Science.gov

Sample records for aerial take-off posture

  1. Behaviour of coconut mites preceding take-off to passive aerial dispersal.

    PubMed

    Melo, J W S; Lima, D B; Sabelis, M W; Pallini, A; Gondim, M G C

    2014-12-01

    For more than three decades the coconut mite Aceria guerreronis Keifer is one of the most important pests of coconut palms and has recently spread to many coconut production areas worldwide. Colonization of coconut palms is thought to arise from mites dispersing aerially after take-off from other plants within the same plantation or other plantations. The underlying dispersal behaviour of the mite at take-off, in the airborne state and after landing is largely unknown and this is essential to understand how they spread from tree to tree. In this article we studied whether take-off to aerial dispersal of coconut mites is preceded by characteristic behaviour, whether there is a correlation between the body position preceding aerial dispersal and the direction of the wind, and whether the substrate (outer surface of coconut bracts or epidermis) and the wind speed matter to the decision to take-off. We found that take-off can sometimes be preceded by a raised body stance, but more frequently take-off occurs while the mite is walking or resting on its substrate. Coconut mites that become airborne assumed a body stance that had no relation to the wind direction. Take-off was suppressed on a substrate providing food to coconut mites, but occurred significantly more frequently on the outer surface of coconut bracts than on the surface of the fruit. For both substrates, take-off frequency increased with wind speed. We conclude that coconut mites have at least some degree of control over take-off for aerial dispersal and that there is as yet no reason to infer that a raised body stance is necessary to become airborne.

  2. Lightweight Vertical Take-Off & Landing Unmanned Aerial Systems For Local-Scale Forestry and Agriculture Remote Sensing Data Collection

    NASA Astrophysics Data System (ADS)

    Putman, E.; Sheridan, R.; Popescu, S. C.

    2015-12-01

    The evolution of lightweight Vertical Take-Off and Landing (VTOL) rotary Unmanned Aerial Vehicles (UAVs) and remote sensor technologies have provided researchers with the ability to integrate compact remote sensing systems with UAVs to create Unmanned Aerial Systems (UASs) capable of collecting high-resolution airborne remote sensing data. UASs offer a myriad of benefits. Some of the most notable include: (1) reduced operational cost; (2) reduced lead-time for mission planning; (3) high-resolution and high-density data collection; and (4) customization of data collection intervals to fit the needs of a specific project (i.e. acquiring data at hourly, daily, or weekly intervals). Such benefits allow researchers and natural resource managers to acquire airborne remote sensing data on local-scale phenomenon in ways that were previously cost-prohibitive. VTOL UASs also offer a stable platform capable of low speed low altitude flight over small spatial scales that do not require a dedicated runway. Such flight characteristics allow VTOL UASs to collect high-resolution data at very high densities, enabling the use of structure from motion (SFM) techniques to generate three-dimensional datasets from photographs. When combined, these characteristics make VTOL UASs ideal for collecting data over agricultural or forested research areas. The goal of this study is to provide an overview of several lightweight eight-rotor VTOL UASs designed for small-scale forest remote sensing data collection. Specific objectives include: (1) the independent integration of a lightweight multispectral camera, a lightweight scanning lidar sensor, with required components (i.e. IMU, GPS, data logger) and the UAV; (2) comparison of UAS-collected data to terrestrial lidar data and airborne multispectral and lidar data; (3) comparison of UAS SFM techniques to terrestrial lidar data; and (4) multi-temporal assessment of tree decay using terrestrial lidar and UAS SfM techniques.

  3. SR-71 Taking Off

    NASA Technical Reports Server (NTRS)

    1990-01-01

    One of three U.S. Air Force SR-71 reconnaissance aircraft originally retired from operational service and loaned to NASA for a high-speed research program retracts its landing gear after taking off from NASA's Ames-Dryden Flight Research Facility (later Dryden Flight Research Center), Edwards, California, on a 1990 research flight. One of the SR-71As was later returned to the Air Force for active duty in 1995. Data from the SR-71 high-speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of

  4. The stimuli evoking the aerial-righting posture of falling pea aphids.

    PubMed

    Meresman, Yonatan; Ribak, Gal; Weihs, Daniel; Inbar, Moshe

    2014-10-01

    Some wingless insects possess aerial righting reflexes, suggesting that adaptation for controlling body orientation while falling through air could have preceded flight. When threatened by natural enemies, wingless pea aphids (Acyrthosiphon pisum) may drop off their host plant and assume a stereotypic posture that rotates them in midair to land on their feet. The sensory information triggering aphids to assume this posture has so far been unknown. We subjected aphids to a series of tests, isolating the sensory cues experienced during free-fall. Falling aphids assumed the righting posture and landed upright irrespective of whether the experiments were carried out in the light or in complete darkness. Detachment of the tarsi from the substrate triggered the aphids to assume the posture rapidly, but only for a brief period. Rotation (mainly roll and yaw) of the body in air, in the light, caused aphids to assume the posture and remain in it throughout rotation. In contrast, aphids rotated in the dark did not respond. Acceleration associated with falling or airflow over the body per se did not trigger the posture. However, sensing motion relative to air heightened the aphids' responsiveness to rotation in the light. These results suggest that the righting posture of aphids is triggered by a tarsal reflex, but, once the aphid is airborne, vision and a sense of motion relative to air can augment the response. Hence, aerial righting in a wingless insect could have emerged as a basic tarsal response and developed further to include secondary sensory cues typical of falling.

  5. Take-off of heavily loaded airplanes

    NASA Technical Reports Server (NTRS)

    Proll, A

    1928-01-01

    In the present article, several suggestions will be made for shortening the otherwise long take-off distance. For the numerical verification of the process, I will use a graphic method for determining the take-off distance of seaplanes.

  6. The stimuli evoking the aerial-righting posture of falling pea aphids.

    PubMed

    Meresman, Yonatan; Ribak, Gal; Weihs, Daniel; Inbar, Moshe

    2014-10-01

    Some wingless insects possess aerial righting reflexes, suggesting that adaptation for controlling body orientation while falling through air could have preceded flight. When threatened by natural enemies, wingless pea aphids (Acyrthosiphon pisum) may drop off their host plant and assume a stereotypic posture that rotates them in midair to land on their feet. The sensory information triggering aphids to assume this posture has so far been unknown. We subjected aphids to a series of tests, isolating the sensory cues experienced during free-fall. Falling aphids assumed the righting posture and landed upright irrespective of whether the experiments were carried out in the light or in complete darkness. Detachment of the tarsi from the substrate triggered the aphids to assume the posture rapidly, but only for a brief period. Rotation (mainly roll and yaw) of the body in air, in the light, caused aphids to assume the posture and remain in it throughout rotation. In contrast, aphids rotated in the dark did not respond. Acceleration associated with falling or airflow over the body per se did not trigger the posture. However, sensing motion relative to air heightened the aphids' responsiveness to rotation in the light. These results suggest that the righting posture of aphids is triggered by a tarsal reflex, but, once the aphid is airborne, vision and a sense of motion relative to air can augment the response. Hence, aerial righting in a wingless insect could have emerged as a basic tarsal response and developed further to include secondary sensory cues typical of falling. PMID:25104755

  7. Aerodynamics of a beetle in take-off flights

    NASA Astrophysics Data System (ADS)

    Lee, Boogeon; Park, Hyungmin; Kim, Sun-Tae

    2015-11-01

    In the present study, we investigate the aerodynamics of a beetle in its take-off flights based on the three-dimensional kinematics of inner (hindwing) and outer (elytron) wings, and body postures, which are measured with three high-speed cameras at 2000 fps. To track the highly deformable wing motions, we distribute 21 morphological markers and use the modified direct linear transform algorithm for the reconstruction of measured wing motions. To realize different take-off conditions, we consider two types of take-off flights; that is, one is the take-off from a flat ground and the other is from a vertical rod mimicking a branch of a tree. It is first found that the elytron which is flapped passively due to the motion of hindwing also has non-negligible wing-kinematic parameters. With the ground, the flapping amplitude of elytron is reduced and the hindwing changes its flapping angular velocity during up and downstrokes. On the other hand, the angle of attack on the elytron and hindwing increases and decreases, respectively, due to the ground. These changes in the wing motion are critically related to the aerodynamic force generation, which will be discussed in detail. Supported by the grant to Bio-Mimetic Robot Research Center funded by Defense Acquisition Program Administration (UD130070ID).

  8. Take-off mechanics in hummingbirds (Trochilidae).

    PubMed

    Tobalske, Bret W; Altshuler, Douglas L; Powers, Donald R

    2004-03-01

    Initiating flight is challenging, and considerable effort has focused on understanding the energetics and aerodynamics of take-off for both machines and animals. For animal flight, the available evidence suggests that birds maximize their initial flight velocity using leg thrust rather than wing flapping. The smallest birds, hummingbirds (Order Apodiformes), are unique in their ability to perform sustained hovering but have proportionally small hindlimbs that could hinder generation of high leg thrust. Understanding the take-off flight of hummingbirds can provide novel insight into the take-off mechanics that will be required for micro-air vehicles. During take-off by hummingbirds, we measured hindlimb forces on a perch mounted with strain gauges and filmed wingbeat kinematics with high-speed video. Whereas other birds obtain 80-90% of their initial flight velocity using leg thrust, the leg contribution in hummingbirds was 59% during autonomous take-off. Unlike other species, hummingbirds beat their wings several times as they thrust using their hindlimbs. In a phylogenetic context, our results show that reduced body and hindlimb size in hummingbirds limits their peak acceleration during leg thrust and, ultimately, their take-off velocity. Previously, the influence of motivational state on take-off flight performance has not been investigated for any one organism. We studied the full range of motivational states by testing performance as the birds took off: (1) to initiate flight autonomously, (2) to escape a startling stimulus or (3) to aggressively chase a conspecific away from a feeder. Motivation affected performance. Escape and aggressive take-off featured decreased hindlimb contribution (46% and 47%, respectively) and increased flight velocity. When escaping, hummingbirds foreshortened their body movement prior to onset of leg thrust and began beating their wings earlier and at higher frequency. Thus, hummingbirds are capable of modulating their leg and

  9. Take-off and propeller thrust

    NASA Technical Reports Server (NTRS)

    Schrenk, Martin

    1933-01-01

    As a result of previous reports, it was endeavored to obtain, along with the truest possible comprehension of the course of thrust, a complete, simple and clear formula for the whole take-off distance up to a certain altitude, which shall give the correct relative weight to all the factors.

  10. Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus.

    PubMed

    Paskins, Keith E; Bowyer, Adrian; Megill, William M; Scheibe, John S

    2007-04-01

    Flying squirrels are well known for their ability to glide between trees at the top of a forest canopy. We present experimental performance and behavioural evidence that flight in flying squirrels may have evolved out of a need to control landing forces. Northern flying squirrels were filmed jumping from a horizontal branch to a much larger vertical pole. These were both slightly compliant (less than 1.9 mm N(-1)), and instrumented using strain gauges so that forces could be measured. Take-off and landing forces were both positively correlated with horizontal range between 0.5 and 2.5 m (r=0.355 and r=0.811, respectively, P<0.05), but not significantly different to each other at each range tested. Take-off forces ranged from 1 to 10 bodyweights, and landing forces were between 3 and 10 bodyweights. Glide angles increased rapidly with horizontal range, approaching 45 degrees at 3 m, above which they gradually decreased, suggesting that northern flying squirrels are optimised for long distance travel. We show that northern flying squirrels initiate full gliding posture at ranges of less than 1 m, without landing any higher than an equivalent ballistic projectile. However, this gliding posture enables them to pitch upwards, potentially stalling the wing, and spreads the landing reaction force over all four extended limbs. At steeper approach angles of close to 45 degrees , flying squirrels were unable to pitch up sufficiently and landed forelimbs first, consequently sustaining higher impact forces. We investigate four hypotheses to explain the origin of flight in these animals and conclude that the need to reduce landing impact forces was most likely to have stimulated the development of aerial control in flying squirrels. PMID:17401124

  11. The landing-take-off asymmetry in human running.

    PubMed

    Cavagna, G A

    2006-10-01

    In the elastic-like bounce of the body at each running step the muscle-tendon units are stretched after landing and recoil before take-off. For convenience, both the velocity of the centre of mass of the body at landing and take-off, and the characteristics of the muscle-tendon units during stretching and recoil, are usually assumed to be the same. The deviation from this symmetrical model has been determined here by measuring the mechanical energy changes of the centre of mass of the body within the running step using a force platform. During the aerial phase the fall is greater than the lift, and also in the absence of an aerial phase the transduction between gravitational potential energy and kinetic energy is greater during the downward displacement than during the lift. The peak of kinetic energy in the sagittal plane is attained thanks to gravity just prior to when the body starts to decelerate downwards during the negative work phase. In contrast, a lower peak of kinetic energy is attained, during the positive work phase, due to the muscular push continuing to accelerate the body forwards after the end of the acceleration upwards. Up to a speed of 14 km h(-1) the positive external work duration is greater than the negative external work duration, suggesting a contribution of muscle fibres to the length change of the muscle-tendon units. Above this speed, the two durations (<0.1 s) are similar, suggesting that the length change is almost totally due to stretch-recoil of the tendons with nearly isometrically contracting fibres.

  12. Development of new antibiotics: taking off finally?

    PubMed

    Bettiol, Esther; Harbarth, Stephan

    2015-01-01

    Since 2010, awareness of the global threat caused by antimicrobial resistance (AMR) has risen considerably and multiple policy and research initiatives have been implemented. Research and development (R&D) of much-needed new antibiotics active against multiresistant pathogens is a key component of all programmes aiming at fighting AMR, but it has been lagging behind owing to scientific, regulatory and economic challenges. Although a few new antibiotics might be available in Switzerland in the next 5 years, these new agents are not based on new mechanisms of action and are not necessarily active against resistant pathogens for which there is the highest unmet medical need, i.e. multiresistant Gram-negative bacteria. Of the three new antibiotics with pending authorisation in Switzerland for systemic treatment of severe infections, oritavancin and tedizolid target Gram-positive pathogens, while only ceftolozane+tazobactam partially covers multiresistant Gram-negative pathogens. Among six antibiotics currently in phase III of clinical development, delafloxacin and solithromycin will also be useful mostly for Gram-positive infections. Importantly, the four other compounds are active against multiresistant Gram-negative pathogens: ceftazidime+avibactam, meropenem+RPX7009, eravacycline and plazomicin. The three last compounds are also active against carbapenem-resistant Enterobacteriaceae (CRE). A few compounds active against such pathogens are currently in earlier clinical development, but their number may decrease, considering the risk of failure over the course of clinical development. At last, through public and political awareness of pathogens with high public health impact and unmet medical need, development of innovative economic incentives and updated regulatory guidance, R&D of new antibiotics is slowly taking off again.

  13. Stresses developed in seaplanes while taking off and landing

    NASA Technical Reports Server (NTRS)

    Verduzio, Rudolfo

    1932-01-01

    In the case of seaplanes, the lack of elastic shock absorbers, the presence of which might be quite dangerous, especially in taking off, makes it necessary to give some consideration to the phenomenon of landing. Special consideration must be given the process of taking off, since even moderately rough water may develop rather large stresses. The purpose of this communication is to show what has been accomplished in Italy and other countries and to draw a few useful conclusions.

  14. Analysis and Model Tests of Autogiro Jump Take-off

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Bioletti, Carlton

    1936-01-01

    An analysis is made of the autogiro jump take-off, in which the kinetic energy of the rotor turning at excess speed is used to effect a vertical take-off. By the use of suitable approximations, the differential equation of motion of the rotor during this maneuver is reduced to a form that can be solved. Only the vertical jump was studied; the effect of a forward motion during the jump is discussed briefly. The results of model tests of the jump take-off have been incorporated in the paper and used to establish the relative accuracy of the results predicted from the analysis. Good agreement between calculation and experiment was obtained by making justifiable allowances.

  15. Tick off to Take off: The Pre-Departure Guide

    ERIC Educational Resources Information Center

    Arthur, Erica

    2009-01-01

    "Tick Off to Take Off (TOTTO)" is an online pre-departure guide for UK undergraduates intending to study abroad. It aims to simplify the application process, centralise information, increase efficiency and improve retention rates. TOTTO responds to the changing climate surrounding study abroad in UK universities and offers one way to address calls…

  16. A Study of Taking off and Landing an Airplane

    NASA Technical Reports Server (NTRS)

    Carroll, T

    1923-01-01

    This report covers the results of an investigation carried on at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics for the purpose of discussing the various methods of effecting the take-off and the landing of an airplane, and to make a direct analysis of the control movements, the accelerations, and air speeds during these the maneuvers. The recording instruments developed at the laboratory were used in this test and the records obtained by them were made the basis for a comparative study of the two extreme methods of taking off (the tail-high and tail-low methods) and of various types of landings. The records should be of considerable value to a student pilot in enabling him to visualize the movements of the controls and the consequent effect upon the air speed and acceleration.

  17. Morphometric relationships of take-off speed in anuran amphibians.

    PubMed

    Choi, Inho; Shim, Jae Han; Ricklefs, Robert E

    2003-10-01

    Locomotory speed correlates with muscle mass (determining force and stride rate), limb length (stride rate and distance), and laterally compressed body trunk (force and stride distance). To delineate generalization of the locomotory-morphometric relationships specifically in anuran amphibians, we investigated take-off speed and the three morphological variables from seven species, Rana nigromaculata, R. rugosa, and Bombina orientalis, Eleuthrodectilus fitzingeri, E. diastema, Bufo typhonius, Colostethus flotator and Physalaemus pustulosus. The fastest jumper E. fitzingeri (3.41 m s(-1)) showed 2.49-fold greater speed than the slowest B. typhonius. Take-off speed correlated well with both thigh muscle mass relative to body mass and hindlimb length relative to snout-vent length (HL/SVL), but poorly correlated with the inter-ilial width relative to SVL. The best morphological predictor was HL/SVL (speed=-3.28+3.916 HL/SVL, r=0.968, P<0.0001), suggesting that anuran take-off speed is portrayed well with high gear and acceleration distance characterized by hindlimbs.

  18. Morphometric relationships of take-off speed in anuran amphibians.

    PubMed

    Choi, Inho; Shim, Jae Han; Ricklefs, Robert E

    2003-10-01

    Locomotory speed correlates with muscle mass (determining force and stride rate), limb length (stride rate and distance), and laterally compressed body trunk (force and stride distance). To delineate generalization of the locomotory-morphometric relationships specifically in anuran amphibians, we investigated take-off speed and the three morphological variables from seven species, Rana nigromaculata, R. rugosa, and Bombina orientalis, Eleuthrodectilus fitzingeri, E. diastema, Bufo typhonius, Colostethus flotator and Physalaemus pustulosus. The fastest jumper E. fitzingeri (3.41 m s(-1)) showed 2.49-fold greater speed than the slowest B. typhonius. Take-off speed correlated well with both thigh muscle mass relative to body mass and hindlimb length relative to snout-vent length (HL/SVL), but poorly correlated with the inter-ilial width relative to SVL. The best morphological predictor was HL/SVL (speed=-3.28+3.916 HL/SVL, r=0.968, P<0.0001), suggesting that anuran take-off speed is portrayed well with high gear and acceleration distance characterized by hindlimbs. PMID:12975797

  19. Power take-off analysis for diagonally connected MHD channels

    SciTech Connect

    Pan, Y C; Doss, E D

    1980-01-01

    The electrical loading of the power take-off region of diagonally connected MHD channels is investigated by a two-dimensional model. The study examines the loading schemes typical of those proposed for the U-25 and U-25 Bypass channels. The model is applicable for the following four cases: (1) connection with diodes only, (2) connection with diodes and equal resistors, (3) connection with diodes and variable resistances to obtain a given current distribution, and (4) connection with diodes and variable resistors under changing load. The analysis is applicable for the power take-off regions of single or multiple-output systems. The general behaviors of the current and the potential distributions in all four cases are discussed. The analytical results are in good agreement with the experimental data. It is found possible to design the electrical circuit of the channel in the take-off region so as to achieve a fairly even load current output under changing total load current.

  20. Concept identification for a power take-off shielding campaign.

    PubMed

    Tinc, P J; Madden, E; Park, S; Weil, R; Sorensen, J A

    2015-01-01

    ABSTRACT Machinery entanglements, specifically power take-off (PTO) entanglements, are a leading cause of injuries and fatalities on farms. In order to address this life-threatening issue, a social marketing campaign is being developed to reduce barriers and emphasize motivators to shielding. This article discusses the process of designing, testing, and selecting concepts to be used in the campaign. Small-group discussions (triads) were held to test 13 message concepts. Participants were asked to provide feedback and select the two messages that they believed to be most powerful. Upon completion, three message concepts were selected to be finalized. PMID:25635743

  1. Characteristics of a Single Float Seaplane During Take-off

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr; Ronan, K M

    1925-01-01

    At the request of the Bureau of Aeronautics, Navy Department, the National Advisory Committee for Aeronautics at Langley Field is investigating the get-away characteristics of an N-9H, a DT-2, and an F-5l, as representing, respectively, a single float, a double float, and a boat type of seaplane. This report covers the investigation conducted on the N-9H. The results show that a single float seaplane trims aft in taking off. Until a planing condition is reached the angle of attack is about 15 degrees and is only slightly affected by controls. When planing it seeks a lower angle, but is controllable through a widening range, until at the take-off it is possible to obtain angles of 8 degrees to 15 degrees with corresponding speeds of 53 to 41 M. P. H. or about 40 per cent of the speed range. The point of greatest resistance occurs at about the highest angle of a pontoon planing angle of 9 1/2 degrees and at a water speed of 24 M. P. H.

  2. Biomechanical and dynamic mechanism of locust take-off

    NASA Astrophysics Data System (ADS)

    Chen, Dian-Sheng; Yin, Jun-Mao; Chen, Ke-Wei; Li, Zhen

    2014-10-01

    The biomimetic locust robot hopping vehicle has promising applications in planet exploration and reconnaissance. This paper explores the bionic dynamics model of locust jumping by using high-speed video and force analysis. This paper applies hybrid rigid-flexible mechanisms to bionic locust hopping and studies its dynamics with emphasis laid on the relationship between force and jumping performance. The hybrid rigid-flexible model is introduced in the analysis of locust mechanism to address the principles of dynamics that govern locust joints and mechanisms during energy storage and take-off. The dynamic response of the biomimetic mechanism is studied by considering the flexibility according to the locust jumping dynamics mechanism. A multi-rigid-body dynamics model of locust jumping is established and analyzed based on Lagrange method; elastic knee and tarsus mechanisms that were proposed in previous works are analyzed alongside the original bionic joint configurations and their machinery principles. This work offers primary theories for take-off dynamics and establishes a theoretical basis for future studies and engineering applications.

  3. Take Off! Aeronautics and Aviation Science: Careers and Opportunities

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Funded by National Aeronautic and Space Administration's High Performance Computing and Communications/ Learning Technologies Project (HPCC/LTP) Cooperative Agreement, Aeronautics and aviation Science: Careers and Opportunities was operative from July 1995 through July 1998. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area: Dorchester, Malden, East Boston and Randolph. In its first and second years, a video series with a participatory website on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-12 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In year three, the project team redesigned the website, edited 14 videos to a five part thematic unit, and developed a teacher's guide to the video and web materials supplement for MAC and PC platforms, aligned with national standards. In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development

  4. Altus I aircraft taking off from lakebed runway

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft takes off from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  5. Characteristics of a Boat Type Seaplane During Take-off

    NASA Technical Reports Server (NTRS)

    Crowley, J W; Ronan, K M

    1926-01-01

    This report, on the planing and get-away characteristics of the F-5-L, gives the results of the second of a series of take-off tests on three different seaplanes conducted by the National Advisory Committee for Aeronautics at the suggestion of the Bureau of Aeronautics, Navy Department. The single-float seaplane was the first tested and the twin-float seaplane is to be the third. The characteristics of the boat type were found to be similar to the single float, the main difference being the increased sluggishness and relatively larger planing resistance of the larger seaplane. At a water speed of 15 miles per hour the seaplane trims aft to about 12 degrees and remains in this angular position while plowing. At 2.25 miles per hour the planing stage is started and the planing angle is immediately lowered to about 10 degrees. As the velocity increases the longitudinal control becomes more effective but over control will produce instability. At the get-away the range of angle of attack is 19 degrees to 11 degrees with velocities from the stalling speed through about 25 per cent of the speed range.

  6. Analysis of Dragonfly Take-off Mechanism: Initial Impulse Generated by Aerodynamic Forces

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijie; Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Flow Simulation Research Team

    2013-11-01

    Take-off is a critical part of insect flight due to not only that every single flight initiates from take-off, but also that the take-off period, despite its short duration, accounts for a relatively large fraction of the total energy consumption. Thus, studying the mechanism of insect take-off will help to improve the design of Micro Air Vehicles (MAVs) in two major properties, the success rate and the energy efficiency of take-off. In this work, we study 20 cases in which dragonflies (species including Pachydiplax longipennis, Epitheca Cynosura, Epitheca princeps etc.) take off from designed platform. By high-speed photogrammetry, 3-d reconstruction and numerical simulation, we explore how dragonflies coordinate different body parts to help take-off. We evaluate how aerodynamic forces generated by wing flapping create the initial impulse, and how these forces help save energy consumption. Supported by NSF CBET-1343154.

  7. Theseus on Take-off for First Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden

  8. Theseus Take-off from Rogers Dry Lake

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing in this rear view of the aircraft as it takes off on its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  9. The extensive use of a take-off assist for a rocket plane

    NASA Astrophysics Data System (ADS)

    Tomita, N.; Ohkami, Y.

    In the previous paper, the authors proposed the use of a take-off assist for launching a space plane with rocket engines (rocket plane). In this paper, the advantages and disadvantages of employing a take-off assist is discussed in more detail. The velocity at the peak altitude of a rocket plane launched horizontally with a take-off assist is compared with the velocity of a rocket plane launched vertically. A take-off assist system, which provides initial velocity to the rocket plane, is proposed.

  10. Rans S-12 RPV Takes off with Spacewedge #2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Rans S-12 remotely piloted 'mothership' takes off from a lakebed runway carrying a Spacewedge research model during 1992 flight tests. The Spacewedge was lauched in flight from the Rans S-12 aircraft and then glided back to a landing under a steerable parafoil. Technology tested in the Spacewedge program was used in developing the X-38 research vehicle. From October 1991 to December 1996, NASA Ames-Dryden Flight Research Facility (after 1994, the Dryden Flight Research Center, Edwards, California) conducted a research program know as the Spacecraft Autoland Project. This Project was designed to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of flight, including a precision landing. The Johnson Space Center and the U.S. Army participated in various phases of the program. The Charles Stark Draper Laboratory developed the software for Wedge 3 under contract to the Army. Four generic spacecraft (each called a Spacewedge or simply a Wedge) were built; the last one was built to test the feasibility of a parafoil for delivering Army cargoes. Technology developed during this program has applications for future spacecraft recovery systems, such as the X-38 Crew Return Vehicle demonstrator. The Spacewedge program demonstrated precision flare and landing into the wind at a predetermined location. The program showed that a flexible, deployable system using autonomous navigation and landing was a viable and practical way to recover spacecraft. NASA researchers conducted flight tests of the Spacewedge at three sites near Dryden, a hillside near Tehachapi, the Rogers Dry Lakebed at Edwards Air Force Base, and the California City Airport Drop Zone. During the first phase of testing 36 flights were made. Phase II consisted of 45 flights using a smaller parafoil. A third Phase of 34 flights was conducted primarily by the Army and resulted in the development of an Army guidance system for precision offset

  11. The calculated effect of trailing-edge flaps on the take-off of flying boats

    NASA Technical Reports Server (NTRS)

    Parkinson, J E; Bell, J W

    1934-01-01

    The results of take-off calculations are given for an application of simple trailing-edge flaps to two hypothetical flying boats, one having medium wing and power loading and consequently considerable excess of thrust over total resistance during the take-off run, the other having high wing and power loading and a very low excess thrust. For these seaplanes the effect of downward flap settings was: (1) to increase the total resistance below the stalling speed, (2) to decrease the get-away speed, (3) to improve the take-off performance of the seaplane having considerable excess thrust, and (4) to hinder the take-off of the seaplane having low excess thrust. It is indicated that flaps would allow a decrease in the high angles of wing setting necessary with most seaplanes, provided that the excess thrust is not too low.

  12. Ground Effect on the Take-off and Landing of Airplanes

    NASA Technical Reports Server (NTRS)

    Le Sueur, Maurice

    1935-01-01

    Theories of ground effect and interference are explored as well as experimental methods to record the phenomenon. The consequences of the phenomenon on the airplane at take-off and landing are discussed.

  13. Influence of determination of reference position of image on rocket take-off drift

    NASA Astrophysics Data System (ADS)

    Cui, Shuhua; Liu, Jun; Shen, Si; Hu, Shaolin

    2016-01-01

    Mathematical analysis model for influence of reference position deviation on carrier rocket take-off drift has been made to tackle the issue on determination of reference position of reticule for optical tracking and measurement of video image in aerospace test range and the variation in rocket take-off drift due to reference position deviation has been subjected to quantitative analysis based on angular error of tracking and lateral error of measuring point as a result of deviation of reference position of reticule cross. The method serves as technical support to quality analysis of rocket take-off deviation measurement data and improvement in data processing precision for carrier rocket take-off drift.

  14. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOEpatents

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  15. Wing and body motion and aerodynamic and leg forces during take-off in droneflies.

    PubMed

    Chen, Mao Wei; Zhang, Yan Lai; Sun, Mao

    2013-12-01

    Here, we present a detailed analysis of the take-off mechanics in droneflies performing voluntary take-offs. Wing and body kinematics of the insects during take-off were measured using high-speed video techniques. Based on the measured data, the inertia force acting on the insect was computed and the aerodynamic force of the wings was calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. In take-off, a dronefly increases its stroke amplitude gradually in the first 10-14 wingbeats and becomes airborne at about the 12th wingbeat. The aerodynamic force increases monotonously from zero to a value a little larger than its weight, and the leg force decreases monotonously from a value equal to its weight to zero, showing that the droneflies do not jump and only use aerodynamic force of flapping wings to lift themselves into the air. Compared with take-offs in insects in previous studies, in which a very large force (5-10 times of the weight) generated either by jumping legs (locusts, milkweed bugs and fruit flies) or by the 'fling' mechanism of the wing pair (butterflies) is used in a short time, the take-off in the droneflies is relatively slow but smoother. PMID:24132205

  16. Wing and body motion and aerodynamic and leg forces during take-off in droneflies.

    PubMed

    Chen, Mao Wei; Zhang, Yan Lai; Sun, Mao

    2013-12-01

    Here, we present a detailed analysis of the take-off mechanics in droneflies performing voluntary take-offs. Wing and body kinematics of the insects during take-off were measured using high-speed video techniques. Based on the measured data, the inertia force acting on the insect was computed and the aerodynamic force of the wings was calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. In take-off, a dronefly increases its stroke amplitude gradually in the first 10-14 wingbeats and becomes airborne at about the 12th wingbeat. The aerodynamic force increases monotonously from zero to a value a little larger than its weight, and the leg force decreases monotonously from a value equal to its weight to zero, showing that the droneflies do not jump and only use aerodynamic force of flapping wings to lift themselves into the air. Compared with take-offs in insects in previous studies, in which a very large force (5-10 times of the weight) generated either by jumping legs (locusts, milkweed bugs and fruit flies) or by the 'fling' mechanism of the wing pair (butterflies) is used in a short time, the take-off in the droneflies is relatively slow but smoother.

  17. Wing and body motion and aerodynamic and leg forces during take-off in droneflies

    PubMed Central

    Chen, Mao Wei; Zhang, Yan Lai; Sun, Mao

    2013-01-01

    Here, we present a detailed analysis of the take-off mechanics in droneflies performing voluntary take-offs. Wing and body kinematics of the insects during take-off were measured using high-speed video techniques. Based on the measured data, the inertia force acting on the insect was computed and the aerodynamic force of the wings was calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. In take-off, a dronefly increases its stroke amplitude gradually in the first 10–14 wingbeats and becomes airborne at about the 12th wingbeat. The aerodynamic force increases monotonously from zero to a value a little larger than its weight, and the leg force decreases monotonously from a value equal to its weight to zero, showing that the droneflies do not jump and only use aerodynamic force of flapping wings to lift themselves into the air. Compared with take-offs in insects in previous studies, in which a very large force (5–10 times of the weight) generated either by jumping legs (locusts, milkweed bugs and fruit flies) or by the ‘fling’ mechanism of the wing pair (butterflies) is used in a short time, the take-off in the droneflies is relatively slow but smoother. PMID:24132205

  18. Thorough warm-up before take-off in honey bee swarms.

    PubMed

    Seeley, Thomas D; Kleinhenz, Marco; Bujok, Brigitte; Tautz, Jürgen

    2003-06-01

    In a bivouacked swarm of honey bees, most individuals are quiescent while a small minority (the scouts) are active in choosing the swarm's future nest site. This study explores the way in which the members of a swarm warm their flight muscles for take-off when the swarm eventually decamps. An infrared camera was used to measure the thoracic (flight muscle) temperatures of individual bees on the surface of a swarm cluster. These are generally the coolest bees in a swarm. The warming of the surface-layer bees occurred mainly in the last 10 min before take-off. By the time a take-off began, 100% of the bees had their flight muscles heated to at least 35 degrees C, which is sufficient to support rapid flight. Take-offs began only a few seconds after all the surface-layer bees had their flight muscles warmed to at least 35 degrees C, but exactly how take-offs are triggered remains a mystery. PMID:12835835

  19. Functional evolution of jumping in frogs: Interspecific differences in take-off and landing.

    PubMed

    Reilly, Stephen M; Montuelle, Stephane J; Schmidt, André; Krause, Cornelia; Naylor, Emily; Essner, Richard L

    2016-03-01

    Ancestral frogs underwent anatomical shifts including elongation of the hindlimbs and pelvis and reduction of the tail and vertebral column that heralded the transition to jumping as a primary mode of locomotion. Jumping has been hypothesized to have evolved in a step-wise fashion with basal frogs taking-off with synchronous hindlimb extension and crash-landing on their bodies, and then their limbs move forward. Subsequently, frogs began to recycle the forelimbs forward earlier in the jump to control landing. Frogs with forelimb landing radiated into many forms, locomotor modes, habitats, and niches with controlled landing thought to improve escape behavior. While the biology of take-off behavior has seen considerable study, interspecific comparisons of take-off and landing behavior are limited. In order to understand the evolution of jumping and controlled landing in frogs, data are needed on the movements of the limbs and body across an array of taxa. Here, we present the first description and comparison of kinematics of the hindlimbs, forelimbs and body during take-off and landing in relation to ground reaction forces in four frog species spanning the frog phylogeny. The goal of this study is to understand what interspecific differences reveal about the evolution of take-off and controlled landing in frogs. We provide the first comparative description of the entire process of jumping in frogs. Statistical comparisons identify both homologous behaviors and significant differences among species that are used to map patterns of trait evolution and generate hypotheses regarding the functional evolution of take-off and landing in frogs.

  20. 40 CFR Appendix II to Part 1037 - Power Take-Off Test Cycle

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Power Take-Off Test Cycle II Appendix II to Part 1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Pt. 1037, App. II Appendix II to Part...

  1. Feasibility study on linear-motor-assisted take-off (LMATO) of winged launch vehicle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Makoto; Kyotani, Yoshihiro

    1987-11-01

    Application of technology of magnetically levitated transportation to horizontal take-off of an experimental space vehicle has been studied. An experimental system of linear-motor-assisted take-off (LMATO) consists of the HIMES space vehicle and a magnetically levitated and propelled sled which is a modified MLU model developed by the JNR. The original MLU model is a train of three cars which weighs 30 tons and is driven by a thrust of 15 tons. The maximum speed is 400 km/h. The highest speed of 517 km/h has been obtained by the first JNR linear motor car. Since the take-off speed of the HIMES vehicle with the initial mass of 14 tons is 470 km/h, the existing technology can be used for the LMATO of the vehicle. The concept of the HIMES/LMATO is to use the MLU vehicles to accelerate the HIMES vehicle at 0.33 g on a 5 km guide track until the speed reaches 300 km/h, when the rocket engines of the space vehicle are started to increase the acceleration up to 1 g. The total system will take the final checkout for take-off during the acceleration phase and the speed exceeds 470 km/h which is large enough to aerodynamically lift the space vehicle, then the fastening mechanism is unlocked to separate the vehicles. The experimental system can be applied for initial acceleration of a vehicle with air-breathing propulsion.

  2. Transition from leg to wing forces during take-off in birds.

    PubMed

    Provini, Pauline; Tobalske, Bret W; Crandell, Kristen E; Abourachid, Anick

    2012-12-01

    Take-off mechanics are fundamental to the ecology and evolution of flying animals. Recent research has revealed that initial take-off velocity in birds is driven mostly by hindlimb forces. However, the contribution of the wings during the transition to air is unknown. To investigate this transition, we integrated measurements of both leg and wing forces during take-off and the first three wingbeats in zebra finch (Taeniopygia guttata, body mass 15 g, N=7) and diamond dove (Geopelia cuneata, body mass 50 g, N=3). We measured ground reaction forces produced by the hindlimbs using a perch mounted on a force plate, whole-body and wing kinematics using high-speed video, and aerodynamic forces using particle image velocimetry (PIV). Take-off performance was generally similar between species. When birds were perched, an acceleration peak produced by the legs contributed to 85±1% of the whole-body resultant acceleration in finch and 77±6% in dove. At lift-off, coincident with the start of the first downstroke, the percentage of hindlimb contribution to initial flight velocity was 93.6±0.6% in finch and 95.2±0.4% in dove. In finch, the first wingbeat produced 57.9±3.4% of the lift created during subsequent wingbeats compared with 62.5±2.2% in dove. Advance ratios were <0.5 in both species, even when taking self-convection of shed vortices into account, so it was likely that wing-wake interactions dominated aerodynamics during wingbeats 2 and 3. These results underscore the relatively low contribution of the wings to initial take-off, and reveal a novel transitional role for the first wingbeat in terms of force production. PMID:22972887

  3. The calculated effect of various hydrodynamic and aerodynamic factors on the take-off of a large flying boat

    NASA Technical Reports Server (NTRS)

    Olson, R E; Allison, J M

    1940-01-01

    Report presents the results of an investigation made to determine the influence of various factors on the take-off performance of a hypothetical large flying boat by means of take-off calculations. The factors varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The take-off times and distances were calculated to the stalling speeds and the performance above these speeds was separately studied to determine piloting technique for optimum take-off.

  4. Issues related to aircraft take-off plumes in a mesoscale photochemical model.

    PubMed

    Bossioli, Elissavet; Tombrou, Maria; Helmis, Costas; Kurtenbach, Ralf; Wiesen, Peter; Schäfer, Klaus; Dandou, Aggeliki; Varotsos, Kostas V

    2013-07-01

    The physical and chemical characteristics of aircraft plumes at the take-off phase are simulated with the mesoscale CAMx model using the individual plume segment approach, in a highly resolved domain, covering the Athens International Airport. Emission indices during take-off measured at the Athens International Airport are incorporated. Model predictions are compared with in situ point and path-averaged observations (NO, NO₂) downwind of the runway at the ground. The influence of modeling process, dispersion properties and background air composition on the chemical evolution of the aircraft plumes is examined. It is proven that the mixing properties mainly determine the plume dispersion. The initial plume properties become significant for the selection of the appropriate vertical resolution. Besides these factors, the background NOx and O₃ concentration levels control NOx distribution and their conversion to nitrogen reservoir species.

  5. Wave-actuated power take-off device for electricity generation

    SciTech Connect

    Chertok, Allan

    2013-01-31

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME's power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels e.g., 10 to 100kW?

  6. Microphysical Properties of Warm Clouds During The Aircraft Take-Off and Landing Over Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Stefan, Sabina; Nicolae Vajaiac, Sorin; Boscornea, Andreea

    2016-06-01

    This paper is focused on airborne measurements of microphysical parameters into warm clouds when the aircraft penetrates the cloud, both during take-off and landing. The experiment was conducted during the aircraft flight between Bucharest and Craiova, in the southern part of Romania. The duration of the experimental flight was 2 hours and 35 minutes in October 7th, 2014, but the present study is dealing solely with the analysis of cloud microphysical properties at the beginning of the experiment (during the aircraft take-off) and at the end, when it got finalized by the aircraft landing procedure. The processing and interpretation of the measurements showed the differences between microphysical parameters, emphasizing that the type of cloud over Bucharest changed, as it was expected. In addition, the results showed that it is important to take into account both the synoptic context and the cloud perturbation due to the velocity of the aircraft, in such cases.

  7. Leg stiffness during phases of countermovement and take-off in vertical jump.

    PubMed

    Struzik, Artur; Zawadzki, Jerzy

    2013-01-01

    With respect to cyclic movements such as human gait, running or hopping, leg stiffness is a little variable parameter. The aim of this study was to investigate changes in leg stiffness during the phase of countermovement and take-off when performing a single maximum counter-movement jump. Kistler force plates and a BTS SMART system for comprehensive motion analysis were employed in the study. The study covered a group of 12 athletes from university basketball teams. Leg stiffness was calculated in those parts of countermovement and take-off phases where its level is relatively constant and the relationship F(Δl) is similar to linear one. Mean total stiffness (±SD) in both legs in the countermovement phase amounted to 6.5 ± 1.5 kN/m, whereas during the take-off phase this value was 6.9 ± 1 kN/m. No statistically significant differences were found between leg stiffness during the countermovement phase and takeoff phase in the study group at the level of significance set at α = 0.05. This suggests that the leg stiffness in phase of countermovement and phase of take-off are much similar to each other, despite different function of both phases. Similar to cyclic movements, leg stiffness turned out relatively constant when performing a single vertical jump. There are also reported statistically significant correlations between body mass, body height, length of lower limbs and leg stiffness. The stiffness analysed by the authors should be understood as quasi-stiffness because the measurements of ΔF(Δl) were made during transient states where inertia and dumping forces are likely to affect the final result.

  8. Flight take-off performance of Colorado potato beetle in relation to potato phenology.

    PubMed

    Mbungu, Nsitu T; Boiteau, Gilles

    2008-02-01

    The flight take-off frequency of adult Colorado potato beetles, Leptinotarsa decemlineata (Say), from potato plants, Solanum tuberosum L. 'Red Pontiac' at the bloom stage of development was 2.2-2.5-fold that of Colorado potato beetle from plants at the vegetative stage. Tests were conducted in a flight chamber over a period of 3 h. Prefeeding Colorado potato beetles for 48 h on potato plants at the bloom or at the vegetative stage before placing them into the flight chamber resulted in the same significantly higher flight take-off frequency from potato plants at the bloom stage than from plants at the vegetative stage. These results demonstrate that the factor in potato plants in bloom that stimulates the flight take-off of the Colorado potato beetle is independent of the feeding history of the beetles and begins acting only when the beetles are in the presence of the plant. According to these results, the dispersal of adult Colorado potato beetles from potato fields in bloom to younger potato fields with plants at the vegetative stage, previously reported in the literature, is at least partly explained by the effect of plant phenology on the frequency of flight take-off. Results confirm the value of planting potato fields of similar phenology over as wide an area as possible to reduce Colorado potato beetle dispersal between fields. Results also imply that staggering the planting dates of conventional potato refuge areas near Colorado potato beetle transgenic or conventionally resistant potato fields is a sound management practice, because it promotes the movement of wild beetles over to the adjacent younger resistant crops.

  9. Requirements report for SSTO vertical take-off and horizontal landing vehicle

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document describes the detailed design requirements and design criteria to support Structures/TPS Technology development for SSTO winged vehicle configurations that use vertical take-off and horizontal landing and delivers 25,000 lb payloads to a 220 nm circular orbit at an inclination of 51.6 degrees or 40,000 lb payloads to a 150 nm circular orbit at a 28.5 degree inclination.

  10. Airport take-off noise assessment aimed at identify responsible aircraft classes.

    PubMed

    Sanchez-Perez, Luis A; Sanchez-Fernandez, Luis P; Shaout, Adnan; Suarez-Guerra, Sergio

    2016-01-15

    Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database.

  11. Airport take-off noise assessment aimed at identify responsible aircraft classes.

    PubMed

    Sanchez-Perez, Luis A; Sanchez-Fernandez, Luis P; Shaout, Adnan; Suarez-Guerra, Sergio

    2016-01-15

    Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database. PMID:26540603

  12. VIDEO REVIEW: Maths in a Box video: Take-off - moving bodies with constant mass

    NASA Astrophysics Data System (ADS)

    Marks, Ken

    1999-09-01

    I write this review as a PGCE maths tutor, and therefore from the perspective of using parts of this series at A-level. The sample video, `Take-off - moving bodies with constant mass', is a good example of combining real footage with commentary as the viewer is invited to think about modelling the take-off of an aircraft. The style is reminiscent of Open University presentations and here the challenge is to determine the necessary length of the runway. The video is split into two sections. The first, commentary, section works quite well, although it jars a bit to hear Newton's Third Law put across as `Action and reaction are equal and opposite'; this is a familiar offering but one that still causes mystification in the sixth form. The viewer is invited to think about setting up equations, and reminded that the chain rule will be necessary to solve the differential equation generated from Newton's Second Law. This gives a good indication of the level of mathematics required. Unfortunately the flow is then somewhat disturbed by a strong emphasis on boundary conditions. If the student can cope with the general level of calculus required, this aspect of the challenge would also seem to fit more naturally into the second section of the video. This second section looks at setting up the equations and `solutions'. It can be used after classroom discussion, and takes the viewer through three, increasingly sophisticated, models involving functions for drag and resistance forces. On the whole this is clear and helpful, but for some reason the solutions each stop with an equation linking the length of the runway to the take-off velocity, failing to make use of the second equation to eliminate this intermediate variable. All in all, it is a useful addition to resources for A-level, particularly if students are also following the sort of mechanics syllabus (within mathematics) that emphasizes modelling.

  13. Take-off analysis of the Olympic ski jumping competition (HS-106m).

    PubMed

    Virmavirta, Mikko; Isolehto, Juha; Komi, Paavo; Schwameder, Hermann; Pigozzi, Fabio; Massazza, Giuseppe

    2009-05-29

    The take-off phase (approximately 6m) of the jumps of all athletes participating in the individual HS-106m hill ski jumping competition at the Torino Olympics was filmed with two high-speed cameras. The high altitude of the Pragelato ski jumping venue (1600m) and slight tail wind in the final jumping round were expected to affect the results of this competition. The most significant correlation with the length of the jump was found in the in-run velocity (r=0.628, p<0.001, n=50). This was a surprise in Olympic level ski jumping, and suggests that good jumpers simply had smaller friction between their skis and the in-run tracks and/or the aerodynamic quality of their in-run position was better. Angular velocity of the hip joint of the best jumpers was also correlated with jumping distance (r=0.651, p<0.05, n=10). The best jumpers in this competition exhibited very different take-off techniques, but still they jumped approximately the same distance. This certainly improves the interests in ski jumping among athletes and spectators. The comparison between the take-off techniques of the best jumpers showed that even though the more marked upper body movement creates higher air resistance, it does not necessarily result in shorter jumping distance if the exposure time to high air resistance is not too long. A comparison between the first and second round jumps of the same jumpers showed that the final results in this competition were at least partly affected by the wind conditions.

  14. Requirements report for SSTO vertical take-off/horizontal landing vehicle

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document describes the detailed design requirements and design criteria to support Structures/TPS Technology development for SSTO winged vehicle configurations that use vertical take-off and horizontal landing and deliver 25,000 lb payloads to a 220 nm circular orbit at an inclination of 51.6 degrees or 40,000 lb payloads to a 150 nm circular orbit at a 28.5 degree of inclination. This document will be updated on a timely basis as informatIon becomes available throughout the project.

  15. Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Berton, Jeffrey J.; Jones, Scott M.

    2007-01-01

    The saturation of the airspace around current airports combined with increasingly stringent community noise limits represents a serious impediment to growth in world aviation travel. Breakthrough concepts that both increase throughput and reduce noise impacts are required to enable growth in aviation markets. Concepts with a 25 year horizon must facilitate a 4x increase in air travel while simultaneously meeting community noise constraints. Attacking these horizon issues holistically is the concept study of a Cruise Efficient Short Take-Off and Landing (CESTOL) high subsonic transport under the NASA's Revolutionary Systems Concepts for Aeronautics (RSCA) project. The concept is a high-lift capable airframe with a partially embedded distributed propulsion system that takes a synergistic approach in propulsion-airframe-integration (PAI) by fully integrating the airframe and propulsion systems to achieve the benefits of both low-noise short take-off and landing (STOL) operations and efficient high speed cruise. This paper presents a summary of the recent study of a distributed propulsion/airframe configuration that provides low-noise STOL operation to enable 24-hour use of the untapped regional and city center airports to increase the capacity of the overall airspace while still maintaining efficient high subsonic cruise flight capability.

  16. Magnetic levitation assisted aircraft take-off and landing (feasibility study - GABRIEL concept)

    NASA Astrophysics Data System (ADS)

    Rohacs, Daniel; Rohacs, Jozsef

    2016-08-01

    The Technology Roadmap 2013 developed by the International Air Transport Association envisions the option of flying without an undercarriage to be in operation by 2032. Preliminary investigations clearly indicate that magnetic levitation technology (MagLev) might be an appealing solution to assist the aircraft take-off and landing. The EU supported research project, abbreviated as GABRIEL, was dealing with (i) the concept development, (ii) the identification, evaluation and selection of the deployable magnetic levitation technology, (iii) the definition of the core system elements (including the required aircraft modifications, the ground-based system and airport elements, and the rendezvous control system), (iv) the analysis of the safety and security aspects, (v) the concept validation and (vi) the estimation of the proposed concept impact in terms of aircraft weight, noise, emission, cost-benefit). All results introduced here are compared to a medium size hypothetic passenger aircraft (identical with an Airbus A320). This paper gives a systematic overview of (i) the applied methods, (ii) the investigation of the possible use of magnetic levitation technology to assist the commercial aircraft take-off and landing processes and (iii) the demonstrations, validations showing the feasibility of the radically new concept. All major results are outlined.

  17. Validation of an Active Gear, Flexible Aircraft Take-off and Landing analysis (AGFATL)

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1984-01-01

    The results of an analytical investigation using a computer program for active gear, flexible aircraft take off and landing analysis (AGFATL) are compared with experimental data from shaker tests, drop tests, and simulated landing tests to validate the AGFATL computer program. Comparison of experimental and analytical responses for both passive and active gears indicates good agreement for shaker tests and drop tests. For the simulated landing tests, the passive and active gears were influenced by large strut binding friction forces. The inclusion of these undefined forces in the analytical simulations was difficult, and consequently only fair to good agreement was obtained. An assessment of the results from the investigation indicates that the AGFATL computer program is a valid tool for the study and initial design of series hydraulic active control landing gear systems.

  18. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  19. The aerodynamics of avian take-off from direct pressure measurements in Canada geese (Branta canadensis).

    PubMed

    Usherwood, James R; Hedrick, Tyson L; Biewener, Andrew A

    2003-11-01

    Direct pressure measurements using electronic differential pressure transducers along bird wings provide insight into the aerodynamics of these dynamically varying aerofoils. Acceleration-compensated pressures were measured at five sites distributed proximally to distally from the tertials to the primaries along the wings of Canada geese. During take-off flight, ventral-to-dorsal pressure is maintained at the proximal wing section throughout the wingstroke cycle, whereas pressure sense is reversed at the primaries during upstroke. The distal sites experience double pressure peaks during the downstroke. These observations suggest that tertials provide weight-support throughout the wingbeat, that the wingtip provides thrust during upstroke and that the kinetic energy of the rapidly flapping wings may be dissipated via retarding aerodynamic forces (resulting in aerodynamic work) at the end of downstroke.

  20. Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.

    2010-01-01

    Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.

  1. A new 3D Eikonal solver for accurate traveltimes, take-off angles and amplitudes

    NASA Astrophysics Data System (ADS)

    Noble, Mark; Gesret, Alexandrine

    2013-04-01

    The finite-difference approximation to the eikonal equation was first introduced by J.Vidale in 1988 to propagate first-arrival times throughout a 2D or 3D gridded velocity model. Even today this method is still very attractive from a computational point of view when dealing with large datasets. Among many domains of application, the eikonal solver may be used for 2-D or 3-D depth migration, tomography or microseismicity data analysis. The original 3D method proposed by Vidale in 1990 did exhibit some degree of travel time error that may lead to poor image focusing in migration or inaccurate velocities estimated via tomographic inversion. The method even failed when large and sharp velocity contrasts were encountered. To try and overcome these limitations many authors proposed alternative algorithms, incorporating new finite-difference operators and/or new schemes of implementing the operators to propagate the travel times through the velocity model. If many recently published algorithms for resolving the 3D eikonal equation do yield fairly accurate travel times for most applications, the spatial derivatives of travel times remain very approximate and prevent reliable computation of auxiliary quantities such as take-off angle and amplitude. This limitation is due to the fact that the finite-difference operators locally assume that the wavefront is flat (plane wave). This assumption is in particularly wrong when close to the source where a spherical approximation would be more suitable. To overcome this singularity at the source, some authors proposed an adaptive method that reduces inaccuracies, however, the cost is more algorithmic complexity. The objective of this study is to develop an efficient simple 3D eikonal solver that is able to: overcome the problem of the source singularity, handle velocity models that exhibit strong vertical and horizontal velocity variations, use different grid spacing in x, y and z axis of model. The final goal is of course to

  2. Fatiguing effect of multiple take-offs and landings in regional airline operations.

    PubMed

    Honn, Kimberly A; Satterfield, Brieann C; McCauley, Peter; Caldwell, J Lynn; Van Dongen, Hans P A

    2016-01-01

    Fatigue is a risk factor for flight performance and safety in commercial aviation. In US commercial aviation, to help to curb fatigue, the maximum duration of flight duty periods is regulated based on the scheduled start time and the number of flight segments to be flown. There is scientific support for regulating maximum duty duration based on scheduled start time; fatigue is well established to be modulated by circadian rhythms. However, it has not been established scientifically whether the number of flight segments, per se, affects fatigue. To address this science gap, we conducted a randomized, counterbalanced, cross-over study with 24 active-duty regional airline pilots. Objective and subjective fatigue was compared between a 9-hour duty day with multiple take-offs and landings versus a duty day of equal duration with a single take-off and landing. To standardize experimental conditions and isolate the fatiguing effect of the number of segments flown, the entire duty schedules were carried out in a high-fidelity, moving-base, full-flight, regional jet flight simulator. Steps were taken to maintain operational realism, including simulated airplane inspections and acceptance checks, use of realistic dispatch releases and airport charts, real-world air traffic control interactions, etc. During each of the two duty days, 10 fatigue test bouts were administered, which included a 10-minute Psychomotor Vigilance Test (PVT) assessment of objective fatigue and Samn-Perelli (SP) and Karolinska Sleepiness Scale (KSS) assessments of subjective sleepiness/fatigue. Results showed a greater build-up of objective and subjective fatigue in the multi-segment duty day than in the single-segment duty day. With duty start time and duration and other variables that could impact fatigue levels held constant, the greater build-up of fatigue in the multi-segment duty day was attributable specifically to the difference in the number of flight segments flown. Compared to findings in

  3. Fatiguing effect of multiple take-offs and landings in regional airline operations.

    PubMed

    Honn, Kimberly A; Satterfield, Brieann C; McCauley, Peter; Caldwell, J Lynn; Van Dongen, Hans P A

    2016-01-01

    Fatigue is a risk factor for flight performance and safety in commercial aviation. In US commercial aviation, to help to curb fatigue, the maximum duration of flight duty periods is regulated based on the scheduled start time and the number of flight segments to be flown. There is scientific support for regulating maximum duty duration based on scheduled start time; fatigue is well established to be modulated by circadian rhythms. However, it has not been established scientifically whether the number of flight segments, per se, affects fatigue. To address this science gap, we conducted a randomized, counterbalanced, cross-over study with 24 active-duty regional airline pilots. Objective and subjective fatigue was compared between a 9-hour duty day with multiple take-offs and landings versus a duty day of equal duration with a single take-off and landing. To standardize experimental conditions and isolate the fatiguing effect of the number of segments flown, the entire duty schedules were carried out in a high-fidelity, moving-base, full-flight, regional jet flight simulator. Steps were taken to maintain operational realism, including simulated airplane inspections and acceptance checks, use of realistic dispatch releases and airport charts, real-world air traffic control interactions, etc. During each of the two duty days, 10 fatigue test bouts were administered, which included a 10-minute Psychomotor Vigilance Test (PVT) assessment of objective fatigue and Samn-Perelli (SP) and Karolinska Sleepiness Scale (KSS) assessments of subjective sleepiness/fatigue. Results showed a greater build-up of objective and subjective fatigue in the multi-segment duty day than in the single-segment duty day. With duty start time and duration and other variables that could impact fatigue levels held constant, the greater build-up of fatigue in the multi-segment duty day was attributable specifically to the difference in the number of flight segments flown. Compared to findings in

  4. Quiet Cruise Efficient Short Take-off and Landing Subsonic Transport System

    NASA Technical Reports Server (NTRS)

    Kawai, Ron

    2008-01-01

    This NASA funded study conceived a revolutionary airplane concept to enable future traffic growth by using regional air space. This requires a very quiet airplane with STOL capability. Starting with a Blended Wing Body that is cruise efficient with inherent low noise characteristics from forward noise shielding and void of aft downward noise reflections, integration of embedded distributed propulsion enables incorporation of the revolutionary concept for jet noise shielding. Embedded distributed propulsion also enables incorporation of a fan bleed internally blown flap for quiet powered lift. The powered lift provides STOL capability for operation at regional airports with rapid take-off and descent to further reduce flyover noise. This study focused on configuring the total engine noise shielding STOL concept with a BWB airplane using the Boeing Phantom Works WingMOD multidisciplinary optimization code to define a planform that is pitch controllable. The configuration was then sized and mission data developed to enable NASA to assess the flyover and sideline noise. The foundational technologies needed are identified including military dual use benefits.

  5. Investigation of the Characteristics of an Acceleration-Type Take-Off Indicator in a Large Jet Airplane

    NASA Technical Reports Server (NTRS)

    Kolnick, Joseph J.; Rind, Emanuel

    1959-01-01

    The characteristics of a proposed acceleration-type take-off indicator were observed during take-off runs of a large jet airplane. The instrument performed its function satisfactorily. It showed an essentially constant reading, which agreed closely with the predicted value, throughout the take-off except for about the first 135 feet of the ground roll during which the starting windup of the indicator pointer occurred. Although oscillating longitudinal accelerations at the instrument location were as much as +/- 50 percent of the steady-state acceleration, the instrument showed only small excursions from the mean reading equivalent to not more than +/- 5 percent of the mean reading and was considered to be satisfactorily readable.

  6. Measurement of the Errors of Service Altimeter Installations During Landing-Approach and Take-Off Operations

    NASA Technical Reports Server (NTRS)

    Gracey, William; Jewel, Joseph W., Jr.; Carpenter, Gene T.

    1960-01-01

    The overall errors of the service altimeter installations of a variety of civil transport, military, and general-aviation airplanes have been experimentally determined during normal landing-approach and take-off operations. The average height above the runway at which the data were obtained was about 280 feet for the landings and about 440 feet for the take-offs. An analysis of the data obtained from 196 airplanes during 415 landing approaches and from 70 airplanes during 152 take-offs showed that: 1. The overall error of the altimeter installations in the landing- approach condition had a probable value (50 percent probability) of +/- 36 feet and a maximum probable value (99.7 percent probability) of +/- 159 feet with a bias of +10 feet. 2. The overall error in the take-off condition had a probable value of +/- 47 feet and a maximum probable value of +/- 207 feet with a bias of -33 feet. 3. The overall errors of the military airplanes were generally larger than those of the civil transports in both the landing-approach and take-off conditions. In the landing-approach condition the probable error and the maximum probable error of the military airplanes were +/- 43 and +/- 189 feet, respectively, with a bias of +15 feet, whereas those for the civil transports were +/- 22 and +/- 96 feet, respectively, with a bias of +1 foot. 4. The bias values of the error distributions (+10 feet for the landings and -33 feet for the take-offs) appear to represent a measure of the hysteresis characteristics (after effect and recovery) and friction of the instrument and the pressure lag of the tubing-instrument system.

  7. Research and application of a new kind of measurement technology of take-off and landing performance

    NASA Astrophysics Data System (ADS)

    Chunbao, Yang

    A video-based take-off and landing performance measurement system has been developed to aid in certification of the Y-12 aircraft. The system has high accuracy and is adaptable to computer analysis. Employing dual channel audio inputs, and the video system is capable of coordinating such synchronous signals as IRIG B time code and voice with flight data obtained using an airborne data acquisition system. Applications of the system include searching for the best take-off and landing flight path, the establishment of helicopter hovering capacity, and fly-over noise evaluation.

  8. Validation of Self-Reported Power Take-Off Shielding Using On-Site Farm Audits.

    PubMed

    Chapel, D B; Sorensen, J A; Tinc, P J; Fiske, T; Wyckoff, S; Mellors, P W; Jenkins, P

    2015-04-01

    Despite the substantial contribution of power take-off (PTO) entanglements to workplace morbidity and mortality among agricultural workers, the degree of proper PTO shielding on U.S. farms remains poorly characterized. Sampling from the New York data of the USDA National Agricultural Statistical Service (NASS), at least 200 each of dairy, livestock, crop, fruit, and vegetable farms were surveyed by phone to determine the extent of proper PTO shielding. In the same year, on-site audits were performed at 211 randomly selected New York livestock and dairy farms using a four-point scale to assess PTO shielding. Supplemental data were gathered on farm acreage, number of livestock, principal commodity, and operator experience. The phone survey data for livestock and dairy farms were then compared to the on-farm audit data. In the phone survey, 72.5% of farms reported having shields on all implements. The mean percentage of implements reported to be shielded was 90.2%. By on-farm audit, 10% of farms had all implements properly shielded, and the mean percentage of properly shielded implements was 56.7%, with shielding rates differing widely for different classes of implements. No significant predictors of PTO shielding were identified. The phone survey greatly overestimated proper PTO shielding rates when compared with the on-farm audits. These data suggest a lower level of proper shielding among farmers than is mandated by current industry safety standards. The results also identify a principal weakness of phone surveys in accurately assessing the true magnitude of on-farm risk for PTO entanglement. PMID:26204785

  9. Up and Away: Second Careers Taking Off [and] Career Changers Find Road to Success Marked by Perils.

    ERIC Educational Resources Information Center

    Lewis, Robert

    1996-01-01

    These two articles, which are based on the comments of more than 2,000 readers of the American Association of Retired Persons'"AARP Bulletin," examine career changing in the United States. The first article, "Up and Away: Second Careers Taking Off," focuses on the specific careers that adults are moving into and out of and the factors driving…

  10. Wind as an abiotic factor of Colorado potato beetle (Coleoptera: Chrysomelidae) flight take-off activity under field conditions.

    PubMed

    Boiteau, G; Mccarthy, P C; MacKinley, P D

    2010-10-01

    The flight take-off activity of Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), was significantly higher at a landscape-protected than at semiexposed and exposed sites in a 2-yr field study. In both years, mean daylight temperature, solar radiation, and relative humidity were generally similar at all sites, but wind speed was lower at the protected site than at the exposed sites. Results suggest that wind was the limiting abiotic factor for flight take-off at the exposed site. Caged beetles exposed to constant wind speeds of 3.4, 4.7, and 7.0 m/s showed a significant corresponding decrease in number of flight take-off. There was no cumulative effect of wind exposure on the readiness of the beetles to fly, suggesting that wind acts as a physical barrier to flight take-off. It should be possible to reduce Colorado potato beetle flight dispersal by selecting fields most exposed to wind over landscape-protected fields when rotating potato, Solanum tuberosum L., crops.

  11. Final Scientific/Technical Report: ADVANCED INTEGRATION OF POWER TAKE-OFF IN VIVACE

    SciTech Connect

    Simiao, Gustavo

    2014-03-21

    Vortex Hydro Energy is commercializing a University of Michigan patented MHK device, the VIVACE converter (Vortex Induced Vibration Aquatic Clean Energy). Unlike water turbines, it does not use propeller blades. Rather, river or ocean currents flow around cylinders causing them to move up and down in Flow Induced Motions (FIM). This kinetic energy of the cylinder is then converted to electricity. Importantly, the VIVACE converter is simpler in design and more cost effective than water turbines. This project accelerated the development of the VIVACE technology. Funding from the DOE enabled VHE to accelerate the development in three ways. One was to increase the efficiency of the hydrodynamics of the system. This aided in maximizing the power output for a wide range of water speeds. The second was to design, build, and test an efficient power take-off (PTO) that converted the most power from the VIVACE cylinders into electricity. This effort was necessary because of the nature of power generated using this technology. Although the PTO uses off-the-shelf components, it is specifically tuned to the specific water flow characteristics. The third way the development was accelerated was by testing the improved Beta 1B prototype over a longer period of time in a river. The greatest benefit from the longer open-water testing-period is a better understand of the power generation characteristics of the system as well as the maintenance lifespan of the device. Renewable energy generation is one of today’s most challenging global dilemmas. The energy crisis requires tapping into every source of energy and developing every technology that can generate energy at a competitive cost within the next 50 years. Development of VIVACE will bolster domestic energy security and mitigate global climate change. There are numerous commercial and military applications for a fully developed system, which could generate clean/renewable energy from small scale (1-5kW) to medium scale (500k

  12. Feasibility study of air-breathing turbo-engines for horizontal take-off and landing space plane

    SciTech Connect

    Minoda, M.; Sakata, K.; Tamaki, T.; Saitoh, T.; Yasuda, A.

    1989-01-01

    Various concepts of air-breathing engines (ABEs) that could be used for a horizontal take-off and landing SSTO vehicle are investigated. The performances (with respect to thrust and the specific fuel consumption) of turboengines based on various technologies, including a turbojet with and without afterburner (TJ), turboramjet, and air-turbo-ram jet engines are compared. The mission capabilities of these ABEs for SSTO and TSTO vehicles is examined in terms of the ratio of the effective remaining weight (i.e., the weight on the orbit) to the take-off gross weight, using two-dimensional flight analysis. It was found that the dry TJ with the turbine inlet temperature 2000 C is one of the most promising candidates for the propulsion system of the SSTO vehicle, because of its small weight and high specific impulse. 6 refs.

  13. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  14. A biomechanical analysis of the last stride, touch-down and take-off characteristics of the women's long jump.

    PubMed

    Lees, A; Fowler, N; Derby, D

    1993-08-01

    This study was concerned with the measurement of a selection of performance variables from competitors in the women's long jump final of the World Student Games held in Sheffield, UK in July 1991. Several performances of each of six finalists were recorded on cine-film at 100 Hz. Resulting planar kinematic data were obtained for the last stride, touch-down and take-off. For the analysis, the point of maximum knee flexion was established and this was used to represent the point at which the compression phase had ended. A variety of variables describing the position, velocity and angular changes are presented as descriptive data. In addition, these were used to compute energies on the basis of a whole body model. The data were interpreted on the basis of a technique model of long jumping established from the literature. It was confirmed that take-off velocity was a function of touch-down velocity, and that there was an increase in vertical velocity at the expense of a reduction of horizontal velocity. An attempt was made to identify the mechanisms acting during the touch-down to take-off phase which were responsible for generating vertical velocity. It was concluded that there was evidence for mechanical, biomechanical and muscular mechanisms. The former relates to the generation of vertical velocity by the body riding over the base of support; the second is the elastic re-utilization of energy; and the third is the contribution by concentric muscular contraction.

  15. Probabilistic model, analysis and computer code for take-off and landing related aircraft crashes into a structure

    SciTech Connect

    Glaser, R.

    1996-02-06

    A methodology is presented that allows the calculation of the probability that any of a particular collection of structures will be hit by an aircraft in a take-off or landing related accident during a specified window of time with a velocity exceeding a given critical value. A probabilistic model is developed that incorporates the location of each structure relative to airport runways in the vicinity; the size of the structure; the sizes, types, and frequency of use of commercial, military, and general aviation aircraft which take-off and land at these runways; the relative frequency of take-off and landing related accidents by aircraft type; the stochastic properties of off-runway crashes, namely impact location, impact angle, impact velocity, and the heading, deceleration, and skid distance after impact; and the stochastic properties of runway overruns and runoffs, namely the position at which the aircraft exits the runway, its exit velocity, and the heading and deceleration after exiting. Relevant probability distributions are fitted from extensive commercial, military, and general aviation accident report data bases. The computer source code for implementation of the calculation is provided.

  16. Angry posture.

    PubMed

    Rosário, Jose Luis; Diógenes, Maria Suely Bezerra; Mattei, Rita; Leite, José Roberto

    2016-07-01

    Postural abnormalities can affect the emotions and vice-versa. The aim of the present study was to investigate the existence of a relationship between subjective anger and body posture in 28 women, aged between 20 and 39 years, with a normal body mass index (or underweight) and an absence of neurological, psychiatric or musculoskeletal disorders. The postural parameters photographed were the inclination of the shoulders, protrusion of the head, hyperextension of the knees and shoulder elevation. The degree of anger was rated by analogue scales representing current and usual anger. The results indicated that a relationship exists between current anger and the inclination of the shoulders (p = 0.03), protrusion of the head (p = 0.05) and hyperextension of the knees (p = 0.05). Correlations were found between usual anger, shoulder elevation (p = 0.05) and hyperextension of the knees (p = 0.05). In conclusion, posture is associated with emotions, and usual anger can lead to shoulder protraction. PMID:27634065

  17. Take-off speed in jumping mantises depends on body size and a power-limited mechanism.

    PubMed

    Sutton, G P; Doroshenko, M; Cullen, D A; Burrows, M

    2016-07-15

    Many insects such as fleas, froghoppers and grasshoppers use a catapult mechanism to jump, and a direct consequence of this is that their take-off velocities are independent of their mass. In contrast, insects such as mantises, caddis flies and bush crickets propel their jumps by direct muscle contractions. What constrains the jumping performance of insects that use this second mechanism? To answer this question, the jumping performance of the mantis Stagmomantis theophila was measured through all its developmental stages, from 5 mg first instar nymphs to 1200 mg adults. Older and heavier mantises have longer hind and middle legs and higher take-off velocities than younger and lighter mantises. The length of the propulsive hind and middle legs scaled approximately isometrically with body mass (exponent=0.29 and 0.32, respectively). The front legs, which do not contribute to propulsion, scaled with an exponent of 0.37. Take-off velocity increased with increasing body mass (exponent=0.12). Time to accelerate increased and maximum acceleration decreased, but the measured power that a given mass of jumping muscle produced remained constant throughout all stages. Mathematical models were used to distinguish between three possible limitations to the scaling relationships: first, an energy-limited model (which explains catapult jumpers); second, a power-limited model; and third, an acceleration -: limited model. Only the model limited by muscle power explained the experimental data. Therefore, the two biomechanical mechanisms impose different limitations on jumping: those involving direct muscle contractions (mantises) are constrained by muscle power, whereas those involving catapult mechanisms are constrained by muscle energy. PMID:27284067

  18. Take-off speed in jumping mantises depends on body size and a power-limited mechanism

    PubMed Central

    Doroshenko, M.; Cullen, D. A.; Burrows, M.

    2016-01-01

    ABSTRACT Many insects such as fleas, froghoppers and grasshoppers use a catapult mechanism to jump, and a direct consequence of this is that their take-off velocities are independent of their mass. In contrast, insects such as mantises, caddis flies and bush crickets propel their jumps by direct muscle contractions. What constrains the jumping performance of insects that use this second mechanism? To answer this question, the jumping performance of the mantis Stagmomantis theophila was measured through all its developmental stages, from 5 mg first instar nymphs to 1200 mg adults. Older and heavier mantises have longer hind and middle legs and higher take-off velocities than younger and lighter mantises. The length of the propulsive hind and middle legs scaled approximately isometrically with body mass (exponent=0.29 and 0.32, respectively). The front legs, which do not contribute to propulsion, scaled with an exponent of 0.37. Take-off velocity increased with increasing body mass (exponent=0.12). Time to accelerate increased and maximum acceleration decreased, but the measured power that a given mass of jumping muscle produced remained constant throughout all stages. Mathematical models were used to distinguish between three possible limitations to the scaling relationships: first, an energy-limited model (which explains catapult jumpers); second, a power-limited model; and third, an acceleration-limited model. Only the model limited by muscle power explained the experimental data. Therefore, the two biomechanical mechanisms impose different limitations on jumping: those involving direct muscle contractions (mantises) are constrained by muscle power, whereas those involving catapult mechanisms are constrained by muscle energy. PMID:27284067

  19. Maximizing height, distance or rotation from real-time analysis visualisation of take-off angles and speed.

    PubMed

    Green, Richard

    2006-01-01

    Studies to optimise take off angles for height or distance have usually involved either a time-consuming invasive approach of placing markers on the body in a laboratory setting or using even less efficient manual frame-by-frame joint angle calculations with one of the many sport science video analysis software tools available. This research introduces a computer-vision based, marker-free, real-time biomechanical analysis approach to optimise take-off angles based on speed, base of support and dynamically calculated joint angles and mass of body segments. The goal of a jump is usually for height, distance or rotation with consequent dependencies on speed and phase of joint angles, centre of mass COM) and base of support. First and second derivatives of joint angles and body part COMs are derived from a Continuous Human Movement Recognition (CHMR) system for kinematical and what-if calculations. Motion is automatically segmented using hierarchical Hidden Markov Models and 3D tracking is further stabilized by estimating the joint angles for the next frame using a forward smoothing Particle filter. The results from a study of jumps, leaps and summersaults supporting regular knowledge of results feedback during training sessions indicate that this approach is useful for optimising the height, distance or rotation of skills. Key PointsComputer-vision based marker-free tracking.Real-time biomechanical analysis.Improve tracking using a forward smoothing Particle filter.Automatically segment using hierarchical Hidden Markov Models.Recognize skills using segmented motion.Optimize take-off angles using speed, base of support, joint angles and mass of body segments.Optimize height, distance or rotation of skills. PMID:24357954

  20. Take-off speed in jumping mantises depends on body size and a power-limited mechanism.

    PubMed

    Sutton, G P; Doroshenko, M; Cullen, D A; Burrows, M

    2016-07-15

    Many insects such as fleas, froghoppers and grasshoppers use a catapult mechanism to jump, and a direct consequence of this is that their take-off velocities are independent of their mass. In contrast, insects such as mantises, caddis flies and bush crickets propel their jumps by direct muscle contractions. What constrains the jumping performance of insects that use this second mechanism? To answer this question, the jumping performance of the mantis Stagmomantis theophila was measured through all its developmental stages, from 5 mg first instar nymphs to 1200 mg adults. Older and heavier mantises have longer hind and middle legs and higher take-off velocities than younger and lighter mantises. The length of the propulsive hind and middle legs scaled approximately isometrically with body mass (exponent=0.29 and 0.32, respectively). The front legs, which do not contribute to propulsion, scaled with an exponent of 0.37. Take-off velocity increased with increasing body mass (exponent=0.12). Time to accelerate increased and maximum acceleration decreased, but the measured power that a given mass of jumping muscle produced remained constant throughout all stages. Mathematical models were used to distinguish between three possible limitations to the scaling relationships: first, an energy-limited model (which explains catapult jumpers); second, a power-limited model; and third, an acceleration -: limited model. Only the model limited by muscle power explained the experimental data. Therefore, the two biomechanical mechanisms impose different limitations on jumping: those involving direct muscle contractions (mantises) are constrained by muscle power, whereas those involving catapult mechanisms are constrained by muscle energy.

  1. Preliminary Investigation of a Translating Cowl Technique for Improving Take-off Performance of a Sharp-lip Supersonic Diffuser

    NASA Technical Reports Server (NTRS)

    Cortright, Edgar M , Jr

    1951-01-01

    A preliminary investigation was conducted in quiescent air on a translating cowl technique for improving the take-off performance of a sharp-lip supersonic diffuser. The technique consists of cutting the cowling in a plane normal to its axis and then translating the forepart of the cowling in the forward direction. The leading edge of the fixed portion of the cowling is rounded. Appreciable improved inlet performance was obtained with a cowling translation corresponding to a gap of only 1/4 inlet radius.

  2. The Effect of Compressibility on Eight Full-Scale Propellers Operating in the Take-Off and Climbing Range

    NASA Technical Reports Server (NTRS)

    Biermann, David; Hartman, Edwin P

    1938-01-01

    Tests were made of eight full-scale propellers of different shape at various tip speeds up to about 1,000 feet per second. The range of blade-angle settings investigated was from 10 degrees to 30 degrees at the 0.75 radius. The results indicate that a loss in propulsive efficiency occurred at tip speeds from 0.5 to 0.7 the velocity of sound for the take-off and climbing conditions. As the tip speed increased beyond these critical values, the loss rapidly increased and amounted, in some instances, to more than 20 percent of the thrust power for tip-speed values of 0.8 the speed of sound. In general, as the blade-angle setting was increased, the loss started to occur at lower tip speeds. The maximum loss for a given tip speed occurred at a blade-angle setting of about 20 degrees for the take-off and 25 degrees for the climbing condition. A simplified method for correcting propellers for the effect of compressibility is given in an appendix.

  3. Male moths optimally balance take-off thoracic temperature and warm-up duration to reach a pheromone source quickly.

    PubMed

    Crespo, José G; Vickers, Neil J; Goller, Franz

    2014-12-01

    Animal activities, such as foraging and reproduction, are constrained by decisions about how to allocate energy and time efficiently. Overall, male moths invest less in reproduction than females, but they are thought to engage in a scramble competition for access to females that advertise readiness to mate by releasing sexual pheromones. However, before male moths can follow the pheromone, they often need to heat their flight muscles by shivering to produce sufficient power for sustained flight. Here, we show that Helicoverpa zea males that sense the female pheromone at high ambient temperatures take off with higher thoracic temperature, shiver for less time and warm up faster than males tested at lower ambient temperatures. These higher take-off temperatures translate into higher airspeeds, underscoring the importance of thoracic temperature for flight performance. Furthermore, shorter combined duration for warm-up and pheromone-mediated optomotor anemotaxis is consistent with the idea that males engage in scramble competition for access to females in nature. Our results strongly suggest that male moths minimize the time between perceiving the female's pheromone signal and arriving at the source by optimizing thermoregulatory behaviour and temperature-dependent flight performance in accordance with ambient temperature conditions. Our finding that moths engage in a trade-off between rapid flight initiation and suboptimal flight performance suggests a sensorimotor control mechanism that involves a complex interaction with the thermal environment. PMID:25386029

  4. Interaction of the elytra and hind wing of a rhinoceros beetle (Trypoxylus dichotomus) during a take-off mode

    NASA Astrophysics Data System (ADS)

    Oh, Seungyoung; Oh, Sehyeong; Choi, Haecheon; Lee, Boogeon; Park, Hyungmin; Kim, Sun-Tae

    2015-11-01

    The elytra are a pair of hardened wings that cover the abdomen of a beetle to protect beetle's hind wings. During the take-off, these elytra open and flap in phase with the hind wings. We investigate the effect of the elytra flapping on beetle's aerodynamic performance. Numerical simulations are performed at Re=10,000 (based on the wingtip mean velocity and mean chord length of the hind wing) using an immersed boundary method. The simulations are focused on a take-off, and the wing kinematics used is directly obtained from the experimental observations using high speed cameras. The simulation result shows three-dimensional vortical structures generated by the hind wing of the beetle and their interaction with the elytra. The presence of elytra has a negative effect on the lift generation by the hind wings, but the lift force on the elytra themselves is negligible. Further discussions on the elytra - hind wing interaction will be provided during the presentation. Supported by UD130070ID.

  5. Male moths optimally balance take-off thoracic temperature and warm-up duration to reach a pheromone source quickly.

    PubMed

    Crespo, José G; Vickers, Neil J; Goller, Franz

    2014-12-01

    Animal activities, such as foraging and reproduction, are constrained by decisions about how to allocate energy and time efficiently. Overall, male moths invest less in reproduction than females, but they are thought to engage in a scramble competition for access to females that advertise readiness to mate by releasing sexual pheromones. However, before male moths can follow the pheromone, they often need to heat their flight muscles by shivering to produce sufficient power for sustained flight. Here, we show that Helicoverpa zea males that sense the female pheromone at high ambient temperatures take off with higher thoracic temperature, shiver for less time and warm up faster than males tested at lower ambient temperatures. These higher take-off temperatures translate into higher airspeeds, underscoring the importance of thoracic temperature for flight performance. Furthermore, shorter combined duration for warm-up and pheromone-mediated optomotor anemotaxis is consistent with the idea that males engage in scramble competition for access to females in nature. Our results strongly suggest that male moths minimize the time between perceiving the female's pheromone signal and arriving at the source by optimizing thermoregulatory behaviour and temperature-dependent flight performance in accordance with ambient temperature conditions. Our finding that moths engage in a trade-off between rapid flight initiation and suboptimal flight performance suggests a sensorimotor control mechanism that involves a complex interaction with the thermal environment.

  6. Male moths optimally balance take-off thoracic temperature and warm-up duration to reach a pheromone source quickly

    PubMed Central

    Crespo, José G.; Vickers, Neil J.; Goller, Franz

    2014-01-01

    Animal activities, such as foraging and reproduction, are constrained by decisions about how to allocate energy and time efficiently. Overall, male moths invest less in reproduction than females, but they are thought to engage in a scramble competition for access to females that advertise readiness to mate by releasing sexual pheromones. However, before male moths can follow the pheromone, they often need to heat their flight muscles by shivering to produce sufficient power for sustained flight. Here, we show that Helicoverpa zea males that sense the female pheromone at high ambient temperatures take off with higher thoracic temperature, shiver for less time and warm up faster than males tested at lower ambient temperatures. These higher take-off temperatures translate into higher airspeeds, underscoring the importance of thoracic temperature for flight performance. Furthermore, shorter combined duration for warm-up and pheromone-mediated optomotor anemotaxis is consistent with the idea that males engage in scramble competition for access to females in nature. Our results strongly suggest that male moths minimize the time between perceiving the female's pheromone signal and arriving at the source by optimizing thermoregulatory behaviour and temperature-dependent flight performance in accordance with ambient temperature conditions. Our finding that moths engage in a trade-off between rapid flight initiation and suboptimal flight performance suggests a sensorimotor control mechanism that involves a complex interaction with the thermal environment. PMID:25386029

  7. Take-off Stability Characteristics of a 1/13-scale Model of the Consolidated Vultee Skate 7 Seaplane (TED No. NACA DE 338)

    NASA Technical Reports Server (NTRS)

    McKann, Robert; Coffee, Claude W.; Abrabian, Donald D.

    1949-01-01

    The take-off stability characteristics of a Consolidated Vultee Aircraft Corporation Skate 7 seaplane were determined in the Langley tank no. 2. Trim limits of stability, trim tracks, and elevator limits of stability are presented.

  8. Excepting Myotis capaccinii, the wings' contribution to take-off performance does not correlate with foraging ecology in six species of insectivorous bat

    PubMed Central

    Gardiner, James D.; Altringham, John D.; Papadatou, Elena; Nudds, Robert L.

    2014-01-01

    ABSTRACT Take-off in bats is separated into two distinct phases: an initial jump and a subsequent wing powered acceleration. Here, using footage from a high-speed camera, the first comparative study of the performance during the wing induced phase of take-off in six insectivorous bat species is described. Despite distinct differences in foraging strategy, the mass specific power generated by the bats during wing induced take-off did not differ between species, with the exception of Myotis capaccinii. This suggests that differences in take-off performance may only be evident in bats that exhibit particularly unusual foraging strategies, such as the trawling behaviour of M. capaccinii – with differences in the remaining species only manifesting in subtler aspects of flight performance such as agility or manoeuvrability. The poorer take-off performance of M. capaccinii could be related to either a reduction in wing-stroke amplitude to stop the wings hitting the water's surface during foraging or perhaps an effect of having very large feet. No scaling relationship between body mass and mass-specific take-off power was found, which supports earlier research on birds and insects, suggesting that the mass-specific muscle power available for flight is broadly similar across a large range of body sizes and species. PMID:25326512

  9. Using EMGs and kinematics data to study the take-off technique of experts and novices for a pole vaulting short run-up educational exercise.

    PubMed

    Bassement, Maud; Garnier, Cyril; Goss-Sampson, Mark; Watelain, Eric; Lepoutre, François-Xavier

    2010-09-01

    This study attempts to characterise the electromyographic activity and kinematics exhibited during the performance of take-off for a pole vaulting short run-up educational exercise, for different expertise levels. Two groups (experts and novices) participated in this study. Both groups were asked to execute their take-off technique for that specific exercise. Among the kinematics variables studied, the knee, hip and ankle angles and the hip and knee angular velocities were significantly different. There were also significant differences in the EMG variables, especially in terms of (i) biceps femoris and gastrocnemius lateralis activity at touchdown and (ii) vastus lateralis and gastrocnemius lateralis activity during take-off. During touchdown, the experts tended to increase the stiffness of the take-off leg to decrease braking. Novices exhibited less stiffness in the take-off leg due to their tendency to maintain a tighter knee angle. Novices also transferred less energy forward during take-off due to lack of contraction in the vastus lateralis, which is known to contribute to forward energy transfers. This study highlights the differences in both groups in terms of muscular and angular control according to the studied variables. Such studies of pole vaulting could be useful to help novices to learn expert's technique.

  10. Validation of a Flexible Aircraft TakeOff and Landing Analysis /FATOLA/ computer program using flight landing data

    NASA Technical Reports Server (NTRS)

    Carden, H. D.; Mcgehee, J. R.

    1977-01-01

    A multiple-degree-of-freedom takeoff and landing analysis, Flexible Aircraft TakeOff and Landing Analysis computer program (FATOLA), was used to predict the landing behavior of a rigid-body X-24B reentry research vehicle and of a flexible-body modified-delta-wing supersonic YF-12 research aircraft. The analytical predictions were compared with flight test data for both research vehicles. Predicted time histories of vehicle motion and attitude, landing-gear strut stroke, and axial force transmitted from the landing gear to the airframe during the landing impact and rollout compared well with the actual time histories. Based on the comparisons presented, the versatility and validity of the FATOLA program for predicting landing dynamics of aircraft has been demonstrated.

  11. An evaluation of composite propulsion for single-stage-to-orbit vehicles designed for horizontal take-off

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1977-01-01

    Composite propulsion was analyzed for single-stage-to-orbit vehicles designed for horizontal take-off. Trajectory, geometric, and mass analyses were performed to establish the orbital payload capability of six engines. The results indicated that none of the engines performed adequately to deliver payloads to orbit as analyzed. The single-stage turbine and oxidizer-rich gas generator resulted in a low engine specific impulse, and the performance increment of the ejector subsystem was less than that of a separate rocket system with a high combustion pressure. There was a benefit from incorporating a fan into the engine, and removal of the fan from the airstream during the ramjet mode increased the orbital payload capability.

  12. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  13. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  14. The Effect of Spray Strips on the Take-off Performance of a Model of a Flying-Boat Hull

    NASA Technical Reports Server (NTRS)

    Truscott, Starr

    1935-01-01

    The effect on the take-off performance of a model of the hull of a typical flying boat, Navy PH-1, of fitting spray strips of four different widths, each at three different angles, was determined by model tests in the NACA Tank. Spray strips of widths up to 3 percent of the beam improve the general performance at speeds near the hump and reduce the spray thrown. A downward angle of 30 degrees to 45 degrees in the neighborhood of the step seems most favorable for the reduction of the spray. The spray strips have a large effect in reducing the trimming moments at speeds near the hump speed, but have little effect on them at high speeds.

  15. Design of a hydraulic power take-off system for the wave energy device with an inverse pendulum

    NASA Astrophysics Data System (ADS)

    Zhang, Da-hai; Li, Wei; Zhao, Hai-tao; Bao, Jing-wei; Lin, Yong-gang

    2014-04-01

    This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.

  16. Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection.

    PubMed

    Jafaruddin; Indratno, Sapto W; Nuraini, Nuning; Supriatna, Asep K; Soewono, Edy

    2015-01-01

    Estimating the basic reproductive ratio ℛ 0 of dengue fever has continued to be an ever-increasing challenge among epidemiologists. In this paper we propose two different constructions to estimate ℛ 0 which is derived from a dynamical system of host-vector dengue transmission model. The construction is based on the original assumption that in the early states of an epidemic the infected human compartment increases exponentially at the same rate as the infected mosquito compartment (previous work). In the first proposed construction, we modify previous works by assuming that the rates of infection for mosquito and human compartments might be different. In the second construction, we add an improvement by including more realistic conditions in which the dynamics of an infected human compartments are intervened by the dynamics of an infected mosquito compartment, and vice versa. We apply our construction to the real dengue epidemic data from SB Hospital, Bandung, Indonesia, during the period of outbreak Nov. 25, 2008-Dec. 2012. We also propose two scenarios to determine the take-off rate of infection at the beginning of a dengue epidemic for construction of the estimates of ℛ 0: scenario I from equation of new cases of dengue with respect to time (daily) and scenario II from equation of new cases of dengue with respect to cumulative number of new cases of dengue. The results show that our first construction of ℛ 0 accommodates the take-off rate differences between mosquitoes and humans. Our second construction of the ℛ 0 estimation takes into account the presence of infective mosquitoes in the early growth rate of infective humans and vice versa. We conclude that the second approach is more realistic, compared with our first approach and the previous work. PMID:26413140

  17. Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection.

    PubMed

    Jafaruddin; Indratno, Sapto W; Nuraini, Nuning; Supriatna, Asep K; Soewono, Edy

    2015-01-01

    Estimating the basic reproductive ratio ℛ 0 of dengue fever has continued to be an ever-increasing challenge among epidemiologists. In this paper we propose two different constructions to estimate ℛ 0 which is derived from a dynamical system of host-vector dengue transmission model. The construction is based on the original assumption that in the early states of an epidemic the infected human compartment increases exponentially at the same rate as the infected mosquito compartment (previous work). In the first proposed construction, we modify previous works by assuming that the rates of infection for mosquito and human compartments might be different. In the second construction, we add an improvement by including more realistic conditions in which the dynamics of an infected human compartments are intervened by the dynamics of an infected mosquito compartment, and vice versa. We apply our construction to the real dengue epidemic data from SB Hospital, Bandung, Indonesia, during the period of outbreak Nov. 25, 2008-Dec. 2012. We also propose two scenarios to determine the take-off rate of infection at the beginning of a dengue epidemic for construction of the estimates of ℛ 0: scenario I from equation of new cases of dengue with respect to time (daily) and scenario II from equation of new cases of dengue with respect to cumulative number of new cases of dengue. The results show that our first construction of ℛ 0 accommodates the take-off rate differences between mosquitoes and humans. Our second construction of the ℛ 0 estimation takes into account the presence of infective mosquitoes in the early growth rate of infective humans and vice versa. We conclude that the second approach is more realistic, compared with our first approach and the previous work.

  18. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  19. Project: Taking Off

    ERIC Educational Resources Information Center

    Duncan, Karen

    1975-01-01

    The project's objectives include helping obese students understand their problem in ways that are relevant, interesting, creative, yet academic, and wiping out the pathetic prophecies and painful experiences concerned with obesity in children and teenagers. Concise objectives of the program's educational component and definition of areas of…

  20. GPM Takes Off

    NASA Video Gallery

    An international satellite that will set a new standard for global precipitation measurements from space has completed a 7,300-mile journey from the United States to Japan, where it now will underg...

  1. Determining postural stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez (Inventor); Forth, Katharine E. (Inventor); Paloski, William H. (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  2. Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus)

    PubMed Central

    Byrnes, Greg; Lim, Norman T.-L; Spence, Andrew J

    2008-01-01

    Arboreal animals negotiate a highly three-dimensional world that is discontinuous on many spatial scales. As the scale of substrate discontinuity increases, many arboreal animals rely on leaping or gliding locomotion between distant supports. In order to successfully move through their habitat, gliding animals must actively modulate both propulsive and aerodynamic forces. Here we examined the take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus) using a custom-designed three-dimensional accelerometry system. We found that colugos increase the propulsive impulse to affect longer glides. However, we also found that landing forces are negatively associated with glide distance. Landing forces decrease rapidly as glide distance increases from the shortest glides, then level off, suggesting that the ability to reorient the aerodynamic forces prior to landing is an important mechanism to reduce velocity and thus landing forces. This ability to substantially alter the aerodynamic forces acting on the patagial wing in order to reorient the body is a key to the transition between leaping and gliding and allows gliding mammals to travel long distances between trees with reduced risk of injury. Longer glides may increase the access to distributed resources and reduce the exposure to predators in the canopy or on the forest floor. PMID:18252673

  3. Short Field Take-Off and Landing Performance as an Enabling Technology for a Greener, More Efficient Airspace System

    NASA Technical Reports Server (NTRS)

    Hange, Craig E.

    2009-01-01

    The Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft and Civil Tiltrotor (CTR) are two examples of powered-lift aircraft concepts that are of interest to NASA. These concepts will be able to utilize the shorter unused or underutilized runways and corresponding airspace at the crowded hub airports and many unused airfields and airspace that currently exist in other expanding urban areas providing additional capacity to the airspace system and reductions in congestion and delays seen in the current system. By treating the use of CESTOL and CTR as critical components that supplement other green aircraft to be used in the overall airspace system, the efficiency and improvements gained by the entire system will offset the potential increased fuel usage and emissions that may be a result of providing short field capability to the powered-lift aircraft. My presentation will address how NASA and the aerospace industry may identify, analysis, and finally implement these powered-lift aircraft into the airspace system and improve the capacity and reduce delay, while obtaining an overall reduction in noise, fuel usage, and emissions.

  4. Project designs of alternative versions of the SL-86 2-Stage horizontal take-off space launcher

    NASA Astrophysics Data System (ADS)

    Fielding, J. P.

    This paper describes studies of three versions of a 2-Stage to orbit horizontal take-off launcher. An initial design study was performed, which determined the basic shape of the aircraft together with weight, and aerodynamic information. This was given to the 31 Master students working on the project, who were given individual responsibility for the design and analysis of major parts of the aircraft. The orbiter was designed to use a carbon fiber structure, protected by a thermal protective system and should take a 4 1/2 ton payload into Low Earth Orbit, from a payload bay of sinmilar cross-section to the Shuttle. The booster vehicle has a cranked delta wing and a recess on the upper surface to accommodate the orbiter, which is launched at Mach 4 at 25 km altitude. The project showed that the concept was feasible but highlighted several problem areas, which were addressed by a subsequent MSc thesis. The main changes were the introduction of a canard foreplane and larger turbo-ramjets to the booster, which gave considerable improvements. The third version had more power, and separation at Mach 5.

  5. Studies on an aerial propellant transfer space plane (APTSP)

    NASA Astrophysics Data System (ADS)

    Jayan, N.; Biju Kumar, K. S.; Gupta, Anish Kumar; Kashyap, Akhilesh Kumar; Venkatraman, Kartik; Mathew, Joseph; Mukunda, H. S.

    2004-04-01

    This paper presents a study of a fully reusable earth-to-orbit launch vehicle concept with horizontal take-off and landing, employing a turbojet engine for low speed, and a rocket for high-speed acceleration and space operations. This concept uses existing technology to the maximum possible extent, thereby reducing development time, cost and effort. It uses the experience in aerial filling of military aircrafts for propellant filling at an altitude of 13 km at a flight speed of M=0.85. Aerial filling of propellant reduces the take-off weight significantly thereby minimizing the structural weight of the vehicle. The vehicle takes off horizontally and uses turbojet engines till the end of the propellant filling operation. The rocket engines provide thrust for the next phase till the injection of a satellite at LEO. A sensitivity analysis of the mission with respect to rocket engine specific impulse and overall vehicle structural factor is also presented in this paper. A conceptual design of space plane with a payload capability of 10 ton to LEO is carried out. The study shows that the realization of an aerial propellant transfer space plane is possible with limited development of new technology thus reducing the demands on the finances required for achieving the objectives.

  6. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  7. Exercise and Posture

    MedlinePlus

    ... Info For Teens Message Boards & Forums Donate Shop Exercise & Posture About Spondylitis / Exercise & Posture Overview For The ... Diet Blood Work and Spondylitis Spondylitis Awareness Month Exercise Exercise is an integral part of any spondylitis ...

  8. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    NASA Technical Reports Server (NTRS)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather

  9. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  10. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.

    PubMed

    McFarlane, Laura; Altringham, John D; Askew, Graham N

    2016-05-01

    Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175

  11. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights

    PubMed Central

    McFarlane, Laura; Altringham, John D.; Askew, Graham N.

    2016-01-01

    ABSTRACT Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175

  12. Analysis of the effects of boundary-layer control in the take-off and power-off landing performance characteristics of a liaison type of airplane

    NASA Technical Reports Server (NTRS)

    Horton, Elmer A; Loftin, Laurence K; Racisz, Stanley F; Quinn, John

    1951-01-01

    A performance analysis has been made to determine whether boundary-layer control by suction might reduce the minimum take-off and landing distances of a four-place or five-place airplane or a liaison type of airplane below those obtainable with conventional high-lift devices. The airplane was assumed to have a cruise duration of 5 hours at 60-percent power and to be operating from airstrips having a ground friction coefficient of 0.2 or a combined ground and braking coefficient of 0.4. The payload was fixed at 1500 pounds, the wing span was varied from 25 to 100 feet, the aspect ratio was varied from 5 to 15, and the power was varied from 300 to 1300 horsepower. Maximum lift coefficients of 5.0 and 2.8 were assumed for the airplanes with and without boundary-layer-control --equipment weight was included. The effects of the boundary-layer control on total take-off distance, total power-off landing distance, landing and take-off ground run, stalling speed, sinking speed, and gliding speed were determined.

  13. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces.

    PubMed

    Bimbard, Gaëlle; Kolomenskiy, Dmitry; Bouteleux, Olivier; Casas, Jérôme; Godoy-Diana, Ramiro

    2013-09-15

    Up to now, the take-off stage has remained an elusive phase of insect flight that was relatively poorly explored compared with other maneuvers. An overall assessment of the different mechanisms involved in force production during take-off has never been explored. Focusing on the first downstroke, we have addressed this problem from a force balance perspective in butterflies taking off from the ground. In order to determine whether the sole aerodynamic wing force could explain the observed motion of the insect, we have firstly compared a simple analytical model of the wing force with the acceleration of the insect's center of mass estimated from video tracking of the wing and body motions. Secondly, wing kinematics were also used for numerical simulations of the aerodynamic flow field. Similar wing aerodynamic forces were obtained by the two methods. However, neither are sufficient, nor is the inclusion of the ground effect, to predict faithfully the body acceleration. We have to resort to the leg forces to obtain a model that best fits the data. We show that the median and hind legs display an active extension responsible for the initiation of the upward motion of the insect's body, occurring before the onset of the wing downstroke. We estimate that legs generate, at various times, an upward force that can be much larger than all other forces applied to the insect's body. The relative timing of leg and wing forces explains the large variability of trajectories observed during the maneuvers.

  14. Social Postural Coordination

    ERIC Educational Resources Information Center

    Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.

    2011-01-01

    The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…

  15. Synthesis of the unmanned aerial vehicle remote control augmentation system

    NASA Astrophysics Data System (ADS)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  16. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  17. Effect of UV-Blocking Plastic Films on Take-Off and Host Plant Finding Ability of Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Miranda, M P; Dos Santos, F L; Felippe, M R; Moreno, A; Fereres, A

    2015-02-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of citrus worldwide due to its ability to transmit the bacteria associated with huanglongbing. Vision, behavior, and performance of insect pests can be manipulated by using ultraviolet (UV)-blocking materials. Thus, the aim of our study was to evaluate how UV-blocking plastic films may affect the take-off and host plant finding ability of D. citri. To assess the effect of a UV-deficient environment on take-off, adult psyllids were released from a vial inside a screenhouse covered by a UV-blocking or standard (control) film and the number of insects remaining on each vial under each treatment was counted at different time intervals. Moreover, to assess the ability of D. citri to find citrus plants under a UV-deficient environment, two independent no-choice host plant finding assays with different plant arrangements were conducted. In each treatment, the number of psyllids per plant at different time intervals was counted. Both D. citri take-off and host plant finding ability was clearly disrupted under a UV-deficient environment. The number of psyllids remaining in the vials was significantly higher under UV-blocking than standard film in all periods recorded. Furthermore, psyllids were present in significantly higher number on citrus plants under standard film than under UV-blocking film in all of the periods assessed and experiments conducted. Our results showed that UV-blocking materials could become a valuable strategy for integrated management of D. citri and huanglongbing in citrus grown in enclosed environments.

  18. Effect of UV-Blocking Plastic Films on Take-Off and Host Plant Finding Ability of Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Miranda, M P; Dos Santos, F L; Felippe, M R; Moreno, A; Fereres, A

    2015-02-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of citrus worldwide due to its ability to transmit the bacteria associated with huanglongbing. Vision, behavior, and performance of insect pests can be manipulated by using ultraviolet (UV)-blocking materials. Thus, the aim of our study was to evaluate how UV-blocking plastic films may affect the take-off and host plant finding ability of D. citri. To assess the effect of a UV-deficient environment on take-off, adult psyllids were released from a vial inside a screenhouse covered by a UV-blocking or standard (control) film and the number of insects remaining on each vial under each treatment was counted at different time intervals. Moreover, to assess the ability of D. citri to find citrus plants under a UV-deficient environment, two independent no-choice host plant finding assays with different plant arrangements were conducted. In each treatment, the number of psyllids per plant at different time intervals was counted. Both D. citri take-off and host plant finding ability was clearly disrupted under a UV-deficient environment. The number of psyllids remaining in the vials was significantly higher under UV-blocking than standard film in all periods recorded. Furthermore, psyllids were present in significantly higher number on citrus plants under standard film than under UV-blocking film in all of the periods assessed and experiments conducted. Our results showed that UV-blocking materials could become a valuable strategy for integrated management of D. citri and huanglongbing in citrus grown in enclosed environments. PMID:26470126

  19. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  20. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors.

    PubMed

    Logar, Grega; Munih, Marko

    2015-05-13

    This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton-Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers' body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  1. Real-time Coupled Ensemble Kalman Filter Forecasting & Nonlinear Model Predictive Control Approach for Optimal Power Take-off of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas; Previsic, Mirko

    2014-11-01

    In recent years, there has been a growing interest in renewable energy. Among all the available possibilities, wave energy conversion, due to the huge availability of energy that the ocean could provide, represents nowadays one of the most promising solutions. However, the efficiency of a wave energy converter for ocean wave energy harvesting is still far from making it competitive with more mature fields of renewable energy, such as solar and wind energy. One of the main problems is related to the difficulty to increase the power take-off through the implementation of an active controller without a precise knowledge of the oncoming wavefield. This work represents the first attempt at defining a realistic control framework for optimal power take-off of a wave energy converter where the ocean wavefield is predicted through a nonlinear Ensemble Kalman filter which assimilates data from a wave measurement device, such as a Doppler radar or a measurement buoy. Knowledge of the future wave profile is then leveraged in a nonlinear direct multiple shooting model predictive control framework allowing the online optimization of the energy absorption under motion and machinery constraints of the device.

  2. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    NASA Technical Reports Server (NTRS)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  3. HAWK-I Takes Off

    NASA Astrophysics Data System (ADS)

    2007-08-01

    New Wide Field Near-Infrared Imager for ESO's Very Large Telescope Europe's flagship ground-based astronomical facility, the ESO VLT, has been equipped with a new 'eye' to study the Universe. Working in the near-infrared, the new instrument - dubbed HAWK-I - covers about 1/10th the area of the Full Moon in a single exposure. It is uniquely suited to the discovery and study of faint objects, such as distant galaxies or small stars and planets. ESO PR Photo 36a/07 ESO PR Photo 36a/07 HAWK-I on the VLT After three years of hard work, HAWK-I (High Acuity, Wide field K-band Imaging) saw First Light on Yepun, Unit Telescope number 4 of ESO's VLT, on the night of 31 July to 1 August 2007. The first images obtained impressively demonstrate its potential. "HAWK-I is a credit to the instrument team at ESO who designed, built and commissioned it," said Catherine Cesarsky, ESO's Director General. "No doubt, HAWK-I will allow rapid progress in very diverse areas of modern astronomy by filling a niche of wide-field, well-sampled near-infrared imagers on 8-m class telescopes." "It's wonderful; the instrument's performance has been terrific," declared Jeff Pirard, the HAWK-I Project Manager. "We could not have hoped for a better start, and look forward to scientifically exciting and beautiful images in the years to come." During this first commissioning period all instrument functions were checked, confirming that the instrument performance is at the level expected. Different astronomical objects were observed to test different characteristics of the instrument. For example, during one period of good atmospheric stability, images were taken towards the central bulge of our Galaxy. Many thousands of stars were visible over the field and allowed the astronomers to obtain stellar images only 3.4 pixels (0.34 arcsecond) wide, uniformly over the whole field of view, confirming the excellent optical quality of HAWK-I. ESO PR Photo 36b/07 ESO PR Photo 36c/07 Nebula in Serpens (HAWK-I/VLT) HAWK-I takes images in the 0.9 to 2.5 micron domain over a large field-of-view of 7.5 x 7.5 arcminutes. This is nine times larger than that of ISAAC, another near-infrared imager on the VLT that went into operation in late 1998. ISAAC has shown how deep near-infrared images can contribute uniquely to the discovery and study of large, distant galaxies, and to the study of discs around stars or even very low mass objects, down to a few Jupiter masses. HAWK-I will build on this experience by being able to study much larger areas with an excellent image quality. HAWK-I has four 2k x 2k array detectors, i.e. a total of 16 million 0.1 arcsecond pixels. "Until the availability of the James Webb Space Telescope in the next decade, it is clear that 8-m class telescopes will provide the best sensitivity achievable in the near-infrared below 3 microns," explained Mark Casali, the ESO scientist responsible for the instrument. Given the wide field, fine sampling and the high sensitivity of HAWK-I, the deepest scientific impact is expected in the areas of faint sources. "With its special filter set, HAWK-I will allow us to peer into the most distant Universe," said Markus Kissler-Patig, the Instrument Scientist. "In particular, with HAWK-I, we will scrutinise the very first objects that formed in the Universe." HAWK-I will also be very well suited for the search for the most massive stars and for the least massive objects in our Galaxy, such as hot Jupiters. But HAWK-I will also be a perfect instrument for the study of outer Solar System bodies, such as distant, icy asteroids and comets. HAWK-I is the eleventh instrument to be installed at ESO's VLT. It bridges the gap between the first and the second generation instruments to be installed on this unique facility.

  4. Professional Learning Networks Taking Off

    ERIC Educational Resources Information Center

    Flanigan, Robin L.

    2012-01-01

    Busy educators who want to ask advice, offer opinions, and engage in discussions with colleagues increasingly turn to professional learning networks (PLNs)--online communities that allow the sharing of lesson plans, teaching strategies, and student work, as well as collaboration across grade levels and departments. As budget cuts limit…

  5. Can Quiet Standing Posture Predict Compensatory Postural Adjustment?

    PubMed Central

    Moya, Gabriel Bueno Lahóz; Siqueira, Cássio Marinho; Caffaro, Renê Rogieri; Fu, Carolina; Tanaka, Clarice

    2009-01-01

    OBJECTIVE The aim of this study was to analyze whether quiet standing posture is related to compensatory postural adjustment. INTRODUCTION The latest data in clinical practice suggests that static posture may play a significant role in musculoskeletal function, even in dynamic activities. However, no evidence exists regarding whether static posture during quiet standing is related to postural adjustment. METHODS Twenty healthy participants standing on a movable surface underwent unexpected, standardized backward and forward postural perturbations while kinematic data were acquired; ankle, knee, pelvis and trunk positions were then calculated. An initial and a final video frame representing quiet standing posture and the end of the postural perturbation were selected in such a way that postural adjustments had occurred between these frames. The positions of the body segments were calculated in these initial and final frames, together with the displacement of body segments during postural adjustments between the initial and final frames. The relationship between the positions of body segments in the initial and final frames and their displacements over this time period was analyzed using multiple regressions with a significance level of p ≤ 0.05. RESULTS We failed to identify a relationship between the position of the body segments in the initial and final frames and the associated displacement of the body segments. DISCUSSION The motion pattern during compensatory postural adjustment is not related to quiet standing posture or to the final posture of compensatory postural adjustment. This fact should be considered when treating balance disturbances and musculoskeletal abnormalities. CONCLUSION Static posture cannot predict how body segments will behave during compensatory postural adjustment. PMID:19690665

  6. Autoimmune Basis for Postural Tachycardia Syndrome

    ClinicalTrials.gov

    2016-10-14

    Postural Orthostatic Tachycardia Syndrome; Postural Tachycardia Syndrome; Tachycardia; Arrhythmias, Cardiac; Autonomic Nervous System Diseases; Orthostatic Intolerance; Cardiovascular Diseases; Primary Dysautonomias

  7. Tips to Maintain Good Posture

    MedlinePlus

    ... Pain and Chiropractic Posture Spinal Health Winter Activities Backpack Safety Kids and Sports Exercising Outdoors with Baby ... Pain and Chiropractic Posture Spinal Health Winter Activities Backpack Safety Kids and Sports Exercising Outdoors with Baby ...

  8. Stopover optimization in a long-distance migrant: the role of fuel load and nocturnal take-off time in Alaskan northern wheatears (Oenanthe oenanthe)

    PubMed Central

    2013-01-01

    Introduction In long-distance migrants, a considerably higher proportion of time and energy is allocated to stopovers rather than to flights. Stopover duration and departure decisions affect consequently subsequent flight stages and overall speed of migration. In Arctic nocturnal songbird migrants the trade-off between a relatively long migration distance and short nights available for travelling may impose a significant time pressure on migrants. Therefore, we hypothesize that Alaskan northern wheatears (Oenanthe oenanthe) use a time-minimizing migration strategy to reach their African wintering area 15,000 km away. Results We estimated the factors influencing the birds’ daily departure probability from an Arctic stopover before crossing the Bering Strait by using a Cormack-Jolly-Seber model. To identify in which direction and when migration was resumed departing birds were radio-tracked. Here we show that Alaskan northern wheatears did not behave as strict time minimizers, because their departure fuel load was unrelated to fuel deposition rate. All birds departed with more fuel load than necessary for the sea crossing. Departure probability increased with stopover duration, evening fuel load and decreasing temperature. Birds took-off towards southwest and hence, followed in general the constant magnetic and geographic course but not the alternative great circle route. Nocturnal departure times were concentrated immediately after sunset. Conclusion Although birds did not behave like time-minimizers in respect of the optimal migration strategies their surplus of fuel load clearly contradicted an energy saving strategy in terms of the minimization of overall energy cost of transport. The observed low variation in nocturnal take-off time in relation to local night length compared to similar studies in the temperate zone revealed that migrants have an innate ability to respond to changes in the external cue of night length. Likely, birds maximized their potential

  9. Postural orthostatic tachycardia syndrome.

    PubMed

    Agarwal, A K; Garg, R; Ritch, A; Sarkar, P

    2007-07-01

    Postural orthostatic tachycardia syndrome (POTS) is an autonomic disturbance which has become better understood in recent years. It is now thought to encompass a group of disorders that have similar clinical features, such as orthostatic intolerance, but individual distinguishing parameters--for example, blood pressure and pulse rate. The clinical picture, diagnosis, and management of POTS are discussed.

  10. Posture and Movement

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.

  11. Postural control during lifting.

    PubMed

    Kollmitzer, Josef; Oddsson, L; Ebenbichler, G R; Giphart, J E; DeLuca, C J

    2002-05-01

    Any voluntary motion of the body causes an internal perturbation of balance. Load transfer during manual material handling may increase these perturbations. This study investigates effects of stance condition on postural control during lifting. Nineteen healthy subjects repeatedly lifted and lowered a load between a desk and a shelf. The base of support was varied between parallel and step stance. Ground reaction force and segmental kinematics were measured. Load transfer during lifting perturbed balance. In parallel stance postural response consisted of axial movements in the sagittal plane. Such strategy was accompanied by increased posterior shear forces after lift-off. Lifting in step stance provided extended support in anterior/posterior direction. The postural control mechanisms in the sagittal plane are less complex as compared to parallel stance. However, lifting in step stance was asymmetrical and thus accompanied by distinct lateral transfer of the body. Lateral shear forces were larger as compared to parallel stance. Both lifting techniques exhibit positive and negative aspects. We cannot recommend either one as being better in terms of postural control.

  12. Role of take-off potential and second plateau response in generation of early afterdepolarization in arterial fibers of mouse heart.

    PubMed

    Liu, T F; Han, D Y

    1991-04-01

    Take-off potentials (TOPs) of triggered bursts were studied on aconitine- 3.0 mM K+ and quinidine-induced early afterdepolarization (EADs) in mice atrial fibers. TOPs varied from -40 to -66 mV (-53.4 +/- 6.4 mV, n = 14) depending on the cycle length of stimulation. TOPs were cycle length-dependent and the relationship between TOP and cycle length was exponential. Before the generation of EAD, a second plateau appeared following the rapid repolarization phase of action potential (AP). In some preparations, EAD could not be induced, especially at a shorter cycle length, leaving a definite second plateau following the AP under treatment with effective agents. By application of a premature stimulation on the second plateau, only one burst could be observed. However, two or more bursts could be induced when a stimulation was applied on the rapid repolarization phase at -50 +/- 6 mV (n = 17) level. We defined this phenomenon as "second plateau response" which was studied in the present work under treatment with quinidine (4 cases), 3.0 mM K+ (4), ryanodine (6) and Bay K 8644 (3). The second plateau response was abolished by tetrodotoxin (1.0 microM), nifedipine (2.0 microM) or rapid driving. All of these were similar to the properties of the EAD. It is suggested that the second plateau response may be taken as an indicator of the capability of the EAD generation in myocardiac cells.

  13. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    SciTech Connect

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p, for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.

  14. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  15. Postural control during kneeling.

    PubMed

    Mezzarane, Rinaldo André; Kohn, André Fabio

    2008-05-01

    Postural control was studied when the subject was kneeling with erect trunk in a quiet posture and compared to that obtained during quiet standing. The analysis was based on the center of pressure motion in the sagittal plane (CPx), both in the time and in the frequency domains. One could assume that postural control during kneeling would be poorer than in standing because it is a less natural posture. This could cause a higher CPx variability. The power spectral density (PSD) of the CPx obtained from the experimental data in the kneeling position (KN) showed a significant decrease at frequencies below 0.3 Hz compared to upright (UP) (P < 0.01), which indicates less sway in KN. Conversely, there was an increase in fast postural oscillations (above 0.7 Hz) during KN compared to UP (P < 0.05). The root mean square (RMS) of the CPx was higher for UP (P < 0.01) while the mean velocity (MV) was higher during KN (P < 0.05). Lack of vision had a significant effect on the PSD and the parameters estimated from the CPx in both positions. We also sought to verify whether the changes in the PSD of the CPx found between the UP and KN positions were exclusively due to biomechanical factors (e.g., lowered center of gravity), or also reflected changes in the neural processes involved in the control of balance. To reach this goal, besides the experimental approach, a simple feedback model (a PID neural system, with added neural noise and controlling an inverted pendulum) was used to simulate postural sway in both conditions (in KN the pendulum was shortened, the mass and the moment of inertia were decreased). A parameter optimization method was used to fit the CPx power spectrum given by the model to that obtained experimentally. The results indicated that the changed anthropometric parameters in KN would indeed cause a large decrease in the power spectrum at low frequencies. However, the model fitting also showed that there were considerable changes also in the neural subsystem

  16. Physical demands on young elite European female basketball players with special reference to speed, agility, explosive strength, and take-off power.

    PubMed

    Erčulj, Frane; Blas, Mateja; Bračič, Mitja

    2010-11-01

    The aim of the study was to determine and analyze the level of certain motor abilities (acceleration and agility, the explosive strength of arms, and take-off power) of young elite European female basketball players. We also wanted to establish whether there were any differences between 3 groups of female basketball players who differed in terms of their playing performance. The sample of subjects consists of 65 female basketball players aged 14.49 (± 0.61) years who were divided into 3 groups (divisions A, B, and C of the European Championships). We compare the groups by using 8 motor tests. p Values <0.05 were considered statistically significant. The results show that the division C players achieved below-average results in all tests and thus differ from the players from divisions A and B whose test results were relatively homogeneous. The division C players differ from those from divisions A and B mainly in the 6 × 5-m sprint dribble (discriminant ratio coefficients [DRC] = 0.435), medicine ball throw (DRC = 0.375), and 20-m sprint (DRC = 0.203). Discriminatory power in the 6 × 5-m sprint dribble and 20-m sprint tests is preserved even after eliminating the effect of body height. We assume that, besides the deficit in body height and training status, this is also 1 of the key reasons for these players' lower playing efficiency compared to those from divisions A and B. We hope the findings of this study will enable the generation of model values, which can assist basketball coaches for this age category in basketball clubs, high schools, national teams, and basketball camps.

  17. Stand Up Straight: Posture for Singers.

    ERIC Educational Resources Information Center

    Gauthier, Delores R.

    2002-01-01

    Focuses on the importance of posture in music-making. Provides information on the importance of posture and the different types of posture stances to help students work toward better posture. Includes information on using kinesthetic experiences to help students improve their posture. (CMK)

  18. Smooth-Water Landing Stability and Rough-Water Landing and Take-Off Behavior of a 1/13-Scale Model of the Consolidated Vultee Skate 7 Seaplane, TED No. NACA DE 338

    NASA Technical Reports Server (NTRS)

    McKann, Robert F.; Coffee, Claude W.; Arabian, Donald D.

    1949-01-01

    A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.

  19. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing. PMID:26117153

  20. Postural stress analysis in industry.

    PubMed

    Genaidy, A M; Al-Shedi, A A; Karwowski, W

    1994-04-01

    Both observational and instrumentation-based techniques have been used to conduct postural stress analysis in industry. As observational methods are more widespread than instrumentation-based techniques and can be used as a practical tool in the workplace, this study reviews and assesses the scientific literature on observational techniques. Techniques are classified into macropostural, micropostural and postural-work activity. The basis for each classification is outlined and evaluated. Postural recording is performed either continuously or intermittently. Intermittent postural recording procedures lack the criteria for determining the optimum number of observations for low and high repetitive jobs. Research is warranted to examine the sources and magnitudes of errors associated with postural classification. Such information is required to train job analysts in the ergonomics of working postures. PMID:15676953

  1. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing.

  2. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers. PMID:20698188

  3. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.

  4. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  5. 11. Photocopy of aerial photograph (original aerial located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of aerial photograph (original aerial located in the U.S. Forest Service, Toiyabe National Forest, Carson District Office). AERIAL VIEW OF THE GENOA PEAK ROAD, SPUR. - Genoa Peak Road, Spur, Glenbrook, Douglas County, NV

  6. Working postures: a literature review.

    PubMed

    Vieira, Edgar Ramos; Kumar, Shrawan

    2004-06-01

    Working postures are addressed in many papers in the ergonomics field but, surprisingly, scientific literature dealing with working posture itself is not common; knowledge has been elusive. This article reviews the working postures literature. Selected papers published in the English language before March 2003 including the phrase "working postures" in the title, abstract, or keywords were searched in the PubMed, Scirus, and Science Direct databases and reviewed. The literature provides evidence that working postures and musculoskeletal health are related. This relationship is supported by the overexertion, differential fatigue, and cumulative load theories of musculoskeletal injuries' precipitation. Goniometers, inclinometers, photographic techniques, electrogoniometers, and video recording systems are the means that are most often used to measure working postures. Information about working postures need to be collected and analyzed in a more systematic way in order to contribute for a deeper understanding of the relationship between working postures and work-related musculoskeletal disorders. This information will help to improve the control and rehabilitation of these highly prevalent disorders.

  7. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  8. A Simulator Study of the Effectiveness of a Pilot's Indicator which Combined Angle of Attack and Rate of Change of Total Pressure as Applied to the Take-Off Rotation and Climbout of a Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Hall, Albert W.; Harris, Jack E.

    1961-01-01

    A simulator study has been made to determine the effectiveness of a single instrument presentation as an aid to the pilot in controlling both rotation and climbout path in take-off. The instrument was basically an angle-of-attack indicator, biased with a total-pressure-rate input as a means of suppressing the phugoid oscillation. Linearized six-degree-of-freedom equations of motion were utilized in simulating a hypothetical supersonic transport as the test vehicle. Each of several experienced pilots performed a number of simulated take-offs, using conventional flight instruments and either an angle-of-attack instrument or the combined angle-of-attack and total-pressure-rate instrument. The pilots were able to rotate the airplane, with satisfactory precision, to the 15 deg. angle of attack required for lift-off when using either an angle-of-attack instrument or the instrument which combined total-pressure-rate with angle of attack. At least 4 to 6 second-S appeared to be required for rotation to prevent overshoot, particularly with the latter instrument. The flight paths resulting from take-offs with simulated engine failures were relatively smooth and repeatable within a reasonably narrow band when the combined angle-of-attack and total-pressure-rate instrument presentation was used. Some of the flight paths resulting from take-offs with the same engine-failure conditions were very oscillatory when conventional instruments and an angle-of-attack instrument were used. The pilots considered the combined angle-of-attack and total- pressure-rate instrument a very effective aid. Even though they could, with sufficient practice, perform satisfactory climbouts after simulated engine failure by monitoring the conventional instruments and making correction based on their readings, it was much easier to maintain a smooth flight path with the single combined angle-of-attack and total-pressure-rate instrument.

  9. Seated postural hypotension.

    PubMed

    Gorelik, Oleg; Cohen, Natan

    2015-12-01

    Most studies of postural hypotension (PH) have focused on standing PH. Less is known about PH after transition from a supine to sitting position. Moreover, seated PH has not been previously reviewed in the English literature. The aim of this review was to provide current information regarding seating-induced PH. Seventeen studies were reviewed regarding prevalence, methods of evaluation, manifestations, predisposing factors, prognosis, and management of seated PH. Prevalence ranged from 8% among community-dwelling persons to 56% in elderly hospitalized patients. Dizziness and palpitations were the most frequent symptoms. Of a variety of factors that have been identified as predisposing and contributing to seated PH, aging, bed rest, and hypertension were most important. Because seated PH is a common, easily diagnosable and frequently symptomatic condition, especially in elderly inpatients, this disorder warrants attention. Moreover, seating-induced falls in blood pressure and the associated symptoms, may be largely prevented by nonpharmacologic interventions. PMID:26515671

  10. Take-Off and Landing Characteristics of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in Steady Winds, TED No. NACA DE 368

    NASA Technical Reports Server (NTRS)

    Schade, Robert O.; Smith, Charles C., Jr.; Lovell, P. M., Jr.

    1954-01-01

    An experimental investigation has been conducted to determine the stability and control characteristics of a 0.13-scale free-flight model of the Convair XFY-1 airplane during take-offs and landings in steady winds. The tests indicated that take-offs in headwinds up to at least 20 knots (full scale) will be fairly easy to perform although the airplane may be blown downstream as much as 3 spans before a trim condition can be established. The distance that the airplane will be blown down-stream can be reduced by restraining the upwind landing gear until the instant of take-off. The tests also indicated that spot landings in headwinds up to at least 30 knots (full scale) and in crosswinds up to at least 20 knots (full scale) can be accomplished with reasonable accuracy although, during the landing approach, there will probably be an undesirable nosing-up tendency caused by ground effect and by the change in angle of attack resulting from vertical descent. Some form of arresting gear will probably be required to prevent the airplane from rolling downwind or tipping over after contact. This rolling and tipping can be prevented by a snubbing line attached to the tip of the upwind' wing or tail or by an arresting gear consisting of a wire mesh on the ground and hooks on the landing gear to engage the mesh.

  11. SR-71A Taking Off with Test Fixture Mounted Atop the Aft Section of the Aircraft and F-18 Chase Airc

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows a NASA's SR-71A Blackbird, followed by a NASA F/A-18 chase plane, taking off from the runway at the Dryden Flight Research Center, Edwards, California, on a 1999 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward

  12. Postural syncope: mechanisms and management.

    PubMed

    Vaddadi, Gautam; Lambert, Elisabeth; Corcoran, Susan J; Esler, Murray D

    2007-09-01

    Postural syncope is a transient loss of consciousness secondary to a reduction in cerebral blood flow and is typically precipitated by standing. It is the commonest cause of recurrent transient loss of consciousness. Recurrent unexplained postural syncope is most often due to one of the five disorders of circulatory control: vasovagal syncope, postural tachycardia syndrome, chronic autonomic failure, initial orthostatic hypotension, or persistently low supine systolic blood pressure. Failure to identify the underlying cause of postural syncope can result in ongoing morbidity, impaired quality of life and high health care costs. With a detailed history, examination, blood pressure assessment and electrocardiography, most disorders of circulatory control can be diagnosed. In difficult cases, analysis of sympathetic nervous system and circulatory responses during head-up tilting can aid diagnosis. Treatment is challenging and compounded by a lack of evidence. Most patients can be managed in an outpatient setting, and hospital admission or emergency department assessment is rarely warranted.

  13. Tank Tests of a 1/7-Size Dynamic Model of the Grumman XJR2F-1 Amphibian to Determine the Effect of Slotted- and Split-Type Flaps on Take-Off Stability - NACA Model 212, TED No. NACA 2378

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Zeck, Howard

    1947-01-01

    Additional tests of a 1/7-size model of the Grumman XJR2F-1 amphibian were made in Langley tank no. 1 to compare the behavior during take-off of the model equipped with split- and slotted-type flaps. The slotted flag had a large effect on locating the forward center-of-gravity limits for stable take-offs. Stable take-offs within the normal operating range of positions of the center of gravity could be made with the split flaps deflected 45deg or with the slotted flaps deflected less than 20deg. At flap deflections required for similar take-off stability, the use of split-flaps resulted lower take-off speeds than the use of slotted flaps. An increase in forward acceleration from 1.1 to 4.8 feet per second per second moved the center-of-gravity limit forward approximately 3-percent mean aerodynamic chord.

  14. Imaging Posture Veils Neural Signals

    PubMed Central

    Thibault, Robert T.; Raz, Amir

    2016-01-01

    Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay. Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy). Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition.

  15. Design of check-out systems including laser scanners for sitting work posture.

    PubMed

    Hinnen, U; Läubli, T; Guggenbühl, U; Krueger, H

    1992-06-01

    Forty-six laser scanner operators were compared with 106 cashiers operating conventional cash registers. The influence of job rotation on the two groups was evaluated, and several design features were examined. For this purpose the prevalence of musculoskeletal disorders was determined by means of a questionnaire and a physical examination. In addition, a three-dimensional movement analysis system was employed. Work postures were analyzed with the Ovako working analysis system. The results indicate that a beneficial effect on the musculoskeletal system is achieved by combining the operation of a laser scanner with job rotation. The study also points out the need for better equipment, including flat scanners and smaller keyboards, and a change in the angle between the scanner and the take-off belt running up to the cashier.

  16. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  17. Common postural defects among music students.

    PubMed

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors.

  18. Flight Tests of a Model of a High-wing Transport Vertical-take-off Airplane with Tilting Wing and Propellers and with Jet Controls at the Rear of the Fuselage for Pitch and Yaw Control

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M , Jr; Parlett, Lysle P

    1957-01-01

    An investigation of the stability and control of a high-wing transport vertical-take-off airplane with four engines during constant-altitude transitions from hovering to normal forward flight was conducted with a remotely controlled free-flight model. The model had four propellers distributed along the wing with the thrust axes in the wing chord plane. The wing could be rotated to 90 degrees incidence so that the propeller thrust axes were vertical for hovering flight. An air jet at the rear of the fuselage provided pitch and yaw control for hovering and low-speed flight.

  19. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  20. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  1. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  2. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  3. Postural discomfort and perceived exertion in standardized box-holding postures.

    PubMed

    Olendorf, M R; Drury, C G

    2001-12-15

    To help in the design or redesign of workplaces it would be helpful to know in advance the postural stress consequences of a wide range of body postures. This experiment evaluated 168 postures chosen to represent those in the Ovako Working-posture Analysing System (OWAS) using Rated Perceived Exertion (RPE) and Body Part Discomfort (BPD) measures. The postures comprised all combinations of three arm postures, four back postures, seven leg postures and two forces (weights of held boxes). Twelve male subjects held each posture for a fixed duration (20 s) before providing RPE and BPD ratings. Analysis of the ratings gave highly significant main effects, with the major driver being the object weight. As each factor was varied, the largest effect was on the body region corresponding to that factor. A simple main-effects-only additive model explained 91% of the variance of RPE means for the postures.

  4. Postural discomfort and perceived exertion in standardized box-holding postures.

    PubMed

    Olendorf, M R; Drury, C G

    2001-12-15

    To help in the design or redesign of workplaces it would be helpful to know in advance the postural stress consequences of a wide range of body postures. This experiment evaluated 168 postures chosen to represent those in the Ovako Working-posture Analysing System (OWAS) using Rated Perceived Exertion (RPE) and Body Part Discomfort (BPD) measures. The postures comprised all combinations of three arm postures, four back postures, seven leg postures and two forces (weights of held boxes). Twelve male subjects held each posture for a fixed duration (20 s) before providing RPE and BPD ratings. Analysis of the ratings gave highly significant main effects, with the major driver being the object weight. As each factor was varied, the largest effect was on the body region corresponding to that factor. A simple main-effects-only additive model explained 91% of the variance of RPE means for the postures. PMID:11936827

  5. Postural Control in Children with Autism.

    ERIC Educational Resources Information Center

    Kohen-Raz, Reuven; And Others

    1992-01-01

    Postural control was evaluated in 91 autistic, 166 normal, and 18 mentally retarded children using a computerized posturographic procedure. In comparison to normal children, the autistic subjects were less likely to exhibit age-related changes in postural performance, and postures were more variable and less stable. (Author/JDD)

  6. Age Related Decline in Postural Control Mechanisms.

    ERIC Educational Resources Information Center

    Stelmach, George E.; And Others

    1989-01-01

    Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…

  7. Postural analysis of nursing work.

    PubMed

    Hignett, S

    1996-06-01

    Back pain in the nursing profession is an acknowledged wide spread occupational hazard. This study used OWAS (Ovako Working posture Analysis System) to measure the severity of the working postures adopted by nurses on Care of the Elderly wards when carrying out manual handling operations for animate and inanimate loads. Twenty-six nurses were observed on 31 occasions to obtain 4299 observations, these data were collected and processed using the OWASCO and OWASAN programs, and then analysed by grouping the results into defined patient (animate) handling and non-patient (inanimate) handling tasks. A statistical comparison was made between the two groups using the percentage of action categories two, three and four, to the total number of action categories. A significant difference (p < 0.05) was found, demonstrating that the percentage of harmful postures adopted during patient handling tasks was significantly higher than during non-patient handling tasks. This high level of postural stress and the poor track record of risk management within the Health Care Industry leads to the recommendation that an attitudinal change is needed to successfully address and reduce the manual handling burden which is currently being carried by the nursing staff.

  8. Nonstationary properties of postural sway.

    PubMed

    Carroll, J P; Freedman, W

    1993-01-01

    Postural sway during quite stance is usually assumed to be a stationary stochastic process. We tested this assumption by investigating the time invariance of the average value and variance of the postural sway of three subjects. The sway was measured with a force plate under three conditions: subject standing on two feet with eyes open; subject standing on two feet with eyes closed; and subject standing on one foot with eyes open. Data were collected in 1 min runs. More than 50 min of data were collected for each subject under each test condition. The data were averaged across all runs for each subject and condition. Trends were found to be present in the data. In addition, there were initial transient increases in the second-order moments about the trends. The transient changes in first- and second-order moments usually disappeared during the first 20 s. In light of these findings, we can reject the hypothesis that postural sway is a stationary process. The results imply that the usual methods to parameterize postural sway have to be either changed or reinterpreted. PMID:8478345

  9. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  10. Effects of local fatigue of the lower limbs on postural control and postural stability in standing posture.

    PubMed

    Caron, Olivier

    2003-04-10

    Postural stability and postural control were studied before and after a fatigue protocol of soleus muscles. Postural stability was assessed by the centre of gravity motion, which was computed from the motion of the centre of pressure, evaluating the postural control. Ten healthy male subjects were asked to stand as still as possible with eyes open before and after the fatigue protocol, performed in a sitting position. Fatigue was assumed on the basis of a shortening of the exertion time of the soleus muscles at 60% of their maximal voluntary contraction. Results of the whole group showed that fatigue modified postural control but did not change postural stability. The same results were observed only for some subjects. However, these results indicate an increase of the neuromuscular activity in high frequencies. PMID:12668242

  11. The Steps to Perfect Posture

    ERIC Educational Resources Information Center

    Chappell, Jon

    2007-01-01

    Many people have memories of being told to "stop slouching" while seated at the piano bench. But the reality is that good piano posture is not as simple as bolting upright on the bench when the teacher barks. According to Eric Sutz, a Chicago-area piano teacher and performer, one should see a natural curve in his/her lower lumbar area and should…

  12. Discovery Takes Off on New Mission

    NASA Video Gallery

    Space shuttle Discovery began its next mission April 17, 2012, when it took off from its operational home and headed to the Smithsonian Institution where it will be put on display to inspire the pu...

  13. NASA's Global Hawk 871 Takes Off

    NASA Video Gallery

    NASA's Global Hawk 871 departed from a runway at NASA's Wallops Flight Facility, Wallops Island, Va. on Sept. 25, 2013 at the close of the NASA HS3 Hurricane Mission. NASA 871 was returning to home...

  14. Varicella vaccination: a laboured take-off.

    PubMed

    Carrillo-Santisteve, P; Lopalco, P L

    2014-05-01

    Varicella vaccines are highly immunogenic, efficacious and safe in preventing varicella disease. The USA has been the first country recommending universal vaccination. In the European Union/European Economic Area countries, the use of varicella vaccine is heterogeneous, with some countries recommending universal vaccination in children at national or regional level, others only in high-risk groups and others having no recommendation at all. Uncertainties on the potential impact of varicella vaccination on the epidemiology of varicella and herpes zoster still exist. These uncertainties are the main reason behind the diverse vaccine recommendations. Surveillance systems and mathematical models could be useful to address these uncertainties. However, the lack of surveillance of varicella and herpes zoster in some countries, as well as the high variability of surveillance systems in the countries that have one, makes it difficult to assess the effect of the vaccine. On the other hand, mathematical models are based on assumptions and should be interpreted carefully. Continuous surveillance of varicella and herpes zoster is needed to identify any changes in the epidemiological presentation of the diseases. In any case, continuous surveillance will be needed to fully describe the impact of the programmes currently running and clarify some of the actual uncertainties in the near future. Additionally, increasing our understanding of the risk factors for development of herpes zoster is required.

  15. A Flight Simulator Program Takes Off

    ERIC Educational Resources Information Center

    McMahon, Don

    2003-01-01

    Aviation concepts, including forces acting on an airplane, navigation, correct aircraft terminology, and general aviation vocabulary, are often part of a comprehensive fifth-grade aviation curriculum. But in one school district, students also learned about flying planes and even trained in a flight simulator. This article describes how industry…

  16. NEW APPROACHES: High temperature superconductors take off

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    1998-01-01

    This article describes the progress made towards real engineering applications of high temperature superconductors (HTS) in the ten years following the Nobel Prize winning discovery by Bednorz and Müller in August 1986. Examples include HTS wires and tapes for more efficient and powerful electric motors and for increasing the electrical power into the heart of modern cities, HTS permanent magnets for levitation, microwave filters for cellular telephone networks, SQUIDs (superconducting quantum interference devices) to monitor foetal heart and brain signals, and a new generation of superfast logic devices based on the flux quantum.

  17. The neuropathic postural tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J. R.; Robertson, R. M.; Wathen, M.; Stein, M.; Biaggioni, I.; Ertl, A.; Black, B.; Robertson, D.

    2000-01-01

    BACKGROUND: The postural tachycardia syndrome is a common disorder that is characterized by chronic orthostatic symptoms and a dramatic increase in heart rate on standing, but that does not involve orthostatic hypotension. Several lines of evidence indicate that this disorder may result from sympathetic denervation of the legs. METHODS: We measured norepinephrine spillover (the rate of entry of norepinephrine into the venous circulation) in the arms and legs both before and in response to exposure to three stimuli (the cold pressor test, sodium nitroprusside infusion, and tyramine infusion) in 10 patients with the postural tachycardia syndrome and in 8 age- and sex-matched normal subjects. RESULTS: At base line, the mean (+/-SD) plasma norepinephrine concentration in the femoral vein was lower in the patients with the postural tachycardia syndrome than in the normal subjects (135+/-30 vs. 215+/-55 pg per milliliter [0.80+/-0.18 vs. 1.27+/-0.32 nmol per liter], P=0.001). Norepinephrine spillover in the arms increased to a similar extent in the two groups in response to each of the three stimuli, but the increases in the legs were smaller in the patients with the postural tachycardia syndrome than in the normal subjects (0.001+/-0.09 vs. 0.12+/-0.12 ng per minute per deciliter of tissue [0.006+/-0.53 vs. 0.71+/-0.71 nmol per minute per deciliter] with the cold pressor test, P=0.02; 0.02+/-0.07 vs. 0.23+/-0.17 ng per minute per deciliter [0.12+/-0.41 vs. 1.36+/-1.00 nmol per minute per deciliter] with nitroprusside infusion, P=0.01; and 0.008+/-0.09 vs. 0.19+/-0.25 ng per minute per deciliter [0.05+/-0.53 vs. 1.12+/-1.47 nmol per minute per deciliter] with tyramine infusion, P=0.04). CONCLUSIONS: The neuropathic postural tachycardia syndrome results from partial sympathetic denervation, especially in the legs.

  18. Postural Stability is Altered by Blood Shift

    NASA Astrophysics Data System (ADS)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  19. Common postural defects among music students.

    PubMed

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors. PMID:26118530

  20. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  1. The dentist's operating posture - ergonomic aspects.

    PubMed

    Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C

    2014-06-15

    The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.

  2. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  3. Working postures of dentists and dental hygienists.

    PubMed

    Marklin, Richard W; Cherney, Kevin

    2005-02-01

    A joint study was conducted by a manufacturer of dental stools in the Midwest of the United States and Marquette University to measure the occupational postures of dentists and dental hygienists. The postures of 10 dentists and 10 dental hygienists were assessed using work sampling and video techniques. Postural data of the neck, shoulders and lower back were recorded from video and categorized into 30-degree intervals: o (neutral posture of respective joint), 30, 60 and 90 degrees. Each subject's postures were observed while they were treating patients during a four-hour period, during which 100 observations of postures were recorded at random times. Compared to standing, dentists and dental hygienists were seated 78 percent and 66 percent of the time, respectively. Dentists and dental hygienists flexed their trunk at least 30 degrees more than 50 percent of the time. They flexed their neck at least 30 degrees 85 percent of the time during the four-hour duration, and their shoulders were elevated to the side of their trunk (abducted) at least 30 degrees more half of the time. The postures of the trunk, shoulders, and neck were primarily static. This database of postures can be used by dental professionals and ergonomists to assess the risk dentists and dental hygienists are exposed to musculoskeletal disorders, such as low back pain or shoulder tenosynovitis, from deviated joint postures. They could use these data to select dental furniture or dental devices that promote good body posture, i.e., reduce the magnitude and duration of deviated joint postures, which, in theory, would decrease the risk of musculoskeletal disorders.

  4. Tank Tests of a 1/7-Size Powered Dynamic Model of the Grumman XJR2F-1 Amphibian: Spray Characteristics, Take-Off and Landing Stability in Smooth Water - Langley Tank Model 212, TED No. NACA 2378

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Zeck, Howrad

    1946-01-01

    Tests of a model of the XJR2F-Y amphibian were made in Langley tank no. to determine the spray characteristics and the take-off and landing stability. At a gross load of 22,000 pounds full size, spray entered the propeller disk only at a very narrow range of speeds. The spray striking the flaps was not excessive and no appreciable wetting of the tail surfaces was noted. The trim limits of stability appeared to be satisfactory and the upper-limit porpoising was not violent. The stable range of center-of-gravity locations with flaps set 20deg was well aft of the desired operating range. However, with flaps up, the forward limit was about 18 percent mean aerodynamic chord and the aft limit about 28.5 percent mean aerodynamic chord at a load of 26,000 pounds and with elevators deflected -10deg. Under these conditions the location of the step is considered satisfactory. Tests showed that the effect of water in the nose-wheel well would be to move the forward limit aft about 2-percent mean aerodynamic chord. Without ventilation of the main step, the model skipped during landing at most trims, but this skipping was not violent. With the ventilation, the model skipped lightly only at trims where the afterbody keel was approximately parallel to the water (around 7.5 deg).

  5. Is there a transfer of postural ability from specific to unspecific postures in elite gymnasts?

    PubMed

    Asseman, F; Caron, O; Crémieux, J

    2004-03-25

    The purpose of this study was to investigate the transfer of postural ability by comparing the level of performance and postural control of elite gymnasts in postures specifically trained or not. Fifteen elite gymnasts were asked to stand as still as possible with eyes opened in three conditions: bipedal, unipedal and handstand. Surface and mean velocity of the centre of pressure motions were used to quantify respectively performance and postural control. A ranking was made for each parameter to determine the level of each subject. As a whole, the subject's level of postural performance and control in one condition was not correlated to the corresponded level in another condition. Therefore, postural ability of elite gymnasts in the handstand is not transferable to upright standing postures. PMID:15026154

  6. Vicarious perception of postural discomfort and exertion.

    PubMed

    Drury, Colin G; Atiles, Moises; Chaitanya, Mohan; Lin, Jui-Feng; Marin, Clara; Nasarwanji, Mahiyar; Paluszak, Doug; Russell, Casey; Stone, Richard; Sunm, Michelle

    2006-11-15

    Perceived exertion and discomfort have been used extensively in ergonomics practice. Job incumbents typically rate their exertion on scales such as Borg's rated perceived effort (RPE) and their discomfort on scales such as Corlett and Bishop's body part discomfort scales (BPD). This study asks whether exertion and discomfort can be perceived by an external observer, i.e. is vicarious perception possible? Four participants (targets) performed 20 postural holding tasks selected from Ovako Working Posture Analysing System postures and gave RPE and BPD scores for each posture. Video clips of each target in each posture were shown to four expert ergonomists and 23 novices, who also gave RPE and BPD scores. Correlations between targets and observers scores were high, with significance exceeding p = 0.01. Observers were generally conservative, rating easy postures too high and difficult postures too low. All observers rated female targets higher than male targets. Female observers rated all targets higher then male observers. Vicarious perception of discomfort and exertion was possible, but there was not a one-to-one correspondence to ratings given by those experiencing the posture.

  7. Neuromechanical tuning of nonlinear postural control dynamics

    NASA Astrophysics Data System (ADS)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  8. Postural Variables in Girls Practicing Volleyball

    ERIC Educational Resources Information Center

    Grabara, Malgorzata; Hadzik, Andrzej

    2009-01-01

    Study aim: To assess body posture of young female volleyball players in relation to their untrained mates. Material and methods: A group of 42 volleyball players and another of 43 untrained girls, all aged 13-16 years were studied with respect to their body posture indices by using computer posturography. Spinal angles and curvatures were…

  9. Correcting Poor Posture without Awareness or Willpower

    ERIC Educational Resources Information Center

    Wernik, Uri

    2012-01-01

    In this article, a new technique for correcting poor posture is presented. Rather than intentionally increasing awareness or mobilizing willpower to correct posture, this approach offers a game using randomly drawn cards with easy daily assignments. A case using the technique is presented to emphasize the subjective experience of living with poor…

  10. Variations in Writing Posture and Cerebral Organization

    ERIC Educational Resources Information Center

    Levy, Jerre; Reid, Marylou

    1976-01-01

    Investigated the relationship between hand writing posture and cerebral dominance of 48 left handed writers and 25 right handed writers. Determined that cerebral dominance is related to handedness and to whether or not the writing hand posture is normal or inverted. (SL)

  11. Postural constraints on movement variability.

    PubMed

    Lametti, Daniel R; Ostry, David J

    2010-08-01

    Movements are inherently variable. When we move to a particular point in space, a cloud of final limb positions is observed around the target. Previously we noted that patterns of variability at the end of movement to a circular target were not circular, but instead reflected patterns of limb stiffness-in directions where limb stiffness was high, variability in end position was low, and vice versa. Here we examine the determinants of variability at movement end in more detail. To do this, we have subjects move the handle of a robotic device from different starting positions into a circular target. We use position servocontrolled displacements of the robot's handle to measure limb stiffness at the end of movement and we also record patterns of end position variability. To examine the effect of change in posture on movement variability, we use a visual motor transformation in which we change the limb configuration and also the actual movement target, while holding constant the visual display. We find that, regardless of movement direction, patterns of variability at the end of movement vary systematically with limb configuration and are also related to patterns of limb stiffness, which are likewise configuration dependent. The result suggests that postural configuration determines the base level of movement variability, on top of which control mechanisms can act to further alter variability.

  12. A headband for classifying human postures.

    PubMed

    Aloqlah, Mohammed; Lahiji, Rosa R; Loparo, Kenneth A; Mehregany, Mehran

    2010-01-01

    a real-time method using only accelerometer data is developed for classifying basic human static postures, namely sitting, standing, and lying, as well as dynamic transitions between them. The algorithm uses discrete wavelet transform (DWT) in combination with a fuzzy logic inference system (FIS). Data from a single three-axis accelerometer integrated into a wearable headband is transmitted wirelessly, collected and analyzed in real time on a laptop computer, to extract two sets of features for posture classification. The received acceleration signals are decomposed using the DWT to extract the dynamic features; changes in the smoothness of the signal that reflect a transition between postures are detected at finer DWT scales. FIS then uses the previous posture transition and DWT-extracted features to determine the static postures. PMID:21097190

  13. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  14. Postural Coordination during Socio-motor Improvisation.

    PubMed

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  15. Postural Coordination during Socio-motor Improvisation

    PubMed Central

    Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  16. Postural Coordination during Socio-motor Improvisation.

    PubMed

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  17. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  18. Obesity effect on perceived postural stress during static posture maintenance tasks.

    PubMed

    Park, Woojin; Singh, Devender P; Levy, Martin S; Jung, Eui S

    2009-09-01

    Postural stresses related to manual work tasks may be significantly affected by the bodily condition of workers. One such condition is obesity, which is characterised by excess fat mass in the body. This study empirically examined the obesity effect on postural stress during static posture maintenance tasks. In total, 20 obese and 20 non-obese participants performed static box-holding for a set of 84 working postures defined based on the Ovako Working Posture Analysing System. The participants reported postural stresses using the rated perceived exertion scale. Obesity was found to significantly increase postural stress across the 84 working postures and, also, amplify the effects of postural changes on postural stress. The study findings suggest that ergonomic workplace/job design for obese workers would be a challenge requiring a proactive approach and creativity in problem solving. In addition, the use of ergonomic knowledge in design would be more critical when targeting obese than non-obese workers. The study findings are relevant to ergonomic workplace/job design for obese workers.

  19. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  20. Recovery of postural equilibrium control following spaceflight

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.

    1992-01-01

    Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.

  1. Adaptation of Postural Stability following Stroke.

    PubMed

    Di Fabio, R P

    1997-01-01

    Activities of daily living require both anticipatory and reactive postural adjustments. The influence of stroke on anticipatory and reactive balance behaviors is addressed in this article. Two primary deficits appear to underlie postural instability following stroke. The first deficit type is characterized by a loss of postural muscle recruitment in both lower extremities (not hyperactive stretch reflexes). The second deficit type is related specifically to the lack of limb stabilization on the paretic side of the body. These two categories of deficit might result from the disruption of geocentric and egocentric references for postural stability with cerebrovascular disease. Context-dependent postural responses are either relearned or retained following stroke, but deficits in the sequencing and timing of stabilizing neuromuscular responses appear to be resistant to adaptation. Prior knowledge of an impending balance disturbance improves the initiation of reactive postural adjustments in subjects with stroke but has no effect on the initiation of stabilizing responses associated with voluntary motion. The results suggest that reactive and anticipatory postural adjustments are controlled by different neural mechanisms and may require separate attention in a rehabilitation program. PMID:27620375

  2. Reversible postural orthostatic tachycardia syndrome.

    PubMed

    Abdulla, Aza; Rajeevan, Thirumagal

    2015-07-16

    Postural orthostatic tachycardia syndrome (POTS) is a relatively rare syndrome recognised since 1940. It is a heterogenous condition with orthostatic intolerance due to dysautonomia and is characterised by rise in heart rate above 30 bpm from base line or to more than 120 bpm within 5-10 min of standing with or without change in blood pressure which returns to base line on resuming supine position. This condition present with various disabling symptoms such as light headedness, near syncope, fatigue, nausea, vomiting, tremor, palpitations and mental clouding, etc. However there are no identifiable signs on clinical examination and patients are often diagnosed to have anxiety disorder. The condition predominantly affects young female between the ages of 15-50 but is rarely described in older people. We describe an older patient who developed POTS which recovered over 12 mo. Recognising this condition is important as there are treatment options available to alleviate the disabling symptoms.

  3. Postural orthostatic tachycardia syndrome (POTS).

    PubMed

    Sidhu, Bharat; Obiechina, Nonyelum; Rattu, Noman; Mitra, Shanta

    2013-09-16

    Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous group of conditions characterised by autonomic dysfunction and an exaggerated sympathetic response to assuming an upright position. Up till recently, it was largely under-recognised as a clinical entity. There is now consensus about the definition of POTS as a greater than 30/min heart rate increase on standing from a supine position (greater than 40/min increase in 12-19-year-old patients) or an absolute heart rate of greater than 120/min within 10 min of standing from a supine position and in the absence of hypotension, arrhythmias, sympathomimetic drugs or other conditions that cause tachycardia. We present two cases of POTS, followed by a discussion of its pathogenesis, pathophysiology, epidemiology and management.

  4. Adaptation to transient postural perturbations

    NASA Technical Reports Server (NTRS)

    Andres, Robert O.

    1992-01-01

    This research was first proposed in May, 1986, to focus on some of the problems encountered in the analysis of postural responses gathered from crewmembers. The ultimate driving force behind this line of research was the desire to treat, predict, or explain 'Space Adaptation Syndrome' (SAS) and hence circumvent any adverse effects of space motion sickness on crewmember performance. The aim of this project was to develop an easily implemented analysis of the transient responses to platform translation that can be elicited with a protocol designed to force sensorimotor reorganization, utilizing statistically reliable criterion measures. This report will present: (1) a summary of the activity that took place in each of the three funded years of the project; (2) discussion of experimental results and their implications for future research; and (3) a list of presentations and publications resulting from this project.

  5. Dysgnathia, orthognathic surgery and spinal posture.

    PubMed

    Sinko, K; Grohs, J-G; Millesi-Schobel, G; Watzinger, F; Turhani, D; Undt, G; Baumann, A

    2006-04-01

    The aim of this study was to evaluate the spine by video rasterstereography before and after orthognathic surgery. Twenty-nine patients (17 patients with a skeletal class III, 7 patients with a skeletal class II, and 5 patients with mandibular asymmetry) were evaluated preoperatively and 1 year postoperatively. Video rasterstereography is a method of back surface measurement and shape analysis using the moire topography. Orthognathic surgery in cases of class III and asymmetry did not lead to significant changes in body posture. In class II patients it led to some changes in body posture, but without orthopaedic consequences. It is concluded that orthognathic surgery causes minimal or no change in body posture.

  6. The postural function of the iliotibial tract.

    PubMed Central

    Evans, P.

    1979-01-01

    A new definition of the iliotibial tract is made. Its anatomical and physical characteristics are summarised and its known functions discussed. The various postures adopted by standing Man are looked at and one resting posture is closely analysed. Hence a new role is proposed for the iliotibial tract. In the hip bone a new bony effect of the iliotibial tract is proposed. The presence of this structure is traced in the fossil record and linked to the anthropological evidence of upright posture. Images FIG. 1-8 FIG. 9-16 FIG. 17-25 FIG. 26-34 PMID:475270

  7. Trunk posture monitoring with inertial sensors.

    PubMed

    Wong, Wai Yin; Wong, Man Sang

    2008-05-01

    Measurement of human posture and movement is an important area of research in the bioengineering and rehabilitation fields. Various attempts have been initiated for different clinical application goals, such as diagnosis of pathological posture and movements, assessment of pre- and post-treatment efficacy and comparison of different treatment protocols. Image-based methods for measurements of human posture and movements have been developed, such as the radiography, photogrammetry, optoelectric technique and video analysis. However, it is found that these methods are complicated to set up, time-consuming to operate and could only be applied in laboratory environments. This study introduced a method of using a posture monitoring system in estimating the spinal curvature changes during trunk movements on the sagittal and coronal planes and providing trunk posture monitoring during daily activities. The system consisted of three sensor modules, each with one tri-axial accelerometer and three uni-axial gyroscopes orthogonally aligned, and a digital data acquisition and feedback system. The accuracy of this system was tested with a motion analysis system (Vicon 370) in calibration with experimental setup and in trunk posture measurement with nine human subjects, and the performance of the posture monitoring system during daily activities with two human subjects was reported. The averaged root mean squared differences between the measurements of the system and motion analysis system were found to be < 1.5 degrees in dynamic calibration, and < 3.1 degrees for the sagittal plane and < or = 2.1 degrees for the coronal plane in estimation of the trunk posture change during trunk movements. The measurements of the system and the motion analysis system was highly correlated (> 0.999 for dynamic calibration and > 0.829 for estimation of spinal curvature change in domain planes of movement during flexion and lateral bending). With the sensing modules located on the upper trunk

  8. Limit cycle oscillations in standing human posture.

    PubMed

    Chagdes, James R; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Cinelli, Michael E; Denomme, Luke T; Powers, Kaley C; Raman, Arvind

    2016-05-01

    Limit cycle oscillations (LCOs) are a hallmark of dynamic instability in time-delayed and nonlinear systems such as climate change models, biological oscillators, and robotics. Here we study the links between the human neuromuscular system and LCOs in standing posture. First, we demonstrate through a simple mathematical model that the observation of LCOs in posture is indicative of excessive neuromuscular time-delay. To test this hypothesis we study LCOs in the postural sway of individuals with multiple sclerosis and concussed athletes representing two different populations with chronically and acutely increased neuromuscular time-delays. Using a wavelet analysis method we demonstrate that 67% of individuals with multiple sclerosis and 44% of individuals with concussion exhibit intermittent LCOs; 8% of MS-controls, 0% of older adults, and 0% of concussion-controls displayed LCOs. Thus, LCOs are not only key to understanding postural instability but also may have important applications for the detection of neuromuscular deficiencies. PMID:27018157

  9. Postural variability and sensorimotor development in infancy.

    PubMed

    Dusing, Stacey C

    2016-03-01

    Infants develop skills through a coupling between their sensory and motor systems. Newborn infants must interpret sensory information and use it to modify movements and organize the postural control system based on the task demands. This paper starts with a brief review of evidence on the use of sensory information in the first months of life, and describes the importance of movement variability and postural control in infancy. This introduction is followed by a review of the evidence for the interactions between the sensory, motor, and postural control systems in typically development infants. The paper highlights the ability of young infants to use sensory information to modify motor behaviors and learn from their experiences. Last, the paper highlights evidence of atypical use of sensory, motor, and postural control in the first months of life in infants who were born preterm, with neonatal brain injury or later diagnosed with cerebral palsy (CP). PMID:27027603

  10. Brain regions and genes affecting postural control.

    PubMed

    Lalonde, R; Strazielle, C

    2007-01-01

    Postural control is integrated in all facets of motor commands. The role of cortico-subcortical pathways underlying postural control, including cerebellum and its afferents (climbing, mossy, and noradrenergic fibers), basal ganglia, motor thalamus, and parieto-frontal neocortex has been identified in animal models, notably through the brain lesion technique in rats and in mice with spontaneous and induced mutations. These studies are complemented by analyses of the factors underlying postural deficiencies in patients with cerebellar atrophy. With the gene deletion technique in mice, specific genes expressed in cerebellum encoding glutamate receptors (Grid2 and Grm1) and other molecules (Prkcc, Cntn6, Klf9, Syt4, and En2) have also been shown to affect postural control. In addition, transgenic mouse models of the synucleinopathies and of Huntington's disease cause deficiencies of motor coordination resembling those of patients with basal ganglia damage.

  11. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  12. Postural Control in Man: The Phylogenetic Perspective

    PubMed Central

    Gramsbergen, Albert

    2005-01-01

    Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phyiogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure. PMID:16097476

  13. Postural control in man: the phylogenetic perspective.

    PubMed

    Gramsbergen, Albert

    2005-01-01

    Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phylogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure. PMID:16097476

  14. Modelling socio-metabolic transitions: The historical take-off, the acceleration of fossil fuel use, and the 1970s oil price shock - the first trigger of a future decline?

    NASA Astrophysics Data System (ADS)

    Wiedenhofer, Dominik; Rovenskaya, Elena; Krausmann, Fridolin; Haas, Willi; Fischer-Kowalski, Marina

    2013-04-01

    By talking about socio-metabolic transitions, we talk about changes in the energy base of socio-economic systems, leading to fundamental changes in social and environmental relations. This refers to the historical shift from a biomass-based (agrarian) economy to a fossil fuel based (industrial) economy just as much as to a future shift from fossil fuels to renewable energy carriers. In our presentation, • We will first show that this pattern of transition can be identified for most high income industrial countries: the later the transition started, the faster it proceeded, and the turning point to stabilization of metabolic rates in all of them happened in the early 1970ies. Due to the inherent non-linearity of this process, two approaches will be aplied to estimate parameters for the starting point, transition speed and saturation level: firstly a combination of an expontential and a generalized logistic function and secondly a Gompertz function. For both an iterative test procedure is applied to find the global minimum of the residual error for the whole function and all its parameters. This theory-based approach allows us to apply a robust methodology across all cases, thereby yielding results which can be generalized. • Next, we will show that this was not just a "historical" socio-ecological transition, however. Currently, a substantial number of countries comprising more than half of the world's population are following a similar transitional pathway at an ever accelerating pace. Based on empirical data on physical resource use and the above sketched methodology, we can show that these so-called emerging economies are currently in the take-off or acceleration phase of the very same transition. • Apart from these "endogenous" processes of socio-metabolic transition, we will investigate the effect of external shocks and their impact on the dynamics of energy and materials use. The first such shock we will explore is the oil crisis of 1972 that possibly

  15. Is there interaction between vision and local fatigue of the lower limbs on postural control and postural stability in human posture?

    PubMed

    Caron, Olivier

    2004-06-01

    An investigation of the interaction between local fatigue and vision on postural control and postural stability was carried out. Fatigue was effected in a sitting position and was assumed based on a shortening of the exertion time of the soleus muscles (60% of their maximal voluntary contractions). Postural stability was assessed by centre of gravity motion, which was computed from centre of pressure motion, evaluating postural control. Ten healthy male subjects were asked to stand as still as possible with eyes open (EO) and eyes closed (EC) before and after the fatigue protocol. Results showed that fatigue produced similar effects for the two vision conditions on postural control and postural stability analyzed separately, increasing postural control and leaving postural stability unchanged. Local fatigue essentially produced an increase of neuromuscular activity in high frequencies. However, this increase was more pronounced for the EO, as compared to the EC condition. PMID:15157987

  16. Gravitational Effects upon Locomotion Posture

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  17. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  18. Reliability of photographic posture analysis of adolescents

    PubMed Central

    Hazar, Zeynep; Karabicak, Gul Oznur; Tiftikci, Ugur

    2015-01-01

    [Purpose] Postural problems of adolescents needs to be evaluated accurately because they may lead to greater problems in the musculoskeletal system as they develop. Although photographic posture analysis has been frequently used, more simple and accessible methods are still needed. The purpose of this study was to investigate the inter- and intra-rater reliability of photographic posture analysis using MB-ruler software. [Subjects and Methods] Subjects were 30 adolescents (15 girls and 15 boys, mean age: 16.4±0.4 years, mean height 166.3±6.7 cm, mean weight 63.8±15.1 kg) and photographs of their habitual standing posture photographs were taken in the sagittal plane. For the evaluation of postural angles, reflective markers were placed on anatomical landmarks. For angular measurements, MB-ruler (Markus Bader- MB Software Solutions, triangular screen ruler) was used. Photographic evaluations were performed by two observers with a repetition after a week. Test-retest and inter-rater reliability evaluations were calculated using intra-class correlation coefficients (ICC). [Results] Inter-rater (ICC>0.972) and test-retest (ICC>0.774) reliability were found to be in the range of acceptable to excellent. [Conclusion] Reference angles for postural evaluation were found to be reliable and repeatable. The present method was found to be an easy and non-invasive method and it may be utilized by researchers who are in search of an alternative method for photographic postural assessments. PMID:26644658

  19. Reliability of photographic posture analysis of adolescents.

    PubMed

    Hazar, Zeynep; Karabicak, Gul Oznur; Tiftikci, Ugur

    2015-10-01

    [Purpose] Postural problems of adolescents needs to be evaluated accurately because they may lead to greater problems in the musculoskeletal system as they develop. Although photographic posture analysis has been frequently used, more simple and accessible methods are still needed. The purpose of this study was to investigate the inter- and intra-rater reliability of photographic posture analysis using MB-ruler software. [Subjects and Methods] Subjects were 30 adolescents (15 girls and 15 boys, mean age: 16.4±0.4 years, mean height 166.3±6.7 cm, mean weight 63.8±15.1 kg) and photographs of their habitual standing posture photographs were taken in the sagittal plane. For the evaluation of postural angles, reflective markers were placed on anatomical landmarks. For angular measurements, MB-ruler (Markus Bader- MB Software Solutions, triangular screen ruler) was used. Photographic evaluations were performed by two observers with a repetition after a week. Test-retest and inter-rater reliability evaluations were calculated using intra-class correlation coefficients (ICC). [Results] Inter-rater (ICC>0.972) and test-retest (ICC>0.774) reliability were found to be in the range of acceptable to excellent. [Conclusion] Reference angles for postural evaluation were found to be reliable and repeatable. The present method was found to be an easy and non-invasive method and it may be utilized by researchers who are in search of an alternative method for photographic postural assessments.

  20. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  1. Scapular Bracing and Alteration of Posture and Muscle Activity in Overhead Athletes With Poor Posture

    PubMed Central

    Cole, Ashley K; McGrath, Melanie L; Harrington, Shana E; Padua, Darin A; Rucinski, Terri J; Prentice, William E

    2013-01-01

    Context Overhead athletes commonly have poor posture. Commercial braces are used to improve posture and function, but few researchers have examined the effects of shoulder or scapular bracing on posture and scapular muscle activity. Objective To examine whether a scapular stabilization brace acutely alters posture and scapular muscle activity in healthy overhead athletes with forward-head, rounded-shoulder posture (FHRSP). Design Randomized controlled clinical trial. Setting Applied biomechanics laboratory. Patients or Other Participants Thirty-eight healthy overhead athletes with FHRSP. Intervention(s) Participants were assigned randomly to 2 groups: compression shirt with no strap tension (S) and compression shirt with the straps fully tensioned (S + T). Posture was measured using lateral-view photography with retroreflective markers. Electromyography (EMG) of the upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) in the dominant upper extremity was measured during 4 exercises (scapular punches, W's, Y's, T's) and 2 glenohumeral motions (forward flexion, shoulder extension). Posture and exercise EMG measurements were taken with and without the brace applied. Main Outcome Measure(s) Head and shoulder angles were measured from lateral-view digital photographs. Normalized surface EMG was used to assess mean muscle activation of the UT, MT, LT, and SA. Results Application of the brace decreased forward shoulder angle in the S + T condition. Brace application also caused a small increase in LT EMG during forward flexion and Y's and a small decrease in UT and MT EMG during shoulder extension. Brace application in the S + T group decreased UT EMG during W's, whereas UT EMG increased during W's in the S group. Conclusions Application of the scapular brace improved shoulder posture and scapular muscle activity, but EMG changes were highly variable. Use of a scapular brace might improve shoulder posture and muscle activity in

  2. Postural stability in children with hemiplegia estimated for three postural conditions: standing, sitting and kneeling.

    PubMed

    Szopa, Andrzej; Domagalska-Szopa, Małgorzata

    2015-04-01

    Postural control deficit is one of the most important problems in children with cerebral palsy (CP). The purpose of the presented study was to compare the effects of body posture asymmetry alone (i.e., in children with mild scoliosis) with the effects of body posture impairment (i.e., in children with hemiplegia) on postural stability. Forty-five outpatients with hemiplegia and 51 children with mild scoliosis were assessed using a posturography device. The examination comprised two parts: (1) analysis of the static load distribution; and (2) a posturographic test (CoP measurements) conducted in three postural conditions: standing, sitting and kneeling. Based on the asymmetry index of the unaffected/affected body sides while standing, the children with hemiplegia were divided into two different postural patterns: a pro-gravitational postural pattern (PGPP) and an anti-gravitational postural pattern (AGPP) (Domagalska-Szopa & Szopa (2013). BioMed Research International, 2013, 462094; (2014). Therapeutics and Clinical Risk Management, 10, 113). The group of children with mild scoliosis, considered as a standard for static body weight distribution, was used as the reference group. The results of present study only partially confirmed that children with hemiplegia have increased postural instability. Strong weight distribution asymmetry was found in children with an AGPP, which induced larger lateral-medial CoP displacements compared with children with scoliosis. In children with hemiplegia, distinguishing between their postural patterns may be useful to improve the guidelines for early therapy children with an AGPP before abnormal patterns of weight-bearing asymmetry are fully established. PMID:25677032

  3. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-01

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  4. Transfer of Dynamic Learning Across Postures

    PubMed Central

    Wolpert, Daniel M.

    2009-01-01

    When learning a difficult motor task, we often decompose the task so that the control of individual body segments is practiced in isolation. But on re-composition, the combined movements can result in novel and possibly complex internal forces between the body segments that were not experienced (or did not need to be compensated for) during isolated practice. Here we investigate whether dynamics learned in isolation by one part of the body can be used by other parts of the body to immediately predict and compensate for novel forces between body segments. Subjects reached to targets while holding the handle of a robotic, force-generating manipulandum. One group of subjects was initially exposed to the novel robot dynamics while seated and was then tested in a standing position. A second group was tested in the reverse order: standing then sitting. Both groups adapted their arm dynamics to the novel environment, and this movement learning transferred between seated and standing postures and vice versa. Both groups also generated anticipatory postural adjustments when standing and exposed to the force field for several trials. In the group that had learned the dynamics while seated, the appropriate postural adjustments were observed on the very first reach on standing. These results suggest that the CNS can immediately anticipate the effect of learned movement dynamics on a novel whole-body posture. The results support the existence of separate mappings for posture and movement, which encode similar dynamics but can be adapted independently. PMID:19710374

  5. Postural stability assessment in sewer workers.

    PubMed

    Kuo, W; Bhattacharya, A; Succop, P; Linz, D

    1996-01-01

    In this study, postural stability was measured with a microcomputer-based force platform as an indirect assessment of central nervous system effect in 28 sewer workers (age range 23.4 to 64.5 years, standard deviation of 8.7 years). All workers performed four 30-second postural sway tests. The organic-solvent exposure was measured by a photo-ionization detector. The photo-ionization detector was calibrated to measure volatile organic solvents in total benzene equivalence, and concentrations were measured in various parts of the plant. The mean exposure was .32 parts per million (ppm) benzene equivalent (range of .02 to .95 ppm, standard deviation .19 ppm). Based on a covariate adjusted linear multiple-regression model, a statistically significant (p < .05) positive correlation was demonstrated between postural sway and organic-solvent exposure. These workers also had increased postural sway compared with a nonexposed population. The statistically significant correlation between postural sway determinations and organic-solvent exposure was surprising given the very low exposures measured. It is possible that the organic-solvent exposure might not be the causative agent, but rather that the solvents themselves correlate with some other causative exposure, ie, total volatile organics as implicated in the cause of sick-building syndrome.

  6. Effect of absence of vision on posture.

    PubMed

    Alotaibi, Abdullah Z; Alghadir, Ahmad; Iqbal, Zaheen A; Anwer, Shahnawaz

    2016-04-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words "body", "posture", "blind" and "absence of vision". References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished. PMID:27190486

  7. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  8. Falls study: Proprioception, postural stability, and slips.

    PubMed

    Sohn, Jeehoon; Kim, Sukwon

    2015-01-01

    The present study evaluated effects of exercise training on the proprioception sensitivity, postural stability, and the likelihood of slip-induced falls. Eighteen older adults (6 in balance, 6 in weight, and 6 in control groups) participated in this study. Three groups met three times per week over the course of eight weeks. Ankle and knee proprioception sensitivities and postural stability were measured. Slip-induced events were introduced for all participants before and after training. The results indicated that, overall, strength and postural stability were improved only in the training group, although proprioception sensitivity was improved in all groups. Training for older adults resulted in decreased likelihood of slip-induced falls. The study suggested that proprioception can be improved by simply being active, however, the results suggested that training would aid older adults in reducing the likelihood of slip-induced falls.

  9. Falls study: Proprioception, postural stability, and slips.

    PubMed

    Sohn, Jeehoon; Kim, Sukwon

    2015-01-01

    The present study evaluated effects of exercise training on the proprioception sensitivity, postural stability, and the likelihood of slip-induced falls. Eighteen older adults (6 in balance, 6 in weight, and 6 in control groups) participated in this study. Three groups met three times per week over the course of eight weeks. Ankle and knee proprioception sensitivities and postural stability were measured. Slip-induced events were introduced for all participants before and after training. The results indicated that, overall, strength and postural stability were improved only in the training group, although proprioception sensitivity was improved in all groups. Training for older adults resulted in decreased likelihood of slip-induced falls. The study suggested that proprioception can be improved by simply being active, however, the results suggested that training would aid older adults in reducing the likelihood of slip-induced falls. PMID:26406065

  10. Bed posture classification for pressure ulcer prevention.

    PubMed

    Yousefi, R; Ostadabbas, S; Faezipour, M; Farshbaf, M; Nourani, M; Tamil, L; Pompeo, M

    2011-01-01

    Pressure ulcer is an age-old problem imposing a huge cost to our health care system. Detecting and keeping record of the patient's posture on bed, help care givers reposition patient more efficiently and reduce the risk of developing pressure ulcer. In this paper, a commercial pressure mapping system is used to create a time-stamped, whole-body pressure map of the patient. An image-based processing algorithm is developed to keep an unobtrusive and informative record of patient's bed posture over time. The experimental results show that proposed algorithm can predict patient's bed posture with up to 97.7% average accuracy. This algorithm could ultimately be used with current support surface technologies to reduce the risk of ulcer development. PMID:22255993

  11. ["Zurich Vertigo Meeting"--phobic postural vertigo].

    PubMed

    Dieterich, M

    1997-10-01

    Phobic postural vertigo has been described as a syndrome that is distinguishable from agoraphobia, acrophobia, and "space phobia". Closely related to locomotion, it is characterized by a combination of nonrotational vertigo with subjective postural and gait instability mainly in patients with an obsessive-compulsive personality. The monosymptomatic disturbance of balance manifests with superimposed attacks that occur with and without recognizable provoking factors in the same patient and are experienced with and without accompanying excess anxiety, misleading both patient and physician to a false diagnosis of organic disease.

  12. An OWAS-based analysis of nurses' working postures.

    PubMed

    Engels, J A; Landeweerd, J A; Kant, Y

    1994-05-01

    The working postures of Dutch nurses (n = 18) in an orthopaedic ward and a urology ward were observed using the Ovako Working posture Analysis System (OWAS). During observation, both working postures and activities were recorded. A specially developed computer program was used for data analysis. By means of this program, it was possible to calculate the working posture load for each activity and the contribution of a specific activity to the total working posture load. This study shows that some activities of the nurses in both wards were performed with poor working postures. In the orthopaedic (resp. urology) ward two (resp. one) out of 19 observed postures of parts of the body were classified as Action Category 2. Moreover, 20% (resp. 16%) of the so-called typical working postures was classified in Action Category 2. This suggests, that in both wards working postures that are slightly harmful to the musculoskeletal system, occur during a substantial part of the working day. Differences between both wards with respect to working posture load and time expenditure were determined. Activities causing the workload to fall into OWAS higher Action Categories were identified. The data show that poor working postures in the nursing profession not only occur during patient handling activities but also during tasks like 'administration'. Focusing on patient-handling (i.e., lifting patients) in order to determine the load on the musculoskeletal system would therefore lead to an underestimation of the total working posture load of nurses.

  13. Postural Control in Children: Implications for Pediatric Practice

    ERIC Educational Resources Information Center

    Westcott, Sarah L.; Burtner, Patricia

    2004-01-01

    Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…

  14. Development of the Coordination between Posture and Manual Control

    ERIC Educational Resources Information Center

    Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.

    2012-01-01

    Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…

  15. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  16. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  17. Can Smartwatches Replace Smartphones for Posture Tracking?

    PubMed Central

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G.; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-01-01

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch’s ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches’ ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed. PMID:26506354

  18. Forearm posture and mobility in quadrupedal dinosaurs.

    PubMed

    VanBuren, Collin S; Bonnan, Matthew

    2013-01-01

    Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.

  19. Effect of absence of vision on posture

    PubMed Central

    Alotaibi, Abdullah Z.; Alghadir, Ahmad; Iqbal, Zaheen A.; Anwer, Shahnawaz

    2016-01-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words “body”, “posture”, “blind” and “absence of vision”. References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished. PMID:27190486

  20. Postural orthostatic tachycardia syndrome: a clinical review.

    PubMed

    Johnson, Jonathan N; Mack, Kenneth J; Kuntz, Nancy L; Brands, Chad K; Porter, Coburn J; Fischer, Philip R

    2010-02-01

    Postural orthostatic tachycardia syndrome was defined in adult patients as an increase >30 beats per minute in heart rate of a symptomatic patient when moving from supine to upright position. Clinical signs may include postural tachycardia, headache, abdominal discomfort, dizziness/presyncope, nausea, and fatigue. The most common adolescent presentation involves teenagers within 1-3 years of their growth spurt who, after a period of inactivity from illness or injury, cannot return to normal activity levels because of symptoms induced by upright posture. Postural orthostatic tachycardia syndrome is complex and likely has numerous, concurrent pathophysiologic etiologies, presenting along a wide spectrum of potential symptoms. Nonpharmacologic treatment includes (1) increasing aerobic exercise, (2) lower-extremity strengthening, (3) increasing fluid/salt intake, (4) psychophysiologic training for management of pain/anxiety, and (5) family education. Pharmacologic treatment is recommended on a case-by-case basis, and can include beta-blocking agents to blunt orthostatic increases in heart rate, alpha-adrenergic agents to increase peripheral vascular resistance, mineralocorticoid agents to increase blood volume, and serotonin reuptake inhibitors. An interdisciplinary research approach may determine mechanistic root causes of symptoms, and is investigating novel management plans for affected patients.

  1. Chosen postures during specific sitting activities.

    PubMed

    Kamp, Irene; Kilincsoy, Umit; Vink, Peter

    2011-11-01

    This research study analysed the interaction between people's postures and activities while in semi-public/leisure situations and during transportation (journey by train). In addition, the use of small electronic devices received particular emphasis. Video recordings in German trains and photographs in Dutch semi-public spaces were analysed using a variation of Branton and Grayson's (An evaluation of train seats by observation of sitting behaviour. Ergonomics, 10 (1), (1967), 35-51) postural targeting forms and photos. The analysis suggests a significant relationship between most activities and the position of the head, trunk and arms during transportation situations. The relationship during public situations is less straightforward. Watching, talking/discussing and reading were the most observed activities for the transportation and leisure situations combined. Surprisingly, differences in head, trunk, arm and leg postures were not significant when using small electronic devices. Important issues not considered in this study include the duration of the activities, the gender and age of observed subjects and the influence of the time of day. These are interesting issues to consider and include for future research. STATEMENT OF RELEVANCE: This study shows what activities people choose to carry out and their related postures when not forced to a specific task (e.g. driving). The results of this study can be used for designing comfortable seating in the transportation industry (car passenger, train, bus and aircraft seats) and semi-public/leisure spaces.

  2. Body Posture Facilitates Retrieval of Autobiographical Memories

    ERIC Educational Resources Information Center

    Dijkstra, Katinka; Kaschak, Michael P.; Zwaan, Rolf A.

    2007-01-01

    We assessed potential facilitation of congruent body posture on access to and retention of autobiographical memories in younger and older adults. Response times were shorter when body positions during prompted retrieval of autobiographical events were similar to the body positions in the original events than when body position was incongruent.…

  3. Assessing Postural Stability in the Concussed Athlete

    PubMed Central

    Ruhe, Alexander; Fejer, René; Gänsslen, Axel; Klein, Wolfgang

    2014-01-01

    Context: Postural stability assessment is included as part of the diagnostic and monitoring process for sports-related concussions. Particularly, the relatively simple Balance Error Scoring System (BESS) and more sophisticated force plate measures like the Sensory Organization Test (SOT) are suggested. Evidence Acquisition: Relevant studies were identified via the following electronic databases: PubMed, MEDLINE, EMBASE, Web of Science, ScienceDirect, and CINAHL (1980 to July 2013). Inclusion was based on the evaluation of postural sway or balance in concussed athletes of any age or sex and investigating the reliability or validity of the included tests. Study Design: Clinical review. Level of Evidence: Level 4 Results: Both the SOT and the BESS show moderate reliability, but a learning effect due to repetitive testing needs to be considered. Both tests indicate that postural stability returns to baseline by day 3 to 5 in most concussed athletes. While the BESS is a simple and valid method, it is sensitive to subjectivity in scoring and the learning effect. The SOT is very sensitive to even subtle changes in postural sway, and thus, more accurate than the BESS; however, it is a rather expensive method of balance testing. Conclusion: Both tests serve the purpose of monitoring balance performance in the concussed athlete; however, neither may serve as a stand-alone diagnostic or monitoring tool. Strength of Recommendation Taxonomy: B PMID:25177420

  4. Cognitive load affects postural control in children.

    PubMed

    Schmid, Maurizio; Conforto, Silvia; Lopez, Luisa; D'Alessio, Tommaso

    2007-05-01

    Inferring relations between cognitive processes and postural control is a relatively topical challenge in developmental neurology. This study investigated the effect of a concurrent cognitive task on postural control in a sample of 50 nine-year-old children. Each subject completed two balance trials of 60 s, one with a concurrent cognitive task (cognitive load) and another with no cognitive load. The concurrent cognitive task consisted of mentally counting backwards in steps of 2. Twelve posturographic parameters (PPs) were extracted from the centre of pressure (CoP) trajectory obtained through a load cell force plate. Analysis of variance revealed significant differences in the majority of the extracted PPs. CoP was found to travel faster, farther, and with substantially different features demonstrating an overall broadening of the spectrum in the frequency domain. Nonlinear stability factors revealed significant differences when exposed to a concurrent cognitive task, showing an increase of instability in the intervention rate of the postural control system. By grouping children through selected items from Teachers Ratings and PANESS assessment, specific significant differences were also found both in time and frequency domain PPs, thus confirming the hypothesis of an interaction between cognitive processes (and their development), and postural control. PMID:17136524

  5. Automated contingent reinforcement of correct posture.

    PubMed

    Burch, M R; Clegg, J C; Bailey, J S

    1987-01-01

    This study evaluated the effectiveness of a mercury switch as a self-monitoring device to improve the sitting posture of an adult male. The participant in this study was a 31 year old man who was blind, nonambulatory, and who had been classified in the moderate range of intellectual functioning and in the severe range of adaptive functioning due to physical impairments. After determining that music practice and listening to a game show on the television channel of a radio were powerful reinforcers, a multiple baseline across the two reinforcing activities was implemented. The participant wore a mercury switch inside of a baseball cap which activated a Casio keyboard during music practice and a radio during the independent leisure activity of listening to a game show. During the treatment condition, the keyboard and radio were activated automatically by upright sitting posture. Results indicated that the participant's sitting posture increased from an average of almost 0% correct upright posture during baseline to an average of 52% during treatment.

  6. Forearm Posture and Mobility in Quadrupedal Dinosaurs

    PubMed Central

    VanBuren, Collin S.; Bonnan, Matthew

    2013-01-01

    Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy. PMID:24058633

  7. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  8. The representation of self reported affect in body posture and body posture simulation.

    PubMed

    Grammer, Karl; Fink, Bernhard; Oberzaucher, Elisabeth; Atzmüller, Michaela; Blantar, Ines; Mitteroecker, Philipp

    2004-01-01

    It is taken for granted that the non-verbal information we acquire from a person's body posture and position affects our perception of others. However, to date human postures have never been described on an empirical level. This study is the first approach to tackle the unexplored topic of human postures. We combined two approaches: traditional behavior observation and modern anthropometric analysis. Photographs of 100 participants were taken, their body postures were transferred to a three dimensional virtual environment and the occurring body angles were measured. The participants were asked to fill in a questionnaire about their current affective state. A principal component analysis with the items of the affect questionnaire (Positive Negative Affect Scales, PANAS) revealed five main factors: aversion, openness, irritation, happiness, and self-confidence. The body angles were then regressed on these factors and the respective postures were reconstructed within a virtual environment. 50 different subjects rated the reconstructed postures from the positive and negative end of the regression. We found the ratings to be valid and accurate in respect to the five factors. PMID:15571090

  9. Methods of Postural Assessment Used for Sports Persons

    PubMed Central

    Singla, Deepika

    2014-01-01

    Occurrence of postural defects has become very common now-a-days not only in general population but also in sports persons. There are various methods which can be used to assess these postural defects. These methods have evolved over a period of many years. This paper is first of its kind to summarize the methods of postural assessment which have been used and which can be used for evaluation of postural abnormalities in sports persons such as the visual observation, plumbline, goniometry, photographic, radiographic, photogrammetric, flexiruler, electromagnetic tracking device etc. We recommend more and more postural evaluation studies to be done in future based on the photogrammetric method. PMID:24959470

  10. Posture and Texting: Effect on Balance in Young Adults.

    PubMed

    Nurwulan, Nurul Retno; Jiang, Bernard C; Iridiastadi, Hardianto

    2015-01-01

    Using a mobile phone while doing another activity is a common dual-task activity in our daily lives. This study examined the effect of texting on the postural stability of young adults. Twenty college students were asked to perform static and dynamic postural stability tasks. Traditional COP and multivariate multiscale entropy (MMSE) were used to assess the static postural stability and the Star Excursion Balance Test (SEBT) was used to assess the dynamic postural stability. Results showed that (1) texting impaired postural stability, (2) the complexity index did not change much although the task conditions changed, and (3) performing texting is perceived to be more difficult. PMID:26230323

  11. Postural sway and perceived comfort in pointing tasks.

    PubMed

    Solnik, Stanislaw; Pazin, Nemanja; Coelho, Chase J; Rosenbaum, David A; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-05-21

    In this study, we explored relations between indices of postural sway and perceived comfort during pointing postures performed by standing participants. The participants stood on a force plate, grasped a pointer with the dominant (right) hand, and pointed to targets located at four positions and at two distances from the body. We quantified postural sway over 60-s intervals at each pointing posture, and found no effects of target location or distance on postural sway indices. In contrast, comfort ratings correlated significantly with indices of one of the sway components, trembling. Our observations support the hypothesis that rambling and trembling sway components involve different neurophysiological mechanisms. They also suggest that subjective perception of comfort may be more important than the actual posture for postural sway. PMID:24686189

  12. Postural sway and perceived comfort in pointing tasks

    PubMed Central

    Solnik, Stanislaw; Pazin, Nemanja; Coelho, Chase J.; Rosenbaum, David A.; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    In this study, we explored relations between indices of postural sway and perceived comfort during pointing postures performed by standing participants. The participants stood on a force plate, grasped a pointer with the dominant (right) hand, and pointed to targets located at four positions and at two distances from the body. We quantified postural sway over 60-s intervals at each pointing posture, and found no effects of target location or distance on postural sway indices. In contrast, comfort ratings correlated significantly with indices of one of the sway components, trembling. Our observations support the hypothesis that rambling and trembling sway components involve different neurophysiological mechanisms. They also suggest that subjective perception of comfort may be more important than the actual posture for postural sway. PMID:24686189

  13. Postural education and behavior among students in a city in southern Brazil: student postural education and behavior

    PubMed Central

    Fonseca, Cíntia Detsch; Cardoso dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio

    2015-01-01

    [Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine. PMID:26504322

  14. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  15. Smart Rehabilitation Garment for posture monitoring.

    PubMed

    Wang, Q; Chen, W; Timmermans, A A A; Karachristos, C; Martens, J B; Markopoulos, P

    2015-08-01

    Posture monitoring and correction technologies can support prevention and treatment of spinal pain or can help detect and avoid compensatory movements during the neurological rehabilitation of upper extremities, which can be very important to ensure their effectiveness. We describe the design and development of Smart Rehabilitation Garment (SRG) a wearable system designed to support posture correction. The SRG combines a number of inertial measurement units (IMUs), controlled by an Arduino processor. It provides feedback with vibration on the garment, audible alarm signals and visual instruction through a Bluetooth connected smartphone. We discuss the placement of sensing modules, the garment design, the feedback design and the integration of smart textiles and wearable electronics which aimed at achieving wearability and ease of use. We report on the system's accuracy as compared to optical tracker method. PMID:26737595

  16. Postural awareness among dental students in Jizan, Saudi Arabia

    PubMed Central

    Kanaparthy, Aruna; Kanaparthy, Rosaiah; Boreak, Nezar

    2015-01-01

    Objective: The study was conducted to assess the postural awareness of dental students in Jizan, Saudi Arabia. Materials and Methods: Close-ended, self-administered questionnaires were used for data collection in the survey. The questionnaire was prepared by observing the positions of students working in the clinics and the common mistakes they make with regard to their postures. The questionnaires were distributed among the dental students who were present and reported to work in the clinics. Levels of postural awareness and the relationship between postural awareness and the degree of musculoskeletal disorder (MSD) among the students was evaluated. This study was carried out in the College of Dental Sciences and Hospital, Jizan. Statistical Analysis: The level of knowledge of postural awareness was evaluated and correlated with the presence or absence of the MSDs. Categorical variables were compared using Chi-square test. P values of less than 0.05 were considered statistically significant. Results: A total of 162 dental students from the age group of 20–25 years were included in the survey, of which 134 dentists responded (83%). When their postural awareness was evaluated, results showed that 89% of the students had poor-to-medium levels of postural awareness. The relation between postural awareness and prevalence of MSDs indicated that 75% of the students with poor awareness, 49% of the students with average awareness, and 40% of the students with good awareness have MSDs. The results were statistically significant (0.002127, which is <0.005) stating that better awareness about proper postures while working helps to minimize the risk of MSDs. Conclusion: Evaluation of levels of postural awareness showed that 21% of the students had poor postural awareness, 67% had average awareness, and 11% had good postural awareness. The analysis of results showed that those students with low-to-average postural awareness had significantly greater prevalence of MSDs. PMID

  17. Postural development in school children: a cross-sectional study

    PubMed Central

    Lafond, Danik; Descarreaux, Martin; Normand, Martin C; Harrison, Deed E

    2007-01-01

    Background Little information on quantitative sagittal plane postural alignment and evolution in children exists. The objectives of this study are to document the evolution of upright, static, sagittal posture in children and to identify possible critical phases of postural evolution (maturation). Methods A total of 1084 children (aged 4–12 years) received a sagittal postural evaluation with the Biotonix postural analysis system. Data were retrieved from the Biotonix internet database. Children were stratified and analyzed by years of age with n = 36 in the youngest age group (4 years) and n = 184 in the oldest age group (12 years). Children were analyzed in the neutral upright posture. Variables measured were sagittal translation distances in millimeters of: the knee relative to the tarsal joint, pelvis relative to the tarsal joint, shoulder relative to the tarsal joint, and head relative to the tarsal joint. A two-way factorial ANOVA was used to test for age and gender effects on posture, while polynomial trend analyses were used to test for increased postural displacements with years of age. Results Two-way ANOVA yielded a significant main effect of age for all 4 sagittal postural variables and gender for all variables except head translation. No age × gender interaction was found. Polynomial trend analyses showed a significant linear association between child age and all four postural variables: anterior head translation (p < 0.001), anterior shoulder translation (p < 0.001), anterior pelvic translation (p < 0.001), anterior knee translation (p < 0.001). Between the ages of 11 and 12 years, for anterior knee translation, T-test post hoc analysis revealed only one significant rough break in the continuity of the age related trend. Conclusion A significant linear trend for increasing sagittal plane postural translations of the head, thorax, pelvis, and knee was found as children age from 4 years to 12 years. These postural translations provide preliminary

  18. Computer users' postures and associations with workstation characteristics.

    PubMed

    Gerr, F; Marcus, M; Ortiz, D; White, B; Jones, W; Cohen, S; Gentry, E; Edwards, A; Bauer, E

    2000-01-01

    This investigation tested the hypotheses that (1) physical workstation dimensions are important determinants of operator posture, (2) specific workstation characteristics systematically affect worker posture, and (3) computer operators assume "neutral" upper limb postures while keying. Operator head, neck, and upper extremity posture and selected workstation dimensions and characteristics were measured among 379 computer users. Operator postures were measured with manual goniometers, workstation characteristics were evaluated by observation, and workstation dimensions by direct measurement. Considerably greater variability in all postures was observed than was expected from application of basic geometric principles to measured workstation dimensions. Few strong correlations were observed between worker posture and workstation physical dimensions; findings suggest that preference is given to keyboard placement with respect to the eyes (r = 0.60 for association between keyboard height and seated elbow height) compared with monitor placement with respect to the eyes (r = 0.18 for association between monitor height and seated eye height). Wrist extension was weakly correlated with keyboard height (r = -0.24) and virtually not at all with keyboard thickness (r = 0.07). Use of a wrist rest was associated with decreased wrist flexion (21.9 versus 25.1 degrees, p < 0.01). Participants who had easily adjustable chairs had essentially the same neck and upper limb postures as did those with nonadjustable chairs. Sixty-one percent of computer operators were observed in nonneutral shoulder postures and 41% in nonneutral wrist postures. Findings suggest that (1) workstation dimensions are not strong determinants of at least several neck and upper extremity postures among computer operators, (2) only some workstation characteristics affect posture, and (3) contrary to common recommendations, a large proportion of computer users do not work in so-called neutral postures.

  19. Conceptual Design of a Vertical Takeoff and Landing Unmanned Aerial Vehicle with 24-HR Endurance

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.

    2010-01-01

    This paper describes a conceptual design study for a vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV) that is able to carry a 25-lb science payload for 24 hr and is able to land and take off at elevations as high as 15,000 ft without human intervention. In addition to the science payload, this vehicle must be able to carry a satellite communication system, and the vehicle must be able to be transported in a standard full-size pickup truck and assembled by only two operators. This project started with a brainstorming phase to devise possible vehicle configurations that might satisfy the requirements. A down select was performed to select a near-term solution and two advanced vehicle concepts that are better suited to the intent of the mission. Sensitivity analyses were also performed on the requirements and the technology levels to obtain a better understanding of the design space. This study found that within the study assumptions the mission is feasible; the selected concepts are recommended for further development.

  20. Portable ammonia-borane-based H2 power-pack for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Eun; Kim, Yujong; Kim, Yongmin; Kim, Kibeom; Lee, Jin Hee; Lee, Dae Hyung; Kim, Yeongcheon; Shin, Seock Jae; Kim, Dong-Min; Kim, Sung-Yug; Kim, Taegyu; Yoon, Chang Won; Nam, Suk Woo

    2014-05-01

    An advanced ammonia borane (AB)-based H2 power-pack is designed to continually drive an unmanned aerial vehicle (UAV) for 57 min using a 200-We polymer electrolyte membrane fuel cell (PEMFC). In a flight test with the UAV platform integrated with the developed power-pack, pure hydrogen with an average flow rate of 3.8 L(H2) min-1 is generated by autothermal H2-release from AB with tetraethylene glycol dimethylether (T4EGDE) as a promoter. During take-off, a hybridized power management system (PMS) consisting of the fuel cell and an auxiliary lithium-ion battery supplies 500 We at full power simultaneously, while the fuel cell alone provides 150-200 We and further recharges the auxiliary battery upon cruising. Gaseous byproducts identified by in situ Fourier transform infrared (FT-IR) spectroscopy during AB dehydrogenation are sequestrated using a mixed absorbent in an H2 purification system. In addition, a real-time monitoring system is employed to determine the remaining filter capacity of the purifier at a ground control system for rapidly responding unpredictable circumstances during flight. Separate experiments are conducted to screen potential materials and methods for enhancing filter capacity in the current H2 refining system. A prospective reactor concept for long-term fuel cell applications is proposed based on the results.

  1. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  2. Aerial Measuring System Technical Integration Annual Report 2002

    SciTech Connect

    Bechtel Nevada Remote Sensing Laboratory

    2003-06-01

    Fiscal Year 2002 is the second year of a five-year commitment by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) to invest in development of new and state-of-the-art technologies for the Aerial Measuring Systems (AMS) project. In 2000, NNSA committed to two million dollars for AMS Technical Integration (TI) for each of five years. The tragedy of September 11, 2001, profoundly influenced the program. NNSA redirected people and funding resources at the Remote Sensing Laboratory (RSL) to more immediate needs. Funds intended for AMS TI were redirected to NNSA's new posture of leaning further forward throughout. AMS TI was brought to a complete halt on December 10, 2001. Then on April 30, 2002, NNSA Headquarters allowed the restart of AMS TI at the reduced level of $840,000. The year's events resulted in a slow beginning of several projects, some of which were resumed only a few weeks before the AMS TI Symposium held at RSL on July 30.

  3. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour.

    PubMed

    Witmer, Lawrence M; Chatterjee, Sankar; Franzosa, Jonathan; Rowe, Timothy

    2003-10-30

    Comparison of birds and pterosaurs, the two archosaurian flyers, sheds light on adaptation to an aerial lifestyle. The neurological basis of control holds particular interest in that flight demands on sensory integration, equilibrium, and muscular coordination are acute. Here we compare the brain and vestibular apparatus in two pterosaurs based on high-resolution computed tomographic (CT) scans from which we constructed digital endocasts. Although general neural organization resembles birds, pterosaurs had smaller brains relative to body mass than do birds. This difference probably has more to do with phylogeny than flight, in that birds evolved from nonavian theropods that had already established trends for greater encephalization. Orientation of the osseous labyrinth relative to the long axis of the skull was different in these two pterosaur species, suggesting very different head postures and reflecting differing behaviours. Their enlarged semicircular canals reflect a highly refined organ of equilibrium, which is concordant with pterosaurs being visually based, aerial predators. Their enormous cerebellar floccular lobes may suggest neural integration of extensive sensory information from the wing, further enhancing eye- and neck-based reflex mechanisms for stabilizing gaze.

  4. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  5. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2011-07-01 2011-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  6. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2014-07-01 2014-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  7. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  8. Aerial shaking performance of wet Anna's hummingbirds.

    PubMed

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2012-05-01

    External wetting poses problems of immediate heat loss and long-term pathogen growth for vertebrates. Beyond these risks, the locomotor ability of smaller animals, and particularly of fliers, may be impaired by water adhering to the body. Here, we report on the remarkable ability of hummingbirds to perform rapid shakes in order to expel water from their plumage even while in flight. Kinematic performance of aerial versus non-aerial shakes (i.e. those performed while perching) was compared. Oscillation frequencies of the head, body and tail were lower in aerial shakes. Tangential speeds and accelerations of the trunk and tail were roughly similar in aerial and non-aerial shakes, but values for head motions while perching were twice as high when compared with aerial shakes [corrected] . Azimuthal angular amplitudes for both aerial and non-aerial shakes reached values greater than 180° for the head, greater than 45° for the body trunk and slightly greater than 90° for the tail and wings. Using a feather on an oscillating disc to mimic shaking motions, we found that bending increased average speeds by up to 36 per cent and accelerations of the feather tip up to fourfold relative to a hypothetical rigid feather. Feather flexibility may help to enhance shedding of water and reduce body oscillations during shaking.

  9. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  10. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  11. A Classroom Simulation of Aerial Photography.

    ERIC Educational Resources Information Center

    Baker, Simon

    1981-01-01

    Explains how a simulation of aerial photography can help students in a college level beginning course on interpretation of aerial photography understand the interrelationships of the airplane, the camera, and the earth's surface. Procedures, objectives, equipment, and scale are discussed. (DB)

  12. Postural responses explored through classical conditioning.

    PubMed

    Campbell, A D; Dakin, C J; Carpenter, M G

    2009-12-15

    The purpose of the study was to determine whether the central nervous system (CNS) requires the sensory feedback generated by balance perturbations in order to trigger postural responses (PRs). In Experiment 1, twenty-one participants experienced toes-up support-surface tilts in two blocks. Control blocks involved unexpected balance perturbations whereas an auditory tone cued the onset of balance perturbations in Conditioning blocks. A single Cue-Only trial followed each block (Cue-Only(Control) and Cue-Only(Conditioning) trials) in the absence of balance perturbations. Cue-Only(Conditioning) trials were used to determine whether postural perturbations were required in order to trigger PRs. Counter-balancing the order of Control and Conditioning blocks allowed Cue-Only(Control) trials to examine both the audio-spinal/acoustic startle effects of the auditory cue and the carryover effects of the initial conditioning procedure. In Experiment 2, six participants first experienced five consecutive Tone-Only trials that were followed by twenty-five conditioning trials. After conditioning, five Tone-Only trials were again presented consecutively to first elicit and then extinguish the conditioned PRs. Surface electromyography (EMG) recorded muscle activity in soleus (SOL), tibialis anterior (TA) and rectus femoris (RF). EMG onset latencies and amplitudes were calculated together with the onset latency, peak and time-to-peak of shank angular accelerations. Results indicated that an auditory cue could be conditioned to initiate PRs in multiple muscles without balance-relevant sensory triggers generated by balance perturbations. Postural synergies involving excitation of TA and RF and inhibition of SOL were observed following the Cue-Only(Conditioning) trials that resulted in shank angular accelerations in the direction required to counter the expected toes-up tilt. Postural synergies were triggered in response to the auditory cue even 15 min post-conditioning. Furthermore

  13. Coordination between posture and movement: interaction between postural and accuracy constraints.

    PubMed

    Berrigan, Félix; Simoneau, Martin; Martin, Olivier; Teasdale, Normand

    2006-04-01

    We examined the interaction between the control of posture and an aiming movement. Balance control was varied by having subjects aim at a target from a seated or a standing position. The aiming difficulty was varied using a Fitts'-like paradigm (movement amplitude=30 cm; target widths=0.5, 1.0, 2.5 and 5 cm). For both postural conditions, all targets were within the reaching space in front of the subjects and kept at a fixed relative position with respect to the subjects' body. Hence, for a given target size, the aiming was differentiated only by the postural context (seated vs. upright standing). For both postural conditions, movement time (MT) followed the well-known Fitts' law, that is, it increased with a decreasing target size. For the smallest target width, however, the increased MT was greater when subjects were standing than when they were seated suggesting that the difficulty of the aiming task could not be determined solely by the target size. When standing, a coordination between the trunk and the arm was observed. Also, as the target size decreased, the center of pressure (CP) displacement increased without any increase in CP speed suggesting that the subjects were regulating their CP to provide a controlled referential to assist the hand movement. When seated, the CP kinematics was scaled with the hand movement kinematics. Increasing the index of difficulty led to a strong correlation between the hand speed and CP displacement and speed. The complex organization between posture and movement was revealed only by examining the specific interactions between speed-accuracy and postural constraints. PMID:16328274

  14. Adaptive planning of emergency aerial photogrammetric mission

    NASA Astrophysics Data System (ADS)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  15. Physical Workload Analysis Among Small Industry Activities Using Postural Data.

    PubMed

    Ahasan; Väyrynen; Kirvesoja

    1996-01-01

    Small industry workers are often involved in manual handling operations that require awkward body postures, so musculoskeletal disorders and occupational injuries are a major problem. In this study, various types of tasks were recorded with a video camera to chart and analyze different postures by computerized OWAS (Ovako Working Posture Analysing System). Collected data showed that poor postures were adopted, not only for lifting or hammering operation, but also for other tasks; mostly with bent and twisted back. The main aim was to determine the physical workload by identifying harmful postures and to develop recommendations for improving the existing situation. Forty-eight male workers from 8 different units (mean age: 37) participated. The performed activities were then divided into 26 sub-tasks. Altogether 1534 postures were selected for analysis. Then they were classified into different OAC (OWAS Action Categories). From all the observation, unhealthy postures, for which corrective measures had to be considered immediately (i.e., 10.6% classified as OAC III and 3.3%--as OAC IV) were found. The applied method was useful in determining the physical workload by locating potential activities due to harmful postures, providing a detailed description with analysis, and suggesting successful means to reduce postural load.

  16. Effect of different insoles on postural balance: a systematic review.

    PubMed

    Christovão, Thaluanna Calil Lourenço; Neto, Hugo Pasini; Grecco, Luanda André Collange; Ferreira, Luiz Alfredo Braun; Franco de Moura, Renata Calhes; Eliege de Souza, Maria; Franco de Oliveira, Luis Vicente; Oliveira, Claudia Santos

    2013-10-01

    [Purpose] The aim of the present study was to perform a systematic review of the literature on the effect of different insoles on postural balance. [Subjects and Methods] A systematic review was conducted of four databases. The papers retrieved were evaluated based on the following inclusion criteria: 1) design: controlled clinical trial; 2) intervention: insole; 3) outcome: change in static postural balance; and 4) year of publication: 2005 to 2012. [Results] Twelve controlled trials were found comparing the effects of different insoles on postural balance. The papers had methodological quality scores of 3 or 4 on the PEDro scale. [Conclusion] Insoles have benefits that favor better postural balance and control.

  17. Eye Movements Affect Postural Control in Young and Older Females

    PubMed Central

    Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  18. Saccades Improve Postural Control: A Developmental Study in Normal Children

    PubMed Central

    Ajrezo, Layla; Wiener-Vacher, Sylvette; Bucci, Maria Pia

    2013-01-01

    Introduction Dual-task performance is known to affect postural stability in children. This study focused on the effect of oculomotor tasks like saccadic eye movements on postural stability, studied in a large population of children by recording simultaneously their eye movements and posture. Materials and Methods Ninety-five healthy children from 5.8 to 17.6 years old were examined. All children were free of any vestibular, neurological, ophtalmologic and orthoptic abnormalities. Postural control was measured with a force platform TechnoConcept®, and eye movements with video oculography (MobilEBT®). Children performed two oculomotor tasks: fixation of a stable central target and horizontal saccades. We measured the saccade latency and the number of saccades during fixation as well as the surface, length and mean velocity of the center of pressure. Results During postural measurement, we observed a correlation between the age on the one hand and a decrease in saccade latency as well as an improvement in the quality of fixation on the other. Postural sway decreases with age and is reduced in the dual task (saccades) in comparison with a simple task of fixation. Discussion - Conclusion These results suggest a maturation of neural circuits controlling posture and eye movements during childhood. This study also shows the presence of an interaction between the oculomotor system and the postural system. Engaging in oculomotor tasks results in a reduction of postural sway. PMID:24278379

  19. Investigation of compensatory postures with videofluoromanometry in dysphagia patients

    PubMed Central

    Solazzo, Antonio; Monaco, Luigi; Del Vecchio, Lucia; Tamburrini, Stefania; Iacobellis, Francesca; Berritto, Daniela; Pizza, Nunzia Luisa; Reginelli, Alfonso; Di Martino, Natale; Grassi, Roberto

    2012-01-01

    AIM: To investigate the effectiveness of head compensatory postures to ensure safe oropharyngeal transit. METHODS: A total of 321 dysphagia patients were enrolled and assessed with videofluoromanometry (VFM). The dysphagia patients were classified as follows: safe transit; penetration without aspiration; aspiration before, during or after swallowing; multiple aspirations and no transit. The patients with aspiration or no transit were tested with VFM to determine whether compensatory postures could correct their swallowing disorder. RESULTS: VFM revealed penetration without aspiration in 71 patients (22.1%); aspiration before swallowing in 17 patients (5.3%); aspiration during swallowing in 32 patients (10%); aspiration after swallowing in 21 patients (6.5%); multiple aspirations in six patients (1.9%); no transit in five patients (1.6%); and safe transit in 169 patients (52.6%). Compensatory postures guaranteed a safe transit in 66/75 (88%) patients with aspiration or no transit. A chin-down posture achieved a safe swallow in 42/75 (56%) patients, a head-turned posture in 19/75 (25.3%) and a hyperextended head posture in 5/75 (6.7%). The compensatory postures were not effective in 9/75 (12%) cases. CONCLUSION: VFM allows the speech-language the-rapist to choose the most effective compensatory posture without a trial-and-error process and check the effectiveness of the posture. PMID:22736921

  20. The Effect of Training on Postural Control in Dyslexic Children.

    PubMed

    Goulème, Nathalie; Gérard, Christophe-Loïc; Bucci, Maria Pia

    2015-01-01

    The aim of this study was to explore whether a short postural training period could affect postural stability in dyslexic children. Postural performances were evaluated using Multitest Equilibre from Framiral. Posture was recorded in three different viewing conditions (eyes open fixating a target, eyes closed and eyes open with perturbed vision) and in two different postural conditions (on stable and unstable support). Two groups of dyslexic children participated in the study, i.e. G1: 16 dyslexic participants (mean age 9.9 ± 0.3 years) who performed short postural training and G2: 16 dyslexic participants of similar ages (mean age 9.1 ± 0.3 years) who did not perform any short postural training. Findings showed that short postural training improved postural stability on unstable support surfaces with perturbed vision: indeed the surface, the mean velocity of CoP and the spectral power indices in both directions decreased significantly, and the cancelling time in the antero-posterior direction improved significantly. Such improvement could be due to brain plasticity, which allows better performance in sensory process and cerebellar integration.

  1. The Effect of Training on Postural Control in Dyslexic Children

    PubMed Central

    Goulème, Nathalie; Gérard, Christophe-Loïc; Bucci, Maria Pia

    2015-01-01

    The aim of this study was to explore whether a short postural training period could affect postural stability in dyslexic children. Postural performances were evaluated using Multitest Equilibre from Framiral. Posture was recorded in three different viewing conditions (eyes open fixating a target, eyes closed and eyes open with perturbed vision) and in two different postural conditions (on stable and unstable support). Two groups of dyslexic children participated in the study, i.e. G1: 16 dyslexic participants (mean age 9.9 ± 0.3 years) who performed short postural training and G2: 16 dyslexic participants of similar ages (mean age 9.1 ± 0.3 years) who did not perform any short postural training. Findings showed that short postural training improved postural stability on unstable support surfaces with perturbed vision: indeed the surface, the mean velocity of CoP and the spectral power indices in both directions decreased significantly, and the cancelling time in the antero-posterior direction improved significantly. Such improvement could be due to brain plasticity, which allows better performance in sensory process and cerebellar integration. PMID:26162071

  2. Eye Movements Affect Postural Control in Young and Older Females

    PubMed Central

    Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412

  3. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  4. Whitecap coverage from aerial photography

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1970-01-01

    A program for determining the feasibility of deriving sea surface wind speeds by remotely sensing ocean surface radiances in the nonglitter regions is discussed. With a knowledge of the duration and geographical extent of the wind field, information about the conventional sea state may be derived. The use of optical techniques for determining sea state has obvious limitations. For example, such means can be used only in daylight and only when a clear path of sight is available between the sensor and the surface. However, sensors and vehicles capable of providing the data needed for such techniques are planned for the near future; therefore, a secondary or backup capability can be provided with little added effort. The information currently being sought regarding white water coverage is also of direct interest to those working with passive microwave systems, the study of energy transfer between winds and ocean currents, the aerial estimation of wind speeds, and many others.

  5. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  6. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  7. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  8. Observations of working postures in garages using the Ovako Working posture Analysing System (OWAS) and consequent workload reduction recommendations.

    PubMed

    Kant, I; Notermans, J H; Borm, P J

    1990-02-01

    The working postures of mechanics (n = 84) in 42 garages were observed using the Ovako Working posture Analysis System (OWAS). During observation, both working postures and work activities were recorded. A computer program was developed for the data analyses. Using this program it is possible to calculate the working posture load for each work activity and the contribution of a specific activity to the total working posture load. This is a substantial extension of the original OWAS method. Five out of 19 observed postures of the body members were classified as Action Category 2, which suggests they were slightly harmful to the musculoskeletal system and likely to cause discomfort. Of the so-called typical working postures, 31.9% was classified in Action Category 2, suggesting that during a substantial part of the working day typical working postures occur which are at least slightly harmful to the musculoskeletal system. Moreover, those work activities principally causing the workload to fall in OWAS' higher Action Categories were identified. For each of these three work activities an alternative work method was observed. The data show that in all three work activities the use of a vehicle lift reduces the number of poor working postures thereby reducing the load on the musculoskeletal system.

  9. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  10. Postural Stability When Leaning from Perceived Upright

    NASA Technical Reports Server (NTRS)

    Vanya, Robert D.; Grounds, John F.; Wood, Scott J.

    2011-01-01

    The transition between quiet stance and gait requires the volitional movement of one?s center of mass (COM) toward a limit of stability (LOS). The goal of this study was to measure the effect of leaning from perceived upright on postural stability when voluntarily maintaining fixed stance positions and during perturbations of the support surface. The COM was derived from force plate data in 12 healthy subjects while standing with feet positioned so that lateral base of support was equal to foot length. For all conditions, arms were folded and subjects were instructed to lean without bending at the hips or lifting their feet. The LOS was determined during maximal voluntary leans with eyes open and closed. The COM was then displayed on a monitor located in front of the subject. Subjects were visually guided to lean toward a target position, maintain this position for 10s, return to upright, and then repeat the same targeted lean maneuver with eyes closed. Targets were randomly presented at 2? in 8 directions and between 2-6? in these same directions according to the asymmetric LOS. Subjects were then verbally guided to lean between 2? back and 4? forward prior to a perturbation of the support surface in either a forward or backward direction. The average LOS was 5.8? forward, 2.9? back, and 4.8? in left/right directions, with no significant difference between eyes open and closed. Center of pressure (COP) velocity increased as subjects maintained fixed stance positions farther from upright, with increased variability during eyes closed conditions. The time to stability and COP path length increased as subjects leaned opposite to the direction of the support surface perturbations. We conclude that postural stability is compromised as subjects lean away from perceived upright, except for perturbations that induce sway in the direction opposite the lean. The asymmetric LOS relative to perceived upright favors postural stability for COM movements in the forward direction.

  11. Postural reorganization induced by torso cutaneous covibration.

    PubMed

    Lee, Beom-Chan; Martin, Bernard J; Ho, Allison; Sienko, Kathleen H

    2013-05-01

    Cutaneous information from joints has been attributed proprioceptive properties similar to those of muscle spindles. This study aimed to assess whether vibration-induced changes in torso cutaneous information contribute to whole-body postural reorganization in humans. Ten healthy young adults stood in normal and Romberg stances with six vibrating actuators positioned on the torso in contact with the skin over the left and right external oblique, internal oblique, and erector spinae muscle locations at the L4/L5 vertebrae level. Vibrations around the torso were randomly applied at two locations simultaneously (covibration) or at all locations simultaneously. Kinematic analysis of the body segments indicated that covibration applied to the skin over the internal oblique muscles induced shifts of both the head and torso in the anterior direction (torso flexion) while the hips shifted in the posterior direction (ankle plantar flexion). Conversely, covibration applied to the skin over the erector spinae muscle locations produced opposite effects. However, covibration applied to the skin over the left internal oblique and left erector spinae, the right internal oblique and right erector spinae, or at all locations simultaneously did not induce any significant postural changes. In addition, the center of pressure position as measured by the force plate was unaffected by all covibration conditions tested. These results were independent of stance and suggest an integrated and coordinated reorganization of posture in response to vibration-induced changes in cutaneous information. In addition, combinations of vibrotactile stimuli over multiple locations exhibit directional summation properties in contrast to the individual responses we observed in our previous work. PMID:23637178

  12. Artificial Intelligence Software for Assessing Postural Stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez; Forth, Katharine; Paloski, William

    2013-01-01

    A software package reads and analyzes pressure distributions from sensors mounted under a person's feet. Pressure data from sensors mounted in shoes, or in a platform, can be used to provide a description of postural stability (assessing competence to deficiency) and enables the determination of the person's present activity (running, walking, squatting, falling). This package has three parts: a preprocessing algorithm for reading input from pressure sensors; a Hidden Markov Model (HMM), which is used to determine the person's present activity and level of sensing-motor competence; and a suite of graphical algorithms, which allows visual representation of the person's activity and vestibular function over time.

  13. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  14. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  15. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  16. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  17. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  18. Advantages and disadvantages of stiffness instructions when studying postural control.

    PubMed

    Bonnet, Cédrick T

    2016-05-01

    To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway.

  19. Effects of Dyslexia on Postural Control in Adults

    ERIC Educational Resources Information Center

    Patel, M.; Magnusson, M.; Lush, D.; Gomez, S.; Fransson, P. A.

    2010-01-01

    Dyslexia has been shown to affect postural control. The aim of the present study was to investigate the difference in postural stability measured as torque variance in an adult dyslexic group (n=14, determined using the Adult Dyslexia Checklist (ADCL) and nonsense word repetition test) and an adult non-dyslexic group (n=39) on a firm surface and…

  20. Obesity, mechanical and strength relationships to postural control in adolescence.

    PubMed

    King, Adam C; Challis, John H; Bartok, Cynthia; Costigan, F Aileen; Newell, Karl M

    2012-02-01

    There is preliminary evidence that BMI is positively correlated with movement variability of standing posture. However, this negative effect of obesity on postural control may be mediated by the change in other body scale variables (e.g., mechanical and fitness) that also occur with changes in BMI. This study investigated the influence of selected body scale (height, body mass, BMI), body composition (body fat percentage), mechanical (moment of inertia - MI) and strength (S) variables as predictors of the control of postural motion in adolescents. 125 healthy adolescents (65 boys, 60 girls) with a wide range of BMI (13.8-31.0 kg/m(2)) performed a battery of tests that assessed body composition, anthropometry, muscular strength and postural control. Multiple measures of postural motion variability were derived for analysis with body scale, mechanical and lower extremity strength variables separately for boys and girls. BMI, height and body mass, considered both separately and collectively, were poor and/or inconsistent predictors of variability in all three posture tasks. However, the ratio of lower extremity strength to whole body moment of inertia showed the highest positive correlation to most postural variability measures in both boys and girls and these effects were strongest in the less stable tasks of single leg standing and recovery of stance. Our findings support the hypothesis that diminished lower extremity strength to mechanical constraint ratio compromises the robustness of the strength to body scale relation in movement and postural control. PMID:22018701

  1. Postural responses to unexpected perturbations of balance during reaching

    PubMed Central

    Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.

    2014-01-01

    To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321

  2. Prevalence of Common Postural Disorders Among Academic Dental Staff

    PubMed Central

    Vakili, Leila; Halabchi, Farzin; Mansournia, Mohammad Ali; Khami, Mohammad Reza; Irandoost, Shahla; Alizadeh, Zahra

    2016-01-01

    Background Musculoskeletal disorders are common problems among dentists. These conditions may lead to inappropriate postures and impairment in physical and psychological function. On the other hand, poor postures and inappropriate ergonomic may result in a wide variety of musculoskeletal disorders. Objectives The aim of this study was to investigate the prevalence of common postural disorders of the spine and shoulder girdle among the dentists and possible correlations between demographic, anthropometric and occupational characteristics with these abnormal postures. Patients and Methods In a cross-sectional study, 96 dental staff including academic staff, residents and senior students of Tehran University of Medical Sciences was enrolled. Data were collected using a questionnaire and posture assessment tools such as plumb-line, checkerboard and flexible ruler. Data analysis was done with SPSS version 17. Results The prevalence of the forward head posture (FHP), rounded shoulder posture (RSP), scoliosis and hyperlordosis were reported in 85.5%, 68.8%, 18.8% and 17.3% of the participants, respectively. A significant correlation was found between gender and FHP (P = 0.04) and also scoliosis (P = 0.009). On the other hand, a significant correlation was seen between weight and hyperlordosis (P = 0.007). Conclusions Our study revealed a high prevalence of postural disorders especially FHP, RSP and scoliosis among Iranian dental staff. The female dentists were less susceptible to FHP and scoliosis. PMID:27625751

  3. Prevalence of Common Postural Disorders Among Academic Dental Staff

    PubMed Central

    Vakili, Leila; Halabchi, Farzin; Mansournia, Mohammad Ali; Khami, Mohammad Reza; Irandoost, Shahla; Alizadeh, Zahra

    2016-01-01

    Background Musculoskeletal disorders are common problems among dentists. These conditions may lead to inappropriate postures and impairment in physical and psychological function. On the other hand, poor postures and inappropriate ergonomic may result in a wide variety of musculoskeletal disorders. Objectives The aim of this study was to investigate the prevalence of common postural disorders of the spine and shoulder girdle among the dentists and possible correlations between demographic, anthropometric and occupational characteristics with these abnormal postures. Patients and Methods In a cross-sectional study, 96 dental staff including academic staff, residents and senior students of Tehran University of Medical Sciences was enrolled. Data were collected using a questionnaire and posture assessment tools such as plumb-line, checkerboard and flexible ruler. Data analysis was done with SPSS version 17. Results The prevalence of the forward head posture (FHP), rounded shoulder posture (RSP), scoliosis and hyperlordosis were reported in 85.5%, 68.8%, 18.8% and 17.3% of the participants, respectively. A significant correlation was found between gender and FHP (P = 0.04) and also scoliosis (P = 0.009). On the other hand, a significant correlation was seen between weight and hyperlordosis (P = 0.007). Conclusions Our study revealed a high prevalence of postural disorders especially FHP, RSP and scoliosis among Iranian dental staff. The female dentists were less susceptible to FHP and scoliosis.

  4. Turning Configural Processing Upside Down: Part and Whole Body Postures

    ERIC Educational Resources Information Center

    Reed, Catherine L.; Stone, Valerie E.; Grubb, Jefferson D.; McGoldrick, John E.

    2006-01-01

    Like faces, body postures are susceptible to an inversion effect in untrained viewers. The inversion effect may be indicative of configural processing, but what kind of configural processing is used for the recognition of body postures must be specified. The information available in the body stimulus was manipulated. The presence and magnitude of…

  5. Disruption of postural readaptation by inertial stimuli following space flight

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.

    1999-01-01

    Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.

  6. Postural Strategies in Prader-Willi and Down Syndrome Patients

    ERIC Educational Resources Information Center

    Cimolin, Veronica; Galli, Manuela; Grugni, Graziano; Vismara, Luca; Precilios, Helmer; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo

    2011-01-01

    Patients affected by Down (DS) and Prader-Willi syndrome (PWS) are characterised by some common clinical and functional features including gait disorders and reduced postural control. The aim of our study was to quantitatively compare postural control in adult PWS and DS. We studied 12 PWS and 19 DS adult patients matched for age, height, weight…

  7. Static Postural Stability Is Normal in Dyslexic Children.

    ERIC Educational Resources Information Center

    Brown, Brian; And Others

    1985-01-01

    An experiment on 15 dyslexic and 23 carefully matched control subjects (10- to 12-year-old males), examining their ability to maintain standing posture with eyes open and closed and with standard and tandem foot placement, revealed no differences under any condition tested and no differences in use of visual information to maintain their posture.…

  8. Selection of wrist posture in conditions of motor ambiguity.

    PubMed

    Wood, Daniel K; Goodale, Melvyn A

    2011-02-01

    In our everyday motor interactions with objects, we often encounter situations where the features of an object are determinate (i.e., not perceptually ambiguous), but the mapping between those features and appropriate movement patterns is indeterminate, resulting in a lack of any clear preference for one posture over another. We call this indeterminacy in stimulus-response mapping 'motor ambiguity'. Here, we use a grasping task to investigate the decision mechanisms that mediate the basic behavior of selecting one wrist posture over another in conditions of motor ambiguity. Using one of two possible wrist postures, participants grasped a dowel that was presented at various orientations. At most orientations, there was a clear preference for one wrist posture over the other. Within a small range of orientations, however, participants were variable in their posture selection due to the fact that the dowel was ambiguous with respect to the hand posture it afforded. We observed longer reaction times (RT) during 'ambiguous' trials than during the 'unambiguous' trials. In two subsequent experiments, we explored the effects of foreknowledge and trial history on the selection of wrist posture. We found that foreknowledge led to shorter RT unless the previous trial involved selecting a posture in the ambiguous region, in which case foreknowledge gave no RT advantage. These results are discussed within the context of existing models of sensorimotor decision making. PMID:21152907

  9. Predictors of Postural Stability in Children with ADHD

    ERIC Educational Resources Information Center

    Ghanizadeh, Ahmad

    2011-01-01

    Objective: As children with ADHD who have more inattention problems are more frequently with fine motor problems, it is not clear whether postural balance problems are associated with different subtypes of ADHD. This study investigates the predictors of postural stability in children with ADHD considering the covariant factors of age, gender, and…

  10. Oculomotor tasks affect differently postural control in healthy children.

    PubMed

    Bucci, Maria Pia; Ajrezo, Layla; Wiener-Vacher, Sylvette

    2015-11-01

    Eye movements affect postural stability in children. The present study focuses on the effect of different types of eye movements on postural stability in healthy children. Both eye movements and postural stability have been recorded in 51 healthy children from 6.3 to 15.5 years old. Eye movements were recorded binocularly with a video oculography (MobilEBT(®)), and postural stability was measured while child was standing on a force platform (TechnoConcept(®)). Children performed three oculomotor tasks: saccades, pursuits and reading a text silently. We measured the number of saccades made in the three oculomotor tasks, the number of words read, and the surface area, the length and mean velocity of the center of pressure (CoP). According to previous studies, postural control improves with age until 10-12 years. Saccades toward a target as well as during a reading task reduce significantly the CoP displacement and its velocity, while during pursuit eye movements all children increase postural parameters (i.e., the surface area, the length and mean velocity of the CoP). These results suggest the presence of an interaction between the oculomotor control and the postural system. Visual attention to perform saccades (to stationary targets or to words) influences postural stability more than the frequency of saccade triggering does. PMID:26096315

  11. Disabling postural hypotension complicating diabetic autonomic neuropathy.

    PubMed

    Stevens, M J; Edmonds, M E; Mathias, C J; Watkins, P J

    1991-11-01

    A 35-year-old Type 1 diabetic man with severe disabling postural hypotension was studied for physiological abnormalities, precipitating factors, and effect of current treatment. A 24-h blood pressure profile indicated a diurnal variation in systolic blood pressure with the lowest values recorded between 0100 and 0600 h, during which the patient often lost consciousness on standing (mean standing systolic pressure 78 mmHg at night vs 105 mmHg in the afternoon, p less than 0.001). Food induced a profound fall in systolic pressure, both while supine and while standing erect. The systolic pressure fall during euglycaemia was 49 mmHg vs 3 mmHg during hypoglycaemia. Plasma noradrenaline and adrenaline levels were low during euglycaemia, but increased during hypoglycaemia. Therapeutic manoeuvres aimed at increasing heart rate (by atrial tachypacing) and reducing the peripheral pooling of blood (vasoconstricting drugs and gravity suit), together with the somatostatin analogue octreotide, proved ineffective. These observations demonstrate the phenomenon of post-prandial exacerbation of postural hypotension in a Type 1 diabetic patient, and indicate that despite failure of conventional methods of treatment, hypoglycaemia increased plasma catecholamines and was effective in abolishing the blood pressure fall on standing.

  12. Postural Tachycardia Syndrome: Beyond Orthostatic Intolerance.

    PubMed

    Garland, Emily M; Celedonio, Jorge E; Raj, Satish R

    2015-09-01

    Postural tachycardia syndrome (POTS) is a form of chronic orthostatic intolerance for which the hallmark physiological trait is an excessive increase in heart rate with assumption of upright posture. The orthostatic tachycardia occurs in the absence of orthostatic hypotension and is associated with a >6-month history of symptoms that are relieved by recumbence. The heart rate abnormality and orthostatic symptoms should not be caused by medications that impair autonomic regulation or by debilitating disorders that can cause tachycardia. POTS is a "final common pathway" for a number of overlapping pathophysiologies, including an autonomic neuropathy in the lower body, hypovolemia, elevated sympathetic tone, mast cell activation, deconditioning, and autoantibodies. Not only may patients be affected by more than one of these pathophysiologies but also the phenotype of POTS has similarities to a number of other disorders, e.g., chronic fatigue syndrome, Ehlers-Danlos syndrome, vasovagal syncope, and inappropriate sinus tachycardia. POTS can be treated with a combination of non-pharmacological approaches, a structured exercise training program, and often some pharmacological support.

  13. Emotion expression in body action and posture.

    PubMed

    Dael, Nele; Mortillaro, Marcello; Scherer, Klaus R

    2012-10-01

    Emotion communication research strongly focuses on the face and voice as expressive modalities, leaving the rest of the body relatively understudied. Contrary to the early assumption that body movement only indicates emotional intensity, recent studies have shown that body movement and posture also conveys emotion specific information. However, a deeper understanding of the underlying mechanisms is hampered by a lack of production studies informed by a theoretical framework. In this research we adopted the Body Action and Posture (BAP) coding system to examine the types and patterns of body movement that are employed by 10 professional actors to portray a set of 12 emotions. We investigated to what extent these expression patterns support explicit or implicit predictions from basic emotion theory, bidimensional theory, and componential appraisal theory. The overall results showed partial support for the different theoretical approaches. They revealed that several patterns of body movement systematically occur in portrayals of specific emotions, allowing emotion differentiation. Although a few emotions were prototypically expressed by one particular pattern, most emotions were variably expressed by multiple patterns, many of which can be explained as reflecting functional components of emotion such as modes of appraisal and action readiness. It is concluded that further work in this largely underdeveloped area should be guided by an appropriate theoretical framework to allow a more systematic design of experiments and clear hypothesis testing.

  14. Effects of Limb Posture on Reactive Hyperemia

    PubMed Central

    Krishnan, Anandi; Lucassen, Elisabeth B.; Hogeman, Cindy; Blaha, Cheryl; Leuenberger, Urs A.

    2012-01-01

    To examine the role of limb posture on vascular conductance during rapid changes in vascular transmural pressure, we determined brachial (n = 10) and femoral (n = 10) artery post-occlusive reactive hyperemic blood flow (RHBF, ultrasound/Doppler) and vascular conductance in healthy humans with each limb at three different positions – horizontal, up and down. Limb posture was varied by raising or lowering the arm or leg from the horizontal position by 45°. In both limbs, peak RHBF and vascular conductance was highest in the down or horizontal position and lowest in the up position (arm up 338 ± 38, supine 430 ± 52, down 415 ± 52 ml/min, P < 0.05; leg up 1208 ± 88, supine 1579 ± 130, down 1767 ± 149 ml/min, P < 0.05). In contrast, the maximal dynamic fall in blood flow following peak RHBF (in ml/s/s) in both limbs was highest in the limb down position and lowest with the limb elevated (P < 0.05). These data suggest that the magnitude and temporal pattern of limb reactive hyperemia is in part related to changes in vascular transmural pressure and independent of systemic blood pressure and sympathetic control. PMID:21161263

  15. Viscoelastic properties of laryngeal posturing muscles

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Hunter, Eric; Titze, Ingo

    2003-10-01

    Viscoelastic properties of canine laryngeal muscles were measured in a series of in vitro experiments. Laryngeal posturing that controls vocal fold length and adduction/abduction is an essential component of the voice production. The dynamics of posturing depends on the viscoelastic and physiological properties of the laryngeal muscles. The time-dependent and nonlinear behaviors of these tissues are also crucial in the voice production and pitch control theories. The lack of information on some of these muscles such as posterior cricoarytenoid muscle (PCA), lateral cricoarytenoid muscle (LCA), and intraarytenoid muscle (IA) was the major incentive for this study. Samples of PCA and LCA muscles were made from canine larynges and mounted on a dual-servo system (Ergometer) as described in our previous works. Two sets of experiments were conducted on each muscle, a 1-Hz stretch and release experiment that provides stress-strain data and a stress relaxation test. Data from these muscles were fitted to viscoelastic models and Young's modulus and viscoelastic constants are obtained for each muscle. Preliminary data indicates that elastics properties of these muscles are similar to those of thyroarytenoid and cricothyroid muscles. The relaxation response of these muscles also shows some similarity to other laryngeal muscles in terms of time constants.

  16. Postural Tachycardia Syndrome: Beyond Orthostatic Intolerance

    PubMed Central

    Garland, Emily M; Celedonio, Jorge E; Raj, Satish R

    2015-01-01

    Postural Tachycardia Syndrome (POTS) is a form of chronic orthostatic intolerance for which the hallmark physiological trait is an excessive increase in heart rate with assumption of upright posture. The orthostatic tachycardia occurs in the absence of orthostatic hypotension and is associated with a >6-month history of symptoms that are relieved by recumbence. The heart rate abnormality and orthostatic symptoms should not be caused by medications that impair autonomic regulation or by debilitating disorders that can cause tachycardia. POTS is a “final common pathway” for a number of overlapping pathophysiologies, including an autonomic neuropathy in the lower body, hypovolemia, elevated sympathetic tone, mast cell activation, deconditioning, and autoantibodies. Not only may patients be affected by more than one of these pathophysiologies, but also the phenotype of POTS has similarities to a number of other disorders, e.g., chronic fatigue syndrome, Ehlers-Danlos Syndrome, vasovagal syncope, and inappropriate sinus tachycardia. POTS can be treated with a combination of non-pharmacological approaches, a structured exercise training program, and often some pharmacological support. PMID:26198889

  17. Artificial balancer - supporting device for postural reflex.

    PubMed

    Wojtara, Tytus; Sasaki, Makoto; Konosu, Hitoshi; Yamashita, Masashi; Shimoda, Shingo; Alnajjar, Fady; Kimura, Hidenori

    2012-02-01

    The evolutionarily novel ability to keep ones body upright while standing or walking, the human balance, deteriorates in old age or can be compromised after accidents or brain surgeries. With the aged society, age related balance problems are on the rise. Persons with balance problems are more likely to fall during their everyday life routines. Especially in elderly, falls can lead to bone fractures making the patient bedridden, weakening the body and making it more prone to other diseases. Health care expenses for a fall patient are often very high. There is a great deal of research being done on exoskeletons and power assists. However, these technologies concentrate mainly on the amplifications of human muscle power while balance has to be provided by the human themself. Our research has been focused on supporting human balance in harmony with the human's own posture control mechanisms such as postural reflexes. This paper proposes an artificial balancer that supports human balance through acceleration of a flywheel attached to the body. Appropriate correcting torques are generated through our device based on the measurements of body deflections. We have carried out experiments with test persons standing on a platform subject to lateral perturbations and ambulatory experiments while walking on a balance beam. These experiments have demonstrated the effectiveness of our device in supporting balance and the possibility of enhancing balance-keeping capability in human beings through the application of external torque. PMID:22169384

  18. Fitts' Law in early postural adjustments.

    PubMed

    Bertucco, M; Cesari, P; Latash, M L

    2013-02-12

    We tested a hypothesis that the classical relation between movement time and index of difficulty (ID) in quick pointing action (Fitts' Law) reflects processes at the level of motor planning. Healthy subjects stood on a force platform and performed quick and accurate hand movements into targets of different size located at two distances. The movements were associated with early postural adjustments that are assumed to reflect motor planning processes. The short distance did not require trunk rotation, while the long distance did. As a result, movements over the long distance were associated with substantial Coriolis forces. Movement kinematics and contact forces and moments recorded by the platform were studied. Movement time scaled with ID for both movements. However, the data could not be fitted with a single regression: Movements over the long distance had a larger intercept corresponding to movement times about 140 ms longer than movements over the shorter distance. The magnitude of postural adjustments prior to movement initiation scaled with ID for both short and long distances. Our results provide strong support for the hypothesis that Fitts' Law emerges at the level of motor planning, not at the level of corrections of ongoing movements. They show that, during natural movements, changes in movement distance may lead to changes in the relation between movement time and ID, for example when the contribution of different body segments to the movement varies and when the action of Coriolis force may require an additional correction of the movement trajectory. PMID:23211560

  19. Fitts’ Law in Early Postural Adjustments

    PubMed Central

    Bertucco, M.; Cesari, P.; Latash, M.L

    2012-01-01

    We tested a hypothesis that the classical relation between movement time and index of difficulty (ID) in quick pointing action (Fitts’ Law) reflects processes at the level of motor planning. Healthy subjects stood on a force platform and performed quick and accurate hand movements into targets of different size located at two distances. The movements were associated with early postural adjustments that are assumed to reflect motor planning processes. The short distance did not require trunk rotation, while the long distance did. As a result, movements over the long distance were associated with substantiual Coriolis forces. Movement kinematics and contact forces and moments recorded by the platform were studied. Movement time scaled with ID for both movements. However, the data could not be fitted with a single regression: Movements over the long distance had a larger intercept corresponding to movement times about 140 ms longer than movements over the shorter distance. The magnitude of postural adjustments prior to movement initiation scaled with ID for both short and long distances. Our results provide strong support for the hypothesis that Fitts’ Law emerges at the level of motor planning, not at the level of corrections of ongoing movements. They show that, during natural movements, changes in movement distance may lead to changes in the relation between movement time and ID, for example when the contribution of different body segments to the movement varies and when the action of Coriolis force may require an additional correction of the movement trajectory. PMID:23211560

  20. Postural Tachycardia Syndrome: Beyond Orthostatic Intolerance.

    PubMed

    Garland, Emily M; Celedonio, Jorge E; Raj, Satish R

    2015-09-01

    Postural tachycardia syndrome (POTS) is a form of chronic orthostatic intolerance for which the hallmark physiological trait is an excessive increase in heart rate with assumption of upright posture. The orthostatic tachycardia occurs in the absence of orthostatic hypotension and is associated with a >6-month history of symptoms that are relieved by recumbence. The heart rate abnormality and orthostatic symptoms should not be caused by medications that impair autonomic regulation or by debilitating disorders that can cause tachycardia. POTS is a "final common pathway" for a number of overlapping pathophysiologies, including an autonomic neuropathy in the lower body, hypovolemia, elevated sympathetic tone, mast cell activation, deconditioning, and autoantibodies. Not only may patients be affected by more than one of these pathophysiologies but also the phenotype of POTS has similarities to a number of other disorders, e.g., chronic fatigue syndrome, Ehlers-Danlos syndrome, vasovagal syncope, and inappropriate sinus tachycardia. POTS can be treated with a combination of non-pharmacological approaches, a structured exercise training program, and often some pharmacological support. PMID:26198889

  1. The effect of posture and abdominal binding on respiratory pressures.

    PubMed

    Koulouris, N; Mulvey, D A; Laroche, C M; Goldstone, J; Moxham, J; Green, M

    1989-11-01

    We examined the effect of posture on the generation of respiratory pressures in 6 highly trained subjects. Transdiaphragmatic pressure was measured at FRC during bilateral percutaneous phrenic nerve stimulation (twitch Pdi) and maximal sniffs (sniff Pdi), with the abdomen bound and unbound. Maximum static inspiratory (PImax) and expiratory (PEmax) mouth pressures were measured with the abdomen unbound. Three postures were examined: seated (Se), semi-supine (30s), and supine (Su). Changes of posture did not significantly alter twitch Pdi. By contrast, sniff Pdi and static mouth pressures were significantly reduced in the Su posture. Abdominal binding significantly increased twitch Pdi only. We conclude that voluntary respiratory manoeuvres requiring activation, recruitment and coordination of different muscle groups are performed better in the Se position. We suggest that posture be standardised for serial comparative measurements of voluntary respiratory pressures in a given subject.

  2. Barnacle geese achieve significant energetic savings by changing posture.

    PubMed

    Tickle, Peter G; Nudds, Robert L; Codd, Jonathan R

    2012-01-01

    Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.

  3. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  4. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  5. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  6. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  7. An experimental study to evaluate musculoskeletal disorders and postural stress of female craftworkers adopting different sitting postures.

    PubMed

    Maity, Payel; De, Sujaya; Pal, Amitava; Dhara, Prakash C

    2016-01-01

    This study aimed to evaluate musculoskeletal disorders (MSDs) and postural stress among female craftworkers. The study was carried out on 75 adult female craftworkers in different districts of West Bengal. The prevalence of MSDs, body part discomfort (BPD) rating and body joint angles of the workers were evaluated with standard methods. Electromyography (EMG) of the shoulder and back muscles was recorded with the BIOPAC system. The prevalence of MSDs, BPD rating and deviation of joint angle were comparatively lower in the case of sitting on the floor with folded legs than squatting and sitting on the floor with stretched legs postures. The EMG and rms values of the shoulder and back muscles were comparatively lower in this posture. Therefore, it was concluded that sitting on the floor with folded legs was less hazardous and it imposed less postural stress in comparison to other sitting postures. PMID:27055480

  8. Effect of Seated Trunk Posture on Eye Blink Startle and Subjective Experience: Comparing Flexion, Neutral Upright Posture, and Extension of Spine

    PubMed Central

    Ceunen, Erik; Zaman, Jonas; Vlaeyen, Johan W. S.; Dankaerts, Wim; Van Diest, Ilse

    2014-01-01

    Postures are known to be able to affect emotion and motivation. Much less is known about whether (affective) modulation of eye blink startle occurs following specific postures. The objective of the current study was to explore this. Participants in the present study were requested to assume three different sitting postures: with the spine flexed (slouched), neutral upright, and extended. Each posture was assumed for four minutes, and was followed by the administration of brief self-report questionnaires before proceeding to the next posture. The same series of postures and measures were repeated prior to ending the experiment. Results indicate that, relative to the other postures, the extended sitting posture was associated with an increased startle, was more unpleasant, arousing, had smaller levels of dominance, induced more discomfort, and was perceived as more difficult. The upright and flexed sitting postures differed in the level of self-reported positive affect, but not in eye blink startle amplitudes. PMID:24516664

  9. Sensorimotor integration in human postural control

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  10. Putative spinal interneurons mediating postural limb reflexes provide basis for postural control in different planes

    PubMed Central

    Zelenin, Pavel V.; Hsu, Li-Ju; Lyalka, Vladimir F.; Orlovsky, Grigori N.; Deliagina, Tatiana G.

    2014-01-01

    The dorsal-side-up trunk orientation in standing quadrupeds is maintained by the postural system driven mainly by somatosensory inputs from the limbs. Postural limb reflexes (PLRs) represent a substantial component of this system. Earlier we described spinal neurons presumably contributing to the generation of PLRs. The first aim of the present study was to reveal trends in the distribution of neurons with different parameters of PLR-related activity across the gray matter of the spinal cord. The second aim was to estimate the contribution of PLR-related neurons with different patterns of convergence of sensory inputs from the limbs to stabilization of body orientation in different planes. For this purpose, the head and vertebral column of the decerebrate rabbit were fixed, whereas the hindlimbs were positioned on a platform. Activity of individual neurons from L5–L6 was recorded during PLRs evoked by lateral tilts of the platform. In addition, the neurons were tested by tilts of the platform under only the ipsilateral or only the contralateral limb, as well as during in-phase tilts of the platforms under both limbs. We found that, across the spinal gray matter, strength of PLR-related neuronal activity and sensory input from the ipsi-limb decreased in the dorso-ventral direction, while strength of the input from the contra-limb increased. A near linear summation of tilt-related sensory inputs from different limbs was found. Functional roles were proposed for individual neurons. The obtained data present the first characterization of posture-related spinal neurons, forming a basis for studies of postural networks impaired by injury. PMID:25370349

  11. The Role of Anticipatory Postural Adjustments in Compensatory Control of Posture: 2. Biomechanical Analysis

    PubMed Central

    Santos, Marcio J.; Kanekar, Neeta; Aruin, Alexander S.

    2010-01-01

    The central nervous system (CNS) utilizes anticipatory (APAs) and compensatory (CPAs) postural adjustments to maintain equilibrium while standing. It is known that these postural adjustments involve displacements of the center of mass (COM) and center of pressure (COP). The purpose of the study was to investigate the relationship between APAs and CPAs from a kinetic and kinematic perspective. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level while standing. Kinematic and kinetic data were recorded and analyzed during the time duration typical for anticipatory and compensatory postural adjustments. When the perturbations were unpredictable, the COM and COP displacements were larger compared to predictable conditions with APAs. Thus, the peak of COM displacement, after the pendulum impact, in the posterior direction reached 28 ± 9.6 mm in the unpredictable conditions with no APAs whereas it was 1.6 times smaller, reaching 17 ± 5.5 mm during predictable perturbations. Similarly, after the impact, the peak of COP displacement in the posterior direction was 60 ± 14 mm for unpredictable conditions and 28 ± 3.6 mm for predictable conditions. Finally, the times of the peak COM and COP displacements were similar in the predictable and unpredictable conditions. This outcome provides additional knowledge about how body balance is controlled in presence and in absence of information about the forthcoming perturbation. Moreover, it suggests that control of posture could be enhanced by better utilization of APAs and such an approach could be considered as a valuable modality in the rehabilitation of individuals with balance impairment. PMID:20156693

  12. a computational modeling for image motion velocity on focal plane of aerial & aerospace frame camera

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Jin, G.; Li, Z. Y.

    As the resolving power and geometric accuracy of aerial aerospace imaging is demanded to be higher the researches in technology of IMC become very important In order to compensate the image motion on focal plane the rule of FPIMV Focal Plane Image Motion Velocity should be grasped while the posture of aircraft and the modes of imaging are under changing In this paper a reasonable computational modeling scheme to the problem is introduced Coordinates transformation method is utilized for calculation of forward FPIMV under different condition of vertical and sloped imaging meanwhile integrated with three axes posture and angle velocity of aircraft Forward FPIMV combine with pitch roll and yaw FPIMV is considered simultaneously and the derivation calculating expressions of frame camera FPIMV under different conditions is presented in detail The solution is applied to computational simulation and has been confirmed to be effective based on the calculation result and it lays the foundation for our farther researches on frame camera IMC technology Key words IMC FPIMV Focal Plane Image Motion Velocity Coordinates transformation method

  13. Global Body Posture Evaluation in Patients with Temporomandibular Joint Disorder

    PubMed Central

    Saito, Eliza Tiemi; Akashi, Paula Marie Hanai; de Camargo Neves Sacco, Isabel

    2009-01-01

    AIM: To identify the relationship between anterior disc displacement and global posture (plantar arches, lower limbs, shoulder and pelvic girdle, vertebral spine, head and mandibles). Common signs and symptoms of anterior disc displacement were also identified. INTRODUCTION: Global posture deviations cause body adaptation and realignment, which may interfere with the organization and function of the temporomandibular joint. METHODS : Global posture evaluation was performed in a group of 10 female patients (20 to 30 years of age) with temporomandibular joint disc displacement and in a control group of 16 healthy female volunteers matched for age, weight and height. Anterior disc displacement signs, symptoms and the presence of parafunctional habits were also identified through interview. RESULTS: Patients with disc displacement showed a higher incidence of pain in the temporomandibular joint area, but there were no differences in parafunctional habits between the groups. In the disc displacement group, postural deviations were found in the pelvis (posterior rotation), lumbar spine (hyperlordosis), thoracic spine (rectification), head (deviation to the right) and mandibles (deviation to the left with open mouth). There were no differences in the longitudinal plantar arches between the groups. CONCLUSION: Our results suggest a close relationship between body posture and temporomandibular disorder, though it is not possible to determine whether postural deviations are the cause or the result of the disorder. Hence, postural evaluation could be an important component in the overall approach to providing accurate prevention and treatment in the management of patients with temporomandibular disorder. PMID:19142549

  14. Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults

    PubMed Central

    Gonçalves, Bruno da Silva B.; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia

    2016-01-01

    The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation. PMID:27732604

  15. Perturbations in action goal influence bimanual grasp posture planning.

    PubMed

    Hughes, Charmayne M L; Seegelke, Christian

    2013-01-01

    The authors examined the effects of perturbations in action goal on bimanual grasp posture planning. Sixteen participants simultaneously reached for 2 cylinders and placed either the left or the right end of the cylinders into targets. As soon as the participants began their reaching movements, a secondary stimulus was triggered, which indicated whether the intended action goal for the left or right hand had changed. Overall, the tendency for a single hand to select end-state comfort compliant grasp postures was higher for the nonperturbed condition compared to both the perturbed left and perturbed right conditions. Furthermore, participants were more likely to plan their movements to ensure end-state comfort for both hands during nonperturbed trials, than perturbed trials, especially object end-orientation conditions that required the adoption of at least one underhand grasp posture to satisfy bimanual end-state comfort. Results indicated that when the action goal of a single object was perturbed, participants attempted to reduce the cognitive costs associated with grasp posture replanning by maintaining the original grasp posture plan, and tolerating grasp postures that result in less controllable final postures.

  16. Ergonomic evaluation of postural stress in school workshop.

    PubMed

    Hashim, Adila Md; Dawal, Siti Zawiahmd Md; Yusoff, Nukman

    2012-01-01

    The objective of this study is to compare the evaluation of postural analysis between a self-report questionnaire and physical assessments methods for students aged 13 to 15 years old in school workshop. 336 students were volunteered as participants to fill in the questionnaire and being observed in the workshop. Total of 104 positions were selected and analyzed while students performing their tasks. Questionnaire data was examined to specify the prevalence of postural stress symptoms. The relationship of postural stress by physical assessment methods (RULA and REBA methods) was defined to identify the risk level of students' working posture. From the results, comparison of four factors categorized from total of 22 questions among ages, the mean values were lower for 13 years old students meaning that they were faced higher posture problems while using the workstation. The obtained results from both physical assessment methods and questionnaire analysis have identified 13 years old students faced higher risk exposure. Analysis results emphasized the fact that self-reports questionnaire method has almost accurate as postural evaluation methods to identify physical risks in workplace. The result also shows that an intervention is needed to overcome the posture problems. PMID:22316824

  17. Postural orientation in microgravity depends on straightening up movement performed

    NASA Astrophysics Data System (ADS)

    Vaugoyeau, Marianne; Assaiante, Christine

    2009-08-01

    Whether the vertical body orientation depends on the initial posture and/or the type of straightening up movement is the main question raised in this paper. Another objective was to specify the compensatory role of visual input while adopting an erected posture during microgravity. The final body orientation was analysed in microgravity during parabolic flights. After either (1) straightening up movement from a crouching or (2) a sitting posture, with and without vision. The main results are the following: (1) a vertical erected final posture is correctly achieved after sit to stand movement, whereas all subjects were tilted forward after straightening up from a crouching posture and (2) vision may contribute to correct final posture. These results suggest the existence of a re-weighting of the remaining sensory information, visual information, contact cutaneous cues and proprioceptive information under microgravity condition. We can put forward the alternative hypothesis that the control of body orientation under microgravity condition may also be achieved on the basis of a postural body scheme, that seems to be dependant on the type of movement and/ or the initial position of the whole body.

  18. Emotional and movement-related body postures modulate visual processing.

    PubMed

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E; Avenanti, Alessio; Bertini, Caterina

    2015-08-01

    Human body postures convey useful information for understanding others' emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213

  19. Emotional and movement-related body postures modulate visual processing.

    PubMed

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E; Avenanti, Alessio; Bertini, Caterina

    2015-08-01

    Human body postures convey useful information for understanding others' emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures.

  20. Postural perturbations: new insights for treatment of balance disorders

    NASA Technical Reports Server (NTRS)

    Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)

    1997-01-01

    This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.

  1. Postural ability reflects the athletic skill level of surfers.

    PubMed

    Paillard, Thierry; Margnes, Eric; Portet, Mathieu; Breucq, Arnaud

    2011-08-01

    This work analyses surfers' postural control and their use of visual information in static (stable) and dynamic (unstable) postures according to their level of competition. Two groups of healthy surfers were investigated: a group of local level surfers (LOC) (n = 8) and a group of national/international level surfers (NIN) (n = 9). Posture was assessed by measuring the centre of foot pressure with a force platform for 50 s with stable support and for 25 s with unstable support (sagittal or frontal plane). The tests were completed with the eyes open (the subjects looked at a fixed level target at a distance of 2 m) and closed (they kept their gaze in a straight-ahead direction). Results showed that the contribution of vision in postural maintenance, with unstable support was less important in the NIN surfers than in the LOC surfers and that the NIN surfers had better postural control than the LOC surfers. Firstly, the results suggest that expert surfers could shift the sensorimotor dominance from vision to proprioception for postural maintenance. Secondly, there is a relationship between the postural ability and the competition level of surfers. These observations are likely to induce new prospects of training for surfers.

  2. Effects of elastic band exercise on subjects with rounded shoulder posture and forward head posture

    PubMed Central

    Kim, Tae-Woon; An, Da-In; Lee, Hye-Yun; Jeong, Ho-Young; Kim, Dong-Hyun; Sung, Yun-Hee

    2016-01-01

    [Purpose] This study performed to investigate the effect of elastic band exercise program on the posture of subjects with rounded shoulder and forward head posture. [Subjects and Methods] The body length, forward shoulder angle, craniovertebral angle, and cranial rotation angle of participants (n=12) were measured before and after the exercise program. Furthermore, the thicknesses of the pectoralis major, rhomboid major, and upper trapezius were measured using an ultrasonographic imaging device. The exercises program was conducted with elastic bands, with 15 repetitions per set and 3 sets in total. [Results] The length of the pectoralis major, forward shoulder angle, and craniovertebral angle showed significant changes between before and after the exercise program, whereas the changes in the other measurements were not significant. The thickness of the upper trapezius showed a significant increase between before and after the elastic band exercise. [Conclusion] These findings suggest that the elastic band exercise program used in the study is effective for lengthening the pectoralis major and correcting rounded shoulder and forward head posture. PMID:27390405

  3. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  4. A Methodology for Investigating Adaptive Postural Control

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of

  5. Postural balance in children with cerebral palsy.

    PubMed

    Rose, Jessica; Wolff, Don R; Jones, Vincent K; Bloch, Daniel A; Oehlert, John W; Gamble, James G

    2002-01-01

    Postural control deficits have been suggested to be a major component of gait disorders in cerebral palsy (CP). Standing balance was investigated in 23 ambulatory children and adolescents with spastic diplegic CP, ages 5 to 18 years, and compared with values of 92 children without disability, ages 5 to 18 years, while they stood on a force plate with eyes open or eyes closed. The measurements included center of pressure calculations of path length per second, average radial displacement, mean frequency of sway, and Brownian random motion measures of the short-term diffusion coefficient, and the long-term scaling exponent. In the majority of children with CP (14 of 23) all standing balance values were normal. However, approximately one-third of the children with CP (eight of 23) had abnormal values in at least two of the six center of pressure measures. Thus, mean values for path length, average radial displacement, and diffusion coefficient were higher for participants with CP compared with control individuals with eyes open and closed (p<0.05). Mean values for frequency of sway and the long-term scaling exponent were lower for participants with CP compared with control participants (p<0.05). Increased average radial displacement was the most common (nine of 23) postural control deficit. There was no increase in abnormal values with eyes closed compared with eyes open for participants with CP, indicating that most participants with CP had normal dependence on visual feedback to maintain balance. Identification of those children with impaired standing balance can delineate factors that contribute to the patient's gait disorder and help to guide treatment.

  6. Postural responses to changing task conditions.

    PubMed

    Hansen, P D; Woollacott, M H; Debu, B

    1988-01-01

    The experimental goal was to investigate discrepancies in the literature concerning postural adaptation and to determine if the prior presentation of horizontal perturbations affected the amplitude of responses to rotational perturbations. Surface EMG recordings from lower leg muscles (gastrocnemius (GAS) and tibialis anterior (TA)) were recorded in twelve subjects, and the amplitudes of the responses were statistically analyzed. We did not find differences between the responses to rotational perturbations which preceded or followed horizontal perturbations. This finding did not support the hypothesis that differences in the order of presentation of the different types of perturbations accounted for the discrepancies in the literature. Furthermore, our design did not show the progressive elimination of the GAS response within three to five sequential trials. Instead, we found a slow but significant response amplitude reduction over ten trials without yielding a permanent disappearance of the response. When analyzing the GAS responses to the rotational perturbations only, we found two components that contributed to the response reduction: 1) an initial reduction between trials one and subsequent trials, which could be due to habituation of a startle-like response; and 2) a second reduction which was more gradual. Our results also showed an immediate change in the response amplitude on the first trial, when the type of perturbation was changed. This is inconsistent with the view that ankle musculature stretch and joint movement are the primary inputs driving the postural responses. Since small ankle dorsiflexing rotations produced by the platform translations caused large GAS responses while large ankle dorsiflexing rotations produced by direct platform rotations caused small GAS responses, this suggests that multiple sensory inputs contribute to the responses. We propose that an initial compensation to a new perturbation type occurs within the first trial by the

  7. Functional muscle synergies constrain force production during postural tasks

    PubMed Central

    McKay, J. Lucas; Ting, Lena H.

    2015-01-01

    We recently demonstrated that a set of five functional muscle synergies were sufficient to characterize both hindlimb muscle activity and active forces during automatic postural responses in cats standing at multiple postural configurations. This characterization depended critically upon the assumption that the endpoint force vector (synergy force vector) produced by the activation of each muscle synergy rotated with the limb axis as the hindlimb posture varied in the sagittal plane. Here, we used a detailed, 3D static model of the hindlimb to confirm that this assumption is biomechanically plausible: as we varied the model posture, simulated synergy force vectors rotated monotonically with the limb axis in the parasagittal plane (r2 = 0.94 ± 0.08). We then tested whether a neural strategy of using these five functional muscle synergies provides the same force-generating capability as controlling each of the 31 muscles individually. We compared feasible force sets (FFS) from the model with and without a muscle synergy organization. FFS volumes were significantly reduced with the muscle synergy organization (F = 1556.01, p ≪ 0.01), and as posture varied, the synergy-limited FFSs changed in shape, consistent with changes in experimentally-measured active forces. In contrast, nominal FFS shapes were invariant with posture, reinforcing prior findings that postural forces cannot be predicted by hindlimb biomechanics alone. We propose that an internal model for postural force generation may coordinate functional muscle synergies that are invariant in intrinsic limb coordinates, and this reduced-dimension control scheme reduces the set of forces available for postural control. PMID:17980370

  8. Contribution of supraspinal systems to generation of automatic postural responses

    PubMed Central

    Deliagina, Tatiana G.; Beloozerova, Irina N.; Orlovsky, Grigori N.; Zelenin, Pavel V.

    2014-01-01

    Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms – spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741

  9. Postural Instability in Children with ADHD Is Improved by Methylphenidate.

    PubMed

    Bucci, Maria P; Stordeur, Coline; Acquaviva, Eric; Peyre, Hugo; Delorme, Richard

    2016-01-01

    HIGHLIGHTS Both spatial and temporal analyses of the Center of Pressure demonstrate that children with ADHD have poorer postural control than typically developing sex-, age-, and IQ-matched children.Poor sensory integration in postural control could partially explained the deficits in postural stability in children with ADHD.MPH treatment improves postural performance in both spatial and temporal domains in children with ADHD.MPH improves postural control specifically when visual and proprioceptive inputs are misleading.Such improvement could be due to MPH effects on neurons, facilitating cerebellar processing of postural control. The aim of this study was to examine postural control in children with ADHD and explore the effect of methylphenidate (MPH), using spatial and temporal analyses of the center of pressure (CoP). Thirty-eight children with ADHD (mean age 9.82 ± 0.37 years) and 38 sex- age- and IQ-matched children with typically development were examined. Postural stability was evaluated using the Multitest Equilibre machine (Framiral®) at inclusion and after 1 month of MPH in children with ADHD. Postural stability was assessed by recording under several conditions: with eyes open and fixed on a target, with eyes closed and with vision perturbed by optokinetic stimulation, on stable and unstable platforms. At inclusion, we observed poor spatial and temporal postural stability in children with ADHD. The spectral power index was higher in children with ADHD than in controls. Canceling time was shorter at low and medium frequencies of oscillation and longer at higher frequencies in children with ADHD. After 1 month of MPH, the surface area and mean velocity of the CoP decreased significantly under the most complex conditions (unstable platform in the absence of proprioceptive and visual inputs). The spectral power index decreased significantly after MPH while the canceling time did not change. Poor postural control in children with ADHD supports the

  10. Postural Instability in Children with ADHD Is Improved by Methylphenidate

    PubMed Central

    Bucci, Maria P.; Stordeur, Coline; Acquaviva, Eric; Peyre, Hugo; Delorme, Richard

    2016-01-01

    HIGHLIGHTS Both spatial and temporal analyses of the Center of Pressure demonstrate that children with ADHD have poorer postural control than typically developing sex-, age-, and IQ-matched children.Poor sensory integration in postural control could partially explained the deficits in postural stability in children with ADHD.MPH treatment improves postural performance in both spatial and temporal domains in children with ADHD.MPH improves postural control specifically when visual and proprioceptive inputs are misleading.Such improvement could be due to MPH effects on neurons, facilitating cerebellar processing of postural control. The aim of this study was to examine postural control in children with ADHD and explore the effect of methylphenidate (MPH), using spatial and temporal analyses of the center of pressure (CoP). Thirty-eight children with ADHD (mean age 9.82 ± 0.37 years) and 38 sex- age- and IQ-matched children with typically development were examined. Postural stability was evaluated using the Multitest Equilibre machine (Framiral®) at inclusion and after 1 month of MPH in children with ADHD. Postural stability was assessed by recording under several conditions: with eyes open and fixed on a target, with eyes closed and with vision perturbed by optokinetic stimulation, on stable and unstable platforms. At inclusion, we observed poor spatial and temporal postural stability in children with ADHD. The spectral power index was higher in children with ADHD than in controls. Canceling time was shorter at low and medium frequencies of oscillation and longer at higher frequencies in children with ADHD. After 1 month of MPH, the surface area and mean velocity of the CoP decreased significantly under the most complex conditions (unstable platform in the absence of proprioceptive and visual inputs). The spectral power index decreased significantly after MPH while the canceling time did not change. Poor postural control in children with ADHD supports the

  11. Functional asymmetry of posture and body system regulation

    NASA Technical Reports Server (NTRS)

    Boloban, V. N.; Otsupok, A. P.

    1980-01-01

    The manifestation of functional asymmetry during the regulation of an athlete's posture and a system of bodies and its effect on the execution of individual and group acrobatic exercises were studied. Functional asymmetry of posture regulation was recorded in acrobats during the execution of individual and group exercises. It was shown that stability is maintained at the expense of bending and twisting motions. It is important to consider whether the functional asymmetry of posture regulation is left or right sided in making up pairs and groups of acrobats.

  12. Postural Instability in Children with ADHD Is Improved by Methylphenidate.

    PubMed

    Bucci, Maria P; Stordeur, Coline; Acquaviva, Eric; Peyre, Hugo; Delorme, Richard

    2016-01-01

    HIGHLIGHTS Both spatial and temporal analyses of the Center of Pressure demonstrate that children with ADHD have poorer postural control than typically developing sex-, age-, and IQ-matched children.Poor sensory integration in postural control could partially explained the deficits in postural stability in children with ADHD.MPH treatment improves postural performance in both spatial and temporal domains in children with ADHD.MPH improves postural control specifically when visual and proprioceptive inputs are misleading.Such improvement could be due to MPH effects on neurons, facilitating cerebellar processing of postural control. The aim of this study was to examine postural control in children with ADHD and explore the effect of methylphenidate (MPH), using spatial and temporal analyses of the center of pressure (CoP). Thirty-eight children with ADHD (mean age 9.82 ± 0.37 years) and 38 sex- age- and IQ-matched children with typically development were examined. Postural stability was evaluated using the Multitest Equilibre machine (Framiral®) at inclusion and after 1 month of MPH in children with ADHD. Postural stability was assessed by recording under several conditions: with eyes open and fixed on a target, with eyes closed and with vision perturbed by optokinetic stimulation, on stable and unstable platforms. At inclusion, we observed poor spatial and temporal postural stability in children with ADHD. The spectral power index was higher in children with ADHD than in controls. Canceling time was shorter at low and medium frequencies of oscillation and longer at higher frequencies in children with ADHD. After 1 month of MPH, the surface area and mean velocity of the CoP decreased significantly under the most complex conditions (unstable platform in the absence of proprioceptive and visual inputs). The spectral power index decreased significantly after MPH while the canceling time did not change. Poor postural control in children with ADHD supports the

  13. Detection of baseline and near-fall postural stability.

    PubMed

    Sipp, Amy R; Rowley, Blair A

    2008-01-01

    It is unknown whether there are any measurable warning signs just before a patient falls. This study of postural position just prior to a fall involved a subject standing on a balance beam while wearing a gyroscope-based wireless data acquisition system. Results show a variation in postural position when the subject appeared stable. This occurred well before the subject experienced a fall and could not be classified as pre-fall or fall. The results show that there are two distinguishable levels of postural stability - baseline and near-fall.

  14. Ankle sprain and postural sway in basketball players.

    PubMed

    Leanderson, J; Wykman, A; Eriksson, E

    1993-01-01

    The present study compares postural ankle stability between previously injured basketball players, uninjured players and a control/group. Postural sway was recorded and analysed by stabilometry using a specially designed computer-assisted forceplate. Recordings were obtained for 60 s on each foot. The stabilometric results in the players with no previous injuries did not differ from those in the controls. Players with a previously injured ankle differed significantly from the control group. These players had a larger mean postural sway and used a larger sway area.

  15. Pathfinder-Plus takes off on flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  16. Taking Off the Cape: The Stories of Novice Urban Leadership

    ERIC Educational Resources Information Center

    Tredway, Lynda; Brill, Fred; Hernandez, Janette

    2007-01-01

    New administrators in urban schools face enormous challenges. The novice leaders in this study are graduates of a preparation program at UC Berkeley, and are participants in a leadership induction program. This research examines one aspect of their new position--disciplinarian--through the lens of leadership stories. Although the middle manager…

  17. A Soft Take-Off in the Direction of "Bologna"

    ERIC Educational Resources Information Center

    Casaravilla Gil, Ana; Cava, Maria Victoria Cuevas; del Rio Merino, Mercedes; Arrebola, Carmen Vinas

    2011-01-01

    In the 2009-2010 academic year, ten new degrees have begun to be taught at the UPM (Universidad Politecnica Madrid), which is the first group of degrees that this university will offer within the framework of the EHEA (European Higher Education Area). One of these new degrees is the Building Engineering Degree, which was implemented in September…

  18. "EC to go" takes off at Maryland sites.

    PubMed

    2000-03-01

    Baltimore-based Planned Parenthood of Maryland and the Baltimore City Health Department have joined forces in "EC to Go," which distributes free emergency contraceptive pills (ECPs) through the seven affiliate sites of Planned Parenthood and the three family planning centers of the city. The distribution program was started in October 1999 and funds were provided by an undisclosed area foundation. Although the program is still in its infancy, it has recorded some 800 prescriptions of ECPs in the last fiscal year, and 600 prescriptions have been logged in just the first 6 months of the current fiscal year. To inform the public about the program, Planned Parenthood developed newspaper advertisements, a 60-second radio spot, and coupon distributions, all of which emphasize the fact that emergency contraception is a higher dose of birth control, which can prevent pregnancy if taken within 72 hours of unprotected sex. PMID:12349550

  19. Federal program for regulating highly hazardous materials finally takes off

    SciTech Connect

    Lessard, P.C.

    1996-11-01

    The Risk Management Program (RMP) rule, Section 112(r) of the Clean Air Act (CAA), was signed on May 24 and finalized on June 20. RMP is one of the most comprehensive, technically based regulatory programs for preventing, detecting and responding to accidental hazardous materials releases to have been issued in recent times. Although facilities have three years to comply, EPA estimates that the rule will affect an estimated 66,000 facilities that store highly hazardous or acutely toxic materials. The 1990 CAA Amendments are designed to prevent accidental releases of highly hazardous chemicals from stationary sources. Two significant regulatory programs that have emerged from the revised CAA are the Process Safety Management (PSM) standard and RMP. PSM is designed to protect employees and regulated by the Occupational Safety and Health Administration. RMP`s purpose is to protect the public and the environment from highly hazardous chemicals. It authorizes EPA to create a list of substances (distinct from the list generated under PSM) known to cause serious adverse effects and to implement a program for accidental chemical release prevention.

  20. Aeronautics Study Takes Off! Glider Design for Beginners

    ERIC Educational Resources Information Center

    Lazaros, Edward J.; Carlson, Katie

    2008-01-01

    Study of aeronautics is an interesting and motivating subject for students and educators alike. The activity described in this article--appropriate for upper elementary or middle school students--provides an excellent introduction to airplane design and the science of aerodynamics. It also gives students good experience applying knowledge from a…

  1. How to Properly Put On, Take Off a Disposable Respirator

    MedlinePlus

    ... the nose piece at your fingertips. Checking Your Seal 2 Cup the respirator in your hand allowing ... quick breath in to check whether the respirator seals tightly to the face. Place both hands completely ...

  2. CFC alternatives fail to take off in Europe

    SciTech Connect

    Chynoweth, E.

    1993-02-17

    Huge differences are emerging in U.S. and European demand for chlorofluorocarbon (CFC) alternatives. European refrigeration system makers have made virtually no progress in replacing ozone-depleting CFCs with alternatives, according to ICI Klea (Runcorn, U.K.) - the newly named CFC-alternatives business of ICI (London). Meanwhile, U.S. tax incentives are spurring demand for CFC alternatives. Under European Community regulation, production and consumption of CFCs should be 50% lower as of Jan. 1, 1993, compared with the base year of 1986, and 85% lower by Jan. 1, 1994. CFC producers say the first target has been reached, but virtually all the reduction has been achieved through cuts in aerosol use.

  3. Project TAKE-OFF: An Approach to Mainstreaming. Training Manual.

    ERIC Educational Resources Information Center

    Hartle, Helen; And Others

    The manual describes a training program for mainstreaming visually impaired, hearing impaired, educable mentally retarded, learning disabled, and speech impaired preschoolers. Training programs are presented separately for administrators, special education teachers, classroom teachers, and aides. Skills, knowledge, and attitude objectives are…

  4. Aviation Centers Take Off as Airlines Face Pilot Shortfall.

    ERIC Educational Resources Information Center

    Mangan, Katherine S.

    2000-01-01

    Addresses aviation training requirements for pilots planning to fly for commercial airlines within or outside the United States. Describes two aviation training programs at Western Michigan University, a fast-track 13-month program and the traditional four-year program required for U.S. pilots. Notes that decreasing numbers of pilots trained in…

  5. India's pharmaceutical industry: hype or high tech take-off?

    PubMed

    Malhotra, Prabodh; Lofgren, Hans

    2004-11-01

    India has built a large pharmaceutical industry through an array of measures in support of domestic firms. The absence of product patents enabled Indian companies to become world leading producers of generic versions of patented drugs. Low costs and a strong engineering tradition continue to sustain competitive strength. The implementation of the World Trade Organization patent regime in 2005 is driving a transformation of the industry. Key elements of the present shake-up include the return of 'big pharma' companies on a large scale and the emergence of several Indian firms that aim to become fully-fledged research-based multinationals. This article provides a description of the development and structure of the Indian pharmaceutical industry and explores questions and challenges arising from its integration into global markets.

  6. Aerial radiation survey at a military range.

    SciTech Connect

    Williams, G. P.; Martino, L. E.; Wrobel, J.; Environmental Assessment; U.S. Army Aberdeen Proving Ground

    2001-04-01

    Aberdeen Proving Ground (APG) is currently listed on the Superfund National Priorities List because of past waste handling practices at 13 'study areas.' Concern has been expressed that anthropogenic radioisotopes may have been released at some of the study areas, with the potential of posing health risks to human or ecological receptors. This concern was addressed by thoroughly searching archival records, sampling and analyzing environmental media, and performing an aerial radiation survey. The aerial radiation survey techniques employed have been used over all U.S. Department of Energy and commercial reactor sites. Use of the Aerial Measurement System (AMS) allowed investigators to safely survey areas where surveys using hand-held instruments would be difficult to perform. In addition, the AMS delivered a full spectrum of the measured gamma radiation, thereby providing a means of determining which radioisotopes were present at the surface. As a quality check on the aerial measurements, four ground truth measurements were made at selected locations and compared with the aerial data for the same locations. The results of the survey revealed no evidence of surface radioactive contamination. The measured background radiation, including the cosmic contribution, ranged from 4 to 11 {mu}R/h.

  7. Looking for an old aerial photograph

    USGS Publications Warehouse

    ,

    1997-01-01

    Attempts to photograph the surface of the Earth date from the 1800's, when photographers attached cameras to balloons, kites, and even pigeons. Today, aerial photographs and satellite images are commonplace. The rate of acquiring aerial photographs and satellite images has increased rapidly in recent years. Views of the Earth obtained from aircraft or satellites have become valuable tools to Government resource planners and managers, land-use experts, environmentalists, engineers, scientists, and a wide variety of other users. Many people want historical aerial photographs for business or personal reasons. They may want to locate the boundaries of an old farm or a piece of family property. Or they may want a photograph as a record of changes in their neighborhood, or as a gift. The U.S. Geological Survey (USGS) maintains the Earth Science Information Centers (ESIC?s) to sell aerial photographs, remotely sensed images from satellites, a wide array of digital geographic and cartographic data, as well as the Bureau?s wellknown maps. Declassified photographs from early spy satellites were recently added to the ESIC offerings of historical images. Using the Aerial Photography Summary Record System database, ESIC researchers can help customers find imagery in the collections of other Federal agencies and, in some cases, those of private companies that specialize in esoteric products.

  8. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    PubMed

    Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which

  9. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    PubMed

    Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which

  10. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control

    PubMed Central

    Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which

  11. Aerial Measuring System Sensor Modeling

    SciTech Connect

    R. S. Detwiler

    2002-04-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 {micro}Ci/m{sup 2}. The helicopter calculations modeled the transport of americium-241 ({sup 241}Am

  12. Observing working postures in industry: Examples of OWAS application.

    PubMed

    Karhu, O; Härkönen, R; Sorvali, P; Vepsäläinen, P

    1981-03-01

    A practical method for identifying and evaluating poor working postures, ie the Ovako Working Posture Analysing System (OWAS), was presented in an earlier paper (Karhu et al, 1977). The application of the method is here described by means of two examples. One is a case study undertaken by members of an ergonomics training course, in which a marked improvement in working posture was achieved by OWAS analysis of critical activities. The second illustrates the effect of setting up a multidisciplinary group in order to develop an alternative method for the installation and maintenance of steel mill equipment. In both examples, application of the OWAS method led to improved posture in the situations studied, and to the likelihood of its wider industrial use.

  13. Correcting working postures in industry: A practical method for analysis.

    PubMed

    Karhu, O; Kansi, P; Kuorinka, I

    1977-12-01

    A practical method for identifying and evaluating poor working postures, ie, the Ovako Working Posture Analysing System (OWAS), is presented. The method consists of two parts. The first is an observational technique for evaluating working postures. It can be used by work-study engineers in their daily routine and it gives reliable results after a short training period. The second part of the method is a set of criteria for the redesign of working methods and places. The criteria are based on evaluations made by experienced workers and ergonomics experts. They take into consideration factors such as health and safety, but the main emphasis is placed on the discomfort caused by the working postures. The method has been extensively used in the steel company which participated in its development. Complete production lines have already been redesigned on the basis of information gathered from OWAS, the result being more comfortable workplaces as well as a positive effect on production quality.

  14. Development of postural adjustments during reaching in infants with CP.

    PubMed

    Hadders-Algra, M; van der Fits, I B; Stremmelaar, E F; Touwen, B C

    1999-11-01

    The development of postural adjustments during reaching movements was longitudinally studied in seven infants with cerebral palsy (CP) between 4 and 18 months of age. Five infants developed spastic hemiplegia, one spastic tetraplegia, and one spastic tetraplegia with athetosis. Each assessment consisted of a simultaneous recording of video data and surface EMGs of arm, neck, trunk, and leg muscles during reaching in various lying and sitting positions. The basic organization of postural adjustments of the children developing spastic CP was intact. Their main problem was a deficient capacity to modulate the postural adjustments to task-specific constraints - a deficit which was attributed to a combination of an impaired motor coordination and deficits in sensory integration. The child with spastic-dyskinetic CP showed distinct abnormalities in the basic organization of postural adjustments. PMID:10576641

  15. Movement plans for posture selection do not transfer across hands

    PubMed Central

    Schütz, Christoph; Schack, Thomas

    2015-01-01

    In a sequential task, the grasp postures people select depend on their movement history. This motor hysteresis effect results from the reuse of former movement plans and reduces the cognitive cost of movement planning. Movement plans for hand trajectories not only transfer across successive trials, but also across hands. We therefore asked whether such a transfer would also be found in movement plans for hand postures. To this end, we designed a sequential, continuous posture selection task. Participants had to open a column of drawers with cylindrical knobs in ascending and descending sequences. A hand switch was required in each sequence. Hand pro/supination was analyzed directly before and after the hand switch. Results showed that hysteresis effects were present directly before, but absent directly after the hand switch. This indicates that, in the current study, movement plans for hand postures only transfer across trials, but not across hands. PMID:26441734

  16. Movement plans for posture selection do not transfer across hands.

    PubMed

    Schütz, Christoph; Schack, Thomas

    2015-01-01

    In a sequential task, the grasp postures people select depend on their movement history. This motor hysteresis effect results from the reuse of former movement plans and reduces the cognitive cost of movement planning. Movement plans for hand trajectories not only transfer across successive trials, but also across hands. We therefore asked whether such a transfer would also be found in movement plans for hand postures. To this end, we designed a sequential, continuous posture selection task. Participants had to open a column of drawers with cylindrical knobs in ascending and descending sequences. A hand switch was required in each sequence. Hand pro/supination was analyzed directly before and after the hand switch. Results showed that hysteresis effects were present directly before, but absent directly after the hand switch. This indicates that, in the current study, movement plans for hand postures only transfer across trials, but not across hands.

  17. Abnormal postural reflexes in a patient with pontine ischaemia.

    PubMed

    Cantello, Roberto; Magistrelli, Luca; Terazzi, Emanuela; Grossini, Elena

    2015-01-01

    The control of body posture is a complex activity that needs a very close relationship between different structures, such as the vestibular system, and the muscle and joint receptors of the neck. Damage of even one of these structures can lead to abnormal postural reflexes. We describe a case of a woman with a left pontine ischaemia who developed a 'dystonic' extensor posture of the left limbs while turned on the right side. This clinical picture differs from previous reports on the subject, and may relate to ischaemic damage of a pontine structure involved in posture control, or of adjacent neural connections to be yet identified. To the best of our knowledge, this is the first case reported in the literature. Clinical examples of an altered interplay between vestibular and neck receptors are rare. PMID:26561222

  18. A quantitative measurement method for comparison of seated postures.

    PubMed

    Hillman, Susan J; Hollington, James

    2016-05-01

    This technical note proposes a method to measure and compare seated postures. The three-dimensional locations of palpable anatomical landmarks corresponding to the anterior superior iliac spines, clavicular notch, head, shoulders and knees are measured in terms of x, y and z co-ordinates in the reference system of the measuring apparatus. These co-ordinates are then transformed onto a body-based axis system which allows comparison within-subject. The method was tested on eleven unimpaired adult participants and the resulting data used to calculate a Least Significant Difference (LSD) for the measure, which is used to determine whether two postures are significantly different from one another. The method was found to be sensitive to the four following standardised static postural perturbations: posterior pelvic tilt, pelvic obliquity, pelvic rotation, and abduction of the thighs. The resulting data could be used as an outcome measure for the postural alignment aspect of seating interventions in wheelchairs. PMID:26920073

  19. Upper extremity function: What's posture got to do with it?

    PubMed

    Harbourne, Regina; Kamm, Kathi

    2015-01-01

    This perspective paper reviews the linkage between developing postural control and upper extremity function. We suggest updated principles for guiding clinical practice, based on current views from motor learning, motor development, and motor control research. Using three clinical examples, we illustrate principles focusing on the use of variability, the importance of errors in learning movement, task specific exploration and practice, and the critical timing necessary to build skill of the upper extremity in a variety of postures. These principles differ from historic approaches in therapeutic exercise, which treated posture as a separate system and a precursor for extremity skill building. We maintain that current movement science supports the tight interaction of posture and upper extremity function through developmental time and in real time, such that one system cannot be considered separate from the other. Specific suggestions for clinical practice flow from the guiding principles outlined in this paper. PMID:25840492

  20. Posture of patients with sleep apnea during sleep.

    PubMed

    Akita, Yasutaka; Kawakatsu, Kenji; Hattori, Chikaya; Hattori, Hirokazu; Suzuki, Kenji; Nishimura, Tadao

    2003-01-01

    The relationship between sleep apnea syndrome (SAS) and posture during sleep has been noted and the beneficial effect of an optimal posture on sleep apnea has been empirically indicated. We investigated this effect in a group of subjects that included obese patients and found that the apnea-hypopnea index (AHI) may be normalized in the lateral position, even among patients severely affected with apnea. Among those with intermediate or lower AHI values sleeping in a lateral position markedly improved the symptoms, with AHI even approaching the normal range in many patients. A tendency was noted for AHI to rise regardless of posture but in proportion to the increase in body mass index (BMI). In other words, the improvement due to changes in posture became increasingly insignificant with increase in BMI.

  1. Shutter/aperture settings for aerial photography

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.; Perry, L.

    1976-01-01

    Determination of aerial camera shutter and aperture settings to produce consistently high-quality aerial photographs is a task complicated by numerous variables. Presented in this article are brief discussions of each variable and specific data which may be used for the systematic control of each. The variables discussed include sunlight, aircraft altitude, subject and season, film speed, and optical system. Data which may be used as a base reference are included, and encompass two sets of sensitometric specifications for two film-chemistry processes along with camera-aircraft parameters, which have been established and used to produce good exposures. Information contained here may be used to design and implement an exposure-determination system for aerial photography.

  2. USGS Releases New Digital Aerial Products

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has initiated distribution of digital aerial photographic products produced by scanning or digitizing film from its historical aerial photography film archive. This archive, located in Sioux Falls, South Dakota, contains thousands of rolls of film that contain more than 8 million frames of historic aerial photographs. The largest portion of this archive consists of original film acquired by Federal agencies from the 1930s through the 1970s to produce 1:24,000-scale USGS topographic quadrangle maps. Most of this photography is reasonably large scale (USGS photography ranges from 1:8,000 to 1:80,000) to support the production of the maps. Two digital products are currently available for ordering: high-resolution scanned products and medium-resolution digitized products.

  3. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  4. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

    PubMed

    McEvoy, John F; Hall, Graham P; McDonald, Paul G

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

  5. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition

    PubMed Central

    Hall, Graham P.; McDonald, Paul G.

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys. PMID:27020132

  6. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

    PubMed

    McEvoy, John F; Hall, Graham P; McDonald, Paul G

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys. PMID:27020132

  7. Real-time posture reconstruction for Microsoft Kinect.

    PubMed

    Shum, Hubert P H; Ho, Edmond S L; Jiang, Yang; Takagi, Shu

    2013-10-01

    The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when the parts are occluded. This hugely limits the usability of applications that involve interaction with external objects, such as sport training or exercising systems. The problem becomes more critical when Kinect incorrectly perceives body parts. This is because applications have limited information about the recognition correctness, and using those parts to synthesize body postures would result in serious visual artifacts. In this paper, we propose a new method to reconstruct valid movement from incomplete and noisy postures captured by Kinect. We first design a set of measurements that objectively evaluates the degree of reliability on each tracked body part. By incorporating the reliability estimation into a motion database query during run time, we obtain a set of similar postures that are kinematically valid. These postures are used to construct a latent space, which is known as the natural posture space in our system, with local principle component analysis. We finally apply frame-based optimization in the space to synthesize a new posture that closely resembles the true user posture while satisfying kinematic constraints. Experimental results show that our method can significantly improve the quality of the recognized posture under severely occluded environments, such as a person exercising with a basketball or moving in a small room. PMID:23981562

  8. Tai Chi training reduced coupling between respiration and postural control.

    PubMed

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  9. Tai Chi training reduced coupling between respiration and postural control.

    PubMed

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  10. Association between temporomandibular disorders and abnormal head postures.

    PubMed

    Faulin, Evandro Francisco; Guedes, Carlos Gramani; Feltrin, Pedro Paulo; Joffiley, Cláudia Maria Mithie Suda Costa

    2015-01-01

    This study examines the possible correlation between the prevalence of temporomandibular disorders (TMD) and different head postures in the frontal and sagittal planes using photographs of undergraduate students in the School of Dentistry at the Universidade de Brasília - UnB, Brazil. In this nonrandomized, cross-sectional study, the diagnoses of TMD were made with the Research Diagnostic Criteria (RDC)/TMD axis I. The craniovertebral angle was used to evaluate forward head posture in the sagittal plane, and the interpupillary line was used to measure head tilt in the frontal plane. The measurements to evaluate head posture were made using the Software for the Assessment of Posture (SAPO). Students were divided into two study groups, based on the presence or absence of TMD. The study group comprised 46 students and the control group comprised 80 students. Data about head posture and TMD were analyzed with the Statistical Package for the Social Sciences, version 13. Most cases of TMD were classified as degenerative processes (group III), followed by disk displacement (group II) and muscle disorders (group I). There was no sex predominance for the type of disorder. No association was found between prevalence rates for head postures in the frontal plane and the occurrence of TMD. The same result was found for the association of TMD diagnosis with craniovertebral angle among men and women, and the group that contained both men and women. Abnormal head postures were common among individuals both with and without TMD. No association was found between head posture evaluated in the frontal and sagittal planes and TMD diagnosis with the use of RDC/TMD.

  11. Asymmetry of recurrent dynamics as a function of postural stance.

    PubMed

    King, Adam C; Wang, Zheng; Newell, Karl M

    2012-08-01

    This experiment was setup to investigate the deterministic and stochastic properties of the recurrent dynamics of the center of pressure trajectories of each leg (COP(left) and COP(right)) and whole-body (COP(net)) as a function of different foot positions in postural stance (side-by-side, staggered, and tandem standing) and the availability of visual information. The foot position of postural stance can induce degrees of asymmetry of postural instabilities as well as load on each leg that it was hypothesized would influence the deterministic and stochastic properties of COP fluctuations of each leg and of COP(net). Young adults performed two 60 s trials of quiet standing at each posture-vision condition. The availability of visual information increased COP path length, but had no effect on the recurrent dynamics of COP trajectories. Recurrence quantification analysis showed that recurrence, determinism, and entropy were dependent on the direction (AP/ML) of COP motion and foot position during postural stances. The degree of asymmetry between the left and right leg COP dynamics differed across all postural stances and COP(net) dynamics were more similar to those of the more loaded leg. The cross-recurrence quantification analysis also revealed asymmetries in the coordination coupling of AP/ML under each leg; although, these differences were markedly reduced in tandem postures. The findings support the postulation that the asymmetry generated through mechanical constraints (foot position and load) is related to asymmetrical recurrent dynamics of the individual leg and COP(net) based on the degree of postural instability.

  12. Postural sway in diabetic peripheral neuropathy among Indian elderly

    PubMed Central

    Dixit, Snehil; Maiya, Arun; Shasthry, B.A.; Kumaran, D. Senthil; Guddattu, Vasudeva

    2015-01-01

    Background & objectives: Diabetic peripheral neuropathy (DPN) is a major complication of type 2 diabetes and have long term complications on the postural control of the affected population. The objectives of this study were to evaluate postural stability in patients with DPN and to examine correlation of Michigan Neuropathy Screening Instrument (MNSI) with duration of diabetes, age and postural stability measures. Methods: Participants were included if they had clinical neuropathy which was defined by MNSI. Sixty one patients gave their consent to participate in the study and were evaluated on posturography for postural stability measures in four conditions. Repeated measures of analysis of variance (RANOVA) was used to analyze the changes in postural stability measures in different conditions. Results: An increase in mean value of postural stability measures was observed for velocity moment 20.4±1.3, 24.3±2.2, 42.3±20.7, 59±43.03, mediolateral displacement 0.21±0.10, 0.22±0.18, 0.03±0.11, 0.34±0.18, and anteroposterior displacement 0.39 ± 0.09, 0.45±0.12, 0.47±0.13, 0.51±0.20 from EO to EC, EOF, and ECF, respectively. There was a significant difference (P<0.05) in participants with DPN, with greater sway amplitude on firm and foam surface in all the conditions. Moderate correlation of MNSI with age (r=0.43) and postural stability measures were also observed. Interpretation & conclusions: Evaluation of postural stability in Indian DPN population suggests balance impairments on either firm and foam surfaces, with greater likelihood of fall being on foam or deformable surfaces among elderly adults with neuropathy (CTRI/2011/07/001884). PMID:26831420

  13. Real-time posture reconstruction for Microsoft Kinect.

    PubMed

    Shum, Hubert P H; Ho, Edmond S L; Jiang, Yang; Takagi, Shu

    2013-10-01

    The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when the parts are occluded. This hugely limits the usability of applications that involve interaction with external objects, such as sport training or exercising systems. The problem becomes more critical when Kinect incorrectly perceives body parts. This is because applications have limited information about the recognition correctness, and using those parts to synthesize body postures would result in serious visual artifacts. In this paper, we propose a new method to reconstruct valid movement from incomplete and noisy postures captured by Kinect. We first design a set of measurements that objectively evaluates the degree of reliability on each tracked body part. By incorporating the reliability estimation into a motion database query during run time, we obtain a set of similar postures that are kinematically valid. These postures are used to construct a latent space, which is known as the natural posture space in our system, with local principle component analysis. We finally apply frame-based optimization in the space to synthesize a new posture that closely resembles the true user posture while satisfying kinematic constraints. Experimental results show that our method can significantly improve the quality of the recognized posture under severely occluded environments, such as a person exercising with a basketball or moving in a small room.

  14. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  15. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  16. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  17. Ground cover estimated from aerial photographs

    NASA Technical Reports Server (NTRS)

    Gerbermann, A. H.; Cuellar, J. A.; Wiegand, C. L.

    1976-01-01

    Estimates of per cent ground cover made by ground observers were compared with independent estimates made on the basis of low-altitude (640-1219 m) aerial photographs of the same fields. Standard statistical simple correlation and linear regression analyses revealed a high correlation between the two estimation methods. In crops such as grain, sorghum, corn, and forage sorghum, in which the broadest part of the leaf canopy is near the top of the plant, there was a tendency to overestimate the per cent ground cover from aerial photographs.

  18. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  19. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  20. The Relationship Between the Stomatognathic System and Body Posture

    PubMed Central

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553

  1. The relationship between the stomatognathic system and body posture.

    PubMed

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553

  2. Use of Video Analysis System for Working Posture Evaluations

    NASA Technical Reports Server (NTRS)

    McKay, Timothy D.; Whitmore, Mihriban

    1994-01-01

    In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.

  3. "Stand up straight": notes toward a history of posture.

    PubMed

    Gilman, Sander L

    2014-03-01

    The essay presents a set of interlinked claims about posture in modern culture. Over the past two centuries it has come to define a wide range of assumptions in the West from what makes human beings human (from Lamarck to Darwin and beyond) to the efficacy of the body in warfare (from Dutch drill manuals in the 17th century to German military medical studies of soldiers in the 19th century). Dance and sport both are forms of posture training in terms of their own claims. Posture separates 'primitive' from 'advanced' peoples and the 'ill' from the 'healthy.' Indeed an entire medical sub-specialty developed in which gymnastics defined and recuperated the body. But all of these claims were also part of a Western attempt to use posture (and the means of altering it) as the litmus test for the healthy modern body of the perfect citizen. Focusing on the centrality of posture in two oddly linked moments of modern thought--modern Zionist thought and Nationalism in early 20th century China--in terms of bodily reform, we show how "posture" brings all of the earlier debates together to reform the body.

  4. Adaptability of anticipatory postural adjustments associated with voluntary movement

    PubMed Central

    Yiou, Eric; Caderby, Teddy; Hussein, Tarek

    2012-01-01

    The control of balance is crucial for efficiently performing most of our daily motor tasks, such as those involving goal-directed arm movements or whole body displacement. The purpose of this article is twofold. Firstly, it is to recall how balance can be maintained despite the different sources of postural perturbation arising during voluntary movement. The importance of the so-called “anticipatory postural adjustments” (APA), taken as a “line of defence” against the destabilizing effect induced by a predicted perturbation, is emphasized. Secondly, it is to report the results of recent studies that questioned the adaptability of APA to various constraints imposed on the postural system. The postural constraints envisaged here are classified into biomechanical (postural stability, superimposition of motor tasks), (neuro) physiological (fatigue), temporal (time pressure) and psychological (fear of falling, emotion). Overall, the results of these studies point out the capacity of the central nervous system (CNS) to adapt the spatio-temporal features of APA to each of these constraints. However, it seems that, depending on the constraint, the “priority” of the CNS was focused on postural stability maintenance, on body protection and/or on maintenance of focal movement performance. PMID:22720267

  5. "Stand up straight": notes toward a history of posture.

    PubMed

    Gilman, Sander L

    2014-03-01

    The essay presents a set of interlinked claims about posture in modern culture. Over the past two centuries it has come to define a wide range of assumptions in the West from what makes human beings human (from Lamarck to Darwin and beyond) to the efficacy of the body in warfare (from Dutch drill manuals in the 17th century to German military medical studies of soldiers in the 19th century). Dance and sport both are forms of posture training in terms of their own claims. Posture separates 'primitive' from 'advanced' peoples and the 'ill' from the 'healthy.' Indeed an entire medical sub-specialty developed in which gymnastics defined and recuperated the body. But all of these claims were also part of a Western attempt to use posture (and the means of altering it) as the litmus test for the healthy modern body of the perfect citizen. Focusing on the centrality of posture in two oddly linked moments of modern thought--modern Zionist thought and Nationalism in early 20th century China--in terms of bodily reform, we show how "posture" brings all of the earlier debates together to reform the body. PMID:24317755

  6. Pharmacokinetics of pyridostigmine in a child with postural tachycardia syndrome.

    PubMed

    Filler, Guido; Gow, Robert M; Nadarajah, Renisha; Jacob, Pierre; Johnson, Gillian; Zhang, Yan-Ling; Christians, Uwe

    2006-11-01

    Pyridostigmine has been proposed for the treatment of postural orthostatic tachycardia syndrome in adults at a dose of 60 mg twice daily, but no dosing recommendation exists for children. With the approval of our local ethics board, we tested the pharmacokinetics of pyridostigmine in 6 children with myasthenia and a pediatric index patient with severe postural orthostatic tachycardia syndrome whose condition failed all conventional therapy and who had developed significant postural hypertension. Pyridostigmine was quantified by using a validated, semiautomated, and specific high-performance liquid chromatography/tandem mass spectrometry assay in combination with online column-switching extraction and turbo electrospray ionization. The patient with postural orthostatic tachycardia syndrome showed a dose-dependent favorable response to oral pyridostigmine. Pharmacokinetic evaluation revealed a short half-life of 2.29 hours, similar to the 2.0 +/- 0.63 hours in the patients with myasthenia. The patient with postural orthostatic tachycardia syndrome has subsequently been treated at a dose of 45 mg in the morning, 30 mg at lunchtime, and 15 mg at bedtime; after 9 months, there has been persistent positive effect and without additional blood pressure medication. No major adverse effects occurred. Pyridostigmine has been a safe and effective treatment modality for this child with postural orthostatic tachycardia syndrome. The short half-life suggests that dosing 3 times per day is preferable.

  7. Effects of Levodopa on Postural Strategies in Parkinson's disease.

    PubMed

    Baston, Chiara; Mancini, Martina; Rocchi, Laura; Horak, Fay

    2016-05-01

    Altered postural control and balance are major disabling issues of Parkinson's disease (PD). Static and dynamic posturography have provided insight into PD's postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. PMID:27131172

  8. Evidence from the eyes: Threatening postures hold attention.

    PubMed

    Azarian, Bobby; Esser, Elizabeth G; Peterson, Matthew S

    2016-06-01

    Efficient detection of threat provides obvious survival advantages and has resulted in a fast and accurate threat-detection system. Although beneficial under normal circumstances, this system may become hypersensitive and cause threat-processing abnormalities. Past research has shown that anxious individuals have difficulty disengaging attention from threatening faces, but it is unknown whether other forms of threatening social stimuli also influence attentional orienting. Much like faces, human body postures are salient social stimuli, because they are informative of one's emotional state and next likely action. Additionally, postures can convey such information in situations in which another's facial expression is not easily visible. Here we investigated whether there is a threat-specific effect for high-anxious individuals, by measuring the time that it takes the eyes to leave the attended stimulus, a task-irrelevant body posture. The results showed that relative to nonthreating postures, threat-related postures hold attention in anxious individuals, providing further evidence of an anxiety-related attentional bias for threatening information. This is the first study to demonstrate that attentional disengagement from threatening postures is affected by emotional valence in those reporting anxiety.

  9. Which biomechanical models are currently used in standing posture analysis?

    PubMed

    Crétual, A

    2015-11-01

    In 1995, David Winter concluded that postural analysis of upright stance was often restricted to studying the trajectory of the center of pressure (CoP). However, postural control means regulation of the center of mass (CoM) with respect to CoP. As CoM is only accessible by using a biomechanical model of the human body, the present article proposes to determine which models are actually used in postural analysis, twenty years after Winter's observation. To do so, a selection of 252 representative articles dealing with upright posture and published during the four last years has been checked. It appears that the CoP model largely remains the most common one (accounting for nearly two thirds of the selection). Other models, CoP/CoM and segmental models (with one, two or more segments) are much less used. The choice of the model does not appear to be guided by the population studied. Conversely, while some confusion remains between postural control and the associated concepts of stability or strategy, this choice is better justified for real methodological concerns when dealing with such high-level parameters. Finally, the computation of the CoM continues to be a limitation in achieving a more complete postural analysis. This unfortunately implies that the model is chosen for technological reasons in many cases (choice being a euphemism here). Some effort still has to be made so that bioengineering developments allow us to go beyond this limit. PMID:26388359

  10. Monitoring the prevalence of postural changes in schoolchildren

    PubMed Central

    Nichele da Rosa, Bruna; Noll, Matias; Sedrez, Juliana Adami; Furlanetto, Tassia Silveira; Candotti, Claudia Tarrago

    2016-01-01

    [Purpose] The aim of this study was to identify whether postural changes are prevalent with advancing age using a photogrammetric method performing one-year follow-up study. [Subjects and Methods] Thirty-eight schoolchildren were evaluated in 2011 and 2012 in this cohort study. The subjects underwent a postural evaluation, which involved palpation of reference anatomic points, placement of reflexive markers over the anatomic points, image acquisition, and point digitalization using the Digital Image-based Postural Assessment evaluation software. For data analysis, descriptive statistics and inferential statistics were analyzed by McNemar’s test. [Results] The results showed a significant increase in postural change prevalence for the lumbar spine in the sagittal plane (from 42.2% to 81.6%) and the knees in the frontal plane (from 39.5% to 63.2%) and a significant decrease in the prevalence of scoliosis (from 68.5% to 42.2%). [Conclusion] The findings indicate an increase in the prevalence of postural changes in schoolchildren from Teutônia, RS, Brazil, in 2012 compared with 2011. The development of longitudinal investigations for long-term monitoring of the evolution of posture and of schoolchildren habits’s representing a viable alternative to subsidize health actions. PMID:27065514

  11. Is there a relationship between head posture and craniomandibular pain?

    PubMed

    Visscher, C M; De Boer, W; Lobbezoo, F; Habets, L L M H; Naeije, M

    2002-11-01

    An often-suggested factor in the aetiology of craniomandibular disorders (CMD) is an anteroposition of the head. However, the results of clinical studies to the relationship between CMD and head posture are contradictory. Therefore, the first aim of this study was to determine differences in head posture between well-defined CMD pain patients with or without a painful cervical spine disorder and healthy controls. The second aim was to determine differences in head posture between myogenous and arthrogenous CMD pain patients and controls. Two hundred and fifty persons entered the study. From each person, a standardized oral history was taken and blind physical examinations of the masticatory system and of the neck were performed. The participants were only included into one of the subgroups when the presence or absence of their symptoms was confirmed by the results of the physical examination. Head posture was quantified using lateral photographs and a lateral radiograph of the head and the cervical spine. After correction for age and gender effects, no difference in head posture was found between any of the patient and non-patient groups (P > 0.27). Therefore, this study does not support the suggestion that painful craniomandibular disorders, with or without a painful cervical spine disorder, are related to head posture. PMID:12453255

  12. Postural strategy changes with fatigue of the lumbar extensor muscles.

    PubMed

    Wilson, Erin L; Madigan, Michael L; Davidson, Bradley S; Nussbaum, Maury A

    2006-04-01

    The purpose of this study was to investigate the effect of lumbar extensor fatigue on postural strategy in response to a balance perturbation. Anteriorly-directed force perturbations were applied to the upper back with a padded pendulum and attempted to challenge the postural control system without eliciting a stepping response. In three separate sessions, subjects were perturbed both before and after a fatiguing protocol that induced lumbar extensor fatigue to one of three different fatigue levels. Postural strategy was quantified using center of pressure position along with joint angles and joint torques for the ankle, knee, hip, and "low back" joints. Results showed both proactive and reactive changes in postural strategy. Proactive changes involved a slight anterior lean prior to the perturbation, and reactive changes were consistent with a shift toward more of a hip strategy with fatigue. In addition, results suggested that subjects classified as moving mostly at the hip prior to fatigue were more affected by fatigue compared to subjects classified as moving roughly equal amounts at the ankle and hip prior to fatigue. Increasing fatigue level exaggerated some, but not all, of the changes in postural strategy with fatigue. These findings illustrate that neuromuscular fatigue can influence postural strategy in response to a balance perturbation. PMID:16023345

  13. Otolith and Vertical Canal Contributions to Dynamic Postural Control

    NASA Technical Reports Server (NTRS)

    Black, F. Owen

    1999-01-01

    The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.

  14. Subjective Visual Vertical and Postural Capability in Children Born Prematurely

    PubMed Central

    Bucci, Maria Pia; Wiener-Vacher, Sylvette; Trousson, Clémence; Baud, Olivier; Biran, Valerie

    2015-01-01

    Purpose We compared postural stability and subjective visual vertical performance in a group of very preterm-born children aged 3-4 years and in a group of age-matched full-term children. Materials and Methods A platform (from TechnoConcept) was used to measure postural control in children. Perception of subjective visual vertical was also recorded with posture while the child had to adjust the vertical in the dark or with visual perturbation. Two other conditions (control conditions) were also recorded while the child was on the platform: for a fixation of the vertical bar, and in eyes closed condition. Results Postural performance was poor in preterm-born children compared to that of age-matched full-term children: the surface area, the length in medio-lateral direction and the mean speed of the center of pressure (CoP) were significantly larger in the preterm-born children group (p < 0.04, p < 0.01, and p < 0.04, respectively). Dual task in both groups of children significantly affected postural control. The subjective visual vertical (SVV) values were more variable and less precise in preterm-born children. Discussion-Conclusions We suggest that poor postural control as well as perception of verticality observed in preterm-born children could be due to immaturity of the cortical processes involved in the motor control and in the treatment of perception and orientation of verticality. PMID:25790327

  15. Effects of acute spinalization on neurons of postural networks

    PubMed Central

    Zelenin, Pavel V.; Lyalka, Vladimir F.; Hsu, Li-Ju; Orlovsky, Grigori N.; Deliagina, Tatiana G.

    2016-01-01

    Postural limb reflexes (PLRs) represent a substantial component of postural corrections. Spinalization results in loss of postural functions, including disappearance of PLRs. The aim of the present study was to characterize the effects of acute spinalization on two populations of spinal neurons (F and E) mediating PLRs, which we characterized previously. For this purpose, in decerebrate rabbits spinalized at T12, responses of interneurons from L5 to stimulation causing PLRs before spinalization, were recorded. The results were compared to control data obtained in our previous study. We found that spinalization affected the distribution of F- and E-neurons across the spinal grey matter, caused a significant decrease in their activity, as well as disturbances in processing of posture-related sensory inputs. A two-fold decrease in the proportion of F-neurons in the intermediate grey matter was observed. Location of populations of F- and E-neurons exhibiting significant decrease in their activity was determined. A dramatic decrease of the efficacy of sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to E-neurons was found. These changes in operation of postural networks underlie the loss of postural control after spinalization, and represent a starting point for the development of spasticity. PMID:27302149

  16. AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN KSC-373C-0556.20 116-KSC-373C-556.20, P-01622-B, ARCHIVE-04455 Aerial view of Easter crowds at Visitors Information Center, Kennedy Space Center, Florida.

  17. Two aspects of feedforward postural control: anticipatory postural adjustments and anticipatory synergy adjustments

    PubMed Central

    Klous, Miriam; Mikulic, Pavle

    2011-01-01

    We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼100–150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies

  18. Effects of galvanic vestibular stimulation on postural limb reflexes and neurons of spinal postural network.

    PubMed

    Hsu, L-J; Zelenin, P V; Orlovsky, G N; Deliagina, T G

    2012-07-01

    Quadrupeds maintain the dorsal side up body orientation due to the activity of the postural control system driven by limb mechanoreceptors. Binaural galvanic vestibular stimulation (GVS) causes a lateral body sway toward the anode. Previously, we have shown that this new position is actively stabilized, suggesting that GVS changes a set point in the reflex mechanisms controlling body posture. The aim of the present study was to reveal the underlying neuronal mechanisms. Experiments were performed on decerebrate rabbits. The vertebral column was rigidly fixed, whereas hindlimbs were positioned on a platform. Periodic lateral tilts of the platform caused postural limb reflexes (PLRs): activation of extensors in the loaded and flexing limb and a decrease in extensor activity in the opposite (unloaded and extending) limb. Putative spinal interneurons were recorded in segments L4-L5 during PLRs, with and without GVS. We have found that GVS enhanced PLRs on the cathode side and reduced them on the anode side. This asymmetry in PLRs can account for changes in the stabilized body orientation observed in normal rabbits subjected to continuous GVS. Responses to platform tilts (frequency modulation) were observed in 106 spinal neurons, suggesting that they can contribute to PLR generation. Two neuron groups were active in opposite phases of the tilt cycle of the ipsi-limb: F-neurons in the flexion phase, and E-neurons in the extension phase. Neurons were driven mainly by afferent input from the ipsi-limb. If one supposes that F- and E-neurons contribute, respectively, to excitation and inhibition of extensor motoneurons, one can expect that the pattern of response to GVS in F-neurons will be similar to that in extensor muscles, whereas E-neurons will have an opposite pattern. We have found that ~40% of all modulated neurons meet this condition, suggesting that they contribute to the generation of PLRs and to the GVS-caused changes in PLRs.

  19. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  20. Effects of disease severity and medication state on postural control asymmetry during challenging postural tasks in individuals with Parkinson's disease.

    PubMed

    Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B

    2016-04-01

    The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks.

  1. Neuromuscular dentistry: Occlusal diseases and posture

    PubMed Central

    Khan, Mohd Toseef; Verma, Sanjeev Kumar; Maheshwari, Sandhya; Zahid, Syed Naved; Chaudhary, Prabhat K.

    2013-01-01

    Neuromuscular dentistry has been a controversial topic in the field of dentistry and still remains debatable. The issue of good occlusion and sound health has been repeatedly discussed. Sometimes we get complains of sensitive teeth and sometimes of tired facial muscles on getting up in the morning. Owing to the intimate relation of masticatory apparatus with the cranium and cervico-scapular muscular system, the disorders in any system, draw attention from concerned clinicians involved in management, to develop an integrated treatment protocol for the suffering patients. There may be patients reporting to the dental clinics after an occlusal restoration or extraction, having pain in or around the temporomandibular joint, headache or neck pain. Although their esthetic demands must not be undermined during the course of treatment plan, whenever dental treatment of any sort is planned, occlusion/bite should be given prime importance. Very few dentist are able to diagnose the occlusal disease and of those who diagnose many people resort to aggressive treatment modalities. This paper aims to report the signs of occlusal disease, and discuss their association with TMDs and posture. PMID:25737904

  2. Ascorbate improves circulation in postural tachycardia syndrome.

    PubMed

    Stewart, Julian M; Ocon, Anthony J; Medow, Marvin S

    2011-09-01

    Low flow postural tachycardia syndrome (LFP) is associated with vasoconstriction, reduced cardiac output, increased plasma angiotensin II, reduced bioavailable nitric oxide (NO), and oxidative stress. We tested whether ascorbate would improve cutaneous NO and reduce vasoconstriction when delivered systemically. We used local cutaneous heating to 42°C and laser Doppler flowmetry to assess NO-dependent conductance (%CVC(max)) to sodium ascorbate and the systemic hemodynamic response to ascorbic acid in 11 LFP patients and in 8 control subjects (aged 23 ± 2 yr). We perfused intradermal microdialysis catheters with sodium ascorbate (10 mM) or Ringer solution. Predrug heat response was reduced in LFP, particularly the NO-dependent plateau phase (56 ± 6 vs. 88 ± 7%CVC(max)). Ascorbate increased baseline skin flow in LFP and control subjects and increased the LFP plateau response (82 ± 6 vs. 92 ± 6 control). Systemic infusion experiments used Finometer and ModelFlow to estimate relative cardiac index (CI) and forearm and calf venous occlusion plethysmography to estimate blood flows, peripheral arterial and venous resistances, and capacitance before and after infusing ascorbic acid. CI increased 40% after ascorbate as did peripheral flows. Peripheral resistances were increased (nearly double control) and decreased by nearly 50% after ascorbate. Calf capacitance and venous resistance were decreased compared with control but normalized with ascorbate. These data provide experimental support for the concept that oxidative stress and reduced NO possibly contribute to vasoconstriction and venoconstriction of LFP.

  3. Idiopathic orthostatic intolerance and postural tachycardia syndromes

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1999-01-01

    Upright posture imposes a substantial gravitational stress on the body, for which we are able to compensate, in large part because of the autonomic nervous system. Alteration in autonomic function, therefore, may lead to orthostatic intolerance. On one extreme, patients with autonomic failure caused by degenerative loss of autonomic function are severely disabled by orthostatic hypotension and may faint whenever they stand up. Fortunately, such patients are relatively rare. On the other hand, disabling orthostatic intolerance can develop in otherwise normal young people. These patients can be severely impaired by symptoms of fatigue, tachycardia, and shortness of breath when they stand up. The actual incidence of this disorder is unknown, but these patients make up the largest group of patients referred to centers that specialize in autonomic disorders. We will review recent advances made in the understanding of this condition, potential pathophysiological mechanisms that contribute to orthostatic intolerance, therapeutic alternatives currently available for the management of these patients, and areas in which more research is needed.

  4. Exercise in the postural orthostatic tachycardia syndrome.

    PubMed

    Fu, Qi; Levine, Benjamin D

    2015-03-01

    Patients with the Postural Orthostatic Tachycardia Syndrome (POTS) have orthostatic intolerance, as well as exercise intolerance. Peak oxygen uptake (VO2peak) is generally lower in these patients compared with healthy sedentary individuals, suggesting a lower physical fitness level. During acute exercise, POTS patients have an excessive increase in heart rate and reduced stroke volume for each level of absolute workload; however, when expressed at relative workload (%VO2peak), there is no difference in the heart rate response between patients and healthy individuals. The relationship between cardiac output and VO2 is similar between POTS patients and healthy individuals. Short-term (i.e., 3 months) exercise training increases cardiac size and mass, blood volume, and VO2peak in POTS patients. Exercise performance is improved after training. Specifically, stroke volume is greater and heart rate is lower at any given VO2 during exercise after training versus before training. Peak heart rate is the same but peak stroke volume and cardiac output are greater after training. Heart rate recovery from peak exercise is significantly faster after training, indicating an improvement in autonomic circulatory control. These results suggest that patients with POTS have no intrinsic abnormality of heart rate regulation during exercise. The tachycardia in POTS is due to a reduced stroke volume. Cardiac remodeling and blood volume expansion associated with exercise training increase physical fitness and improve exercise performance in these patients.

  5. Influence of Sensory Dependence on Postural Control

    NASA Technical Reports Server (NTRS)

    Santana, Patricia A.; Mulavara, Ajitkumar P.; Fiedler, Matthew J.

    2011-01-01

    The current project is part of an NSBRI funded project, "Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long-Duration Spaceflight." The development of this countermeasure is based on the use of imperceptible levels of electrical stimulation to the balance organs of the inner ear to assist and enhance the response of a person s sensorimotor function. These countermeasures could be used to increase an astronaut s re-adaptation rate to Earth s gravity following long-duration space flight. The focus of my project is to evaluate and examine the correlation of sensory preferences for vision and vestibular systems. Disruption of the sensorimotor functions following space flight affects posture, locomotion and spatial orientation tasks in astronauts. The Group Embedded Figures Test (GEFT), the Rod and Frame Test (RFT) and the Computerized Dynamic Posturography Test (CDP) are measurements used to examine subjects visual and vestibular sensory preferences. The analysis of data from these tasks will assist in relating the visual dependence measures recognized in the GEFT and RFT with vestibular dependence measures recognized in the stability measures obtained during CDP. Studying the impact of sensory dependence on the performance in varied tasks will help in the development of targeted countermeasures to help astronauts readapt to gravitational changes after long duration space flight.

  6. Does posture affect cystometric parameters and diagnoses?

    PubMed

    Arunkalaivanan, A S; Mahomoud, S; Howell, M

    2004-01-01

    The objective of this study was to investigate the effect of lying and sitting positions on urodynamic parameters and diagnoses. This prospective study was carried out on 96 women with urinary incontinence who underwent urodynamic assessment. Cystometry was performed both in the lying and sitting positions. For filling cystometry, we infused normal saline at a rate of 50 ml/min. All the results were entered on the urodynamic database and were analysed using Minitab software release 13.30. Mean age was 49 (20-84) years. Sixty-four (67%) women complained of mixed incontinence, 16 (17%) of urgency alone, eight (8%) of stress incontinence and eight (8%) of urgency and urge incontinence. Two (2%) showed stress incontinence by lying cystometry, and 53 (55%) by sitting cystometry. During lying nine (9%) demonstrated detrusor overactivity, while 53 (55%) demonstrated detrusor overactivity in sitting position. No case of mixed incontinence was diagnosed by lying cystometry but 17 (18%) cases were detected by sitting cystometry. This study explains the higher detection rate of stress incontinence, detrusor overactivity and mixed incontinence by cystometry in sitting position. Therefore, we recommend that sitting posture is preferred over lying position for performing cystometry.

  7. United States military posture for FY 1989

    SciTech Connect

    Not Available

    1989-01-01

    The primary purpose of this statement on the military posture of the United States is to supplement testimony by the Chairman and other members of the Joint Chiefs of Staff at congressional hearings in support of the FY 1989 Defense Budget. Chapter I is an overview that describes the main challenges to US national security, outlines objectives and elements of US military strategy, and highlights continuing efforts to field the best possible armed forces for the protection of US national interests. Chapter II compares US defense requirements and resource commitment with those of the Soviet Union. Chapter III provides an overview of the global military environment by comparing US and allied forces with Soviet and Warsaw Pact forces. Chapter IV assesses the current and projected capability of the US Armed Forces to meet the Soviet nuclear threat. Chapter V assesses the current and projected capability of the US Armed Forces, in concert with friends and allies, to meet the Soviet conventional military threat. This chapter deals primarily with joint perspectives that have increased the capabilities and efficiency of our forces. Chapter VI addresses other topics of interest. Unless otherwise noted, data shown in this report have used operational as opposed to treaty inventories for strategic weapon systems, a fiscal year cutoff date of 30 September 1987, and mobilized forces. Additionally, data have been developed based on a global as opposed to regional war scenario.

  8. 77 FR 36250 - Information Collection Request; Request for Aerial Photography

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ...; ] DEPARTMENT OF AGRICULTURE Farm Service Agency Information Collection Request; Request for Aerial Photography... FSA Aerial Photography Program. The FSA Aerial Photography Field Office (APFO) uses the information from this form to collect the customer and photography information needed to produce and ship...

  9. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  10. Geography via Aerial Field Trips: Do It This Way, 6.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.; Guell, Carl E.

    To provide guidance for geography teachers, this booklet presents information on how to plan and execute aerial field trips. The aerial field trip can be employed as an effective visual aid technique in the teaching of geography, especially for presenting earth generalizations and interrelationships. The benefits of an aerial field trip are…

  11. Real-Time Hand Posture Recognition Using a Range Camera

    NASA Astrophysics Data System (ADS)

    Lahamy, Herve

    The basic goal of human computer interaction is to improve the interaction between users and computers by making computers more usable and receptive to the user's needs. Within this context, the use of hand postures in replacement of traditional devices such as keyboards, mice and joysticks is being explored by many researchers. The goal is to interpret human postures via mathematical algorithms. Hand posture recognition has gained popularity in recent years, and could become the future tool for humans to interact with computers or virtual environments. An exhaustive description of the frequently used methods available in literature for hand posture recognition is provided. It focuses on the different types of sensors and data used, the segmentation and tracking methods, the features used to represent the hand postures as well as the classifiers considered in the recognition process. Those methods are usually presented as highly robust with a recognition rate close to 100%. However, a couple of critical points necessary for a successful real-time hand posture recognition system require major improvement. Those points include the features used to represent the hand segment, the number of postures simultaneously recognizable, the invariance of the features with respect to rotation, translation and scale and also the behavior of the classifiers against non-perfect hand segments for example segments including part of the arm or missing part of the palm. A 3D time-of-flight camera named SR4000 has been chosen to develop a new methodology because of its capability to provide in real-time and at high frame rate 3D information on the scene imaged. This sensor has been described and evaluated for its capability for capturing in real-time a moving hand. A new recognition method that uses the 3D information provided by the range camera to recognize hand postures has been proposed. The different steps of this methodology including the segmentation, the tracking, the hand

  12. A comparison of three observational techniques for assessing postural loads in industry.

    PubMed

    Kee, Dohyung; Karwowski, Waldemar

    2007-01-01

    This study aims to compare 3 observational techniques for assessing postural load, namely, OWAS, RULA, and REBA. The comparison was based on the evaluation results generated by the classification techniques using 301 working postures. All postures were sampled from the iron and steel, electronics, automotive, and chemical industries, and a general hospital. While only about 21% of the 301 postures were classified at the action category/level 3 or 4 by both OWAS and REBA, about 56% of the postures were classified into action level 3 or 4 by RULA. The inter-method reliability for postural load category between OWAS and RULA was just 29.2%, and the reliability between RULA and REBA was 48.2%. These results showed that compared to RULA, OWAS, and REBA generally underestimated postural loads for the analyzed postures, irrespective of industry, work type, and whether or not the body postures were in a balanced state.

  13. "A" Is for Aerial Maps and Art

    ERIC Educational Resources Information Center

    Todd, Reese H.; Delahunty, Tina

    2007-01-01

    The technology of satellite imagery and remote sensing adds a new dimension to teaching and learning about maps with elementary school children. Just a click of the mouse brings into view some images of the world that could only be imagined a generation ago. Close-up aerial pictures of the school and neighborhood quickly catch the interest of…

  14. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cost of optical fiber cable and other associated material used in constructing a physical path for the... cable or aerial wire as well as the cost of other material used in construction of such plant... the original cost of single or paired conductor cable, wire and other associated material used...

  15. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  16. Calculating aerial images from EUV masks

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1999-06-01

    Aerial images for line/space patterns, arrays of posts and an arbitrary layout pattern are calculated for EUV masks in a 4X EUV imaging system. Both mask parameters and illumination parameters are varied to investigate their effects on the aerial image. To facilitate this study, a parallel version of TEMPEST with a Fourier transform boundary condition was developed and run on a network of 24 microprocessors. Line width variations are observed when absorber thickness or sidewall angle changes. As the line/space pattern scales to smaller dimensions, the aspect ratios of the absorber features increase, introducing geometric shadowing and reducing aerial image intensity and contrast. 100nm square posts have circular images of diameter close to 100nm, but decreasing in diameter significantly when the corner round radius at the mask becomes greater than 50 nm. Exterior mask posts image slightly smaller and with higher ellipticity than interior mask posts. The aerial image of the arbitrary test pattern gives insight into the effects of the off-axis incidence employed in EUV lithography systems.

  17. A TOOL FOR PLANNING AERIAL PHOTOGRAPHY

    EPA Science Inventory

    abstract The U.S. EPAs Pacific Coastal Ecology Branch has developed a tool in the form of an Excel. spreadsheet that facilitates planning aerial photography missions. The spreadsheet accepts various input parameters such as desired photo-scale and boundary coordinates of the stud...

  18. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  19. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ground: (i) Extensible boom platforms; (ii) Aerial ladders; (iii) Articulating boom platforms; (iv... articulating boom platforms. (i) Lift controls shall be tested each day prior to use to determine that such... when outriggers are used, they shall be positioned on pads or a solid surface. Wheel chocks shall...

  20. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ground: (i) Extensible boom platforms; (ii) Aerial ladders; (iii) Articulating boom platforms; (iv... articulating boom platforms. (i) Lift controls shall be tested each day prior to use to determine that such... when outriggers are used, they shall be positioned on pads or a solid surface. Wheel chocks shall...

  1. Aerial Infrared Photos for Citrus Growers

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W. J.

    1982-01-01

    Handbook advises on benefits and methods of aerial photography with color infrared film. Interpretation of photographs is discussed in detail. Necessary equipment for interpretation is described--light table, magnifying lenses, and microfiche viewers, for example. Advice is given on rating tree condition; identifying effects of diseases, insects, and nematodes; and evaluating effects of soil, water, and weather.

  2. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  3. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  4. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS... construction of such plant. (b) The cost of permits and privileges for the construction of cable and...

  5. Does increased muscular tension along the torso impair postural equilibrium in a standing posture?

    PubMed

    Hamaoui, Alain; Friant, Yola; Le Bozec, Serge

    2011-10-01

    This paper focused on the relationship between active muscular tension along the torso and postural equilibrium while standing. Eleven healthy male subjects underwent a posturographic examination associated with a bimanual compression of a dynamometric bar, which was used to set the torso muscular activity at three different levels (0MVC, 20MVC, 40MVC). Electromyographic pre-tests identified the main superficial muscles of the compressive load as: pectoralis major, latissimus dorsi, thoracic and lumbar erector spinae. Kinematics of the chest wall was recorded by means of two sensing belts, in order to assess the respiratory component of the center of pressure (CP) signal. The analysis of time-domain stabilometric parameters showed that CP displacements were larger and faster in 40MVC that in 20MVC, with no variation between 0MVC and 20MVC. The respiratory component of the CP signal was not sensitive to the compressive load. It was concluded that increased muscular tension along the torso is likely to disturb postural equilibrium, but only when it exceeds a given level.

  6. Object and activity detection from aerial video

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Shi, Feng; Liu, Xin; Ghazel, Mohsen

    2015-05-01

    Aerial video surveillance has advanced significantly in recent years, as inexpensive high-quality video cameras and airborne platforms are becoming more readily available. Video has become an indispensable part of military operations and is now becoming increasingly valuable in the civil and paramilitary sectors. Such surveillance capabilities are useful for battlefield intelligence and reconnaissance as well as monitoring major events, border control and critical infrastructure. However, monitoring this growing flood of video data requires significant effort from increasingly large numbers of video analysts. We have developed a suite of aerial video exploitation tools that can alleviate mundane monitoring from the analysts, by detecting and alerting objects and activities that require analysts' attention. These tools can be used for both tactical applications and post-mission analytics so that the video data can be exploited more efficiently and timely. A feature-based approach and a pixel-based approach have been developed for Video Moving Target Indicator (VMTI) to detect moving objects at real-time in aerial video. Such moving objects can then be classified by a person detector algorithm which was trained with representative aerial data. We have also developed an activity detection tool that can detect activities of interests in aerial video, such as person-vehicle interaction. We have implemented a flexible framework so that new processing modules can be added easily. The Graphical User Interface (GUI) allows the user to configure the processing pipeline at run-time to evaluate different algorithms and parameters. Promising experimental results have been obtained using these tools and an evaluation has been carried out to characterize their performance.

  7. One month of contemporary dance modulates fractal posture in aging

    PubMed Central

    Coubard, Olivier A.; Ferrufino, Lena; Nonaka, Tetsushi; Zelada, Oscar; Bril, Blandine; Dietrich, Gilles

    2013-01-01

    Understanding the human aging of postural control and how physical or motor activity improves balance and gait is challenging for both clinicians and researchers. Previous studies have evidenced that physical and sporting activity focusing on cardiovascular and strength conditioning help older adults develop their balance and gait and/or decrease their frequency of falls. Motor activity based on motor-skill learning has also been put forward as an alternative to develop balance and/or prevent falls in aging. Specifically dance has been advocated as a promising program to boost motor control. In this study, we examined the effects of contemporary dance (CD) on postural control of older adults. Upright stance posturography was performed in 38 participants aged 54–89 years before and after the intervention period, during which one half of the randomly assigned participants was trained to CD and the other half was not trained at all (no dance, ND). CD training lasted 4 weeks, 3 times a week. We performed classical statistic scores of postural signal and dynamic analyses, namely signal diffusion analysis (SDA), recurrence quantification analysis (RQA), and detrended fluctuation analysis (DFA). CD modulated postural control in older trainees, as revealed in the eyes closed condition by a decrease in fractal dimension and an increase in DFA alpha component in the mediolateral plane. The ND group showed an increase in length and mean velocity of postural signal, and the eyes open a decrease in RQA maximal diagonal line in the anteroposterior plane and an increase in DFA alpha component in the mediolateral plane. No change was found in SDA in either group. We suggest that such a massed practice of CD reduced the quantity of exchange between the subject and the environment by increasing their postural confidence. Since CD has low-physical but high-motor impact, we conclude that it may be recommended as a useful program to rehabilitate posture in aging. PMID:24611047

  8. Postural Rehabilitation for Adolescent Idiopathic Scoliosis during Growth

    PubMed Central

    Weiss, Hans-Rudolf; Moramarco, Marc Michael; Borysov, Maksym; Lee, Sang Gil; Nan, Xiaofeng; Moramarco, Kathryn Ann

    2016-01-01

    Long-term follow-up of untreated patients with adolescent idiopathic scoliosis (AIS) indicates that, with the exception of some extremely severe cases, AIS does not have a significant impact on quality of life and does not result in dire consequences. In view of the relatively benign nature of AIS and the long-term complications of surgery, the indications for treatment should be reviewed. Furthermore, recent studies have shown that scoliosis-specific exercises focusing on postural rehabilitation can positively influence the spinal curvatures in growing adolescents. Experiential postural re-education is a conservative, non-invasive approach, and its role in the management of AIS warrants further study. This article reviews current evidence for the inclusion of various forms of postural reeducation in the management of AIS. Recent comprehensive reviews have been researched including a manual and PubMed search for evidence regarding the effectiveness of physical/postural re-education/physiotherapy programs in growing AIS patients. This search revealed that there were few studies on the application of postural re-education in the management of AIS. These studies revealed that postural re-education in the form of exercise rehabilitation programs may have a positive influence on scoliosis; however, the various programs were difficult to compare. More research is necessary. There is at present Level 1 evidence for the effectiveness of Schroth scoliosis exercises in the management of AIS. Whether this evidence can be extrapolated to include other forms of scoliosis- pattern-specific exercises requires further investigation. Because corrective postures theoretically reduce the asymmetric loading of the spinal deformities and reverse the vicious cycle of spinal curvature progression, their integration into AIS programs may be beneficial and should be further examined. PMID:27340540

  9. Postural Rehabilitation for Adolescent Idiopathic Scoliosis during Growth.

    PubMed

    Weiss, Hans-Rudolf; Moramarco, Marc Michael; Borysov, Maksym; Ng, Shu Yan; Lee, Sang Gil; Nan, Xiaofeng; Moramarco, Kathryn Ann

    2016-06-01

    Long-term follow-up of untreated patients with adolescent idiopathic scoliosis (AIS) indicates that, with the exception of some extremely severe cases, AIS does not have a significant impact on quality of life and does not result in dire consequences. In view of the relatively benign nature of AIS and the long-term complications of surgery, the indications for treatment should be reviewed. Furthermore, recent studies have shown that scoliosis-specific exercises focusing on postural rehabilitation can positively influence the spinal curvatures in growing adolescents. Experiential postural re-education is a conservative, non-invasive approach, and its role in the management of AIS warrants further study. This article reviews current evidence for the inclusion of various forms of postural reeducation in the management of AIS. Recent comprehensive reviews have been researched including a manual and PubMed search for evidence regarding the effectiveness of physical/postural re-education/physiotherapy programs in growing AIS patients. This search revealed that there were few studies on the application of postural re-education in the management of AIS. These studies revealed that postural re-education in the form of exercise rehabilitation programs may have a positive influence on scoliosis; however, the various programs were difficult to compare. More research is necessary. There is at present Level 1 evidence for the effectiveness of Schroth scoliosis exercises in the management of AIS. Whether this evidence can be extrapolated to include other forms of scoliosis- pattern-specific exercises requires further investigation. Because corrective postures theoretically reduce the asymmetric loading of the spinal deformities and reverse the vicious cycle of spinal curvature progression, their integration into AIS programs may be beneficial and should be further examined. PMID:27340540

  10. Ankle and hip postural strategies defined by joint torques.

    PubMed

    Runge, C F; Shupert, C L; Horak, F B; Zajac, F E

    1999-10-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  11. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  12. Environmental application of aerial reconnaissance to search for open dumps

    NASA Astrophysics Data System (ADS)

    Getz, Thomas J.; Randolph, J. C.; Echelberger, Wayne F.

    1983-11-01

    Three approaches to using aerial photography are evaluated for searching for open dumps in the state of Indiana. Photography with hand-held cameras from a small airplane proved more effective and flexible than either photo-interpretation of existing air photos or subcontracting to a federal agency for new aerial photography. The rationale for our choice of aerial reconnaissance, other uses of low-level aerial surveillance, the utility of small-format camera aerial photography for environmental analysis, and methods used for locating open dumps are discussed.

  13. Impaired postural balance in turner syndrome.

    PubMed

    Wahlberg, J; Sydsjö, G; Ledin, T; Bågesund, M; Ekman, B

    2013-07-01

    An impaired body balance has been found in Turner syndrome (TS) in clinical tests like Rombergs's test and walking on a balance beam. The aim of the study was to assess postural balance in TS subjects with specific balance testing using dynamic posturography and relate to body composition. Nineteen TS subjects (20-57 years) were included. Balance was measured with dynamic posturography (Equitest) and compared with 19 sex and age-matched controls (22-59 years). Equitest, visual, vestibular, and somatosensory systems were provoked with increasing difficulty (6 tests, SO1-SO6) and body sway was measured with a dual forceplate. Body composition was measured with DXA. No difference was found between the TS subjects and the controls on fixed platform with open eyes (SO1), with closed eyes (SO2), with stable platform and visual disorientation (SO3), or on unstable platform with open eyes (SO4). In the difficult tests on unstable platform the TS subjects did worse compared with controls both in the test with eyes closed (SO5), p<0.01, and in the test with visual disorientation (SO6), p<0.05. Composite (a merge of all six recordings) was significantly lower in the TS-group, p<0.05. In the TS group high total body weight was related to worse outcome on tests SO5, SO6, and composite, while total bone mass, age, height, or waist showed no significant association with balance scores. Our findings indicate that TS could have an increased risk for falling due to impaired ability to manage complex coordination tasks. PMID:23389991

  14. University Football Players, Postural Stability, and Concussions.

    PubMed

    Graves, Barbara Sue

    2016-02-01

    Concussion in football athletes is certainly more prevalent and has potentially serious outcomes. With current concerns and increasing return-to-play issues, additional assessment focus is needed. Division 1 college football athletes, from 18 to 20.9 years (n = 177; age, 19.7 ± 1.2 years; height, 182.3 ± 4.5 cm; weight, 97.3 ± 10.6 kg), before fall practice, over a period of 3 years, underwent baseline postural stability testing (sensory organization test [SOT], NeuroCom). Individuals, who were diagnosed with a concussion (headache, dizziness, fatigue, confusion, or loss of consciousness) during practice or actual competition (n = 15; age, 18.9 ± 0.9 years; height, 181.8 ± 2.5 cm; weight, 86.6 ± 3.6 kg), underwent serial evaluation after injury and 24 hours after concussion. As soon as the player was considered asymptomatic, the test was completed on the first and 14th day. A control group of noninjured male athletes (n = 15; age, 19.1 ± 0.4 years; height, 178.2 ± 3.2 cm; weight, 78.6 ± 2.1 kg) were tested for the same time frame. This particular study was only one part of the total evaluation conducted for the concussed athlete's return to play. Results indicated that the concussion group had a statistically significant (p = 0.037) change from their baseline SOT score and the control group (p = 0.025). This change remained significant until day 14 of posttesting. These data indicate that the SOT, when available, may be a positive additional assessment of concussed college-aged football players. Professionals, when dealing with concussion in competitive sports, do need to continue to work together, but awareness of SOT assessments may also contribute to the return-to-play decisions. PMID:26284680

  15. Postural tachycardia syndrome: time frequency mapping

    NASA Technical Reports Server (NTRS)

    Novak, V.; Novak, P.; Opfer-Gehrking, T. L.; Low, P. A.

    1996-01-01

    Orthostatic tachycardia is common but its specificity remains uncertain. Our preliminary work suggested that using autonomic function testing in conjunction with time-frequency mapping (TFM), it might be possible to characterize a subset of the postural tachycardia syndrome (POTS), that is due to a restricted autonomic neuropathy. We describe 20 patients (17 women and 3 men, aged 14-43 years) with florid POTS and 20 controls (14 women and 6 men, aged 20-41 years). Autonomic failure was quantified by its distribution (cardiovagal, adrenergic and sudomotor) and severity, a symptom profile was generated, and spectral indices, based on modified Wigner distribution during rest and head-up tilt (80 degrees) were evaluated. During tilt-up POTS patients differed from controls by an excessive heart rate (> 130 bpm) (P < 0.001), and higher diastolic pressure (P < 0.01). During rest, cardiovagal oscillations (at respiratory frequencies [RF]) and slow rhythms at nonrespiratory frequencies (NONRF) (from 0.01 to 0.07 Hz) in R-R intervals (RRI) (P < 0.01) were reduced. Both RF and NONRF rhythms in RRI were further blunted with tilt-up (P < 0.001). Slow adrenergic vasomotor rhythms in blood pressure (BP) (approximately 0.07 Hz) surged with tilt-up and returned to normal levels afterwards. The index of sympatho-vagal balance (NONRF-Systolic BP (SBP)/RF-RRI) was dramatically increased in POTS (P < 0.001). Distal postganglionic sudomotor failure was observed, and impairment of the BP responses to the Valsalva maneuver (phase II) suggested peripheral adrenergic dysfunction. Persistent orthostatic dizziness, tiredness, gastrointestinal symptoms and palpitations were common in POTS patients. It is possible to identify a subset of POTS patients who have a length-dependent autonomic neuropathy, affecting the peripheral adrenergic and cardiovagal fibers, with relative preservation of cardiac adrenergic fibers.

  16. University Football Players, Postural Stability, and Concussions.

    PubMed

    Graves, Barbara Sue

    2016-02-01

    Concussion in football athletes is certainly more prevalent and has potentially serious outcomes. With current concerns and increasing return-to-play issues, additional assessment focus is needed. Division 1 college football athletes, from 18 to 20.9 years (n = 177; age, 19.7 ± 1.2 years; height, 182.3 ± 4.5 cm; weight, 97.3 ± 10.6 kg), before fall practice, over a period of 3 years, underwent baseline postural stability testing (sensory organization test [SOT], NeuroCom). Individuals, who were diagnosed with a concussion (headache, dizziness, fatigue, confusion, or loss of consciousness) during practice or actual competition (n = 15; age, 18.9 ± 0.9 years; height, 181.8 ± 2.5 cm; weight, 86.6 ± 3.6 kg), underwent serial evaluation after injury and 24 hours after concussion. As soon as the player was considered asymptomatic, the test was completed on the first and 14th day. A control group of noninjured male athletes (n = 15; age, 19.1 ± 0.4 years; height, 178.2 ± 3.2 cm; weight, 78.6 ± 2.1 kg) were tested for the same time frame. This particular study was only one part of the total evaluation conducted for the concussed athlete's return to play. Results indicated that the concussion group had a statistically significant (p = 0.037) change from their baseline SOT score and the control group (p = 0.025). This change remained significant until day 14 of posttesting. These data indicate that the SOT, when available, may be a positive additional assessment of concussed college-aged football players. Professionals, when dealing with concussion in competitive sports, do need to continue to work together, but awareness of SOT assessments may also contribute to the return-to-play decisions.

  17. Reduction of farmers' postural load during occupationally oriented medical rehabilitation.

    PubMed

    Nevala-Puranen, N

    1995-12-01

    Farmers' back problems may be associated with the amount of back flexion and the handling of heavy loads. The aim of this study was to analyse the effects of occupationally oriented medical rehabilitation courses on female farmers' postural load. Twenty seven female farmers (aged from 32 to 52 years) took part in four rehabilitation courses at one rehabilitation centre in Finland. The subjects suffered from various musculoskeletal symptoms, which decreased their work ability. The rehabilitation courses included two periods: the first lasted for 3 weeks and the latter for 1 week, organized 6 months after the first period. The work postures and their load on the musculoskeletal system were classified by the computerized OWAS method in three daily work phases. During the 3-week periods new work techniques were learned, and simultaneous bent and twisted postures for the back decreased from 34 to 4% of all studied work postures. Similarly, postures with one or both arms above shoulder level were reduced from 44 to 24%. Rechecking after the 6-month period confirmed that the adoption of new work techniques was consistent. The study showed that female farmers could change their work techniques during this kind of intensive rehabilitation period, and the changes were seen 6 months later in the follow-up.

  18. Effects of emotional videos on postural control in children.

    PubMed

    Brandão, Arthur de Freitas; Palluel, Estelle; Olivier, Isabelle; Nougier, Vincent

    2016-03-01

    The link between emotions and postural control has been rather unexplored in children. The objective of the present study was to establish whether the projection of pleasant and unpleasant videos with similar arousal would lead to specific postural responses such as postural freezing, aversive or appetitive behaviours as a function of age. We hypothesized that postural sway would similarly increase with the viewing of high arousal videos in children and adults, whatever the emotional context. 40 children participated in the study and were divided into two groups of age: group 7-9 years (n=23; mean age=8 years ± 0.7) and group 10-12 years (n=17; mean age=11 years ± 0.7). 19 adults (mean age=25.8 years ± 4.4) also took part in the experiment. They viewed emotional videos while standing still on a force platform. Centre of foot pressure (CoP) displacements were analysed. Antero-posterior, medio-lateral mean speed and sway path length increased similarly with the viewing of high arousal movies in the younger, older children, and adults. Our findings suggest that the development of postural control is not influenced by the maturation of the emotional processing.

  19. Cortico-muscular coupling in a patient with postural myoclonus.

    PubMed

    Kristeva, Rumyana; Popa, Traian; Chakarov, Vihren; Hummel, Sibylla

    2004-08-19

    We investigated the cortico-muscular coherence in a patient with posturally induced cortically originating negative myoclonus. We recorded simultaneously 50 channels EEG and EMG from quadriceps and biceps femoris muscles of the left upper leg. Three experimental conditions were investigated with the patient in a seated position: (i) recording during rest (Rest), (ii) recording while the patient had to hold his left leg horizontally stretched out (Postural), and (iii) recording while the patient had to hold his left leg horizontally stretched out against a vertical force (Postural against force). Coherence, phase difference and cumulant density were computed as indicators for cortico-muscular coupling. The cortical component preceding the silent period was shown by averaging and was reconstructed. During postural and postural against force conditions, the EEG over the vertex was significantly coherent with EMG, in alpha (7-15 Hz) and beta range (15-30 Hz). The strongest coherence peak was at 21 Hz. No high-frequency coherence was observed. The phase difference and the cumulant density estimate corresponded to a 32 ms time lag between motor cortex and muscles, with EEG leading. The broadening of the coherence spectrum at which the motor cortex drives the muscles together with the excessive coherence levels and the giant SEP could reflect the hyperexcitability of the sensorimotor cortex. The frequency content of the coherence may be characteristic for this type of myoclonus. The results lend support to the view that the frequency analysis may have some diagnostic potential in cortical myoclonus.

  20. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks

    PubMed Central

    Chiou, Shin-Yi; Gottardi, Sam E. A.; Hodges, Paul W.; Strutton, Paul H.

    2016-01-01

    Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function. PMID:26807583

  1. Effects of emotional videos on postural control in children.

    PubMed

    Brandão, Arthur de Freitas; Palluel, Estelle; Olivier, Isabelle; Nougier, Vincent

    2016-03-01

    The link between emotions and postural control has been rather unexplored in children. The objective of the present study was to establish whether the projection of pleasant and unpleasant videos with similar arousal would lead to specific postural responses such as postural freezing, aversive or appetitive behaviours as a function of age. We hypothesized that postural sway would similarly increase with the viewing of high arousal videos in children and adults, whatever the emotional context. 40 children participated in the study and were divided into two groups of age: group 7-9 years (n=23; mean age=8 years ± 0.7) and group 10-12 years (n=17; mean age=11 years ± 0.7). 19 adults (mean age=25.8 years ± 4.4) also took part in the experiment. They viewed emotional videos while standing still on a force platform. Centre of foot pressure (CoP) displacements were analysed. Antero-posterior, medio-lateral mean speed and sway path length increased similarly with the viewing of high arousal movies in the younger, older children, and adults. Our findings suggest that the development of postural control is not influenced by the maturation of the emotional processing. PMID:26979902

  2. Influence of gymnastics training on the development of postural control.

    PubMed

    Garcia, Claudia; Barela, José Angelo; Viana, André Rocha; Barela, Ana Maria Forti

    2011-03-29

    This study investigated the influence of gymnastics training on the postural control of children with and without the use of visual information. Two age groups, aged 5-7 and 9-11 years old, of gymnasts and nongymnasts were asked to maintain an upright and quiet stance on a force platform with eyes open (EO) and eyes closed (EC) for 30s. Area of the stabilogram (AOS) and mean velocity of the center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions were calculated and used to investigate the effects of gymnastics training, age, and visual information. Younger gymnasts presented greater postural control compared to younger nongymnasts while visual information did not improve postural control in younger nongymnasts. Younger gymnasts displayed improved postural control with EO compared to EC. The mean velocity of the COP in the ML direction was: less for younger gymnasts than younger nongymnasts with EO. These results suggest that gymnastics training promotes improvements in postural control of younger children only, which results from their use of visual information when available. PMID:21276829

  3. Stance Postural Strategies in Patients with Chronic Inflammatory Demyelinating Polyradiculoneuropathy

    PubMed Central

    Missori, Paolo; Trompetto, Carlo; Fattapposta, Francesco

    2016-01-01

    Introduction Polyneuropathy leads to postural instability and an increased risk of falling. We investigated how impaired motor impairment and proprioceptive input due to neuropathy influences postural strategies. Methods Platformless bisegmental posturography data were recorded in healthy subjects and patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Each subject stood on the floor, wore a head and a hip electromagnetic tracker. Sway amplitude and velocity were recorded and the mean direction difference (MDD) in the velocity vector between trackers was calculated as a flexibility index. Results Head and hip postural sway increased more in patients with CIDP than in healthy controls. MDD values reflecting hip strategies also increased more in patients than in controls. In the eyes closed condition MDD values in healthy subjects decreased but in patients remained unchanged. Discussion Sensori-motor impairment changes the balance between postural strategies that patients adopt to maintain upright quiet stance. Motor impairment leads to hip postural strategy overweight (eyes open), and prevents strategy re-balancing when the sensory context predominantly relies on proprioceptive input (eyes closed). PMID:26977594

  4. Relationship between antigravity control and postural control in young children.

    PubMed

    Sellers, J S

    1988-04-01

    The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.

  5. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    PubMed

    Kubo, Tai; Kubo, Mugino O

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna. PMID:26790003

  6. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    PubMed

    Kubo, Tai; Kubo, Mugino O

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  7. Postural control during standing reach in children with Down syndrome.

    PubMed

    Chen, Hao-Ling; Yeh, Chun-Fu; Howe, Tsu-Hsin

    2015-03-01

    The purpose of the present study was to investigate the dynamic postural control of children with Down syndrome (DS). Specifically, we compared postural control and goal-directed reaching performance between children with DS and typically developing children during standing reach. Standing reach performance was analyzed in three main phases using the kinematic and kinetic data collected from a force plate and a motion capture system. Fourteen children with DS, age and gender matched with fourteen typically developing children, were recruited for this study. The results showed that the demand of the standing reach task affected both dynamic postural control and reaching performance in children with DS, especially in the condition of beyond arm's length reaching. More postural adjustment strategies were recruited when reaching distance was beyond arm's length. Children with DS tended to use inefficient and conservative strategies for postural stability and reaching. That is, children with DS perform standing reach with increased reaction and execution time and decreased amplitudes of center of pressure displacements. Standing reach resembled functional balance that is required in daily activities. It is suggested to be considered as a part of strength and balance training program with graded task difficulty.

  8. Cuttlefish use visual cues to determine arm postures for camouflage

    PubMed Central

    Barbosa, Alexandra; Allen, Justine J.; Mäthger, Lydia M.; Hanlon, Roger T.

    2012-01-01

    To achieve effective visual camouflage, prey organisms must combine cryptic coloration with the appropriate posture and behaviour to render them difficult to be detected or recognized. Body patterning has been studied in various taxa, yet body postures and their implementation on different backgrounds have seldom been studied experimentally. Here, we provide the first experimental evidence that cuttlefish (Sepia officinalis), masters of rapid adaptive camouflage, use visual cues from adjacent visual stimuli to control arm postures. Cuttlefish were presented with a square wave stimulus (period = 0.47 cm; black and white stripes) that was angled 0°, 45° or 90° relative to the animals' horizontal body axis. Cuttlefish positioned their arms parallel, obliquely or transversely to their body axis according to the orientation of the stripes. These experimental results corroborate our field observations of cuttlefish camouflage behaviour in which flexible, precise arm posture is often tailored to match nearby objects. By relating the cuttlefishes' visual perception of backgrounds to their versatile postural behaviour, our results highlight yet another of the many flexible and adaptive anti-predator tactics adopted by cephalopods. PMID:21561967

  9. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size

    PubMed Central

    Kubo, Tai; Kubo, Mugino O.

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope’s rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna. PMID:26790003

  10. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks.

    PubMed

    Chiou, Shin-Yi; Gottardi, Sam E A; Hodges, Paul W; Strutton, Paul H

    2016-01-01

    Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function.

  11. Effect of Cognitive Load on Seating Posture in Children.

    PubMed

    Igarashi, Go; Karashima, Chieko; Hoshiyama, Minoru

    2016-03-01

    Although children are frequently required to sit upright, it is often difficult to maintain this posture when performing cognitive tasks. Information about the relationship between a cognitive tasks and postural seating control is important for children to complete tasks more effectively. To determine the muscle activity and body sway of children in a seated posture while performing a cognitive task, changes in muscle activity and center of pressure (COP) were recorded while 4(th) grade children performed arithmetic tasks. Electromyography was recorded from the internal oblique and lumbar multifidus muscles, and the COP was recorded using a baropodometer placed on the stool. These variables were measured during easy (EA) and difficult (DA) arithmetic tasks. EMG activity decreased during the EA and DA tasks, while the COP was displaced in the DA task. The results of the arithmetic tasks were not related to the EMG or COP changes. Attention to maintain a seated posture may be reduced when children perform cognitive tasks. Therefore, it may be better to allow children to alter their posture especially when they are performing difficult tasks. In this research, we only used arithmetic tasks as the cognitive exercise, and therefore, other types of tasks should be examined. PMID:26317316

  12. Development and initial validation of the Seated Posture Scale.

    PubMed

    Barks, Lelia; Luther, Stephen L; Brown, Lisa M; Schulz, Brian; Bowen, Mary Elizabeth; Powell-Cope, Gail

    2015-01-01

    Literature shows that some health outcomes (e.g., eating, breathing, and speaking) are directly related to posture. Evidence of outcomes mediated by wheelchair seated posture is limited to interface pressure, physical function, and wheelchair skills and safety. This study's purpose was to develop and validate a rapid, low-burden, paper-pencil assessment of wheelchair seated posture for research use and to test feasibility of its use with a sample of older adults. We used a prospective design and a convenience sample of older adults who were receiving rehabilitation services in a community living center. Forty-nine older wheelchair users participated. Main measures were the Seated Posture Scale (SPS), Modified Ashworth Scale, Barthel Index, Visual Descriptor Scale, scale-content validity index (S-CVI), Cronbach alpha, and test-retest reliability. Rating by six experts yielded the overall content validity score (S-CVI) of 0.744. Total SPS score correlated positively with physical function (Barthel Index, r = 0.46, p < 0.001) and negatively with muscle tone (Modified Ashworth Scale, r = -0.44, p = 0.001), supporting SPS construct validity. Internal consistency was 0.66 (Cronbach alpha). Test-retest reliability yielded Pearson product-moment correlations of 0.89 to 0.99. We conclude that the SPS has sufficient preliminary validity and reliability to support its use as an evaluation of wheelchair seated posture in outcomes research. PMID:26230339

  13. Altered dynamic postural control during gait termination following concussion.

    PubMed

    Oldham, Jessie R; Munkasy, Barry A; Evans, Kelsey M; Wikstrom, Erik A; Buckley, Thomas A

    2016-09-01

    Impaired postural control is a cardinal symptom following concussion. Planned gait termination (GT) is a non-novel, dynamic task that challenges postural control in individuals with neurological deficits, and it could be an impactful measure for identifying dynamic postural control impairments following concussion. Therefore, the purpose of this study was to assess acute post-concussion dynamic postural control utilizing a planned GT task. The concussion participants (n=19, age: 19.0±0.8years, height: 177.0±10.1cm, weight: 83.3±20.0kg) completed five planned GT trials during preseason baseline testing (Baseline) and on Day 1 post-concussion (Day-1). Healthy control participants (n=19, age: 20.4±1.2years, height: 173.8±8.9cm, weight: 80.2±17.6kg) completed the same trials a week apart. The dependent variables of interest included COP displacement and velocity in the mediolateral (ML) and anteroposterior (AP) axes during the three phases (braking, transitional, stabilization) of planned GT. There were significant interactions observed in both the braking ML and transitional AP displacement (p=0.042, p=0.030) and velocity (p=0.027, p=0.030). These results suggest a conservative post-concussion motor control strategy during planned GT. Further, these results support the use of dynamic postural control tasks as measures of post-concussion impairments. PMID:27522565

  14. Dynamic postural stability for double-leg drop landing.

    PubMed

    Niu, Wenxin; Zhang, Ming; Fan, Yubo; Zhao, Qinping

    2013-01-01

    Dynamic postural stability has been widely studied for single-leg landing, but seldom considered for double-leg landing. This study aimed to evaluate the dynamic postural stability and the influence mechanism of muscle activities during double-leg drop landing. Eight recreationally active males and eight recreationally active females participated in this study and dropped individually from three heights (0.32 m, 0.52 m, and 0.72 m). Ground reaction force was recorded to calculate the time to stabilisation. Electromyographic activities were recorded for selected lower-extremity muscles. A multivariate analysis of variance was carried out and no significant influence was found in time to stabilisation between genders or limb laterals (P > 0.05). With increasing drop height, time to stabilisation decreased significantly in two horizontal directions and the lower-extremity muscle activities were enhanced. Vertical time to stabilisation was not significantly influenced by drop height. Dynamic postural stability improved by neuromuscular change more than that required due to the increase of drop height. Double-leg landing on level ground is a stable movement, and the body would often be injured before dynamic postural stability is impaired. It is understandable to protect tissues from mechanical injuries by the sacrifice of certain dynamic postural stability in the design of protective devices or athlete training.

  15. Action recognition by motion detection in posture space.

    PubMed

    Theusner, Stefanie; de Lussanet, Marc; Lappe, Markus

    2014-01-15

    The visual recognition of action can be obtained from the change of body posture over time. Even for point-light stimuli in which the body posture is conveyed by only a few light points, biological motion can be perceived from posture sequence analysis. We present and analyze a formal model of how action recognition may be computed and represented in the brain. This model assumes that motion energy detectors similar to those well-established for the luminance-based motion of objects in space are applied to a cortical representation of body posture. Similar to the spatio-temporal receptive fields of regular motion detectors, these body motion detectors attain receptive fields in a posture-time space. We describe the properties of these receptive fields and compare them with properties of body-sensitive neurons found in the superior temporal sulcus of macaque monkeys. We consider tuning properties for 3D views of static and moving bodies. Our simulations show that key properties of action representation in the STS can directly be explained from the properties of natural action stimuli. Our model also suggests an explanation for the phenomenon of implied motion, the perceptual appearance, and neural activation of motion from static images. PMID:24431449

  16. Holding a Handle for Balance during Continuous Postural Perturbations—Immediate and Transitionary Effects on Whole Body Posture

    PubMed Central

    Čamernik, Jernej; Potocanac, Zrinka; Peternel, Luka; Babič, Jan

    2016-01-01

    When balance is exposed to perturbations, hand contacts are often used to assist postural control. We investigated the immediate and the transitionary effects of supportive hand contacts during continuous anteroposterior perturbations of stance by automated waist-pulls. Ten young adults were perturbed for 5 min and required to maintain balance by holding to a stationary, shoulder-high handle and following its removal. Center of pressure (COP) displacement, hip, knee and ankle angles, leg and trunk muscle activity and handle contact forces were acquired. The analysis of results show that COP excursions are significantly smaller when the subjects utilize supportive hand contact and that the displacement of COP is strongly correlated to the perturbation force and significantly larger in the anterior than posterior direction. Regression analysis of hand forces revealed that subjects utilized the hand support significantly more during the posterior than anterior perturbations. Moreover, kinematical analysis showed that utilization of supportive hand contacts alter posture of the whole body and that postural readjustments after the release of the handle, occur at different time scales in the hip, knee and ankle joints. Overall, our findings show that supportive hand contacts are efficiently used for balance control during continuous postural perturbations and that utilization of a handle has significant immediate and transitionary effects on whole body posture. PMID:27725798

  17. Lower lumbar spine axial rotation is reduced in end-range sagittal postures when compared to a neutral spine posture.

    PubMed

    Burnett, Angus; O'Sullivan, Peter; Ankarberg, Lars; Gooding, Megan; Nelis, Rogier; Offermann, Frank; Persson, Jannike

    2008-08-01

    Sports such as rowing, gymnastics, cycling and fast bowling in cricket that combine rotation with spine flexion and extension are known to carry greater risk of low back pain (LBP). Few studies have investigated the capacity of the lumbar spine to rotate in various sagittal positions, and further, these studies have generated disparate conclusions. The purpose of this study was to determine whether the range of lower lumbar axial rotation (L3-S2) is decreased in end-range flexion and extension postures when compared to the neutral spine posture. Eighteen adolescent female rowers (mean age=14.9 years) with no history of LBP were recruited for this study. Lower lumbar axial rotation was measured by an electromagnetic tracking system (3-Space Fastrak) in end-range flexion, extension and neutral postures, in sitting and standing positions. There was a reduction in the range of lower lumbar axial rotation in both end-range extension and flexion (p<0.001) postures when compared to neutral. Further, the range of lower lumbar axial rotation measurements in flexion when sitting was reduced when compared to standing (p=0.013). These findings are likely due to the anatomical limitations of the passive structures in end-range sagittal postures. PMID:17395521

  18. Effect of craniocervical posture on abdominal muscle activities

    PubMed Central

    Su, Jung Gil; Won, Shin Ji; Gak, Hwangbo

    2016-01-01

    [Purpose] The aim of this study was to investigate the influence of the craniocervical posture on abdominal muscle activities in hook-lying position. [Subjects] This study recruited 12 healthy young adults. [Methods] Each subject was asked to adopt a supine position with the hip and knee flexed at 60°. Surface electromyographic signals of transversus abdominis/internal oblique, rectus abdominis, and external oblique in different craniocervical postures (extension, neutral, and flexion) were compared. [Results] The transversus abdominis and rectus abdominis showed increased muscle activities in craniocervical flexion compared to craniocervical extension and neutral position. Greater muscle activities of the external oblique were seen in craniocervical flexion than in craniocervical extension. [Conclusion] Craniocervical flexion was found to be effective to increase the abdominal muscle activities. Consideration of craniocervical posture is recommended when performing trunk stabilization exercises. PMID:27065558

  19. Kinect-based posture tracking for correcting positions during exercise.

    PubMed

    Guerrero, Cesar; Uribe-Quevedo, Alvaro

    2013-01-01

    The Kinect sensor has opened the path for developing numerous applications in several different areas. Medical and health applications are benefiting from the Kinect as it allows non-invasive body motion capture that can be used in motor rehabilitation and phobia treatment. A major advantage of the Kinect is that allows developing solutions that can be used at home or even the office thus, expanding the user freedom for interacting with complementary solutions to its physical activities without requiring any traveling. This paper present a Kinect-based posture tracking software for assisting the user in successfully match postures required in some exercises for strengthen body muscles. Unlike several video games available, this tool offers a user interface for customizing posture parameters, so it can be enhanced by healthcare professionals or by their guidance through the user.

  20. Postural control during pushing movement with risk of forward perturbation.

    PubMed

    Okai, Rika; Fujiwara, Motoko

    2013-06-01

    The purpose of this study was to investigate the effect of a forward bilateral pushing movement on postural control in a situation where known, unknown, and unpredictable perturbations may be induced. Participants stood upright and voluntarily pushed a handle with both hands. In the first task, the handle was free to be moved by the participant (perturbation; movable task) and in the second task, the handle was locked (stationary task). For each task, body displacement and observed applied force were recorded. Anticipatory postural control adjustment plays a vital role in body stability; however, in contrast to its role in maintaining stability, adjustment can generate a restricted voluntary movement because motor programming selects a postural control that gives priority to body stability over the target movement.

  1. Postural balance and the risk of falling during pregnancy.

    PubMed

    Cakmak, Bulent; Ribeiro, Ana Paula; Inanir, Ahmet

    2016-01-01

    Pregnancy is a physiological process and many changes occur in a woman's body during pregnancy. These changes occur in all systems to varying degrees, including the cardiovascular, respiratory, genitourinary, and musculoskeletal systems. The hormonal, anatomical, and physiological changes occurring during pregnancy result in weight gain, decreased abdominal muscle strength and neuromuscular control, increased ligamentous laxity, and spinal lordosis. These alterations shift the centre of gravity of the body, altering the postural balance and increasing the risk of falls. Falls during pregnancy can cause maternal and foetal complications, such as maternal bone fractures, head injuries, internal haemorrhage, abruption placenta, rupture of the uterus and membranes, and occasionally maternal death or intrauterine foetal demise. Preventative strategies, such as physical exercise and the use of maternity support belts, can increase postural stability and reduce the risk of falls during pregnancy. This article reviews studies that have investigated changes in postural balance and risk of falling during pregnancy. PMID:26212584

  2. Cognitive abilities in left-handers: writing posture revisited.

    PubMed

    Teasdale, T W; Owen, D R

    2001-01-01

    Among 1848 young men appearing before the Danish draft board, 232 (13%) were left-handed. Of these, 118 (51%) used an inverted, or hook-like, writing posture, 49 (21%) used a non-inverted posture and the remaining 65 (28%) could not be categorized. There were no differences between left- and right-handers on a battery of four cognitive tests. However, inverted left-handers performed significantly or near-significantly better than the non-inverted left-handers on two of the four tests and significantly better on the total score for the test battery. These results support the contention that the inverted posture is adaptive for left-handers and suggest that it may be more likely to be adopted by those with better cognitive abilities. Our findings conflict with earlier reports from two decades ago, however, and the association may therefore be socially and culturally dependent.

  3. Classification of posture maintenance data with fuzzy clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1992-01-01

    Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various sensory organization test (SOT) conditions were collected in conjunction with Johnson Space Center postural control studies using a tilt-translation device (TTD). The University of West Florida applied the fuzzy c-meams (FCM) clustering algorithms to this data with a view towards identifying various states and stages of subjects experiencing such changes. Feature analysis, time step analysis, pooling data, response of the subjects, and the algorithms used are discussed.

  4. Dysphagia associated with cervical spine and postural disorders.

    PubMed

    Papadopoulou, Soultana; Exarchakos, Georgios; Beris, Alexander; Ploumis, Avraam

    2013-12-01

    Difficulties with swallowing may be both persistent and life threatening for the majority of those who experience it irrespective of age, gender, and race. The purpose of this review is to define oropharyngeal dysphagia and describe its relationship to cervical spine disorders and postural disturbances due to either congenital or acquired disorders. The etiology and diagnosis of dysphagia are analyzed, focusing on cervical spine pathology associated with dysphagia as severe cervical spine disorders and postural disturbances largely have been held accountable for deglutition disorders. Scoliosis, kyphosis–lordosis, and osteophytes are the primary focus of this review in an attempt to elucidate the link between cervical spine disorders and dysphagia. It is important for physicians to be knowledgeable about what triggers oropharyngeal dysphagia in cases of cervical spine and postural disorders. Moreover, the optimum treatment for dysphagia, including the use of therapeutic maneuvers during deglutition, neck exercises, and surgical treatment, is discussed.

  5. Head and cervical spine postures in complete denture wearers.

    PubMed

    Salonen, M A; Raustia, A M; Huggare, J

    1993-01-01

    Signs and symptoms in the stomatognathic system and head and cervical spine postures were evaluated in 10 edentulous patients prior to renewal of their dentures, as well as immediately and six months after insertion of new dentures. Natural head posture was recorded using the fluid-level method and measured from the roentgen cephalograms. It was shown that the variables duration of edentulousness and free-way space displayed positive correlations with the dysfunction symptoms. In addition, the patients who needed oral rehabilitation the most, who received the greatest reduction in their free-way space, were seen to have raised their heads more than average. There was also an inverse correlation between the reduction of clinical dysfunction index score and cervical spine postures.

  6. Controller Design of Quadrotor Aerial Robot

    NASA Astrophysics Data System (ADS)

    Yali, Yu; SunFeng; Yuanxi, Wang

    This paper deduced the nonlinear dynamic model of a quadrotor aerial robot, which was a VTOL (vertical tale-off and landing) unmanned air vehicle. Since that is a complex model with the highly nonlinear multivariable strongly coupled and under-actuated property, the controller design of it was very difficult. Aimed at attaining the excellent controller, the whole system can be divided into three interconnected parts: attitude subsystem, vertical subsystem, position subsystem. Then nonlinear control strategy of them has been described, such as SDRE and Backstepping. The controller design was presented to stabilize the whole system. Through simulation result indicates, the various models have shown that the control law stabilize a quadrotor aerial robot with good tracking performance and robotness of the system.

  7. Aerial color infrared photography applications to citriculture

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W., Jr.

    1980-01-01

    Results of a one-year experimental study on the use of aerial color infrared photography in citrus grove management are presented. It is found that the spring season, when trees are in flush (have young leaves), is the best season to photograph visible differences between healthy and diseased trees. It is also shown that the best photography can be obtained with a 12-in. focal length lens. The photographic scale that allowed good photo interpretation with simple inexpensive equipment was 1 in. = 330 ft. The use of a window-overlay transparency method allowed rapid photo interpretation and data recording in computer-compatible forms. Aerial color infrared photography carried out during the spring season revealed a more accurate status of tree condition than visual inspection.

  8. Significance of vestibular and proprioceptive afferentation in the regulation of human posture

    NASA Technical Reports Server (NTRS)

    Gurfinkel, V. S.

    1980-01-01

    Viewpoints on the vertical human posture and the relation between postural adaptation during voluntary movements and the guarantee of stable locomotor movements are examined. Various complex sensory systems are discussed.

  9. Effects of the removal of vision on body sway during different postures in elite gymnasts.

    PubMed

    Asseman, F; Caron, O; Crémieux, J

    2005-03-01

    The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role. PMID:15726495

  10. Quantifying and Reducing Posture-Dependent Distortion in Ballistocardiogram Measurements

    PubMed Central

    Javaid, Abdul Q.; Wiens, Andrew D.; Fesmire, N. Forrest; Weitnauer, Mary A.; Inan, Omer T.

    2015-01-01

    Ballistocardiography is a non-invasive measurement of the mechanical movement of the body caused by cardiac ejection of blood. Recent studies have demonstrated that ballistocardiogram (BCG) signals can be measured using a modified home weighing scale, and used to track changes in myocardial contractility and cardiac output. With this approach, the BCG can potentially be used both for preventive screening and for chronic disease management applications. However, for achieving high signal quality, subjects are required to stand still on the scale in an upright position for the measurement; the effects of intentional (for user comfort) or unintentional (due to user error) modifications in the position or posture of the subject during the measurement have not been investigated in the existing literature. In this study, we quantified the effects of different standing and seated postures on the measured BCG signals, and on the most salient BCG-derived features compared to reference standard measurements (e.g., impedance cardiography). We determined that the standing upright posture led to the least distorted signals as hypothesized, and that the correlation between BCG-derived timing interval features (R-J interval) and the pre-ejection period, PEP (measured using ICG), decreased significantly with impaired posture or sitting position. We further implemented two novel approaches to improve the PEP estimates from other standing and sitting postures, using system identification and improved J-wave detection methods. These approaches can improve the usability of standing BCG measurements in unsupervised settings (i.e. the home), by improving the robustness to non-ideal posture, as well as enabling high quality seated BCG measurements. PMID:26058064

  11. Development of Postural Control in Healthy Children: A Functional Approach

    PubMed Central

    Assaiante, Christine; Mallau, Sophie; Viel, Sébastien; Jover, Marianne; Schmitz, Christina

    2005-01-01

    From a set of experimental studies showing how intersegmental coordination develops during childhood in various posturokinetic tasks, we have established a repertoire of equilibrium strategies in the course of ontogenesis. The experimental data demonstrate that the first reference frame used for the organization of balance control during locomotion is the pelvis, especially in young children. Head stabilization during posturokinetic activities, particularly locomotion, constitutes a complex motor skill requiring a long time to develop during childhood. When studying the emergence of postural strategies, it is essential to distinguish between results that can be explained by biomechanical reasons strictly and those reflecting the maturation of the central nervous system (CNS). To address this problem, we have studied our young subjects in situations requiring various types of adaptation. The studies dealing with adaptation of postural strategies aimed at testing short and long-term adaptation capacity of the CNS during imposed transient external biomechanical constraints in healthy children, and during chronic internal constraints in children with skeletal pathologies. In addition to maintenance of balance, another function of posture is to ensure the orientation of a body segment. It appears that the control of orientation and the control of balance both require the trunk as an initial reference frame involving a development from egocentric to exocentric postural control. It is concluded that the first step for children consists in building a repertoire of postural strategies, and the second step consists in learning to select the most appropriate postural strategy, depending on the ability to anticipate the consequence of the movement in order to maintain balance control and the efficiency of the task. PMID:16097479

  12. Examination of the relationship between mandibular position and body posture.

    PubMed

    Sakaguchi, Kiwamu; Mehta, Noshir R; Abdallah, Emad F; Forgione, Albert G; Hirayama, Hiroshi; Kawasaki, Takao; Yokoyama, Atsuro

    2007-10-01

    The purpose of this study was to evaluate the effect of changing mandibular position on body posture and reciprocally, body posture on mandibular position. Forty-five (45) asymptomatic subjects (24 males and 21 females, ages 21-53 years, mean age 30.7 years) were included in this study and randomly assigned to one of two groups, based on the table of random numbers. The only difference between group I and group II was the sequence of the testing. The MatScan (Tekscan, Inc., South Boston, MA) system was used to measure the result of changes in body posture (center of foot pressure: COP) while subjects maintained the following 5 mandibular positions: (1) rest position, (2) centric occlusion, (3) clinically midlined jaw position with the labial frena aligned, (4) a placebo wax appliance, worn around the labial surfaces of the teeth and (5) right eccentric mandibular position. The T-Scan II (Tekscan, Inc., South Boston, MA) system was used to analyze occlusal force distribution in two postural positions, with and without a heel lift under the right foot. Total trajectory length of COP in centric occlusion was shorter than in the rest position (p < 0.05). COP area in right eccentric mandibular position was larger than in centric occlusion (p < 0.05). When subjects used a heel lift under the right foot, occlusal forces shifted to the right side compared to no heel lift (p < 0.01). Based on these findings, it was concluded that changing mandibular position affected body posture. Conversely, changing body posture affected mandibular position.

  13. Effects of Four Days Hiking on Postural Control

    PubMed Central

    Vieira, Marcus Fraga; de Avelar, Ivan Silveira; Silva, Maria Sebastiana; Soares, Viviane; Lobo da Costa, Paula Hentschel

    2015-01-01

    Hiking is a demanding form of exercise that may cause delayed responses of the postural muscles and a loss of somatosensory information, particularly when repeatedly performed for several days. These effects may negatively influence the postural control of hikers. Therefore, the aim of this study was to investigate the effects of a four-day hike on postural control. Twenty-six adults of both sexes travelled 262 kilometers, stopping for lunch and resting in the early evening each day. Force platforms were used to collect center of pressure (COP) data at 100 Hz for 70 seconds before hiking started and immediately after arriving at the rest station each day. The COP time course data were analyzed according to global stabilometric descriptors, spectral analysis and structural descriptors using sway density curve (SDC) and stabilometric diffusion analysis (SDA). Significant increases were found for global variables in both the anterior-posterior and medial-lateral directions (COP sway area, COP total sway path, COP mean velocity, COP root mean square value and COP range). In the spectral analysis, only the 80% power frequency (F80) in the anterior-posterior direction showed a significant increase, reflecting the increase of the sway frequencies. The SDC revealed a significant increase in the mean distance between peaks (MD) and a significant decrease in the mean peak amplitudes (MP), suggesting that a larger torque amplitude is required for stabilization and that the postural stability is reduced. The SDA revealed a decrease in the long-term slope (Hl) and increases in the short-term (Ks) and the long-term (Kl) intercepts. We considered the likelihood that the presence of local and general fatigue, pain and related neuromuscular adaptations and somatosensory deficits may have contributed to these postural responses. Together, these results demonstrated that four days of hiking increased sway frequencies and deteriorated postural control in the standing position. PMID

  14. Postural motor learning in people with Parkinson's disease.

    PubMed

    Peterson, Daniel S; Dijkstra, Bauke W; Horak, Fay B

    2016-08-01

    Protective postural responses to external perturbations are hypokinetic in people with Parkinson's disease (PD), and improving these responses may reduce falls. However, the ability of people with PD to improve postural responses with practice is poorly understood. Our objective was to determine whether people with PD can improve protective postural responses similarly to healthy adults through repeated perturbations, and whether improvements are retained or generalize to untrained perturbations. Twelve healthy adults and 15 people with PD underwent 25 forward and 25 backward translations of the support surface, eliciting backward, and forward protective steps, respectively. We assessed whether: (1) performance improved over one day of practice, (2) changes were retained 24 h later, and (3) improvements generalized to untrained (lateral) postural responses. People with PD and healthy adults improved postural response characteristics, including center of mass displacement after perturbations (p < 0.001), margin of stability at first footfall (p = 0.001), step latency (p = 0.044), and number of steps (p = 0.001). However, unlike controls, improvements in people with PD occurred primarily in the first block of trials. Improvements were more pronounced during backward protective stepping than forward, and with the exception of step latency, were retained 24 h later. Improvements in forward-backward stepping did not generalize to lateral protective stepping. People with PD can improve protective stepping over the course of 1 day of perturbation practice. Improvements were generally similar to healthy adults, and were retained in both groups. Perturbation practice may represent a promising approach to improving protective postural responses in people with PD; however, additional research is needed to understand how to enhance generalization. PMID:27193311

  15. A Simple Postflight Measure of Postural Atania in Astronauts

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Harm, D. I.; Kofman, I. S.; Wood, S. J.; Bloomberg, J. J.

    2011-01-01

    Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior (AP) plane. The current investigation, as a part of a larger functional study, concentrated on characterizing postural instability using dynamic stabilographic sway patterns in both the AP and medial-lateral (ML) planes. To accomplish this goal, six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior and ML center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day postflight for both long-duration and short-duration crewmembers. Dynamic postural stability characteristics obtained in this low

  16. Longitudinal Study Evaluating Postural Balance of Young Athletes.

    PubMed

    Steinberg, Nili; Nemet, Dan; Pantanowitz, Michal; Zeev, Aviva; Hallumi, Monder; Sindiani, Mahmood; Meckel, Yoav; Eliakim, Alon

    2016-02-01

    Repeated anaerobic conditions during athletic performance may cause general and local fatigue that result in postural balance deficit. Evidence suggests that improved postural balance during athletic training may decrease the risk for fallings and traumatic injuries among athletes. Twenty athletes (12 girls, 8 boys) and 20 controls (12 girls, 8 boys) ages 10-15 years participated in the current study. All athletes were active in an 8-month physical activity program, 3 times per week for 90 min., specific to basketball, soccer, or athletic training. The control children participated in physical education at school only, with no involvement in organized extracurricular sports. All participants were evaluated for postural balance in three assessments over one year (at 4-mo intervals); the Interactive Balance System machine (Tetrax device) was used to assess balance at three test times (pre-, post-, and 10 min) after a session of a repeated sprint anaerobic test, consisting of 12 × 20 m run starting every 20 sec. The athletes had better postural balance than controls. There were different group patterns of change over the sessions; a significant interaction of session and group indicated that postural balance of the groups differed. The contribution of low sway frequencies (F1) and high sway frequencies (F6) differed between the controls and the athletes group. Results suggested that although athletes had better postural balance, improvement should be encouraged during training over the sessions and seasons, with special awareness of the balance deficit that occurs immediately after anaerobic stress and at the end of the season, to decrease the risk of injuries. PMID:27420320

  17. Longitudinal Study Evaluating Postural Balance of Young Athletes.

    PubMed

    Steinberg, Nili; Nemet, Dan; Pantanowitz, Michal; Zeev, Aviva; Hallumi, Monder; Sindiani, Mahmood; Meckel, Yoav; Eliakim, Alon

    2016-02-01

    Repeated anaerobic conditions during athletic performance may cause general and local fatigue that result in postural balance deficit. Evidence suggests that improved postural balance during athletic training may decrease the risk for fallings and traumatic injuries among athletes. Twenty athletes (12 girls, 8 boys) and 20 controls (12 girls, 8 boys) ages 10-15 years participated in the current study. All athletes were active in an 8-month physical activity program, 3 times per week for 90 min., specific to basketball, soccer, or athletic training. The control children participated in physical education at school only, with no involvement in organized extracurricular sports. All participants were evaluated for postural balance in three assessments over one year (at 4-mo intervals); the Interactive Balance System machine (Tetrax device) was used to assess balance at three test times (pre-, post-, and 10 min) after a session of a repeated sprint anaerobic test, consisting of 12 × 20 m run starting every 20 sec. The athletes had better postural balance than controls. There were different group patterns of change over the sessions; a significant interaction of session and group indicated that postural balance of the groups differed. The contribution of low sway frequencies (F1) and high sway frequencies (F6) differed between the controls and the athletes group. Results suggested that although athletes had better postural balance, improvement should be encouraged during training over the sessions and seasons, with special awareness of the balance deficit that occurs immediately after anaerobic stress and at the end of the season, to decrease the risk of injuries.

  18. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  19. Toxicological effects of aerial application of monocrotophos.

    PubMed

    Rao, R R; Quadros, F; Mazmudar, R M; Marathe, M R; Gangoli, S D

    1980-01-01

    Aerial application of the insecticide Nuvacron 40% (monocrotophos) had no significant effect on the cholinesterase level of plasma and erythrocytes of cattle, chicken, buffaloes, and human volunteers exposed to the spray. Contamination of canal water with the pesticide was completely eliminated within 24 hr, whereas that in the soil was reduced by 80% in 72 hr. The degradation of insecticide residue in grass was about 90% in seven days and in cotton leaves about 85% for the same period.

  20. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.