightly greater than 90° for the tail and wings. Using a feather on an oscillating disc to mimic shaking motions, we found that bending increased average speeds by up to 36 per cent and accelerations of the feather tip up to fourfold relative to a hypothetical rigid feather. Feather flexibility may help to enhance shedding of water and reduce body oscillations during shaking.

  11. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  12. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  13. A Classroom Simulation of Aerial Photography.

    ERIC Educational Resources Information Center

    Baker, Simon

    1981-01-01

    Explains how a simulation of aerial photography can help students in a college level beginning course on interpretation of aerial photography understand the interrelationships of the airplane, the camera, and the earth's surface. Procedures, objectives, equipment, and scale are discussed. (DB)

  14. Soil carbon sequestration under Miscanthus x giganteus - A regional scale survey

    NASA Astrophysics Data System (ADS)

    Zimmermann, J.; Dauber, J.; Jones, M. B.

    2011-12-01

    values show a high variability, indicating a strong between-farms variation even on a regional scale. The survey also showed a high variability in Miscanthus crop density, as within all plots varying numbers of large open patches could be observed. This "patchiness" is likely to have a significant effect on field-scale soil carbon sequestration and therefore on the local greenhouse gas balance. In a second experiment, soil cores from two density classes (> 20 stems m-2 and < 1 stem m-2) have been taken from eight commercial Miscanthus plots in south east Ireland. Total soil organic carbon as well as the Miscanthus-derived fraction have been measured for 10 cm steps down to 30 cm depth. Preliminary results indicate significantly lower Miscanthus-derived carbon stocks under open patches compared to high density Miscanthus in both the 10 cm (1.01 Mg ha-1 vs. 1.64 Mg ha-1) and the 20 cm (0.33 Mg ha-1 vs. 0.70 Mg ha-1), as well as pooled over 30 cm depth (1.68 Mg ha-1 vs. 2.92 Mg ha-1). These results, as well as the high variability observed in the initial study, show the importance of local approach to carbon sequestration estimates as well as assessing the greenhouse gas balance for the use of bioenergy crops.

  15. A Production Function Approach to Regional Environmental Economic Assessments

    EPA Science Inventory

    Regional-scale environmental assessments require integrating many available types of data having inconsistent spatial or temporal scales. Moreover, the relationships among the environmental variables in the assessment tend to be poorly understood, a situation made even more compl...

  16. A Production Function Approach to Regional Environmental-Economic Assessments

    EPA Science Inventory

    Numerous difficulties await those creating regional-scale environmental assessments, from data having inconsistent spatial or temporal scales to poorly understood environmental processes and indicators. Including socioeconomic variables further complicates the situation. In place...

  17. Temperature and altitudinal influence on karst dripwater chemistry: Implications for regional-scale palaeoclimate reconstructions from speleothems

    NASA Astrophysics Data System (ADS)

    Borsato, Andrea; Johnston, Vanessa E.; Frisia, Silvia; Miorandi, Renza; Corradini, Flavio

    2016-03-01

    The reconstruction of robust past climate records from speleothems requires a prior understanding of the environmental and hydrological conditions that lead to speleothem formation and the chemical signals encoded within them. On regional-scales, there has been little quantification of the dependency of cave dripwater geochemistry on meteorology (net infiltration, temperature), environmental and geographical factors (elevation, latitude, soil activity, vegetation cover, atmospheric aerosol composition) and geological properties of the aquifer (lithology, porosity and thickness). In the present study, we analysed over 200 karst waters collected in 11 caves of the Trentino region (NE Italy). The caves span sub-humid Mediterranean to cold-humid temperate climates and infiltration elevations (Zinf) ranging from 355 to 2400 m a.s.l., corresponding to infiltration mean annual temperatures (MATinf) between 12 and 0 °C. Since all the caves developed in pure carbonate rocks, soil pCO2 is found to be the main factor controlling the carbonate dissolution. For this reason, the parameters controlling the carbonate-carbonic acid system and calcite saturation state (SICC) are directly correlated with the MATinf, which influences the vegetation zones and eventually the production of CO2 in the soil. SICC linearly depends on MATinf (SICC = 0.09 MATinf - 0.4) and SICC = 0 is reached at Zinf = 1.66 km a.s.l., corresponding to a MATinf = 4.4 °C. This point identifies the "speleothem limit" defined here as the elevation (or corresponding MATinf) above which no sparitic speleothem precipitation usually occurs. We demonstrate that due to temperature-forced changes in the soil and vegetation and subsequently SICC, the speleothem limit shifts to higher altitudes during maximum interglacial conditions. Speleothems from high altitude caves (1.5-2.5 km a.s.l.) thus can identify optimum interglacial periods. By contrast, speleothems formed at lower altitudes are better suited as archives of

  18. Examining the Impact of Regional-Scale Air Quality Regulations on Human Health Outcomes

    EPA Science Inventory

    The NOx State Implementation Plan Call was issued by the U.S. Environmental Protection Agency to reduce the emissions of nitrogen oxides from the electric power sector to curtail the regional transport of the secondarily-formed pollutant, ozone. As emission control actions often...

  19. STRESSOR-RESPONSE RELATIONSHIPS AT NATIONAL AND REGIONAL SCALES FOR FISH AND BENTHOS ASSEMBLAGES

    EPA Science Inventory

    Between 2000 and 2004, the U.S. Environmental Protection Agency conducted a nationwide probability survey of over 1,600 wadeable streams to assess ecological condition in terms of water chemistry, physical habitat and macroinvertebrate assemblages. The survey also measured strea...

  20. Characterizing the Exposure of Regional-Scale Air Quality in the Northeastern United States

    EPA Science Inventory

    The Clean Air Act (CAA) requires that the United States (U.S.) Environmental Protection Agency (EPA) set National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to human health and the environment. Previous research has shown that high ambient ozone leve...

  1. Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity is widely recognized to be one of the major threats for worldwide agriculture. Despite decades of research in soil mapping, no reliable and up-to-date maps are available for wide geographical regions, especially in agronomically and environmentally relevant salinity ranges (i.e., <20 dS/m, ...

  2. Application of the integrated Rule Oriented Data System (iRODS) to support regional-scale hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Billah, M. M.; Goodall, J. L.; Narayan, U.; Lakshmi, V.; Rajasekar, A.; Moore, R.

    2012-12-01

    Modeling regional-scale hydrologic systems introduces major data challenges related to the access and transformation of datasets from heterogeneous sources into the information needed to execute hydrologic models. These activities are rarely automated, making the reproducibility of model results directly from raw data sources impractical or even impossible. This is a major challenge facing the hydrologic community and must be overcome to advance understanding and management of regional-scale water resource systems. In this study we address this challenge by demonstrating how the integrated Rule Oriented Data Management Systems (iRODS) can be used as a data management system to support the workflow inherent to running regional-scale hydrologic models. Focusing on the Variable Infiltration Capacity (VIC) model as a case study, we show how data preparation steps can be written as micro-services and rules within iRODS, and how iRODS can be used to federate data access and data processing routines across data providers and data consumers. We apply iRODS and VIC to study hydrologic conditions in the Carolinas during the period 1998-2007 to better understand hydrologic conditions during and following periods of drought within the region. The case study demonstrates a distinct advantage of our approach in that, by automating the data access and transformation steps, scientists and managers can more easily document model applications, reproduce model results, and explore sources of model uncertainty.

  3. Regional Scale Prioritisation for Key Ecosystem Services, Renewable Energy Production and Urban Development

    PubMed Central

    Casalegno, Stefano; Bennie, Jonathan J.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services

  4. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    PubMed

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.

  5. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    PubMed

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services

  6. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  7. Whitecap coverage from aerial photography

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1970-01-01

    A program for determining the feasibility of deriving sea surface wind speeds by remotely sensing ocean surface radiances in the nonglitter regions is discussed. With a knowledge of the duration and geographical extent of the wind field, information about the conventional sea state may be derived. The use of optical techniques for determining sea state has obvious limitations. For example, such means can be used only in daylight and only when a clear path of sight is available between the sensor and the surface. However, sensors and vehicles capable of providing the data needed for such techniques are planned for the near future; therefore, a secondary or backup capability can be provided with little added effort. The information currently being sought regarding white water coverage is also of direct interest to those working with passive microwave systems, the study of energy transfer between winds and ocean currents, the aerial estimation of wind speeds, and many others.

  8. The design of aerial camera focusing mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Changchang; Yang, Hongtao; Niu, Haijun

    2015-10-01

    In order to ensure the imaging resolution of aerial camera and compensating defocusing caused by the changing of atmospheric temperature, pressure, oblique photographing distance and other environmental factor [1,2], and to meeting the overall design requirements of the camera for the lower mass and smaller size , the linear focusing mechanism is designed. Through the target surface support, the target surface component is connected with focusing driving mechanism. Make use of precision ball screws, focusing mechanism transforms the input rotary motion of motor into linear motion of the focal plane assembly. Then combined with the form of linear guide restraint movement, the magnetic encoder is adopted to detect the response of displacement. And the closed loop control is adopted to realize accurate focusing. This paper illustrated the design scheme for a focusing mechanism and analyzed its error sources. It has the advantages of light friction and simple transmission chain and reducing the transmission error effectively. And this paper also analyses the target surface by finite element analysis and lightweight design. Proving that the precision of focusing mechanism can achieve higher than 3um, and the focusing range is +/-2mm.

  9. ENVIRONMENTAL PHOTOGRAPHIC INTERPRETATION CENTER (EPIC)

    EPA Science Inventory

    The Environmental Sciences Division (ESD) in the National Exposure Research Laboratory (NERL) of the Office of Research and Development provides remote sensing technical support including aerial photograph acquisition and interpretation to the EPA Program Offices, ORD Laboratorie...

  10. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  11. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  12. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  13. Experimental evaluation of shark detection rates by aerial observers.

    PubMed

    Robbins, William D; Peddemors, Victor M; Kennelly, Steven J; Ives, Matthew C

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼ 2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

  14. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  15. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  16. Insight on invasions and resilience derived from spatiotemporal discontinuities of biomass at local and regional scales

    USGS Publications Warehouse

    Angeler, David G.; Allen, Criag R.; Johnson, Richard K.

    2012-01-01

    Understanding the social and ecological consequences of species invasions is complicated by nonlinearities in processes, and differences in process and structure as scale is changed. Here we use discontinuity analyses to investigate nonlinear patterns in the distribution of biomass of an invasive nuisance species that could indicate scale-specific organization. We analyze biomass patterns in the flagellate Gonyostomum semen (Raphidophyta) in 75 boreal lakes during an 11-year period (1997-2007). With simulations using a unimodal null model and cluster analysis, we identified regional groupings of lakes based on their biomass patterns. We evaluated the variability of membership of individual lakes in regional biomass groups. Temporal trends in local and regional discontinuity patterns were analyzed using regressions and correlations with environmental variables that characterize nutrient conditions, acidity status, temperature variability, and water clarity. Regionally, there was a significant increase in the number of biomass groups over time, indicative of an increased number of scales at which algal biomass organizes across lakes. This increased complexity correlated with the invasion history of G. semen and broad-scale environmental change (recovery from acidification). Locally, no consistent patterns of lake membership to regional biomass groups were observed, and correlations with environmental variables were lake specific. The increased complexity of regional biomass patterns suggests that processes that act within or between scales reinforce the presence of G. semen and its potential to develop high-biomass blooms in boreal lakes. Emergent regional patterns combined with locally stochastic dynamics suggest a bleak future for managing G. semen, and more generally why invasive species can be ecologically successful.

  17. Using regional-scale atmospheric δ13C of CO2 as an indicator of ecosystem health and function

    NASA Astrophysics Data System (ADS)

    Alden, C. B.; Miller, J. B.; White, J. W.; Yadav, V.; Michalak, A. M.

    2012-12-01

    Year to year terrestrial CO2 uptake and release is highly variable and is a result of, among other factors, weather and climate variability. One of the key ecosystem parameters that links surface-atmosphere fluxes of energy, water and carbon is stomatal conductance. By measuring and analyzing atmospheric patterns of CO2 and its 13C content over North America, we can begin to identify regional scale changes in stomatal conductance, because conductance is closely related to plant isotopic discrimination. Furthermore, 13C is a useful tracer of the differential responses of C3 and C4 plants to climate and weather anomalies, because C3 and C4 plants have very different isotopic discrimination. Both aspects of the terrestrial carbon cycle are of great interest to those seeking to understand the potential effects of global climate change on cropland and forest productivity, natural CO2 sinks, continental runoff, and continental water and energy exchange with the atmosphere. Our findings may be particularly important for parameterization of process-based models, in light of recent results suggesting that stomatal conductance models driven by vapor pressure deficit (Leuning Model) better predict atmospheric δ13C than do models driven by relative humidity (Ball-Berry Model). For the first time, spatial and temporal density of δ13C of CO2 atmospheric observations may be high enough to allow for regional inversions of δ13CO2 to optimize prior estimates of plant discrimination (and disequilibrium flux -- an isoflux resulting from the combination of a finite residence time of carbon in terrestrial biosphere pools and a changing atmospheric signature due to human burning of fossil fuels with a plant-derived δ13C signature). We perform a Bayesian synthesis inversion for 1) CO2 fluxes and 2) δ13CO2 isofluxes, over the North American region: 145-25°W longitude and 10-80°N latitude. Inversion resolution, in order to avoid aggregation errors, is 1°x1° and 3-hourly, but

  18. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra.

    PubMed

    Peng, Yi; Xiong, Xiong; Adhikari, Kabindra; Knadel, Maria; Grunwald, Sabine; Greve, Mogens Humlekrog

    2015-01-01

    There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l'Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the 'upland model' was able to more accurately predict SOC compared with the 'upland & wetland model'. However, the separately calibrated 'upland and wetland model' did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory Vis

  19. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra

    PubMed Central

    Peng, Yi; Xiong, Xiong; Adhikari, Kabindra; Knadel, Maria; Grunwald, Sabine; Greve, Mogens Humlekrog

    2015-01-01

    There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l’Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the ‘upland model’ was able to more accurately predict SOC compared with the ‘upland & wetland model’. However, the separately calibrated ‘upland and wetland model’ did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory

  20. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    PubMed

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  1. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  2. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  3. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  4. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  5. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  6. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  7. 32. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF THE ROCKY FLATS PLANT LOOKING NORTHWEST. DURING THE 1980S, A NUMBER OF COMPLAINTS CONCERNING SAFETY AND ENVIRONMENTAL ERRORS SURFACED, CULMINATING IN THE 1989 RAID ON THE PLANT BY THE FBI FOR ALLEGED ENVIRONMENTAL INFRACTIONS. THAT SAME YEAR, PRODUCTION AT THE PLANT WAS HALTED FOR CORRECTION OF SAFETY DEFICIENCIES. BY 1991, A SERIES OF EVENTS WORLDWIDE REDUCED THE COLD WAR THREAT, AND IN 1992, THE SECRETARY OF ENERGY ANNOUNCED THAT THE MISSION AT THE PLANT WOULD BE CHANGED TO ENVIRONMENTAL RESTORATION AND WASTE MANAGEMENT, WITH THE GOAL OF CLEANING UP THE PLANT AND SITE (1989). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  8. Modeling of dry deposition over regional scales with use of satellite data.

    SciTech Connect

    Xu, Y.

    1998-10-12

    Dry deposition, an essential component in the atmospheric budget of many trace chemicals, can deliver a major portion of the chemicals deposited at sensitive receptors at the surface of the Earth. Dry deposition in atmospheric numerical models is often described with modules that provide estimates of the deposition velocity V{sub d}, which is the downward flux divided by concentration at a specified height. A fairly common practice in dry deposition modules is to describe surface conditions that affect dry deposition in terms of broad land use and seasonal categories. This practice can lead to unrealistic values for V{sub d}, however, when vegetative conditions for one land use category vary considerably within the domain, when abrupt changes in surface conditions are imposed by a change in seasonal category, or when environmental conditions change vegetative properties within one season. To improve this situation, surface spectral reflectance sensed by environmental satellites can be used to provide more realistic depictions of the spatial and temporal variations in surface conditions. Such an approach is explored here, by extending of methods described by Gao (1995) and Gao and Wesely (1995), in conjunction with a previously developed dry deposition module (Wesely, 1989). In addition, because simulations of biogenic emissions usually rely on an adequate description of many of the surface conditions that affect dry deposition, we examine a method of using a single source of satellite data with modules for both biogenic emission rates and dry deposition velocities. The Biogenic Emissions Inventory System (BEIS) version 2.2, which is a version similar to the model described by Geron et al. (1994), is used. Results are presented for ozone V{sub d}, isoprene emission rates, and emission rates of other monoterpenes in the eastern half of the US and nearby areas for selected periods during 1989.

  9. A moni-modelling approach to manage groundwater risk to pesticide leaching at regional scale.

    PubMed

    Di Guardo, Andrea; Finizio, Antonio

    2016-03-01

    Historically, the approach used to manage risk of chemical contamination of water bodies is based on the use of monitoring programmes, which provide a snapshot of the presence/absence of chemicals in water bodies. Monitoring is required in the current EU regulations, such as the Water Framework Directive (WFD), as a tool to record temporal variation in the chemical status of water bodies. More recently, a number of models have been developed and used to forecast chemical contamination of water bodies. These models combine information of chemical properties, their use, and environmental scenarios. Both approaches are useful for risk assessors in decision processes. However, in our opinion, both show flaws and strengths when taken alone. This paper proposes an integrated approach (moni-modelling approach) where monitoring data and modelling simulations work together in order to provide a common decision framework for the risk assessor. This approach would be very useful, particularly for the risk management of pesticides at a territorial level. It fulfils the requirement of the recent Sustainable Use of Pesticides Directive. In fact, the moni-modelling approach could be used to identify sensible areas where implement mitigation measures or limitation of use of pesticides, but even to effectively re-design future monitoring networks or to better calibrate the pedo-climatic input data for the environmental fate models. A case study is presented, where the moni-modelling approach is applied in Lombardy region (North of Italy) to identify groundwater vulnerable areas to pesticides. The approach has been applied to six active substances with different leaching behaviour, in order to highlight the advantages in using the proposed methodology. PMID:26747983

  10. A moni-modelling approach to manage groundwater risk to pesticide leaching at regional scale.

    PubMed

    Di Guardo, Andrea; Finizio, Antonio

    2016-03-01

    Historically, the approach used to manage risk of chemical contamination of water bodies is based on the use of monitoring programmes, which provide a snapshot of the presence/absence of chemicals in water bodies. Monitoring is required in the current EU regulations, such as the Water Framework Directive (WFD), as a tool to record temporal variation in the chemical status of water bodies. More recently, a number of models have been developed and used to forecast chemical contamination of water bodies. These models combine information of chemical properties, their use, and environmental scenarios. Both approaches are useful for risk assessors in decision processes. However, in our opinion, both show flaws and strengths when taken alone. This paper proposes an integrated approach (moni-modelling approach) where monitoring data and modelling simulations work together in order to provide a common decision framework for the risk assessor. This approach would be very useful, particularly for the risk management of pesticides at a territorial level. It fulfils the requirement of the recent Sustainable Use of Pesticides Directive. In fact, the moni-modelling approach could be used to identify sensible areas where implement mitigation measures or limitation of use of pesticides, but even to effectively re-design future monitoring networks or to better calibrate the pedo-climatic input data for the environmental fate models. A case study is presented, where the moni-modelling approach is applied in Lombardy region (North of Italy) to identify groundwater vulnerable areas to pesticides. The approach has been applied to six active substances with different leaching behaviour, in order to highlight the advantages in using the proposed methodology.

  11. Suitability of temperature sum models to simulate the flowering period of birches on regional scale as basis for realistic predictions of the allergenic potential of atmospheric pollen loads

    NASA Astrophysics Data System (ADS)

    Biernath, Christian; Hauck, Julia; Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2014-05-01

    Persons susceptible to allergenic pollen grains need to apply suppressive pharmacy before the occurrence of the first allergy symptoms. Patient targeted medication could be improved if forecasts of the allergenic potential of pollen (biochemical composition of the pollen grain) and the onset, duration, and end of the pollen season are precise on regional scale. In plant tissue the biochemical composition may change within hours due to the resource availability for plant growth and plant internal nutrient re-mobilization. As these processes highly depend on both, the environmental conditions and the development stage of a plant, precise simulations of the onset and duration of the flowering period are crucial to determine the allergenic potential of tissues and pollen. Here, dynamic plant models that consider the dependence of the chemical composition of tissue on the development stage of the plant embedded in process-based ecosystem models seem promising tools; however, today dynamic plant growth is widely ignored in simulations of atmospheric pollen loads. In this study we raise the question whether frequently applied temperature sum models (TSM) could precisely simulate the plant development stages in case of birches on regional scale. These TSM integrate average temperatures above a base temperature below which no further plant development is assumed. In this study, we therefore tested the ability of TSM to simulate the flowering period of birches on more than 100 sites in Bavaria, Germany over a period of three years (2010-2012). Our simulations indicate that the often applied base temperatures between 2.3°C and 3.5°C for the integration of daily or hourly average temperatures, respectively, in Europe are too high to adequately simulate the onset of birch flowering in Bavaria where a base temperature of 1°C seems more convenient. A more regional calibration of the models to sub-regions in Bavaria with comparable climatic conditions could further improve the

  12. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  13. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  14. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  15. Regional-scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system.

    PubMed

    Melbourne-Thomas, Jessica; Johnson, Craig R; Fung, Tak; Seymour, Robert M; Chérubin, Laurent M; Arias-González, J Ernesto; Fulton, Elizabeth A

    2011-06-01

    The worldwide decline of coral reefs threatens the livelihoods of coastal communities and puts at risk valuable ecosystem services provided by reefs. There is a pressing need for robust predictions of potential futures of coral reef and associated human systems under alternative management scenarios. Understanding and predicting the dynamics of coral reef systems at regional scales of tens to hundreds of kilometers is imperative, because reef systems are connected by physical and socioeconomic processes across regions and often across international boundaries. We present a spatially explicit regional-scale model of ecological dynamics for a general coral reef system. In designing our model as a tool for decision support, we gave precedence to portability and accessibility; the model can be parameterized for dissimilar coral reef systems in different parts of the world, and the model components and outputs are understandable for nonexperts. The model simulates local-scale dynamics, which are coupled across regions through larval connectivity between reefs. We validate our model using an instantiation for the Meso-American Reef system. The model realistically captures local and regional ecological dynamics and responds to external forcings in the form of harvesting, pollution, and physical damage (e.g., hurricanes, coral bleaching) to produce trajectories that largely fall within limits observed in the real system. Moreover, the model demonstrates behaviors that have relevance for management considerations. In particular, differences in larval supply between reef localities drive spatial variability in modeled reef community structure. Reef tracts for which recruitment is low are more vulnerable to natural disturbance and synergistic effects of anthropogenic stressors. Our approach provides a framework for projecting the likelihood of different reef futures at local to regional scales, with important applications for the management of complex coral reef systems. PMID

  16. Regional-scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system.

    PubMed

    Melbourne-Thomas, Jessica; Johnson, Craig R; Fung, Tak; Seymour, Robert M; Chérubin, Laurent M; Arias-González, J Ernesto; Fulton, Elizabeth A

    2011-06-01

    The worldwide decline of coral reefs threatens the livelihoods of coastal communities and puts at risk valuable ecosystem services provided by reefs. There is a pressing need for robust predictions of potential futures of coral reef and associated human systems under alternative management scenarios. Understanding and predicting the dynamics of coral reef systems at regional scales of tens to hundreds of kilometers is imperative, because reef systems are connected by physical and socioeconomic processes across regions and often across international boundaries. We present a spatially explicit regional-scale model of ecological dynamics for a general coral reef system. In designing our model as a tool for decision support, we gave precedence to portability and accessibility; the model can be parameterized for dissimilar coral reef systems in different parts of the world, and the model components and outputs are understandable for nonexperts. The model simulates local-scale dynamics, which are coupled across regions through larval connectivity between reefs. We validate our model using an instantiation for the Meso-American Reef system. The model realistically captures local and regional ecological dynamics and responds to external forcings in the form of harvesting, pollution, and physical damage (e.g., hurricanes, coral bleaching) to produce trajectories that largely fall within limits observed in the real system. Moreover, the model demonstrates behaviors that have relevance for management considerations. In particular, differences in larval supply between reef localities drive spatial variability in modeled reef community structure. Reef tracts for which recruitment is low are more vulnerable to natural disturbance and synergistic effects of anthropogenic stressors. Our approach provides a framework for projecting the likelihood of different reef futures at local to regional scales, with important applications for the management of complex coral reef systems.

  17. Reducing pesticide drift by considering propeller rotation effects from aerial application and near buffer zones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of chemical from agricultural spraying can damage sensitive crops, destroy beneficial insects, and intrude on human and domestic animal habitats, threatening environmental quality. Reduction of drift from aerial application can be facilitated at the edge of a field by offsetting spr...

  18. Extending temperature sum models to simulate onset of birch flowering on the regional scale

    NASA Astrophysics Data System (ADS)

    Klein, Christian; Biernath, Christian; Priesack, Eckart

    2015-04-01

    For human health issues a reliable forecast of the onset of flowering of different plants which produce allergenic pollen is important. Yet, there are numerous phenological models available with different degrees of model complexity. All models consider the effect of the air temperatures on plant development; but only few models also include other environmental factors and/or plant internal water and nutrient status. However, the more complex models often use empirical relations without physiological meaning and are often tested against small datasets derived from a limited amount of sites. Most models which are used to simulate plant phenology are based on the temporal integration of temperatures above a defined base temperature. A critical temperature sum then defines the onset of a new phenological stage. The use of models that base on temperatures only, is efficient as temperatures are the most frequently documented and available weather component on global, regional and local scales. These models score by their robustness over a wide range of environmental conditions. However, the simulations sometimes fail by more than 20 days compared to measurements, and thus are not adequate for their use in pollen forecast. We tested the ability of temperature sum models to simulate onset of flowering of wild (e.g. birch) and domestic plants in Bavaria. In a first step we therefore determined both, a regional averaged optimum base temperature and temperature sum for the examined plant species in Bavaria. In the second step, the base temperatures were optimized to each site for the simulation period 2001-2010. Our hypothesis is that domestic plants depend much less on the regional weather conditions than wild plants do, due to low and high genetic variability, respectively. If so, the observed base temperatures of wild plants are smaller for low annual average temperatures and higher for high annual average temperatures. In the cases of domestic plants the optimized base

  19. Carbon dynamics and land-use choices: building a regional-scale multidisciplinary model

    USGS Publications Warehouse

    Kerr, Suzi; Liu, Shu-Guang; Pfaff, Alexander S.P.; Hughes, R. Flint

    2003-01-01

    Policy enabling tropical forests to approach their potential contribution to global-climate-change mitigation requires forecasts of land use and carbon storage on a large scale over long periods. In this paper, we present an integrated modeling methodology that addresses these needs. We model the dynamics of the human land-use system and of C pools contained in each ecosystem, as well as their interactions. The model is national scale, and is currently applied in a preliminary way to Costa Rica using data spanning a period of over 50 years. It combines an ecological process model, parameterized using field and other data, with an economic model, estimated using historical data to ensure a close link to actual behavior. These two models are linked so that ecological conditions affect land-use choices and vice versa. The integrated model predicts land use and its consequences for C storage for policy scenarios. These predictions can be used to create baselines, reward sequestration, and estimate the value in both environmental and economic terms of including C sequestration in tropical forests as part of the efforts to mitigate global climate change. The model can also be used to assess the benefits from costly activities to increase accuracy and thus reduce errors and their societal costs.

  20. Spatial heterogeneity of parasite co-infection: Determinants and geostatistical prediction at regional scales

    PubMed Central

    Brooker, Simon; Clements, Archie C.A.

    2009-01-01

    Multiple parasite infections are widespread in the developing world and understanding their geographical distribution is important for spatial targeting of differing intervention packages. We investigated the spatial epidemiology of mono- and co-infection with helminth parasites in East Africa and developed a geostatistical model to predict infection risk. The data used for the analysis were taken from standardised school surveys of Schistosoma mansoni and hookworm (Ancylostoma duodenale/Necator americanus) carried out between 1999 and 2005 in East Africa. Prevalence of mono- and co-infection was modelled using satellite-derived environmental and demographic variables as potential predictors. A Bayesian multi-nominal geostatistical model was developed for each infection category for producing maps of predicted co-infection risk. We show that heterogeneities in co-infection with S. mansoni and hookworm are influenced primarily by the distribution of S. mansoni, rather than the distribution of hookworm, and that temperature, elevation and distance to large water bodies are reliable predictors of the spatial large-scale distribution of co-infection. On the basis of these results, we developed a validated geostatistical model of the distribution of co-infection at a scale that is relevant for planning regional disease control efforts that simultaneously target multiple parasite species. PMID:19073189

  1. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    PubMed

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  2. Validation approaches for field-, basin-, and regional-scale water quality models

    NASA Astrophysics Data System (ADS)

    Mulla, David J.; Addiscott, Thomas M.

    Environmental issues such as global warming, hypoxia, and non-point source pollution of rivers and aquifers occur at scales which include the entire earth, the Gulf of Mexico, the Baltic Sea, the Mississippi and Amazon River basins, as well as smaller regions which cover states, provinces, and counties. The increasing availability of data layers at these scales through remote sensing and Geographic Information Systems (GIS) makes it possible to model transport processes at scales far removed from the traditional plot and field scales at which most transport models in soil physics were developed. This paper reviews and synthesizes the general approaches and concepts governing the use of water and solute transport models over a wide range of scales. Topics discussed include model selection, criteria for model calibration and validation, sources of error in modeling, non-linearity, spatial variability, non-uniqueness, and scale-transition techniques. The paper concludes that rigorous validation of models at the scale of large regions, basins, or continents is difficult for a variety of reasons. This does not preclude the value of modeling transport processes over large regions. If proper procedures are followed for model selection and calibration, then there can still be great value in using the model to investigate various scenarios, which would be impossible to study experimentally.

  3. A hybrid approach to improving the skills of seasonal climate outlook at the regional scale

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Wang, Julian X. L.; Liang, Xin-Zhong; Morris, Vernon

    2016-01-01

    A hybrid seasonal forecasting approach was generated by the National Centers for Environmental Prediction operational Climate Forecast System (CFS) and its nesting Climate extension of Weather Research and Forecasting (CWRF) model to improve forecasting skill over the United States. Skills for the three summers of 2011-2013 were evaluated regarding location, timing, magnitude, and frequency. Higher spatial pattern correlation coefficients showed that the hybrid approach substantially improved summer mean precipitation and 2-m temperature geographical distributions compared with the results of the CFS and CWRF models. The area mean temporal correlation coefficients demonstrated that the hybrid approach also consistently improved the timing prediction skills for both variables. In general, the smaller root mean square errors indicated that the hybrid approach reduced the magnitude of the biases for both precipitation and temperature. The greatest improvements were achieved when the individual models had similar skills. The comparison with a North American multi-model ensemble further proved the feasibility of improving real-time seasonal forecast skill by using the hybrid approach, especially for heavy rain forecasting. Based on the complementary advantages of CFS the global model and CWRF the nesting regional model, the hybrid approach showed a substantial enhancement over CFS real-time forecasts during the summer. Future works are needed for further improving the quality of the hybrid approach through CWRF's optimized physics ensemble, which has been proven to be feasible and reliable.

  4. Supplementing Global Narratives with National to Regional Scale Scenarios for Decision Support (Invited)

    NASA Astrophysics Data System (ADS)

    Moss, R. H.; Patwardhan, A.

    2013-12-01

    This presentation examines decision-making contexts to clarify how globally-oriented scenarios of future demographic, economic, and social conditions (the Shared Socioeconomic Pathways -- SSPs) can be extended or nested with scenarios that are targeted on uncertainties of more immediate concern to decision makers. A number of use cases are explored to identify key uncertainties and the attributes of scenarios that would help decision-makers think through the implications of these uncertainties. These uncertainties concern future conditions at national to regional spatial and governance scales regarding factors outside the locus of control of the decision makers. The exogenous factors that need to be represented in scenarios affect supply and demand of relevant commodities/products, institutional conditions, and vulnerability. They include: demographics & societal conditions; economic growth; policy and institutional context (including public & private responses); technology/resource price and performance; and climate/environmental outcomes. The presentation will explore development of decision-support oriented scenarios that are built from the 'bottom-up' and highlight points of divergence in national/regional social and economic conditions. The authors draw preliminary conclusions regarding methods for nesting decision support scenarios in high-level global narratives.

  5. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    PubMed

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  6. Evaluation of aerial photography for predicting trends in structural attributes of Australian woodland including comparison with ground-based monitoring data.

    PubMed

    Fensham, Roderick J; Bray, Steven G; Fairfax, Russell J

    2007-06-01

    The accurate assessment of trends in the woody structure of savannas has important implications for greenhouse accounting and land-use industries such as pastoralism. Two recent assessments of live woody biomass change from north-east Australian eucalypt woodland between the 1980s and 1990s present divergent results. The first estimate is derived from a network of permanent monitoring plots and the second from woody cover assessments from aerial photography. The differences between the studies are reviewed and include sample density, spatial scale and design. Further analyses targeting potential biases in the indirect aerial photography technique are conducted including a comparison of basal area estimates derived from 28 permanent monitoring sites with basal area estimates derived by the aerial photography technique. It is concluded that the effect of photo-scale; or the failure to include appropriate back-transformation of biomass estimates in the aerial photography study are not likely to have contributed significantly to the discrepancy. However, temporal changes in the structure of woodlands, for example, woodlands maturing from many smaller trees to fewer larger trees or seasonal changes, which affect the relationship between cover and basal area could impact on the detection of trends using the aerial photography technique. It is also possible that issues concerning photo-quality may bias assessments through time, and that the limited sample of the permanent monitoring network may inadequately represent change at regional scales. PMID:16828220

  7. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales

    PubMed Central

    Stickler, Claudia M.; Coe, Michael T.; Costa, Marcos H.; Nepstad, Daniel C.; McGrath, David G.; Dias, Livia C. P.; Rodrigues, Hermann O.; Soares-Filho, Britaldo S.

    2013-01-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4–8% and 10–12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6–36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  8. Remotely-Sensed Regional-Scale Evapotranspiration of a Semi-Arid Great Basin Desert and its Relationship to Geomorphology, Soils, and Vegetation

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.

    1997-01-01

    Landsat Thematic Mapper data is used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation-the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.

  9. Remotely-Sensed Regional-Scale Evapotranspiration of a Semi-Arid Great Basin Desert and its Relationship to Geomorphology, Soils, and Vegetation

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.

    1998-01-01

    Landsat thematic mapper data are used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation -the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.

  10. Invasive blue mussels threaten regional scale genetic diversity in mainland and remote offshore locations: the need for baseline data and enhanced protection in the Southern Ocean.

    PubMed

    Gardner, Jonathan P A; Zbawicka, Małgorzata; Westfall, Kristen M; Wenne, Roman

    2016-09-01

    Human-mediated biological transfers of species have substantially modified many ecosystems with profound environmental and economic consequences. However, in many cases, invasion events are very hard to identify because of the absence of an appropriate baseline of information for receiving sites/regions. In this study, use of high-resolution genetic markers (single nucleotide polymorphisms - SNPs) highlights the threat of introduced Northern Hemisphere blue mussels (Mytilus galloprovincialis) at a regional scale to Southern Hemisphere lineages of blue mussels via hybridization and introgression. Analysis of a multispecies SNP dataset reveals hotspots of invasive Northern Hemisphere blue mussels in some mainland New Zealand locations, as well as the existence of unique native lineages of blue mussels on remote oceanic islands in the Southern Ocean that are now threatened by invasive mussels. Samples collected from an oil rig that has moved between South Africa, Australia, and New Zealand were identified as invasive Northern Hemisphere mussels, revealing the relative ease with which such non-native species may be moved from region to region. In combination, our results highlight the existence of unique lineages of mussels (and by extension, presumably of other taxa) on remote offshore islands in the Southern Ocean, the need for more baseline data to help identify bioinvasion events, the ongoing threat of hybridization and introgression posed by invasive species, and the need for greater protection of some of the world's last great remote areas.

  11. Geographic Information for Analysis of Highway Runoff-Quality Data on a National or Regional Scale in the Conterminous United States

    USGS Publications Warehouse

    Smieszek, Tomas W.; Granato, Gregory E.

    2000-01-01

    Spatial data are important for interpretation of water-quality information on a regional or national scale. Geographic information systems (GIS) facilitate interpretation and integration of spatial data. The geographic information and data compiled for the conterminous United States during the National Highway Runoff Water-Quality Data and Methodology Synthesis project is described in this document, which also includes information on the structure, file types, and the geographic information in the data files. This 'geodata' directory contains two subdirectories, labeled 'gisdata' and 'gisimage.' The 'gisdata' directory contains ArcInfo coverages, ArcInfo export files, shapefiles (used in ArcView), Spatial Data Transfer Standard Topological Vector Profile format files, and meta files in subdirectories organized by file type. The 'gisimage' directory contains the GIS data in common image-file formats. The spatial geodata includes two rain-zone region maps and a map of national ecosystems originally published by the U.S. Environmental Protection Agency; regional estimates of mean annual streamflow, and water hardness published by the Federal Highway Administration; and mean monthly temperature, mean annual precipitation, and mean monthly snowfall modified from data published by the National Climatic Data Center and made available to the public by the Oregon Climate Service at Oregon State University. These GIS files were compiled for qualitative spatial analysis of available data on a national and(or) regional scale and therefore should be considered as qualitative representations, not precise geographic location information.

  12. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  13. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    PubMed Central

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-01-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587

  14. Magma accumulation and segregation during regional-scale folding: The Holland's dome granite injection complex, Damara belt, Namibia

    NASA Astrophysics Data System (ADS)

    Kruger, Tolene; Kisters, Alexander

    2016-08-01

    The regional-scale, upright fold of the Holland's dome in the Damara belt of central Namibia contains a kilometre-scale network of intrusive, highly fractionated uraniferous leucogranites. Three broadly orthogonal and intersecting sets of leucogranite sheets that intruded parallel and at right angles to the axial plane of the first-order fold can be distinguished. The granites are internally sheeted and illustrate the growth of the injection complex through the successive addition of thousands of smaller magma batches. Spatial and timing relationships point to a stepwise evolution of the injection complex. Early dilatancy-driven segregation and accumulation of granitic magmas in the core of the fold, above a basal detachment, was followed by compaction-driven segregation of a melt phase during fold tightening. The intersecting leucogranite sets provide a suitably organized permeability structure for melt segregation, while the successive injection of magma batches ensures compatibility between regional strain rates during folding and the rates of magma segregation. The three-dimensional network of melt-bearing structures further assisted regional shortening past the lock-up of the fold. The Holland's dome injection complex illustrates the geometric complexity of magma transfer pathways and the significance of regional-scale folding for the accumulation, segregation and fractionation of granitic magmas in suprasolidus crust.

  15. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    NASA Astrophysics Data System (ADS)

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-12-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.

  16. Linking Terrestrial and Reservoir-related Economic Services at Regional Scale: A Case Study in the Soyang Watershed of South Korea

    NASA Astrophysics Data System (ADS)

    Tenhunen, J.; Huwe, B.; Kim, B.; Kim, J.; Nguyen, T.; Pham, V. D.; Reineking, B.; Seo, B.; Shin, H.; Shope, C.

    2012-04-01

    Sustainability challenges are transforming science and its role in society. Achieving sustainable use of resources that best supports human well-being requires wise planning of land use and management practices at landscape to regional scales. At regional scale, supportive services from natural resource use are of two types: locally derived via ecosystem production processes (cf. agriculture and forest products, etc.) and integratively derived via regional landscape response (cf. water supply). Research in the International Biological Program (IBP) demonstrated that modification in local ecosystem services (accompanying altered land use, due to agricultural intensification, or due to climate change) are associated with changes in land-surface to atmosphere gas exchange (water, carbon and trace gas emissions), in nutrient cycles and turnover, in the seasonal course of soil resource stores, in resource use efficiencies, and in the export of nutrients and carbon into river systems. Researchers at the Coweeta Hydrologic Laboratory in North Carolina summarized integrative changes in services that accompany land use and climate change, stating that "the quantity, timing, and quality of streamflow provide an integrated measure of the success or failure of land management practices." The international consortium project TERRECO (Complex Terrain and Ecological Heterogeneity; www.bayceer.uni-bayreuth.de/terreco) focuses on linking (1) spatial patterns in local ecosystem performance in complex terrain of the Soyang Lake Watershed, the largest reservoir system in South Korea, with (2) integrated ecosystem services derived from Soyang Lake, and with (3) economic evaluations of the services supplied. Field-based meteorology, plant production, soil physics, solute and sediment transport, hydrology, social behavior, and economic assessments are used to parameterize a suite of models that describe landscape and regional level flow networks for carbon, water, and nutrients, but in

  17. Regional scale hydrological and biogeochemical processes controlling high biodiversity of a groundwater fed alkaline fen

    NASA Astrophysics Data System (ADS)

    van der Zee, Sjoerd E. A. T. M.; (D. G.) Cirkel, Gijsbert; (J. P. M) witte, Flip

    2014-05-01

    calcite. Our study shows that seepage dependent alkaline fen ecosystems can be remarkably resilient to fertilisation and pyrite oxidation induced groundwater quality changes. The profound impact, of factors that were ignored in the literature, reveals that reducing environmental complexity may significantly constrain the value of predictions.

  18. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528777

  19. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  20. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  1. A near real time scenario at regional scale for the hydrogeological risk

    NASA Astrophysics Data System (ADS)

    Ponziani, F.; Stelluti, M.; Zauri, R.; Berni, N.; Brocca, L.; Moramarco, T.; Salciarini, D.; Tamagnini, C.

    2012-04-01

    satellite data daily download, used for the derivation of a soil water content index (SWI): these data are compared with instrumental ones from the TDR stations and the results of the water balance model that evaluates the contributions of water infiltration, percolation, evapotranspiration, etc. using physically based parameters obtained through a long process of characterization of soil and rock types, for each grid point; b) The assessment of the contribution due to the melting of the snow; c) the physically based - coupling model slope stability analysis, GIS-based, developed by the Department of Civil and Environmental Engineering, University of Perugia, with the aim to introduce also the actual mechanical and physical characteristics of slopes in the analysis. As result of the system, is the daily creation of near real-time and 24, 48, 72h forecast risk scenarios, that, under the intention of the Department of Civil Protection Service, will be used by the Functional Centre for the institutional tasks of hydrogeological risk evaluation and management, but also by local Administrations involved in the monitoring and assessment of landslide risk, in order to receive feedback on the effectiveness of the scenarios produced.

  2. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team.

    PubMed

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-01-01

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus' estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling. PMID:27618060

  3. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team

    PubMed Central

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-01-01

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus’ estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling. PMID:27618060

  4. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team.

    PubMed

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-09-09

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus' estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling.

  5. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  6. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  7. Constraining regional scale carbon budgets at the US West Coast using a high-resolution atmospheric inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Michalak, A. M.; Vickers, D.; Turner, D.; Law, B.

    2009-04-01

    The study presented is embedded within the NACP (North American Carbon Program) West Coast project ORCA2, which aims at determining the regional carbon balance of the US states Oregon, California and Washington. Our work specifically focuses on the effect of disturbance history and climate variability, aiming at improving our understanding of e.g. drought stress and stand age on carbon sources and sinks in complex terrain with fine-scale variability in land cover types. The ORCA2 atmospheric inverse modeling approach has been set up to capture flux variability on the regional scale at high temporal and spatial resolution. Atmospheric transport is simulated coupling the mesoscale model WRF (Weather Research and Forecast) with the STILT (Stochastic Time Inverted Lagrangian Transport) footprint model. This setup allows identifying sources and sinks that influence atmospheric observations with highly resolved mass transport fields and realistic turbulent mixing. Terrestrial biosphere carbon fluxes are simulated at spatial resolutions of up to 1km and subdaily timesteps, considering effects of ecoregion, land cover type and disturbance regime on the carbon budgets. Our approach assimilates high-precision atmospheric CO2 concentration measurements and eddy-covariance data from several sites throughout the model domain, as well as high-resolution remote sensing products (e.g. LandSat, MODIS) and interpolated surface meteorology (DayMet, SOGS, PRISM). We present top-down modeling results that have been optimized using Bayesian inversion, reflecting the information on regional scale carbon processes provided by the network of high-precision CO2 observations. We address the level of detail (e.g. spatial and temporal resolution) that can be resolved by top-down modeling on the regional scale, given the uncertainties introduced by various sources for model-data mismatch. Our results demonstrate the importance of accurate modeling of carbon-water coupling, with the

  8. The 3D geometry of regional-scale dolerite saucer complexes and their feeders in the Secunda Complex, Karoo Basin

    NASA Astrophysics Data System (ADS)

    Coetzee, André; Kisters, Alexander

    2016-05-01

    Dolerites in the Karoo Basin of South Africa commonly represent kilometre-scale, interconnected saucer-shaped structures that consist of inner sills, bounded by inclined sheets connected to stratigraphically higher outer sills. Based on information from over 3000 boreholes and mining operations extending over an area of ca. 500 km2 and covering a > 3 km vertical section from Karoo strata into underlying basement rocks, this paper presents the results of a 3D modelling exercise that describes the geometry and spatial relationships of a regional-scale saucer complex, locally referred to as the number 8 sill, from the Secunda (coal mine) Complex in the northern parts of the Karoo Basin. The composite number 8 sill complex consists of three main dolerite saucers (dolerites A to C). These dolerite saucers are hosted by the Karoo Supergroup and the connectivity and geometry of the saucers support a lateral, sill-feeding-sill relationship between dolerite saucers A, B and C. The saucers are underlain and fed by a shallowly-dipping sheet (dolerite D) in the basement rocks below the Karoo sequence. The 3D geometric strata model agrees well with experimental results of saucer formation from underlying feeders in sedimentary basins, but demonstrates a more intricate relationship where a single feeder can give rise to several split level saucers in one regionally extensive saucer complex. More localised dome- or ridge-shape protrusions are common in the flat lying sill parts of the regional-scale saucers. We suggest a mode of emplacement for these kilometre-scale dome- and ridge structures having formed as a result of lobate magma flow processes. Magma lobes, propagating in different directions ahead of the main magma sheet, undergo successive episodes of lobe arrest and inflation. The inflation of lobes initiates failure of the overlying strata and the formation of curved faults. Magma exploiting these faults transgresses the stratigraphy and coalesces to form a ring

  9. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  10. Aerial Measuring System Sensor Modeling

    SciTech Connect

    R. S. Detwiler

    2002-04-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 {micro}Ci/m{sup 2}. The helicopter calculations modeled the transport of americium-241 ({sup 241}Am

  11. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America

    PubMed Central

    Medvigy, David; Moorcroft, Paul R.

    2012-01-01

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions. PMID:22144385

  12. Creative use of pilot points to address site and regional scale heterogeneity in a variable-density model

    USGS Publications Warehouse

    Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.

    2010-01-01

    Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.

  13. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    PubMed

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  14. Detection and attribution of climate change at regional scale: case study of Karkheh river basin in the west of Iran

    NASA Astrophysics Data System (ADS)

    Zohrabi, Narges; Goodarzi, Elahe; Massah Bavani, Alireza; Najafi, Husain

    2016-09-01

    This research aims at providing a statistical framework for detection and attribution of climate variability and change at regional scale when at least 30 years of observation data are available. While extensive research has been done on detecting significant observed trends in hydroclimate variables and attribution to anthropogenic greenhouse gas emissions in large continents, less attention has been paid for regional scale analysis. The latter is mainly important for adaptation to climate change in different sectors including but not limited to energy, agriculture, and water resources planning and management, and it is still an open discussion in many countries including the West Asian ones. In the absence of regional climate models, an informative framework is suggested providing useful insights for policymakers. It benefits from general flexibility, not being computationally expensive, and applying several trend tests to analyze temporal variations in temperature and precipitation (gradual and step changes). The framework is implemented for a very important river basin in the west of Iran. In general, some increasing and decreasing trends of the interannual precipitation and temperature have been detected. For precipitation annual time series, a reducing step was seen around 1996 compared with the gradual change in most of the stations, which have not experience a dramatical change. The range of natural forcing is found to be ±76 % for precipitation and ±1.4 °C for temperature considering a two-dimensional diagram of precipitation and temperature anomalies from 1000-year control run of global climate model (GCM). Findings out of applying the proposed framework may provide useful insights into how to approach structural and non-structural climate change adaptation strategies from central governments.

  15. The Suruli shear zone and regional scale folding pattern in Madurai block of Southern Granulite Terrain, south India

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Rajeshdurai, P.

    2010-04-01

    Through the application of remote sensing techniques followed by field checks, the exact extension and nature of Suruli shear zone in Madurai block of southern granulite terrain (SGT) in south India is brought out for the first time in this work. The dominant rock type exposed in this area is charnockite intruded by granites. The Suruli ductile shear zone extends from just west of Kadaiyanallur in the south to Ganguvarpatti in the north over a length of 150 km. Between Kadaiyanallur and Kambam, the shear zone extends roughly in N-S direction. From Kambam, it swerves towards NE and then towards ENE near Ganguvarpatti. The strongly developed transposed foliation and mylonite foliation within the shear zone dip towards east only and so the eastern block (Varushanad hills) is the hanging wall and the western block (Cardamom hills) is the footwall of the shear zone. In the eastern block, three distinct phases of regional scale folding (F1, F2 and F3) are recognized. In complete contrast, the western block recorded only the last phase (F3) regional scale folding. As the more deformed eastern block (older terrain) moved over the relatively less deformed western block (younger terrain) along the Suruli shear zone, it is proposed that this shear zone is a thrust or reverse fault, probably of Proterozoic age. As there are evidences for decreasing displacement from north to south (i.e., from Ganguvarpatti to Kadaiyanallur), the Suruli shear zone could be a rotational thrust or reverse fault with the pivot located close to Kadaiyanallur. As the pivot is located near Achankovil shear zone which trends WNW-ESE (dip towards SSW), the Suruli shear zone could be splaying (branching) out from Achankovil shear zone. In a nutshell, the Suruli shear zone could be a splay, rotational thrust or reverse fault.

  16. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods

    NASA Astrophysics Data System (ADS)

    Hronsky, Jon M. A.; Groves, David I.; Loucks, Robert R.; Begg, Graham C.

    2012-04-01

    Accretionary orogens are the sites of long-lived convergent margin tectonics, both compressional and extensional. They are also the hosts to the majority of the world's important gold deposits. A very diverse range of deposit types occurs within accretionary orogens, commonly in close proximity in space and time to each other. These include porphyry and associated high-sulphidation Au-Cu-Ag deposits, classic low-sulphidation Au-Ag deposits, low-sulphidation Au deposits centred on alkalic intrusive complexes, Carlin-type Au deposits, Au-rich volcanic-hosted massive sulphide deposits, orogenic Au deposits, intrusion-related Au deposits and iron oxide Cu-Au deposits. Empirical patterns of spatial distribution of these deposits suggest there must be fundamental generic controls on gold metallogeny. Various lines of evidence lead to the proposal that the underlying key generic factor controlling accretionary orogen gold metallogeny is regional-scale, long-term, pre- and syn-subduction heterogeneous fertilisation of the lithospheric mantle that becomes a source of mineralisation-associated arc magma or hydrothermal fluid components. This process provides a gold-enriched reservoir that can be accessed later in a diverse range of tectonomagmatic settings. Based on this concept, a unified model is proposed in which the formation of a major gold deposit of any type requires the conjunction in time and space of three essential factors: a fertile upper-mantle source region, a favourable transient remobilisation event, and favourable lithospheric-scale plumbing structure. This framework provides the basis for a practical regional-scale targeting methodology that is applicable to data-poor regions.

  17. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology

    PubMed Central

    2013-01-01

    Background The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. Methods A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Results Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. Conclusions A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions. PMID:23419192

  18. Evolution of the techniques for subsidence monitoring at regional scale: the case of Emilia-Romagna region (Italy)

    NASA Astrophysics Data System (ADS)

    Bitelli, G.; Bonsignore, F.; Pellegrino, I.; Vittuari, L.

    2015-11-01

    The recent decades have seen a significant evolution of the methodologies and techniques for the monitoring of subsidence on a regional scale: from the traditional levelling technique to GNSS and finally to SAR interferometry. The case study of Emilia-Romagna, Italy, is a prime example of this evolution. As known, the Emilia-Romagna plain is subject to a phenomenon of subsidence with a natural and an anthropogenic component, both of varying amounts depending on the area. The first contributes a few mm/year; the second, particularly evident in the last 60 years, is mainly correlated to excessive withdrawal of fluids from underground and reaches higher values (in the past, subsidence rates of several cm per year were observed in the Po delta and near Bologna). The geodetic monitoring of subsidence started in the 1950s by different entities, establishing and measuring levelling networks of varying size and with various characteristics, mainly located where the phenomenon was most clearly manifest. These local initiatives were not able to provide a consistent understanding of the phenomenon throughout the entire Emilia-Romagna plain. The first regional-scale monitoring of the Emilia-Romagna plain was initiated in 1999, with a large levelling network (about 3000 km) and a coupled network of 60 GNSS points. In subsequent years, the monitoring approach has mainly focused on the most modern remote sensing techniques integrated with each other, with the adoption of the method DInSAR calibrated to a GNSS Continuous Operating Reference Stations (CORS) database. The application of DInSAR methods resulted in subsidence maps with a greater level of detail. The paper analyzes the methodology choices made during 1999-2012, through three successive campaigns that adopted and integrated the different techniques.

  19. Direct and indirect effects of climate change on herbicide leaching--a regional scale assessment in Sweden.

    PubMed

    Steffens, Karin; Jarvis, Nicholas; Lewan, Elisabet; Lindström, Bodil; Kreuger, Jenny; Kjellström, Erik; Moeys, Julien

    2015-05-01

    Climate change is not only likely to improve conditions for crop production in Sweden, but also to increase weed pressure and the need for herbicides. This study aimed at assessing and contrasting the direct and indirect effects of climate change on herbicide leaching to groundwater in a major crop production region in south-west Sweden with the help of the regional pesticide fate and transport model MACRO-SE. We simulated 37 out of the 41 herbicides that are currently approved for use in Sweden on eight major crop types for the 24 most common soil types in the region. The results were aggregated accounting for the fractional coverage of the crop and the area sprayed with a particular herbicide. For simulations of the future, we used projections of five different climate models as model driving data and assessed three different future scenarios: (A) only changes in climate, (B) changes in climate and land-use (altered crop distribution), and (C) changes in climate, land-use, and an increase in herbicide use. The model successfully distinguished between leachable and non-leachable compounds (88% correctly classified) in a qualitative comparison against regional-scale monitoring data. Leaching was dominated by only a few herbicides and crops under current climate and agronomic conditions. The model simulations suggest that the direct effects of an increase in temperature, which enhances degradation, and precipitation which promotes leaching, cancel each other at a regional scale, resulting in a slight decrease in leachate concentrations in a future climate. However, the area at risk of groundwater contamination doubled when indirect effects of changes in land-use and herbicide use, were considered. We therefore concluded that it is important to consider the indirect effects of climate change alongside the direct effects and that effective mitigation strategies and strict regulation are required to secure future (drinking) water resources.

  20. Shutter/aperture settings for aerial photography

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.; Perry, L.

    1976-01-01

    Determination of aerial camera shutter and aperture settings to produce consistently high-quality aerial photographs is a task complicated by numerous variables. Presented in this article are brief discussions of each variable and specific data which may be used for the systematic control of each. The variables discussed include sunlight, aircraft altitude, subject and season, film speed, and optical system. Data which may be used as a base reference are included, and encompass two sets of sensitometric specifications for two film-chemistry processes along with camera-aircraft parameters, which have been established and used to produce good exposures. Information contained here may be used to design and implement an exposure-determination system for aerial photography.

  1. USGS Releases New Digital Aerial Products

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has initiated distribution of digital aerial photographic products produced by scanning or digitizing film from its historical aerial photography film archive. This archive, located in Sioux Falls, South Dakota, contains thousands of rolls of film that contain more than 8 million frames of historic aerial photographs. The largest portion of this archive consists of original film acquired by Federal agencies from the 1930s through the 1970s to produce 1:24,000-scale USGS topographic quadrangle maps. Most of this photography is reasonably large scale (USGS photography ranges from 1:8,000 to 1:80,000) to support the production of the maps. Two digital products are currently available for ordering: high-resolution scanned products and medium-resolution digitized products.

  2. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  3. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  4. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  5. Ground cover estimated from aerial photographs

    NASA Technical Reports Server (NTRS)

    Gerbermann, A. H.; Cuellar, J. A.; Wiegand, C. L.

    1976-01-01

    Estimates of per cent ground cover made by ground observers were compared with independent estimates made on the basis of low-altitude (640-1219 m) aerial photographs of the same fields. Standard statistical simple correlation and linear regression analyses revealed a high correlation between the two estimation methods. In crops such as grain, sorghum, corn, and forage sorghum, in which the broadest part of the leaf canopy is near the top of the plant, there was a tendency to overestimate the per cent ground cover from aerial photographs.

  6. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  7. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  8. AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN KSC-373C-0556.20 116-KSC-373C-556.20, P-01622-B, ARCHIVE-04455 Aerial view of Easter crowds at Visitors Information Center, Kennedy Space Center, Florida.

  9. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  10. 77 FR 36250 - Information Collection Request; Request for Aerial Photography

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ...; ] DEPARTMENT OF AGRICULTURE Farm Service Agency Information Collection Request; Request for Aerial Photography... FSA Aerial Photography Program. The FSA Aerial Photography Field Office (APFO) uses the information from this form to collect the customer and photography information needed to produce and ship...

  11. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  12. Geography via Aerial Field Trips: Do It This Way, 6.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.; Guell, Carl E.

    To provide guidance for geography teachers, this booklet presents information on how to plan and execute aerial field trips. The aerial field trip can be employed as an effective visual aid technique in the teaching of geography, especially for presenting earth generalizations and interrelationships. The benefits of an aerial field trip are…

  13. Robust adaptive control for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  14. Using Aerial Hydromulch in Post-fire Chaparral in Southern California: Effectiveness and Consequences

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, P. M.; Beyers, J. L.; Robichaud, P. R.

    2012-12-01

    High severity wildfire can make landscapes susceptible to accelerated erosion that may retard resource recovery. High levels of erosion can also threaten life, property, and infrastructure in downstream human communities. Land managers often use mitigation measures on the burned hillside slopes to control post-fire sediment fluxes both as the first step in post-fire restoration and to protect off-site human developments. Aerial hydromulch, a slurry of paper or wood fiber with tackifiers and other amendments that dries to a permeable crust, is a relatively new erosion control treatment that has not been rigorously field-tested in wildland settings. Concerns have been raised over the ability of aerial hydromulch to reduce hillslope erosion as well as its potential for negative effects on post-fire ecosystem recovery. Since 2007 we have measured sediment fluxes and vegetation development on plots treated operationally with aerial hydromulch and compared them to untreated controls after three separate wildfires in southern California. These study plots, located on steep slopes with coarse upland soils previously covered with dense mixed chaparral vegetation, were monitored with silt fences to trap eroded sediment. Meter-square quadrats were used to measure ground and vegetation cover. Although dependent on rainfall and site characteristics, surface erosion on untreated plots generally attenuated sharply with years since burning. We found that aerial hydromulch did reduce bare ground on the treated plots and that this cover persisted through the first post-fire winter rainy season. For the initial year after a fire, aerial hydromulch reduced hillslope erosion from small and medium rainstorms, but not during an extremely high intensity rainfall event. Hydromulch had no effect on regrowing plant cover, shrub seedling density, or species richness. Thus, in chaparral ecosystems aerial hydromulch appears to be an effective post-fire erosion control measure that is

  15. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the

  16. "A" Is for Aerial Maps and Art

    ERIC Educational Resources Information Center

    Todd, Reese H.; Delahunty, Tina

    2007-01-01

    The technology of satellite imagery and remote sensing adds a new dimension to teaching and learning about maps with elementary school children. Just a click of the mouse brings into view some images of the world that could only be imagined a generation ago. Close-up aerial pictures of the school and neighborhood quickly catch the interest of…

  17. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cost of optical fiber cable and other associated material used in constructing a physical path for the... cable or aerial wire as well as the cost of other material used in construction of such plant... the original cost of single or paired conductor cable, wire and other associated material used...

  18. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  19. Calculating aerial images from EUV masks

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1999-06-01

    Aerial images for line/space patterns, arrays of posts and an arbitrary layout pattern are calculated for EUV masks in a 4X EUV imaging system. Both mask parameters and illumination parameters are varied to investigate their effects on the aerial image. To facilitate this study, a parallel version of TEMPEST with a Fourier transform boundary condition was developed and run on a network of 24 microprocessors. Line width variations are observed when absorber thickness or sidewall angle changes. As the line/space pattern scales to smaller dimensions, the aspect ratios of the absorber features increase, introducing geometric shadowing and reducing aerial image intensity and contrast. 100nm square posts have circular images of diameter close to 100nm, but decreasing in diameter significantly when the corner round radius at the mask becomes greater than 50 nm. Exterior mask posts image slightly smaller and with higher ellipticity than interior mask posts. The aerial image of the arbitrary test pattern gives insight into the effects of the off-axis incidence employed in EUV lithography systems.

  20. A TOOL FOR PLANNING AERIAL PHOTOGRAPHY

    EPA Science Inventory

    abstract The U.S. EPAs Pacific Coastal Ecology Branch has developed a tool in the form of an Excel. spreadsheet that facilitates planning aerial photography missions. The spreadsheet accepts various input parameters such as desired photo-scale and boundary coordinates of the stud...

  1. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  2. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ground: (i) Extensible boom platforms; (ii) Aerial ladders; (iii) Articulating boom platforms; (iv... articulating boom platforms. (i) Lift controls shall be tested each day prior to use to determine that such... when outriggers are used, they shall be positioned on pads or a solid surface. Wheel chocks shall...

  3. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ground: (i) Extensible boom platforms; (ii) Aerial ladders; (iii) Articulating boom platforms; (iv... articulating boom platforms. (i) Lift controls shall be tested each day prior to use to determine that such... when outriggers are used, they shall be positioned on pads or a solid surface. Wheel chocks shall...

  4. Aerial Infrared Photos for Citrus Growers

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W. J.

    1982-01-01

    Handbook advises on benefits and methods of aerial photography with color infrared film. Interpretation of photographs is discussed in detail. Necessary equipment for interpretation is described--light table, magnifying lenses, and microfiche viewers, for example. Advice is given on rating tree condition; identifying effects of diseases, insects, and nematodes; and evaluating effects of soil, water, and weather.

  5. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  6. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  7. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  8. Soil erosion and sediment yield prediction on catchment and regional scale using a process based simulation model

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schmidt, Jürgen

    2010-05-01

    The prevention of erosion is one of the main issues in the EU-Water Framework Directive (WFD) and the European Agricultural Fund for Rural Development (EAFRD). Planning and dimensioning of soil conservation measures require reliable and detailed information on the temporal and spatial distribution of soil detachment, soil transport and deposition. Soil erosion models are increasingly used, in order to simulate the physical processes involved and to predict the effects of soil erosion control measures. In this study the EROSION 3D simulation model is used for surveying soil erosion and deposition on the catchment scale covering the entire state of Saxony/Germany (18.500 km²). EROSION 3D is a distributed, extensively validated GIS based soil loss and deposition model including sediment delivery to surface water bodies. However, the application of the model for an entire state is a new challenge, because of the enormous data requirements and complex data processing operations prior to simulation. In this context the study includes the compilation, validation and generalisation of existing land use and soil data in order to generate a consistent EROSION 3D input dataset for the entire state of Saxony. As a part of this process the interface software DPROC allows to transfer the original soil and land use data into model specific data. The project aims to extend the interface software DPROC by an interactive GIS-component which enables the user to select arbitrary hydrological watersheds including the related soil and land use data. Based on these data DPROC automatically creates the according EROSION 3D input files using a relational database of primary data and model specific data. DPROC uses parameter transfer tables in order to specify the relationship between primary soil and land use data and model specific data. This combined methodology provides different risk assessment maps for certain demands on the regional scale of a Federal State. Besides soil loss and

  9. Constraining carbon budgets at a regional scale: fusing forest inventory data with a cohort-based biosphere model

    NASA Astrophysics Data System (ADS)

    Viskari, T.; Dietze, M.; Desai, A. R.

    2014-12-01

    Forest inventories play an essential role in carbon monitoring and REDD+, however they provide a sparse picture of the carbon cycle at a regional scale. Terrestrial Biosphere Models (TBMs) provide a complete picture of the carbon cycle, but efforts at combining inventory data with models have focused primarily on model calibration and purely model-based regional-scale carbon estimation, which ignore observed disturbances, management, and spatiotemporal variability in forest. Our approach is based on assimilating inventory observations in a size- and age-structured model, the Ecosystem Demography model (ED2). Assumptions of large homogenous areas in ecological models result in loss of details that hinder incorporation of observations. We address how to assimilate inventory data with model predictions in a practical way that is readily extensible to the simultaneous fusion of remote sensing and eddy covariance along with inventories. We updated ED2 predictions on forest growth with Forest Inventory and Analysis program (FIA) data. Data assimilation method was the Ensemble Adjustment Kalman Filter (EAKF) as implemented in Data Assimilation Research Testbed (DART) workflow. The study area is a 1° by 1° grid with the Willow Creek Ameriflux tower in Wisconsin at center. ED2 groups individual trees in cohorts so it captures the landscape-scale heterogeneity. Although this approach speeds up computations, it is not practical to estimate each FIA plot within a chosen area. We classified and averaged data for different plots according to their biomass based on number and size of trees within a plot, focusing on biomass changes over a measurement period. We separately calculated the average diameter at breast height (dbh) and stem density for plants over 5 cm for measured and modeled plots within a biomass class for different Plant Functional Types (PFTs). The results showed EAKF successfully adjusting the predicted changes in biomass according to observations. Variation in

  10. Object and activity detection from aerial video

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Shi, Feng; Liu, Xin; Ghazel, Mohsen

    2015-05-01

    Aerial video surveillance has advanced significantly in recent years, as inexpensive high-quality video cameras and airborne platforms are becoming more readily available. Video has become an indispensable part of military operations and is now becoming increasingly valuable in the civil and paramilitary sectors. Such surveillance capabilities are useful for battlefield intelligence and reconnaissance as well as monitoring major events, border control and critical infrastructure. However, monitoring this growing flood of video data requires significant effort from increasingly large numbers of video analysts. We have developed a suite of aerial video exploitation tools that can alleviate mundane monitoring from the analysts, by detecting and alerting objects and activities that require analysts' attention. These tools can be used for both tactical applications and post-mission analytics so that the video data can be exploited more efficiently and timely. A feature-based approach and a pixel-based approach have been developed for Video Moving Target Indicator (VMTI) to detect moving objects at real-time in aerial video. Such moving objects can then be classified by a person detector algorithm which was trained with representative aerial data. We have also developed an activity detection tool that can detect activities of interests in aerial video, such as person-vehicle interaction. We have implemented a flexible framework so that new processing modules can be added easily. The Graphical User Interface (GUI) allows the user to configure the processing pipeline at run-time to evaluate different algorithms and parameters. Promising experimental results have been obtained using these tools and an evaluation has been carried out to characterize their performance.

  11. Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology.

    PubMed

    Fornace, Kimberly M; Drakeley, Chris J; William, Timothy; Espino, Fe; Cox, Jonathan

    2014-11-01

    The potential applications of unmanned aerial vehicles (UAVs), or drones, have generated intense interest across many fields. UAVs offer the potential to collect detailed spatial information in real time at relatively low cost and are being used increasingly in conservation and ecological research. Within infectious disease epidemiology and public health research, UAVs can provide spatially and temporally accurate data critical to understanding the linkages between disease transmission and environmental factors. Using UAVs avoids many of the limitations associated with satellite data (e.g., long repeat times, cloud contamination, low spatial resolution). However, the practicalities of using UAVs for field research limit their use to specific applications and settings. UAVs fill a niche but do not replace existing remote-sensing methods.

  12. Application of solid state lighting in aerial refueling operations

    NASA Astrophysics Data System (ADS)

    Mangum, Scott; Singer, Jeffrey; Walker, Richard; Ferguson, Joseph; Kemp, Richard

    2005-09-01

    Operating at altitude and often in turbulent, low visibility conditions, in-flight refueling of aircraft is a challenging endeavor, even for seasoned aviators. The receiving aircraft must approach a large airborne tanker; take position within a "reception window" beneath and/or behind the tanker and, dependent upon the type of receiving aircraft, mate with an extended refueling boom or hose and drogue. Light is used to assist in the approach, alignment and refuel process of the aircraft. Robust solid state light emitting diodes (LEDs) are an appropriate choice for use in the challenging environments that these aircraft operate within. This paper examines how LEDs are incorporated into several unique lighting applications associated with such aerial refueling operations. We will discuss the design requirements, both environmental and photometric that defined the selection of different LED packages for use in state-of-the-art airborne refueling aircraft Formation Lights, Hose Drum/Drogue Unit lights and Pilot Director Lights.

  13. Canopy Measurements with a Small Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Peschel, J.

    2015-12-01

    This work discusses the use of a small unmanned aerial system (UAS) for the remote placement of wireless environmental sensors in tree canopies. Remote presence applications occur when one or more humans use a robot to project themselves into an environment in order to complete an inaccessible or time-critical mission. The more difficult problem of physical object manipulation goes one step further by incorporating physical-based interaction, in additional to visualization. Forested environments present especially unique challenges for small UAS versus similar domains (e.g., disaster response, inspection of critical infrastructure) due to the navigation and interaction required with dense tree canopies. This work describes two field investigations that inform: i) the type of physical object manipulation and visualization necessary for sensor placement (ventral, frontal, dorsal), ii) the necessary display form (hybrid) for piloting and sensor placement, and iii) visual feedback mechanisms useful for handling human-robot team role conflicts.

  14. Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology.

    PubMed

    Fornace, Kimberly M; Drakeley, Chris J; William, Timothy; Espino, Fe; Cox, Jonathan

    2014-11-01

    The potential applications of unmanned aerial vehicles (UAVs), or drones, have generated intense interest across many fields. UAVs offer the potential to collect detailed spatial information in real time at relatively low cost and are being used increasingly in conservation and ecological research. Within infectious disease epidemiology and public health research, UAVs can provide spatially and temporally accurate data critical to understanding the linkages between disease transmission and environmental factors. Using UAVs avoids many of the limitations associated with satellite data (e.g., long repeat times, cloud contamination, low spatial resolution). However, the practicalities of using UAVs for field research limit their use to specific applications and settings. UAVs fill a niche but do not replace existing remote-sensing methods. PMID:25443854

  15. Unmanned aerial vehicles (UAV) in atmospheric research and satellite validation

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Efremov, Denis; Sitnikova, Vera; Ulanovsky, Alexey; Popovicheva, Olga

    The perspectives of the development of methods and facilities based on UAV for atmospheric investigations are considered. Some aspects of these methods applications are discussed. Developments of the experimental samples of UAV onboard equipment for measurements of atmospheric parameters carried out in Central Aerological Observatory are presented. Hardware system for the UAV is developed. The results of measurements of the spatial distributions of the thermodynamic parameters and the concentrations of some gas species onboard of remotely piloted and unmanned aerial vehicles obtained in field tests are presented. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes , etc.

  16. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    SciTech Connect

    Ghil, M.; Kravtsov, S.; Robertson, A. W.; Smyth, P.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influence large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.

  17. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-06-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies.

  18. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only ~500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  19. Evaluation of regional-scale hydrological models using multiple criteria for 12 large river basins on all continents

    NASA Astrophysics Data System (ADS)

    Huang, Shaochun; Krysanova, Valentina; Hattermann, Fred; Vetter, Tobias; Flörke, Martina; Samaniego, Luis; Arheimer, Berit; Yang, Tao; van Griensven, Ann; Su, Buda; Gelfan, Alexander; Breuer, Lutz; Haberlandt, Uwe

    2016-04-01

    A good performance of hydrological impact models under historical climate and land use conditions is a prerequisite for reliable projections under climate change. The evaluation of nine regional-scale hydrological models considering monthly river discharge, long-term average seasonal dynamics and extremes was performed in the framework of the ISI-MIP project for 12 large river basins on all continents. The modelling tools include: ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3. These models were evaluated for the following basins: the Rhine and Tagus in Europe, the Niger and Blue Nile in Africa, the Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, the Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for all cases. The model outputs were evaluated using twelve statistical criteria to assess the fidelity of model simulations for monthly discharge, seasonal dynamics, flow duration curves, extreme floods and low flow. The reproduction of monthly discharge and seasonal dynamics was successful in all basins except the Darling, and the high flows and flood characteristics were also captured satisfactory in most cases. However, the criteria for low flow were below the thresholds in many cases. An overview of this collaborative experiment and main results on model evaluation will be presented.

  20. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence

    USGS Publications Warehouse

    Hardebeck, J.L.; Michael, A.J.

    2006-01-01

    We present a new focal mechanism stress inversion technique to produce regional-scale models of stress orientation containing the minimum complexity necessary to fit the data. Current practice is to divide a region into small subareas and to independently fit a stress tensor to the focal mechanisms of each subarea. This procedure may lead to apparent spatial variability that is actually an artifact of overfitting noisy data or nonuniquely fitting data that does not completely constrain the stress tensor. To remove these artifacts while retaining any stress variations that are strongly required by the data, we devise a damped inversion method to simultaneously invert for stress in all subareas while minimizing the difference in stress between adjacent subareas. This method is conceptually similar to other geophysical inverse techniques that incorporate damping, such as seismic tomography. In checkerboard tests, the damped inversion removes the stress rotation artifacts exhibited by an undamped inversion, while resolving sharper true stress rotations than a simple smoothed model or a moving-window inversion. We show an example of a spatially damped stress field for southern California. The methodology can also be used to study temporal stress changes, and an example for the Coalinga, California, aftershock sequence is shown. We recommend use of the damped inversion technique for any study examining spatial or temporal variations in the stress field.

  1. Potential contribution of ENVISAT ASAR alternating polarisation and Wide-Swath modes images for crop discrimination at the regional scale

    NASA Astrophysics Data System (ADS)

    Blaes, X.; Holeck, F.; Defourny, P.

    2002-01-01

    This experimental study was carried out in the framework of the DUP project "Dedicated Remote Sensing Product Generation for the Agro-Industry: Cereal Case" leaded by Synoptics b.v. (NL). The main objective is to investigate the potential contribution of the ENVISAT images for the discrimination of the main crops at a regional scale. ASAR Alternating Polarisation (AP and Wide Swath (WS) modes have been simulated from 15 ERS images over Belgium. A quantitative approach was completed using 791 parcels corresponding to the following crops: winter wheat, winter barley, spring wheat, spring barley, grasses, sugar beet, maize and potato. The impact of the spatial resolution of the ASAR sensor is assessed through the comparison of the results obtained for the AP (30m) and WS (150m) modes with regards to the field size. Both pixel-based and parcel-based unsupervised classification approaches have been applied. Dedicated interpretation schemes were developed for specific crop discrimination. The promising results obtained from the 150-m ASAR signal are expected to be further enhanced by the very high acquisition rate of the WS mode, i.e. an acquisition every 3 to 5 days.

  2. Prototyping an artificial neural network for burned area mapping on a regional scale in Mediterranean areas using MODIS images

    NASA Astrophysics Data System (ADS)

    Gómez, Israel; Martín, M. Pilar

    2011-10-01

    Each year thousands of ha of forest land are affected by forest fires in Southern European countries such as Spain. Burned area maps are a valuable instrument for designing prevention and recovery policies. Remote sensing has increasingly become the most widely used tool for this purpose on regional and global scales, where a large variety of techniques and data has been applied. This paper proposes a semiautomatic method for burned area mapping on a regional scale in Mediterranean areas (the Iberian Peninsula has been used as a study case). A Multi-layer Perceptron Network (MLPN) has been designed and applied to MODIS/Terra Surface Reflectance Daily L2G Global 500m SIN Grid multitemporal composite monthly images. The compositing criterion was based on maximum surface temperature. The research covered a six year period (2001-2006) from June to September, when most of the forest fires occur. The resulting burned area maps have been validated using official fire perimeters and compared with MODIS Collection 5 Burned Area Product (MCD45A1). The MLPN shown as an effective method, with a commission error of 29.1%, in the classification of the burned areas, while the omission error was of 14.9%. The results were compared with the MCD45A1 product, which had a slightly higher commission error (30.2%) and a considerably higher omission error (26.2%), indicating a high underestimation of the burned area.

  3. Regional-scale land-cover change during the 20th century and its consequences for biodiversity.

    PubMed

    Cousins, Sara A O; Auffret, Alistair G; Lindgren, Jessica; Tränk, Louise

    2015-01-01

    Extensive changes in land cover during the 20th century are known to have had detrimental effects on biodiversity in rural landscapes, but the magnitude of change and their ecological effects are not well known on regional scales. We digitized historical maps from the beginning of the 20th century over a 1652 km(2) study area in southeastern Sweden, comparing it to modern-day land cover with a focus on valuable habitat types. Semi-natural grassland cover decreased by over 96 % in the study area, being largely lost to afforestation and silviculture. Grasslands on finer soils were more likely to be converted into modern grassland or arable fields. However, in addition to remaining semi-natural grassland, today's valuable deciduous forest and wetland habitats were mostly grazed grassland in 1900. An analysis of the landscape-level biodiversity revealed that plant species richness was generally more related to the modern landscape, with grazing management being a positive influence on species richness.

  4. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Jathar, Shantanu H; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  5. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  6. Sea cliff instability hazard assessment at regional scale: a case study in the western coast of Portugal

    NASA Astrophysics Data System (ADS)

    Marques, Fernando; Taborda, Rui; Carreira, Diogo

    2010-05-01

    Sea cliff evolution is mainly produced by mass movements of different types and sizes, which are a considerable source of natural hazard in coastal areas. For two neighboring counties (Sintra and Cascais) located in the west coast of Portugal, a sea cliff instability statistically based susceptibility assessment was tested in order to analyze the influence of a set of predisposing factors in the prediction of future failures affecting areas located along the cliff top. The coastal areas of Sintra (length of cliffs 24.8km) and Cascais (length of cliffs 22.0km) are examples of contrasting cliff morphology, height (from less than 6m to more than 120m), and rock mass composition and strength (alternating marls and limestones, sandstones, granite, limestones). The inventories of past instabilities were performed by a multitemporal study of aerial photographs from different dates, for the period 1947-2007 (Sintra), and 1947-2008 (Cascais), which enabled the detection and measurement of the local maximum retreat at the cliff top, length of cliff affected and horizontal area lost at the cliff top. The aerial photo based data coupled with field surveys enabled the identification of the type of movements. These are mainly of the rock fall and planar slide types. These aerial photo based studies enabled the identification and measurement of 63 cliff failures at Sintra and 67 at Cascais coasts, with variable spatial density from 0.4 to 20 failures per km of cliff length for the 60/61 years of study period, providing the basis for the division of the cliffs in homogeneous sections in terms of horizontal area lost at the cliff top. Along the different cliff sections, the mean retreat rates varied between 0.0003m/year and 0.025m/year, and the mean values of the maximum local retreat of the cliff top varied between 5m and 17m, with two exceptional cliff failures that caused a net retreat of the cliff top of 70m and 25m. For the assessment of the susceptibility of cliff failures

  7. Study of Automatic Image Rectification and Registration of Scanned Historical Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Chen, H. R.; Tseng, Y. H.

    2016-06-01

    Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS) of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform) for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus) to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  8. Controller Design of Quadrotor Aerial Robot

    NASA Astrophysics Data System (ADS)

    Yali, Yu; SunFeng; Yuanxi, Wang

    This paper deduced the nonlinear dynamic model of a quadrotor aerial robot, which was a VTOL (vertical tale-off and landing) unmanned air vehicle. Since that is a complex model with the highly nonlinear multivariable strongly coupled and under-actuated property, the controller design of it was very difficult. Aimed at attaining the excellent controller, the whole system can be divided into three interconnected parts: attitude subsystem, vertical subsystem, position subsystem. Then nonlinear control strategy of them has been described, such as SDRE and Backstepping. The controller design was presented to stabilize the whole system. Through simulation result indicates, the various models have shown that the control law stabilize a quadrotor aerial robot with good tracking performance and robotness of the system.

  9. Aerial color infrared photography applications to citriculture

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W., Jr.

    1980-01-01

    Results of a one-year experimental study on the use of aerial color infrared photography in citrus grove management are presented. It is found that the spring season, when trees are in flush (have young leaves), is the best season to photograph visible differences between healthy and diseased trees. It is also shown that the best photography can be obtained with a 12-in. focal length lens. The photographic scale that allowed good photo interpretation with simple inexpensive equipment was 1 in. = 330 ft. The use of a window-overlay transparency method allowed rapid photo interpretation and data recording in computer-compatible forms. Aerial color infrared photography carried out during the spring season revealed a more accurate status of tree condition than visual inspection.

  10. Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes.

    PubMed

    Nadeu, Elisabet; Gobin, Anne; Fiener, Peter; van Wesemael, Bas; van Oost, Kristof

    2015-08-01

    Agricultural management has received increased attention over the last decades due to its central role in carbon (C) sequestration and greenhouse gas mitigation. Yet, regardless of the large body of literature on the effects of soil erosion by tillage and water on soil organic carbon (SOC) stocks in agricultural landscapes, the significance of soil redistribution for the overall C budget and the C sequestration potential of land management options remains poorly quantified. In this study, we explore the role of lateral SOC fluxes in regional scale modelling of SOC stocks under three different agricultural management practices in central Belgium: conventional tillage (CT), reduced tillage (RT) and reduced tillage with additional carbon input (RT+i). We assessed each management scenario twice: using a conventional approach that did not account for lateral fluxes and an alternative approach that included soil erosion-induced lateral SOC fluxes. The results show that accounting for lateral fluxes increased C sequestration rates by 2.7, 2.5 and 1.5 g C m(-2)  yr(-1) for CT, RT and RT+i, respectively, relative to the conventional approach. Soil redistribution also led to a reduction of SOC concentration in the plough layer and increased the spatial variability of SOC stocks, suggesting that C sequestration studies relying on changes in the plough layer may underestimate the soil's C sequestration potential due to the effects of soil erosion. Additionally, lateral C export from cropland was in the same of order of magnitude as C sequestration; hence, the fate of C exported from cropland into other land uses is crucial to determine the ultimate impact of management and erosion on the landscape C balance. Consequently, soil management strategies targeting C sequestration will be most effective when accompanied by measures that reduce soil erosion given that erosion loss can balance potential C uptake, particularly in sloping areas.

  11. Regional scale soil thickness prediction using digital terrain modeling and seismic data: application to erosion hazard mapping.

    NASA Astrophysics Data System (ADS)

    Rochat, A.; Grandjean, G.; Cerdan, O.; Samyn, K.

    2012-04-01

    Empirical laws derived from terrain parameters - such as DTM - and calibrated with in-situ borehole data are widely used for mapping soil thickness at regional scale. But with this approach, economical and practical constrains due to drilling requires to work on limited area (typically a few ten km2). Yet, seismic methods using surface waves, recently used for subsurface issue, showed a great interest for measuring soil thickness along profiles or in 3D (parcel mapping) which is more convenient for spacializing using empirical law calibration. Thus, to accurately map soil thickness over a 400km2 large area, we suggest to match measurement provided by SASW method (spectral analysis of surface waves) with an empirical law derived from terrain attributes. For this study, S-waves velocity has been measured along 10 profiles and after calibration with penetrometrics sounding, the value Vs=300 m/s was considered as a threshold between fertile soil (loess) and consolidated material (clay) leading to define the soil thickness. Comparison between measured soil thickness and the empirical index related to soil depth has shown significant results (R2=0.58). After index calibration, soil thickness was mapped over the catchment basin using a regression law between soil depth index and measured thickness. Finally, the French soil databank (BSS®) was used for the map validation: loess depths reported by geotechnical interpretation (drilling and sounding from BSS®) fit closely to depths predicted by the thickness map. The test zone was located within the Cailly Aubette-Robec catchment area, in the Northern part of France. The region has the particularity to be severely affected by erosion processes with dramatic farming issues. So, to valorize this soil thickness mapping methodology, results were exploited in term of erosion hazard characterization by coupling the thickness map with a soil loss rate map (in t/ha/year), leading to provide temporal information about erosion

  12. A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data

  13. Impacts of pore to regional scale variations in authigenic composition and texture on anthropogenically influenced fluid-rock interactions

    NASA Astrophysics Data System (ADS)

    Bowen, B. B.

    2015-12-01

    Diagenetic history plays a dominant role in determining the suitability of subsurface rock units as hosts for fluids that have societal importance. The performance of subsurface aquifers and storage facilities for CO2, natural gas, and liquid waste, is largely tied to the evolution of pore space and distribution and composition of authigenic minerals. While geoscientists may be well aware of the importance and nuances of diagenesis, project managers and decision-makers are unlikely to have a geologic understanding of determining factors such as burial history, fluid flow, and mineral thermodynamics. Thus, if falls to the geoscientists to effectively communicate meaningful conceptual models that adequately capture diagenetic heterogeneity and the potential for temporal changes with anthropogenically-induced changes in subsurface chemistry. This can be particularly difficult in subsurface systems that are sparsely sampled. Here, we look at the example of the basal Cambrian Mount Simon Sandstone and overlying Eau Claire Formation in the Illinois Basin, the respective reservoir and seal for the largest ongoing demonstration of anthropogenic CO2 sequestration in the United States. Relatively few cores are available to study the pore-scale composition and structure of these units, and those that are available show a complex and spatially variable diagenetic history. Compilation of past studies and new analyses from the Illinois Basin are combined to illustrate the burial history and fluid flow record that will influence how these units respond to the massive volumes of supercritical CO2 injected into the subsurface. Pore to regional scale differences in authigenic mineral composition and texture result in significantly different predicted fluid-rock interactions and various potential consequences of injection. This project provides examples of both successes and challenges associated with communicating the diagentic complexity to stakeholders and the potential

  14. Comparison of Observed and Modeled Regional Scale Aerosol Characteristics for ACE-ASIA and TRACE-P

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A.; Carmichael, G.; Tang, Y.; McNaughton, C.

    2002-12-01

    During spring of 2001 we measured aerosol physical, chemical and optical properties for Asian aerosol with our similar instrument sets [University of Hawaii] from two aircraft - the NASA P3-B (TRACE-P) and NSF C-130 (ACE-ASIA). Observed aerosol characteristics included aerosol number concentration, measured with Ultrafine Condensation Nuclei counter (UCN) and CN counters; size distributions, obtained from a radial differential mobility analyzer (RDMA), a laser optical particle counter (OPC), aerodynamic particle sizer (APS) and wing mounted probes; aerosol light scattering and absorption obtained from nephelometers and a Particle Soot Absorption Photometers (PSAP). On the C-130 a dry and humidified nephelometer was operated to measure humidity dependence of aerosol light scattering, f(RH). Size distributions and number concentrations were measured with thermal aerosol volatilization to infer particles volatility and refractory properties linked to dust and soot aerosol components. Here we compare these observations to results from the University of Iowa CFORS/STEM model of related aerosol characteristics during these measurement periods. This model includes a wide variety of aerosol chemical and optical properties - black and organic carbon (BC and OC), dust, sulfate concentrations and calculated aerosol optical depth. This comparison is based not only on case studies bur also on regional scale air mass characterization. To facilitate this comparison a set of scatter "signature" plots of measured aerosol parameters like f(RH) vs. fractional submicron aerosol surface area or submicron refractory volume vs. total aerosol absorption is used. This approach generates clusters of data characteristics for different air masses. The model shows a high degree of consistency in identifying the main features of biomass burning, urban/industrial pollution, and dust events. This combination of measured and modeled aerosol parameters is shown to be valuable in quantifying the

  15. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  16. Spatial and temporal constraints on regional-scale groundwater flow in the Pampa del Tamarugal Basin, Atacama Desert, Chile

    NASA Astrophysics Data System (ADS)

    Jayne, Richard S.; Pollyea, Ryan M.; Dodd, Justin P.; Olson, Elizabeth J.; Swanson, Susan K.

    2016-08-01

    Aquifers within the Pampa del Tamarugal Basin (Atacama Desert, northern Chile) are the sole source of water for the coastal city of Iquique and the economically important mining industry. Despite this, the regional groundwater system remains poorly understood. Although it is widely accepted that aquifer recharge originates as precipitation in the Altiplano and Andean Cordillera to the east, there remains debate on whether recharge is driven primarily by near-surface groundwater flow in response to periodic flood events or by basal groundwater flux through deep-seated basin fractures. In addressing this debate, the present study quantifies spatial and temporal variability in regional-scale groundwater flow paths at 20.5°S latitude by combining a two-dimensional model of groundwater and heat flow with field observations and δ18O isotope values in surface water and groundwater. Results suggest that both previously proposed aquifer recharge mechanisms are likely influencing aquifers within the Pampa del Tamarugal Basin; however, each mechanism is operating on different spatial and temporal scales. Storm-driven flood events in the Altiplano readily transmit groundwater to the eastern Pampa del Tamarugal Basin through near-surface groundwater flow on short time scales, e.g., 100-101 years, but these effects are likely isolated to aquifers in the eastern third of the basin. In addition, this study illustrates a physical mechanism for groundwater originating in the eastern highlands to recharge aquifers and salars in the western Pampa del Tamarugal Basin over timescales of 104-105 years.

  17. Multinational tagging efforts illustrate regional scale of distribution and threats for east pacific green turtles (Chelonia mydas agassizii).

    PubMed

    Hart, Catherine E; Blanco, Gabriela S; Coyne, Michael S; Delgado-Trejo, Carlos; Godley, Brendan J; Jones, T Todd; Resendiz, Antonio; Seminoff, Jeffrey A; Witt, Matthew J; Nichols, Wallace J

    2015-01-01

    positive consequences on a regional scale.

  18. Multinational tagging efforts illustrate regional scale of distribution and threats for east pacific green turtles (Chelonia mydas agassizii).

    PubMed

    Hart, Catherine E; Blanco, Gabriela S; Coyne, Michael S; Delgado-Trejo, Carlos; Godley, Brendan J; Jones, T Todd; Resendiz, Antonio; Seminoff, Jeffrey A; Witt, Matthew J; Nichols, Wallace J

    2015-01-01

    positive consequences on a regional scale. PMID:25646803

  19. Bayesian probabilities for Mw 9.0+ earthquakes in the Aleutian Islands from a regionally scaled global rate

    NASA Astrophysics Data System (ADS)

    Butler, Rhett; Frazer, L. Neil; Templeton, William J.

    2016-05-01

    We use the global rate of Mw ≥ 9.0 earthquakes, and standard Bayesian procedures, to estimate the probability of such mega events in the Aleutian Islands, where they pose a significant risk to Hawaii. We find that the probability of such an earthquake along the Aleutians island arc is 6.5% to 12% over the next 50 years (50% credibility interval) and that the annualized risk to Hawai'i is about $30 M. Our method (the regionally scaled global rate method or RSGR) is to scale the global rate of Mw 9.0+ events in proportion to the fraction of global subduction (units of area per year) that takes place in the Aleutians. The RSGR method assumes that Mw 9.0+ events are a Poisson process with a rate that is both globally and regionally stationary on the time scale of centuries, and it follows the principle of Burbidge et al. (2008) who used the product of fault length and convergence rate, i.e., the area being subducted per annum, to scale the Poisson rate for the GSS to sections of the Indonesian subduction zone. Before applying RSGR to the Aleutians, we first apply it to five other regions of the global subduction system where its rate predictions can be compared with those from paleotsunami, paleoseismic, and geoarcheology data. To obtain regional rates from paleodata, we give a closed-form solution for the probability density function of the Poisson rate when event count and observation time are both uncertain.

  20. Assessing the Impact of Agricultural Pressures on N and P Loads and Potential Eutrophication Risk at Regional Scales

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Delmas, M.; Moatar, F.

    2014-12-01

    Excessive nutrient loading of freshwater bodies results in increased eutrophication risk worldwide. The processes controlling N/P transfer in agricultural landscapes are well documented through scientific studies conducted in intensively monitored catchments. However, managers need tools to assess water quality and evaluate the contribution of agriculture to eutrophication at regional scales, including unmonitored or poorly monitored areas. To this end, we present an assessment framework which includes: i) a mass-balance model to estimate diffuse N/P transfer and retention and ii) indicators based on N:P:Si molar ratios to assess potential eutrophication risk from external loads. The model, called Nutting (Dupas et al., 2013), integrates variables for both detailed description of agricultural pressures (N surplus, soil P content) and characterisation of physical attributes of catchments (including spatial attributes). It was calibrated on 160 catchments, and applied to 2210 unmonitored headwater bodies in France (Dupas et al., under review). N and P retention represented 53% and 95% of soil N and P surplus, respectively, and was mainly controlled by runoff and an index characterising infiltration/runoff properties. According to our estimates, diffuse agricultural sources represented a mean of 97% of N loads and N exceeded Si in 93% of the catchments, whilst they represented 46% of P loads and P exceeded Si in 26-65% of the catchments. Estimated eutrophication risk was highly sensitive to assumptions about P bioavailability, hence the range of headwaters potentially at risk spanned 26-63% of the catchments, depending on assumptions. To reduce this uncertainty, we recommend introducing P bioavailability tests in water monitoring programs, especially in sensitive areas. Dupas R et al. Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 2013; 443: 152-62. Dupas R et al. Assessing the impact

  1. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005.

    PubMed

    Ma, L; Velthof, G L; Wang, F H; Qin, W; Zhang, W F; Liu, Z; Zhang, Y; Wei, J; Lesschen, J P; Ma, W Q; Oenema, O; Zhang, F S

    2012-09-15

    Crop and animal production in China has increased significantly during the last decades, but at the cost of large increases in nitrogen (N) and phosphorus (P) losses, which contribute to ecosystem degradation and human health effects. This information is largely based on scattered field experiments, surveys and national statistics. As a consequence, there is as yet no comprehensive understanding of the changes in N and P cycling and losses at regional and national scales. Here, we present the results of an integrated assessment of the N and P use efficiencies (NUE and PUE) and N and P losses in the chain of crop and animal production, food processing and retail, and food consumption at regional scale in 1980 and 2005, using a uniform approach and databases. Our results show that the N and P costs of food production-consumption almost doubled between 1980 and 2005, but with large regional variation. The NUE and PUE of crop production decreased dramatically, while NUE and PUE in animal production increased. Interestingly, NUE and PUE of the food processing sector decreased from about 75% to 50%. Intake of N and P per capita increased, but again with large regional variation. Losses of N and P from agriculture to atmosphere and water bodies increased in most regions, especially in the east and south of the country. Highest losses were estimated for the Beijing and Tianjin metropolitan regions (North China), Pearl River Delta (South China) and Yangzi River Delta (East China). In conclusion, the changes and regional variations in NUE and PUE in the food chain of China are large and complex. Changes occurred in the whole crop and animal production, food processing and consumption chain, and were largest in the most populous areas between 1980 and 2005.

  2. Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes.

    PubMed

    Nadeu, Elisabet; Gobin, Anne; Fiener, Peter; van Wesemael, Bas; van Oost, Kristof

    2015-08-01

    Agricultural management has received increased attention over the last decades due to its central role in carbon (C) sequestration and greenhouse gas mitigation. Yet, regardless of the large body of literature on the effects of soil erosion by tillage and water on soil organic carbon (SOC) stocks in agricultural landscapes, the significance of soil redistribution for the overall C budget and the C sequestration potential of land management options remains poorly quantified. In this study, we explore the role of lateral SOC fluxes in regional scale modelling of SOC stocks under three different agricultural management practices in central Belgium: conventional tillage (CT), reduced tillage (RT) and reduced tillage with additional carbon input (RT+i). We assessed each management scenario twice: using a conventional approach that did not account for lateral fluxes and an alternative approach that included soil erosion-induced lateral SOC fluxes. The results show that accounting for lateral fluxes increased C sequestration rates by 2.7, 2.5 and 1.5 g C m(-2)  yr(-1) for CT, RT and RT+i, respectively, relative to the conventional approach. Soil redistribution also led to a reduction of SOC concentration in the plough layer and increased the spatial variability of SOC stocks, suggesting that C sequestration studies relying on changes in the plough layer may underestimate the soil's C sequestration potential due to the effects of soil erosion. Additionally, lateral C export from cropland was in the same of order of magnitude as C sequestration; hence, the fate of C exported from cropland into other land uses is crucial to determine the ultimate impact of management and erosion on the landscape C balance. Consequently, soil management strategies targeting C sequestration will be most effective when accompanied by measures that reduce soil erosion given that erosion loss can balance potential C uptake, particularly in sloping areas. PMID:25663657

  3. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2015-07-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, in situ temperature and salinity measurements in the GOM, and observed mean depth-averaged velocities. Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv over the Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  4. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2014-12-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, temperature and salinity time series in the GOM, glider transects in the MAB, and observed mean depth-averaged velocities by Lentz (2008a). Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv at Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  5. Multinational Tagging Efforts Illustrate Regional Scale of Distribution and Threats for East Pacific Green Turtles (Chelonia mydas agassizii)

    PubMed Central

    Hart, Catherine E.; Blanco, Gabriela S.; Coyne, Michael S.; Delgado-Trejo, Carlos; Godley, Brendan J.; Jones, T. Todd; Resendiz, Antonio; Seminoff, Jeffrey A.; Witt, Matthew J.; Nichols, Wallace J.

    2015-01-01

    positive consequences on a regional scale. PMID:25646803

  6. Seasonal patterns of rainfall and river isotopic chemistry in northern Amazonia (Guyana): From the headwater to the regional scale

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Bovolo, C. Isabella; Forsythe, Nathan; Pedentchouk, Nikolai; Parkin, Geoff; Wagner, Thomas

    2014-07-01

    We use first field-based observations of precipitation and river isotopic chemistry from a three-year study (2009-2011) in rainforest and nearby savannah in central Guyana at the northern rim of the Amazon rainforest to establish the quality of modelled or remotely-sensed datasets. Our 3 years of data capture a reduced rainfall regime in 2009 and an extended wet season in 2010, in contrast to the widely documented Amazonian floods in 2009 and droughts in 2010. Comparisons of observed precipitation with satellite derived TRMM and ECMWF ERA-Interim reanalysis precipitation show that both of these data sets capture the general pattern of seasonality, but substantially underestimate rainfall amounts in the primary wet season (by up to 50% and 72% respectively). The TRMM dataset is generally better at characterising the main dry season from September to December but the ERA-Interim model can overestimate precipitation in the dry season by up to 175%. Our new data on isotopic chemistry of river waters show that δ2H/δ18O values in this region are broadly consistent with interpolated global datasets of modelled precipitation isotopic signatures. The dominance of isotopically lighter water derived from the rains of the ITCZ during the wet season provides evidence of the close coupling of water chemistry of headwater rivers on the northern rim of Amazonia to the positioning of the ITCZ over the region. Our results highlight the challenge in understanding and representing local scale hydrological and biogeochemical characteristics using regional scale model data. We argue that combining point and local scale field data with larger scale model data is necessary to progress towards a comprehensive understanding of climate-hydrology interactions in Amazonia.

  7. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  8. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  9. Flood evolution assessment and monitoring using hydrological modelling techniques: analysis of the inundation areas at a regional scale

    NASA Astrophysics Data System (ADS)

    Podhoranyi, M.; Kuchar, S.; Portero, A.

    2016-08-01

    The primary objective of this study is to present techniques that cover usage of a hydrodynamic model as the main tool for monitoring and assessment of flood events while focusing on modelling of inundation areas. We analyzed the 2010 flood event (14th May - 20th May) that occurred in the Moravian-Silesian region (Czech Republic). Under investigation were four main catchments: Opava, Odra, Olše and Ostravice. Four hydrodynamic models were created and implemented into the Floreon+ platform in order to map inundation areas that arose during the flood event. In order to study the dynamics of the water, we applied an unsteady flow simulation for the entire area (HEC-RAS 4.1). The inundation areas were monitored, evaluated and recorded semi-automatically by means of the Floreon+ platform. We focused on information about the extent and presence of the flood areas. The modeled flooded areas were verified by comparing them with real data from different sources (official reports, aerial photos and hydrological networks). The study confirmed that hydrodynamic modeling is a very useful tool for mapping and monitoring of inundation areas. Overall, our models detected 48 inundation areas during the 2010 flood event.

  10. Toxicological effects of aerial application of monocrotophos.

    PubMed

    Rao, R R; Quadros, F; Mazmudar, R M; Marathe, M R; Gangoli, S D

    1980-01-01

    Aerial application of the insecticide Nuvacron 40% (monocrotophos) had no significant effect on the cholinesterase level of plasma and erythrocytes of cattle, chicken, buffaloes, and human volunteers exposed to the spray. Contamination of canal water with the pesticide was completely eliminated within 24 hr, whereas that in the soil was reduced by 80% in 72 hr. The degradation of insecticide residue in grass was about 90% in seven days and in cotton leaves about 85% for the same period.

  11. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  12. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  13. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  14. Localization of aerial broadband noise by pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.; Schusterman, Ronald J.; Southall, Brandon L.; Kastak, David

    2004-05-01

    Although many pinnipeds (seals, sea lions, and walruses) emit broadband calls on land as part of their communication system, few studies have addressed these animals' ability to localize aerial broadband sounds. In this study, the aerial sound localization acuities of a female northern elephant seal (Mirounga angustirostris), a male harbor seal (Phoca vitulina), and a female California sea lion (Zalophus californianus) were measured in the horizontal plane. The stimulus was broadband white noise that was band pass filtered between 1.2 and 15 kHz. Testing was conducted in a hemi-anechoic chamber using a left/right forced choice procedure to measure the minimum audible angle (MAA) for each subject. MAAs were defined as half the angular separation of two sound sources bisected by a subject's midline that corresponded to 75% correct discrimination. MAAs were 4.7°, 3.6°, and 4.2° for the northern elephant seal, harbor seal, and California sea lion, respectively. These results demonstrate that individuals of these pinniped species have sound localization abilities comparable to the domestic cat and rhesus macaque. The acuity differences between our subjects were small and not predicted by head size. These results likely reflect the relatively acute general abilities of pinnipeds to localize aerial broadband signals.

  15. Remotely deployable aerial inspection using tactile sensors

    SciTech Connect

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R.; Sullivan, J. C.; Pipe, A. G.

    2014-02-18

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  16. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches

    EPA Science Inventory

    Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (...

  17. Fiber optic strain monitor for an uninhabited aerial vehicle

    NASA Astrophysics Data System (ADS)

    Owens, Thomas; Pesavento, Philip; Ice, Robert; Knudsen, Steven; Harrison, Mary Ann

    2006-03-01

    The Institute for Scientific Research (ISR) and the Naval Research Laboratory (NRL) will build and operate portable real-time fiber Bragg grating interrogator systems for monitoring strain in ISR's Multi-Modal Sensor (MMS) uninhabited aerial vehicle (UAV). ISR's UAV is constructed of fiberglass composites with aluminum stiffeners. The cargo bay and on-board electronics are intended to accommodate a variety of compact sensors. Because of the small size of the UAV, weight and volume are restricted, necessitating considerable redesign of laboratory interrogators to meet UAV constraints. NRL will be supplying a multiplexed interrogator for monitoring structural response rates in the UAV up to about 2 kHz, while ISR will develop an optical frequency domain reflectometer (OFDR) for measuring lower frequency response of large numbers of gratings below about 100 Hz. The OFDR system will test a special differencing technique to separate strain induced signals from environmentally induced signals. A National Instruments CompactRIO system with a 3 million gate FPGA and a 200 MHz Pentium processor is being used for real-time data acquisition and onboard signal analysis. The CompactRIO system weighs about 1.6 kg, measures 18cm x 9cm x 9cm, consumes less than 5 W of power, and withstands over 50g of shock. Lithium polymer batteries will be used to power the system for flight times up to about one hour in the present configuration. While the near-term objective of this project is to overcome the challenges of applying fiber-optic strain monitors to aerial vehicles, the longer-term objective is to develop a system for detecting damage in aerial vehicles using chaotic attractor based methods. One of the key issues in damage detection by this means revolves around the ability to use the chaotic excitation of the airframe from random aerodynamic vortices to detect the onset of composite degradation. There is evidence that attractor based methods applied to these ambient chaotic

  18. Regional scale analysis of nitrous oxide emissions within the U.S. Corn Belt and the potential role of episodic hot spots

    NASA Astrophysics Data System (ADS)

    Griffis, T. J.; Lee, X.; Baker, J. M.; Russelle, M.; Zhang, X.; Millet, D. B.; Venterea, R. T.

    2012-12-01

    Nitrous oxide (N2O) is a long-lived greenhouse gas that has the third largest radiative forcing on the Earth-Atmosphere system and has become the most important stratospheric ozone depleting substance of the 21st century. The rapid increase in N2O concentrations over the last century is primarily attributed to the Haber-Bosch process and the green revolution. Predicting future concentrations and developing mitigation strategies for N2O is a critical environmental challenge as pressure mounts on agricultural ecosystems to deliver more products to a burgeoning population. Bottom-up (process/inventory) and top-down (global) strategies are used to constrain the global N2O budget, but have been inadequately tested by data collected at the appropriate spatial and temporal scales. Two-years of tall tower (regional-scale) high-frequency N2O concentration data and boundary layer budget techniques were used to quantify the regional budget and assess bottom-up and top-down emission factors within the U.S. Corn Belt. Here we show that regional flux estimates were 2 to 9-fold greater than bottom-up emission estimates provided by the EDGAR, IPCC, and GEIA assessments. Using our regional flux data we derived "internal" and "external" emission factors that relate directly to the bottom-up and top-down perspectives on constraining the global N2O cycle. The internal and external emission factors were 4.0 and 5.6%, respectively, and significantly larger than that derived from bottom-up approaches. It is hypothesized that this bias is caused by episodic leakage mechanisms that can only be accounted for at the appropriate spatial and temporal scales.N2O emission hot spots from agricultural drainage ditches are shown to exceed 60 nmol m-2 s-1 and, at times, are about 60-fold greater than typical field-scale fluxes. Our data and analyses suggest that many field-scale studies that quantify greenhouse gas emissions will significantly underestimate the true net radiative forcing of

  19. Action cameras and low-cost aerial vehicles in archaeology

    NASA Astrophysics Data System (ADS)

    Ballarin, M.; Balletti, C.; Guerra, F.

    2015-05-01

    This research is focused on the analysis of the potential of a close range aerial photogrammetry system, which is accessible both in economic terms and in terms of simplicity of use. In particular the Go Pro Hero3 Black Edition and the Parrot Ar. Drone 2.0 were studied. There are essentially two limitations to the system and they were found for both the instruments used. Indeed, the frames captured by the Go Pro are subject to great distortion and consequently pose numerous calibration problems. On the other hand, the limitation of the system lies in the difficulty of maintaining a flight configuration suitable for photogrammetric purposes in unfavourable environmental conditions. The aim of this research is to analyse how far the limitations highlighted can influence the precision of the survey and consequent quality of the results obtained. To this end, the integrated GoPro and Parrot system was used during a survey campaign on the Altilia archaeological site, in Molise. The data obtained was compared with that gathered by more traditional methods, such as the laser scanner. The system was employed in the field of archaeology because here the question of cost often has a considerable importance and the metric aspect is frequently subordinate to the qualitative and interpretative aspects. Herein one of the products of these systems; the orthophoto will be analysed, which is particularly useful in archaeology, especially in situations such as this dig in which there aren't many structures in elevation present. The system proposed has proven to be an accessible solution for producing an aerial documentation, which adds the excellent quality of the result to metric data for which the precision is known.

  20. Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale

    PubMed Central

    Setterfield, Samantha A.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Wainger, Lisa; Petty, Aaron M.; Barrow, Piers; Shepherd, Ian J.; Ferdinands, Keith B.

    2013-01-01

    Background Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. Methodology/Principal Findings We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha−1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha−1 resulted in an increase from five to 38 days with fire risk in the ‘severe’ category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. Conclusions/Significance This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies. PMID:23690917

  1. Aerial Prefeeding Followed by Ground Based Toxic Baiting for More Efficient and Acceptable Poisoning of Invasive Small Mammalian Pests.

    PubMed

    Morgan, David; Warburton, Bruce; Nugent, Graham

    2015-01-01

    Introduced brushtail possums (Trichosurus vulpecula) and rat species (Rattus spp.) are major vertebrate pests in New Zealand, with impacts on conservation and agriculture being managed largely through poisoning operations. Aerial distribution of baits containing sodium fluoroacetate (1080) has been refined to maximise cost effectiveness and minimise environmental impact, but this method is strongly opposed by some as it is perceived as being indiscriminate. Although ground based control enables precise placement of baits, operations are often more than twice as costly as aerial control, mainly due to the high labour costs. We investigated a new approach to ground based control that combined aerial distribution of non-toxic 'prefeed' baits followed by sparse distribution of toxic baits at regular intervals along the GPS tracked prefeeding flight paths. This approach was tested in two field trials in which both 1080 baits and cholecalciferol baits were used in separate areas. Effectiveness of the approach, assessed primarily using 'chewcards', was compared with that of scheduled aerial 1080 operations that were conducted in outlying areas of both trials. Contractors carrying out ground based control were able to follow the GPS tracks of aerial prefeeding flight lines very accurately, and with 1080 baits achieved very high levels of kill of possums and rats similar to those achieved by aerial 1080 baiting. Cholecalciferol was less effective in the first trial, but by doubling the amount of cholecalciferol bait used in the second trial, few possums or rats survived. By measuring the time taken to complete ground baiting from GPS tracks, we predicted that the method (using 1080 baits) would be similarly cost effective to aerial 1080 operations for controlling possums and rats, and considerably less expensive than typical current costs of ground based control. The main limitations to the use of the method will be access to, and size of, the operational site, along with

  2. Aerial Prefeeding Followed by Ground Based Toxic Baiting for More Efficient and Acceptable Poisoning of Invasive Small Mammalian Pests

    PubMed Central

    Morgan, David; Warburton, Bruce; Nugent, Graham

    2015-01-01

    Introduced brushtail possums (Trichosurus vulpecula) and rat species (Rattus spp.) are major vertebrate pests in New Zealand, with impacts on conservation and agriculture being managed largely through poisoning operations. Aerial distribution of baits containing sodium fluoroacetate (1080) has been refined to maximise cost effectiveness and minimise environmental impact, but this method is strongly opposed by some as it is perceived as being indiscriminate. Although ground based control enables precise placement of baits, operations are often more than twice as costly as aerial control, mainly due to the high labour costs. We investigated a new approach to ground based control that combined aerial distribution of non-toxic ‘prefeed’ baits followed by sparse distribution of toxic baits at regular intervals along the GPS tracked prefeeding flight paths. This approach was tested in two field trials in which both 1080 baits and cholecalciferol baits were used in separate areas. Effectiveness of the approach, assessed primarily using ‘chewcards’, was compared with that of scheduled aerial 1080 operations that were conducted in outlying areas of both trials. Contractors carrying out ground based control were able to follow the GPS tracks of aerial prefeeding flight lines very accurately, and with 1080 baits achieved very high levels of kill of possums and rats similar to those achieved by aerial 1080 baiting. Cholecalciferol was less effective in the first trial, but by doubling the amount of cholecalciferol bait used in the second trial, few possums or rats survived. By measuring the time taken to complete ground baiting from GPS tracks, we predicted that the method (using 1080 baits) would be similarly cost effective to aerial 1080 operations for controlling possums and rats, and considerably less expensive than typical current costs of ground based control. The main limitations to the use of the method will be access to, and size of, the operational site

  3. Simulation of maize irrigation requirements at the regional scale: comparison between results obtained with measured and FAO-56 crop coefficient

    NASA Astrophysics Data System (ADS)

    Facchi, A.; Gharsallah, O.; Gandolfi, C.; Chiaradia, E.; Mancini, M.

    2012-04-01

    The FAO-56 "single crop coefficient" or "double crop coefficient" approaches are the most recommended and widely adopted procedures for the estimation of crop irrigation requirements. In these methods crop evapotranspiration in well-watered conditions is calculated by multiplying the grass reference evapotranspiration ET0 determined by the Penman-Monteith FAO-56 equation and a crop coefficient Kc depending on the crop type and its growing stage. In particular, the "double crop coefficient" allows the separation of soil evaporation and crop transpiration, splitting Kc in two different terms: a basal crop coefficient Kcb and a soil evaporation coefficient Ke. Many authors in the last fifteen years showed that the FAO Kc and Kcb tabulated coefficients, even if adjusted using the specific procedure based on local meteorological, irrigation and crop data suggested by FAO-56, tend to underestimate the observed crop coefficients in arid and semi-arid environments, while an overestimation often occurs for humid and semi-humid regions. In the literature differences up to ±40% especially during the middle growth cycle are reported, mainly due to the complexity of the crop coefficient which actually integrates several physical and biological factors. The purpose of our research was to measure the Kc pattern for maize grown in the Lombardy Region (Northern Italy) and to evaluate the difference in crop irrigation requirements at a regional scale considering the measured Kc instead of the FAO tabulated values using a spatially distributed hydrological model. Kc was calculated for two experimental maize fields for years 2006, 2010 and 2011 as the ratio between actual crop evapotranspiration (ET) in well watered conditions and ET0. ET was measured using eddy-covariance technique while ET0 was determined from agro-meteorological dat