Sample records for aerial systems suas

  1. Advancing drought monitoring using a Small Unmanned Aerial System (sUAS) in a changing climate

    NASA Astrophysics Data System (ADS)

    Ryu, J.

    2016-12-01

    Drought as a natural hazard, increasingly threatens the sustainability of regional water resources around the world. Given current trends in climate variability and change, droughts are likely to continue and increase. One of the effective ways to mitigate drought impacts may be to use a Small Unmanned Aerial System (sUAS) to improve understanding of the factors that drive the onset and development of drought conditions at local levels would enable planners and end users to more effectively manage and meter out limited water resources. During the presentation, the author will propose a methodological approach to apply sUAS for drought monitoring along with federal regulations and policies.

  2. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  3. Development of Autonomous Optimal Cooperative Control in Relay Rover Configured Small Unmanned Aerial Systems

    DTIC Science & Technology

    2013-03-01

    Unmanned Aircraft Systems Flight Plan that identified small unmanned aerial systems ( SUAS ) as “a profound technological...advances in small unmanned aerial systems ( SUAS ) cooperative control. The end state objective of the research effort was to flight test an autonomous...requirements were captured in the Unmanned Aircraft Systems Flight Plan . The flight plan

  4. Deployment of Small Unmanned Aerial Systems (sUAS) in Emergency and Disaster Response Scenarios to Support Local Emergency Management Agencies

    NASA Astrophysics Data System (ADS)

    Calamaio, C. L.; Walker, J.; Beck, J. M.; Graves, S. J.; Johnson, C.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are working closely with the Madison County Emergency Management Agency (EMA), GeoHuntsville's UAS Working Group, and the NOAA UAS Program Office, to conduct a series of practical demonstrations testing the use of small unmanned aerial systems (sUAS) for emergency response activities in Madison County, Alabama. These exercises demonstrate the use of UAS to detect and visualize hazards in affected areas via the delivery of aerial imagery and associated data products to law enforcement first responders in a variety of different scenarios, for example, search and rescue, tornado track mapping, damage assessment, and situational awareness/containment during active shooter incidents. In addition to showcasing the use of UAS as a tool for emergency services, these pilot exercises provide the opportunity to engage the appropriate stakeholders from several communities including first responders, geospatial intelligence, active members of the unmanned systems industry, and academia. This presentation will showcase the challenges associated with delivering quality data products for emergency services in a timely manner as well as the related challenges in integrating the technology into local emergency management.

  5. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  6. Assessing the spatial distribution of coral bleaching using small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.

    2018-06-01

    Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.

  7. Melon yield prediction using small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Tiebiao; Wang, Zhongdao; Yang, Qi; Chen, YangQuan

    2017-05-01

    Thanks to the development of camera technologies, small unmanned aerial systems (sUAS), it is possible to collect aerial images of field with more flexible visit, higher resolution and much lower cost. Furthermore, the performance of objection detection based on deeply trained convolutional neural networks (CNNs) has been improved significantly. In this study, we applied these technologies in the melon production, where high-resolution aerial images were used to count melons in the field and predict the yield. CNN-based object detection framework-Faster R-CNN is applied in the melon classification. Our results showed that sUAS plus CNNs were able to detect melons accurately in the late harvest season.

  8. Radio Tracking Fish with Small Unmanned Aircraft Systems (sUAS).

    NASA Astrophysics Data System (ADS)

    Dahlgren, R. P.; Anderson, K. R.; Hanson, L.; Pinsker, E. A.; Jonsson, J.; Chapman, D. C.; Witten, D. M.; O'Connor, K. A.

    2017-12-01

    Tracking radio tagged fish by boat or on foot in riverine systems is difficult and time consuming, particularly in large braided island complexes, shallow wetlands, and rocky reaches. Invasive Asian carp are commonly found in these hard to reach areas, but their near-surface feeding behavior makes radio tracking possible. To identify new methods of fish tracking that could same time and money, this study tested the feasibility of tracking Asian carp with Small Unmanned Aerial Systems (sUAS) in areas generally inaccessible to traditional tracking equipment. The U.S. Geological Survey worked with NanoElectromagnetics LLC and WWR Development to create and integrate a lightweight custom radio receiver, directional antenna, and accompanying software into a sUAS platform. The receiver includes independent GPS, software defined radio, and compass. The NASA Ames Research Center (ARC) completed payload integration, electromagnetic-interference and airworthiness testing, and provided a DJI Matrice 600 sUAS for this study. Additionally, ARC provided subject matter experts, airworthiness and flight readiness evaluation, and flight test facilities during preparation; and a pilot, range safety officer, and aircraft engineer during field deployment. Results demonstrate that this custom sUAS and sensor combination can detect radio tags at 100m above ground level and at horizontal ranges of 100m and 300m, with operators in either onshore or offshore locations. With this combination of sUAS and radio receiver, fish can be tracked in areas previously inaccessible and during flooding, providing new insights into riverine fish movement and habitat utilization.

  9. A Summary of NASA Research Exploring the Acoustics of Small Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Christian, Andrew; Cabell, Randolph

    2018-01-01

    Proposed uses of small unmanned aerial systems (sUAS) have the potential to expose large portions of communities to a new noise source. In order to understand the potential noise impact of sUAS, NASA initiated acoustics research as one component of the 3-year DELIVER project, with the goal of documenting the feasibility of using existing aircraft design tools and methods on this class of vehicles. This paper summarizes the acoustics research conducted within the DELIVER project. The research described here represents an initial study, and subsequent research building on the findings of this work has been proposed for other NASA projects. The paper summarizes acoustics research in four areas: measurements of noise generated by flyovers of small unmanned aerial vehicles, measurements in controlled test facilities to understand the noise generated by components of these vehicles, computational predictions of component and full vehicle noise, and psychoacoustic tests including auralizations conducted to assess human annoyance to the noise generated by these vehicles.

  10. Design and evaluation of a wing with embedded payloads for Small Unmanned Aerial System (SUAS) applications

    NASA Astrophysics Data System (ADS)

    Pearson, Roger A.

    Rapidly advancing technology has developed multiple thin filmed devices capable of expanding the abilities of Small Unmanned Aircraft Systems (SUAS). This research develops a viable solution for integrating thin film solar cells into a currently operational SUAS. A wing was designed and produced that was capable of replacing the existing wing while providing additional functionality with embedded solar arrays. The study investigates the challenges of meeting the original requirements of the original equipment manufacturer wing while adapting it to fully protect and support structurally embedded payloads. In total, seven complete wings were produced and tested. Combinations of functional and simulated payloads were fully integrated into two of these wings. The merits of these designs were quantified and validated through both ground testing and flight testing with the SUAS.

  11. Developing Collective Training for Small Unmanned Aerial Systems Employment

    NASA Technical Reports Server (NTRS)

    Durlach, Paula J.; Priest, Heather; Martin, Glenn A.; Saffold, Jay

    2010-01-01

    The projected use of small unmanned aerial systems (SUAS) in military operations will produce training requirements which go beyond current capabilities. The paper describes the development of prototype training procedures and accompanying research simulations to address this need. We initially constructed a testbed to develop simulation-based training for an SUAS operator equipped with a simulated vertical-lift and land SUAS. However, the required training will go beyond merely training an operator how to pilot an SUAS. In addition to tactics, techniques, and procedures for employment of SUASs, collective training methods must be trained. Moreover, the leader of a unit equipped with SUAS will need to learn how to plan missions which incorporate the SUAS, and take into account air space and frequency management considerations. The demands of the task require the leader to allocate personnel to the SUAS mission, communicate and coordinate with those personnel during the mission, and make use of the information provided. To help address these training issues, we expanded our research testbed to include a command and control node (C2 node), to enable communications between a leader and the SUAS operator. In addition, we added a virtual environment in which dismounted infantry missions can be conducted. This virtual environment provides the opportunity for interactions among human-controlled avatars and non-player characters (NPCs), plus authoring tools to construct scenarios. Using these NPCs, a collective exercise involving friendly, enemy, and civilian personnel can be conducted without the need for a human role-player for every entity. We will describe the results of our first experiment, which examined the ability of players to negotiate use of the C2 node and the virtual environment at the same time, in order to see if this is a feasible combination of tools for training development.

  12. AERIAL MEASURING SYSTEM IN JAPAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficultmore » terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.« less

  13. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  14. Initial Investigation into the Psychoacoustic Properties of Small Unmanned Aerial System Noise

    NASA Technical Reports Server (NTRS)

    Christian, Andrew; Cabell, Randolph

    2017-01-01

    For the past several years, researchers at NASA Langley have been engaged in a series of projects to study the degree to which existing facilities and capabilities, originally created for work on full-scale aircraft, are extensible to smaller scales --those of the small unmanned aerial systems (sUAS, also UAVs and, colloquially, `drones') that have been showing up in the nation's airspace of late. This paper follows an e ort that has led to an initial human{subject psychoacoustic test regarding the annoyance generated by sUAS noise. This e ort spans three phases: 1. The collection of the sounds through field recordings. 2. The formulation and execution of a psychoacoustic test using those recordings. 3. The initial analysis of the data from that test. The data suggests a lack of parity between the noise of the recorded sUAS and that of a set of road vehicles that were also recorded and included in the test, as measured by a set of contemporary noise metrics. Future work, including the possibility of further human subject testing, is discussed in light of this suggestion.

  15. Leak localization and quantification with a small unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Golston, L.; Zondlo, M. A.; Frish, M. B.; Aubut, N. F.; Yang, S.; Talbot, R. W.

    2017-12-01

    Methane emissions from oil and gas facilities are a recognized source of greenhouse gas emissions, requiring cost-effective and reliable monitoring systems to support leak detection and repair programs. We describe a set of methods for locating and quantifying natural gas leaks using a small unmanned aerial system (sUAS) equipped with a path-integrated methane sensor along with ground-based wind measurements. The algorithms are developed as part of a system for continuous well pad scale (100 m2 area) monitoring, supported by a series of over 200 methane release trials covering multiple release locations and flow rates. Test measurements include data obtained on a rotating boom platform as well as flight tests on a sUAS. The system is found throughout the trials to reliably distinguish between cases with and without a methane release down to 6 scfh (0.032 g/s). Among several methods evaluated for horizontal localization, the location corresponding to the maximum integrated methane reading have performed best with a median error of ± 1 m if two or more flights are averaged, or ± 1.2 m for individual flights. Additionally, a method of rotating the data around the estimated leak location is developed, with the leak magnitude calculated as the average crosswind integrated flux in the region near the source location. Validation of these methods will be presented, including blind test results. Sources of error, including GPS uncertainty, meteorological variables, and flight pattern coverage, will be discussed.

  16. Greenhouse Gas Sensing Using Small Unmanned Aerial Systems - Field Experiment Results and Future Directions

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Christensen, L. E.; Brockers, R.; Thompson, D. R.

    2014-12-01

    Requirements for greenhouse gas point source detection and quantification often require high spatial resolution on the order of meters. These applications, which help close the gap in emissions estimate uncertainties, also demand sensing with high sensitivity and in a fashion that accounts for spatiotemporal variability on the order of seconds to minutes. Low-cost vertical takeoff and landing (VTOL) small unmanned aerial systems (sUAS) provide a means to detect and identify the location of point source gas emissions while offering ease of deployment and high maneuverability. Our current fielded gas sensing sUAS platforms are able to provide instantaneous in situ concentration measurements at locations within line of sight of the operator. Recent results from field experiments demonstrating methane detection and plume characterization will be discussed here, including performance assessment conducted via a controlled release experiment in 2013. The logical extension of sUAS gas concentration measurement is quantification of flux rate. We will discuss the preliminary strategy for quantitative flux determination, including intrinsic challenges and heritage from airborne science campaigns, associated with this point source flux quantification. This system approach forms the basis for intelligent autonomous quantitative characterization of gas plumes, which holds great value for applications in commercial, regulatory, and safety environments.

  17. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  18. Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    McCrink, Matthew Henry

    This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is

  19. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  20. Combining Cluster Analysis and Small Unmanned Aerial Systems (sUAS) for Accurate and Low-cost Bathymetric Surveying

    NASA Astrophysics Data System (ADS)

    Maples, B. L.; Alvarez, L. V.; Moreno, H. A.; Chilson, P. B.; Segales, A.

    2017-12-01

    Given that classical in-situ direct surveying for geomorphological subsurface information in rivers is time-consuming, labor-intensive, costly, and often involves high-risk activities, it is obvious that non-intrusive technologies, like UAS-based, LIDAR-based remote sensing, have a promising potential and benefits in terms of efficient and accurate measurement of channel topography over large areas within a short time; therefore, a tremendous amount of attention has been paid to the development of these techniques. Over the past two decades, efforts have been undertaken to develop a specialized technique that can penetrate the water body and detect the channel bed to derive river and coastal bathymetry. In this research, we develop a low-cost effective technique for water body bathymetry. With the use of a sUAS and a light-weight sonar, the bathymetry and volume of a small reservoir have been surveyed. The sUAS surveying approach is conducted under low altitudes (2 meters from the water) using the sUAS to tow a small boat with the sonar attached. A cluster analysis is conducted to optimize the sUAS data collection and minimize the standard deviation created by under-sampling in areas of highly variable bathymetry, so measurements are densified in regions featured by steep slopes and drastic changes in the reservoir bed. This technique provides flexibility, efficiency, and free-risk to humans while obtaining high-quality information. The irregularly-spaced bathymetric survey is then interpolated using unstructured Triangular Irregular Network (TIN)-based maps to avoid re-gridding or re-sampling issues.

  1. Overland Flow Analysis Using Time Series of Suas-Derived Elevation Models

    NASA Astrophysics Data System (ADS)

    Jeziorska, J.; Mitasova, H.; Petrasova, A.; Petras, V.; Divakaran, D.; Zajkowski, T.

    2016-06-01

    With the advent of the innovative techniques for generating high temporal and spatial resolution terrain models from Unmanned Aerial Systems (UAS) imagery, it has become possible to precisely map overland flow patterns. Furthermore, the process has become more affordable and efficient through the coupling of small UAS (sUAS) that are easily deployed with Structure from Motion (SfM) algorithms that can efficiently derive 3D data from RGB imagery captured with consumer grade cameras. We propose applying the robust overland flow algorithm based on the path sampling technique for mapping flow paths in the arable land on a small test site in Raleigh, North Carolina. By comparing a time series of five flights in 2015 with the results of a simulation based on the most recent lidar derived DEM (2013), we show that the sUAS based data is suitable for overland flow predictions and has several advantages over the lidar data. The sUAS based data captures preferential flow along tillage and more accurately represents gullies. Furthermore the simulated water flow patterns over the sUAS based terrain models are consistent throughout the year. When terrain models are reconstructed only from sUAS captured RGB imagery, however, water flow modeling is only appropriate in areas with sparse or no vegetation cover.

  2. Small Unmanned Aerial Systems: Implications of the Evolving Legal Context for Use in Natural Resources Science and Management

    NASA Astrophysics Data System (ADS)

    Walker, M. J.

    2016-12-01

    Small unmanned aerial systems (sUAS, also known as drones) potentially provide researchers and managers with the capacity to enhance temporal and spatial resolution of data sets for natural resources science and management. sUAS have been used for many types of data collection and have a partial definition in mass of the aircraft, ranging from 0.5 to <55 lbs (0.2 to <24.9 kg). Aircraft within this range of mass can present a collision hazard to other aircraft. The Federal Aviation Administration (FAA) recently faced the challenge of removing regulatory barriers to sUAS application while minimizing risk in the national airspace. The regulatory and legal framework developed for using sUAS in natural resources science and management has evolved from a very conservative approach prior in the first decade of the 21st century. FAA's recently revised operating rules for sUAS, significantly changing pilot certification requirements and operating rules in the national airspace. The next 2-5 years will bring advances in sUAS applications for science and management, building upon the accomplishments of users who complied with the former regulatory environment. We review the current operating rules (49 CFR, part 107) that apply specifically to sUAS and discuss the implications for researchers and managers. While part 107 relaxed many restrictions, it is important to understand the regulatory framework currently in place that encourages development of applications for sUAS while adhering to the mandate that the national airspace be safe and secure. We consider potential applications for natural resources science and management in the context of the recently released operating rules, especially with respect to training requirements and protocols for use.

  3. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  4. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  5. ARM Unmanned Aerial Systems Implementation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Beat; Ivey, Mark

    Recent advances in Unmanned Aerial Systems (UAS) coupled with changes in the regulatory environment for operations of UAS in the National Airspace increase the potential value of UAS to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. UAS include unmanned aerial vehicles (UAV) and tethered balloon systems (TBS). The roles UAVs and TBSs could play within the ARM Facility, particularly science questions they could help address, have been discussed in several workshops, reports, and vision documents, including: This document describes the implementation of a robust and vigorous program for use of UAV and TBS formore » the science missions ARM supports.« less

  6. Arctic Oil Spill Mapping and Response Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K. W.

    2011-12-01

    The University of Alaska Fairbanks works extensively with unmanned aerial systems and various sensor payloads used in mapping. Recent projects with Royal Dutch Shell and British Petroleum have demonstrated that unmanned aerial systems, including fixed and rotary winged platforms, can provide quick response to oil spill mapping in a variety of flight conditions, including those not well suited for manned aerial systems. We describe this collaborative research between the University and oil companies exploring and developing oil resources in Alaska and the Arctic.

  7. Evaluation of the Raven sUAS to detect and monitor greater sage-grouse leks within the Middle Park population

    USGS Publications Warehouse

    Hanson, Leanne; Holmquist-Johnson, Christopher L.; Cowardin, Michelle L.

    2014-01-01

    The Raven sUAS is a hand-launched reconnaissance and data-gathering tool developed for the U.S. Department of Defense by AeroVironment, Inc. Originally designed to provide aerial observation, day or night, at line-of-site ranges up to 6.2 miles (10 kilometers), the Raven sUAS has a wingspan of 4.5 feet (1.38 meters) and weighs 4.2 pounds (1.9 kilograms). A 60-minute lithium-ion rechargeable battery powers the system which also transmits live video (color or infrared imagery), compass headings, and location information to a ground control station. The Raven sUAS is typically operated by a three-person flight crew consisting of a pilot, mission operator, and a trained observer.

  8. International-Aerial Measuring System (I-AMS) Training Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotre T.; Malchor, Russell L.; Maurer, Richard J.

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, andmore » provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.« less

  9. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  10. The NASA Dryden Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2005-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented

  11. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Whitehead, Ken; Brown, Owen W.; Barchyn, Thomas E.; Moorman, Brian J.; LeClair, Adam; Riddell, Kevin; Hamilton, Tayler

    2013-07-01

    Small unmanned aircraft systems (sUAS) are a relatively new type of aerial platform for acquiring high-resolution remote sensing measurements of Earth surface processes and landforms. However, despite growing application there has been little quantitative assessment of sUAS performance. Here we present results from a field experiment designed to evaluate the accuracy of a photogrammetrically-derived digital terrain model (DTM) developed from imagery acquired with a low-cost digital camera onboard an sUAS. We also show the utility of the high-resolution (0.1 m) sUAS imagery for resolving small-scale biogeomorphic features. The experiment was conducted in an area with active and stabilized aeolian landforms in the southern Canadian Prairies. Images were acquired with a Hawkeye RQ-84Z Areohawk fixed-wing sUAS. A total of 280 images were acquired along 14 flight lines, covering an area of 1.95 km2. The survey was completed in 4.5 h, including GPS surveying, sUAS setup and flight time. Standard image processing and photogrammetric techniques were used to produce a 1 m resolution DTM and a 0.1 m resolution orthorectified image mosaic. The latter revealed previously un-mapped bioturbation features. The vertical accuracy of the DTM was evaluated with 99 Real-Time Kinematic GPS points, while 20 of these points were used to quantify horizontal accuracy. The horizontal root mean squared error (RMSE) of the orthoimage was 0.18 m, while the vertical RMSE of the DTM was 0.29 m, which is equivalent to the RMSE of a bare earth LiDAR DTM for the same site. The combined error from both datasets was used to define a threshold of the minimum elevation difference that could be reliably attributed to erosion or deposition in the seven years separating the sUAS and LiDAR datasets. Overall, our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.

  12. Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator

    NASA Astrophysics Data System (ADS)

    Dube, Chioniso; Pedro, Jimoh O.

    2018-05-01

    This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.

  13. Re-examining data-intensive surface water models with high-resolution topography derived from unmanned aerial system photogrammetry

    NASA Astrophysics Data System (ADS)

    Pai, H.; Tyler, S.

    2017-12-01

    Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.

  14. A Hierarchical Learning Control Framework for an Aerial Manipulation System

    NASA Astrophysics Data System (ADS)

    Ma, Le; Chi, yanxun; Li, Jiapeng; Li, Zhongsheng; Ding, Yalei; Liu, Lixing

    2017-07-01

    A hierarchical learning control framework for an aerial manipulation system is proposed. Firstly, the mechanical design of aerial manipulation system is introduced and analyzed, and the kinematics and the dynamics based on Newton-Euler equation are modeled. Secondly, the framework of hierarchical learning for this system is presented, in which flight platform and manipulator are controlled by different controller respectively. The RBF (Radial Basis Function) neural networks are employed to estimate parameters and control. The Simulation and experiment demonstrate that the methods proposed effective and advanced.

  15. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  16. The Role of Unmanned Aerial Systems/Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fixed wing airplanes, and he...

  17. Unlocking the potential of small unmanned aircraft systems (sUAS) for Earth observation

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C.; Riddell, K.; Barchyn, T. E.

    2012-12-01

    Small unmanned aircraft systems (sUAS, < 25 kg) are emerging as a viable alternative to conventional remote sensing platforms for Earth observation (EO). sUAS technology affords greater control, lower cost, and flexibility for scientists, and provides new opportunities to match the scale of sUAS data to the scale of the geophysical phenomenon under investigation. Although a mechanism is in place to make sUAS available to researchers and other non-military users through the US Federal Aviation Administration's Modernization and Reform Act of 2012 (FAAMRA), there are many regulatory hurdles before they are fully accepted and integrated into the National Airspace System. In this talk we will provide a brief overview of the regulatory landscape for sUAS, both in the USA and in Canada, where sUAS regulations are more flexible. We critically outline potential advantages and disadvantages of sUAS for EO applications under current and potential regulations. We find advantages: relatively low cost, potentially high temporal resolution, rapidly improving technology, and operational flexibility. We also find disadvantages: limited temporal and spatial extent, limited accuracy assessment and methodological development, and an immature regulatory landscape. From a case study we show an example of the accuracy of a photogrammetrically-derived digital terrain map (DTM) from sUAS imagery. We also compare the sUAS DTM to a LiDAR DTM. Our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR. Overall, we are encouraged about the potential of sUAS for geophysical measurements; however, understanding and compliance with regulations is paramount to ensure that research is conducted legally and responsibly. Because UAS are new outside of military operations, we hope researchers will proceed carefully to ensure this great scientific opportunity remains a long term tool.

  18. A Low-Cost Imaging System for Aerial Applicators

    USDA-ARS?s Scientific Manuscript database

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...

  19. Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms

    NASA Technical Reports Server (NTRS)

    Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey

    2010-01-01

    Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.

  20. Aerial photography summary record system - five years later.

    USGS Publications Warehouse

    Lauterborn, T.J.

    1980-01-01

    Describes the APSRS, an automated information system for conventional aerial photography projects, established after the formation of the National Cartographic Information Center in the US Geological Survey in 1974. -after Author

  1. Precision Relative Positioning for Automated Aerial Refueling from a Stereo Imaging System

    DTIC Science & Technology

    2015-03-01

    PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS Kyle P. Werner, 2Lt, USAF AFIT-ENG-MS-15-M-048...REFUELING FROM A STEREO IMAGING SYSTEM THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-048 PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS

  2. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  3. Region Three Aerial Measurement System Flight Planning Tool - 12006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messick, Chuck; Pham, Minh; Smith, Ron

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports thatmore » the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)« less

  4. Counter unmanned aerial system testing and evaluation methodology

    NASA Astrophysics Data System (ADS)

    Kouhestani, C.; Woo, B.; Birch, G.

    2017-05-01

    Unmanned aerial systems (UAS) are increasing in flight times, ease of use, and payload sizes. Detection, classification, tracking, and neutralization of UAS is a necessary capability for infrastructure and facility protection. We discuss test and evaluation methodology developed at Sandia National Laboratories to establish a consistent, defendable, and unbiased means for evaluating counter unmanned aerial system (CUAS) technologies. The test approach described identifies test strategies, performance metrics, UAS types tested, key variables, and the necessary data analysis to accurately quantify the capabilities of CUAS technologies. The tests conducted, as defined by this approach, will allow for the determination of quantifiable limitations, strengths, and weaknesses in terms of detection, tracking, classification, and neutralization. Communicating the results of this testing in such a manner informs decisions by government sponsors and stakeholders that can be used to guide future investments and inform procurement, deployment, and advancement of such systems into their specific venues.

  5. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  6. Assessing the impacts of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Perroy, Ryan L.; Sullivan, Timo; Stephenson, Nathan

    2017-03-01

    Small unmanned aerial systems (sUAS) have great potential to facilitate the early detection and management of invasive plants. Here we show how very high-resolution optical imagery, collected from small consumer-grade multirotor UAS platform at altitudes of 30-120 m above ground level (agl), can be used to detect individual miconia (Miconia calvescens) plants in a highly invaded tropical rainforest environment on the island of Hawai'i. The central aim of this research was to determine how overstory vegetation cover, imagery resolution, and camera look-angle impact the aerial detection of known individual miconia plants. For our finest resolution imagery (1.37 cm ground sampling distance collected at 30 m agl), we obtained a 100% detection rate for sub-canopy plants with above-crown openness values >40% and a 69% detection rate for those with >20% openness. We were unable to detect any plants with <10% above crown openness. Detection rates progressively declined with coarser spatial resolution imagery, ending in a 0% detection rate for the 120 m agl flights (ground sampling distance of 5.31 cm). The addition of forward-looking oblique imagery improved detection rates for plants below overstory vegetation, though this effect decreased with increasing flight altitude. While dense overstory canopy cover, limited flight times, and visual line of sight regulations present formidable obstacles for detecting miconia and other invasive plant species, we show that sUAS platforms carrying optical sensors can be an effective component of an integrated management plan within challenging subcanopy forest environments.

  7. ARM Aerial Facility ArcticShark Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Schmid, B.; Hubbell, M.; Mei, F.; Carroll, P.; Mendoza, A.; Ireland, C.; Lewko, K.

    2017-12-01

    The TigerShark Block 3 XP-AR "ArcticShark" Unmanned Aerial System (UAS), developed and manufactured by Navmar Applied Sciences Corporation (NASC), is a single-prop, 60 hp rotary-engine platform with a wingspan of 6.5 m and Maximum Gross Takeoff Weight of 295 Kg. The ArcticShark is owned by the U.S. Department of Energy (DOE) and has been operated by Pacific Northwest National Laboratory (PNNL) since March 2017. The UAS will serve as an airborne atmospheric research observatory for DOE ARM, and, once fully operational, can be requested through ARM's annual call for proposals. The Arctic Shark is anticipated to measure a wide range of radiative, aerosol, and cloud properties using a variable instrument payload weighing up to 46 Kg. SATCOM-equipped, it is capable of taking measurements up to altitudes of 5.5 Km over ranges of up to 500 Km. The ArcticShark operates at airspeeds of 30 to 40 m/s, making it capable of slow sampling. With a full fuel load, its endurance exceeds 8 hours. The aircraft and its Mobile Operations Center (MOC) have been hardened specifically for operations in colder temperatures.ArcticShark's design facilitates rapid integration of various types of payloads. 2500 W of its 4000 W electrical systems is dedicated to payload servicing. It has an interior payload volume of almost 85 L and four wing-mounted pylons capable of carrying external probes. Its payload bay volume, electrical power, payload capacity, and flight characteristics enable the ArcticShark to accommodate multiple combinations of payloads in numerous configurations. Many instruments will be provided by the ARM Aerial Facility (AAF), but other organizations may eventually propose instrumentation for specific campaigns. AAF-provided measurement capabilities will include the following atmospheric state and thermodynamics: temperature, pressure, winds; gases: H2O and CO2; up- and down-welling broadband infrared and visible radiation; surface temperature; aerosol number concentration

  8. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  9. sUAS for Rapid Pre-Storm Coastal Characterization and Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; Slocum, R. K.; Spore, N.

    2015-12-01

    Open coast beaches and surf-zones are dynamic three-dimensional environments that can evolve rapidly on the time-scale of hours in response to changing environmental conditions. Up-to-date knowledge about the pre-storm morphology of the coast can be instrumental in making accurate predictions about coastal change and damage during large storms like Hurricanes and Nor'Easters. For example, alongshore variations in the shape of ephemeral sandbars along the coastline can focus wave energy, subjecting different stretches of coastline to significantly higher waves. Variations in beach slope and width can also alter wave runup, causing higher wave-induced water levels which can cause overwash or inlet breaching. Small Unmanned Aerial Systems (sUAS) offer a new capability to rapidly and inexpensively map vulnerable coastlines in advance of approaching storms. Here we present results from a prototype system that maps coastal topography and surf-zone morphology utilizing a multi-camera sensor. Structure-from-motion algorithms are used to generate topography and also constrain the trajectory of the sUAS. These data, in combination with mount boresight information, are used to rectify images from ocean-facing cameras. Images from all cameras are merged to generate a wide field of view allowing up to 5 minutes of continuous imagery time-series to be collected as the sUAS transits the coastline. Water imagery is then analyzed using wave-kinematics algorithms to provide information on surf-zone bathymetry. To assess this methodology, the absolute and relative accuracy of topographic data are evaluated in relation to simultaneously collected terrestrial lidar data. Ortho-rectification of water imagery is investigated using visible fixed targets installed in the surf-zone, and through comparison to stationary tower-based imagery. Future work will focus on evaluating how topographic and bathymetric data from this sUAS approach can be used to update forcing parameters in both

  10. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Liu, H.; Jin, Y.; Devine, S.; Dahlgren, R. A.; Covello, S.; Larsen, R.; O'Geen, A. T.

    2017-12-01

    California rangelands cover 23 million hectares and support a $3.4 billion annual cattle industry. Rangeland forage production varies appreciably from year-to-year and across short distances on the landscape. Spatially explicit and near real-time information on forage production at a high resolution is critical for effective rangeland management, especially during an era of climatic extremes. We here integrated a multispectral MicaSense RedEdge camera with a 3DR solo quad-copter and acquired time-series images during the 2017 growing season over a topographically complex 10-hectare rangeland in San Luis Obispo County, CA. Soil moisture and temperature sensors were installed at 16 landscape positions, and vegetation clippings were collected at 36 plots to quantify forage dry biomass. We built four centimeter-level models for forage production mapping using time series of sUAS images and ground measurements of forage biomass and soil temperature and moisture. The biophysical model based on Monteith's eco-physiological plant growth theory estimated forage production reasonably well with a coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 424 kg/ha when the soil parameters were included, and a R2 of 0.79 and a RMSE of 510 kg/ha when only remote sensing and topographical variables were included. We built two empirical models of forage production using a stepwise variable selection technique, one with soil variables. Results showed that cumulative absorbed photosynthetically active radiation (APAR) and elevation were the most important variables in both models, explaining more than 40% of the spatio-temporal variance in forage production. Soil moisture accounted for an additional 29% of the variance. Illumination condition was selected as a proxy for soil moisture in the model without soil variables, and accounted for 18% of the variance. We applied the remote sensing-based models to map daily forage production at 30-cm resolution for the

  11. Integrated sUAS Greenhouse Gas Measurements and Imagery for Land Use Emissions Monitoring

    NASA Astrophysics Data System (ADS)

    Barbieri, L.; Wyngaard, J.; Galford, G. L.; Adair, C.

    2016-12-01

    Agriculture, Forestry and Other Land Uses (AFOLU) constitute the second largest anthropogenic source of greenhouse gas (GHG) emissions globally. Agriculture is the dominant source of emissions within that sector. There are a variety of agricultural land management strategies that can be implemented to reduce GHG emissions, but determining the best strategies is challenging. Emissions estimates are currently derived from GHG monitoring methods (e.g., static chambers, eddy flux towers) that are time and labor intensive, expensive, and use in-situ equipment. These methods lack the flexible, spatio-temporal monitoring necessary to reduce the high uncertainty in regional GHG emissions estimates. Small Unmanned Aerial Systems (sUAS) provide the rapid response data collection needed to monitor important field management events (e.g., manure spreading). Further, the ease of deployment of sUAS makes monitoring large regional extents over full-seasons more viable. To our knowledge, we present the first integration of sUAS remotely sensed imagery and GHG concentrations in agriculture and land use monitoring. We have developed and tested open-source hardware and software utilizing low-cost equipment (e.g., NDIR gas sensors and Canon cameras). Initial results show agreement with more traditional, proprietary equipment but at a fraction of the costs. Here we present data from test flights over agricultural areas under various management practices. The suite of data includes sUAS overpasses for imagery and CO2 concentration measurements, paired with field-based GHG measurements (static chambers). We have developed a set of best practices for sUAS data collection (e.g., time of day effects variability in localized atmospheric GHG concentrations) and discuss currently known challenges (e.g., accounting for external environmental factors such as wind speed). We present results on all sUAS GHG sampling methods paired with imagery and simultaneous static chamber monitoring for a

  12. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  13. A scheduling model for the aerial relay system

    NASA Technical Reports Server (NTRS)

    Ausrotas, R. A.; Liu, E. W.

    1980-01-01

    The ability of the Aerial Relay System to handle the U.S. transcontinental large hub passenger flow was analyzed with a flexible, interactive computer model. The model incorporated city pair time of day demand and a demand allocation function which assigned passengers to their preferred flights.

  14. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that

  15. Using Small Unmanned Aerial Systems to Advance Hydrological Models in Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Moorhead, R.; Hathcock, L.; Coffey, J. J.; Hood, R. E.; van Cooten, S.; Choate, K.; Rawson, H.; Kosturock, A.

    2014-12-01

    Small unmanned aerial systems (sUASs) have the potential to provide highly useful information for models of earth systems that vary over time intervals of days and for which sub-meter resolution is crucial. In particular, the state of coastal watershed plains are highly dependent on vegetation type and cover, soil type, weather, river flooding, and coastal inundation. The vegetation type and cover affect the drying potential, as well as the watershed's resistance to flood water movement. The soil type, soil moisture, and pond depths affect the ability of the watershed to absorb river flood waters and inundation from the sea. In this presentation we will describe a data collection campaign and model modification effort for hydrological models in a coastal watershed. The data collection campaign is obtaining data bimonthly using multiple UASs to capture the state of the watershed quicker. In particular, the vegetation cover and the extent of the water surface expression are captured at approximately a 1 inch spatial resolution over a few days with sUASs that can image 1-2 square miles per hour. The vegetation data provides a time-varying input to improve the estimation of the roughness coefficient and the dry potential from the traditionally static datasets. By correlating the high spatio-temporal resolution surface water expression with data from approximately ten river gauges, models can be improved and validated under more conditions. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  16. Synthesis of the unmanned aerial vehicle remote control augmentation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are notmore » suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.« less

  17. Validation of Spaceborne Radar Surface Water Mapping with Optical sUAS Images

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Murnaghan, K.; Sherman, D.; Poncos, V.; Brisco, B.; Armenakis, C.

    2015-08-01

    The Canada Centre for Remote Sensing (CCRS) has over 40 years of experience with airborne and spaceborne sensors and is now starting to use small Unmanned Aerial Systems (sUAS) to validate products from large coverage area sensors and create new methodologies for very high resolution products. Wetlands have several functions including water storage and retention which can reduce flooding and provide continuous flow for hydroelectric generation and irrigation for agriculture. Synthetic Aperture Radar is well suited as a tool for monitoring surface water by supplying acquisitions irrespective of cloud cover or time of day. Wetlands can be subdivided into three classes: open water, flooded vegetation and upland which can vary seasonally with time and water level changes. RADARSAT-2 data from the Wide-Ultra Fine, Spotlight and Fine Quad-Pol modes has been used to map the open water in the Peace-Athabasca Delta, Alberta using intensity thresholding. We also use spotlight modes for higher resolution and the fully polarimetric mode (FQ) for polarimetric decomposition. Validation of these products will be done using a low altitude flying sUAS to generate optical georeferenced images. This project provides methodologies which could be used for flood mapping as well as ecological monitoring.

  18. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  19. A low-cost single-camera imaging system for aerial applicators

    USDA-ARS?s Scientific Manuscript database

    Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are available, most of these systems are either too expensive or too complex to be of practical use for aerial applicators. The objective of this study was ...

  20. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  1. Review of U.S. Army Unmanned Aerial Systems Accident Reports: Analysis of Human Error Contributions

    DTIC Science & Technology

    2018-03-20

    USAARL Report No. 2018-08 Review of U.S. Army Unmanned Aerial Systems Accident Reports: Analysis of Human Error Contributions By Kathryn A...3 Statistical Analysis Approach ..............................................................................................3 Results...1 Introduction The success of unmanned aerial systems (UAS) operations relies upon a variety of factors, including, but not limited to

  2. Field Assessment of A Variable-rate Aerial Application System

    USDA-ARS?s Scientific Manuscript database

    Several experiments were conducted to evaluate the system response of a variable-rate aerial application controller to changing flow rates. The research is collaboration between the USDA, ARS, APTRU and Houma Avionics, USA, manufacturer of a widely used flow controller designed for agricultural airc...

  3. Automatic mission planning algorithms for aerial collection of imaging-specific tasks

    NASA Astrophysics Data System (ADS)

    Sponagle, Paul; Salvaggio, Carl

    2017-05-01

    The rapid advancement and availability of small unmanned aircraft systems (sUAS) has led to many novel exploitation tasks utilizing that utilize this unique aerial imagery data. Collection of this unique data requires novel flight planning to accomplish the task at hand. This work describes novel flight planning to better support structure-from-motion missions to minimize occlusions, autonomous and periodic overflight of reflectance calibration panels to permit more efficient and accurate data collection under varying illumination conditions, and the collection of imagery data to study optical properties such as the bidirectional reflectance distribution function without disturbing the target in sensitive or remote areas of interest. These novel mission planning algorithms will provide scientists with additional tools to meet their future data collection needs.

  4. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Nationwide Aerial Application of Fire Retardant on... statement for the continued nationwide aerial application of fire retardant on National Forest System lands... 26667, Salt Lake City, UT 84126-0667. Comments may also be sent via e- mail to Fire[email protected

  5. Implementation of AN Unmanned Aerial Vehicle System for Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Mah, S. B.; Cryderman, C. S.

    2015-08-01

    Unmanned Aerial Vehicles (UAVs), digital cameras, powerful personal computers, and software have made it possible for geomatics professionals to capture aerial photographs and generate digital terrain models and orthophotographs without using full scale aircraft or hiring mapping professionals. This has been made possible by the availability of miniaturized computers and sensors, and software which has been driven, in part, by the demand for this technology in consumer items such as smartphones. The other force that is in play is the increasing number of Do-It-Yourself (DIY) people who are building UAVs as a hobby or for professional use. Building a UAV system for mapping is an alternative to purchasing a turnkey system. This paper describes factors to be considered when building a UAV mapping system, the choices made, and the test results of a project using this completed system.

  6. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  7. Determination of OB/OD/SF Emission Factors using Unmanned Aerial Systems

    EPA Science Inventory

    Instrumented, unmanned aerial systems (UASs) have been used successfully in eight campaigns since 2010 to determine emission factors from open burning (OB), open detonation (OD), and static firing (SF) demilitarization activities. These systems have sampled directly from the plu...

  8. Automatic forest-fire measuring using ground stations and Unmanned Aerial Systems.

    PubMed

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006.

  9. Automatic Forest-Fire Measuring Using Ground Stations and Unmanned Aerial Systems

    PubMed Central

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006. PMID:22163958

  10. Development and evaluation of a SUAS perching system

    NASA Astrophysics Data System (ADS)

    Reynolds, Ryan

    Perching has been proposed as a possible landing technique for Small Unmanned Aircraft Systems (SUAS). The current research study develops an onboard open loop perching system for a fixed-wing SUAS and examines the impact of initial flight speed and sensor placement on the perching dynamics. A catapult launcher and modified COTS aircraft were used for the experiments, while an ultrasonic sensor on the aircraft was used to detect the perching target. Thirty tests were conducted varying the initial launch speed and ultrasonic sensor placement to see if they affected the time the aircraft reaches its maximum pitch angle, since the maximum pitch angle is the optimum perching point for the aircraft. High-speed video was analyzed to obtain flight data, along with data from an onboard inertial measuring unit. The data were analyzed using a model 1, two-way ANOVA to determine if launch speed and sensor placement affect the optimum perching point where the aircraft reaches its maximum pitch angle during the maneuver. The results show the launch speed does affect the time at which the maximum pitch angle occurs, but sensor placement does not. This means a closed loop system will need to adjust its perching distance based on its initial velocity. The sensor placement not having any noticeable effect means the ultrasonic sensor can be placed on the nose or the wing of the aircraft as needed for the design. There was also no noticeable interaction between the two variables. Aerodynamic parameters such as lift, drag, and moment coefficients were derived from the dynamic equations of motion for use in numerical simulations and dynamic perching models.

  11. Integration of sUAS Imagery and Atmospheric Data Collection for Improved Agricultural Greenhouse Gas Emissions Monitoring

    NASA Astrophysics Data System (ADS)

    Barbieri, L.; Adair, C.; Galford, G. L.; Wyngaard, J.

    2017-12-01

    We present on a full season of low-cost sUAS agricultural monitoring for improved GHG emissions accounting and mitigation. Agriculture contributes 10-12% of global anthropogenic GHG emissions, and roughly half are from agricultural soils. A variety of land management strategies can be implemented to reduce GHG emissions, but agricultural lands are complex and heterogenous. Nutrient cycling processes that ultimately regulate GHG emission rates are affected by environmental and management dynamics that vary spatially and temporally (e.g. soil properties, manure spreading). Thus, GHG mitigation potential is also variable, and determining best practices for mitigation is challenging, especially considering potential conflicting pressure to manage agricultural lands for other objectives (e.g. decrease agricultural runoff). Monitoring complexity from agricultural lands is critical for regional GHG accounting and decision making, but current methods (e.g., static chambers) are time intensive, expensive, and use in-situ equipment. These methods lack the spatio-temporal flexibility necessary to reduce the high uncertainty in regional emissions estimates, while traditional remote sensing methods often do not provide adequate spatio-temporal resolution for robust field-level monitoring. Small Unmanned Aerial Systems (sUAS) provide the range and the rapid response data collection needed to monitor key variables on the landscape (imagery) and from the atmosphere (CO2 concentrations), and can provide ways to bridge between in-situ and remote sensing data. Initial results show good agreement between sUAS CO2 sensors with more traditional equipment, and at a fraction of the cost. We present results from test flights over managed agricultural landscapes in Vermont, showcasing capabilities from both sUAS imagery and atmospheric data collected from on-board sensors (CO2, PTH). We then compare results from two different in-flight data collection methods: Vertical Profile and

  12. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  13. Aerial Refueling Boom/Receptacle Guide

    DTIC Science & Technology

    2017-07-28

    Alleviation System; AR – Aerial Refueling; IDS – Independent Disconnect System; PDL – Pilot Director Lights; PSIG – Pounds per square inch gauge; TMF...proprietary, sensitive, classified or otherwise restricted information. ARSAG documents, as prepared, are not DOD, MOD or NATO standards, but provide...Boom Nozzle Disconnect Provisions, Aerial Refueling Fuel System and Tanker Aids and Cues for the Receiver Aircraft. Also included are Receiver

  14. Aerial Radiological Measuring System (ARMS): systems, procedures and sensitivity (1976)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyns, P K

    1976-07-01

    This report describes the Aerial Radiological Measuring System (ARMS) designed and operated by EG and G, Inc., for the Energy Research and Development Administration's (ERDA) Division of Operational Safety with the cooperation of the Nuclear Regulatory Commission. Designed to rapidly survey large areas for low-level man-made radiation, the ARMS has also proven extremely useful in locating lost radioactive sources of relatively low activity. The system consists of sodium iodide scintillation detectors, data formatting and recording equipment, positioning equipment, meteorological instruments, direct readout hardware, and data analysis equipment. The instrumentation, operational procedures, data reduction techniques and system sensitivities are described, togethermore » with their applications and sample results.« less

  15. Unmanned Aerial Systems: Further Actions Needed to Fully Address Air Force and Army Pilot Workforce Challenges

    DTIC Science & Technology

    2016-03-16

    UNMANNED AERIAL SYSTEMS Further Actions Needed to Fully Address Air Force and Army Pilot Workforce Challenges...Armed Services, U.S. Senate March 16, 2016 UNMANNED AERIAL SYSTEMS Further Actions Needed to Fully Address Air Force and Army Pilot Workforce ...High-performing organizations use complete and current data to inform their strategic human capital planning and remain open to reevaluating workforce

  16. Unmanned Aerial Systems: Air Force and Army Should Improve Strategic Human Capital Planning for Pilot Workforces

    DTIC Science & Technology

    2017-01-01

    UNMANNED AERIAL SYSTEMS Air Force and Army Should Improve Strategic Human Capital Planning for Pilot Workforces...Should Improve Strategic Human Capital Planning for Pilot Workforces What GAO Found The Air Force and the Army have not fully applied four of the five...key principles for effective strategic human capital planning for managing pilots of unmanned aerial systems (UAS) that are important for resolving

  17. Floating aerial 3D display based on the freeform-mirror and the improved integral imaging system

    NASA Astrophysics Data System (ADS)

    Yu, Xunbo; Sang, Xinzhu; Gao, Xin; Yang, Shenwu; Liu, Boyang; Chen, Duo; Yan, Binbin; Yu, Chongxiu

    2018-09-01

    A floating aerial three-dimensional (3D) display based on the freeform-mirror and the improved integral imaging system is demonstrated. In the traditional integral imaging (II), the distortion originating from lens aberration warps elemental images and degrades the visual effect severely. To correct the distortion of the observed pixels and to improve the image quality, a directional diffuser screen (DDS) is introduced. However, the improved integral imaging system can hardly present realistic images with the large off-screen depth, which limits floating aerial visual experience. To display the 3D image in the free space, the off-axis reflection system with the freeform-mirror is designed. By combining the improved II and the designed freeform optical element, the floating aerial 3D image is presented.

  18. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  19. A low-cost dual-camera imaging system for aerial applicators

    USDA-ARS?s Scientific Manuscript database

    Agricultural aircraft provide a readily available remote sensing platform as low-cost and easy-to-use consumer-grade cameras are being increasingly used for aerial imaging. In this article, we report on a dual-camera imaging system we recently assembled that can capture RGB and near-infrared (NIR) i...

  20. Emission Measurements of Open Area Combustion Sources with an Unmanned Aerial System

    EPA Science Inventory

    miniaturized sensor/sampler system (“Kolibri”) on a six-motor, unmanned aerial system (UAS) was used to quantify emissions from open burning of obsolete military propellants. The UAS afforded the ability to sample plume emissions at altitude and from a safe distance ...

  1. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature.

    PubMed

    Torres-Rua, Alfonso

    2017-06-26

    In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called "AggieAir", developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon") and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m²/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m²/sr/um) for all sUAS

  2. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature

    PubMed Central

    2017-01-01

    In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called “AggieAir”, developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon”) and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m2/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m2/sr/um) for all sUAS

  3. Observations of Near-Surface Relative Humidity in a Wind Turbine Array Boundary Layer Using an Instrumented Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Adkins, K. A.; Sescu, A.

    2016-12-01

    Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.

  4. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  5. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  6. Determination of OB/OD/SF Emission Factors Using Unmanned Aerial Systems

    EPA Science Inventory

    A presentation to the Demilitarization Symposium. This proposal will present the methods of tethered aerostat and unmanned aerial system for collection of plume samples and determination of emission factors form open burning, open detonation, and static firing for weapon demilita...

  7. UAV using the open-source flight-control-system in the application of aerial survey

    NASA Astrophysics Data System (ADS)

    Huang, Ji-chen; Ru, Chen

    2015-12-01

    The aerial survey as one of the branches of the Space Information Technology system, has an important application in data acquisition of the earth's surface. In recent years, the trend of UVA (unmanned aerial vehicle) to replace traditional survey aircraft has become increasingly obvious with the progress of science and technology. At present, the price of the commercial UAV Flight Control System is higher, limiting the application of UVA. This paper mainly discusses the possibility that the open-source's flight-control-system take the place of the commercial one. Result is that the costs of UVA are reduced, and make the application more widely.

  8. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    NASA Astrophysics Data System (ADS)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  9. An OEF/OIF study of close combat missions using small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Lifschitz, Gabriel; Tierney, Richard J.; Vitali, Juan A.

    2007-04-01

    The Small Unmanned Aircraft System (SUAS) is a rucksack portable aerial observation vehicle designed to supplement reconnaissance, surveillance and target acquisition tasks of an infantry company. The Raven is an earlier version of the SUAS. Raven is an Urgent Material Release (UMR) acquisition and has been used for the past two years by selected Army units in Operations Enduring Freedom and Iraqi Freedom (OEF/OIF). Army Test and Evaluation Command-led surveys were used to assess the capabilities and limitations of the Raven in OEF/OIF. Results and analyses of the surveys indicate that Raven enhances situational awareness of a small unit in urban areas and in selected close combat missions. Users of the Raven state it is easy to use, although there are major issues with frequency de-confliction, airspace management, short endurance, and sensor performance. The SUAS is a program of record and completed developmental and operational testing in preparation for full rate production. This paper addresses the SUAS effectiveness, suitability, and survivability evaluation strategy based on actual testing of the system. During the Initial Operational Test (IOT), the SUAS was found to be effective with limitations in a set of 21 closed combat missions and two call for fire tests for which it was tested. Low Mean Time Between Operational Mean Failure (MTBOMF) and human factors issues make the system suitable with limitations. Acoustic (audible to the human ear) and electronic vulnerabilities make the system non-survivable in most combat scenarios. The SUAS was found to be useful as an extra asset usable in certain infantry company close combat missions where terrain and visual line of sight give the system an advantage over traditional reconnaissance patrols. Army aviation and infantry units uncover new ways every day to use this portable "eye in the sky", especially when unmanned aerial reconnaissance assets are in premium demand. A discussion on changes in doctrine with the

  10. Development of a Heterogeneous sUAS High-Accuracy Positional Flight Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McSwain, Robert G.; Grosveld, Ferdinand W.

    2016-01-01

    Recently, a heterogeneous FDAS, consisting of a diverse range of instruments was developed to support acoustic flight research programs at NASA Langley Research Center. In addition to a conventional GPS to measure latitude, longitude and altitude, the FDAS also utilizes a small, light-weight, low-cost DGPS system to obtain centimeter accuracy to measure the distance traveled by sound from a sUAS vehicle to a microphone on the ground. Acoustic flight testing using the FDAS installed on several different sUAS platforms has been conducted in support of the NASA CAS DELIVER and ERA ITD projects (Reference 1). The first FDAS prototype was assembled and implemented in the acoustic/flight measurement system in December 2014 to support DELIVER acoustic flight tests. Evaluation of the system performance and results from the data analyses were used to further test, develop and enhance the FDAS over a six-month period to support acoustic flight research for the ERA.

  11. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  12. Autonomous Acquisition of Science Quality Spectra from Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Campbell, Petya; Sohlberg, Robert; Cappelaere, Pat; Ong, Lawrence

    2017-01-01

    This is a presentation on a technique for using Unmanned Aerial Systems with intelligent sensing to create science quality data. In this particular case, the team used two spectrometers with high spectral resolution and developed a technique to have the spectrometers self calibrate so that it is possible to take the measurements within the allocated 10 minute flight times. Because there is both upwelling and downwelling foreoptics on each of the two spectrometers, it becomes slow to set the calibration up for all four possibilities which relates to the integration time and then take the measurements. If light conditions change too rapidly then the measurements won't be scaled so that the spectra max is at least 85% of the instrument max but not saturated. This process was more difficult then it appeared due to the complexity of determining the integration time before light conditions changed and before the battery runs our of charge to fly the Unmanned Aerial System. This presentation goes over the results for the first few flight days and the planned future flight experiments.

  13. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  14. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable. 32.2421 Section 32.2421 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2421 Aerial cable. (a...

  15. Online Aerial Terrain Mapping for Ground Robot Navigation

    PubMed Central

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-01-01

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles. PMID:29461496

  16. Online Aerial Terrain Mapping for Ground Robot Navigation.

    PubMed

    Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin

    2018-02-20

    This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle's overhead view to inform the ground vehicle's path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  17. Unmanned Carrier-Based Aircraft System: Debate over Systems Role Led to Focus on Aerial Refueling

    DTIC Science & Technology

    2016-03-24

    Unmanned Carrier-Based Aircraft System: Debate over System’s Role Led to Focus on Aerial Refueling Prior to February 2016, the Navy had planned to...award of the air system development contract by about 3 years from 2014 to 2017. In that report, we also found that knowledge the Navy had obtained...strike 1Pub. L. No. 113-66, § 213(d) (2013). 2GAO, Unmanned Carrier-Based Aircraft System: Navy Needs

  18. The Smart Aerial Release Machine, a Universal System for Applying the Sterile Insect Technique

    PubMed Central

    Mubarqui, Ruben Leal; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2014-01-01

    Background Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Methodology/Principal Findings Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. Conclusions/Significance This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600 000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its

  19. The smart aerial release machine, a universal system for applying the sterile insect technique.

    PubMed

    Leal Mubarqui, Ruben; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2014-01-01

    Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600,000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its use worldwide.

  20. Event-based measurement of boundary-layer winds and topographic effects with a small unmanned aircraft system (sUas)

    NASA Astrophysics Data System (ADS)

    Riddell, K.; Hugenholtz, C.

    2012-12-01

    Numerical models are invaluable tools for developing and testing hypotheses about interactions and feedbacks between wind and topography. However, field-based measurements are equally important for building and enhancing confidence in model output. Several field methods are available, including conventional approaches using tall masts equipped with an array of anemometers, as well as weather balloons, but few methods are able to match the level of detail available in model simulations of topographically-modified windflow. Here we propose an alternative method that may enhance numerical models. The method involves a small unmanned aircraft system (sUas) equipped with a meteorological sensor payload. The sUas is a two blade helicopter that weighs 5.5 kg, and has a length of 1.32 m. We designed a simple measurement and control system using an Arduino micro-controller, which acquired measurements at pre-defined coordinates autonomously. The entire survey was pre-configured and uploaded to the aircraft, effectively avoiding the need for manual aircraft operation and data collection. We collected raw measurements at each waypoint, yielding a point cloud of windspeed data. During test flights the sUas was able to maintain a stable position (± 0.6 m vertical and horizontal) in wind speeds up to 50 km/h. We used the raw data to map the wind speed-up ratio relative to a reference anemometer. Although it would be preferable to acquire continuous measurements at each waypoint, the sUas method only provides a snapshot of wind at each location. However, despite this limitation, the sUas does fill a void in terms of spatial measurements within the boundary layer. It may be possible to enhance this method in the future through deployment of sUas swarms that measure wind concurrently at many locations. Furthermore, other sensors can be deployed on sUas for measuring aeolian processes such as dust.

  1. Enhancing Autonomy of Aerial Systems Via Integration of Visual Sensors into Their Avionics Suite

    DTIC Science & Technology

    2016-09-01

    aerial platform for subsequent visual sensor integration. 14. SUBJECT TERMS autonomous system, quadrotors, direct method, inverse ...CONTROLLER ARCHITECTURE .....................................................43 B. INVERSE DYNAMICS IN THE VIRTUAL DOMAIN ......................45 1...control station GPS Global-Positioning System IDVD inverse dynamics in the virtual domain ILP integer linear program INS inertial-navigation system

  2. Development of a new modular aerial spray system and night application capability for the U.S. Air Force

    USDA-ARS?s Scientific Manuscript database

    The U.S. Air Force maintains a capability with the C130 aircraft to conduct aerial spray operations over large areas for controlling insects of medical importance. The current modular aerial spray system (MASS) is custom designed to support a variety of configurations from ultralow volume space spra...

  3. Methods for Evaluating the Temperature Structure-Function Parameter Using Unmanned Aerial Systems and Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Wainwright, Charlotte E.; Bonin, Timothy A.; Chilson, Phillip B.; Gibbs, Jeremy A.; Fedorovich, Evgeni; Palmer, Robert D.

    2015-05-01

    Small-scale turbulent fluctuations of temperature are known to affect the propagation of both electromagnetic and acoustic waves. Within the inertial-subrange scale, where the turbulence is locally homogeneous and isotropic, these temperature perturbations can be described, in a statistical sense, using the structure-function parameter for temperature, . Here we investigate different methods of evaluating , using data from a numerical large-eddy simulation together with atmospheric observations collected by an unmanned aerial system and a sodar. An example case using data from a late afternoon unmanned aerial system flight on April 24 2013 and corresponding large-eddy simulation data is presented and discussed.

  4. Integrating Unmanned Aerial Vehicles into Surveillance Systems in Complex Maritime Environments

    DTIC Science & Technology

    2013-09-01

    endurance (HALE) Unmanned Aerial Surveillance System and 31 provides the U.S. Navy with demonstration capability primarily for doctrine , concept of...measures against information leakage Implement corresponding doctrines 1.4 Set up communication with other partners Set up communication with...Command and control for joint maritime operations. Joint publication 3-32, change 1. Retrieved from http://www.dtic.mil/ doctrine /new_pubs

  5. Number of lightning discharges causing damage to lightning arrester cables for aerial transmission lines in power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikiforov, E. P.

    2009-07-15

    Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces themore » number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less

  6. Bioinspired optical sensors for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  7. Evaluation of Application Accuracy and Performance of a Hydraulically Operated Variable-Rate Aerial Application System

    USDA-ARS?s Scientific Manuscript database

    An aerial variable-rate application system consisting of a DGPS-based guidance system, automatic flow controller, and hydraulically controlled pump/valve was evaluated for response time to rapidly changing flow requirements and accuracy of application. Spray deposition position error was evaluated ...

  8. Analysis of near-surface relative humidity in a wind turbine array boundary layer using an instrumented unmanned aerial system and large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Adkins, Kevin; Elfajri, Oumnia; Sescu, Adrian

    2016-11-01

    Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Results are also compared to numerical experiments conducted using large eddy simulation (LES). Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.

  9. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-03

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  10. A Flight Control System for Small Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Tunik, A. A.; Nadsadnaya, O. I.

    2018-03-01

    The program adaptation of the controller for the flight control system (FCS) of an unmanned aerial vehicle (UAV) is considered. Linearized flight dynamic models depend mainly on the true airspeed of the UAV, which is measured by the onboard air data system. This enables its use for program adaptation of the FCS over the full range of altitudes and velocities, which define the flight operating range. FCS with program adaptation, based on static feedback (SF), is selected. The SF parameters for every sub-range of the true airspeed are determined using the linear matrix inequality approach in the case of discrete systems for synthesis of a suboptimal robust H ∞-controller. The use of the Lagrange interpolation between true airspeed sub-ranges provides continuous adaptation. The efficiency of the proposed approach is shown against an example of the heading stabilization system.

  11. CFD Simulation of Aerial Crop Spraying

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati

    2016-11-01

    Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.

  12. The Impact of Conflicting Spatial Representations in Airborne Unmanned Aerial System Sensor Control

    DTIC Science & Technology

    2016-02-01

    Spatial Discordance 1 Running head: SPATIAL DISCORDANCE IN AIRBORNE UAS OPERATIONS The impact of conflicting spatial...representations in airborne unmanned aerial system sensor control Joseph W Geeseman, James E Patrey, Caroline Davy, Katherine Peditto, & Christine Zernickow...system (UAS) simulation while riding in the fuselage of an airborne Lockheed P-3 Orion. The P-3 flew a flight profile of intermittent ascending

  13. The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations

    DTIC Science & Technology

    2017-06-09

    Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence

  14. Herbicidal drift control: aerial spray equipment, formulations, and supervision.

    Treesearch

    H. Gratkowski

    1974-01-01

    Public concern over environmental pollution requires increasingly sophisticated procedures when herbicides are used in silviculture. Many specialized aerial application systems and spray additives have been developed to reduce drift of herbicidal sprays. This publication provides forest-land managers with a brief description of these aerial spray systems and additives...

  15. Modeling and Optimization of Multiple Unmanned Aerial Vehicles System Architecture Alternatives

    PubMed Central

    Wang, Weiping; He, Lei

    2014-01-01

    Unmanned aerial vehicle (UAV) systems have already been used in civilian activities, although very limitedly. Confronted different types of tasks, multi UAVs usually need to be coordinated. This can be extracted as a multi UAVs system architecture problem. Based on the general system architecture problem, a specific description of the multi UAVs system architecture problem is presented. Then the corresponding optimization problem and an efficient genetic algorithm with a refined crossover operator (GA-RX) is proposed to accomplish the architecting process iteratively in the rest of this paper. The availability and effectiveness of overall method is validated using 2 simulations based on 2 different scenarios. PMID:25140328

  16. Human Systems Integration and Automation Issues in Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    McCauley, Michael E.; Matsangas, Panagiotis

    2004-01-01

    The goal of this report is to identify Human System Integration (HSI) and automation issues that contribute to improved effectiveness and efficiency in the operation of U.S. military Small Unmanned Aerial Vehicles (SUAVs). HSI issues relevant to SUAV operations are reviewed and observations from field trials are summarized. Short-term improvements are suggested research issues are identified and an overview is provided of automation technologies applicable to future SUAV design.

  17. Decentralized robust nonlinear model predictive controller for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Garcia Garreton, Gonzalo A.

    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1. A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2. A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3. An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4. A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible.

  18. A computer vision system for the recognition of trees in aerial photographs

    NASA Technical Reports Server (NTRS)

    Pinz, Axel J.

    1991-01-01

    Increasing problems of forest damage in Central Europe set the demand for an appropriate forest damage assessment tool. The Vision Expert System (VES) is presented which is capable of finding trees in color infrared aerial photographs. Concept and architecture of VES are discussed briefly. The system is applied to a multisource test data set. The processing of this multisource data set leads to a multiple interpretation result for one scene. An integration of these results will provide a better scene description by the vision system. This is achieved by an implementation of Steven's correlation algorithm.

  19. Cooperative Autonomous Observation of Volcanic Environments with sUAS

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2015-12-01

    The Cooperative Autonomous Observing System Project (CAOS) at the MIT Earth Signals and Systems Group has developed methodology and systems for dynamically mapping coherent fluids such as plumes using small unmanned aircraft systems (sUAS). In the CAOS approach, two classes of sUAS, one remote the other in-situ, implement a dynamic data-driven mapping system by closing the loop between Modeling, Estimation, Sampling, Planning and Control (MESPAC). The continually gathered measurements are assimilated to produce maps/analyses which also guide the sUAS network to adaptively resample the environment. Rather than scan the volume in fixed Eulerian or Lagrangian flight plans, the adaptive nature of the sampling process enables objectives for efficiency and resilience to be incorporated. Modeling includes realtime prediction using two types of reduced models, one based on nowcasting remote observations of plume tracer using scale-cascaded alignment, and another based on dynamically-deformable EOF/POD developed for coherent structures. Ensemble-based Information-theoretic machine learning approaches are used for the highly non-linear/non-Gaussian state/parameter estimation, and for planning. Control of the sUAS is based on model reference control coupled with hierarchical PID. MESPAC is implemented in part on a SkyCandy platform, and implements an airborne mesh that provides instantaneous situational awareness and redundant communication to an operating fleet. SkyCandy is deployed on Itzamna Aero's I9X/W UAS with low-cost sensors, and is currently being used to study the Popocatepetl volcano. Results suggest that operational communities can deploy low-cost sUAS to systematically monitor whilst optimizing for efficiency/maximizing resilience. The CAOS methodology is applicable to many other environments where coherent structures are present in the background. More information can be found at caos.mit.edu.

  20. A system for simulating aerial or orbital TV observations of geographic patterns

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    A system which simulates observation of the earth surface by aerial or orbiting television devices has been developed. By projecting color slides of photographs taken by aircraft and orbiting sensors upon a rear screen system, and altering scale of projected image, screen position, or TV camera position, it is possible to simulate alternatives of altitude, or optical systems. By altering scan line patterns in COHU 3200 series camera from 525 to 945 scan lines, it is possible to study implications of scan line resolution upon the detection and analysis of geographic patterns observed by orbiting TV systems.

  1. Acquisition of Cooperative Small Unmanned Aerial Systems for Advancing Man Machine Interface Research

    DTIC Science & Technology

    2016-08-24

    global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...synthetic, global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...such as an insect fly eye , but allowing multiple aperture configurations. Due to the desired nature of distributed networked aerial vehicles (for the

  2. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  3. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  4. APPLICATION OF THE AERIAL PROFILING OF TERRAIN SYSTEM.

    USGS Publications Warehouse

    Cyran, Edward J.

    1985-01-01

    The U. S. Geological Survey has completed the performance evaluation flight tests of the Aerial Profiling of Terrain System (APTS) and is now performing a series of application tests to determine its effectiveness and efficiency as an earth-science data collection tool. These tests are designed to evaluate the APTS at such tasks as positioning water wells, testing reliability of older maps, measuring elevations of kettle ponds, and profiling stream valleys for flood studies. The results of three application tests in Massachusetts are discussed: positioning water wells and measuring elevations along the Charles River; testing four older 1:24,000-scale quadrangle maps in the Plymouth area; and measuring elevations of several hundred kettle ponds near the Cape Cod Canal.

  5. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  6. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  7. Research of aerial imaging spectrometer data acquisition technology based on USB 3.0

    NASA Astrophysics Data System (ADS)

    Huang, Junze; Wang, Yueming; He, Daogang; Yu, Yanan

    2016-11-01

    With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.

  8. On Board Data Acquisition System with Intelligent Transducers for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rochala, Zdzisław

    2012-02-01

    This report presents conclusions from research project no. ON50900363 conducted at the Mechatronics Department, Military University of Technology in the years 2007-2010. As the main object of the study involved the preparation of a concept and the implementation of an avionics data acquisition system intended for research during flight of unmanned aerial vehicles of the mini class, this article presents a design of an avionics system and describes equipment solutions of a distributed measurement system intended for data acquisition consisting of intelligent transducers. The data collected during a flight controlled by an operator confirmed proper operation of the individual components of the data acquisition system.

  9. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems

    USDA-ARS?s Scientific Manuscript database

    The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...

  10. GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system

    USGS Publications Warehouse

    Sanchez, Richard D.; Hudnut, Kenneth W.

    2004-01-01

    Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.

  11. Lightweight mid-infrared methane sensor for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Golston, Levi M.; Tao, Lei; Brosy, Caroline; Schäfer, Klaus; Wolf, Benjamin; McSpiritt, James; Buchholz, Bernhard; Caulton, Dana R.; Pan, Da; Zondlo, Mark A.; Yoel, David; Kunstmann, Harald; McGregor, Marty

    2017-06-01

    The design and field performance of a compact diode laser-based instrument for measuring methane on unmanned aerial systems (UAS) is described. The system is based on open-path, wavelength modulation spectroscopy with a 3.27 µm GaSb laser. We design two versions of the sensor for a long-endurance fixed wing UAS and a rotary wing hexacopter, with instrument masses of 4.6 and 1.6 kg, respectively. The long-endurance platform was used to measure vertical profiles of methane up to 600 m in altitude and showed repeatability of 13 ppbv between multiple profiles. Additionally, the hexacopter system was used to evaluate the evolution of methane in the nocturnal boundary layer during the ScaleX field campaign in Germany, where measured data is consistent with supporting ground-based methane and meteorological measurements. Testing results on both platforms demonstrated our lightweight methane sensor had an in-flight precision of 5-10 ppbv Hz-1/2.

  12. Drones in Automation - Secured Unmanned Aerial Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales Rodriguez, Marissa E.; Rooke, Sterling; Fuhr, Peter L.

    Factories, refineries, utilities (water/wastewater, electric) and related industrial sites are complex systems and structures with inspection and maintenance procedures required for optimal operation and regulatory compliance. As a specific example, consider just the bulk electric power system which is comprised of more than 200,000 miles of highvoltage transmission lines, thousands of generation plants and millions of digital controls. More than 1,800 entities own and operate portions of the grid system, with thousands more involved in the operation of distribution networks across North America. The interconnected and interdependent nature of the bulk power system requires a consistent and systematic application ofmore » risk mitigation across the entire grid system to be truly effective. Similar situations are found throughout automation where frequently an aging infrastructure is in place too. Consider, for example, the situation present in a refinery or chemical processing setting with the requirement for leak detection inspection of pipes, interconnects and systems stretching across the plant. The current practices and challenges relating just to this task - leak detection and repair (LDAR) – of detecting any fugitive emissions present and documenting all measurements thereby meeting air compliance regulations are typically “handled” by a small army of individuals with handheld or backpack-sized detectors who crawl through piping racks conducting measurements at each flange. Such work is performed in difficult conditions (temperature, humidity, physically challenging) with frequently a high level of employee turnover. Finaly, enter low cost sensors and mobile platforms – in other words unmanned aerial systems (UASs, or drones) with enhanced sensing capabilities.« less

  13. Drones in Automation - Secured Unmanned Aerial Systems

    DOE PAGES

    Morales Rodriguez, Marissa E.; Rooke, Sterling; Fuhr, Peter L.; ...

    2017-05-01

    Factories, refineries, utilities (water/wastewater, electric) and related industrial sites are complex systems and structures with inspection and maintenance procedures required for optimal operation and regulatory compliance. As a specific example, consider just the bulk electric power system which is comprised of more than 200,000 miles of highvoltage transmission lines, thousands of generation plants and millions of digital controls. More than 1,800 entities own and operate portions of the grid system, with thousands more involved in the operation of distribution networks across North America. The interconnected and interdependent nature of the bulk power system requires a consistent and systematic application ofmore » risk mitigation across the entire grid system to be truly effective. Similar situations are found throughout automation where frequently an aging infrastructure is in place too. Consider, for example, the situation present in a refinery or chemical processing setting with the requirement for leak detection inspection of pipes, interconnects and systems stretching across the plant. The current practices and challenges relating just to this task - leak detection and repair (LDAR) – of detecting any fugitive emissions present and documenting all measurements thereby meeting air compliance regulations are typically “handled” by a small army of individuals with handheld or backpack-sized detectors who crawl through piping racks conducting measurements at each flange. Such work is performed in difficult conditions (temperature, humidity, physically challenging) with frequently a high level of employee turnover. Finaly, enter low cost sensors and mobile platforms – in other words unmanned aerial systems (UASs, or drones) with enhanced sensing capabilities.« less

  14. Knowledge-based understanding of aerial surveillance video

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Butler, Darren

    2006-05-01

    Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.

  15. Aerial vehicles collision avoidance using monocular vision

    NASA Astrophysics Data System (ADS)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  16. Detail design of empennage of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  17. Aerial Measuring System Sensor Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. S. Detwiler

    2002-04-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimatingmore » detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 {micro}Ci/m{sup 2}. The helicopter calculations modeled the transport of americium-241 ({sup

  18. Initial Efforts toward Mission-Representative Imaging Surveys from Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Ippolito, Corey; Young, Larry A.; Lau, Benton; Lee, Pascal

    2004-01-01

    Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.

  19. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    PubMed

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  20. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  1. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources (Abstract)

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  2. 2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF MINUTEMAN SILOS. Low oblique aerial view (original in color) of the two launch silos, covered. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Missile Silo Type, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  3. Research on the Application of Rapid Surveying and Mapping for Large Scare Topographic Map by Uav Aerial Photography System

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Song, Y.; Li, C.; Zeng, F.; Wang, F.

    2017-08-01

    Rapid acquisition and processing method of large scale topographic map data, which relies on the Unmanned Aerial Vehicle (UAV) low-altitude aerial photogrammetry system, is studied in this paper, elaborating the main work flow. Key technologies of UAV photograph mapping is also studied, developing a rapid mapping system based on electronic plate mapping system, thus changing the traditional mapping mode and greatly improving the efficiency of the mapping. Production test and achievement precision evaluation of Digital Orth photo Map (DOM), Digital Line Graphic (DLG) and other digital production were carried out combined with the city basic topographic map update project, which provides a new techniques for large scale rapid surveying and has obvious technical advantage and good application prospect.

  4. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  5. Vehicle detection in aerial surveillance using dynamic Bayesian networks.

    PubMed

    Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying

    2012-04-01

    We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.

  6. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Jake; Ray, Ronald; Calianno, Carl

    2004-01-01

    This viewgraph document reviews NASA Dryden's work on Aerial refueling, with specific interest in calculating the drag of the refueling system. The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust

  7. USE OF THE AERIAL MEASUREMENT SYSTEM HELICOPTER EMERGENCY RESPONSE ACQUISITION SYSTEMS WITH GEOGRAPHIC INFORMATION SYSTEM FOR RADIOACTIVE SOIL REMEDIATION - [11504

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROCK CT

    2011-02-15

    The Aerial Measurement System (AMS) Helicopter Emergency Response Acquisition System provides a thorough and economical means to identify and characterize the contaminants for large area radiological surveys. The helicopter system can provide a 100-percent survey of an area that qualifies as a scoping survey under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) methodology. If the sensitivity is adequate when compared to the clean up values, it may also be used for the characterization survey. The data from the helicopter survey can be displayed and manipulated to provide invaluable data during remediation activities.

  8. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  9. The aerial relay system: An energy-efficient solution to the airport congestion problem

    NASA Technical Reports Server (NTRS)

    Kyser, A. C.

    1980-01-01

    The ability to transfer airline passengers between aircraft in flight, if adequately developed and integrated into the national air transportation system, could provide significant improvements in transportation-system performance, in terms of airport congestion, fuel consumption, and passenger service. The proposed Aerial Relay System concept, which was developed as a means of exploiting inflight transfer, makes use of large 'cruise liner' aircraft which fly continuously along their routes, docking periodically with short-haul feeder aircraft for exchange of payloads. Preliminary vehicle designs for a representative system are described and the operational feasibility of the concept for the United States in the 1990's is discussed.

  10. Determination of Exterior Orientation Parameters Through Direct Geo-Referencing in a Real-Time Aerial Monitoring System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, J.; Choi, K.; Lee, I.

    2012-07-01

    Rapid responses for emergency situations such as natural disasters or accidents often require geo-spatial information describing the on-going status of the affected area. Such geo-spatial information can be promptly acquired by a manned or unmanned aerial vehicle based multi-sensor system that can monitor the emergent situations in near real-time from the air using several kinds of sensors. Thus, we are in progress of developing such a real-time aerial monitoring system (RAMS) consisting of both aerial and ground segments. The aerial segment acquires the sensory data about the target areas by a low-altitude helicopter system equipped with sensors such as a digital camera and a GPS/IMU system and transmits them to the ground segment through a RF link in real-time. The ground segment, which is a deployable ground station installed on a truck, receives the sensory data and rapidly processes them to generate ortho-images, DEMs, etc. In order to generate geo-spatial information, in this system, exterior orientation parameters (EOP) of the acquired images are obtained through direct geo-referencing because it is difficult to acquire coordinates of ground points in disaster area. The main process, since the data acquisition stage until the measurement of EOP, is discussed as follows. First, at the time of data acquisition, image acquisition time synchronized by GPS time is recorded as part of image file name. Second, the acquired data are then transmitted to the ground segment in real-time. Third, by processing software for ground segment, positions/attitudes of acquired images are calculated through a linear interpolation using the GPS time of the received position/attitude data and images. Finally, the EOPs of images are obtained from position/attitude data by deriving the relationships between a camera coordinate system and a GPS/IMU coordinate system. In this study, we evaluated the accuracy of the EOP decided by direct geo-referencing in our system. To perform this

  11. Rangeland remote sensing applications with unmanned aerial systems (UAS) in the national airspace: challenges and experiences

    USDA-ARS?s Scientific Manuscript database

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  12. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  13. Automated Aerial Refueling Hitches a Ride on AFF

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Bever, Glenn; Campos, Norma V.; Schkolnik, Gerard

    2007-01-01

    The recent introduction of uninhabited aerial vehicles [UAVs (basically, remotely piloted or autonomous aircraft)] has spawned new developments in autonomous operation and posed new challenges. Automated aerial refueling (AAR) is a capability that will enable UAVs to travel greater distances and loiter longer over targets. NASA Dryden Flight Research Center, in cooperation with the Defense Advanced Research Projects Agency (DARPA), the Naval Air Systems Command (NAVAIR), the Naval Air Force Pacific Fleet, and the Air Force Research Laboratory, rapidly conceived and accomplished an AAR flight research project focused on collecting a unique, high-quality database on the dynamics of the hose and drogue of an aerial refueling system. This flight-derived database would be used to validate mathematical models of the dynamics in support of design and analysis of AAR systems for future UAVs. The project involved the use of two Dryden F/A-18 airplanes and an S-3 hose-drogue refueling store on loan from the Navy. In this year-long project, which was started on October 1, 2002, 583 research maneuvers were completed during 23 flights.

  14. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS)

    PubMed Central

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P.

    2017-01-01

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent. PMID:28178215

  15. Aerial image databases for pipeline rights-of-way management

    NASA Astrophysics Data System (ADS)

    Jadkowski, Mark A.

    1996-03-01

    Pipeline companies that own and manage extensive rights-of-way corridors are faced with ever-increasing regulatory pressures, operating issues, and the need to remain competitive in today's marketplace. Automation has long been an answer to the problem of having to do more work with less people, and Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) solutions have been implemented at several pipeline companies. Until recently, the ability to cost-effectively acquire and incorporate up-to-date aerial imagery into these computerized systems has been out of the reach of most users. NASA's Earth Observations Commercial Applications Program (EOCAP) is providing a means by which pipeline companies can bridge this gap. The EOCAP project described in this paper includes a unique partnership with NASA and James W. Sewall Company to develop an aircraft-mounted digital camera system and a ground-based computer system to geometrically correct and efficiently store and handle the digital aerial images in an AM/FM/GIS environment. This paper provides a synopsis of the project, including details on (1) the need for aerial imagery, (2) NASA's interest and role in the project, (3) the design of a Digital Aerial Rights-of-Way Monitoring System, (4) image georeferencing strategies for pipeline applications, and (5) commercialization of the EOCAP technology through a prototype project at Algonquin Gas Transmission Company which operates major gas pipelines in New England, New York, and New Jersey.

  16. Technology Trends in Small Unmanned Aircraft Systems (sUAS) and Counter-UAS: A Five Year Outlook

    DTIC Science & Technology

    2017-11-01

    types of sUAS are highly sensitive to weather conditions, such as strong winds , which can affect precision maneuverability...will surpass the 200 mph mark, and fixed-wing sUAS will see some enhancement in speed through the advancement of miniature (or hobbyist) turbine ... turbine engine (Figure 6).14 Since then, several other sUAS hobbyists have tested similar aircraft reaching comparable speeds. In response to

  17. Unplanned releases and injuries associated with aerial application of chemicals, 1995-2002.

    PubMed

    Rice, Nancy; Messing, Rita; Souther, Larry; Berkowitz, Zahava

    2005-11-01

    For this article, records of the Hazardous Substances Emergency Events Surveillance (HSEES) system were reviewed to identify and describe acute, unplanned releases of agricultural chemicals and associated injuries related to aerial application during 1995-2002. Records of aerial-application accidents from the National Transportation Safety Board were also reviewed. Of the 54,090 events in the HSEES system for 1995-2002, 91 were identified as aerial-application events. The most commonly released substance was malathion. There were 56 victims; 12 died, and 34 required treatment at a hospital. A higher percentage of HSEES aerial-applicator events involved injury and death than did other HSEES transportation events. The relatively high number of injuries and fatalities underscores the need for precautions such as monitoring and limiting pilot cumulative exposures to pesticides, and using appropriate personal protective equipment and decontamination equipment. Emergency responders should be educated about the hazards associated with chemicals at aerial-application crash sites.

  18. Real-Time Implementation of an Asynchronous Vision-Based Target Tracking System for an Unmanned Aerial Vehicle

    DTIC Science & Technology

    2007-06-01

    Chin Khoon Quek. “Vision Based Control and Target Range Estimation for Small Unmanned Aerial Vehicle.” Master’s Thesis, Naval Postgraduate School...December 2005. [6] Kwee Chye Yap. “Incorporating Target Mensuration System for Target Motion Estimation Along a Road Using Asynchronous Filter

  19. Aerial Observation Needs Workshop, May 13-14, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasiri, Shaima; Serbin, Shawn; Lesmes, David

    2015-10-01

    The mission of the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE) Office of Science is "to advance a robust, predictive understanding of Earth's climate and environmental systems and to inform the development of sustainable solutions to the nation's energy and environmental challenges." Accomplishing this mission requires aerial observations of the atmospheric and terrestrial components of the climate system. CESD is assessing its current and future aerial observation needs to develop a strategy and roadmap of capability requirements for the next decade. To facilitate this process,more » a workshop was convened that consisted of invited experts in the atmospheric and terrestrial sciences, airborne observations, and modeling. This workshop report summarizes the community input prior to and during the workshop on research challenges and opportunities, as well as specific science questions and observational needs that require aerial observations to address.« less

  20. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    NASA Astrophysics Data System (ADS)

    Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.

    2015-06-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.

  1. Current status and future directions of precision agriculture for aerial application in the USA

    USDA-ARS?s Scientific Manuscript database

    Precision aerial application in the USA is less than a decade old since the development of the first variable-rate aerial application system. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management. Variable-rate aerial application provides...

  2. Vision-Based SLAM System for Unmanned Aerial Vehicles

    PubMed Central

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131

  3. Converting aerial imagery to application maps

    USDA-ARS?s Scientific Manuscript database

    Over the last couple of years in Agricultural Aviation and at the 2014 and 2015 NAAA conventions, we have written about and presented both single-camera and two-camera imaging systems for use on agricultural aircraft. Many aerial applicators have shown a great deal of interest in the imaging systems...

  4. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

    PubMed Central

    López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel

    2017-01-01

    One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758

  5. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  6. Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, Piotr T.; Malchow, Russell L.

    2013-03-12

    During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nation’s ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Securitymore » Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams’ officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions’ aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the

  7. Prospective Architectures for Onboard vs Cloud-Based Decision Making for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Teubert, Christopher

    2017-01-01

    This paper investigates propsective architectures for decision-making in unmanned aerial systems. When these unmanned vehicles operate in urban environments, there are several sources of uncertainty that affect their behavior, and decision-making algorithms need to be robust to account for these different sources of uncertainty. It is important to account for several risk-factors that affect the flight of these unmanned systems, and facilitate decision-making by taking into consideration these various risk-factors. In addition, there are several technical challenges related to autonomous flight of unmanned aerial systems; these challenges include sensing, obstacle detection, path planning and navigation, trajectory generation and selection, etc. Many of these activities require significant computational power and in many situations, all of these activities need to be performed in real-time. In order to efficiently integrate these activities, it is important to develop a systematic architecture that can facilitate real-time decision-making. Four prospective architectures are discussed in this paper; on one end of the spectrum, the first architecture considers all activities/computations being performed onboard the vehicle whereas on the other end of the spectrum, the fourth and final architecture considers all activities/computations being performed in the cloud, using a new service known as Prognostics as a Service that is being developed at NASA Ames Research Center. The four different architectures are compared, their advantages and disadvantages are explained and conclusions are presented.

  8. 49 CFR 236.71 - Signal wires on pole line and aerial cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...

  9. 49 CFR 236.71 - Signal wires on pole line and aerial cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...

  10. 49 CFR 236.71 - Signal wires on pole line and aerial cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...

  11. Verification of aerial photo stand volume tables for southeast Alaska.

    Treesearch

    Theodore S. Setzer; Bert R. Mead

    1988-01-01

    Aerial photo volume tables are used in the multilevel sampling system of Alaska Forest Inventory and Analysis. These volume tables are presented with a description of the data base and methods used to construct the tables. Volume estimates compiled from the aerial photo stand volume tables and associated ground-measured values are compared and evaluated.

  12. Botswana: Ntwetwe and Sua Pans

    Atmospheric Science Data Center

    2013-04-15

    ... of red band imagery in which the 45-degree aft camera data are displayed in blue, 45-degree forward as green, and vertical as red. ... coat the surface and turn it bright ("sua" means salt). The mining town of Sowa is located where the Sua Spit (a finger of grassland ...

  13. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  14. Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis

    NASA Astrophysics Data System (ADS)

    Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin

    2015-02-01

    Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.

  15. Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.

    PubMed

    Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin

    2015-02-01

    Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.

  16. Science of Test Research Consortium: Year Two Final Report

    DTIC Science & Technology

    2012-10-02

    July 2012. Analysis of an Intervention for Small Unmanned Aerial System ( SUAS ) Accidents, submitted to Quality Engineering, LQEN-2012-0056. Stone... Systems Engineering. Wolf, S. E., R. R. Hill, and J. J. Pignatiello. June 2012. Using Neural Networks and Logistic Regression to Model Small Unmanned ...Human Retina. 6. Wolf, S. E. March 2012. Modeling Small Unmanned Aerial System Mishaps using Logistic Regression and Artificial Neural Networks. 7

  17. System identification of a small low-cost unmanned aerial vehicle using flight data from low-cost sensors

    NASA Astrophysics Data System (ADS)

    Hoffer, Nathan Von

    Remote sensing has traditionally been done with satellites and manned aircraft. While. these methods can yield useful scientificc data, satellites and manned aircraft have limitations in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial vehicles (UAVs) provide greater possibilities for personal scientic research than traditional remote sensing platforms. Precision aerial data requires an accurate vehicle dynamics model for controller development, robust flight characteristics, and fault tolerance. One method of developing a model is system identification (system ID). In this thesis system ID of a small low-cost fixed-wing T-tail UAV is conducted. The linerized longitudinal equations of motion are derived from first principles. Foundations of Recursive Least Squares (RLS) are presented along with RLS with an Error Filtering Online Learning scheme (EFOL). Sensors, data collection, data consistency checking, and data processing are described. Batch least squares (BLS) and BLS with EFOL are used to identify aerodynamic coecoefficients of the UAV. Results of these two methods with flight data are discussed.

  18. National aerial photography program as a geographic information system resource

    USGS Publications Warehouse

    Light, Donald L.

    1991-01-01

    The National Aerial Photography Program (NAPP) is jointly funded by Federal agencies and States that choose to participate in a 50-50 cost sharing cooperative arrangement. The NAPP is designed to acquire black-and-white (B&W) or color infrared (CIR) photography at a scale of 1:40,000. The status of NAPP flying, now going into the first year of its second 5-year cycle, is reviewed to inform the user community of NAPP's coverage. The resolution, geometric quality and flight parameters are used to estimate the system's cartographic potential to produce orthophotoquads, digital elevation models, topographic maps and digital information to meet national map accuracy standards at 1:12,000 and 1:24,000-scale and serve as a geographic information system resource. Also, a technique is presented to compute the optimum scanning spot size (15 ??m) and storage required for converting the B&W or CIR photography to digital, machine-readable pixel form. The resulting digital NAPP data are suitable for a wide variety of new applications, including use in geographic information systems.

  19. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction?

    PubMed Central

    Krieger, Jakob; Braun, Philipp; Rivera, Nicole T.; Schubart, Christoph D.; Müller, Carsten H.G.

    2015-01-01

    Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the “true crabs” (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal’s life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task. PMID:26713228

  20. 7 CFR 1755.506 - Aerial wire services

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Aerial wire services 1755.506 Section 1755.506... § 1755.506 Aerial wire services (a) Aerial services of one through six pairs shall consist of Service...), Specifications and Drawings for Service Installations at Customer Access Locations. The wire used for aerial...

  1. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  2. Microencapsuling aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures

    USDA-ARS?s Scientific Manuscript database

    Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...

  3. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  4. Using high-resolution digital aerial imagery to map land cover

    USGS Publications Warehouse

    Dieck, J.J.; Robinson, Larry

    2014-01-01

    The Upper Midwest Environmental Sciences Center (UMESC) has used aerial photography to map land cover/land use on federally owned and managed lands for over 20 years. Until recently, that process used 23- by 23-centimeter (9- by 9-inch) analog aerial photos to classify vegetation along the Upper Mississippi River System, on National Wildlife Refuges, and in National Parks. With digital aerial cameras becoming more common and offering distinct advantages over analog film, UMESC transitioned to an entirely digital mapping process in 2009. Though not without challenges, this method has proven to be much more accurate and efficient when compared to the analog process.

  5. A study of methods for lowering aerial environmental survey cost

    NASA Technical Reports Server (NTRS)

    Stansberry, J. R.

    1973-01-01

    The results are presented of a study of methods for lowering the cost of environmental aerial surveys. A wide range of low cost techniques were investigated for possible application to current pressing urban and rural problems. The objective of the study is to establish a definition of the technical problems associated with conducting aerial surveys using various low cost techniques, to conduct a survey of equipment which may be used in low cost systems, and to establish preliminary estimates of cost. A set of candidate systems were selected and described for the environmental survey tasks.

  6. Comparison of binary mask defect printability analysis using virtual stepper system and aerial image microscope system

    NASA Astrophysics Data System (ADS)

    Phan, Khoi A.; Spence, Chris A.; Dakshina-Murthy, S.; Bala, Vidya; Williams, Alvina M.; Strener, Steve; Eandi, Richard D.; Li, Junling; Karklin, Linard

    1999-12-01

    As advanced process technologies in the wafer fabs push the patterning processes toward lower k1 factor for sub-wavelength resolution printing, reticles are required to use optical proximity correction (OPC) and phase-shifted mask (PSM) for resolution enhancement. For OPC/PSM mask technology, defect printability is one of the major concerns. Current reticle inspection tools available on the market sometimes are not capable of consistently differentiating between an OPC feature and a true random defect. Due to the process complexity and high cost associated with the making of OPC/PSM reticles, it is important for both mask shops and lithography engineers to understand the impact of different defect types and sizes to the printability. Aerial Image Measurement System (AIMS) has been used in the mask shops for a number of years for reticle applications such as aerial image simulation and transmission measurement of repaired defects. The Virtual Stepper System (VSS) provides an alternative method to do defect printability simulation and analysis using reticle images captured by an optical inspection or review system. In this paper, pre- programmed defects and repairs from a Defect Sensitivity Monitor (DSM) reticle with 200 nm minimum features (at 1x) will be studied for printability. The simulated resist lines by AIMS and VSS are both compared to SEM images of resist wafers qualitatively and quantitatively using CD verification.Process window comparison between unrepaired and repaired defects for both good and bad repair cases will be shown. The effect of mask repairs to resist pattern images for the binary mask case will be discussed. AIMS simulation was done at the International Sematech, Virtual stepper simulation at Zygo and resist wafers were processed at AMD-Submicron Development Center using a DUV lithographic process for 0.18 micrometer Logic process technology.

  7. Optimal Remote Sensing with Small Unmanned Aircraft Systems and Risk Management

    NASA Astrophysics Data System (ADS)

    Stark, Brandon

    Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs) has blossomed into a new component of the aviation industry. Though regulations within the United States lagged, the promise of the ability of Small Unmanned Aircraft Systems (SUASs), or those UAS that weigh less than 55 lbs, has driven significant advances in small scale aviation technology. The dream of a small, low-cost aerial platform that can fly anywhere and keep humans safely away from the `dull, dangerous and dirty' jobs, has encouraged many to examine the possibilities of utilizing SUAS in new and transformative ways, especially as a new tool in remote sensing. However, as with any new tool, there remains significant challenges in realizing the full potential of SUAS-based remote sensing. Within this dissertation, two specific challenges are addressed: validating the use of SUAS as a remote sensing platform and improving the safety and management of SUAS. The use of SUAS in remote sensing is a relatively new challenge and while it has many similarities to other remote sensing platforms, the dynamic nature of its operation makes it unique. In this dissertation, a closer look at the methodology of using SUAS reveals that while many view SUAS as an alternative to satellite imagery, this is an incomplete view and that the current common implementation introduces a new source of error that has significant implications on the reliability of the data collected. It can also be seen that a new approach to remote sensing with an SUAS can be developed by addressing the spatial, spectral and temporal factors that can now be more finely adjusted with the use of SUAS. However, to take the full advantage of the potential of SUAS, they must uphold the promise of improved safety. This is not a trivial challenge, especially for the integration into the National Airspace System (NAS) and for the safety management and oversight of diverse UAS operations. In this dissertation, the challenge of integrating

  8. Locating waterfowl observations on aerial surveys

    USGS Publications Warehouse

    Butler, W.I.; Hodges, J.I.; Stehn, R.A.

    1995-01-01

    We modified standard aerial survey data collection to obtain the geographic location for each waterfowl observation on surveys in Alaska during 1987-1993. Using transect navigation with CPS (global positioning system), data recording on continuously running tapes, and a computer data input program, we located observations with an average deviation along transects of 214 m. The method provided flexibility in survey design and data analysis. Although developed for geese nesting near the coast of the Yukon-Kuskokwim Delta, the methods are widely applicable and were used on other waterfowl surveys in Alaska to map distribution and relative abundance of waterfowl. Accurate location data with GIS analysis and display may improve precision and usefulness of data from any aerial transect survey.

  9. Geometric Calibration and Validation of Ultracam Aerial Sensors

    NASA Astrophysics Data System (ADS)

    Gruber, Michael; Schachinger, Bernhard; Muick, Marc; Neuner, Christian; Tschemmernegg, Helfried

    2016-03-01

    We present details of the calibration and validation procedure of UltraCam Aerial Camera systems. Results from the laboratory calibration and from validation flights are presented for both, the large format nadir cameras and the oblique cameras as well. Thus in this contribution we show results from the UltraCam Eagle and the UltraCam Falcon, both nadir mapping cameras, and the UltraCam Osprey, our oblique camera system. This sensor offers a mapping grade nadir component together with the four oblique camera heads. The geometric processing after the flight mission is being covered by the UltraMap software product. Thus we present details about the workflow as well. The first part consists of the initial post-processing which combines image information as well as camera parameters derived from the laboratory calibration. The second part, the traditional automated aerial triangulation (AAT) is the step from single images to blocks and enables an additional optimization process. We also present some special features of our software, which are designed to better support the operator to analyze large blocks of aerial images and to judge the quality of the photogrammetric set-up.

  10. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    USDA-ARS?s Scientific Manuscript database

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  11. Fuel cell powered small unmanned aerial systems (UASs) for extended endurance flights

    NASA Astrophysics Data System (ADS)

    Chu, Deryn; Jiang, R.; Dunbar, Z.; Grew, Kyle; McClure, J.

    2015-05-01

    Small unmanned aerial systems (UASs) have been used for military applications and have additional potential for commercial applications [1-4]. For the military, these systems provide valuable intelligence, surveillance, reconnaissance and target acquisition (ISRTA) capabilities for units at the infantry, battalion, and company levels. The small UASs are light-weight, manportable, can be hand-launched, and are capable of carrying payloads. Currently, most small UASs are powered by lithium-ion or lithium polymer batteries; however, the flight endurance is usually limited less than two hours and requires frequent battery replacement. Long endurance small UAS flights have been demonstrated through the implementation of a fuel cell system. For instance, a propane fueled solid oxide fuel cell (SOFC) stack has been used to power a small UAS and shown to extend mission flight time. The research and development efforts presented here not only apply to small UASs, but also provide merit to the viability of extending mission operations for other unmanned systems applications.

  12. Ecological Energetics of an Abundant Aerial Insectivore, the Purple Martin

    PubMed Central

    Kelly, Jeffrey F.; Bridge, Eli S.; Frick, Winifred F.; Chilson, Phillip B.

    2013-01-01

    The atmospheric boundary layer and lower free atmosphere, or aerosphere, is increasingly important for human transportation, communication, environmental monitoring, and energy production. The impacts of anthropogenic encroachment into aerial habitats are not well understood. Insectivorous birds and bats are inherently valuable components of biodiversity and play an integral role in aerial trophic dynamics. Many of these insectivores are experiencing range-wide population declines. As a first step toward gaging the potential impacts of these declines on the aerosphere’s trophic system, estimates of the biomass and energy consumed by aerial insectivores are needed. We developed a suite of energetics models for one of the largest and most common avian aerial insectivores in North America, the Purple Martin ( Progne subis ). The base model estimated that Purple Martins consumed 412 (± 104) billion insects*y-1 with a biomass of 115,860 (± 29,192) metric tonnes*y-1. During the breeding season Purple Martins consume 10.3 (+ 3.0) kg of prey biomass per km3 of aerial habitat, equal to about 36,000 individual insects*km-3. Based on these calculations, the cumulative seasonal consumption of insects*km-3 is greater in North America during the breeding season than during other phases of the annual cycle, however the maximum daily insect consumption*km-3 occurs during fall migration. This analysis provides the first range-wide quantitative estimate of the magnitude of the trophic impact of this large and common aerial insectivore. Future studies could use a similar modeling approach to estimate impacts of the entire guild of aerial insectivores at a variety of temporal and spatial scales. These analyses would inform our understanding of the impact of population declines among aerial insectivores on the aerosphere’s trophic dynamics. PMID:24086755

  13. The Art of Aerial Warfare

    DTIC Science & Technology

    2005-03-01

    14 3 THE POLITICAL DIMENSIONS OF AERIAL WARFARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 How Political Effects in...Aerial Warfare . . . . . . Outweigh Military Effects . . . . . . . . . . . . . . . 19 Political Targets Versus Military Targets . . . . . 22...34 4 MILITARY AND POLITICAL EFFECTS OF STRATEGIC ATTACK . . . . . . . . . . . . . . . . . . 35 The Premise of

  14. A Framework for Safe Integration of Small UAS Into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Bland, Geoffrey; Murray, Jennifer

    2011-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine classes of platforms and operations. Finally, a framework is proposed for both airworthiness and operations that attempts to balance safety with utility for these important systems.

  15. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  16. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  17. Smokey comes of age: Unmanned aerial systems for fire management

    USGS Publications Warehouse

    Twidwell, Dirac; Allen, Craig R.; Detweiler, Carrick; Higgins, James; Laney, Christian; Elbaum, Sebastian

    2016-01-01

    During the past century, fire management has focused on techniques both to protect human communities from catastrophic wildfire and to maintain fire-dependent ecological systems. However, despite a large and increasing allocation of resources and personnel to achieve these goals, fire management objectives at regional to global scales are not being met. Current fire management techniques are clearly inadequate for the challenges faced by fire managers, and technological innovations are needed. Advances in unmanned aerial systems (UAS) technology provide opportunities for innovation in fire management and science. In many countries, fire management organizations are beginning to explore the potential of UAS for monitoring fires. We have taken the next step and developed a prototype that can precisely ignite fires as part of wildfire suppression tactics or prescribed fires (fire intentionally ignited within predetermined conditions to reduce hazardous fuels, improve habitat, or mitigate for large wildfires). We discuss the potential for these technologies to benefit fire management activities, while acknowledging the sizeable sociopolitical barriers that prevent their immediate broad application.

  18. An aerial baiting system for the distribution of attenuated or recombinant rabies vaccines for foxes, raccoons, and skunks.

    PubMed

    Johnston, D H; Voigt, D R; MacInnes, C D; Bachmann, P; Lawson, K F; Rupprecht, C E

    1988-01-01

    An aerial baiting system was developed to deliver oral rabies vaccines to wild carnivore vectors of rabies, e.g., red fox, striped skunk, and raccoon. The bait consists of a polyethylene bag that contains either a 30-g hamburger ball or a 25-mL cube of polyurethane sponge coated with a wax-beef tallow mixture containing 100-150 mg of tetracycline as a biomarker. Attractants used with the sponge were added to the bag (e.g., liver slurry, cheeses, fish oils, or fruits). Baits (greater than 80,000) were dropped from light aircraft at densities of 18-120 baits/km2 over test areas in Ontario and Pennsylvania. Rates of bait acceptance were assessed by the presence of fluorescent tetracycline deposits in the teeth of animals obtained from hunters and trappers. Bait acceptance reached 74% in foxes, 54% in skunks, 43% in raccoons, and 85% in coyotes in the Ontario trials; bait acceptance by raccoons in a small trial in Pennsylvania reached 76%. Also, 66% of juvenile foxes that ate baits ate a second bait 7 or more days after eating the first, thus giving the potential for a booster effect. The cost of aerial distribution of bait (excluding cost of bait and vaccine) in Canadian dollars was $1.45/km2. The aerial distribution system is capable of economically reaching a high proportion of foxes, skunks, and raccoons over large areas. Trials with attenuated ERA (Evelyn-Rokitnicki-Abelseth) vaccines are under way in Ontario.

  19. Airspeed and orifice size affect spray droplet spectra from an aerial electrostatic nozzle for rotary-wing applications

    USDA-ARS?s Scientific Manuscript database

    The aerial electrostatic spraying system patented by the USDA-ARS is a unique aerial application system which inductively charges spray droplets for the purpose of increasing deposition and efficacy. While this system has many potential benefits, no published data exits which describe how changes i...

  20. 49 CFR 236.71 - Signal wires on pole line and aerial cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal wires on pole line and aerial cable. 236.71... Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on... pole or other support. Signal wire shall not interfere with, or be interfered by, other wires on the...

  1. 49 CFR 236.71 - Signal wires on pole line and aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal wires on pole line and aerial cable. 236.71... Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on... pole or other support. Signal wire shall not interfere with, or be interfered by, other wires on the...

  2. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications

    USDA-ARS?s Scientific Manuscript database

    The aerial electrostatic spraying system patented by the USDA ARS is a unique aerial application system which inductively charges spray particles for the purpose of increasing deposition and efficacy. While this system has many potential benefits, very little is known about how changes in airspeed o...

  3. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  4. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.

    2002-01-01

    This report presents and overview of the Aeronautics Education, Research, and Industry Alliance (AERIAL). It covers the University of Nebraska's areas of research, and its outreach to students at Native American schools as part of AERIAL. The report contains three papers: "Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Application" (White Paper), "Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)", and "The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center".

  5. Human factors considerations for the integration of unmanned aerial vehicles in the National Airspace System : an analysis of reports submitted to the Aviation Safety Reporting System (ASRS)

    DOT National Transportation Integrated Search

    2017-06-06

    Successful integration of Unmanned Aerial Vehicle (UAV) operations into the National Airspace System requires the identification and mitigation of operational risks. This report reviews human factors issues that have been identified in operational as...

  6. Use of micro unmanned aerial vehicles for roadside condition assessment

    DOT National Transportation Integrated Search

    2010-12-01

    Micro unmanned aerial vehicles (MUAVs) that are equipped with digital imaging systems and global : positioning systems provide a potential opportunity for improving the effectiveness and safety of roadside : condition and inventory surveys. This stud...

  7. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  8. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  9. Use of low-altitude aerial photography to identify submersed aquatic macrophytes

    USGS Publications Warehouse

    Schloesser, Donald W.; Manny, Bruce A.; Brown, Charles L.; Jaworski, Eugene

    1987-01-01

    The feasibility of using low-altitude aerial photography to identify beds of submersed macrophytes is demonstrated. True color aerial photos and collateral ground survey information for submersed aquatic macrophyte beds at 10 sites in the St.Clair-Detroit River system were obtained in September 1978. Using the photos and collateral ground survey information, a dichotomous key was developed for the identification of six classes - beds of five genera of macrophytes and one substrate type. A test was prepared to determine how accurately photo interpreters could identify the six classes. The test required an interpreter to examine an unlabeled, outlined area on photographs and identify it using the key. Six interpreters were tested. One pair of interpreters was trained in the interpretation of a variety of aerial photos, a second pair had field experience in the collection and identification of submersed macrophytes in the river system, and a third pair had neither training in the interpretation of aerial photos nor field experience. The criteria that we developed were applied equally well by the interpretors, regardless of their training or experience. Overall accuracy (i.e., omission errors) of all six classes combined was 68% correct, whereas, overall accuracy of individual classes ranged from 50 to 100% correct. Mapping accuracy (i.e. omission and commission errors) of individual classes ranged from 36 to 75%. Although the key developed for this study has only limited application outside the context of the data and sites examined in this study, it is concluded that low-altitude aerial photography, together with limited amounts of collateral ground survey information, can be used to economically identify beds of submersed macrophytes in the St. Clair-Detroit River system and other similar water bodies.

  10. Design and Development of a Low-Cost Aerial Mobile Mapping System for Multi-Purpose Applications

    NASA Astrophysics Data System (ADS)

    Acevedo Pardo, C.; Farjas Abadía, M.; Sternberg, H.

    2015-08-01

    The research project with the working title "Design and development of a low-cost modular Aerial Mobile Mapping System" was formed during the last year as the result from numerous discussions and considerations with colleagues from the HafenCity University Hamburg, Department Geomatics. The aim of the project is to design a sensor platform which can be embedded preferentially on an UAV, but also can be integrated on any adaptable vehicle. The system should perform a direct scanning of surfaces with a laser scanner and supported through sensors for determining the position and attitude of the platform. The modular design allows his extension with other sensors such as multispectral cameras, digital cameras or multiple cameras systems.

  11. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team

    PubMed Central

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-01-01

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus’ estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling. PMID:27618060

  12. Aerial detection surveys in the United States

    Treesearch

    E. W. Johnson; D. Wittwer

    2006-01-01

    Aerial detection surveys, also known as aerial sketchmapping, is a remote sensing technique of observing forest change events from an aircraft and documenting them manually onto a map. Data from aerial surveys have become an important component of the Forest Health Monitoring, a national program designed to determine the status, changes, and trends in indicators of...

  13. Concept and realization of unmanned aerial system with different modes of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech

    2014-12-10

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of themore » system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.« less

  14. Aerial cooperative transporting and assembling control using multiple quadrotor-manipulator systems

    NASA Astrophysics Data System (ADS)

    Qi, Yuhua; Wang, Jianan; Shan, Jiayuan

    2018-02-01

    In this paper, a fully distributed control scheme for aerial cooperative transporting and assembling is proposed using multiple quadrotor-manipulator systems with each quadrotor equipped with a robotic manipulator. First, the kinematic and dynamic models of a quadrotor with multi-Degree of Freedom (DOF) robotic manipulator are established together using Euler-Lagrange equations. Based on the aggregated dynamic model, the control scheme consisting of position controller, attitude controller and manipulator controller is presented. Regarding cooperative transporting and assembling, multiple quadrotor-manipulator systems should be able to form a desired formation without collision among quadrotors from any initial position. The desired formation is achieved by the distributed position controller and attitude controller, while the collision avoidance is guaranteed by an artificial potential function method. Then, the transporting and assembling tasks request the manipulators to reach the desired angles cooperatively, which is achieved by the distributed manipulator controller. The overall stability of the closed-loop system is proven by a Lyapunov method and Matrosov's theorem. In the end, the proposed control scheme is simplified for the real application and then validated by two formation flying missions of four quadrotors with 2-DOF manipulators.

  15. Theoretical study of network design methodologies for the aerial relay system. [energy consumption and air traffic control

    NASA Technical Reports Server (NTRS)

    Rivera, J. M.; Simpson, R. W.

    1980-01-01

    The aerial relay system network design problem is discussed. A generalized branch and bound based algorithm is developed which can consider a variety of optimization criteria, such as minimum passenger travel time and minimum liner and feeder operating costs. The algorithm, although efficient, is basically useful for small size networks, due to its nature of exponentially increasing computation time with the number of variables.

  16. The application of unmanned aerial systems (UAS) in geophysical investigations of geothermal systems

    NASA Astrophysics Data System (ADS)

    Glen, J. M.; Egger, A. E.; Ippolito, C.; Phelps, G. A.; Berthold, R.; Lee, R.; Spritzer, J. M.; Tchernychev, M.

    2012-12-01

    Investigations of geothermal systems typically involve ground-based geological and geophysical studies in order to map structures that control and facilitate fluid flow. The spatial extent of ground-based investigations can be limited, however, by surficial hot springs, dense foliage, and roadless or private lands. This can result in data gaps in key areas, particularly around active hydrothermal springs. Manned aircraft can provide access to these areas and can yield broad and uniform data coverage, but high-resolution surveys are costly and relatively inflexible to changes in the survey specifications that may arise as data are collected. Unmanned aerial systems (UAS) are well suited for conducting these surveys, but until recently, various factors (scientific instrumentation requirements, platform limitations, and size of the survey area) have required the use of large UAS platforms, rendering unmanned aerial surveys unsuitable for most investigations. We have developed and tested a new cesium magnetometer system to collect magnetic data using two different small-platform UAS that overcomes many of the challenges described above. We are deploying this new system in Surprise Valley, CA, to study the area's active geothermal field. Surprise Valley is ideally suited to testing UAS due to its low population density, accessible airspace, and broad playa that provides ample opportunity to safely land the aircraft. In combination with gravity and topographic data, magnetic data are particularly useful for identifying buried, intra-basin structures, especially in areas such as Surprise Valley where highly magnetic, dense mafic volcanic rocks are interbedded with and faulted against less magnetic, less dense sedimentary rock. While high-resolution gravity data must be collected at point locations on the ground, high-resolution magnetic data can be obtained by UAS that provide continuous coverage. Once acquired, the magnetic data obtained by the UAS will be combined with

  17. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510G airplanes

    USDA-ARS?s Scientific Manuscript database

    Aerial spraying plays an important role in promoting agricultural production and protecting the biological environment due to its flexibility, high effectiveness, and large operational area per unit of time. In order to evaluate the performance parameters of the spraying systems on two fixed wing ai...

  18. Unmanned Aerial Systems and DSM matching for rock glacier monitoring

    NASA Astrophysics Data System (ADS)

    Dall'Asta, Elisa; Forlani, Gianfranco; Roncella, Riccardo; Santise, Marina; Diotri, Fabrizio; Morra di Cella, Umberto

    2017-05-01

    Among other techniques, aerial and terrestrial photogrammetry have long been used to control the displacements of landslides and glaciers as well as for the detection of terrain morphological changes. Unmanned Aerial Systems (UAS) are today an efficient tool to perform data acquisition in rough or difficult terrain, both safely and quickly, avoiding hazards and risks for the operators while at the same time containing the survey costs. Since 2012 ARPAVdA (the Regional Environmental Protection Agency of Aosta Valley, Italy) periodically surveys with UAS photogrammetry the Gran Sometta rock glacier, the Agency main monitoring site for the climate change impacts on high-mountain areas and related infrastructures. A Digital Surface Model (DSM) and an orthophoto of the rock glacier are produced after each survey flight. In order to accurately georeference them in a stable reference system, a Global Navigation Satellite System (GNSS) campaign is carried out at each epoch, to update the coordinates of signalised Ground Control Points (GCPs), since they partly lay in unstable (moving) areas. In late August 2015 a survey flight has been executed with a senseFly eBee RTK, with differential corrections sent from a ground reference station. The block has been adjusted without GCP using, as control information, only the projection centres coordinates encoded in the images. The RMS of the differences found on twelve Check Points were about 4 cm in horizontal and 7 cm in elevation, i.e. practically the same accuracy found using GCP. Differences between the DSMs produced at the same epoch with block orientation performed with GCP and with GNSS-determined projection centres were also investigated. To evaluate the rock glacier displacement fields between two epochs, corresponding features were at first manually identified on the orthophotos by a trained operator. To avoid the manual time-consuming procedure and increase the density of displacement information, two automatic

  19. An Energy-Aware Trajectory Optimization Layer for sUAS

    NASA Astrophysics Data System (ADS)

    Silva, William A.

    The focus of this work is the implementation of an energy-aware trajectory optimization algorithm that enables small unmanned aircraft systems (sUAS) to operate in unknown, dynamic severe weather environments. The software is designed as a component of an Energy-Aware Dynamic Data Driven Application System (EA-DDDAS) for sUAS. This work addresses the challenges of integrating and executing an online trajectory optimization algorithm during mission operations in the field. Using simplified aircraft kinematics, the energy-aware algorithm enables extraction of kinetic energy from measured winds to optimize thrust use and endurance during flight. The optimization layer, based upon a nonlinear program formulation, extracts energy by exploiting strong wind velocity gradients in the wind field, a process known as dynamic soaring. The trajectory optimization layer extends the energy-aware path planner developed by Wenceslao Shaw-Cortez te{Shaw-cortez2013} to include additional mission configurations, simulations with a 6-DOF model, and validation of the system with flight testing in June 2015 in Lubbock, Texas. The trajectory optimization layer interfaces with several components within the EA-DDDAS to provide an sUAS with optimal flight trajectories in real-time during severe weather. As a result, execution timing, data transfer, and scalability are considered in the design of the software. Severe weather also poses a measure of unpredictability to the system with respect to communication between systems and available data resources during mission operations. A heuristic mission tree with different cost functions and constraints is implemented to provide a level of adaptability to the optimization layer. Simulations and flight experiments are performed to assess the efficacy of the trajectory optimization layer. The results are used to assess the feasibility of flying dynamic soaring trajectories with existing controllers as well as to verify the interconnections between

  20. Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Many civilian applications of Unmanned Aerial Systems (UAS) have been imagined ranging from remote to congested urban areas, including goods delivery, infrastructure surveillance, agricultural support, and medical services delivery. Further, these UAS will have different equipage and capabilities based on considerations such as affordability, and mission needs applications. Such heterogeneous UAS mix, along with operations such as general aviation, helicopters, gliders must be safely accommodated at lower altitudes. However, key infrastructure to enable and safely manage widespread use of low-altitude airspace and UAS operations therein does not exist. Therefore, NASA is exploring functional design, concept and technology development, and a prototype UAS Traffic Management (UTM) system. UTM will support safe and efficient UAS operations for the delivery of goods and services

  1. Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approach

    NASA Astrophysics Data System (ADS)

    Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.

    2017-12-01

    Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.

  2. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  3. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  4. Development of an aerial counting system in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Zulyma Miserque Castillo, Jhany; Laverde Diaz, Rubbermaid; Rueda Guzmán, Claudia Leonor

    2016-07-01

    This paper proposes the development of a counting aerial system capable of capturing, process and analyzing images of an oil palm plantation to register the number of cultivated palms. It begins with a study of the available UAV technologies to define the most appropriate model according to the project needs. As result, a DJI Phantom 2 Vision+ is used to capture pictures that are processed by a photogrammetry software to create orthomosaics from the areas of interest, which are handled by the developed software to calculate the number of palms contained in them. The implemented algorithm uses a sliding window technique in image pyramids to generate candidate windows, an LBP descriptor to model the texture of the picture, a logistic regression model to classify the windows and a non-maximum suppression algorithm to refine the decision. The system was tested in different images than the ones used for training and for establishing the set point. As result, the system showed a 95.34% detection rate with a 97.83% precision in mature palms and a 79.26% detection rate with a 97.53% precision in young palms giving an FI score of 0.97 for mature palms and 0.87 for the small ones. The results are satisfactory getting the census and high-quality images from which is possible to get more information from the area of interest. All this, achieved through a low-cost system capable of work even in cloudy conditions.

  5. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Ingham, John C. (Inventor); Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Kuhn, III, Theodore R. (Inventor); Babel, III, Walter C. (Inventor); Fox, legal representative, Christopher L. (Inventor); Adams, James K. (Inventor); Laughter, Sean A. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  6. Automatic construction of aerial corridor for navigation of unmanned aircraft systems in class G airspace using LiDAR

    NASA Astrophysics Data System (ADS)

    Feng, Dengchao; Yuan, Xiaohui

    2016-05-01

    According to the airspace classification by the Federal Aviation Agency, Class G airspace is the airspace at 1,200 feet or less to the ground, which is beneath class E airspace and between classes B-D cylinders around towered airstrips. However, the lack of flight supervision mechanism in this airspace, unmanned aerial system (UAS) missions pose many safety issues. Collision avoidance and route planning for UASs in class G airspace is critical for broad deployment of UASs in commercial and security applications. Yet, unlike road network, there is no stationary marker in airspace to identify corridors that are available and safe for UASs to navigate. In this paper, we present an automatic LiDAR-based airspace corridor construction method for navigation in class G airspace and a method for route planning to minimize collision and intrusion. Our idea is to combine LiDAR to automatically identify ground objects that pose navigation restrictions such as airports and high-rises. Digital terrain model (DTM) is derived from LiDAR point cloud to provide an altitude-based class G airspace description. Following the FAA Aeronautical Information Manual, the ground objects that define the restricted airspaces are used together with digital surface model derived from LiDAR data to construct the aerial corridor for navigation of UASs. Preliminary results demonstrate competitive performance and the construction of aerial corridor can be automated with much great efficiency.

  7. Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system.

    PubMed

    Rahardjo, Yovita S P; Weber, Frans J; le Comte, E Paul; Tramper, Johannes; Rinzema, Arjen

    2002-06-05

    Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 539-544, 2002.

  8. Evaluation of a GPS used in conjunction with aerial telemetry

    USGS Publications Warehouse

    Olexa, E.M.; Gogan, P.J.P.; Podruzny, K.M.; Eiler, John; Alcorn, Doris J.; Neuman, Michael R.

    2001-01-01

    We investigated the use of a non-correctable Global Positioning System (NGPS) in association with aerial telemetry to determine animal locations. Average error was determined for 3 components of the location process: use of a NGPS receiver on the ground, use of a NGPS receiver in a aircraft while flying over a visual marker, and use of the same receiver while flying over a location determined by standard aerial telemetry. Average errors were 45.3, 88.1 and 137.4 m, respectively. A directional bias of <35 m was present for the telemetry component only. Tests indicated that use of NGPS to determine aircraft, and thereby animal, location is an efficient alternative to interpolation from topographic maps. This method was more accurate than previously reported Long-Range Navigation system, version C (LORAN-C) and Argos satellite telemetry. It has utility in areas where animal-borne GPS receivers are not practical due to a combination of topography, canopy coverage, weight or cost of animal-borne GPS units. Use of NGPS technology in conjunction with aerial telemetry will provide the location accuracy required for identification of gross movement patterns and coarse-grained habitat use.

  9. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  10. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.; O'Neil, Patrick D.

    2002-01-01

    The NASA Nebraska Space Grant Consortium (NSGC) & EPSCoR programs at the University of Nebraska at Omaha are involved in a variety of innovative research activities. Such research is supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL) and collaborative seed funds. AERIAL is a comprehensive, multi-faceted, five year NASA EPSCoR initiative that contributes substantially to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL includes three major collaborative research teams (CRTs) whose nexus is a common focus in aeronautics research. Each CRT - Small Aircraft Transportation System (SATS), Airborne Remote Sensing for Agricultural Research and Commercialization Applications (ARS), and Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD) -has a distinct research agenda. This program provides the template for funding of new and innovative research that emphasizes aerospace technology.

  11. South Carolina Maps and Aerial Photographic Systems (SC Maps) Teaching Manual.

    ERIC Educational Resources Information Center

    Cain, Peggy W.; And Others

    South Carolina has mountain chains, monadnocks, rolling hills, varying drainage patterns, rivers, a delta, barrier islands, rocks over a billion years old and land that was once part of another continent. This document contains a set of curriculum activities that have been developed from a diverse collection of aerial photographic, satellite,…

  12. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  13. Geovisualisation of relief in a virtual reality system on the basis of low-level aerial imagery

    NASA Astrophysics Data System (ADS)

    Halik, Łukasz; Smaczyński, Maciej

    2017-12-01

    The aim of the following paper was to present the geomatic process of transforming low-level aerial imagery obtained with unmanned aerial vehicles (UAV) into a digital terrain model (DTM) and implementing the model into a virtual reality system (VR). The object of the study was a natural aggretage heap of an irregular shape and denivelations up to 11 m. Based on the obtained photos, three point clouds (varying in the level of detail) were generated for the 20,000-m2-area. For further analyses, the researchers selected the point cloud with the best ratio of accuracy to output file size. This choice was made based on seven control points of the heap surveyed in the field and the corresponding points in the generated 3D model. The obtained several-centimetre differences between the control points in the field and the ones from the model might testify to the usefulness of the described algorithm for creating large-scale DTMs for engineering purposes. Finally, the chosen model was implemented into the VR system, which enables the most lifelike exploration of 3D terrain plasticity in real time, thanks to the first person view mode (FPV). In this mode, the user observes an object with the aid of a Head- mounted display (HMD), experiencing the geovisualisation from the inside, and virtually analysing the terrain as a direct animator of the observations.

  14. Evaluation of remote sensing aerial systems in existing transportation practices, phase II.

    DOT National Transportation Integrated Search

    2011-06-01

    A low-cost aerial platform represents a flexible tool for acquiring high-resolution images for ground areas of interest. The geo-referencing of objects within these images could benefit civil engineers in a variety of research areas including, but no...

  15. Development of a Data Acquisition System for Unmanned Aerial Vehicle (UAV) System Identification

    NASA Astrophysics Data System (ADS)

    Lear, Donald Joseph

    Aircraft system identification techniques are developed for fixed wing Unmanned Aerial Vehicles (UAV). The use of a designed flight experiment with measured system inputs/outputs can be used to derive aircraft stability derivatives. This project set out to develop a methodology to support an experiment to model pitch damping in the longitudinal short-period mode of a UAV. A Central Composite Response Surface Design was formed using angle of attack and power levels as factors to test for the pitching moment coefficient response induced by a multistep pitching maneuver. Selecting a high-quality data acquisition platform was critical to the success of the project. This system was designed to support fixed wing research through the addition of a custom air data vane capable of measuring angle of attack and sideslip, as well as an airspeed sensor. A Pixhawk autopilot system serves as the core and modification of the device firmware allowed for the integration of custom sensors and custom RC channels dedicated to performing system identification maneuvers. Tests were performed on all existing Pixhawk sensors to validate stated uncertainty values. The air data system was calibrated in a low speed wind tunnel and dynamic performance was verified. The assembled system was then installed in a commercially available UAV known as an Air Titan FPV in order to test the Pixhawk's automated flight maneuvers and determine the final performance of each sensor. Flight testing showed all the critical sensors produced acceptable data for further research. The Air Titan FPV airframe was found to be very flexible and did not lend itself well to accurate measurement of inertial properties. This realization prohibited the construction of the required math models for longitudinal dynamics. It is recommended that future projects using the developed methods choose an aircraft with a more rigid airframe.

  16. Transport properties of the mung bean (Vigna radiata) non-aerial hypocotyl membrane: permselectivity to hydrophilic compounds.

    PubMed

    Aponte, John; Baur, Peter

    2014-01-01

    Aerial plant surfaces are covered by a lipophilic cuticular membrane (CM) that restricts the transport of water and small solutes. Non-aerial tissues do not exhibit such a barrier. Recent data have shown that large relative to CM hydrophilic agrochemicals were able to pass at high rates through the non-aerial coleoptile. A moderately large hydrophilic solute like PEG 1000 with a mean molar volume of 782 cm(3) mol(-1) was rejected by the non-aerial hypocotyl. Uptake of smaller solutes like urea (46.5 cm(3) mol(-1) ) was fast and with 99% after 1 day. Cut-off size estimations suggest a pore size diameter below 1.5 nm. Aerial and non-aerial CM differ largely in their absolute barrier properties. This difference is related to the absence of embedded cuticular waxes in the non-aerial hypocotyl membrane, which make the CM physically dense and cause low solubility of hydrophilic solutes. The free volume for diffusion at the interface of the non-aerial hypocotyl cuticle to the environment is much larger resulting in higher penetration rates. It is suggested that diffusion through the non-aerial hypocotyl does not proceed in a real channel system with continuous aqueous phase but is more like transport through a filter with restricted diffusion in the pore openings. © 2013 Society of Chemical Industry.

  17. Examination of Frameworks for Safe Integration of Intelligent Small UAS into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.

    2012-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper briefly examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine "classes" of platforms and operations. A framework for categorization of the "intelligence" level of the UAS is postulated for purposes of NAS integration. Finally, constraints on the intelligent systems are postulated to ensure their ease of integration into the NAS.

  18. Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles

    PubMed Central

    Yoon, Hyungchul; Hoskere, Vedhus; Park, Jong-Woong; Spencer, Billie F.

    2017-01-01

    Computer vision techniques have been employed to characterize dynamic properties of structures, as well as to capture structural motion for system identification purposes. All of these methods leverage image-processing techniques using a stationary camera. This requirement makes finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges, buildings, etc.) are often difficult to access, being constructed over rivers, roads, or other obstacles. This paper seeks to use video from Unmanned Aerial Vehicles (UAVs) to address this problem. As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue of the camera itself moving; thus, the displacements of the structure obtained by processing UAV video are relative to the UAV camera. Some efforts have been reported to compensate for the camera motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a new method for structural system identification using the UAV video directly. Several challenges are addressed, including: (1) estimation of an appropriate scale factor; and (2) compensation for the rolling shutter effect. Experimental validation is carried out to validate the proposed approach. The experimental results demonstrate the efficacy and significant potential of the proposed approach. PMID:28891985

  19. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  20. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  1. Dhaksha, the Unmanned Aircraft System in its New Avatar-Automated Aerial Inspection of INDIA'S Tallest Tower

    NASA Astrophysics Data System (ADS)

    Kumar, K. S.; Rasheed, A. Mohamed; Krishna Kumar, R.; Giridharan, M.; Ganesh

    2013-08-01

    DHAKSHA, the unmanned aircraft system (UAS), developed after several years of research by Division of Avionics, Department of Aerospace Engineering, MIT Campus of Anna University has recently proved its capabilities during May 2012 Technology demonstration called UAVforge organised by Defence Research Project Agency, Department of Defence, USA. Team Dhaksha with its most stable design outperformed all the other contestants competing against some of the best engineers from prestigi ous institutions across the globe like Middlesex University from UK, NTU and NUS from Singapore, Tudelft Technical University, Netherlands and other UAV industry participants in the world's toughest UAV challenge. This has opened up an opportunity for Indian UAVs making a presence in the international scenario as well. In furtherance to the above effort at Fort Stewart military base at Georgia,USA, with suitable payloads, the Dhaksha team deployed the UAV in a religious temple festival during November 2012 at Thiruvannamalai District for Tamil Nadu Police to avail the instant aerial imagery services over the crowd of 10 lakhs pilgrims and also about the investigation of the structural strength of the India's tallest structure, the 300 m RCC tower during January 2013. The developed system consists of a custom-built Rotary Wing model with on-board navigation, guidance and control systems (NGC) and ground control station (GCS), for mission planning, remote access, manual overrides and imagery related computations. The mission is to fulfill the competition requirements by using an UAS capable of providing complete solution for the stated problem. In this work the effort to produce multirotor unmanned aerial systems (UAS) for civilian applications at the MIT, Avionics Laboratory is presented

  2. Mars Aerial Regional-Scale Environmental Survey (ARES) Coordinate Systems Definitions and Transformations

    NASA Technical Reports Server (NTRS)

    Kuhl, Christoper A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  3. Very high resolution aerial films

    NASA Astrophysics Data System (ADS)

    Becker, Rolf

    1986-11-01

    The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.

  4. Trace Gas Quantification with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Schuyler, T. J.; Guzman, M. I.; Bailey, S.; Jacob, J.

    2017-12-01

    Measurements of atmospheric composition are generally performed with advanced instrumentation from ground stations using tall towers and weather balloons or with manned aircraft. Unmanned aerial systems (UAS) are a promising technology for atmospheric monitoring of trace atmospheric gases as they can bridge the gap between the regions of the atmospheric boundary layer measured by ground stations and aircraft. However, in general, the sophisticated instrumentation required for these measurements are heavy, preventing its deployment with small UAS. In order to successfully detect and quantify these gases, sensor packages aboard UAS must be lightweight, have low-power consumption, and possess limits of detection on the ppm scale or below with reasonably fast response times. Thus, a new generation of portable instrument is being developed in this work to meet these requirements employing new sensing packages. The cross sensitivity of these sensors to several gases is examined through laboratory testing of the instrument under variable environmental conditions prior to performing field measurements. Datasets include timestamps with position, temperature, relative humidity, pressure, along with variable mixing ratio values of important greenhouse gases. The work will present an analysis of the results gathered during authorized flights performed during the second CLOUD-MAP§ field campaign held in June 2017. §CLOUD-MAP: Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics, a 4-year NSF funded effort.

  5. Unmanned Aerial System Aids Dry-season Stream Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Chung, M.; Detweiler, C.; Higgins, J.; Ore, J. P.; Dralle, D.; Thompson, S. E.

    2016-12-01

    In freshwater ecosystems, temperature affects biogeochemistry and ecology, and is thus a primary physical determinant of habitat quality. Measuring temperatures in spatially heterogeneous water bodies poses a serious challenge to researchers due to constraints associated with currently available methods: in situ loggers record temporally continuous temperature measurements but are limited to discrete spatial locations, while distributed temperature and remote sensing provide fine-resolution spatial measurements that are restricted to only two-dimensions (i.e. streambed and surface, respectively). Using a commercially available quadcopter equipped with a 6m cable and temperature-pressure sensor system, we measured stream temperatures at two confluences at the South Fork Eel River, where cold water inputs from the tributary to the mainstem create thermal refugia for juvenile salmonids during the dry season. As a mobile sensing platform, unmanned aerial systems (UAS) can facilitate quick and repeated sampling with minimal disturbance to the ecosystem, and their datasets can be interpolated to create a three-dimensional thermal map of a water body. The UAS-derived data was compared to data from in situ data loggers to evaluate whether the UAS is better able to capture fine-scale temperature dynamics at each confluence. The UAS has inherent limitations defined by battery life and flight times, as well as operational constraints related to maneuverability under wind and streamflow conditions. However, the platform is able to serve as an additional field tool for researchers to capture complex thermal structures in water bodies.

  6. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing.

    PubMed

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-02-23

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes-fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms.

  7. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing

    PubMed Central

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-01-01

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes—fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms. PMID:28241479

  8. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAVs) represent a powerful new tool for agriculture. Currently, UAVs are used almost exclusively as crop reconnaissance devices (“eyes in the sky”), not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Lu...

  9. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAVs) hold significant promise for agriculture. Currently, UAVs are being employed for various reconnaissance purposes (“eyes in the sky”), but not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Luck La...

  10. Unmanned Aerial Systems in Occupational Hygiene-Learning from Allied Disciplines.

    PubMed

    Eninger, Robert M; Johnson, Robert L

    2015-10-01

    Unmanned Aerial System (UAS) technologies are rapidly developing, lowering cost, and technology barriers for their use in numerous applications. This review and commentary summarizes relevant literature in allied fields and evaluates potential application and utility of UAS technology in the discipline of occupational hygiene. Disciplines closely related to occupational hygiene are moving to investigate potential uses--and in some cases--already employing this technology for research or commercial purposes. The literature was reviewed to formulate a cross-sectional picture of how UAS technology is being used in these closely allied disciplines which could inform or guide potential use in occupational hygiene. Discussed are UAS applications in environmental monitoring, emergency response, epidemiology, safety, and process optimization. A rapidly developing state of the art indicates that there is potential utility for this technology in occupational hygiene. Benefits may include cost savings, time savings, and averting hazardous environments via remote sensing. The occupational hygiene community can look to allied fields to garner lessons and possible applications to their own practice. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2015.

  11. Film cameras or digital sensors? The challenge ahead for aerial imaging

    USGS Publications Warehouse

    Light, D.L.

    1996-01-01

    Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.

  12. The First Government Sanctioned Delivery of Medical Supplies by Remotely Controlled Unmanned Aerial System (UAS)

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jones, Frank; Thorson, Taylor; Grube, Richard; Mellanson, Cecil; Joyce, Lee; Coggin, John; Kennedy, Jack

    2016-01-01

    The first government sanctioned delivery of medical supplies by UAS occurred at Wise, Virginia, on July 17, 2015. The "Let's Fly Wisely" event was a demonstration of the humanitarian use of UAS to facilitate delivery of medical supplies to remote or otherwise difficult-to-reach areas. The event was the result of coordinated efforts by a partnership which included the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), Virginia Polytechnic Institute, the Mid-Atlantic Aviation Partnership (MAAP), Flirtey Corporation, Lonesome Pine Airport, Remote Area Medical (RAM), Health Wagon, SEESPAN Aerial Interactive, Rx Partnership, and Wise County, Virginia. The historic event occurred during the annual Remote Area Medical clinic at the Wise County Fairgrounds. The medical supplies in small packages were delivered to the Wise County Fairgrounds from the Lonesome Pine Airport by UAS operated by Firtey. A larger supply of medical supplies were delivered to the Lonesome Pine Airport from the Tazewell County Airport by NASA Langley's SR22 UAS Surrogate Research aircraft. The UAS Surrogate aircraft was remotely controlled for most of the flight by a UAS Ground Control Station located at the Lonesome Pine Airport. The medical supplies were delivered from the UAS Surrogate to Flirtey for final delivery by Hex Multi-Rotor UAS in smaller packages and multiple trips to the fairgrounds. A Certificate of Authorization (COA) issued by the Federal Aviation Administration (FAA) designated the site as an authorized UAS test site. The paper will present additional details of the historic delivery of pharmaceuticals by UAS during the "Let's Fly Wisely" event. The paper will also provide details of NASA's SR22 UAS Surrogate Research aircraft. The UAS Surrogate was designed to investigate the procedures, aircraft sensors and other systems that may be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace

  13. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  14. aerial and ground measurements of emissions from agricultural and forest burns

    EPA Science Inventory

    This poster describes our measurement capabilities, particularly as they relate to interests within Region 7. Aerial instrumentation systems are discussed and field measurement campaigns are described in text and photos.

  15. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  16. Current status and future directions of precision aerial application for site-specific crop management in the USA

    USDA-ARS?s Scientific Manuscript database

    The first variable-rate aerial application system was developed about a decade ago in the USA and since then, aerial application has benefitted from these technologies. Many areas of the United States rely on readily available agricultural airplanes or helicopters for pest management, and variable-...

  17. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  18. Australian Aerodynamic Design Codes for Aerial Tow Bodies.

    DTIC Science & Technology

    1987-08-27

    HTP -1, which deals with aerial targets, it was recognised that there was a need for a complete and well docL mented approach for their aerodynamic and...circular cables cannot be assessed with the programs in their present form. 10. none of the programs are well documented and user’s manuals are not...National Leader ANL TTCP HTP -1 Weapons Systems Research Laboratory Director Superintendent - Weapons Division - Combat Systems Division Navy Office Navy

  19. Sampling system for wheat (Triticum aestivum L) area estimation using digital LANDSAT MSS data and aerial photographs. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Batista, G. T.

    1984-01-01

    A procedure to estimate wheat (Triticum aestivum L) area using sampling technique based on aerial photographs and digital LANDSAT MSS data is developed. Aerial photographs covering 720 square km are visually analyzed. To estimate wheat area, a regression approach is applied using different sample sizes and various sampling units. As the size of sampling unit decreased, the percentage of sampled area required to obtain similar estimation performance also decreased. The lowest percentage of the area sampled for wheat estimation with relatively high precision and accuracy through regression estimation is 13.90% using 10 square km as the sampling unit. Wheat area estimation using only aerial photographs is less precise and accurate than those obtained by regression estimation.

  20. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.

    PubMed

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-03-03

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.

  1. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System

    PubMed Central

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-01-01

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. PMID:28273815

  2. Aerial robot intelligent control method based on back-stepping

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Xue, Qian

    2018-05-01

    The aerial robot is characterized as strong nonlinearity, high coupling and parameter uncertainty, a self-adaptive back-stepping control method based on neural network is proposed in this paper. The uncertain part of the aerial robot model is compensated online by the neural network of Cerebellum Model Articulation Controller and robust control items are designed to overcome the uncertainty error of the system during online learning. At the same time, particle swarm algorithm is used to optimize and fix parameters so as to improve the dynamic performance, and control law is obtained by the recursion of back-stepping regression. Simulation results show that the designed control law has desired attitude tracking performance and good robustness in case of uncertainties and large errors in the model parameters.

  3. Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, Gabriel Carlisle; Woo, Bryana Lynn

    This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infraredmore » imagers.« less

  4. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  5. Automated geo/ortho registered aerial imagery product generation using the mapping system interface card (MSIC)

    NASA Astrophysics Data System (ADS)

    Bratcher, Tim; Kroutil, Robert; Lanouette, André; Lewis, Paul E.; Miller, David; Shen, Sylvia; Thomas, Mark

    2013-05-01

    The development concept paper for the MSIC system was first introduced in August 2012 by these authors. This paper describes the final assembly, testing, and commercial availability of the Mapping System Interface Card (MSIC). The 2.3kg MSIC is a self-contained, compact variable configuration, low cost real-time precision metadata annotator with embedded INS/GPS designed specifically for use in small aircraft. The MSIC was specifically designed to convert commercial-off-the-shelf (COTS) digital cameras and imaging/non-imaging spectrometers with Camera Link standard data streams into mapping systems for airborne emergency response and scientific remote sensing applications. COTS digital cameras and imaging/non-imaging spectrometers covering the ultraviolet through long-wave infrared wavelengths are important tools now readily available and affordable for use by emergency responders and scientists. The MSIC will significantly enhance the capability of emergency responders and scientists by providing a direct transformation of these important COTS sensor tools into low-cost real-time aerial mapping systems.

  6. DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. THE FRICTION BRAKING SYSTEM CAN BE SEEN IN SHADOW ABOVE THE LARGE CABLE WHEEL BELOW. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  7. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  8. A Low Cost Rokkaku Kite Setup for Aerial Photogrammetric System

    NASA Astrophysics Data System (ADS)

    Khan, A. F.; Khurshid, K.; Saleh, N.; Yousuf, A. A.

    2015-03-01

    Orthogonally Projected Area (OPA) of a geographical feature has primarily been studied utilizing rather time consuming field based sampling techniques. Remote sensing on the contrary provides the ability to acquire large scale data at a snapshot of time and lets the OPA to be calculated conveniently and with reasonable accuracy. Unfortunately satellite based remote sensing provides data at high cost and limited spatial resolution for scientific studies focused at small areas such as micro lakes micro ecosystems, etc. More importantly, recent satellite data may not be readily available for a particular location. This paper describes a low cost photogrammetric system to measure the OPA of a small scale geographic feature such as a plot of land, micro lake or an archaeological site, etc. Fitted with a consumer grade digital imaging system, a Rokkaku kite aerial platform with stable flight characteristics is designed and fabricated for image acquisition. The data processing procedure involves automatic Ground Control Point (GCP) detection, intelligent target area shape determination with minimal human input. A Graphical User Interface (GUI) is built from scratch in MATLAB to allow the user to conveniently process the acquired data, archive and retrieve the results. Extensive on-field experimentation consists of multiple geographic features including flat land surfaces, buildings, undulating rural areas, and an irregular shaped micro lake, etc. Our results show that the proposed system is not only low cost, but provides a framework that is easy and fast to setup while maintaining the required constraints on the accuracy.

  9. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture.

    PubMed

    Hassan-Esfahani, Leila; Ebtehaj, Ardeshir M; Torres-Rua, Alfonso; McKee, Mac

    2017-09-14

    Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from "AggieAir", an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products.

  10. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture

    PubMed Central

    Hassan-Esfahani, Leila; Ebtehaj, Ardeshir M.; McKee, Mac

    2017-01-01

    Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from “AggieAir”, an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products. PMID:28906428

  11. Aerial Measuring System (AMS)/Israel Atomic Energy Commission (IAEC) Joint Comparison Study Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, P.; Halevy, I.

    Under the 13th Bilateral Meeting to Combat Nuclear Terrorism conducted on January 8–9, 2013, the committee approved the development of a cost-effective proposal to conduct a Comparison Study of the Aerial Measuring System (AMS) of the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and Israel Atomic Energy Commission (IAEC). The study was to be held at the Remote Sensing Laboratory (RSL), Nellis Air Force Base, Las Vegas, Nevada, with measurements at the Nevada National Security Site (NNSS). The goal of the AMS and the IAEC joint survey was to compare the responses of the two agencies’ aerialmore » radiation detection systems to varied radioactive surface contamination levels and isotopic composition experienced at the NNSS, and the differing data processing techniques utilized by the respective teams. Considering that for the comparison both teams were using custom designed and built systems, the main focus of the short campaign was to investigate the impact of the detector size and data analysis techniques used by both teams. The AMS system, SPectral Advanced Radiological Computer System, Model A (SPARCS-A), designed and built by RSL, incorporates four different size sodium iodide (NaI) crystals: 1" × 1", 2" × 4" × 4", 2" × 4" ×16", and an “up-looking” 2" × 4" × 4". The Israel AMS System, Air RAM 2000, was designed by the IAEC Nuclear Research Center – Negev (NRCN) and built commercially by ROTEM Industries (Israel) and incorporates two 2" diameter × 2" long NaI crystals. The operational comparison was conducted at RSL-Nellis in Las Vegas, Nevada, during week of June 24–27, 2013. The Israeli system, Air RAM 2000, was shipped to RSL-Nellis and mounted together with the DOE SPARCS on a DOE Bell-412 helicopter for a series of aerial comparison measurements at local test ranges, including the Desert Rock Airport and Area 3 at the NNSS. A 4-person Israeli team from the IAEC NRCN supported the activity together

  12. USGS Releases New Digital Aerial Products

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has initiated distribution of digital aerial photographic products produced by scanning or digitizing film from its historical aerial photography film archive. This archive, located in Sioux Falls, South Dakota, contains thousands of rolls of film that contain more than 8 million frames of historic aerial photographs. The largest portion of this archive consists of original film acquired by Federal agencies from the 1930s through the 1970s to produce 1:24,000-scale USGS topographic quadrangle maps. Most of this photography is reasonably large scale (USGS photography ranges from 1:8,000 to 1:80,000) to support the production of the maps. Two digital products are currently available for ordering: high-resolution scanned products and medium-resolution digitized products.

  13. System-of-Systems Considerations in the Notional Development of a Metropolitan Aerial Transportation System. [Implications as to the Identification of Enabling Technologies and Reference Designs for Extreme Short Haul VTOL Vehicles With Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Alonso, Juan J.; Arneson, Heather M.; Melton, John E.; Vegh, Michael; Walker, Cedric; Young, Larry A.

    2017-01-01

    There are substantial future challenges related to sustaining and improving efficient, cost-effective, and environmentally friendly transportation options for urban regions. Over the past several decades there has been a worldwide trend towards increasing urbanization of society. Accompanying this urbanization are increasing surface transportation infrastructure costs and, despite public infrastructure investments, increasing surface transportation "gridlock." In addition to this global urbanization trend, there has been a substantial increase in concern regarding energy sustainability, fossil fuel emissions, and the potential implications of global climate change. A recently completed study investigated the feasibility of an aviation solution for future urban transportation (refs. 1, 2). Such an aerial transportation system could ideally address some of the above noted concerns related to urbanization, transportation gridlock, and fossil fuel emissions (ref. 3). A metro/regional aerial transportation system could also provide enhanced transportation flexibility to accommodate extraordinary events such as surface (rail/road) transportation network disruptions and emergency/disaster relief responses.

  14. An Early Survey of Best Practices for the Use of Small Unmanned Aerial Systems by the Electric Utility Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, Rick M.; Monday, William

    This technical manual is about doing things safely. It isn’t so much a how-to guide as it is a collection of best practices from unmanned aerial system (UAS) operators from all over the world. The desired end state is to provide a touchstone for utility businesses, directors, managers, and operators that will inform them as they begin to strategize, plan, and incorporate this technology into day-to-day operations.

  15. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.

    PubMed

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew; Joost, Stéphane

    2016-03-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission's Joint Research Center (JRC) have noted that aerial imagery will inevitably present a big data challenge. The purpose of this article is to get ahead of this future challenge by proposing a hybrid crowdsourcing and real-time machine learning solution to rapidly process large volumes of aerial data for disaster response in a time-sensitive manner. Crowdsourcing can be used to annotate features of interest in aerial images (such as damaged shelters and roads blocked by debris). These human-annotated features can then be used to train a supervised machine learning system to learn to recognize such features in new unseen images. In this article, we describe how this hybrid solution for image analysis can be implemented as a module (i.e., Aerial Clicker) to extend an existing platform called Artificial Intelligence for Disaster Response (AIDR), which has already been deployed to classify microblog messages during disasters using its Text Clicker module and in response to Cyclone Pam, a category 5 cyclone that devastated Vanuatu in March 2015. The hybrid solution we present can be applied to both aerial and satellite imagery and has applications beyond disaster response such as wildlife protection, human rights, and archeological exploration. As a proof of concept, we recently piloted this solution using very high-resolution aerial photographs of a wildlife reserve in Namibia to support rangers with their wildlife conservation efforts (SAVMAP project, http://lasig.epfl.ch/savmap ). The

  16. Evaluation of the use of live aerial video for traffic management.

    DOT National Transportation Integrated Search

    1995-01-01

    This report describes the evaluation of an intelligent transportation system (ITS) demonstration project in which live aerial video of traffic conditions was captured by a rotary wing aircraft operated by the Fairfax County (Virginia) Police Departme...

  17. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  18. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  19. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  20. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a... resistance of each conductor in a completed NMR aerial service wire shall comply with the requirement...

  1. Off-the-Wall Project Brings Aerial Mapping down to Earth

    ERIC Educational Resources Information Center

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  2. Estimating occupancy and abundance using aerial images with imperfect detection

    USGS Publications Warehouse

    Williams, Perry J.; Hooten, Mevin B.; Womble, Jamie N.; Bower, Michael R.

    2017-01-01

    Species distribution and abundance are critical population characteristics for efficient management, conservation, and ecological insight. Point process models are a powerful tool for modelling distribution and abundance, and can incorporate many data types, including count data, presence-absence data, and presence-only data. Aerial photographic images are a natural tool for collecting data to fit point process models, but aerial images do not always capture all animals that are present at a site. Methods for estimating detection probability for aerial surveys usually include collecting auxiliary data to estimate the proportion of time animals are available to be detected.We developed an approach for fitting point process models using an N-mixture model framework to estimate detection probability for aerial occupancy and abundance surveys. Our method uses multiple aerial images taken of animals at the same spatial location to provide temporal replication of sample sites. The intersection of the images provide multiple counts of individuals at different times. We examined this approach using both simulated and real data of sea otters (Enhydra lutris kenyoni) in Glacier Bay National Park, southeastern Alaska.Using our proposed methods, we estimated detection probability of sea otters to be 0.76, the same as visual aerial surveys that have been used in the past. Further, simulations demonstrated that our approach is a promising tool for estimating occupancy, abundance, and detection probability from aerial photographic surveys.Our methods can be readily extended to data collected using unmanned aerial vehicles, as technology and regulations permit. The generality of our methods for other aerial surveys depends on how well surveys can be designed to meet the assumptions of N-mixture models.

  3. Assessing land leveling needs and performance with unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Enciso, Juan; Jung, Jinha; Chang, Anjin; Chavez, Jose Carlos; Yeom, Junho; Landivar, Juan; Cavazos, Gabriel

    2018-01-01

    Land leveling is the initial step for increasing irrigation efficiencies in surface irrigation systems. The objective of this paper was to evaluate potential utilization of an unmanned aerial system (UAS) equipped with a digital camera to map ground elevations of a grower's field and compare them with field measurements. A secondary objective was to use UAS data to obtain a digital terrain model before and after land leveling. UAS data were used to generate orthomosaic images and three-dimensional (3-D) point cloud data by applying the structure for motion algorithm to the images. Ground control points (GCPs) were established around the study area, and they were surveyed using a survey grade dual-frequency GPS unit for accurate georeferencing of the geospatial data products. A digital surface model (DSM) was then generated from the 3-D point cloud data before and after laser leveling to determine the topography before and after the leveling. The UAS-derived DSM was compared with terrain elevation measurements acquired from land surveying equipment for validation. Although 0.3% error or root mean square error of 0.11 m was observed between UAS derived and ground measured ground elevation data, the results indicated that UAS could be an efficient method for determining terrain elevation with an acceptable accuracy when there are no plants on the ground, and it can be used to assess the performance of a land leveling project.

  4. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid

  5. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghwan; Kim, Taegyu; Lee, Kiseong; Kwon, Sejin

    In this study, we design and fabricate a fuel cell system for application as a power source in unmanned aerial vehicles (UAVs). The fuel cell system consists of a fuel cell stack, hydrogen generator, and hybrid power management system. PEMFC stack with an output power of 100 W is prepared and tested to decide the efficient operating conditions; the stack must be operated in the dead-end mode with purge in order to ensure prolonged stack performance. A hydrogen generator is fabricated to supply gaseous hydrogen to the stack. Sodium borohydride (NaBH 4) is used as the hydrogen source in the present study. Co/Al 2O 3 catalyst is prepared for the hydrolysis of the alkaline NaBH 4 solution at room temperature. The fabricated Co catalyst is comparable to the Ru catalyst. The UAV consumes more power in the takeoff mode than in the cruising mode. A hybrid power management system using an auxiliary battery is developed and evaluated for efficient energy management. Hybrid power from both the fuel cell and battery powers takeoff and turning flight operations, while the fuel cell supplies steady power during the cruising flight. The capabilities of the fuel-cell UAVs for long endurance flights are validated by successful flight tests.

  6. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a..., paragraphs 2.2 and 2.2.1. The ANSI/ICEA S-89-648-1993 Standard For Telecommunications Aerial Service Wire...

  7. 7 CFR 1755.703 - Nonmetallic reinforced (NMR) aerial service wire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Nonmetallic reinforced (NMR) aerial service wire... MATERIALS, AND STANDARD CONTRACT FORMS § 1755.703 Nonmetallic reinforced (NMR) aerial service wire. (a..., paragraphs 2.2 and 2.2.1. The ANSI/ICEA S-89-648-1993 Standard For Telecommunications Aerial Service Wire...

  8. 7 CFR 1755.700 - RUS specification for aerial service wires.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS specification for aerial service wires. 1755.700..., AND STANDARD CONTRACT FORMS § 1755.700 RUS specification for aerial service wires. §§ 1755.701 through 1755.704 cover the requirements for aerial service wires. [61 FR 26074, May 24, 1996] ...

  9. 7 CFR 1755.700 - RUS specification for aerial service wires.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false RUS specification for aerial service wires. 1755.700..., AND STANDARD CONTRACT FORMS § 1755.700 RUS specification for aerial service wires. §§ 1755.701 through 1755.704 cover the requirements for aerial service wires. [61 FR 26074, May 24, 1996] ...

  10. A New Perspective: Assessing the Spatial Distribution of Coral Bleaching with Unmanned Low Altitude Remote Sensing Systems

    NASA Astrophysics Data System (ADS)

    Levy, J.; Franklin, E. C.; Hunter, C. L.

    2016-12-01

    Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef

  11. Delivery of Unmanned Aerial Vehicle Data

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  12. The use of unmanned aerial systems for the mapping of legacy uranium mines.

    PubMed

    Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Scott, T B

    2015-05-01

    Historical mining of uranium mineral veins within Cornwall, England, has resulted in a significant amount of legacy radiological contamination spread across numerous long disused mining sites. Factors including the poorly documented and aged condition of these sites as well as the highly localised nature of radioactivity limit the success of traditional survey methods. A newly developed terrain-independent unmanned aerial system [UAS] carrying an integrated gamma radiation mapping unit was used for the radiological characterisation of a single legacy mining site. Using this instrument to produce high-spatial-resolution maps, it was possible to determine the radiologically contaminated land areas and to rapidly identify and quantify the degree of contamination and its isotopic nature. The instrument was demonstrated to be a viable tool for the characterisation of similar sites worldwide. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Geography via Aerial Field Trips: Do It This Way, 6.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.; Guell, Carl E.

    To provide guidance for geography teachers, this booklet presents information on how to plan and execute aerial field trips. The aerial field trip can be employed as an effective visual aid technique in the teaching of geography, especially for presenting earth generalizations and interrelationships. The benefits of an aerial field trip are…

  14. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    PubMed

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW OF "A" FACE (LEFT) WITH CLEANING SYSTEM INSTALLED (NOW REMOVED) AND "B" FACE (RIGHT) WITH CONSTRUCTION CRANE IN USE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 17. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW WITH PROJECT NEARING COMPLETION. VIEW SHOWS "A" FACE (LEFT) AND "B" FACE OF RADAR ARRAY SYSTEM. NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin; Davidson, John B.; Ifju, Peter G.

    2002-01-01

    Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.

  18. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  19. A workflow for extracting plot-level biophysical indicators from aerially acquired multispectral imagery

    USDA-ARS?s Scientific Manuscript database

    Advances in technologies associated with unmanned aerial vehicles (UAVs) has allowed for researchers, farmers and agribusinesses to incorporate UAVs coupled with various imaging systems into data collection activities and aid expert systems for making decisions. Multispectral imageries allow for a q...

  20. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  1. DHS S&T First Responders Group and NATO Counter UAS Proposal Interest Response.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salton, Jonathan R.

    The capability, speed, size, and widespread availability of small unmanned aerial systems (sUAS) makes them a serious security concern. The enabling technologies for sUAS are rapidly evolving and so too are the threats they pose to national security. Potential threat vehicles have a small cross-section, and are difficult to reliably detect using purely ground-based systems (e.g. radar or electro-optical) and challenging to target using conventional anti-aircraft defenses. Ground-based sensors are static and suffer from interference with the earth, vegetation and other man-made structures which obscure objects at low altitudes. Because of these challenges, sUAS pose a unique and rapidly evolvingmore » threat to national security.« less

  2. Effects of pesticides aerial applications on rice quality

    USDA-ARS?s Scientific Manuscript database

    Aerial application of pesticides has become an important research topic in recent years. This research investigated the effects of two types of commercial pesticides on the rice quality under low volume aerial application. It could provide guidance for the pesticide application and choose the right ...

  3. a Method for Simultaneous Aerial and Terrestrial Geodata Acquisition for Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2015-08-01

    In this paper, we present mapKITE, a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method. On one side, the method combines a terrestrial mobile mapping system (TMMS) with an unmanned aerial mapping one, both equipped with remote sensing payloads (at least, a nadir-looking visible-band camera in the UA) by means of which aerial and terrestrial geodata are acquired simultaneously. This tandem geodata acquisition system is based on a terrestrial vehicle (TV) and on an unmanned aircraft (UA) linked by a 'virtual tether', that is, a mechanism based on the real-time supply of UA waypoints by the TV. By means of the TV-to-UA tether, the UA follows the TV keeping a specific relative TV-to-UA spatial configuration enabling the simultaneous operation of both systems to obtain highly redundant and complementary geodata. On the other side, mapKITE presents a novel concept for geodata post-processing favoured by the rich geometrical aspects derived from the mapKITE tandem simultaneous operation. The approach followed for sensor orientation and calibration of the aerial images captured by the UA inherits the principles of Integrated Sensor Orientation (ISO) and adds the pointing-and-scaling photogrammetric measurement of a distinctive element observed in every UA image, which is a coded target mounted on the roof of the TV. By means of the TV navigation system, the orientation of the TV coded target is performed and used in the post-processing UA image orientation approach as a Kinematic Ground Control Point (KGCP). The geometric strength of a mapKITE ISO network is therefore high as it counts with the traditional tie point image measurements, static ground control points, kinematic aerial control and the new point-and-scale measurements of the KGCPs. With such a geometry, reliable system and sensor orientation and calibration and eventual further reduction of the number of traditional ground control points is feasible. The different

  4. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs)

    PubMed Central

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  5. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).

    PubMed

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-06-16

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people's safety. On-going work includes implementation into a commercially available drone.

  6. Career Profile- Jim Ross, Aerial Photographer

    NASA Image and Video Library

    2016-12-21

    Check out what it takes to “capture the moment” at Mach speeds. The stunning aerial imagery of NASA Armstrong Flight Research Center comes from well-skilled photographers like Jim Ross, Photo Lead. This career profile video highlights Jim’s job responsibilities in documenting aircraft hardware installations, aerial research, and mission work that happens both on center and around the world. During Jim’s 27-year career, he has logged over 800 flight hours in twelve different types of aircraft.

  7. Arachnid aloft: directed aerial descent in neotropical canopy spiders.

    PubMed

    Yanoviak, Stephen P; Munk, Yonatan; Dudley, Robert

    2015-09-06

    The behaviour of directed aerial descent has been described for numerous taxa of wingless hexapods as they fall from the tropical rainforest canopy, but is not known in other terrestrial arthropods. Here, we describe similar controlled aerial behaviours for large arboreal spiders in the genus Selenops (Selenopidae). We dropped 59 such spiders from either canopy platforms or tree crowns in Panama and Peru; the majority (93%) directed their aerial trajectories towards and then landed upon nearby tree trunks. Following initial dorsoventral righting when necessary, falling spiders oriented themselves and then translated head-first towards targets; directional changes were correlated with bilaterally asymmetric motions of the anterolaterally extended forelegs. Aerial performance (i.e. the glide index) decreased with increasing body mass and wing loading, but not with projected surface area of the spider. Along with the occurrence of directed aerial descent in ants, jumping bristletails, and other wingless hexapods, this discovery of targeted gliding in selenopid spiders further indicates strong selective pressures against uncontrolled falls into the understory for arboreal taxa. © 2015 The Author(s).

  8. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    PubMed

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  9. On parallel hybrid-electric propulsion system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hung, J. Y.; Gonzalez, L. F.

    2012-05-01

    This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.

  10. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.

    PubMed

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-09-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  11. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  12. Development of an autonomous unmanned aerial system for atmospheric data collection and research

    NASA Astrophysics Data System (ADS)

    Lee, Andrew; Hanlon, David; Sakai, Ricardo; Morris, Vernon; Demoz, Belay; Gadsden, S. Andrew

    2016-05-01

    This paper addresses the use of unmanned aerial systems (UAS) to carry out atmospheric data collection and studies. An important area of research is the study of the chemistry and physics of Earth's planetary boundary layer (PBL). The PBL, also known as the atmospheric boundary layer (ABL), is the lowest part of the atmosphere and its behavior is directly influenced by its contact with the planetary surface. Sampling of the PBL is performed in a timely and periodic manner. Currently, sensors and uncontrollable balloons are used to obtain relevant data and information. This method is cumbersome and can be ineffective in obtaining consistent environmental data. This paper proposes the use of autonomous UAS' to study the atmosphere in an effort to improve the efficiency and accuracy of the sampling process. The UAS setup and design is provided, and preliminary data collection information is shared.

  13. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  14. Resource understanding: a challenge to aerial methods

    USGS Publications Warehouse

    Udall, Stewart L.

    1965-01-01

    Aerial survey methods are speeding acquisition of survey data needed to provide and manage the nation's resources. These methods have been applied to topographic mapping for a number of years and the record clearly shows their advantages in terms of cost and speed in contrast to the ground methods that have been historically employed. Limited use is now being made of aerial methods to assist cadastral surveys, in location, acquisition and development of National Parks, in mapping the geology of the nation, in locating and developing water resources, and in surveys of the oceans. It is the purpose of this paper to call attention to these uses and to encourage the scientific community to further refine aerial methods so that their use may be increased and the veracity of data improved.

  15. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    PubMed

    Munguia, Rodrigo; Urzua, Sarquis; Grau, Antoni

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  16. Experimental evaluation of shark detection rates by aerial observers.

    PubMed

    Robbins, William D; Peddemors, Victor M; Kennelly, Steven J; Ives, Matthew C

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼ 2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

  17. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  18. SITE I - AERIAL - MSC

    NASA Image and Video Library

    1966-07-01

    S66-42379 (1966) --- Aerial view of construction progress at the Manned Spacecraft Center, Houston, Texas. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  19. Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Ma, Jeremy C.; Matthies, Larry H.; Bouffard, Patrick

    2012-01-01

    Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.

  20. Analysis of Near-Surface Relative Humidity in a Wind Turbine Array Boundary Layer Using an Instrumented Unmanned Aerial System and Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Adkins, Kevin Allan

    Previous simulations have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing of momentum, heat and moisture. These changes alter downstream atmospheric properties. With the exception of a few observational data sets that focus on the impact to near-surface temperature within wind farms, little to no observational evidence exists with respect to vertical mixing. These few experimental studies also lack high spatial resolution due to their use of a limited number of meteorological sensors or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather high resolution in-situ field measurements from two state-of-the-art Midwest wind farms in order to differentially map downstream changes to relative humidity. These measurements are complemented by numerical experiments conducted using large eddy simulation (LES). Observations and numerical predictions are in good general agreement around a single wind turbine and show that downstream relative humidity is altered in the vertical, lateral, and downstream directions. A suite of LES is then performed to determine the effect of a turbine array on the relative humidity distribution in compounding wakes. In stable and neutral conditions, and in the presence of a positive relative humidity lapse rate, it is found that the humidity decreases below the turbine hub height and increases above the hub height. As the array is transitioned, the magnitude of change increases, differentially grows on the left-hand and right-hand side of the wake, and move slightly upward with downstream distance. In unstable conditions, the magnitude of near-surface decrease in relative humidity is a full order of magnitude smaller than that observed in a stable atmospheric regime.

  1. Ground-Cover Measurements: Assessing Correlation Among Aerial and Ground-Based Methods

    NASA Astrophysics Data System (ADS)

    Booth, D. Terrance; Cox, Samuel E.; Meikle, Tim; Zuuring, Hans R.

    2008-12-01

    Wyoming’s Green Mountain Common Allotment is public land providing livestock forage, wildlife habitat, and unfenced solitude, amid other ecological services. It is also the center of ongoing debate over USDI Bureau of Land Management’s (BLM) adjudication of land uses. Monitoring resource use is a BLM responsibility, but conventional monitoring is inadequate for the vast areas encompassed in this and other public-land units. New monitoring methods are needed that will reduce monitoring costs. An understanding of data-set relationships among old and new methods is also needed. This study compared two conventional methods with two remote sensing methods using images captured from two meters and 100 meters above ground level from a camera stand (a ground, image-based method) and a light airplane (an aerial, image-based method). Image analysis used SamplePoint or VegMeasure software. Aerial methods allowed for increased sampling intensity at low cost relative to the time and travel required by ground methods. Costs to acquire the aerial imagery and measure ground cover on 162 aerial samples representing 9000 ha were less than 3000. The four highest correlations among data sets for bare ground—the ground-cover characteristic yielding the highest correlations (r)—ranged from 0.76 to 0.85 and included ground with ground, ground with aerial, and aerial with aerial data-set associations. We conclude that our aerial surveys are a cost-effective monitoring method, that ground with aerial data-set correlations can be equal to, or greater than those among ground-based data sets, and that bare ground should continue to be investigated and tested for use as a key indicator of rangeland health.

  2. Persistent aerial video registration and fast multi-view mosaicing.

    PubMed

    Molina, Edgardo; Zhu, Zhigang

    2014-05-01

    Capturing aerial imagery at high resolutions often leads to very low frame rate video streams, well under full motion video standards, due to bandwidth, storage, and cost constraints. Low frame rates make registration difficult when an aircraft is moving at high speeds or when global positioning system (GPS) contains large errors or it fails. We present a method that takes advantage of persistent cyclic video data collections to perform an online registration with drift correction. We split the persistent aerial imagery collection into individual cycles of the scene, identify and correct the registration errors on the first cycle in a batch operation, and then use the corrected base cycle as a reference pass to register and correct subsequent passes online. A set of multi-view panoramic mosaics is then constructed for each aerial pass for representation, presentation and exploitation of the 3D dynamic scene. These sets of mosaics are all in alignment to the reference cycle allowing their direct use in change detection, tracking, and 3D reconstruction/visualization algorithms. Stereo viewing with adaptive baselines and varying view angles is realized by choosing a pair of mosaics from a set of multi-view mosaics. Further, the mosaics for the second pass and later can be generated and visualized online as their is no further batch error correction.

  3. SITE I - AERIAL - MSC

    NASA Image and Video Library

    1965-08-01

    S65-51530 (September 1965) --- Aerial view of Manned Spacecraft Center, Site 1, Houston, Texas, looking north. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  4. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  5. AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING OF CONCRETE

    NASA Technical Reports Server (NTRS)

    1975-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING OF CONCRETE KSC-375C-10036.31 108-KSC-375C-10036.31, P-21426, ARCHIVE-04502 Aerial oblique of Shuttle runway facilities. Pouring concrete on runway. Direction north - altitude 100'.

  6. Integration of aerial remote sensing imaging data in a 3D-GIS environment

    NASA Astrophysics Data System (ADS)

    Moeller, Matthias S.

    2003-03-01

    For some years sensor systems have been available providing digital images of a new quality. Especially aerial stereo scanners acquire digital multispectral images with an extremely high ground resolution of about 0.10 - 0.15m and provide in addition a Digital Surface Models (DSM). These imaging products both can be used for a detailed monitoring at scales up to 1:500. The processed georeferenced multispectral orthoimages can be readily integrated into GIS making them useful for a number of applications. The DSM, derived from forward and backward facing sensors of an aerial imaging system provides a ground resolution of 0.5 m and can be used for 3D visualization purposes. In some cases it is essential, to store the ground elevation as a Digital Terrain Model (DTM) and also the height of 3-dimensional objects in a separated database. Existing automated algorithms do not work precise for the extraction of DTM from aerial scanner DSM. This paper presents a new approach which combines the visible image data and the DSM data for the generation of DTM with a reliable geometric accuracy. Already existing cadastral data can be used as a knowledge base for the extraction of building heights in cities. These elevation data is the essential source for a GIS based urban information system with a 3D visualization component.

  7. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck is proceeding to the Multi-Operation Support Building at NASA's Kennedy Space Center. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  8. Sources of variation in detection of wading birds from aerial surveys in the Florida Everglades

    USGS Publications Warehouse

    Conroy, M.J.; Peterson, J.T.; Bass, O.L.; Fonnesbeck, C.J.; Howell, J.E.; Moore, C.T.; Runge, J.P.

    2008-01-01

    We conducted dual-observer trials to estimate detection probabilities (probability that a group that is present and available is detected) for fixed-wing aerial surveys of wading birds in the Everglades system, Florida. Detection probability ranged from <0.2 to similar to 0.75 and varied according to species, group size, observer, and the observer's position in the aircraft (front or rear seat). Aerial-survey simulations indicated that incomplete detection can have a substantial effect oil assessment of population trends, particularly river relatively short intervals (<= 3 years) and small annual changes in population size (<= 3%). We conclude that detection bias is an important consideration for interpreting observations from aerial surveys of wading birds, potentially limiting the use of these data for comparative purposes and trend analyses. We recommend that workers conducting aerial surveys for wading birds endeavor to reduce observer and other controllable sources of detection bias and account for uncontrollable sources through incorporation of dual-observer or other calibratior methods as part of survey design (e.g., using double sampling).

  9. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 5 : aerial bridge deck imaging data collection and software revision.

    DOT National Transportation Integrated Search

    2012-02-01

    For rapid deployment of bridge scan missions, sub-inch aerial imaging using small format aerial photography : is suggested. Under-belly photography is used to generate high resolution aerial images that can be geo-referenced and : used for quantifyin...

  10. Optimal Lateral Guidance for Automatic Landing of a Lightweight High Altitude Long Endurance Unmanned Aerial System with Crosswind Rejection

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Allen

    Unmanned aerial systems will be the dominant force in the aviation industry. Among these aircraft the use of high altitude long endurance unmanned aerial systems has increased dramatically. Based on the geometry of these types of aircraft the possible changing weather conditions during long flights poses many problems. These difficulties are compounded by the push towards fully autonomous systems. Large wingspan and, typically, small in-line landing gear make a landing in crosswind exceedingly difficult. This study uses a modified gain scheduling technique for optimizing the landing attitude for a generic vehicle based on geometry and crosswind speed. This is performed by directly utilizing the crosswind estimation to calculate a desired crab and roll angle that gives the lowest risk attitude for landing. An extended Kalman filter is developed that estimates the aircraft states as well as the 3D wind component acting on the aircraft. The aircraft used in this analysis is the DG808S, a large wingspan lightweight electric glider. The aircraft is modelled using Advanced Aircraft Analysis software and a six degree of freedom nonlinear simulation is implemented for testing. The controller used is a nonlinear model predictive controller. The simulations show that the extended Kalman filter is capable of estimating the crosswind and can therefore be used in the full aircraft simulation. Different crosswind settings are used which include both constant crosswind and gust conditions. Crosswind landing capabilities are increased by 35%. Deviation from the desired path in the cruise phase is reduced by up to 68% and time to path convergence is reduced by up to 53%.

  11. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions

    NASA Astrophysics Data System (ADS)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  12. Overview of meteorological measurements for aerial spray modeling.

    PubMed

    Rafferty, J E; Biltoft, C A; Bowers, J F

    1996-06-01

    The routine meteorological observations made by the National Weather Service have a spatial resolution on the order of 1,000 km, whereas the resolution needed to conduct or model aerial spray applications is on the order of 1-10 km. Routinely available observations also do not include the detailed information on the turbulence and thermal structure of the boundary layer that is needed to predict the transport, dispersion, and deposition of aerial spray releases. This paper provides an overview of the information needed to develop the meteorological inputs for an aerial spray model such as the FSCBG and discusses the different types of instruments that are available to make the necessary measurements.

  13. Reducing Size, Weight, and Power (SWaP) of Perception Systems in Small Autonomous Aerial Systems

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Gross, Jason

    2014-01-01

    The objectives are to examine recent trends in the reduction of size, weight, and power (SWaP) requirements of sensor systems for environmental perception and to explore new technology that may overcome limitations in current systems. Improving perception systems to facilitate situation awareness is critical in the move to introduce increasing autonomy in aerial systems. Whether the autonomy is in the current state-of-the-art of increasing automation or is enabling cognitive decisions that facilitate adaptive behavior, collection of environmental information and fusion of that information into knowledge that can direct actuation is imperative to decisions resulting in appropriate behavior. Artificial sensory systems such as cameras, radar, LIDAR, and acoustic sensors have been in use on aircraft for many years but, due to the large size and weight of the airplane and electrical power made available through powerful engines, the SWaP requirements of these sensors was inconsequential. With the proliferation of Remote Piloted Vehicles (RPV), the trend is in significant reduction in SWaP of the vehicles. This requires at least an equivalent reduction in SWaP for the sensory systems. A survey of some currently available sensor systems and changing technology will reveal the trend toward reduction of SWaP of these systems and will predict future reductions. A new technology will be introduced that provides an example of a desirable new trend. A new device replaces multiple conventional sensory devices facilitating synchronization, localization, altimetry, collision avoidance, terrain mapping, and data communication in a single integrated, small form-factor, extremely lightweight, and low power device that it is practical for integration into small autonomous vehicles and can facilitate cooperative behavior. The technology is based on Ultra WideBand (UWB) radio using short pulses of energy rather than continuous sine waves. The characteristics of UWB yield several

  14. Unmanned Aerial Systems, Moored Balloons, and the U.S. Department of Energy ARM Facilities in Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, Mark; Verlinde, Johannes

    2014-05-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Arctic Observing Networks are essential to meet growing policy, social, commercial, and scientific needs. Calibrated, high-quality arctic geophysical datasets that span ten years or longer are especially important for climate studies, climate model initializations and validations, and for related climate policy activities. For example, atmospheric data and derived atmospheric forcing estimates are critical for sea-ice simulations. International requirements for well-coordinated, long-term, and sustained Arctic Observing Networks and easily-accessible data sets collected by those networks have been recognized by many high-level workshops and reports (Arctic Council Meetings and workshops, National Research Council reports, NSF workshops and others). The recent Sustaining Arctic Observation Network (SAON) initiative sponsored a series of workshops to "develop a set of recommendations on how to achieve long-term Arctic-wide observing activities that provide free, open, and timely access to high-quality data that will realize pan-Arctic and global value-added services and provide societal benefits." This poster will present information on opportunities for members of the

  15. 27. AERIAL VIEW OF ARVFS FIELD TEST SITE AS IT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. AERIAL VIEW OF ARVFS FIELD TEST SITE AS IT LOOKED IN 1983. OBLIQUE VIEW FACING EAST. BUNKER IS IN FOREGROUND, PROTECTIVE SHED FOR WFRP AT TOP OF IMAGE. INEL PHOTO NUMBER 83-574-12-1, TAKEN IN 1983. PHOTOGRAPHER: ROMERO. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  16. Aerial spray technology: possibilities and limitations for control of pear thrips

    Treesearch

    Karl Mierzejewski

    1991-01-01

    The feasibility of using aerial application as a means of managing a pear thrips infestation in maple forest stands is examined, based on existing knowledge of forest aerial application acquired from theoretical and empirical studies. Specific strategies by which aerial application should be performed and potential problem areas are discussed. Two new tools, aircraft...

  17. Extending the Ground Force Network: Aerial Layer Networking

    DTIC Science & Technology

    2013-04-25

    Additionally aerial layer networks are envisioned to augment the Global Information Grid ( GIG ) access, which is currently provided by the surface...frequencies such as HF, VHF, and UHF. This enabled ground forces to establish tactical wide area networks (WAN) and permitted entry to the GIG ...PRC-117G. Both systems are unique in their overall mission sets, but both provide tactical users access to the WAN and GIG . Self-forming and self

  18. An algorithm for approximate rectification of digital aerial images

    USDA-ARS?s Scientific Manuscript database

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  19. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    PubMed

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  20. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study

    PubMed Central

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species’ habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as ‘certain’ (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys. PMID:24223967

  1. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  2. A Primer on Autonomous Aerial Vehicle Design

    PubMed Central

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  3. A Primer on Autonomous Aerial Vehicle Design.

    PubMed

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-12-02

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  4. The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions

    USGS Publications Warehouse

    Rees, Alan F.; Avens, Larisa; Ballorain, Katia; Bevan, Elizabeth; Broderick, Annette C.; Carthy, Raymond R.; Christianen, Marjolijn J. A.; Duclos, Gwénaël; Heithaus, Michael R.; Johnston, David W.; Mangel, Jeffrey C.; Paladino, Frank V.; Pendoley, Kellie; Reina, Richard D.; Robinson, Nathan J.; Ryan, Robert; Sykora-Bodie, Seth T.; Tilley, Dominic; Varela, Miguel R.; Whitman, Elizabeth R.; Whittock, Paul A.; Wibbels, Thane; Godley, Brendan J.

    2018-01-01

    The use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa.

  5. Aerially released spray penetration of a tall coniferous canopy

    USDA-ARS?s Scientific Manuscript database

    An aerial spray deposition project was designed to evaluate aerial application to an Eastern Hemlock (Tsuga canadensis) canopy to combat Hemlock Woolly Adelgid (Adelges tsugae). This adelgid offers a difficult target residing in the forest canopy at the nodes of branchlets. The study collected 1680 ...

  6. Building Change Detection from Harvey using Unmanned Aerial System (UAS)

    NASA Astrophysics Data System (ADS)

    Chang, A.; Yeom, J.; Jung, J.; Choi, I.

    2017-12-01

    Unmanned Aerial System (UAS) is getting to be the most important technique in recent days since the fine spatial and high temporal resolution data previously unobtainable from traditional remote sensing platforms. Advanced UAS data can provide a great opportunity for disaster monitoring. Especially, building change detection is the one of the most important topics for damage assessment and recovery from disasters. This study is proposing a method to monitor building change with UAS data for Holiday Beach in Texas, where was directly hit by Harvey on 25 August 2017. This study adopted 3D change detection to monitor building damage and recovery levels with building height as well as natural color information. We used a rotorcraft UAS to collect RGB data twice on 9 September and 18 October 2017 after the hurricane. The UAS data was processed using Agisoft Photoscan Pro Software to generate super high resolution dataset including orthomosaic, DSM (Digital Surface Model), and 3D point cloud. We compared the processed dataset with an airborne image considerable as before-hurricane data, which was acquired on January 2016. Building damage and recovery levels were determined by height and color change. The result will show that UAS data is useful to assess building damage and recovery for affected area by the natural disaster such as Harvey.

  7. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  8. 36 CFR 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  9. 36 CFR 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  10. 36 CFR 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  11. 36 CFR 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  12. Aerial image metrology for OPC modeling and mask qualification

    NASA Astrophysics Data System (ADS)

    Chen, Ao; Foong, Yee Mei; Thaler, Thomas; Buttgereit, Ute; Chung, Angeline; Burbine, Andrew; Sturtevant, John; Clifford, Chris; Adam, Kostas; De Bisschop, Peter

    2017-06-01

    As nodes become smaller and smaller, the OPC applied to enable these nodes becomes more and more sophisticated. This trend peaks today in curve-linear OPC approaches that are currently starting to appear on the roadmap. With this sophistication of OPC, the mask pattern complexity increases. CD-SEM based mask qualification strategies as they are used today are starting to struggle to provide a precise forecast of the printing behavior of a mask on wafer. An aerial image CD measurement performed on ZEISS Wafer-Level CD system (WLCD) is a complementary approach to mask CD-SEMs to judge the lithographical performance of the mask and its critical production features. The advantage of the aerial image is that it includes all optical effects of the mask such as OPC, SRAF, 3D mask effects, once the image is taken under scanner equivalent illumination conditions. Additionally, it reduces the feature complexity and analyzes the printing relevant CD.

  13. Uas for Archaeology - New Perspectives on Aerial Documentation

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Balsi, M.; Esposito, S.; Melis, M. G.; Milanese, M.; Zappino, L.

    2013-08-01

    In this work some Unmanned Aerial Systems applications are discussed and applied to archaeological sites survey and 3D model reconstructions. Interesting results are shown for three important and different aged sites on north Sardinia (Italy). An easy and simplified procedure has proposed permitting the adoption of multi-rotor aircrafts for daily archaeological survey during excavation and documentation, involving state of art in UAS design, flight control systems, high definition sensor cameras and innovative photogrammetric software tools. Very high quality 3D models results are shown and discussed and how they have been simplified the archaeologist work and decisions.

  14. Monitoring and Assuring the Quality of Digital Aerial Data

    NASA Technical Reports Server (NTRS)

    Christopherson, Jon

    2007-01-01

    This viewgraph presentation explains the USGS plan for monitoring and assuring the quality of digital aerial data. The contents include: 1) History of USGS Aerial Imaging Involvement; 2) USGS Research and Results; 3) Outline of USGS Quality Assurance Plan; 4) Other areas of Interest; and 5) Summary

  15. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  16. Proposed tethered unmanned aerial system for the detection of pollution entering the Chesapeake Bay area

    NASA Astrophysics Data System (ADS)

    Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew

    2016-05-01

    This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.

  17. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    PubMed

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  18. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  19. Action cameras and low-cost aerial vehicles in archaeology

    NASA Astrophysics Data System (ADS)

    Ballarin, M.; Balletti, C.; Guerra, F.

    2015-05-01

    This research is focused on the analysis of the potential of a close range aerial photogrammetry system, which is accessible both in economic terms and in terms of simplicity of use. In particular the Go Pro Hero3 Black Edition and the Parrot Ar. Drone 2.0 were studied. There are essentially two limitations to the system and they were found for both the instruments used. Indeed, the frames captured by the Go Pro are subject to great distortion and consequently pose numerous calibration problems. On the other hand, the limitation of the system lies in the difficulty of maintaining a flight configuration suitable for photogrammetric purposes in unfavourable environmental conditions. The aim of this research is to analyse how far the limitations highlighted can influence the precision of the survey and consequent quality of the results obtained. To this end, the integrated GoPro and Parrot system was used during a survey campaign on the Altilia archaeological site, in Molise. The data obtained was compared with that gathered by more traditional methods, such as the laser scanner. The system was employed in the field of archaeology because here the question of cost often has a considerable importance and the metric aspect is frequently subordinate to the qualitative and interpretative aspects. Herein one of the products of these systems; the orthophoto will be analysed, which is particularly useful in archaeology, especially in situations such as this dig in which there aren't many structures in elevation present. The system proposed has proven to be an accessible solution for producing an aerial documentation, which adds the excellent quality of the result to metric data for which the precision is known.

  20. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a

  1. R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Moosbruger, Patrick; Rozier, Kristin Y.

    2015-01-01

    We present R2U2, a novel framework for runtime monitoring of security properties and diagnosing of security threats on-board Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hardware, is a real-time, REALIZABLE, RESPONSIVE, UNOBTRUSIVE Unit for security threat detection. R2U2 is designed to continuously monitor inputs from the GPS and the ground control station, sensor readings, actuator outputs, and flight software status. By simultaneously monitoring and performing statistical reasoning, attack patterns and post-attack discrepancies in the UAS behavior can be detected. R2U2 uses runtime observer pairs for linear and metric temporal logics for property monitoring and Bayesian networks for diagnosis of security threats. We discuss the design and implementation that now enables R2U2 to handle security threats and present simulation results of several attack scenarios on the NASA DragonEye UAS.

  2. Estimating tree heights from shadows on vertical aerial photographs

    Treesearch

    Earl J. Rogers

    1947-01-01

    Aerial photographs are now being applied more and more to practical forestry - especially to forest survey. Many forest characteristics can be recognized on aerial photographs in greater detail than is possible through ground methods alone. The basic need is for tools and methods for interpreting the detail in quantitative terms.

  3. Toxic hazards in aerial application.

    DOT National Transportation Integrated Search

    1962-04-01

    An analysis of the hazards accompanying the aerial application of toxic pest-control chemicals are presented. The nature of teh chemicals, teh symptoms of toxicity, recommended treatment, and suggestions for safe-handling, are discussed

  4. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  5. Phytotoxic activity and chemical composition of Cassia absus seeds and aerial parts.

    PubMed

    Zribi, I; Sbai, H; Ghezal, N; Richard, G; Trisman, D; Fauconnier, M L; Haouala, R

    2017-12-01

    The present study was conducted to assess the phytotoxic potential and the phytochemical composition of Cassia absus. Aqueous extracts caused significant reduction in root growth of Lactuca sativa. Seed extract was more effective than aerial part extract. Successive extractions of this plant were performed using solvents with increasing polarities. The methanolic seed extract exerted strong phytotoxic effect on seedling growth, followed by petroleum ether extract of the aerial part. The phytochemical investigation showed that among the organic extracts, methanol extracts of seeds and aerial parts contained the highest amounts of total phenolics and proanthocyanidins. Seeds were rich in linoleic acid followed by palmitic acids. Palmitic, stearic and arachidic acids were the major fatty acids in aerial parts. HPLC-DAD analysis of the methanolic extracts revealed the presence of luteolin in C. absus aerial parts.

  6. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  7. United States Air Force in Southeast Asia 1965-1973. Aces and Aerial Victories

    DTIC Science & Technology

    1976-01-01

    UNITED STATES IN SOUTHEAST ACES and AERIAL VICTORIES The United States Air Force in SoutheastAsia 1965*19?3 by R Frank Fuirefl William H...TYPE 3. DATES COVERED 00-00-1976 to 00-00-1976 4. TITLE AND SUBTITLE United States Air Force in Southeast Asia 1965-1973. Aces and Aerial... aces and aerial victories, 1965-1973. Includes index and glossary. 1. Vietnamese Conflict, 1961-1975-Aerial operations, American. 2. Viet- namese

  8. AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY

    NASA Technical Reports Server (NTRS)

    1975-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY KSC-375C-10036.32 108-KSC-375C-10036.32, P-21425, ARCHIVE-04501 Aerial oblique of Shuttle Landing Facility. Pouring concrete on runway. Direction North - Altitude 100'.

  9. AERIAL OF SHUTTLE LANDING FACILITY [SLF] SAFING AND PARKING AREA

    NASA Technical Reports Server (NTRS)

    1975-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] SAFING AND PARKING AREA KSC-375C-0654.18 108-KSC-375C-654.18, P-18812, ARCHIVE-04493 Aerial oblique - safing and parking area, Shuttle Orbiter Landing Facility. Altitude 800' direction- west.

  10. Evaluation of Meteorological and Aerosol Sensing with small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Claussen, Johanna; Möhler, Ottmar; Leisner, Thomas; Brooks, Ian; Norris, Sarah; Brooks, Barbara; Hill, Martin; Haunold, Werner; Schrod, Jann; Danielczok, Anja

    2013-04-01

    Atmospheric aerosols have a large impact on the climate system due to their influence on the global radiation budget. Local aerosol sources such as vegetation, (bare) soil or industrial sites have to be quantified with high resolution data to validate aerosol transport models and improve the input for high resolution weather models. Our goal is to evaluate the use of Unmanned Aerial Systems (UAS) as a method for acquisition of high resolution meteorological and aerosol data. During the INUIT measurement campaign in August 2012 at mount Großer Feldberg near Frankfurt, Germany, several flights with different sensor packages were carried out. We measured basic meteorological parameters such as temperature, relative humidity and air pressure with miniaturized onboard sensors. In addition, the Compact Lightweight Aerosol Spectrometer Probe (CLASP) for aerosol size distribution measurement or the Electrostatic Aerosol Collector (EAC) for aerosol sample collection was installed on board. CLASP measures aerosol particles with diameters from 0.17 μm to 9.5 μm in up to 32 channels at a frequency of 10 Hz. The EAC collects air samples at 2 l/min onto a sample holder. After the flight the ice nuclei on the sample holder are activated and counted in the isothermal static diffusion chamber FRIDGE. The results from the INUIT campaign and additional calibration laboratory measurements show that UAS are a valuable platform for miniaturized sensors. The number of ice nuclei was determined with the EAC at 200m above ground level and compared to the reference measurement on the ground.

  11. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    PubMed Central

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  12. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  13. Detection of unmanned aerial vehicles using a visible camera system.

    PubMed

    Hu, Shuowen; Goldman, Geoffrey H; Borel-Donohue, Christoph C

    2017-01-20

    Unmanned aerial vehicles (UAVs) flown by adversaries are an emerging asymmetric threat to homeland security and the military. To help address this threat, we developed and tested a computationally efficient UAV detection algorithm consisting of horizon finding, motion feature extraction, blob analysis, and coherence analysis. We compare the performance of this algorithm against two variants, one using the difference image intensity as the motion features and another using higher-order moments. The proposed algorithm and its variants are tested using field test data of a group 3 UAV acquired with a panoramic video camera in the visible spectrum. The performance of the algorithms was evaluated using receiver operating characteristic curves. The results show that the proposed approach had the best performance compared to the two algorithmic variants.

  14. 77 FR 36250 - Information Collection Request; Request for Aerial Photography

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... the responsibility for conducting and coordinating the FSA's aerial photography, remote sensing... FSA Aerial Photography Field Office (APFO) uses the information from this form to collect the customer... respond, including through the use of appropriate automated, electronic, mechanical, or other...

  15. 36 CFR § 1237.24 - What are special considerations for storage and maintenance of aerial photographic records?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maintenance of aerial photographic records? (a) Mark each aerial film container with a unique identification code to facilitate identification and filing. (b) Mark aerial film indexes with the unique aerial film identification codes or container codes for the aerial film that they index. Also, file and mark the aerial...

  16. The ABCs of New Zealand Sign Language: Aerial Spelling.

    ERIC Educational Resources Information Center

    Forman, Wayne

    2003-01-01

    Aerial spelling is the term given for the way many people with deafness in New Zealand (NZ) manually represent letters of the alphabet. This article examines the nature and role of aerial spelling in New Zealand Sign Language, particularly that form used by older members of the NZ deaf community. (Contains references.) (Author/CR)

  17. A comparative framework for maneuverability and gust tolerance of aerial microsystems

    NASA Astrophysics Data System (ADS)

    Campbell, Renee

    Aerial microsystems have the potential of navigating low-altitude, cluttered environments such as urban corridors and building interiors. Reliable systems require both agility and tolerance to gusts. While many platform designs are under development, no framework currently exists to quantitatively assess these inherent bare airframe characteristics which are independent of closed loop controllers. This research develops a method to quantify the maneuverability and gust tolerance of vehicles using reachability and disturbance sensitivity sets. The method is applied to a stable flybar helicopter and an unstable flybarless helicopter, whose state space models were formed through system identification. Model-based static H∞ controllers were also implemented on the vehicles and tested in the lab using fan-generated gusts. It is shown that the flybar restricts the bare airframe's ability to maneuver in translational velocity directions. As such, the flybarless helicopter proved more maneuverable and gust tolerant than the flybar helicopter. This approach was specifically applied here to compare stable and unstable helicopter platforms; however, the framework may be used to assess a broad range of aerial microsystems.

  18. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  19. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.

    PubMed

    Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen

    2017-02-01

    Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.

  20. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon

    2016-04-01

    We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.

  1. Application of Unmanned Aerial Systems in Spatial Downscaling of Landsat VIR imageries of Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Torres, A.; Hassan Esfahani, L.; Ebtehaj, A.; McKee, M.

    2016-12-01

    While coarse space-time resolution of satellite observations in visible to near infrared (VIR) is a serious limiting factor for applications in precision agriculture, high resolution remotes sensing observation by the Unmanned Aerial Systems (UAS) systems are also site-specific and still practically restrictive for widespread applications in precision agriculture. We present a modern spatial downscaling approach that relies on new sparse approximation techniques. The downscaling approach learns from a large set of coincident low- and high-resolution satellite and UAS observations to effectively downscale the satellite imageries in VIR bands. We focus on field experiments using the AggieAirTM platform and Landsat 7 ETM+ and Landsat 8 OLI observations obtained in an intensive field campaign in 2013 over an agriculture field in Scipio, Utah. The results show that the downscaling methods can effectively increase the resolution of Landsat VIR imageries by the order of 2 to 4 from 30 m to 15 and 7.5 m, respectively. Specifically, on average, the downscaling method reduces the root mean squared errors up to 26%, considering bias corrected AggieAir imageries as the reference.

  2. Determining position, velocity and acceleration of free-ranging animals with a low-cost unmanned aerial system.

    PubMed

    Harvey, Richard J; Roskilly, Kyle; Buse, Chris; Evans, Hannah K; Hubel, Tatjana Y; Wilson, Alan M

    2016-09-01

    Unmanned aerial systems (UASs), frequently referred to as 'drones', have become more common and affordable and are a promising tool for collecting data on free-ranging wild animals. We used a Phantom-2 UAS equipped with a gimbal-mounted camera to estimate position, velocity and acceleration of a subject on the ground moving through a grid of GPS surveyed ground control points (area ∼1200 m(2)). We validated the accuracy of the system against a dual frequency survey grade GPS system attached to the subject. When compared with GPS survey data, the estimations of position, velocity and acceleration had a root mean square error of 0.13 m, 0.11 m s(-1) and 2.31 m s(-2), respectively. The system can be used to collect locomotion and localisation data on multiple free-ranging animals simultaneously. It does not require specialist skills to operate, is easily transported to field locations, and is rapidly and easily deployed. It is therefore a useful addition to the range of methods available for field data collection on free-ranging animal locomotion. © 2016. Published by The Company of Biologists Ltd.

  3. Ontogeny of aerial righting and wing flapping in juvenile birds.

    PubMed

    Evangelista, Dennis; Cam, Sharlene; Huynh, Tony; Krivitskiy, Igor; Dudley, Robert

    2014-08-01

    Mechanisms of aerial righting in juvenile chukar partridge (Alectoris chukar) were studied from hatching to 14 days-post-hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose-down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e. wing-assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development and are potentially relevant to understanding the origins of avian flight. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view near NASA's Kennedy Space Center Visitor Complex reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck on the NASA Causeway that leads to the entrance gate to Kennedy Space Center in Florida. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  5. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck is passing the Space Station Processing Facility at Kennedy Space Center in Florida on its way to the Multi-Operation Support Building. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  6. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck that is proceeding along the NASA Causeway at Kennedy Space Center in Florida. In the background is the iconic Vehicle Assembly Building. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  7. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view near NASA's Kennedy Space Center Visitor Complex reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck that is proceeding along the NASA Causeway to the entrance gate to Kennedy Space Center in Florida. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  8. Aerial of the Orion EFT-1 Arrival at KSC

    NASA Image and Video Library

    2014-12-18

    An aerial view near NASA's Kennedy Space Center Visitor Complex reveals the Orion crew module, enclosed in its crew module transportation fixture and secured on a flatbed truck that is proceeding onto the NASA Causeway that leads to the entrance gate to Kennedy Space Center in Florida. Orion made the 2,700 mile overland trip from Naval Base San Diego in California. The spacecraft was recovered from the Pacific Ocean after completing a two-orbit, four-and-a-half hour mission Dec. 5 to test systems critical to crew safety, including the launch abort system, the heat shield and the parachute system. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  9. Aerial Views of KSC

    NASA Image and Video Library

    2003-07-23

    This aerial view, looking northwest, shows the newly opened Space Commerce Way that winds from S.R 3 on the right to its exit on S.R. 405 (near the top) in the background. The road is the new public access from Merritt Island to the KSC Visitor Complex (seen at top).

  10. Search and Pursuit with Unmanned Aerial Vehicles in Road Networks

    DTIC Science & Technology

    2013-11-01

    production volume in each area for use in consumer electronics. Simultaneously, a shift in defense strategy towards unmanned vehicles, particularly...Vöcking. Randomized pursuit-evasion in graphs. Combinatorics, Probability and Computing, 12:225–244, May 2003. [3] AeroVironment Inc. Raven Product Data...Ali and Mubarak Shah. COCOA - tracking in aerial imagery. In SPIE Airborne Intelligence, Surveillance, Reconnaissance Systems and Applications, 2006

  11. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States

    PubMed Central

    Swetnam, Tyson L.; Gillan, Jeffrey K.; Sankey, Temuulen T.; McClaran, Mitchel P.; Nichols, Mary H.; Heilman, Philip; McVay, Jason

    2018-01-01

    Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor

  12. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.

    PubMed

    Swetnam, Tyson L; Gillan, Jeffrey K; Sankey, Temuulen T; McClaran, Mitchel P; Nichols, Mary H; Heilman, Philip; McVay, Jason

    2017-01-01

    Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor

  13. Educational Projects in Unmanned Aerial Systems at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Dahlgren, Robert P.

    2017-01-01

    Unmanned aerial systems (UAS), autonomy and robotics technology have been fertile ground for developing a wide variety of interdisciplinary student learning opportunities. In this talk, several projects will be described that leverage small fixed-wing UAS that have been modified to carry science payloads. These aircraft provide a unique hands-on experience for a wide range of students from college juniors to graduate students pursuing degrees in electrical engineering, aeronautical engineering, mechanical engineering, applied mathematics, physics, structural engineering and other majors. By combining rapid prototyping, design reuse and open-source philosophies, a sustainable educational program has been organized structured as full-time internships during the summer, part-time internships during the school year, short details for military cadets, and paid positions. As part of this program, every summer one or more UAS is developed from concept through design, build and test phases using the tools and facilities at the NASA Ames Research Center, ultimately obtaining statements of airworthiness and flight release from the Agency before test flights are performed. In 2016 and 2017 student projects focused on the theme of 3D printed modular airframes that may be optimized for a given mission and payload. Now in its fifth year this program has served over 35 students, and has provided a rich learning experience as they learn to rapidly develop new aircraft concepts in a highly regulated environment, on systems that will support principal investigators at university, NASA, and other US federal agencies.

  14. Rangeland resource assessment, monitoring, and management using unmanned aerial vehicle-based remote sensing

    USDA-ARS?s Scientific Manuscript database

    Civilian applications of Unmanned Aerial Vehicles (UAV) have rapidly been expanding recently. Thanks to military development many civil UAVs come via the defense sector. Although numerous UAVs can perform civilian tasks, the regulations imposed by FAA in the national airspace system and military e...

  15. Aerial shows Stennis test stands

    NASA Image and Video Library

    2004-04-16

    An aerial photo shows the B-1/B-2 Test Stand (foreground), A-2 Test Stand (middle) and A-1 Test Stand (back). The historic stands have been used to test engines used on every manned Apollo and space shuttle mission.

  16. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    USDA-ARS?s Scientific Manuscript database

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  17. Automated aerial image based CD metrology initiated by pattern marking with photomask layout data

    NASA Astrophysics Data System (ADS)

    Davis, Grant; Choi, Sun Young; Jung, Eui Hee; Seyfarth, Arne; van Doornmalen, Hans; Poortinga, Eric

    2007-05-01

    The photomask is a critical element in the lithographic image transfer process from the drawn layout to the final structures on the wafer. The non-linearity of the imaging process and the related MEEF impose a tight control requirement on the photomask critical dimensions. Critical dimensions can be measured in aerial images with hardware emulation. This is a more recent complement to the standard scanning electron microscope measurement of wafers and photomasks. Aerial image measurement includes non-linear, 3-dimensional, and materials effects on imaging that cannot be observed directly by SEM measurement of the mask. Aerial image measurement excludes the processing effects of printing and etching on the wafer. This presents a unique contribution to the difficult process control and modeling tasks in mask making. In the past, aerial image measurements have been used mainly to characterize the printability of mask repair sites. Development of photomask CD characterization with the AIMS TM tool was motivated by the benefit of MEEF sensitivity and the shorter feedback loop compared to wafer exposures. This paper describes a new application that includes: an improved interface for the selection of meaningful locations using the photomask and design layout data with the Calibre TM Metrology Interface, an automated recipe generation process, an automated measurement process, and automated analysis and result reporting on a Carl Zeiss AIMS TM system.

  18. Aerial sampling using drones for measuring trace gases

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chung; Wang, Jia-Lin; Chang, Chih-Yuan; Lin, Ming-Ren; Ou-Yang, Chang-Feng; Pan, Xiang-Xu; Lin, Neng-Huei

    2017-04-01

    Aerial and ground-level samples were simultaneously collected at the northern tip of Taiwan, Cape Fuguei, which is commonly served as a receptor site to receive air parcels from East Asia, Asian continent, the northwest Pacific Ocean and the island of Taiwan itself. Both aerial and surface samples were analyzed for 106 volatile organic compounds (VOCs) and divided into three categories as follows: 1. the total concentrations of 106 VOC (T-VOC) at 300-m height that are lower than the T-VOC level at the surface (Category A), 2. T-VOC concentrations at 300-m that are higher than those at the surface (Category B), and 3. comparable concentrations (Category C). Ten VOCs were exploited as tracers for a variety of emission sources linking to possible sources and transport routes of airborne pollutants. The first two categories A and B showed significant differences in the observed composition and concentrations of tracers between aerial and ground-level samples, implying that the pollutants at different heights may have resulted from different sources and poor air mixing, despite only a 300-m difference in vertical height. In contrast, Category C showed good vertical mixing, as indicated by the comparable concentrations between the aerial and surface measurements. Since the three categories occurred in specific meteorological conditions (between, prior to, and after cold fronts), respectively, it suggests that varied prevailing meteorology controlled the distribution and transport of airborne pollutants. Unlike sampling commonly performed at the surface, this study uses aerial sampling to demonstrate that layered structures under different meteorological conditions. Sampling aloft in lower boundary layer avoids samples being over-influenced by the close-by surface sources such as traffic to reveal signatures of a broader region.

  19. Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data

    PubMed Central

    Huang, Huabing; Gong, Peng; Cheng, Xiao; Clinton, Nick; Li, Zengyuan

    2009-01-01

    Forest structural parameters, such as tree height and crown width, are indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary technology for measurement of forest structural parameters, however, the accuracy of crown width extraction is not satisfactory when using a low density LiDAR, especially in high canopy cover forest. We used high resolution aerial imagery with a low density LiDAR system to overcome this shortcoming. A morphological filtering was used to generate a DEM (Digital Elevation Model) and a CHM (Canopy Height Model) from LiDAR data. The LiDAR camera image is matched to the aerial image with an automated keypoints search algorithm. As a result, a high registration accuracy of 0.5 pixels was obtained. A local maximum filter, watershed segmentation, and object-oriented image segmentation are used to obtain tree height and crown width. Results indicate that the camera data collected by the integrated LiDAR system plays an important role in registration with aerial imagery. The synthesis with aerial imagery increases the accuracy of forest structural parameter extraction when compared to only using the low density LiDAR data. PMID:22573971

  20. Improving Operational Effectiveness of Tactical Long Endurance Unmanned Aerial Systems (TALEUAS) by Utilizing Solar Power

    DTIC Science & Technology

    2014-06-01

    Speed xiii TEK Total Energy Compensated TSP traveling salesman problem UAV unmanned aerial vehicle UDP user datagram protocol UKF unscented...discretized map, and use the map to optimally solve the navigation task. The optimal navigation solution utilizes the well-known “ travelling salesman problem ...2 C. FORMULATION OF THE PROBLEM .................................................. 3 D

  1. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  2. FlyAR: augmented reality supported micro aerial vehicle navigation.

    PubMed

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.

  3. Fusion of monocular cues to detect man-made structures in aerial imagery

    NASA Technical Reports Server (NTRS)

    Shufelt, Jefferey; Mckeown, David M.

    1991-01-01

    The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods.

  4. Use of Aerial Photography to Monitor Fall Chinook Salmon Spawning in the Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Richard H.; Dauble, Dennis D.; Geist, David R.

    2002-11-01

    This paper compares two methods for enumerating salmon redds and their application to monitoring spawning activity. Aerial photographs of fall chinook salmon spawning areas in the Hanford Reach of the Columbia River were digitized and mapped using Geographic Information Systems (GIS) techniques in 1994 and 1995 as part of an annual assessment of the population. The number of visible redds from these photographs were compared to counts obtained from visual surveys with fixed wing aircraft. The proportion of the total redds within each of five general survey areas was similar for the two monitoring techniques. However, the total number ofmore » redds based on aerial photographs was 2.2 and 3.0 times higher than those observed during visual surveys for 1994 and 1995, respectively. The divergence in redd counts was most evident near peak spawning activity when the number of redds within individual spawning clusters exceeded 500. Aerial photography improved our ability to monitor numbers of visible salmon redds and to quantify habitat use.« less

  5. Feasibility study to determine the economic and operational benefits of utilizing unmanned aerial vehicles (UAVs).

    DOT National Transportation Integrated Search

    2014-04-01

    This project explored the feasibility of using Unmanned Aerial Systems (UASs) in Georgia : Department of Transportation (GDOT) operations. The research team conducted 24 interviews with : personnel in four GDOT divisions. Interviews focused on (1) th...

  6. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  7. Rhizophores in Rhizophora mangle L: an alternative interpretation of so-called ''aerial roots''.

    PubMed

    Menezes, Nanuza L de

    2006-06-01

    Rhizophora mangle L., one of the most common mangrove species, has an aerial structure system that gives it stability in permanently swampy soils. In fact, these structures, known as "aerial roots" or "stilt roots", have proven to be peculiar branches with positive geotropism, which form a large number of roots when in contact with swampy soils. These organs have a sympodial branching system, wide pith, slightly thickened cortex, collateral vascular bundles, polyarch stele and endarch protoxylem, as in the stem, and a periderm produced by a phellogen at the apex similar to a root cap. They also have the same type of trichosclereid that occurs in the stem, with negative geotropism, unlike true Rhizophora roots, which do not form trichosclereids at all. On the other hand, these branches do not form leaves and in this respect they are similar to roots. These peculiar branches are rhizophores or special root-bearing branches, analogous to those found in Lepidodendrales and other Carboniferous tree ferns that grew in swampy soils.

  8. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  9. Aerial photo interpretation of understories in two Oregon oak stands.

    Treesearch

    H. Gyde Lund; George R. Fahnestock; John F. Wear

    1967-01-01

    Aerial color photography has shown promise for evaluating understory vegetation as a forest-fire fuel. Mapping understory vegetation from special aerial photography produced results reasonably similar to those obtained by an independent ground check. Differences in the methods used in the exploratory work prevented strict comparability, but agreement was close enough...

  10. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  11. An Improved Aerial Target Localization Method with a Single Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2017-01-01

    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956

  12. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation.

  13. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.

    2014-12-01

    Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.

  14. Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Riddell, Kevin Donald Alexander

    The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .

  15. Aerial surveillance vehicles augment security at shipping ports

    NASA Astrophysics Data System (ADS)

    Huck, Robert C.; Al Akkoumi, Muhammad K.; Cheng, Samuel; Sluss, James J., Jr.; Landers, Thomas L.

    2008-10-01

    With the ever present threat to commerce, both politically and economically, technological innovations provide a means to secure the transportation infrastructure that will allow efficient and uninterrupted freight-flow operations for trade. Currently, freight coming into United States ports is "spot checked" upon arrival and stored in a container yard while awaiting the next mode of transportation. For the most part, only fences and security patrols protect these container storage yards. To augment these measures, the authors propose the use of aerial surveillance vehicles equipped with video cameras and wireless video downlinks to provide a birds-eye view of port facilities to security control centers and security patrols on the ground. The initial investigation described in this paper demonstrates the use of unmanned aerial surveillance vehicles as a viable method for providing video surveillance of container storage yards. This research provides the foundation for a follow-on project to use autonomous aerial surveillance vehicles coordinated with autonomous ground surveillance vehicles for enhanced port security applications.

  16. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system

    PubMed Central

    Hinke, Jefferson T.; Perryman, Wayne L.; Goebel, Michael E.; LeRoi, Donald J.

    2017-01-01

    Measurements of body size and mass are fundamental to pinniped population management and research. Manual measurements tend to be accurate but are invasive and logistically challenging to obtain. Ground-based photogrammetric techniques are less invasive, but inherent limitations make them impractical for many field applications. The recent proliferation of unmanned aerial systems (UAS) in wildlife monitoring has provided a promising new platform for the photogrammetry of free-ranging pinnipeds. Leopard seals (Hydrurga leptonyx) are an apex predator in coastal Antarctica whose body condition could be a valuable indicator of ecosystem health. We aerially surveyed leopard seals of known body size and mass to test the precision and accuracy of photogrammetry from a small UAS. Flights were conducted in January and February of 2013 and 2014 and 50 photogrammetric samples were obtained from 15 unrestrained seals. UAS-derived measurements of standard length were accurate to within 2.01 ± 1.06%, and paired comparisons with ground measurements were statistically indistinguishable. An allometric linear mixed effects model predicted leopard seal mass within 19.40 kg (4.4% error for a 440 kg seal). Photogrammetric measurements from a single, vertical image obtained using UAS provide a noninvasive approach for estimating the mass and body condition of pinnipeds that may be widely applicable. PMID:29186134

  17. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system.

    PubMed

    Krause, Douglas J; Hinke, Jefferson T; Perryman, Wayne L; Goebel, Michael E; LeRoi, Donald J

    2017-01-01

    Measurements of body size and mass are fundamental to pinniped population management and research. Manual measurements tend to be accurate but are invasive and logistically challenging to obtain. Ground-based photogrammetric techniques are less invasive, but inherent limitations make them impractical for many field applications. The recent proliferation of unmanned aerial systems (UAS) in wildlife monitoring has provided a promising new platform for the photogrammetry of free-ranging pinnipeds. Leopard seals (Hydrurga leptonyx) are an apex predator in coastal Antarctica whose body condition could be a valuable indicator of ecosystem health. We aerially surveyed leopard seals of known body size and mass to test the precision and accuracy of photogrammetry from a small UAS. Flights were conducted in January and February of 2013 and 2014 and 50 photogrammetric samples were obtained from 15 unrestrained seals. UAS-derived measurements of standard length were accurate to within 2.01 ± 1.06%, and paired comparisons with ground measurements were statistically indistinguishable. An allometric linear mixed effects model predicted leopard seal mass within 19.40 kg (4.4% error for a 440 kg seal). Photogrammetric measurements from a single, vertical image obtained using UAS provide a noninvasive approach for estimating the mass and body condition of pinnipeds that may be widely applicable.

  18. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  19. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  20. Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures.

    PubMed

    Straight, Paul D; Willey, Joanne M; Kolter, Roberto

    2006-07-01

    Using mixed-species cultures, we have undertaken a study of interactions between two common spore-forming soil bacteria, Bacillus subtilis and Streptomyces coelicolor. Our experiments demonstrate that the development of aerial hyphae and spores by S. coelicolor is inhibited by surfactin, a lipopeptide surfactant produced by B. subtilis. Current models of aerial development by sporulating bacteria and fungi postulate a role for surfactants in reducing surface tension at air-liquid interfaces, thereby removing the major barrier to aerial growth. S. coelicolor produces SapB, an amphipathic peptide that is surface active and required for aerial growth on certain media. Loss of aerial hyphae in developmental mutants can be rescued by addition of purified SapB. While a surfactant from a fungus can substitute for SapB in a mutant that lacks aerial hyphae, not all surfactants have this effect. We show that surfactin is required for formation of aerial structures on the surface of B. subtilis colonies. However, in contrast to this positive role, our experiments reveal that surfactin acts antagonistically by arresting S. coelicolor aerial development and causing altered expression of developmental genes. Our observations support the idea that surfactants function specifically for a given organism regardless of their shared ability to reduce surface tension. Production of surfactants with antagonistic activity could provide a powerful competitive advantage during surface colonization and in competition for resources.

  1. Remotely deployable aerial inspection using tactile sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment,more » resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.« less

  2. Modeling Aircraft Position and Conservatively Calculating Airspace Violations for an Autonomous Collision Awareness System for Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Ueunten, Kevin K.

    With the scheduled 30 September 2015 integration of Unmanned Aerial System (UAS) into the national airspace, the Federal Aviation Administration (FAA) is concerned with UAS capabilities to sense and avoid conflicts. Since the operator is outside the cockpit, the proposed collision awareness plugin (CAPlugin), based on probability and error propagation, conservatively predicts potential conflicts with other aircraft and airspaces, thus increasing the operator's situational awareness. The conflict predictions are calculated using a forward state estimator (FSE) and a conflict calculator. Predicting an aircraft's position, modeled as a mixed Gaussian distribution, is the FSE's responsibility. Furthermore, the FSE supports aircraft engaged in the following three flight modes: free flight, flight path following and orbits. The conflict calculator uses the FSE result to calculate the conflict probability between an aircraft and airspace or another aircraft. Finally, the CAPlugin determines the highest conflict probability and warns the operator. In addition to discussing the FSE free flight, FSE orbit and the airspace conflict calculator, this thesis describes how each algorithm is implemented and tested. Lastly two simulations demonstrates the CAPlugin's capabilities.

  3. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Varela, Sebastian; Assefa, Yared; Vara Prasad, P. V.; Peralta, Nahuel R.; Griffin, Terry W.; Sharda, Ajay; Ferguson, Allison; Ciampitti, Ignacio A.

    2017-07-01

    Detailed spatial and temporal data on plant growth are critical to guide crop management. Conventional methods to determine field plant traits are intensive, time-consuming, expensive, and limited to small areas. The objective of this study was to examine the integration of data collected via unmanned aerial systems (UAS) at critical corn (Zea mays L.) developmental stages for plant height and its relation to plant biomass. The main steps followed in this research were (1) workflow development for an ultrahigh resolution crop surface model (CSM) with the goal of determining plant height (CSM-estimated plant height) using data gathered from the UAS missions; (2) validation of CSM-estimated plant height with ground-truthing plant height (measured plant height); and (3) final estimation of plant biomass via integration of CSM-estimated plant height with ground-truthing stem diameter data. Results indicated a correlation between CSM-estimated plant height and ground-truthing plant height data at two weeks prior to flowering and at flowering stage, but high predictability at the later growth stage. Log-log analysis on the temporal data confirmed that these relationships are stable, presenting equal slopes for both crop stages evaluated. Concluding, data collected from low-altitude and with a low-cost sensor could be useful in estimating plant height.

  4. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    EPA Science Inventory

    An emission sensor/sampler system was coupled to a NASA hexacopter unmanned aerial system (UAS) to characterize gases and particles in the plume emitted from open burning of military ordnance. The UAS/sampler was tested at two field sites resulting in 33 flights at Radford, VA a...

  5. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  6. ESTIMATING DENSITIES OF ESTUARINE EELGRASS AND BENTHIC MACROALGAE VIA AERIAL PHOTOGRAPHY

    EPA Science Inventory

    The goal of this research was to distinguish meadows of native eelgrass (Zostera marina L.) from adjacent beds of benthic green macroalgae in the exposed intertidal zone of Pacific Northwest estuaries, using false-color near-infrared aerial photography. Aerial photographs of Yaq...

  7. Development and prospect of unmanned aerial vehicles for agricultural production management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  8. Small Unmanned Aircraft Systems (SUAS) Flight Plan: 2016-2036. Bridging the Gap Between Tactical and Strategic

    DTIC Science & Technology

    2016-04-30

    Certification. Simulators must be designed to keep pace with changes to SUAS and sensors. As new sensors, aircraft, and control stations are fielded ...insatiable demand continues to drive requirements that greatly out- pace capacity and budgets. To reverse these trends within the context of fiscal...levels requiring Federal Aviation Administration (FAA) mandated training requirements to integrate with manned air vehicles in the National Airspace

  9. Photographic copy of photograph, aerial view looking south at Jet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, aerial view looking south at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of Test Stand 'D' construction and installation of underground tunnel system. Test Stand 'D' is in the foreground, Test Stand 'A' complex in the background. Roads are as yet unpaved. (JPL negative no. 384-1917-B, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  10. Three scales of aerial photography compared for making stand measurements

    Treesearch

    Earl J. Rogers; Gene Avery; Roy A. Chapman

    1959-01-01

    Three scales of aerial photography were tested in an attempt to determine the best scale to use in forest surveying. This was done by comparing photo measurements of average tree height, average crown diameter, and crown-closure percent. These stand variables were selected for testing because of their applicability in making aerial estimates of timber volume.

  11. Suitability of low cost commercial off-the-shelf aerial platforms and consumer grade digital cameras for small format aerial photography

    NASA Astrophysics Data System (ADS)

    Turley, Anthony Allen

    Many research projects require the use of aerial images. Wetlands evaluation, crop monitoring, wildfire management, environmental change detection, and forest inventory are but a few of the applications of aerial imagery. Low altitude Small Format Aerial Photography (SFAP) is a bridge between satellite and man-carrying aircraft image acquisition and ground-based photography. The author's project evaluates digital images acquired using low cost commercial digital cameras and standard model airplanes to determine their suitability for remote sensing applications. Images from two different sites were obtained. Several photo missions were flown over each site, acquiring images in the visible and near infrared electromagnetic bands. Images were sorted and analyzed to select those with the least distortion, and blended together with Microsoft Image Composite Editor. By selecting images taken within minutes apart, radiometric qualities of the images were virtually identical, yielding no blend lines in the composites. A commercial image stitching program, Autopano Pro, was purchased during the later stages of this study. Autopano Pro was often able to mosaic photos that the free Image Composite Editor was unable to combine. Using telemetry data from an onboard data logger, images were evaluated to calculate scale and spatial resolution. ERDAS ER Mapper and ESRI ArcGIS were used to rectify composite images. Despite the limitations inherent in consumer grade equipment, images of high spatial resolution were obtained. Mosaics of as many as 38 images were created, and the author was able to record detailed aerial images of forest and wetland areas where foot travel was impractical or impossible.

  12. Collecting maple sap with unvented spouts, using aerial and ground lines

    Treesearch

    H. Clay Smith; Carter B. Gibbs

    1971-01-01

    Two methods of using plastic tubing to collect sugar maple sap were tried: aerial lines and ground lines. Unvented spouts were used in both. We found that the sap yields collected from the aerial and ground lines were not statistically different from each other.

  13. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    USDA-ARS?s Scientific Manuscript database

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  14. This NASA Dryden F/A-18 is participating in the Automated Aerial Refueling (AAR) project. F/A-18 (No

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Dryden F/A-18 is participating in the Automated Aerial Refueling (AAR) project. F/A-18 (No. 847) is acting as an in-flight refueling tanker in the study to develop analytical models for an automated aerial refueling system for unmanned vehicles. A 300-gallon aerodynamic pod containing air-refueling equipment is seen beneath the fuselage. The hose and refueling basket are extended during an assessment of their dynamics on the F/A-18A.

  15. Parcel Delivery in AN Urban Environment Using Unmanned Aerial Systems: a Vision Paper

    NASA Astrophysics Data System (ADS)

    Anbaroğlu, B.

    2017-11-01

    This vision paper addresses the challenges and explores the avenue of solutions regarding the use of Unmanned Aerial Systems (UAS) for transporting parcels in urban areas. We have already witnessed companies' delivering parcels using UAS in rural areas, but the challenge of utilizing them for an urban environment is eminent. Nevertheless, the increasing research on the various aspects of UAS, including their battery life, resistance to harsh weather conditions and sensing its environment foresee their common usage in the logistics industry, especially in an urban environment. In addition, the increasing trend on 3D city modelling offer new directions regarding realistic as well as light 3D city models that are easy to modify and distribute. Utilizing UAS for transporting parcels in an urban environment would be a disruptive technological achievement as our roads will be less congested which would lead to less air pollution as well as wasted money and time. In addition, parcels could potentially be delivered much faster. This paper argues, with the support of the state-of-the-art research, that UASs will be used for transporting parcels in an urban environment in the coming decades.

  16. 3D Modelling of Inaccessible Areas using UAV-based Aerial Photography and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Obanawa, Hiroyuki; Hayakawa, Yuichi; Gomez, Christopher

    2014-05-01

    In hardly accessible areas, the collection of 3D point-clouds using TLS (Terrestrial Laser Scanner) can be very challenging, while airborne equivalent would not give a correct account of subvertical features and concave geometries like caves. To solve such problem, the authors have experimented an aerial photography based SfM (Structure from Motion) technique on a 'peninsular-rock' surrounded on three sides by the sea at a Pacific coast in eastern Japan. The research was carried out using UAS (Unmanned Aerial System) combined with a commercial small UAV (Unmanned Aerial Vehicle) carrying a compact camera. The UAV is a DJI PHANTOM: the UAV has four rotors (quadcopter), it has a weight of 1000 g, a payload of 400 g and a maximum flight time of 15 minutes. The camera is a GoPro 'HERO3 Black Edition': resolution 12 million pixels; weight 74 g; and 0.5 sec. interval-shot. The 3D model has been constructed by digital photogrammetry using a commercial SfM software, Agisoft PhotoScan Professional®, which can generate sparse and dense point-clouds, from which polygonal models and orthophotographs can be calculated. Using the 'flight-log' and/or GCPs (Ground Control Points), the software can generate digital surface model. As a result, high-resolution aerial orthophotographs and a 3D model were obtained. The results have shown that it was possible to survey the sea cliff and the wave cut-bench, which are unobservable from land side. In details, we could observe the complexity of the sea cliff that is nearly vertical as a whole while slightly overhanging over the thinner base. The wave cut bench is nearly flat and develops extensively at the base of the cliff. Although there are some evidences of small rockfalls at the upper part of the cliff, there is no evidence of very recent activity, because no fallen rock exists on the wave cut bench. This system has several merits: firstly lower cost than the existing measuring methods such as manned-flight survey and aerial laser

  17. The Earth Science Unmanned Aerial System (UAS) Demonstration in the Rover Scape at NASA's Ames Research Center.

    NASA Image and Video Library

    2016-09-30

    Flight Test in the Roverscape (N-269) at NASA's Ames Research Center, the project team tests the DJI Matrice 600 Unmanned Aerial Vehicle (UAV) equipped with a radio tracking receiver to study the invasive asian carp in the Mississippi River.

  18. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species. PMID:27873799

  19. Density estimation in aerial images of large crowds for automatic people counting

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Metzler, Juergen

    2013-05-01

    Counting people is a common topic in the area of visual surveillance and crowd analysis. While many image-based solutions are designed to count only a few persons at the same time, like pedestrians entering a shop or watching an advertisement, there is hardly any solution for counting large crowds of several hundred persons or more. We addressed this problem previously by designing a semi-automatic system being able to count crowds consisting of hundreds or thousands of people based on aerial images of demonstrations or similar events. This system requires major user interaction to segment the image. Our principle aim is to reduce this manual interaction. To achieve this, we propose a new and automatic system. Besides counting the people in large crowds, the system yields the positions of people allowing a plausibility check by a human operator. In order to automatize the people counting system, we use crowd density estimation. The determination of crowd density is based on several features like edge intensity or spatial frequency. They indicate the density and discriminate between a crowd and other image regions like buildings, bushes or trees. We compare the performance of our automatic system to the previous semi-automatic system and to manual counting in images. By counting a test set of aerial images showing large crowds containing up to 12,000 people, the performance gain of our new system will be measured. By improving our previous system, we will increase the benefit of an image-based solution for counting people in large crowds.

  20. Key parameters design of an aerial target detection system on a space-based platform

    NASA Astrophysics Data System (ADS)

    Zhu, Hanlu; Li, Yejin; Hu, Tingliang; Rao, Peng

    2018-02-01

    To ensure flight safety of an aerial aircraft and avoid recurrence of aircraft collisions, a method of multi-information fusion is proposed to design the key parameter to realize aircraft target detection on a space-based platform. The key parameters of a detection wave band and spatial resolution using the target-background absolute contrast, target-background relative contrast, and signal-to-clutter ratio were determined. This study also presented the signal-to-interference ratio for analyzing system performance. Key parameters are obtained through the simulation of a specific aircraft. And the simulation results show that the boundary ground sampling distance is 30 and 35 m in the mid- wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands for most aircraft detection, and the most reasonable detection wavebands is 3.4 to 4.2 μm and 4.35 to 4.5 μm in the MWIR bands, and 9.2 to 9.8 μm in the LWIR bands. We also found that the direction of detection has a great impact on the detection efficiency, especially in MWIR bands.

  1. Towards the Use of Unmanned Aerial Systems for Providing Sustainable Services in Smart Cities

    PubMed Central

    Conejero, José M.; Rodríguez-Echeverría, Roberto

    2017-01-01

    Sustainability is at the heart of many application fields where the use of Unmanned Aerial Systems (UAS) is becoming more and more important (e.g., agriculture, fire detection and prediction, environmental surveillance, mapping, etc.). However, their usage and evolution are highly conditioned by the specific application field they are designed for, and thus, they cannot be easily reused among different application fields. From this point of view, being that they are not multipurpose, we can say that they are not fully sustainable. Bearing this in mind, the objective of this paper is two-fold: on the one hand, to identify the whole set of features that must be provided by a UAS to be considered sustainable and to show that there is no UAS satisfying all these features; on the other hand, to present an open and sustainable UAS architecture that may be used to build UAS on demand to provide the features needed in each application field. Since this architecture is mainly based on software and hardware adaptability, it contributes to the technical sustainability of cities. PMID:29280984

  2. Towards the Use of Unmanned Aerial Systems for Providing Sustainable Services in Smart Cities.

    PubMed

    Moguel, Enrique; Conejero, José M; Sánchez-Figueroa, Fernando; Hernández, Juan; Preciado, Juan C; Rodríguez-Echeverría, Roberto

    2017-12-27

    Sustainability is at the heart of many application fields where the use of Unmanned Aerial Systems (UAS) is becoming more and more important (e.g., agriculture, fire detection and prediction, environmental surveillance, mapping, etc.). However, their usage and evolution are highly conditioned by the specific application field they are designed for, and thus, they cannot be easily reused among different application fields. From this point of view, being that they are not multipurpose, we can say that they are not fully sustainable. Bearing this in mind, the objective of this paper is two-fold: on the one hand, to identify the whole set of features that must be provided by a UAS to be considered sustainable and to show that there is no UAS satisfying all these features; on the other hand, to present an open and sustainable UAS architecture that may be used to build UAS on demand to provide the features needed in each application field. Since this architecture is mainly based on software and hardware adaptability, it contributes to the technical sustainability of cities.

  3. Spectral properties of agricultural crops and soils measured from space, aerial, field, and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1981-01-01

    Investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems are reviewed. The relationships of important biological and physical characteristics to the spectral properties of crops and soils are addressed.

  4. Comparison of SLAR images and small-scale, low-sun aerial photographs.

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1971-01-01

    A comparison of side-looking airborne radar (SLAR) images and black and white aerial photos of similar scale and illumination of an area in the Mojave Desert of California shows that aerial photos yield far more information about geology than do SLAR images because of greater resolution, tonal range, and geometric fidelity, and easier use in stereo. Nevertheless, radar can differentiate some materials or surfaces that aerial photos cannot; thus, they should be considered as complementary, rather than competing tools in geologic investigations. The most significant advantage of SLAR, however, is its freedom from the stringent conditions of weather, date, and time that are required by small-scale aerial photos taken with a specified direction and angle of illumination. Indeed, in low latitudes, SLAR is the only way to obtain small-scale images with low illumination from certain directions; moreover, in areas of nearly continuous cloudiness, radar may be the only practical source of small-scale images.

  5. 11. Photographic copy of aerial photograph dated ca. 1954; Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photographic copy of aerial photograph dated ca. 1954; Photographer unknown; Original owned by Waterloo Courier, Waterloo, Iowa; AERIAL VIEW OF RATH COMPLEX, LOOKING WEST; BEEF KILLING BUILDING (149 AND LIVESTOCK HOLDING AREAS ARE AT LEFT CENTER; FERTILIZER PLANT/STORAGE BUILDINGS ARE AT BOTTOM OF PHOTO - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  6. A case study of comparing radiometrically calibrated reflectance of an image mosaic from unmanned aerial system with that of a single image from manned aircraft over a same area

    USDA-ARS?s Scientific Manuscript database

    Although conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing share many commonalities, one of the major differences between the two remote sensing platforms is that the latter has much smaller image footprint. To cover the same area o...

  7. AERIAL - MSC SITE - CONSTRUCTION PROGRESS - MSC

    NASA Image and Video Library

    1963-12-24

    S63-23656 (1963) --- Aerial view of construction progress at the Manned Spacecraft Center, Houston, Texas. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  8. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  9. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  10. Safe Autonomous Flight Environment (SAFE50) for the Notional Last 50 ft of Operation of 55 lb Class of UAS

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Kopardekar, Parimal; Ippolito, Corey; Melton, John E.; Stepanyan, Vahram; Sankararaman, Shankar; Nikaido, Ben

    2017-01-01

    The most difficult phase of small Unmanned Aerial System (sUAS) deployment is autonomous operations below the notional 50 ft in urban landscapes. Understanding the feasibility of safely flying sUAS autonomously below 50 ft is a game changer for many civilian applications. This paper outlines three areas of research currently underway which address key challenges for flight in the urban landscape. These are: (1) Off-line and On-board wind estimation and accommodation; (2) Real-time trajectory planning via characterization of obstacles using a LIDAR; (3) On-board information fusion for real-time decision-making and safe trajectory generation.

  11. Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors.

    PubMed

    Kakue, Takashi; Nishitsuji, Takashi; Kawashima, Tetsuya; Suzuki, Keisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-07-08

    We demonstrate an aerial projection system for reconstructing 3D motion pictures based on holography. The system consists of an optical source, a spatial light modulator corresponding to a display and two parabolic mirrors. The spatial light modulator displays holograms calculated by computer and can reconstruct holographic motion pictures near the surface of the modulator. The two parabolic mirrors can project floating 3D images of the motion pictures formed by the spatial light modulator without mechanical scanning or rotating. In this demonstration, we used a phase-modulation-type spatial light modulator. The number of pixels and the pixel pitch of the modulator were 1,080 × 1,920 and 8.0 μm × 8.0 μm, respectively. The diameter, the height and the focal length of each parabolic mirror were 288 mm, 55 mm and 100 mm, respectively. We succeeded in aerially projecting 3D motion pictures of size ~2.5 mm(3) by this system constructed by the modulator and mirrors. In addition, by applying a fast computational algorithm for holograms, we achieved hologram calculations at ~12 ms per hologram with 4 CPU cores.

  12. Neural-network-based navigation and control of unmanned aerial vehicles for detecting unintended emissions

    NASA Astrophysics Data System (ADS)

    Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.

    2012-06-01

    Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.

  13. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    NASA Astrophysics Data System (ADS)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators

  14. An aerial radiological survey of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T J; Riedhauser, S R

    1999-12-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/hmore » at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.« less

  15. Photographic copy of photograph, aerial view looking north at Jet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, aerial view looking north at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of 'D' stand construction and installation of underground tunnel system. Test stands 'A,' 'B,' 'C,' and 'D' are in view; the Control and Recording Center (Building 4221/E-22) is still under construction. (JPL negative no. 384-1917-A, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  16. Flap or soar? How a flight generalist responds to its aerial environment

    PubMed Central

    2016-01-01

    The aerial environment is heterogeneous in space and time and directly influences the costs of animal flight. Volant animals can reduce these costs by using different flight modes, each with their own benefits and constraints. However, the extent to which animals alter their flight modes in response to environmental conditions has rarely been studied in the wild. To provide insight into how a flight generalist can reduce the energetic cost of movement, we studied flight behaviour in relation to the aerial environmental and landscape using hundreds of hours of global positioning system and triaxial acceleration measurements of the lesser black-backed gull (Larus fuscus). Individuals differed largely in the time spent in flight, which increased linearly with the time spent in flight at sea. In general, flapping was used more frequently than more energetically efficient soaring flight. The probability of soaring increased with increasing boundary layer height and time closer to midday, reflecting improved convective conditions supportive of thermal soaring. Other forms of soaring flight were also used, including fine-scale use of orographic lift. We explore the energetic consequences of behavioural adaptations to the aerial environment and underlying landscape and implications for individual energy budgets, foraging ecology and reproductive success. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528785

  17. Flap or soar? How a flight generalist responds to its aerial environment.

    PubMed

    Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel; Meijer, Christiaan; Camphuysen, C J

    2016-09-26

    The aerial environment is heterogeneous in space and time and directly influences the costs of animal flight. Volant animals can reduce these costs by using different flight modes, each with their own benefits and constraints. However, the extent to which animals alter their flight modes in response to environmental conditions has rarely been studied in the wild. To provide insight into how a flight generalist can reduce the energetic cost of movement, we studied flight behaviour in relation to the aerial environmental and landscape using hundreds of hours of global positioning system and triaxial acceleration measurements of the lesser black-backed gull (Larus fuscus). Individuals differed largely in the time spent in flight, which increased linearly with the time spent in flight at sea. In general, flapping was used more frequently than more energetically efficient soaring flight. The probability of soaring increased with increasing boundary layer height and time closer to midday, reflecting improved convective conditions supportive of thermal soaring. Other forms of soaring flight were also used, including fine-scale use of orographic lift. We explore the energetic consequences of behavioural adaptations to the aerial environment and underlying landscape and implications for individual energy budgets, foraging ecology and reproductive success.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  18. Coevolving advances in animal flight and aerial robotics

    PubMed Central

    Lentink, David

    2017-01-01

    Our understanding of animal flight has inspired the design of new aerial robots with more effective flight capacities through the process of biomimetics and bioinspiration. The aerodynamic origin of the elevated performance of flying animals remains, however, poorly understood. In this themed issue, animal flight research and aerial robot development coalesce to offer a broader perspective on the current advances and future directions in these coevolving fields of research. Together, four reviews summarize and 14 reports contribute to our understanding of low Reynolds number flight. This area of applied aerodynamics research is challenging to dissect due to the complicated flow phenomena that include laminar–turbulent flow transition, laminar separation bubbles, delayed stall and nonlinear vortex dynamics. Our mechanistic understanding of low Reynolds number flight has perhaps been advanced most by the development of dynamically scaled robot models and new specialized wind tunnel facilities: in particular, the tiltable Lund flight tunnel for animal migration research and the recently developed AFAR hypobaric wind tunnel for high-altitude animal flight studies. These world-class facilities are now complemented with a specialized low Reynolds number wind tunnel for studying the effect of turbulence on animal and robot flight in much greater detail than previously possible. This is particular timely, because the study of flight in extremely laminar versus turbulent flow opens a new frontier in our understanding of animal flight. Advancing this new area will offer inspiration for developing more efficient high-altitude aerial robots and removes roadblocks for aerial robots operating in turbulent urban environments.

  19. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  20. 30 CFR 77.1602 - Use of aerial tramways to transport persons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of aerial tramways to transport persons. 77.1602 Section 77.1602 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... UNDERGROUND COAL MINES Loading and Haulage § 77.1602 Use of aerial tramways to transport persons. Persons...

  1. Reducing environmental damage through the use of unmanned aerial vehicles as the best available technology

    NASA Astrophysics Data System (ADS)

    Fedulova, E. A.; Akulov, A. O.; Rada, A. O.; Alabina, T. A.; Savina, Ju Ju

    2018-01-01

    The article examines the possibilities of using unmanned aerial vehicles as the best available technologies in the field of agriculture and mining. The object of the study is the use of unmanned aerial vehicles as the best available technology. The main areas of application of this technology are identified: agro technical operations, aerial photography of mining operations. The technology of unmanned aerial vehicles is compared with the technologies of ground agricultural machinery. The research methodology includes an expert evaluation of the unmanned aerial vehicle technology belonging to the class of the best available technologies by the criteria: the level of environmental impact, resource saving, the use of low-waste, non-waste processes, the existence of at least two objects, economic efficiency. Expert evaluations were processed using the apparatus of fuzzy sets, which make it possible to construct membership functions. This allowed us to prove that the technology of unmanned aerial vehicles belongs to a fuzzy set of the best available technologies. The results of the research show that the use of unmanned aerial vehicles provides a saving of resources, especially non-renewable combustible minerals, reduces emissions and discharges of pollutants into the atmosphere, and also reduces soil erosion. Unmanned aerial vehicles should be included in the national directories of the best available technologies for the mining industry and agriculture.

  2. [Chemical constituents from aerial part of Aconitum brachypodum].

    PubMed

    Wang, Hong-Yun; Zuo, Ai-Xue; Sun, Yun; Rao, Gao-Xiong

    2014-08-01

    To study the chemical constituents from the aerial part of Aconitum brachypodum. The constituents were isolated and purified by silica gel, activated alumina and Sephadex LH-20 column chromatography. their structures were elucidated on the basis of spectral data and physiochemical evidence. Eleven compounds were isolated from 80% ethanol extract and identified as secokaraconitine (1), brachyaconitines A (2), C (3), talatisamine (4), hypaconitine (5), songrine (6), bullatine A (7), 7-carbony sitosterone (8), lupeol (9), β-sitosterol (10) and daucosterol (11). All compounds are isolated from the aerial part of Aconitum brachypodum for the first time.

  3. Application of Concurrent Engineering Methods to the Design of an Autonomous Aerial Robot

    DTIC Science & Technology

    1991-12-01

    power within the system, either airborne or at a ground station, was left to the team’s discretion. Data link from the aerial vehicle to the ground...Design Process 1 4 10 0% Conceptual 100% Preliminary 100% Detailed 100% Design Freedom Kowledge About the Design TIME INTO THE DESIGN PROCESS Figure 15...mission planning and control tasks was accomplished. Key system issues regarding power up and component initialization procedures began to be addressed

  4. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  5. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots.

    PubMed

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the "non-hostile" colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  6. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús

    2014-01-01

    Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the “non-hostile” colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7. PMID:25250017

  7. Photocopy of recent aerial photograph (from U.S. Army Support Command ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of recent aerial photograph (from U.S. Army Support Command Hawaii, Wheeler Army Air Base, Hawaii) Photographer unknown, Circa 1990 OBLIQUE AERIAL VIEW SHOWING MAIN SECTION OF BASE WITH LAKE WILSON IN THE FOREGROUND AND WAIANAE MOUNTAINS IN THE BACKGROUND. - Schofield Barracks Military Reservation, Wilikina Drive & Kunia Road, Wahiawa, Honolulu County, HI

  8. Extended Range Aerial Delivery Using an Unpowered Autonomous Tailless UAV

    NASA Astrophysics Data System (ADS)

    Kraft, Tyler E.

    An alternative approach for precision aerial delivery utilizing a flying wing for controllable forward glide is presented. Although effective, current delivery methods either display a lack of control, or require close standoff distances, potentially endangering aircraft personnel as well as bystanders. Hardware-in-the-loop simulations provide an efficient method for evaluating various wing designs and actuation configurations. Four control surface configurations are presented and evaluated, encompassing traditional aircraft and ram-air parafoil control approaches. Fixed-wing and multirotor unmanned aircraft-based flight tests were conducted to evaluate the controllability and handling performance of the various configurations of both a fixed wing model and a model with collapsing wings. A manufacturing process was developed to allow repeatable results in the field using cheap, mostly disposable materials. A powered flying wing model was used to maximize data collection in later stages of software development. Data collected during flight tests was used to create a model of the system and develop a Nonlinear Dynamic Inversion controller for autonomous flight. The NDI controller was able to provide stable flight in pitch, but will need more development to control yaw, instead an intentional bias was built in to show proof of concept for direct yaw control. The results demonstrate the feasibility of the flying wing-based aerial delivery; however, significant challenges remain regarding the stability and scalability of the system.

  9. A case study of comparing radiometrically calibrated reflectance of an image mosaic from unmanned aerial system with that of a single image from manned aircraft over a same area

    NASA Astrophysics Data System (ADS)

    Shi, Yeyin; Thomasson, J. Alex; Yang, Chenghai; Cope, Dale; Sima, Chao

    2017-05-01

    Though sharing with many commonalities, one of the major differences between conventional high-altitude airborne remote sensing and low-altitude unmanned aerial system (UAS) based remote sensing is that the latter one has much smaller ground footprint for each image shot. To cover the same area on the ground, it requires the low-altitude UASbased platform to take many highly-overlapped images to produce a good mosaic, instead of just one or a few image shots by the high-altitude aerial platform. Such an UAS flight usually takes 10 to 30 minutes or even longer to complete; environmental lighting change during this time span cannot be ignored especially when spectral variations of various parts of a field are of interests. In this case study, we compared the visible reflectance of two aerial imagery - one generated from mosaicked UAS images, the other generated from a single image taken by a manned aircraft - over the same agricultural field to quantitatively evaluate their spectral variations caused by the different data acquisition strategies. Specifically, we (1) developed our customized ground calibration points (GCPs) and an associated radiometric calibration method for UAS data processing based on camera's sensitivity characteristics; (2) developed a basic comparison method for radiometrically calibrated data from the two aerial platforms based on regions of interests. We see this study as a starting point for a series of following studies to understand the environmental influence on UAS data and investigate the solutions to minimize such influence to ensure data quality.

  10. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  11. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  12. Development and comparisons of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2012-12-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  13. Comparison and application of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2013-07-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  14. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  15. Aerial and soil seed banks enable populations of an annual species to cope with an unpredictable dune ecosystem

    PubMed Central

    Gao, Ruiru; Yang, Xuejun; Yang, Fan; Wei, Lingling; Huang, Zhenying; Walck, Jeffrey L.

    2014-01-01

    Background and Aims Simultaneous formation of aerial and soil seed banks by a species provides a mechanism for population maintenance in unpredictable environments. Eolian activity greatly affects growth and regeneration of plants in a sand dune system, but we know little about the difference in the contributions of these two seed banks to population dynamics in sand dunes. Methods Seed release, germination, seedling emergence and survival of a desert annual, Agriophyllum squarrosum (Chenopodiaceae), inhabiting the Ordos Sandland in China, were determined in order to explore the different functions of the aerial and soil seed banks. Key Results The size of the aerial seed bank was higher than that of the soil seed bank throughout the growing season. Seed release was positively related to wind velocity. Compared with the soil seed bank, seed germination from the aerial seed bank was lower at low temperature (5/15 °C night/day) but higher in the light. Seedling emergence from the soil seed bank was earlier than that from the aerial seed bank. Early-emerged (15 April–15 May) seedlings died due to frost, but seedlings that emerged during the following months survived to reproduce successfully. Conclusions The timing of seed release and different germination behaviour resulted in a temporal heterogeneity of seedling emergence and establishment between the two seed banks. The study suggests that a bet-hedging strategy for the two seed banks enables A. squarrosum populations to cope successfully with the unpredictable desert environment. PMID:24918206

  16. Unmanned aerial systems for forest reclamation monitoring: throwing balloons in the air

    NASA Astrophysics Data System (ADS)

    Andrade, Rita; Vaz, Eric; Panagopoulos, Thomas; Guerrero, Carlos

    2014-05-01

    Wildfires are a recurrent phenomenon in Mediterranean landscapes, deteriorating environment and ecosystems, calling out for adequate land management. Monitoring burned areas enhances our abilities to reclaim them. Remote sensing has become an increasingly important tool for environmental assessment and land management. It is fast, non-intrusive, and provides continuous spatial coverage. This paper reviews remote sensing methods, based on space-borne, airborne or ground-based multispectral imagery, for monitoring the biophysical properties of forest areas for site specific management. The usage of satellite imagery for land use management has been frequent in the last decades, it is of great use to determine plants health and crop conditions, allowing a synergy between the complexity of environment, anthropogenic landscapes and multi-temporal understanding of spatial dynamics. Aerial photography increments on spatial resolution, nevertheless it is heavily dependent on airborne availability as well as cost. Both these methods are required for wide areas management and policy planning. Comprising an active and high resolution imagery source, that can be brought at a specific instance, reducing cost while maintaining locational flexibility is of utmost importance for local management. In this sense, unmanned aerial vehicles provide maximum flexibility with image collection, they can incorporate thermal and multispectral sensors, however payload and engine operation time limit flight time. Balloon remote sensing is becoming increasingly sought after for site specific management, catering rapid digital analysis, permitting greater control of the spatial resolution as well as of datasets collection in a given time. Different wavelength sensors may be used to map spectral variations in plant growth, monitor water and nutrient stress, assess yield and plant vitality during different stages of development. Proximity could be an asset when monitoring forest plants vitality

  17. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Ouédraogo, Mohamar Moussa; Degré, Aurore; Debouche, Charles; Lisein, Jonathan

    2014-06-01

    Agricultural watersheds tend to be places of intensive farming activities that permanently modify their microtopography. The surface characteristics of the soil vary depending on the crops that are cultivated in these areas. Agricultural soil microtopography plays an important role in the quantification of runoff and sediment transport because the presence of crops, crop residues, furrows and ridges may impact the direction of water flow. To better assess such phenomena, 3-D reconstructions of high-resolution agricultural watershed topography are essential. Fine-resolution topographic data collection technologies can be used to discern highly detailed elevation variability in these areas. Knowledge of the strengths and weaknesses of existing technologies used for data collection on agricultural watersheds may be helpful in choosing an appropriate technology. This study assesses the suitability of terrestrial laser scanning (TLS) and unmanned aerial system (UAS) photogrammetry for collecting the fine-resolution topographic data required to generate accurate, high-resolution digital elevation models (DEMs) in a small watershed area (12 ha). Because of farming activity, 14 TLS scans (≈ 25 points m- 2) were collected without using high-definition surveying (HDS) targets, which are generally used to mesh adjacent scans. To evaluate the accuracy of the DEMs created from the TLS scan data, 1098 ground control points (GCPs) were surveyed using a real time kinematic global positioning system (RTK-GPS). Linear regressions were then applied to each DEM to remove vertical errors from the TLS point elevations, errors caused by the non-perpendicularity of the scanner's vertical axis to the local horizontal plane, and errors correlated with the distance to the scanner's position. The scans were then meshed to generate a DEMTLS with a 1 × 1 m spatial resolution. The Agisoft PhotoScan and MicMac software packages were used to process the aerial photographs and generate a DEMPSC

  18. 49 CFR 234.243 - Wire on pole line and aerial cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Wire on pole line and aerial cable. 234.243... Maintenance, Inspection, and Testing Maintenance Standards § 234.243 Wire on pole line and aerial cable. Wire... bracket supported by a pole or other support. Wire shall not interfere with, or be interfered with by...

  19. 49 CFR 234.243 - Wire on pole line and aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire on pole line and aerial cable. 234.243... Maintenance, Inspection, and Testing Maintenance Standards § 234.243 Wire on pole line and aerial cable. Wire... bracket supported by a pole or other support. Wire shall not interfere with, or be interfered with by...

  20. An arm wearable haptic interface for impact sensing on unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Yunshil; Hong, Seung-Chan; Lee, Jung-Ryul

    2017-04-01

    In this paper, an impact monitoring system using fiber Bragg grating (FBG) sensors and vibro-haptic actuators has been introduced. The system is suggested for structural health monitoring (SHM) for unmanned aerial vehicles (UAVs), by making a decision with human-robot interaction. The system is composed with two major subsystems; an on-board system equipped on UAV and an arm-wearable interface for ground pilot. The on-board system acquires impact-induced wavelength changes and performs localization process, which was developed based on arrival time calculation. The arm-wearable interface helps ground pilots to make decision about impact location themselves by stimulating their tactile-sense with motor vibration.

  1. A TOOL FOR PLANNING AERIAL PHOTOGRAPHY

    EPA Science Inventory

    abstract The U.S. EPAs Pacific Coastal Ecology Branch has developed a tool in the form of an Excel. spreadsheet that facilitates planning aerial photography missions. The spreadsheet accepts various input parameters such as desired photo-scale and boundary coordinates of the stud...

  2. Solar-powered unmanned aerial vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.

    1996-12-31

    An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time ofmore » year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.« less

  3. Adapt Design: A Methodology for Enabling Modular Design for Mission Specific SUAS

    DTIC Science & Technology

    2016-08-24

    ADAPT DESIGN: A METHODOLOGY FOR ENABLING MODULAR DESIGN FOR MISSION SPECIFIC SUAS Zachary C. Fisher David Locascio K. Daniel Cooksey...vehicle’s small scale. This paper considers a different approach to SUAS design aimed at addressing this issue. In this approach, a hybrid modular and...Two types of platforms have been identified: scalable platforms where variants are produced by varying scalable design variables, and modular

  4. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected bymore » high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.« less

  5. An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2007-01-01

    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared.

  6. The sky is the limit? 20 years of small-format aerial photography taken from UAS for monitoring geomorphological processes

    NASA Astrophysics Data System (ADS)

    Marzolff, Irene

    2014-05-01

    One hundred years after the first publication on aerial photography taken from unmanned aerial platforms (Arthur Batut 1890), small-format aerial photography (SFAP) became a distinct niche within remote sensing during the 1990s. Geographers, plant biologists, archaeologists and other researchers with geospatial interests re-discovered the usefulness of unmanned platforms for taking high-resolution, low-altitude photographs that could then be digitized and analysed with geographical information systems, (softcopy) photogrammetry and image processing techniques originally developed for digital satellite imagery. Even before the ubiquity of digital consumer-grade cameras and 3D analysis software accessible to the photogrammetric layperson, do-it-yourself remote sensing using kites, blimps, drones and micro air vehicles literally enabled the questing researcher to get their own pictures of the world. As a flexible, cost-effective method, SFAP offered images with high spatial and temporal resolutions that could be ideally adapted to the scales of landscapes, forms and distribution patterns to be monitored. During the last five years, this development has been significantly accelerated by the rapid technological advancements of GPS navigation, autopiloting and revolutionary softcopy-photogrammetry techniques. State-of-the-art unmanned aerial systems (UAS) now allow automatic flight planning, autopilot-controlled aerial surveys, ground control-free direct georeferencing and DEM plus orthophoto generation with centimeter accuracy, all within the space of one day. The ease of use of current UAS and processing software for the generation of high-resolution topographic datasets and spectacular visualizations is tempting and has spurred the number of publications on these issues - but which advancements in our knowledge and understanding of geomorphological processes have we seen and can we expect in the future? This presentation traces the development of the last two decades

  7. Constructing aerial photo volume tables.

    Treesearch

    Robert B. Pope

    1962-01-01

    Although most foresters are familiar with the use of aerial photo volume tables, little has been written on how to make them. Certain pitfalls in the construction process have either been ignored or only casually mentioned in the existing literature. The forester tackling his first photo volume table is likely to bypass some of the important considerations without...

  8. Aeronautics Education, Research, and Industry Alliance (AERIAL) Year 2 Report and Year 3 Proposal

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary M.; Gogos, Geroge; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.

    2003-01-01

    The Aeronautics Education, Research, and Industry Alliance (AERIAL): a comprehensive, multi-faceted NASA EPSCoR 2000 initiative, contributes to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL enables Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; (b) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. This report contains a summary of AERIAL's activities and accomplishments during the second year of implementation. The AERIAL Year 3 proposal is also included.

  9. Review of the SAFARI 2000 RC-10 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Myers, Jeff; Shelton, Gary; Annegarn, Harrold; Peterson, David L. (Technical Monitor)

    2001-01-01

    This presentation will review the aerial photography collected by the NASA ER-2 aircraft during the SAFARI (Southern African Regional Science Initiative) year 2000 campaign. It will include specifications on the camera and film, and will show examples of the imagery. It will also detail the extent of coverage, and the procedures to obtain film products from the South African government. Also included will be some sample applications of aerial photography for various environmental applications, and its use in augmenting other SAFARI data sets.

  10. Similar Running Economy With Different Running Patterns Along the Aerial-Terrestrial Continuum.

    PubMed

    Lussiana, Thibault; Gindre, Cyrille; Hébert-Losier, Kim; Sagawa, Yoshimasa; Gimenez, Philippe; Mourot, Laurent

    2017-04-01

    No unique or ideal running pattern is the most economical for all runners. Classifying the global running patterns of individuals into 2 categories (aerial and terrestrial) using the Volodalen method could permit a better understanding of the relationship between running economy (RE) and biomechanics. The main purpose was to compare the RE of aerial and terrestrial runners. Two coaches classified 58 runners into aerial (n = 29) or terrestrial (n = 29) running patterns on the basis of visual observations. RE, muscle activity, kinematics, and spatiotemporal parameters of both groups were measured during a 5-min run at 12 km/h on a treadmill. Maximal oxygen uptake (V̇O 2 max) and peak treadmill speed (PTS) were assessed during an incremental running test. No differences were observed between aerial and terrestrial patterns for RE, V̇O 2 max, and PTS. However, at 12 km/h, aerial runners exhibited earlier gastrocnemius lateralis activation in preparation for contact, less dorsiflexion at ground contact, higher coactivation indexes, and greater leg stiffness during stance phase than terrestrial runners. Terrestrial runners had more pronounced semitendinosus activation at the start and end of the running cycle, shorter flight time, greater leg compression, and a more rear-foot strike. Different running patterns were associated with similar RE. Aerial runners appear to rely more on elastic energy utilization with a rapid eccentric-concentric coupling time, whereas terrestrial runners appear to propel the body more forward rather than upward to limit work against gravity. Excluding runners with a mixed running pattern from analyses did not affect study interpretation.

  11. Improving Understanding of Spatial Heterogeneity in Mountain Ecohydrology with Multispectral Unmanned Aerial Systems (UAS).

    NASA Astrophysics Data System (ADS)

    Wigmore, O.; Molotch, N. P.

    2017-12-01

    Mountain regions are a critical component of the hydrologic system. These regions are extremely heterogeneous, with dramatic topographic, climatic, ecologic and hydrologic variations occurring over very short distances. This heterogeneity makes understanding changes in these environments difficult. Commonly used satellite data are often too coarse to resolve processes at appropriate scales and point measurements are typically unrepresentative of the wider region. The rapid rise of Unmanned Aerial Systems (UAS) offers a potential solution to the scale-related inadequacies of satellite and ground-based observing systems. Using UAS, spatially distributed datasets can be collected at high resolution (i.e. cm), on demand, and can therefore facilitate improved understanding of mountain ecohydrology. We deployed a custom built multispectral - visible (RGB), near infrared (NIR) and thermal infrared (TIR) - UAS at a weekly interval over the Niwot Ridge Long Term Ecological Research (NWT LTER) saddle catchment at 3500masl in the Colorado Rockies. This system was used to map surface water pathways, land cover and topography, and quantify ecohydrologic variables including, snow depth, vegetation productivity and surface soil moisture at 5-50cm resolution across an 80ha study area. This presentation will discuss the techniques, methods and merits of using UAS derived multispectral data for ecohydrologic research in mountain regions. We will also present preliminary findings from our survey time series at NWT LTER and a discussion of the potential insights that these datasets can provide. Key questions to be addressed are: 1) how does spatial variability in snow depth impact soil moisture and vegetation productivity, 2) how can UAS help us to identify ecohydrologic `hotspots' and `hot moments' across heterogeneous landscapes.

  12. Evaluation of Deep Learning Based Stereo Matching Methods: from Ground to Aerial Images

    NASA Astrophysics Data System (ADS)

    Liu, J.; Ji, S.; Zhang, C.; Qin, Z.

    2018-05-01

    Dense stereo matching has been extensively studied in photogrammetry and computer vision. In this paper we evaluate the application of deep learning based stereo methods, which were raised from 2016 and rapidly spread, on aerial stereos other than ground images that are commonly used in computer vision community. Two popular methods are evaluated. One learns matching cost with a convolutional neural network (known as MC-CNN); the other produces a disparity map in an end-to-end manner by utilizing both geometry and context (known as GC-net). First, we evaluate the performance of the deep learning based methods for aerial stereo images by a direct model reuse. The models pre-trained on KITTI 2012, KITTI 2015 and Driving datasets separately, are directly applied to three aerial datasets. We also give the results of direct training on target aerial datasets. Second, the deep learning based methods are compared to the classic stereo matching method, Semi-Global Matching(SGM), and a photogrammetric software, SURE, on the same aerial datasets. Third, transfer learning strategy is introduced to aerial image matching based on the assumption of a few target samples available for model fine tuning. It experimentally proved that the conventional methods and the deep learning based methods performed similarly, and the latter had greater potential to be explored.

  13. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  14. Aerial photo volume tables for Douglas-fir in the Pacific Northwest.

    Treesearch

    Robert B. Pope

    1961-01-01

    The aerial photo volume tables in this report are tools to be used in obtaining better timber inventories. Volume estimates based on tables such as these, properly field checked, are generally cheaper than ground cruises of comparable accuracy. Photo volume tables also permit rough volume estimates to be made from aerial photos alone when limited time, bad weather, or...

  15. Photocopy of recent aerial photograph (from U.S. Army Support Command ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of recent aerial photograph (from U.S. Army Support Command Hawaii, Wheeler Army Air Base, Hawaii) Photographer unknown, Circa 1990 AERIAL VIEW SHOWING MAIN SECTION OF BASE, BETWEEN KUNIA ROAD, WILIKINA DRIVE, AND McMAHON ROAD, AS WELL AS ADJACENT PINEAPPLE FIELDS, AND LAKE WILSON. - Schofield Barracks Military Reservation, Wilikina Drive & Kunia Road, Wahiawa, Honolulu County, HI

  16. The Earth Science Unmanned Aerial System (UAS) Demonstration in the Rover Scape at NASA's Ames Research Center.

    NASA Image and Video Library

    2016-09-30

    Flight Test in the Roverscape (N-269) at NASA's Ames Research Center, the project team tests the DJI Matrice 600 Unmanned Aerial Vehicle (UAV) equipped with a radio tracking receiver to study the invasive asian carp in the Mississippi River. Rick, Kolyer, Jonas Jonsson, Ethan, Pinsker, Bob Dahlgren.

  17. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    USGS Publications Warehouse

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  18. Development of sea ice monitoring with aerial remote sensing technology

    NASA Astrophysics Data System (ADS)

    Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei

    2014-11-01

    In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.

  19. An aerial radiological survey of Maralinga and EMU, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipton, W J; Berry, H A; Fritzsche, A E

    An aerial radiological survey was conducted over the former British nuclear test ranges at Maralinga and Emu in South Australia from May through July 1987. The survey covered an area of approximately 1,550 square kilometers which included the nine major trial sites, where a nuclear yield occurred, and all the minor trial sites, where physics experiments were conducted. Flight lines were flown at an altitude of 30 meters with line spacings of 50, 100, and 200 meters depending on the area and whether man-made contamination was present. Results of the aerial survey were processed for americium-241 (used to determine plutoniummore » contamination), cesium-137, cobalt-60, and uranium-238. The aerial survey also detected the presence of europium-152, a soil activation product, in the immediate vicinity of the major trial ground zeros. Ground measurements were also made at approximately 120 locations using a high-resolution germanium detector to provide supplemental data for the aerial survey. This survey was conducted as part of a series of studies being conducted over a two to three-year timeframe to obtain information from which options and associated costs can be formulated about the decontamination and possible rehabilitation of the former nuclear test sites.« less

  20. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.