Science.gov

Sample records for aerial vlsa imagery

  1. Very large scale aerial (VLSA) imagery for assessing postfire bitterbrush recovery.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very large scale aerial (VLSA) imagery is an efficient tool for monitoring bare ground and cover on extensive rangelands. This study was conducted to determine whether VLSA images could be used to detect differences in antelope bitterbrush (Purshia tridentata Pursh DC) cover and density among simila...

  2. Agreement between measurements of shrub cover using ground-based methods and Very Large Scale Aerial (VLSA)imagery-measured shrub cover.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New sampling methods are needed for measuring rangeland cover that are more efficient than conventional methods. Very large scale aerial (VLSA) imagery has been suggested as a tool for improving cover sampling efficiency. Because of aircraft pitch and roll, camera misalignment, and errors in the n...

  3. A Method for Georeferencing Very-Large-Scale-Aerial (VLSA) Images in Sagebrush Steppe Communities.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VLSA imagery is captured with a digital camera, mounted on a light, piloted aircraft. VLSA images are high quality and have been used to measure cover of plant functional groups and some species, bare ground, litter, and rock, but the actual image location is known imprecisely (± 30 m). This impreci...

  4. Characterizing rangeland vegetation using Landsat and 1-mm VLSA data in central Wyoming (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an alternative to ground-cover data collection by conventional and expensive sampling techniques, we compared measurements obtained from very large scale aerial (VLSA) imagery for calibrating moderate resolution Landsat data. Using a grid-based sampling scheme, 162 VLSA images were acquired at 10...

  5. Monitoring spotted knapweed with very-large-scale-aerial imagery in sagebrush-dominated rangelands.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted knapweed (Centaurea stoebe L.) invades and destroys productive rangelands. Monitoring weed infestations across extensive and remote landscapes can be difficult and costly. We evaluated the efficacy of very-large-scale-aerial (VLSA) imagery for detection and quantification of spotted knapwee...

  6. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  7. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  8. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  9. Environmental applications utilizing digital aerial imagery

    SciTech Connect

    Monday, H.M.

    1995-06-01

    This paper discusses the use of satellite imagery, aerial photography, and computerized airborne imagery as applied to environmental mapping, analysis, and monitoring. A project conducted by the City of Irving, Texas involves compliance with national pollutant discharge elimination system (NPDES) requirements stipulated by the Environmental Protection Agency. The purpose of the project was the development and maintenance of a stormwater drainage utility. Digital imagery was collected for a portion of the city to map the City`s porous and impervious surfaces which will then be overlaid with property boundaries in the City`s existing Geographic information System (GIS). This information will allow the City to determine an equitable tax for each land parcel according to the amount of water each parcel is contributing to the stormwater system. Another project involves environmental compliance for warm water discharges created by utility companies. Environmental consultants are using digital airborne imagery to analyze thermal plume affects as well as monitoring power generation facilities. A third project involves wetland restoration. Due to freeway and other forms of construction, plus a major reduction of fresh water supplies, the Southern California coastal wetlands are being seriously threatened. These wetlands, rich spawning grounds for plant and animal life, are home to thousands of waterfowl and shore birds who use this habitat for nesting and feeding grounds. Under the leadership of Southern California Edison (SCE) and CALTRANS (California Department of Transportation), several wetland areas such as the San Dieguito Lagoon (Del Mar, California), the Sweetwater Marsh (San Diego, California), and the Tijuana Estuary (San Diego, California) are being restored and closely monitored using digital airborne imagery.

  10. Building and road detection from large aerial imagery

    NASA Astrophysics Data System (ADS)

    Saito, Shunta; Aoki, Yoshimitsu

    2015-02-01

    Building and road detection from aerial imagery has many applications in a wide range of areas including urban design, real-estate management, and disaster relief. The extracting buildings and roads from aerial imagery has been performed by human experts manually, so that it has been very costly and time-consuming process. Our goal is to develop a system for automatically detecting buildings and roads directly from aerial imagery. Many attempts at automatic aerial imagery interpretation have been proposed in remote sensing literature, but much of early works use local features to classify each pixel or segment to an object label, so that these kind of approach needs some prior knowledge on object appearance or class-conditional distribution of pixel values. Furthermore, some works also need a segmentation step as pre-processing. Therefore, we use Convolutional Neural Networks(CNN) to learn mapping from raw pixel values in aerial imagery to three object labels (buildings, roads, and others), in other words, we generate three-channel maps from raw aerial imagery input. We take a patch-based semantic segmentation approach, so we firstly divide large aerial imagery into small patches and then train the CNN with those patches and corresponding three-channel map patches. Finally, we evaluate our system on a large-scale road and building detection datasets that is publicly available.

  11. Texture mapping based on multiple aerial imageries in urban areas

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Ye, Siqi; Wang, Yuefeng; Han, Caiyun; Wang, Chenxi

    2015-12-01

    In the realistic 3D model reconstruction, the requirement of the texture is very high. Texture is one of the key factors that affecting realistic of the model and using texture mapping technology to realize. In this paper we present a practical approach of texture mapping based on photogrammetry theory from multiple aerial imageries in urban areas. By collinearity equation to matching the model and imageries, and in order to improving the quality of texture, we describe an automatic approach for select the optimal texture to realized 3D building from the aerial imageries of many strip. The texture of buildings can be automatically matching by the algorithm. The experimental results show that the platform of texture mapping process has a high degree of automation and improve the efficiency of the 3D modeling reconstruction.

  12. Acquisition and registration of aerial video imagery of urban traffic

    SciTech Connect

    Loveland, Rohan C

    2008-01-01

    The amount of information available about urban traffic from aerial video imagery is extremely high. Here we discuss the collection of such video imagery from a helicopter platform with a low-cost sensor, and the post-processing used to correct radial distortion in the data and register it. The radial distortion correction is accomplished using a Harris model. The registration is implemented in a two-step process, using a globally applied polyprojective correction model followed by a fine scale local displacement field adjustment. The resulting cleaned-up data is sufficiently well-registered to allow subsequent straight-forward vehicle tracking.

  13. Comparison of hyperspectral imagery with aerial photography and multispectral imagery for mapping broom snakeweed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rusby] is one of the most widespread and abundant rangeland weeds in western North America. The objectives of this study were to evaluate airborne hyperspectral imagery and compare it with aerial color-infrared (CIR) photography and multispe...

  14. Encoding and analyzing aerial imagery using geospatial semantic graphs

    SciTech Connect

    Watson, Jean-Paul; Strip, David R.; McLendon, William C.; Parekh, Ojas D.; Diegert, Carl F.; Martin, Shawn Bryan; Rintoul, Mark Daniel

    2014-02-01

    While collection capabilities have yielded an ever-increasing volume of aerial imagery, analytic techniques for identifying patterns in and extracting relevant information from this data have seriously lagged. The vast majority of imagery is never examined, due to a combination of the limited bandwidth of human analysts and limitations of existing analysis tools. In this report, we describe an alternative, novel approach to both encoding and analyzing aerial imagery, using the concept of a geospatial semantic graph. The advantages of our approach are twofold. First, intuitive templates can be easily specified in terms of the domain language in which an analyst converses. These templates can be used to automatically and efficiently search large graph databases, for specific patterns of interest. Second, unsupervised machine learning techniques can be applied to automatically identify patterns in the graph databases, exposing recurring motifs in imagery. We illustrate our approach using real-world data for Anne Arundel County, Maryland, and compare the performance of our approach to that of an expert human analyst.

  15. Building population mapping with aerial imagery and GIS data

    NASA Astrophysics Data System (ADS)

    Ural, Serkan; Hussain, Ejaz; Shan, Jie

    2011-12-01

    Geospatial distribution of population at a scale of individual buildings is needed for analysis of people's interaction with their local socio-economic and physical environments. High resolution aerial images are capable of capturing urban complexities and considered as a potential source for mapping urban features at this fine scale. This paper studies population mapping for individual buildings by using aerial imagery and other geographic data. Building footprints and heights are first determined from aerial images, digital terrain and surface models. City zoning maps allow the classification of the buildings as residential and non-residential. The use of additional ancillary geographic data further filters residential utility buildings out of the residential area and identifies houses and apartments. In the final step, census block population, which is publicly available from the U.S. Census, is disaggregated and mapped to individual residential buildings. This paper proposes a modified building population mapping model that takes into account the effects of different types of residential buildings. Detailed steps are described that lead to the identification of residential buildings from imagery and other GIS data layers. Estimated building populations are evaluated per census block with reference to the known census records. This paper presents and evaluates the results of building population mapping in areas of West Lafayette, Lafayette, and Wea Township, all in the state of Indiana, USA.

  16. Oblique Aerial Imagery for NMA - Some best Practices

    NASA Astrophysics Data System (ADS)

    Remondino, F.; Toschi, I.; Gerke, M.; Nex, F.; Holland, D.; McGill, A.; Talaya Lopez, J.; Magarinos, A.

    2016-06-01

    Oblique airborne photogrammetry is rapidly maturing and being offered by service providers as a good alternative or replacement of the more traditional vertical imagery and for very different applications (Fig.1). EuroSDR, representing European National Mapping Agencies (NMAs) and research organizations of most EU states, is following the development of oblique aerial cameras since 2013, when an ongoing activity was created to continuously update its members on the developments in this technology. Nowadays most European NMAs still rely on the traditional workflow based on vertical photography but changes are slowly taking place also at production level. Some NMAs have already run some tests internally to understand the potential for their needs whereas other agencies are discussing on the future role of this technology and how to possibly adapt their production pipelines. At the same time, some research institutions and academia demonstrated the potentialities of oblique aerial datasets to generate textured 3D city models or large building block models. The paper provides an overview of tests, best practices and considerations coming from the R&D community and from three European NMAs concerning the use of oblique aerial imagery.

  17. High resolution channel geometry from repeat aerial imagery

    NASA Astrophysics Data System (ADS)

    King, T.; Neilson, B. T.; Jensen, A.; Torres-Rua, A. F.; Winkelaar, M.; Rasmussen, M. T.

    2015-12-01

    River channel cross sectional geometry is a key attribute for controlling the river energy balances where surface heat fluxes dominate and discharge varies significantly over short time periods throughout the open water season. These dynamics are seen in higher gradient portions of Arctic rivers where surface heat fluxes can dominates river energy balances and low hillslope storage produce rapidly varying hydrographs. Additionally, arctic river geometry can be highly dynamic in the face of thermal erosion of permafrost landscape. While direct in-situ measurements of channel cross sectional geometry are accurate, they are limited in spatial resolution and coverage, and can be access limited in remote areas. Remote sensing can help gather data at high spatial resolutions and large areas, however techniques for extracting channel geometry is often limited to the banks and flood plains adjacent to river, as the water column inhibits sensing of the river bed itself. Green light LiDAR can be used to map bathymetry, however this is expensive, difficult to obtain at large spatial scales, and dependent on water quality. Alternatively, 3D photogrammetry from aerial imagery can be used to analyze the non-wetted portion of the river channel, but extracting full cross sections requires extrapolation into the wetted portion of the river. To bridge these gaps, an approach for using repeat aerial imagery surveys with visual (RGB) and near infrared (NIR) to extract high resolution channel geometry for the Kuparuk River in the Alaskan Arctic was developed. Aerial imagery surveys were conducted under multiple flow conditions and water surface geometry (elevation and width) were extracted through photogrammetry. Channel geometry was extracted by combining water surface widths and elevations from multiple flights. The accuracy of these results were compared against field surveyed cross sections at many locations throughout the study reach and a digital elevation model created under

  18. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  19. Three-dimensional panoramic terrain reconstruction from aerial imagery

    NASA Astrophysics Data System (ADS)

    Yang, Ahua; Li, Xuejun; Xie, Jianwei; Wei, Yong

    2013-01-01

    A complete solution for effectively, automatically, and accurately reconstructing the three-dimensional (3-D) panoramic terrain from aerial imagery is presented. With enough premeasured and identified georeferences, we first estimate every camera's accurate intrinsic and extrinsic parameters by implementing bundle adjustment, which is introduced in detail. Afterward, the adjacent relationship of imagery is acquired from the cameras' position parameters. In addition, the formulas for corresponding area prediction and image rectification are derived according to the camera parameters. Subsequently, feature-based matching is conducted between adjacent image pairs to provide much more constraints for bundle adjustment. Area-based matching is applied to pairs of horizontal epipolar imagery for dense correspondence to produce dense spatial point cloud. Eventually, the mosaicked digital ortho map and digital elevation model of the whole imaging area are produced automatically by a series of steps including spatial intersection, Tin generation, differential correction, and color blending. Experimental results show that the root mean square (RMS) residual errors of check points in planimetry and altitude are, respectively, 0.039 and 0.170 m, demonstrating the high accuracy of camera orientation. The visualized panoramic 3-D realistic scene validates the feasibility and effectiveness of the proposed solution.

  20. Robust vehicle detection in low-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sahli, Samir; Ouyang, Yueh; Sheng, Yunlong; Lavigne, Daniel A.

    2010-04-01

    We propose a feature-based approach for vehicle detection in aerial imagery with 11.2 cm/pixel resolution. The approach is free of all constraints related to the vehicles appearance. The scale-invariant feature transform (SIFT) is used to extract keypoints in the image. The local structure in the neighbouring of the SIFT keypoints is described by 128 gradient orientation based features. A Support Vector Machine is used to create a model which is able to predict if the SIFT keypoints belong to or not to car structures in the image. The collection of SIFT keypoints with car label are clustered in the geometric space into subsets and each subset is associated to one car. This clustering is based on the Affinity Propagation algorithm modified to take into account specific spatial constraint related to geometry of cars at the given resolution.

  1. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Kamiya, K.; Fuse, T.; Takahashi, M.

    2016-06-01

    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  2. First results for an image processing workflow for hyperspatial imagery acquired with a low-cost unmanned aerial vehicle (UAV).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very high-resolution images from unmanned aerial vehicles (UAVs) have great potential for use in rangeland monitoring and assessment, because the imagery fills the gap between ground-based observations and remotely sensed imagery from aerial or satellite sensors. However, because UAV imagery is ofte...

  3. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imagery acquired with unmanned aerial vehicles (UAVs) has great potential for incorporation into natural resource monitoring protocols due to their ability to be deployed quickly and repeatedly and to fly at low altitudes. While the imagery may have high spatial resolution, the spectral resolution i...

  4. Analysis of aerial multispectral imagery to assess water quality parameters of Mississippi water bodies

    NASA Astrophysics Data System (ADS)

    Irvin, Shane Adison

    The goal of this study was to demonstrate the application of aerial imagery as a tool in detecting water quality indicators in a three mile segment of Tibbee Creek in, Clay County, Mississippi. Water samples from 10 transects were collected per sampling date over two periods in 2010 and 2011. Temperature and dissolved oxygen (DO) were measured at each point, and water samples were tested for turbidity and total suspended solids (TSS). Relative reflectance was extracted from high resolution (0.5 meter) multispectral aerial images. A regression model was developed for turbidity and TSS as a function of values for specific sampling dates. The best model was used to predict turbidity and TSS using datasets outside the original model date. The development of an appropriate predictive model for water quality assessment based on the relative reflectance of aerial imagery is affected by the quality of imagery and time of sampling.

  5. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we examine the potential of using a small unmanned aerial vehicle (UAV) for rangeland inventory, assessment and monitoring. Imagery with 8-cm resolution was acquired over 290 ha in southwestern Idaho. We developed a semi-automated orthorectification procedure suitable for handling lar...

  6. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery

    PubMed Central

    Rivas Casado, Monica; Ballesteros Gonzalez, Rocio; Kriechbaumer, Thomas; Veal, Amanda

    2015-01-01

    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management. PMID:26556355

  7. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.

    PubMed

    Casado, Monica Rivas; Gonzalez, Rocio Ballesteros; Kriechbaumer, Thomas; Veal, Amanda

    2015-01-01

    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management. PMID:26556355

  8. Automatic Extraction of Building Outline from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Wang, Yandong

    2016-06-01

    In this paper, a new approach for automated extraction of building boundary from high resolution imagery is proposed. The proposed approach uses both geometric and spectral properties of a building to detect and locate buildings accurately. It consists of automatic generation of high quality point cloud from the imagery, building detection from point cloud, classification of building roof and generation of building outline. Point cloud is generated from the imagery automatically using semi-global image matching technology. Buildings are detected from the differential surface generated from the point cloud. Further classification of building roof is performed in order to generate accurate building outline. Finally classified building roof is converted into vector format. Numerous tests have been done on images in different locations and results are presented in the paper.

  9. Supervised Material Classification in Oblique Aerial Imagery Using Gabor Filter Features

    NASA Astrophysics Data System (ADS)

    Harris, Michael L.

    RIT's Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool allows modeling of real world scenes to create synthetic imagery for sensor design and analysis, trade studies, algorithm validation, and training image analysts. To increase model construction speed, and the diversity and size of synthetic scenes which can be generated it is desirable to automatically segment real world imagery into different material types and import a material classmap into DIRSIG. This work contributes a methodology based on standard texture recognition techniques to supervised classification of material types in oblique aerial imagery. Oblique imagery provides many challenges for texture recognition due to illumination changes with view angle, projective distortions, occlusions and self shadowing. It is shown that features derived from a set of rotationally invariant bandpass filters fused with color channel information can provide supervised classification accuracies up to 70% with minimal training data.

  10. Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Hayden, David; Thompson, David R.; Castano, Rebecca

    2013-01-01

    Many current and future NASA missions are capable of collecting enormous amounts of data, of which only a small portion can be transmitted to Earth. Communications are limited due to distance, visibility constraints, and competing mission downlinks. Long missions and high-resolution, multispectral imaging devices easily produce data exceeding the available bandwidth. To address this situation computationally efficient algorithms were developed for analyzing science imagery onboard the spacecraft. These algorithms autonomously cluster the data into classes of similar imagery, enabling selective downlink of representatives of each class, and a map classifying the terrain imaged rather than the full dataset, reducing the volume of the downlinked data. A range of approaches was examined, including k-means clustering using image features based on color, texture, temporal, and spatial arrangement

  11. Evaluation of unmanned aerial vehicle (UAV) imagery to model vegetation heights in Hulun Buir grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, D.; Xin, X.; Li, Z.

    2015-12-01

    Vertical vegetation structure in grassland ecosystem is needed to assess grassland health and monitor available forage for livestock and wildlife habitat. Traditional ground-based field methods for measuring vegetation heights are time consuming. Most emerging airborne remote sensing techniques capable of measuring surface and vegetation height (e.g., LIDAR) are too expensive to apply at broad scales. Aerial or spaceborne stereo imagery has the cost advantage for mapping height of tall vegetation, such as forest. However, the accuracy and uncertainty of using stereo imagery for modeling heights of short vegetation, such as grass (generally lower than 50cm) needs to be investigated. In this study, 2.5-cm resolution UAV stereo imagery are used to model vegetation heights in Hulun Buir grassland ecosystem. Strong correlations were observed (r > 0.9) between vegetation heights derived from UAV stereo imagery and those field-measured ones at individual and plot level. However, vegetation heights tended to be underestimated in the imagery especially for those areas with high vegetation coverage. The strong correlations between field-collected vegetation heights and metrics derived from UAV stereo imagery suggest that UAV stereo imagery can be used to estimate short vegetation heights such as those in grassland ecosystem. Future work will be needed to verify the extensibility of the methods to other sites and vegetation types.

  12. Exterior Orientation Estimation of Oblique Aerial Imagery Using Vanishing Points

    NASA Astrophysics Data System (ADS)

    Verykokou, Styliani; Ioannidis, Charalabos

    2016-06-01

    In this paper, a methodology for the calculation of rough exterior orientation (EO) parameters of multiple large-scale overlapping oblique aerial images, in the case that GPS/INS information is not available (e.g., for old datasets), is presented. It consists of five main steps; (a) the determination of the overlapping image pairs and the single image in which four ground control points have to be measured; (b) the computation of the transformation parameters from every image to the coordinate reference system; (c) the rough estimation of the camera interior orientation parameters; (d) the estimation of the true horizon line and the nadir point of each image; (e) the calculation of the rough EO parameters of each image. A developed software suite implementing the proposed methodology is tested using a set of UAV multi-perspective oblique aerial images. Several tests are performed for the assessment of the errors and show that the estimated EO parameters can be used either as initial approximations for a bundle adjustment procedure or as rough georeferencing information for several applications, like 3D modelling, even by non-photogrammetrists, because of the minimal user intervention needed. Finally, comparisons with a commercial software are made, in terms of automation and correctness of the computed EO parameters.

  13. Analysis and Exploitation of Automatically Generated Scene Structure from Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Nilosek, David R.

    The recent advancements made in the field of computer vision, along with the ever increasing rate of computational power has opened up opportunities in the field of automated photogrammetry. Many researchers have focused on using these powerful computer vision algorithms to extract three-dimensional point clouds of scenes from multi-view imagery, with the ultimate goal of creating a photo-realistic scene model. However, geographically accurate three-dimensional scene models have the potential to be exploited for much more than just visualization. This work looks at utilizing automatically generated scene structure from near-nadir aerial imagery to identify and classify objects within the structure, through the analysis of spatial-spectral information. The limitation to this type of imagery is imposed due to the common availability of this type of aerial imagery. Popular third-party computer-vision algorithms are used to generate the scene structure. A voxel-based approach for surface estimation is developed using Manhattan-world assumptions. A surface estimation confidence metric is also presented. This approach provides the basis for further analysis of surface materials, incorporating spectral information. Two cases of spectral analysis are examined: when additional hyperspectral imagery of the reconstructed scene is available, and when only R,G,B spectral information can be obtained. A method for registering the surface estimation to hyperspectral imagery, through orthorectification, is developed. Atmospherically corrected hyperspectral imagery is used to assign reflectance values to estimated surface facets for physical simulation with DIRSIG. A spatial-spectral region growing-based segmentation algorithm is developed for the R,G,B limited case, in order to identify possible materials for user attribution. Finally, an analysis of the geographic accuracy of automatically generated three-dimensional structure is performed. An end-to-end, semi-automated, workflow

  14. Accuracy Comparison of Digital Surface Models Created by Unmanned Aerial Systems Imagery and Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Naumann, M.; Geist, M.; Bill, R.; Niemeyer, F.; Grenzdörffer, G.

    2013-08-01

    The main focus of the paper is a comparative study in which we have investigated, whether automatically generated digital surface models (DSM) obtained from unmanned aerial systems (UAS) imagery are comparable with DSM obtained from terrestrial laser scanning (TLS). The research is conducted at a pilot dike for coastal engineering. The effort and the achievable accuracy of both DSMs are compared. The error budgets of these two methods are investigated and the models obtained in each case compared against each other.

  15. Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Khodaee, Z.

    2013-09-01

    Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.

  16. A procedure for orthorectification of sub-decimeter resolution imagery obtained with an unmanned aerial vehicle (UAV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital aerial photography acquired with unmanned aerial vehicles (UAVs) has great value for resource management due to the flexibility and relatively low cost for image acquisition, and very high resolution imagery (5 cm) which allows for mapping bare soil and vegetation types, structure and patter...

  17. Automatic georeferencing of imagery from high-resolution, low-altitude, low-cost aerial platforms

    NASA Astrophysics Data System (ADS)

    Geniviva, Amanda; Faulring, Jason; Salvaggio, Carl

    2014-06-01

    Existing nadir-viewing aerial image databases such as that available on Google Earth contain data from a variety of sources at varying spatial resolutions. Low-cost, low-altitude, high-resolution aerial systems such as unmanned aerial vehicles and balloon- borne systems can provide ancillary data sets providing higher resolution, oblique­ looking data to enhance the data available to the user. This imagery is difficult to georeference due to the different projective geometry present in these data. Even if this data is accompanied by metadata from global positioning system (GPS) and inertial measurement unit (IMU) sensors, the accuracy obtained from low-cost versions of these sensors is limited. Combining automatic image registration techniques with the information provided by the IMU and onboard GPS, it is possible to improve the positioning accuracy of these oblique data sets on the ground plane using existing orthorectified imagery available from sources such as Google Earth. Using both the affine scale-invariant feature transform (ASIFT) and maximally stable extremal regions (MSER), feature detectors aid in automatically detecting correspondences between the obliquely collected images and the base map. These correspondences are used to georeference the high-resolution, oblique image data collected from these low-cost aerial platforms providing the user with an enhanced visualization experience.

  18. Unmanned Aerial Vehicles Produce High-Resolution Seasonally-Relevant Imagery for Classifying Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Marcaccio, J. V.; Markle, C. E.; Chow-Fraser, P.

    2015-08-01

    With recent advances in technology, personal aerial imagery acquired with unmanned aerial vehicles (UAVs) has transformed the way ecologists can map seasonal changes in wetland habitat. Here, we use a multi-rotor (consumer quad-copter, the DJI Phantom 2 Vision+) UAV to acquire a high-resolution (< 8 cm) composite photo of a coastal wetland in summer 2014. Using validation data collected in the field, we determine if a UAV image and SWOOP (Southwestern Ontario Orthoimagery Project) image (collected in spring 2010) differ in their classification of type of dominant vegetation type and percent cover of three plant classes: submerged aquatic vegetation, floating aquatic vegetation, and emergent vegetation. The UAV imagery was more accurate than available SWOOP imagery for mapping percent cover of submergent and floating vegetation categories, but both were able to accurately determine the dominant vegetation type and percent cover of emergent vegetation. Our results underscore the value and potential for affordable UAVs (complete quad-copter system < 3,000 CAD) to revolutionize the way ecologists obtain imagery and conduct field research. In Canada, new UAV regulations make this an easy and affordable way to obtain multiple high-resolution images of small (< 1.0 km2) wetlands, or portions of larger wetlands throughout a year.

  19. Vectorization of Road Data Extracted from Aerial and Uav Imagery

    NASA Astrophysics Data System (ADS)

    Bulatov, Dimitri; Häufel, Gisela; Pohl, Melanie

    2016-06-01

    Road databases are essential instances of urban infrastructure. Therefore, automatic road detection from sensor data has been an important research activity during many decades. Given aerial images in a sufficient resolution, dense 3D reconstruction can be performed. Starting at a classification result of road pixels from combined elevation and optical data, we present in this paper a fivestep procedure for creating vectorized road networks. These main steps of the algorithm are: preprocessing, thinning, polygonization, filtering, and generalization. In particular, for the generalization step, which represents the principal area of innovation, two strategies are presented. The first strategy corresponds to a modification of the Douglas-Peucker-algorithm in order to reduce the number of vertices while the second strategy allows a smoother representation of street windings by Bezir curves, which results in reduction - to a decimal power - of the total curvature defined for the dataset. We tested our approach on three datasets with different complexity. The quantitative assessment of the results was performed by means of shapefiles from OpenStreetMap data. For a threshold of 6 m, completeness and correctness values of up to 85% were achieved.

  20. Challenges in collecting hyperspectral imagery of coastal waters using Unmanned Aerial Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    English, D. C.; Herwitz, S.; Hu, C.; Carlson, P. R., Jr.; Muller-Karger, F. E.; Yates, K. K.; Ramsewak, D.

    2013-12-01

    Airborne multi-band remote sensing is an important tool for many aquatic applications; and the increased spectral information from hyperspectral sensors may increase the utility of coastal surveys. Recent technological advances allow Unmanned Aerial Vehicles (UAVs) to be used as alternatives or complements to manned aircraft or in situ observing platforms, and promise significant advantages for field studies. These include the ability to conduct programmed flight plans, prolonged and coordinated surveys, and agile flight operations under difficult conditions such as measurements made at low altitudes. Hyperspectral imagery collected from UAVs should allow the increased differentiation of water column or shallow benthic communities at relatively small spatial scales. However, the analysis of hyperspectral imagery from airborne platforms over shallow coastal waters differs from that used for terrestrial or oligotrophic ocean color imagery, and the operational constraints and considerations for the collection of such imagery from autonomous platforms also differ from terrestrial surveys using manned aircraft. Multispectral and hyperspectral imagery of shallow seagrass and coral environments in the Florida Keys were collected with various sensor systems mounted on manned and unmanned aircrafts in May 2012, October 2012, and May 2013. The imaging systems deployed on UAVs included NovaSol's Selectable Hyperspectral Airborne Remote-sensing Kit (SHARK), a Tetracam multispectral imaging system, and the Sunflower hyperspectal imager from Galileo Group, Inc. The UAVs carrying these systems were Xtreme Aerial Concepts' Vision-II Rotorcraft UAV, MLB Company's Bat-4 UAV, and NASA's SIERRA UAV, respectively. Additionally, the Galileo Group's manned aircraft also surveyed the areas with their AISA Eagle hyperspectral imaging system. For both manned and autonomous flights, cloud cover and sun glint (solar and viewing angles) were dominant constraints on retrieval of quantitatively

  1. Detecting blind building façades from highly overlapping wide angle aerial imagery

    NASA Astrophysics Data System (ADS)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  2. L-shaped corner detector for rooftop extraction from satellite/aerial imagery

    NASA Astrophysics Data System (ADS)

    Tan, Hui Li; Fan, Jiayuan; Lu, Shijian

    2015-10-01

    Rooftop extraction from satellite/aerial imagery is an important geospatial problem with many practical applications. However, rooftop extraction remains a challenging problem due to the diverse characteristics and appearances of the buildings, as well as the quality of the satellite/aerial images. Many existing rooftop extraction methods use rooftop corners as a basic component. Nonetheless, existing rooftop corner detectors either suffer from high missed detection or introduce high false alarm. Based on the observation that rooftop corners are typically of L-shape, we propose an L-shaped corner detector for automatic rooftop extraction from high resolution satellite/aerial imagery. The proposed detector considers information in a spatial circle around each pixel to construct a feature map which captures the probability of L-shaped corner at every pixel. Our experimental results on a rooftop database of over 200 buildings demonstrate its effectiveness for detecting rooftop corners. Furthermore, our proposed detector is complementary to many existing rooftop extraction approaches which require reliable rooftop corners as their inputs. For instance, it can be used in the quadrilateral footprint extraction methods or in driving level-set-based segmentation techniques.

  3. EROS main image file - A picture perfect database for Landsat imagery and aerial photography

    NASA Technical Reports Server (NTRS)

    Jack, R. F.

    1984-01-01

    The Earth Resources Observation System (EROS) Program was established by the U.S. Department of the Interior in 1966 under the administration of the Geological Survey. It is primarily concerned with the application of remote sensing techniques for the management of natural resources. The retrieval system employed to search the EROS database is called INORAC (Inquiry, Ordering, and Accounting). A description is given of the types of images identified in EROS, taking into account Landsat imagery, Skylab images, Gemini/Apollo photography, and NASA aerial photography. Attention is given to retrieval commands, geographic coordinate searching, refinement techniques, various online functions, and questions regarding the access to the EROS Main Image File.

  4. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    SciTech Connect

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-04-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico.

  5. Estimation of walrus populations on sea ice with infrared imagery and aerial photography

    USGS Publications Warehouse

    Udevitz, M.S.; Burn, D.M.; Webber, M.A.

    2008-01-01

    Population sizes of ice-associated pinnipeds have often been estimated with visual or photographic aerial surveys, but these methods require relatively slow speeds and low altitudes, limiting the area they can cover. Recent developments in infrared imagery and its integration with digital photography could allow substantially larger areas to be surveyed and more accurate enumeration of individuals, thereby solving major problems with previous survey methods. We conducted a trial survey in April 2003 to estimate the number of Pacific walruses (Odobenus rosmarus divergens) hauled out on sea ice around St. Lawrence Island, Alaska. The survey used high altitude infrared imagery to detect groups of walruses on strip transects. Low altitude digital photography was used to determine the number of walruses in a sample of detected groups and calibrate the infrared imagery for estimating the total number of walruses. We propose a survey design incorporating this approach with satellite radio telemetry to estimate the proportion of the population in the water and additional low-level flights to estimate the proportion of the hauled-out population in groups too small to be detected in the infrared imagery. We believe that this approach offers the potential for obtaining reliable population estimates for walruses and other ice-associated pinnipeds. ?? 2007 by the Society for Marine Mammalogy.

  6. A Semi-Automated Single Day Image Differencing Technique to Identify Animals in Aerial Imagery

    PubMed Central

    Terletzky, Pat; Ramsey, Robert Douglas

    2014-01-01

    Our research presents a proof-of-concept that explores a new and innovative method to identify large animals in aerial imagery with single day image differencing. We acquired two aerial images of eight fenced pastures and conducted a principal component analysis of each image. We then subtracted the first principal component of the two pasture images followed by heuristic thresholding to generate polygons. The number of polygons represented the number of potential cattle (Bos taurus) and horses (Equus caballus) in the pasture. The process was considered semi-automated because we were not able to automate the identification of spatial or spectral thresholding values. Imagery was acquired concurrently with ground counts of animal numbers. Across the eight pastures, 82% of the animals were correctly identified, mean percent commission was 53%, and mean percent omission was 18%. The high commission error was due to small mis-alignments generated from image-to-image registration, misidentified shadows, and grouping behavior of animals. The high probability of correctly identifying animals suggests short time interval image differencing could provide a new technique to enumerate wild ungulates occupying grassland ecosystems, especially in isolated or difficult to access areas. To our knowledge, this was the first attempt to use standard change detection techniques to identify and enumerate large ungulates. PMID:24454827

  7. Fusion of monocular cues to detect man-made structures in aerial imagery

    NASA Technical Reports Server (NTRS)

    Shufelt, Jefferey; Mckeown, David M.

    1991-01-01

    The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods.

  8. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    NASA Astrophysics Data System (ADS)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  9. Influence of Gsd for 3d City Modeling and Visualization from Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Alam, Zafare; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Ministry of Municipal and Rural Affairs (MOMRA), aims to establish solid infrastructure required for 3D city modelling, for decision making to set a mark in urban development. MOMRA is responsible for the large scale mapping 1:1,000; 1:2,500; 1:10,000 and 1:20,000 scales for 10cm, 20cm and 40 GSD with Aerial Triangulation data. As 3D city models are increasingly used for the presentation exploration, and evaluation of urban and architectural designs. Visualization capabilities and animations support of upcoming 3D geo-information technologies empower architects, urban planners, and authorities to visualize and analyze urban and architectural designs in the context of the existing situation. To make use of this possibility, first of all 3D city model has to be created for which MOMRA uses the Aerial Triangulation data and aerial imagery. The main concise for 3D city modelling in the Kingdom of Saudi Arabia exists due to uneven surface and undulations. Thus real time 3D visualization and interactive exploration support planning processes by providing multiple stakeholders such as decision maker, architects, urban planners, authorities, citizens or investors with a three - dimensional model. Apart from advanced visualization, these 3D city models can be helpful for dealing with natural hazards and provide various possibilities to deal with exotic conditions by better and advanced viewing technological infrastructure. Riyadh on one side is 5700m above sea level and on the other hand Abha city is 2300m, this uneven terrain represents a drastic change of surface in the Kingdom, for which 3D city models provide valuable solutions with all possible opportunities. In this research paper: influence of different GSD (Ground Sample Distance) aerial imagery with Aerial Triangulation is used for 3D visualization in different region of the Kingdom, to check which scale is more sophisticated for obtaining better results and is cost manageable, with GSD (7.5cm, 10cm, 20cm and 40cm

  10. Assessment of the Quality of Digital Terrain Model Produced from Unmanned Aerial System Imagery

    NASA Astrophysics Data System (ADS)

    Kosmatin Fras, M.; Kerin, A.; Mesarič, M.; Peterman, V.; Grigillo, D.

    2016-06-01

    Production of digital terrain model (DTM) is one of the most usual tasks when processing photogrammetric point cloud generated from Unmanned Aerial System (UAS) imagery. The quality of the DTM produced in this way depends on different factors: the quality of imagery, image orientation and camera calibration, point cloud filtering, interpolation methods etc. However, the assessment of the real quality of DTM is very important for its further use and applications. In this paper we first describe the main steps of UAS imagery acquisition and processing based on practical test field survey and data. The main focus of this paper is to present the approach to DTM quality assessment and to give a practical example on the test field data. For data processing and DTM quality assessment presented in this paper mainly the in-house developed computer programs have been used. The quality of DTM comprises its accuracy, density, and completeness. Different accuracy measures like RMSE, median, normalized median absolute deviation and their confidence interval, quantiles are computed. The completeness of the DTM is very often overlooked quality parameter, but when DTM is produced from the point cloud this should not be neglected as some areas might be very sparsely covered by points. The original density is presented with density plot or map. The completeness is presented by the map of point density and the map of distances between grid points and terrain points. The results in the test area show great potential of the DTM produced from UAS imagery, in the sense of detailed representation of the terrain as well as good height accuracy.

  11. Unsupervised building detection from irregularly spaced LiDAR and aerial imagery

    NASA Astrophysics Data System (ADS)

    Shorter, Nicholas Sven

    As more data sources containing 3-D information are becoming available, an increased interest in 3-D imaging has emerged. Among these is the 3-D reconstruction of buildings and other man-made structures. A necessary preprocessing step is the detection and isolation of individual buildings that subsequently can be reconstructed in 3-D using various methodologies. Applications for both building detection and reconstruction have commercial use for urban planning, network planning for mobile communication (cell phone tower placement), spatial analysis of air pollution and noise nuisances, microclimate investigations, geographical information systems, security services and change detection from areas affected by natural disasters. Building detection and reconstruction are also used in the military for automatic target recognition and in entertainment for virtual tourism. Previously proposed building detection and reconstruction algorithms solely utilized aerial imagery. With the advent of Light Detection and Ranging (LiDAR) systems providing elevation data, current algorithms explore using captured LiDAR data as an additional feasible source of information. Additional sources of information can lead to automating techniques (alleviating their need for manual user intervention) as well as increasing their capabilities and accuracy. Several building detection approaches surveyed in the open literature have fundamental weaknesses that hinder their use; such as requiring multiple data sets from different sensors, mandating certain operations to be carried out manually, and limited functionality to only being able to detect certain types of buildings. In this work, a building detection system is proposed and implemented which strives to overcome the limitations seen in existing techniques. The developed framework is flexible in that it can perform building detection from just LiDAR data (first or last return), or just nadir, color aerial imagery. If data from both LiDAR and

  12. Identification of wild areas in southern lower Michigan. [terrain analysis from aerial photography, and satellite imagery

    NASA Technical Reports Server (NTRS)

    Habowski, S.; Cialek, C.

    1978-01-01

    An inventory methodology was developed to identify potential wild area sites. A list of site criteria were formulated and tested in six selected counties. Potential sites were initially identified from LANDSAT satellite imagery. A detailed study of the soil, vegetation and relief characteristics of each site based on both high-altitude aerial photographs and existing map data was conducted to eliminate unsuitable sites. Ground reconnaissance of the remaining wild areas was made to verify suitability and acquire information on wildlife and general aesthetics. Physical characteristics of the wild areas in each county are presented in tables. Maps show the potential sites to be set aside for natural preservation and regulation by the state under the Wilderness and Natural Areas Act of 1972.

  13. Extracting Semantically Annotated 3d Building Models with Textures from Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.; Poznanska, A.

    2015-03-01

    This paper proposes a method for the reconstruction of city buildings with automatically derived textures that can be directly used for façade element classification. Oblique and nadir aerial imagery recorded by a multi-head camera system is transformed into dense 3D point clouds and evaluated statistically in order to extract the hull of the structures. For the resulting wall, roof and ground surfaces high-resolution polygonal texture patches are calculated and compactly arranged in a texture atlas without resampling. The façade textures subsequently get analyzed by a commercial software package to detect possible windows whose contours are projected into the original oriented source images and sparsely ray-casted to obtain their 3D world coordinates. With the windows being reintegrated into the previously extracted hull the final building models are stored as semantically annotated CityGML "LOD-2.5" objects.

  14. Automatic registration of optical aerial imagery to a LiDAR point cloud for generation of city models

    NASA Astrophysics Data System (ADS)

    Abayowa, Bernard O.; Yilmaz, Alper; Hardie, Russell C.

    2015-08-01

    This paper presents a framework for automatic registration of both the optical and 3D structural information extracted from oblique aerial imagery to a Light Detection and Ranging (LiDAR) point cloud without prior knowledge of an initial alignment. The framework employs a coarse to fine strategy in the estimation of the registration parameters. First, a dense 3D point cloud and the associated relative camera parameters are extracted from the optical aerial imagery using a state-of-the-art 3D reconstruction algorithm. Next, a digital surface model (DSM) is generated from both the LiDAR and the optical imagery-derived point clouds. Coarse registration parameters are then computed from salient features extracted from the LiDAR and optical imagery-derived DSMs. The registration parameters are further refined using the iterative closest point (ICP) algorithm to minimize global error between the registered point clouds. The novelty of the proposed approach is in the computation of salient features from the DSMs, and the selection of matching salient features using geometric invariants coupled with Normalized Cross Correlation (NCC) match validation. The feature extraction and matching process enables the automatic estimation of the coarse registration parameters required for initializing the fine registration process. The registration framework is tested on a simulated scene and aerial datasets acquired in real urban environments. Results demonstrates the robustness of the framework for registering optical and 3D structural information extracted from aerial imagery to a LiDAR point cloud, when co-existing initial registration parameters are unavailable.

  15. The Photo-Mosaic Assistant: Incorporating Historic Aerial Imagery into Modern Research Projects

    NASA Astrophysics Data System (ADS)

    Flathers, E.

    2013-12-01

    One challenge that researchers face as data organization and analysis shift into the digital realm is the incorporation of 'dirty' data from analog back-catalogs into current projects. Geospatial data collections in university libraries, government data repositories, and private industry contain historic data such as aerial photographs that may be stored as negatives, prints, and as scanned digital image files. A typical aerial imagery series is created by taking photos of the ground from an aircraft along a series of parallel flight lines. The raw photos can be assembled into a mosaic that represents the full geographic area of the collection, but each photo suffers from individual distortion according to the attitude and altitude of the collecting aircraft at the moment of acquisition, so there is a process of orthorectification needed in order to produce a planimetric composite image that can be used to accurately refer to locations on the ground. Historic aerial photo collections often need significant preparation for consumption by a GIS: they may need to be digitized, often lack any explicit spatial coordinates, and may not include information about flight line patterns. Many collections lack even such basic information as index numbers for the photos, so it may be unclear in what order the photos were acquired. When collections contain large areas of, for example, forest or agricultural land, any given photo may have few visual cues to assist in relating it to the other photos or to an area on the ground. The Photo-Mosaic Assistant (PMA) is a collection of tools designed to assist in the organization of historic aerial photo collections and the preparation of collections for orthorectification and use in modern research applications. The first tool is a light table application that allows a user to take advantage of visual cues within photos to organize and explore the collection, potentially building a rough image mosaic by hand. The second tool is a set of

  16. Forest and land inventory using ERTS imagery and aerial photography in the boreal forest region of Alberta, Canada

    NASA Technical Reports Server (NTRS)

    Kirby, C. L.

    1974-01-01

    Satellite imagery and small-scale (1:120,000) infrared ektachrome aerial photography for the development of improved forest and land inventory techniques in the boreal forest region are presented to demonstrate spectral signatures and their application. The forest is predominately mixed, stands of white spruce and poplar, with some pure stands of black spruce, pine and large areas of poorly drained land with peat and sedge type muskegs. This work is part of coordinated program to evaluate ERTS imagery by the Canadian Forestry Service.

  17. Outlier and target detection in aerial hyperspectral imagery: a comparison of traditional and percentage occupancy hit or miss transform techniques

    NASA Astrophysics Data System (ADS)

    Young, Andrew; Marshall, Stephen; Gray, Alison

    2016-05-01

    The use of aerial hyperspectral imagery for the purpose of remote sensing is a rapidly growing research area. Currently, targets are generally detected by looking for distinct spectral features of the objects under surveillance. For example, a camouflaged vehicle, deliberately designed to blend into background trees and grass in the visible spectrum, can be revealed using spectral features in the near-infrared spectrum. This work aims to develop improved target detection methods, using a two-stage approach, firstly by development of a physics-based atmospheric correction algorithm to convert radiance into re ectance hyperspectral image data and secondly by use of improved outlier detection techniques. In this paper the use of the Percentage Occupancy Hit or Miss Transform is explored to provide an automated method for target detection in aerial hyperspectral imagery.

  18. Geomorphological relationships through the use of 2-D seismic reflection data, Lidar, and aerial imagery

    NASA Astrophysics Data System (ADS)

    Alesce, Meghan Elizabeth

    Barrier Islands are crucial in protecting coastal environments. This study focuses on Dauphin Island, Alabama, located within the Northern Gulf of Mexico (NGOM) Barrier Island complex. It is one of many islands serving as natural protection for NGOM ecosystems and coastal cities. The NGOM barrier islands formed at 4 kya in response to a decrease in rate of sea level rise. The morphology of these islands changes with hurricanes, anthropogenic activity, and tidal and wave action. This study focuses on ancient incised valleys and and the impact on island morphology on hurricane breaches. Using high frequency 2-D seismic reflection data four horizons, including the present seafloor, were interpreted. Subaerial portions of Dauphin Island were imaged using Lidar data and aerial imagery over a ten-year time span, as well as historical maps. Historical shorelines of Dauphin Island were extracted from aerial imagery and historical maps, and were compared to the location of incised valleys seen within the 2-D seismic reflection data. Erosion and deposition volumes of Dauphin Island from 1998 to 2010 (the time span covering hurricanes Ivan and Katrina) in the vicinity of Katrina Cut and Pelican Island were quantified using Lidar data. For the time period prior to Hurricane Ivan an erosional volume of 46,382,552 m3 and depositional volume of 16,113.6 m3 were quantified from Lidar data. The effects of Hurricane Ivan produced a total erosion volume of 4,076,041.5 m3. The erosional and depositional volumes of Katrina Cut being were 7,562,068.5 m3 and 510,936.7 m3, respectively. More volume change was found within Pelican Pass. For the period between hurricanes Ivan and Katrina the erosion volume was 595,713.8 m3. This was mostly located within Katrina Cut. Total deposition for the same period, including in Pelican Pass, was 15,353,961 m3. Hurricane breaches were compared to ancient incised valleys seen within the 2-D seismic reflection results. Breaches from hurricanes from 1849

  19. Integrating Terrestrial LIDAR with Point Clouds Created from Unmanned Aerial Vehicle Imagery

    NASA Astrophysics Data System (ADS)

    Leslar, M.

    2015-08-01

    Using unmanned aerial vehicles (UAV) for the purposes of conducting high-accuracy aerial surveying has become a hot topic over the last year. One of the most promising means of conducting such a survey involves integrating a high-resolution non-metric digital camera with the UAV and using the principals of digital photogrammetry to produce high-density colorized point clouds. Through the use of stereo imagery, precise and accurate horizontal positioning information can be produced without the need for integration with any type of inertial navigation system (INS). Of course, some form of ground control is needed to achieve this result. Terrestrial LiDAR, either static or mobile, provides the solution. Points extracted from Terrestrial LiDAR can be used as control in the digital photogrammetry solution required by the UAV. In return, the UAV is an affordable solution for filling in the shadows and occlusions typically experienced by Terrestrial LiDAR. In this paper, the accuracies of points derived from a commercially available UAV solution will be examined and compared to the accuracies achievable by a commercially available LIDAR solution. It was found that the LiDAR system produced a point cloud that was twice as accurate as the point cloud produced by the UAV's photogrammetric solution. Both solutions gave results within a few centimetres of the control field. In addition the about of planar dispersion on the vertical wall surfaces in the UAV point cloud was found to be multiple times greater than that from the horizontal ground based UAV points or the LiDAR data.

  20. Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery

    NASA Astrophysics Data System (ADS)

    Michez, Adrien; Piégay, Hervé; Jonathan, Lisein; Claessens, Hugues; Lejeune, Philippe

    2016-02-01

    Riparian zones are key landscape features, representing the interface between terrestrial and aquatic ecosystems. Although they have been influenced by human activities for centuries, their degradation has increased during the 20th century. Concomitant with (or as consequences of) these disturbances, the invasion of exotic species has increased throughout the world's riparian zones. In our study, we propose a easily reproducible methodological framework to map three riparian invasive taxa using Unmanned Aerial Systems (UAS) imagery: Impatiens glandulifera Royle, Heracleum mantegazzianum Sommier and Levier, and Japanese knotweed (Fallopia sachalinensis (F. Schmidt Petrop.), Fallopia japonica (Houtt.) and hybrids). Based on visible and near-infrared UAS orthophoto, we derived simple spectral and texture image metrics computed at various scales of image segmentation (10, 30, 45, 60 using eCognition software). Supervised classification based on the random forests algorithm was used to identify the most relevant variable (or combination of variables) derived from UAS imagery for mapping riparian invasive plant species. The models were built using 20% of the dataset, the rest of the dataset being used as a test set (80%). Except for H. mantegazzianum, the best results in terms of global accuracy were achieved with the finest scale of analysis (segmentation scale parameter = 10). The best values of overall accuracies reached 72%, 68%, and 97% for I. glandulifera, Japanese knotweed, and H. mantegazzianum respectively. In terms of selected metrics, simple spectral metrics (layer mean/camera brightness) were the most used. Our results also confirm the added value of texture metrics (GLCM derivatives) for mapping riparian invasive species. The results obtained for I. glandulifera and Japanese knotweed do not reach sufficient accuracies for operational applications. However, the results achieved for H. mantegazzianum are encouraging. The high accuracies values combined to

  1. Fusing Unmanned Aerial Vehicle Imagery with High Resolution Hydrologic Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Pierini, N.; Schreiner-McGraw, A.; Anderson, C.; Saripalli, S.; Rango, A.

    2013-12-01

    After decades of development and applications, high resolution hydrologic models are now common tools in research and increasingly used in practice. More recently, high resolution imagery from unmanned aerial vehicles (UAVs) that provide information on land surface properties have become available for civilian applications. Fusing the two approaches promises to significantly advance the state-of-the-art in terms of hydrologic modeling capabilities. This combination will also challenge assumptions on model processes, parameterizations and scale as land surface characteristics (~0.1 to 1 m) may now surpass traditional model resolutions (~10 to 100 m). Ultimately, predictions from high resolution hydrologic models need to be consistent with the observational data that can be collected from UAVs. This talk will describe our efforts to develop, utilize and test the impact of UAV-derived topographic and vegetation fields on the simulation of two small watersheds in the Sonoran and Chihuahuan Deserts at the Santa Rita Experimental Range (Green Valley, AZ) and the Jornada Experimental Range (Las Cruces, NM). High resolution digital terrain models, image orthomosaics and vegetation species classification were obtained from a fixed wing airplane and a rotary wing helicopter, and compared to coarser analyses and products, including Light Detection and Ranging (LiDAR). We focus the discussion on the relative improvements achieved with UAV-derived fields in terms of terrain-hydrologic-vegetation analyses and summer season simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) model. Model simulations are evaluated at each site with respect to a high-resolution sensor network consisting of six rain gauges, forty soil moisture and temperature profiles, four channel runoff flumes, a cosmic-ray soil moisture sensor and an eddy covariance tower over multiple summer periods. We also discuss prospects for the fusion of high resolution models with novel

  2. Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared Imagery Acquired from AN Unmanned Aerial Vehicle (uav)

    NASA Astrophysics Data System (ADS)

    Chrétien, L.-P.; Théau, J.; Ménard, P.

    2015-08-01

    Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.

  3. Fusion of Multi-View and Multi-Scale Aerial Imagery for Real-Time Situation Awareness Applications

    NASA Astrophysics Data System (ADS)

    Zhuo, X.; Kurz, F.; Reinartz, P.

    2015-08-01

    Manned aircraft has long been used for capturing large-scale aerial images, yet the high costs and weather dependence restrict its availability in emergency situations. In recent years, MAV (Micro Aerial Vehicle) emerged as a novel modality for aerial image acquisition. Its maneuverability and flexibility enable a rapid awareness of the scene of interest. Since these two platforms deliver scene information from different scale and different view, it makes sense to fuse these two types of complimentary imagery to achieve a quick, accurate and detailed description of the scene, which is the main concern of real-time situation awareness. This paper proposes a method to fuse multi-view and multi-scale aerial imagery by establishing a common reference frame. In particular, common features among MAV images and geo-referenced airplane images can be extracted by a scale invariant feature detector like SIFT. From the tie point of geo-referenced images we derive the coordinate of corresponding ground points, which are then utilized as ground control points in global bundle adjustment of MAV images. In this way, the MAV block is aligned to the reference frame. Experiment results show that this method can achieve fully automatic geo-referencing of MAV images even if GPS/IMU acquisition has dropouts, and the orientation accuracy is improved compared to the GPS/IMU based georeferencing. The concept for a subsequent 3D classification method is also described in this paper.

  4. Random Forest and Objected-Based Classification for Forest Pest Extraction from Uav Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Hu, Xiangyun

    2016-06-01

    Forest pest is one of the most important factors affecting the health of forest. However, since it is difficult to figure out the pest areas and to predict the spreading ways just to partially control and exterminate it has not effective enough so far now. The infected areas by it have continuously spreaded out at present. Thus the introduction of spatial information technology is highly demanded. It is very effective to examine the spatial distribution characteristics that can establish timely proper strategies for control against pests by periodically figuring out the infected situations as soon as possible and by predicting the spreading ways of the infection. Now, with the UAV photography being more and more popular, it has become much cheaper and faster to get UAV images which are very suitable to be used to monitor the health of forest and detect the pest. This paper proposals a new method to effective detect forest pest in UAV aerial imagery. For an image, we segment it to many superpixels at first and then we calculate a 12-dimension statistical texture information for each superpixel which are used to train and classify the data. At last, we refine the classification results by some simple rules. The experiments show that the method is effective for the extraction of forest pest areas in UAV images.

  5. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

    PubMed

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-01-01

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960

  6. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping

    PubMed Central

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-01-01

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960

  7. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery

    PubMed Central

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422

  8. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery.

    PubMed

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422

  9. Using aerial video to train the supervised classification of Landsat TM imagery for coral reef habitats mapping.

    PubMed

    Bello-Pineda, J; Liceaga-Correa, M A; Hernández-Núñez, H; Ponce-Hernández, R

    2005-06-01

    Management of coral reef resources is a challenging task, in many cases, because of the scarcity or inexistence of accurate sources of information and maps. Remote sensing is a not intrusive, but powerful tool, which has been successfully used for the assessment and mapping of natural resources in coral reef areas. In this study we utilized GIS to combine Landsat TM imagery, aerial photography, aerial video and a digital bathymetric model, to assess and to map submerged habitats for Alacranes reef, Yucatán, México. Our main goal was testing the potential of aerial video as the source of data to produce training areas for the supervised classification of Landsat TM imagery. Submerged habitats were ecologically characterized by using a hierarchical classification of field data. Habitats were identified on an overlaid image, consisting of the three types of remote sensing products and the bathymetric model. Pixels representing those habitats were selected as training areas by using GIS tools. Training areas were used to classify the Landsat TM bands 1, 2 and 3 and the bathymetric model by using a maximum likelihood algorithm. The resulting thematic map was compared against field data classification to improve habitats definition. Contextual editing and reclassification were used to obtain the final thematic map with an overall accuracy of 77%. Analysis of aerial video by a specialist in coral reef ecology was found to be a suitable source of information to produce training areas for the supervised classification of Landsat TM imagery in coral reefs at a coarse scale. PMID:15952517

  10. Exploration towards the modeling of gable-roofed buildings using a combination of aerial and street-level imagery

    NASA Astrophysics Data System (ADS)

    Creusen, Ivo; Hazelhoff, Lykele; de With, Peter H. N.

    2015-03-01

    Extraction of residential building properties is helpful for numerous applications, such as computer-guided feasibility analysis for solar panel placement, determination of real-estate taxes and assessment of real-estate insurance policies. Therefore, this work explores the automated modeling of buildings with a gable roof (the most common roof type within Western Europe), based on a combination of aerial imagery and street-level panoramic images. This is a challenging task, since buildings show large variations in shape, dimensions and building extensions, and may additionally be captured under non-ideal lighting conditions. The aerial images feature a coarse overview of the building due to the large capturing distance. The building footprint and an initial estimate of the building height is extracted based on the analysis of stereo aerial images. The estimated model is then refined using street-level images, which feature higher resolution and enable more accurate measurements, however, displaying a single building side only. Initial experiments indicate that the footprint dimensions of the main building can be accurately extracted from aerial images, while the building height is extracted with slightly less accuracy. By combining aerial and street-level images, we have found that the accuracies of these height measurements are significantly increased, thereby improving the overall quality of the extracted building model, and resulting in an average inaccuracy of the estimated volume below 10%.

  11. Observations of coastal systems using low-cost, high-resolution, balloon and kite-based aerial imagery

    NASA Astrophysics Data System (ADS)

    Griffith, A.; Young, R.

    2012-04-01

    Remote-sensed aerial imagery has been one of the primary methods for tracking shoreline change, but the low availability of high-quality data that is temporally relevant to the area of interest is often too expensive for small scale studies, if the data even exist. The Program for the Study of Developed Shorelines (PSDS) at Western Carolina University has been using balloon and kite mounted cameras for two years to make observations of highly dynamic, near shore systems in the southeastern United States. Through a partnership with GrassrootsMapping.org, our program was introduced to the system of aerial photography which collects images for under 200 USD at resolutions of 5-10 cm/pixel. The system is field transportable and can collect imagery on an as-needed basis, instead of scheduling aerial over flights or waiting for Google Earth imagery to be updated. Successful research trips to Beaufort County, South Carolina have identified buildings and infrastructure that are at risk of inundation from sea-level rise. The region experiences daily tidal fluctuations in excess of 2 m, allowing imagery to be captured at a variety of tidal cycles. The method has identified wetlands adjacent to developed areas lacking a buffer area allowing them to expand as sea levels rise. Due to the high resolution of the images, changes over shorter time intervals can be observed, such as the transition from high marsh to low marsh, as sea levels rise. After the 2010 Deepwater Horizon oil spill, PSDS staff mapped the oil spill on several trips to the Gulf of Mexico. Repeated visits to the same area have yielded a time series of images with greater frequency than more expensive methods. Finally, offshore sand movements at tidal inlets have been observed in detail on beaches in southern Georgia.

  12. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  13. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    PubMed Central

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-01-01

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564

  14. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery.

    PubMed

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-01-01

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564

  15. Low-Level Tie Feature Extraction of Mobile Mapping Data (mls/images) and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Hussnain, Z.; Peter, M.; Oude Elberink, S.; Gerke, M.; Vosselman, G.

    2016-03-01

    Mobile Mapping (MM) is a technique to obtain geo-information using sensors mounted on a mobile platform or vehicle. The mobile platform's position is provided by the integration of Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS). However, especially in urban areas, building structures can obstruct a direct line-of-sight between the GNSS receiver and navigation satellites resulting in an erroneous position estimation. Therefore, derived MM data products, such as laser point clouds or images, lack the expected positioning reliability and accuracy. This issue has been addressed by many researchers, whose aim to mitigate these effects mainly concentrates on utilising tertiary reference data. However, current approaches do not consider errors in height, cannot achieve sub-decimetre accuracy and are often not designed to work in a fully automatic fashion. We propose an automatic pipeline to rectify MM data products by employing high resolution aerial nadir and oblique imagery as horizontal and vertical reference, respectively. By exploiting the MM platform's defective, and therefore imprecise but approximate orientation parameters, accurate feature matching techniques can be realised as a pre-processing step to minimise the MM platform's three-dimensional positioning error. Subsequently, identified correspondences serve as constraints for an orientation update, which is conducted by an estimation or adjustment technique. Since not all MM systems employ laser scanners and imaging sensors simultaneously, and each system and data demands different approaches, two independent workflows are developed in parallel. Still under development, both workflows will be presented and preliminary results will be shown. The workflows comprise of three steps; feature extraction, feature matching and the orientation update. In this paper, initial results of low-level image and point cloud feature extraction methods will be discussed as well as an outline of

  16. GPR investigation of karst guided by comparison with outcrop and unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Antonio L.; Medeiros, Walter E.; Bezerra, Francisco H. R.; Oliveira, Josibel G.; Cazarin, Caroline L.

    2015-01-01

    The increasing importance of carbonate rocks as aquifers, oil reservoirs, and for urban problems is demanding detailed characterization of karst systems, a demand that can be partially satisfied with GPR imaging. However, the goal of imaging and interpreting karstified carbonate rocks is notoriously difficult due to the complex nature of the geometry of the dissolution and the GPR intrinsic limitations. One way forward is the direct comparison of GPR images with similar outcropping rocks. A joint study involving a 200 MHz GPR survey, unmanned aerial vehicle imagery (UAV), and outcrop characterization is presented aiming to improve the interpretation of sedimentary structures, fractures and karst structures in GPR images. The study area is a 500 m wide and 1000 m long carbonate outcrop of the Jandaíra Formation in Potiguar basin, Brazil, where sedimentary, fracture, and karst features can be directly investigated in both vertical and horizontal plan views. The key elements to interpret GPR images of karstified carbonate rocks are: (1) primary sedimentary structures appear in radargrams as unaltered imaged strata but care must be taken to interpret complex primary sedimentary features, such as those associated with bioturbation; (2) subvertical fractures might appear as consistent discontinuities in the imaged strata, forming complex structures such as negative flowers along strike-slip faults; (3) dissolution may create voids along subhorizontal layers, which appear in radargrams as relatively long amplitude shadow zones; and (4) dissolution may also create voids along subvertical fractures, appearing in radargrams as amplitude shadow zones with relatively large vertical dimensions, which are bounded by fractures.

  17. Using very-large-scale aerial imagery for rangeland monitoring and assessment: Some statistical considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of very-high-resolution (VHR) imagery and techniques for processing those data into indicators of ecosystem function has opened the door for VHR imagery to be used in rangeland monitoring and assessment. However, VHR imagery can be expensive and, like any survey measurement, studies...

  18. New interpretations of the Fort Clark State Historic Site based on aerial color and thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Heller, Andrew Roland

    The Fort Clark State Historic Site (32ME2) is a well known site on the upper Missouri River, North Dakota. The site was the location of two Euroamerican trading posts and a large Mandan-Arikara earthlodge village. In 2004, Dr. Kenneth L. Kvamme and Dr. Tommy Hailey surveyed the site using aerial color and thermal infrared imagery collected from a powered parachute. Individual images were stitched together into large image mosaics and registered to Wood's 1993 interpretive map of the site using Adobe Photoshop. The analysis of those image mosaics resulted in the identification of more than 1,500 archaeological features, including as many as 124 earthlodges.

  19. Bridging Estimates of Greenness in an Arid Grassland Using Field Observations, Phenocams, and Time Series Unmanned Aerial System (UAS) Imagery

    NASA Astrophysics Data System (ADS)

    Browning, D. M.; Tweedie, C. E.; Rango, A.

    2013-12-01

    Spatially extensive grasslands and savannas in arid and semi-arid ecosystems (i.e., rangelands) require cost-effective, accurate, and consistent approaches for monitoring plant phenology. Remotely sensed imagery offers these capabilities; however contributions of exposed soil due to modest vegetation cover, susceptibility of vegetation to drought, and lack of robust scaling relationships challenge biophysical retrievals using moderate- and coarse-resolution satellite imagery. To evaluate methods for characterizing plant phenology of common rangeland species and to link field measurements to remotely sensed metrics of land surface phenology, we devised a hierarchical study spanning multiple spatial scales. We collect data using weekly standardized field observations on focal plants, daily phenocam estimates of vegetation greenness, and very high spatial resolution imagery from an Unmanned Aerial System (UAS) throughout the growing season. Field observations of phenological condition and vegetation cover serve to verify phenocam greenness indices along with indices derived from time series UAS imagery. UAS imagery is classified using object-oriented image analysis to identify species-specific image objects for which greenness indices are derived. Species-specific image objects facilitate comparisons with phenocam greenness indices and scaling spectral responses to footprints of Landsat and MODIS pixels. Phenocam greenness curves indicated rapid canopy development for the widespread deciduous shrub Prosopis glandulosa over 14 (in April 2012) to 16 (in May 2013) days. The modest peak in greenness for the dominant perennial grass Bouteloua eriopoda occurred in October 2012 following peak summer rainfall. Weekly field estimates of canopy development closely coincided with daily patterns in initial growth and senescence for both species. Field observations improve the precision of the timing of phenophase transitions relative to inflection points calculated from phenocam

  20. Intergration of LiDAR Data with Aerial Imagery for Estimating Rooftop Solar Photovoltaic Potentials in City of Cape Town

    NASA Astrophysics Data System (ADS)

    Adeleke, A. K.; Smit, J. L.

    2016-06-01

    Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1) automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its' outline and areal coverage; and (2) estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  1. Decision Level Fusion of LIDAR Data and Aerial Color Imagery Based on Bayesian Theory for Urban Area Classification

    NASA Astrophysics Data System (ADS)

    Rastiveis, H.

    2015-12-01

    Airborne Light Detection and Ranging (LiDAR) generates high-density 3D point clouds to provide a comprehensive information from object surfaces. Combining this data with aerial/satellite imagery is quite promising for improving land cover classification. In this study, fusion of LiDAR data and aerial imagery based on Bayesian theory in a three-level fusion algorithm is presented. In the first level, pixel-level fusion, the proper descriptors for both LiDAR and image data are extracted. In the next level of fusion, feature-level, using extracted features the area are classified into six classes of "Buildings", "Trees", "Asphalt Roads", "Concrete roads", "Grass" and "Cars" using Naïve Bayes classification algorithm. This classification is performed in three different strategies: (1) using merely LiDAR data, (2) using merely image data, and (3) using all extracted features from LiDAR and image. The results of three classifiers are integrated in the last phase, decision level fusion, based on Naïve Bayes algorithm. To evaluate the proposed algorithm, a high resolution color orthophoto and LiDAR data over the urban areas of Zeebruges, Belgium were applied. Obtained results from the decision level fusion phase revealed an improvement in overall accuracy and kappa coefficient.

  2. Detection of two intermixed invasive woody species using color infrared aerial imagery and the support vector machine classifier

    NASA Astrophysics Data System (ADS)

    Mirik, Mustafa; Chaudhuri, Sriroop; Surber, Brady; Ale, Srinivasulu; James Ansley, R.

    2013-01-01

    Both the evergreen redberry juniper (Juniperus pinchotii Sudw.) and deciduous honey mesquite (Prosopis glandulosa Torr.) are destructive and aggressive invaders that affect rangelands and grasslands of the southern Great Plains of the United States. However, their current spatial extent and future expansion trends are unknown. This study was aimed at: (1) exploring the utility of aerial imagery for detecting and mapping intermixed redberry juniper and honey mesquite while both are in full foliage using the support vector machine classifier at two sites in north central Texas and, (2) assessing and comparing the mapping accuracies between sites. Accuracy assessments revealed that the overall accuracies were 90% with the associated kappa coefficient of 0.86% and 89% with the associated kappa coefficient of 0.85 for sites 1 and 2, respectively. Z-statistics (0.102<1.96) used to compare the classification results for both sites indicated an insignificant difference between classifications at 95% probability level. In most instances, juniper and mesquite were identified correctly with <7% being mistaken for the other woody species. These results indicated that assessment of the current infestation extent and severity of these two woody species in a spatial context is possible using aerial remote sensing imagery.

  3. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  4. Using high-resolution digital aerial imagery to map land cover

    USGS Publications Warehouse

    Dieck, J.J.; Robinson, Larry

    2014-01-01

    The Upper Midwest Environmental Sciences Center (UMESC) has used aerial photography to map land cover/land use on federally owned and managed lands for over 20 years. Until recently, that process used 23- by 23-centimeter (9- by 9-inch) analog aerial photos to classify vegetation along the Upper Mississippi River System, on National Wildlife Refuges, and in National Parks. With digital aerial cameras becoming more common and offering distinct advantages over analog film, UMESC transitioned to an entirely digital mapping process in 2009. Though not without challenges, this method has proven to be much more accurate and efficient when compared to the analog process.

  5. Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China).

    PubMed

    Wan, Huawei; Wang, Qiao; Jiang, Dong; Fu, Jingying; Yang, Yipeng; Liu, Xiaoman

    2014-01-01

    Spartina alterniflora was introduced to Beihai, Guangxi (China), for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR) imagery from the unmanned aerial vehicle (UAV). The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS) detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population. PMID:24892066

  6. Monitoring the Invasion of Spartina alterniflora Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China)

    PubMed Central

    Wan, Huawei; Wang, Qiao; Jiang, Dong; Yang, Yipeng; Liu, Xiaoman

    2014-01-01

    Spartina alterniflora was introduced to Beihai, Guangxi (China), for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR) imagery from the unmanned aerial vehicle (UAV). The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS) detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population. PMID:24892066

  7. Preliminary statistical studies concerning the Campos RJ sugar cane area, using LANDSAT imagery and aerial photographs

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Costa, S. R. X.; Paiao, L. B. F.; Mendonca, F. J.; Shimabukuro, Y. E.; Duarte, V.

    1983-01-01

    The two phase sampling technique was applied to estimate the area cultivated with sugar cane in an approximately 984 sq km pilot region of Campos. Correlation between existing aerial photography and LANDSAT data was used. The two phase sampling technique corresponded to 99.6% of the results obtained by aerial photography, taken as ground truth. This estimate has a standard deviation of 225 ha, which constitutes a coefficient of variation of 0.6%.

  8. AUTOMATED DIGITAL COVER ANALYSIS OF VERY-LARGE SCALE AERIAL (VLSA) RANGELAND IMAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation cover and bare ground are key indicators of rangeland health. However, cover and bare ground assessments are often confounded by subjective evaluations, resulting in reduced measurement repeatability and questionable accuracy. Measurement methods, such as the point frame and line-intercep...

  9. Using Unmanned Aerial Vehicle (UAV) Imagery to Investigate Surface Displacements and Surface Features of the Super-Sauze Earthflow (France)

    NASA Astrophysics Data System (ADS)

    James, M. R.; Tizzard, S.; Niethammer, U.

    2014-12-01

    We present the result of using imagery collected with a small rotary wing UAV (unmanned aerial vehicle) to investigate surface displacements and fissures on the Super-Sauze earthflow (France); a slow moving earthflow with the potential to develop into rapid and highly destructive mud flows. UAV imagery acquired in October 2009 was processed using a structure-from-motion and multi-view stereo (SfM-MVS) approach in PhotoScan software. Identification of ~200 ground control points throughout the image set was facilitated by automated image matching in SfM_georef software[1] and the data incorporated into PhotoScan for network optimisation and georeferencing. The completed 2009 model enabled an ~5 cm spatial resolution orthoimage to be generated with an expected accuracy (based on residuals on control) of ~0.3 m. This was supported by comparison to a previously created 2008 model, which gave standard deviations on tie points (located on stationary terrain) of 0.27 m and 0.43 m in Easting and Northing respectively. The high resolution of the orthoimage allowed an investigation into surface displacements and geomorphology of surface features (compared to the 2008 model). The results have produced a comprehensive surface displacement map of the Super-Sauze earthflow, as well as highlighting interesting variations in fissure geomorphology and density between the 2008 and 2009 models. This study underscored the capability for UAV imagery and SfM-MVS to generate highly detailed orthographic imagery and DEMs with a low cost approach that offers significant potential for landslide hazard assessments. [1] http://www.lancaster.ac.uk/staff/jamesm/software/sfm_georef.htm

  10. Remote sensing based detection of forested wetlands: An evaluation of LiDAR, aerial imagery, and their data fusion

    NASA Astrophysics Data System (ADS)

    Suiter, Ashley Elizabeth

    Multi-spectral imagery provides a robust and low-cost dataset for assessing wetland extent and quality over broad regions and is frequently used for wetland inventories. However in forested wetlands, hydrology is obscured by tree canopy making it difficult to detect with multi-spectral imagery alone. Because of this, classification of forested wetlands often includes greater errors than that of other wetlands types. Elevation and terrain derivatives have been shown to be useful for modelling wetland hydrology. But, few studies have addressed the use of LiDAR intensity data detecting hydrology in forested wetlands. Due the tendency of LiDAR signal to be attenuated by water, this research proposed the fusion of LiDAR intensity data with LiDAR elevation, terrain data, and aerial imagery, for the detection of forested wetland hydrology. We examined the utility of LiDAR intensity data and determined whether the fusion of Lidar derived data with multispectral imagery increased the accuracy of forested wetland classification compared with a classification performed with only multi-spectral image. Four classifications were performed: Classification A -- All Imagery, Classification B -- All LiDAR, Classification C -- LiDAR without Intensity, and Classification D -- Fusion of All Data. These classifications were performed using random forest and each resulted in a 3-foot resolution thematic raster of forested upland and forested wetland locations in Vermilion County, Illinois. The accuracies of these classifications were compared using Kappa Coefficient of Agreement. Importance statistics produced within the random forest classifier were evaluated in order to understand the contribution of individual datasets. Classification D, which used the fusion of LiDAR and multi-spectral imagery as input variables, had moderate to strong agreement between reference data and classification results. It was found that Classification A performed using all the LiDAR data and its derivatives

  11. Forest fuel treatment detection using multi-temporal airborne Lidar data and high resolution aerial imagery ---- A case study at Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Collins, B.; Fry, D.; Kelly, M.

    2014-12-01

    Forest fuel treatments (FFT) are often employed in Sierra Nevada forest (located in California, US) to enhance forest health, regulate stand density, and reduce wildfire risk. However, there have been concerns that FFTs may have negative impacts on certain protected wildlife species. Due to the constraints and protection of resources (e.g., perennial streams, cultural resources, wildlife habitat, etc.), the actual FFT extents are usually different from planned extents. Identifying the actual extent of treated areas is of primary importance to understand the environmental influence of FFTs. Light detection and ranging (Lidar) is a powerful remote sensing technique that can provide accurate forest structure measurements, which provides great potential to monitor forest changes. This study used canopy height model (CHM) and canopy cover (CC) products derived from multi-temporal airborne Lidar data to detect FFTs by an approach combining a pixel-wise thresholding method and a object-of-interest segmentation method. We also investigated forest change following the implementation of landscape-scale FFT projects through the use of normalized difference vegetation index (NDVI) and standardized principle component analysis (PCA) from multi-temporal high resolution aerial imagery. The same FFT detection routine was applied on the Lidar data and aerial imagery for the purpose of comparing the capability of Lidar data and aerial imagery on FFT detection. Our results demonstrated that the FFT detection using Lidar derived CC products produced both the highest total accuracy and kappa coefficient, and was more robust at identifying areas with light FFTs. The accuracy using Lidar derived CHM products was significantly lower than that of the result using Lidar derived CC, but was still slightly higher than using aerial imagery. FFT detection results using NDVI and standardized PCA using multi-temporal aerial imagery produced almost identical total accuracy and kappa coefficient

  12. Automatic geolocation of targets tracked by aerial imaging platforms using satellite imagery

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Goel, S.; Singh, P.; Lohani, B.

    2014-11-01

    Tracking of targets from aerial platforms is an important activity in several applications, especially surveillance. Knowled ge of geolocation of these targets adds additional significant and useful information to the application. This paper determines the geolocation of a target being tracked from an aerial platform using the technique of image registration. Current approaches utilize a POS to determine the location of the aerial platform and then use the same for geolocation of the targets using the principle of photogrammetry. The constraints of cost and low-payload restrict the applicability of this approach using UAV platforms. This paper proposes a methodology for determining the geolocation of a target tracked from an aerial platform in a partially GPS devoid environment. The method utilises automatic feature based registration technique of a georeferenced satellite image with an ae rial image which is already stored in UAV's database to retrieve the geolocation of the target. Since it is easier to register subsequent aerial images due to similar viewing parameters, the subsequent overlapping images are registered together sequentially thus resulting in the registration of each of the images with georeferenced satellite image thus leading to geolocation of the target under interest. Using the proposed approach, the target can be tracked in all the frames in which it is visible. The proposed concept is verified experimentally and the results are found satisfactory. Using the proposed method, a user can obtain location of target of interest as well features on ground without requiring any POS on-board the aerial platform. The proposed approach has applications in surveillance for target tracking, target geolocation as well as in disaster management projects like search and rescue operations.

  13. Projection of Stabilized Aerial Imagery Onto Digital Elevation Maps for Geo-Rectified and Jitter-Free Viewing

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.

    2012-01-01

    As imagery is collected from an airborne platform, an individual viewing the images wants to know from where on the Earth the images were collected. To do this, some information about the camera needs to be known, such as its position and orientation relative to the Earth. This can be provided by common inertial navigation systems (INS). Once the location of the camera is known, it is useful to project an image onto some representation of the Earth. Due to the non-smooth terrain of the Earth (mountains, valleys, etc.), this projection is highly non-linear. Thus, to ensure accurate projection, one needs to project onto a digital elevation map (DEM). This allows one to view the images overlaid onto a representation of the Earth. A code has been developed that takes an image, a model of the camera used to acquire that image, the pose of the camera during acquisition (as provided by an INS), and a DEM, and outputs an image that has been geo-rectified. The world coordinate of the bounds of the image are provided for viewing purposes. The code finds a mapping from points on the ground (DEM) to pixels in the image. By performing this process for all points on the ground, one can "paint" the ground with the image, effectively performing a projection of the image onto the ground. In order to make this process efficient, a method was developed for finding a region of interest (ROI) on the ground to where the image will project. This code is useful in any scenario involving an aerial imaging platform that moves and rotates over time. Many other applications are possible in processing aerial and satellite imagery.

  14. Characterizing Sediment Flux Using Reconstructed Topography and Bathymetry from Historical Aerial Imagery on the Willamette River, OR.

    NASA Astrophysics Data System (ADS)

    Langston, T.; Fonstad, M. A.

    2014-12-01

    The Willamette is a gravel-bed river that drains ~28,800 km^2 between the Coast Range and Cascade Range in northwestern Oregon before entering the Columbia River near Portland. In the last 150 years, natural and anthropogenic drivers have altered the sediment transport regime, drastically reducing the geomorphic complexity of the river. Previously dynamic multi-threaded reaches have transformed into stable single channels to the detriment of ecosystem diversity and productivity. Flow regulation by flood-control dams, bank revetments, and conversion of riparian forests to agriculture have been key drivers of channel change. To date, little has been done to quantitatively describe temporal and spatial trends of sediment transport in the Willamette. This knowledge is critical for understanding how modern processes shape landforms and habitats. The goal of this study is to describe large-scale temporal and spatial trends in the sediment budget by reconstructing historical topography and bathymetry from aerial imagery. The area of interest for this project is a reach of the Willamette stretching from the confluence of the McKenzie River to the town of Peoria. While this reach remains one of the most dynamic sections of the river, it has exhibited a great loss in geomorphic complexity. Aerial imagery for this section of the river is available from USDA and USACE projects dating back to the 1930's. Above water surface elevations are extracted using the Imagine Photogrammetry package in ERDAS. Bathymetry is estimated using a method known as Hydraulic Assisted Bathymetry in which hydraulic parameters are used to develop a regression between water depth and pixel values. From this, pixel values are converted to depth below the water surface. Merged together, topography and bathymetry produce a spatially continuous digital elevation model of the geomorphic floodplain. Volumetric changes in sediment stored along the study reach are then estimated for different historic periods

  15. Monitoring a BLM level 5 watershed with very-large aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fifth order BLM watershed in central Wyoming was flown using a Sport-airplane to acquire high-resolution aerial images from 2 cameras at 2 altitudes. Project phases 1 and 2 obtained images for measuring ground cover, species composition and canopy cover of Wyoming big sagebrush by ecological site....

  16. Technical development for automatic aerial triangulation of high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Xiong, Zhen

    Because they contain abundant spatial information, high resolution satellite images are widely used in a variety of applications. Aerial triangulation is one of the most important technologies to obtain accurate spatial information from those images. Thus aerial triangulation is always an important research topic in the photogrammetric community and automatic aerial triangulation is a common goal of such PhD research activities. To date, many techniques have been developed to improve the efficiency and accuracy of aerial triangulation. However, for processing high resolution satellite images, automatic aerial triangulation still faces many challenges, including tie point extraction and sensor model refinement. The main purpose of this research is to develop and test new tie point extraction, sensor model refinement and bundle block adjustment methods for improving the automation and accuracy of aerial triangulation. The accuracy of tie points directly determines the success of aerial triangulation. Generally both the corner point and the gravity center point of a rectangular or circular object can be used as tie points, but the resulting outcomes can vary greatly in aerial triangulation. However, this difference has not drawn much attention from researchers yet. Thus, most of the tie point extraction algorithms only extract various corners. In order to quantify the difference between corner and center tie points for image registration, this research analyzed the error introduced by using corner or center tie points in different cases. Through quantitative analysis and experiments, the author reached the conclusion that the 'center' points, when used as tie points, can improve the accuracy of image registration by at least 40 percent over that for the 'corner' points. Extracting a large number of tie points is the prerequisite of automatic aerial triangulation. Interest point matching can extract tie points automatically. To date numerous interest point matching

  17. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.

    PubMed

    Michez, Adrien; Piégay, Hervé; Lisein, Jonathan; Claessens, Hugues; Lejeune, Philippe

    2016-03-01

    Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very-high-resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives.The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management.The comparison of various scales of image analysis identified the smallest object-based image analysis (OBIA) objects (ca. 1 m(2)) as the most relevant scale. Variables derived from spectral information (bands ratios) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1% for site 1 and site 2). The classification scenario regarding the health condition of the black alders of the site 1 performed the best (90.6%).The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach

  18. Wavelet-based detection of bush encroachment in a savanna using multi-temporal aerial photographs and satellite imagery

    NASA Astrophysics Data System (ADS)

    Shekede, Munyaradzi D.; Murwira, Amon; Masocha, Mhosisi

    2015-03-01

    Although increased woody plant abundance has been reported in tropical savannas worldwide, techniques for detecting the direction and magnitude of change are mostly based on visual interpretation of historical aerial photography or textural analysis of multi-temporal satellite images. These techniques are prone to human error and do not permit integration of remotely sensed data from diverse sources. Here, we integrate aerial photographs with high spatial resolution satellite imagery and use a discrete wavelet transform to objectively detect the dynamics in bush encroachment at two protected Zimbabwean savanna sites. Based on the recently introduced intensity-dominant scale approach, we test the hypotheses that: (1) the encroachment of woody patches into the surrounding grassland matrix causes a shift in the dominant scale. This shift in the dominant scale can be detected using a discrete wavelet transform regardless of whether aerial photography and satellite data are used; and (2) as the woody patch size stabilises, woody cover tends to increase thereby triggering changes in intensity. The results show that at the first site where tree patches were already established (Lake Chivero Game Reserve), between 1972 and 1984 the dominant scale of woody patches initially increased from 8 m before stabilising at 16 m and 32 m between 1984 and 2012 while the intensity fluctuated during the same period. In contrast, at the second site, which was formely grass-dominated site (Kyle Game Reserve), we observed an unclear dominant scale (1972) which later becomes distinct in 1985, 1996 and 2012. Over the same period, the intensity increased. Our results imply that using our approach we can detect and quantify woody/bush patch dynamics in savanna landscapes.

  19. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    PubMed Central

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  20. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.

    PubMed

    Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D

    2013-08-01

    Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover. PMID:23255169

  1. Image degradation in aerial imagery duplicates. [photographic processing of photographic film and reproduction (copying)

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.

  2. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  3. 3D Building Modeling and Reconstruction using Photometric Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Izadi, Mohammad

    In this thesis, the problem of three dimensional (3D) reconstruction of building models using photometric satellite and aerial images is investigated. Here, two systems are pre-sented: 1) 3D building reconstruction using a nadir single-view image, and 2) 3D building reconstruction using slant multiple-view aerial images. The first system detects building rooftops in orthogonal aerial/satellite images using a hierarchical segmentation algorithm and a shadow verification approach. The heights of detected buildings are then estimated using a fuzzy rule-based method, which measures the height of a building by comparing its predicted shadow region with the actual shadow evidence in the image. This system finally generated a KML (Keyhole Markup Language) file as the output, that contains 3D models of detected buildings. The second system uses the geolocation information of a scene containing a building of interest and uploads all slant-view images that contain this scene from an input image dataset. These images are then searched automatically to choose image pairs with different views of the scene (north, east, south and west) based on the geolocation and auxiliary data accompanying the input data (metadata that describes the acquisition parameters at the capture time). The camera parameters corresponding to these images are refined using a novel point matching algorithm. Next, the system independently reconstructs 3D flat surfaces that are visible in each view using an iterative algorithm. 3D surfaces generated for all views are combined, and redundant surfaces are removed to create a complete set of 3D surfaces. Finally, the combined 3D surfaces are connected together to generate a more complete 3D model. For the experimental results, both presented systems are evaluated quantitatively and qualitatively and different aspects of the two systems including accuracy, stability, and execution time are discussed.

  4. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    NASA Astrophysics Data System (ADS)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (<1m). These metrics are essential for modeling the HVAC benefits from UTC for individual homes, and for assessing the ecosystem services for entire urban areas. Such maps have previously been made using a variety of methods, typically relying on high resolution aerial or satellite imagery. This paper seeks to contribute to this growing body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately

  5. Assessing the accuracy and repeatability of automated photogrammetrically generated digital surface models from unmanned aerial system imagery

    NASA Astrophysics Data System (ADS)

    Chavis, Christopher

    Using commercial digital cameras in conjunction with Unmanned Aerial Systems (UAS) to generate 3-D Digital Surface Models (DSMs) and orthomosaics is emerging as a cost-effective alternative to Light Detection and Ranging (LiDAR). Powerful software applications such as Pix4D and APS can automate the generation of DSM and orthomosaic products from a handful of inputs. However, the accuracy of these models is relatively untested. The objectives of this study were to generate multiple DSM and orthomosaic pairs of the same area using Pix4D and APS from flights of imagery collected with a lightweight UAS. The accuracy of each individual DSM was assessed in addition to the consistency of the method to model one location over a period of time. Finally, this study determined if the DSMs automatically generated using lightweight UAS and commercial digital cameras could be used for detecting changes in elevation and at what scale. Accuracy was determined by comparing DSMs to a series of reference points collected with survey grade GPS. Other GPS points were also used as control points to georeference the products within Pix4D and APS. The effectiveness of the products for change detection was assessed through image differencing and observance of artificially induced, known elevation changes. The vertical accuracy with the optimal data and model is ≈ 25 cm and the highest consistency over repeat flights is a standard deviation of ≈ 5 cm. Elevation change detection based on such UAS imagery and DSM models should be viable for detecting infrastructure change in urban or suburban environments with little dense canopy vegetation.

  6. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    SciTech Connect

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; Glenn, Nancy F.

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).

  7. Motion Component Supported Boosted Classifier for CAR Detection in Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Tuermer, S.; Leitloff, J.; Reinartz, P.; Stilla, U.

    2011-04-01

    Research of automatic vehicle detection in aerial images has been done with a lot of innovation and constantly rising success for years. However information was mostly taken from a single image only. Our aim is using the additional information which is offered by the temporal component, precisely the difference of the previous and the consecutive image. On closer viewing the moving objects are mainly vehicles and therefore we provide a method which is able to limit the search space of the detector to changed areas. The actual detector is generated of HoG features which are composed and linearly weighted by AdaBoost. Finally the method is tested on a motorway section including an exit and congested traffic near Munich, Germany.

  8. Mapping potential Blanding's turtle habitat using aerial orthophotographic imagery and object based classification

    NASA Astrophysics Data System (ADS)

    Barker, Rebecca

    Blanding's turtle (Emydoidea blandingii) is a threatened species in southern Quebec that is being inventoried to determine abundance and potential habitat by the Quebec Ministry of Natural Resources and Wildlife. In collaboration with that program and using spring leaf-off aerial orthophotos of Gatineau Park, attributes associated with known habitat criteria were analyzed: wetlands with open water, vegetation mounds for camouflage and thermoregulation, and logs for spring sun-basking. Pixel-based classification to separate wetlands from other land cover types was followed by object-based segmentation and rule-based classification of within--wetland vegetation and logs. Classifications integrated several image characteristics including texture, context, shape, area and spectral attributes. Field data and visual interpretation showed the accuracies of wetland and within wetland habitat feature classifications to be over 82.5%. The wetland classification results were used to develop a ranked potential habitat suitability map for Blanding's turtle that can be employed in conservation planning and management.

  9. The influence of the in situ camera calibration for direct georeferencing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Barrios, R.; Centeno, J.

    2014-11-01

    The direct determination of exterior orientation parameters (EOPs) of aerial images via GNSS/INS technologies is an essential prerequisite in photogrammetric mapping nowadays. Although direct sensor orientation technologies provide a high degree of automation in the process due to the GNSS/INS technologies, the accuracies of the obtained results depend on the quality of a group of parameters that models accurately the conditions of the system at the moment the job is performed. One sub-group of parameters (lever arm offsets and boresight misalignments) models the position and orientation of the sensors with respect to the IMU body frame due to the impossibility of having all sensors on the same position and orientation in the airborne platform. Another sub-group of parameters models the internal characteristics of the sensor (IOP). A system calibration procedure has been recommended by worldwide studies to obtain accurate parameters (mounting and sensor characteristics) for applications of the direct sensor orientation. Commonly, mounting and sensor characteristics are not stable; they can vary in different flight conditions. The system calibration requires a geometric arrangement of the flight and/or control points to decouple correlated parameters, which are not available in the conventional photogrammetric flight. Considering this difficulty, this study investigates the feasibility of the in situ camera calibration to improve the accuracy of the direct georeferencing of aerial images. The camera calibration uses a minimum image block, extracted from the conventional photogrammetric flight, and control point arrangement. A digital Vexcel UltraCam XP camera connected to POS AV TM system was used to get two photogrammetric image blocks. The blocks have different flight directions and opposite flight line. In situ calibration procedures to compute different sets of IOPs are performed and their results are analyzed and used in photogrammetric experiments. The IOPs

  10. Supervised classification of aerial imagery and multi-source data fusion for flood assessment

    NASA Astrophysics Data System (ADS)

    Sava, E.; Harding, L.; Cervone, G.

    2015-12-01

    Floods are among the most devastating natural hazards and the ability to produce an accurate and timely flood assessment before, during, and after an event is critical for their mitigation and response. Remote sensing technologies have become the de-facto approach for observing the Earth and its environment. However, satellite remote sensing data are not always available. For these reasons, it is crucial to develop new techniques in order to produce flood assessments during and after an event. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. This research presents a fusion technique using satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and tweets. A new computational methodology is proposed based on machine learning algorithms to automatically identify water pixels in CAP imagery. Specifically, wavelet transformations are paired with multiple classifiers, run in parallel, to build models discriminating water and non-water regions. The learned classification models are first tested against a set of control cases, and then used to automatically classify each image separately. A measure of uncertainty is computed for each pixel in an image proportional to the number of models classifying the pixel as water. Geo-tagged tweets are continuously harvested and stored on a MongoDB and queried in real time. They are fused with CAP classified data, and with satellite remote sensing derived flood extent results to produce comprehensive flood assessment maps. The final maps are then compared with FEMA generated flood extents to assess their accuracy. The proposed methodology is applied on two test cases, relative to the 2013 floods in Boulder CO, and the 2015 floods in Texas.

  11. Cultivated land information extraction from high-resolution unmanned aerial vehicle imagery data

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Cheng, Liang; Han, Wenquan; Zhong, Lishan; Li, Manchun

    2014-01-01

    The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. Simultaneously, unmanned aerial vehicles (UAVs) have been increasingly used for natural resource applications in recent years as a result of their greater availability, the miniaturization of sensors, and the ability to deploy UAVs relatively quickly and repeatedly at low altitudes. We examine the potential of utilizing a small UAV for the characterization, assessment, and monitoring of cultivated land. Because most UAV images lack spectral information, we propose a novel cultivated land information extraction method based on a triangulation for cultivated land information extraction (TCLE) method. Thus, the information on more spatial properties of a region is incorporated into the classification process. The TCLE comprises three main steps: image segmentation, triangulation construction, and triangulation clustering using AUTOCLUST. Experiments were conducted on three UAV images in Deyang, China, using TCLE and eCognition for cultivated land information extraction (ECLE). Experimental results show that TCLE, which does not require training samples and has a much higher level of automation, can obtain accuracies equivalent to ECLE. Comparing with ECLE, TCLE also extracts coherent cultivated land with much less noise. As such, cultivated land information extraction based on high-resolution UAV images can be effectively and efficiently conducted using the proposed method.

  12. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots

    PubMed Central

    Lelong, Camille C. D.; Burger, Philippe; Jubelin, Guillaume; Roux, Bruno; Labbé, Sylvain; Baret, Frédéric

    2008-01-01

    This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships.

  13. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    DOE PAGESBeta

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; Glenn, Nancy F.

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis.more » The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).« less

  14. Automatic Road Extraction Based on Integration of High Resolution LIDAR and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Rahimi, S.; Arefi, H.; Bahmanyar, R.

    2015-12-01

    In recent years, the rapid increase in the demand for road information together with the availability of large volumes of high resolution Earth Observation (EO) images, have drawn remarkable interest to the use of EO images for road extraction. Among the proposed methods, the unsupervised fully-automatic ones are more efficient since they do not require human effort. Considering the proposed methods, the focus is usually to improve the road network detection, while the roads' precise delineation has been less attended to. In this paper, we propose a new unsupervised fully-automatic road extraction method, based on the integration of the high resolution LiDAR and aerial images of a scene using Principal Component Analysis (PCA). This method discriminates the existing roads in a scene; and then precisely delineates them. Hough transform is then applied to the integrated information to extract straight lines; which are further used to segment the scene and discriminate the existing roads. The roads' edges are then precisely localized using a projection-based technique, and the round corners are further refined. Experimental results demonstrate that our proposed method extracts and delineates the roads with a high accuracy.

  15. Improvement of erosion risk modelling using soil information derived from aerial Vis-NIR imagery

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Raclot, Damien; Le Bissonnais, Yves

    2016-04-01

    The aim of this research is to test the benefit of the hyperspectral imagery in soil surface properties characterisation for soil erosion modelling purposes. The research area is the Lebna catchment located in the in the north of Tunisia (Cap Bon Region). Soil erosion is evaluated with the use of two different soil erosion models: PESERA (Pan-European Soil Erosion Risk Assessment already used for the soil erosion risk mapping for the European Union, Kirkby et al., 2008) and Mesales (Regional Modelling of Soil Erosion Risk developed by Le Bissonnais et al., 1998, 2002); for that, different sources for soil properties and derived parameters such as soil erodibility map and soil crusting map have been evaluated with use of four different supports: 1) IAO soil map (IAO, 2000), 2) Carte Agricole - CA - (Ministry of Agriculture, Tunisia), 3) Hyperspectral VIS-NIR map - HY - (Gomez et al., 2012; Ciampalini t al., 2012), and, 3) a here developed Hybrid map - CY - integrating information from Hyperspectral VIS-NIR and pedological maps. Results show that the data source has a high influence on the estimation of the parameters for both the models with a more evident sensitivity for Pesera. With regard to the classical pedological data, the VIS-NIR data clearly ameliorates the spatialization of the texture, then, the spatial detail of the results. Differences in the output using different maps are more important in Pesera model than in Mesales showing no-change ranges of about 15 to 41% and 53 to 67%, respectively.

  16. Knowledge Based 3d Building Model Recognition Using Convolutional Neural Networks from LIDAR and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Alidoost, F.; Arefi, H.

    2016-06-01

    In recent years, with the development of the high resolution data acquisition technologies, many different approaches and algorithms have been presented to extract the accurate and timely updated 3D models of buildings as a key element of city structures for numerous applications in urban mapping. In this paper, a novel and model-based approach is proposed for automatic recognition of buildings' roof models such as flat, gable, hip, and pyramid hip roof models based on deep structures for hierarchical learning of features that are extracted from both LiDAR and aerial ortho-photos. The main steps of this approach include building segmentation, feature extraction and learning, and finally building roof labeling in a supervised pre-trained Convolutional Neural Network (CNN) framework to have an automatic recognition system for various types of buildings over an urban area. In this framework, the height information provides invariant geometric features for convolutional neural network to localize the boundary of each individual roofs. CNN is a kind of feed-forward neural network with the multilayer perceptron concept which consists of a number of convolutional and subsampling layers in an adaptable structure and it is widely used in pattern recognition and object detection application. Since the training dataset is a small library of labeled models for different shapes of roofs, the computation time of learning can be decreased significantly using the pre-trained models. The experimental results highlight the effectiveness of the deep learning approach to detect and extract the pattern of buildings' roofs automatically considering the complementary nature of height and RGB information.

  17. Aerial Imagery and Other Non-invasive Approaches to Detect Nitrogen and Water Stress in a Potato Crop

    NASA Astrophysics Data System (ADS)

    Nigon, Tyler John

    commercial potato field using aerial imagery. Reference areas were found to be necessary in order to make accurate recommendations because of differences in sensors, potato variety, growth stage, and other local conditions. The results from this study suggest that diagnostic criteria based on both biomass and plant nutrient concentration (e.g., canopy-level spectral reflectance data) were best suited to determine overall crop N status for determination of in-season N fertilizer recommendations.

  18. Error Detection, Factorization and Correction for Multi-View Scene Reconstruction from Aerial Imagery

    SciTech Connect

    Hess-Flores, Mauricio

    2011-11-10

    reconstruction pre-processing, where an algorithm detects and discards frames that would lead to inaccurate feature matching, camera pose estimation degeneracies or mathematical instability in structure computation based on a residual error comparison between two different match motion models. The presented algorithms were designed for aerial video but have been proven to work across different scene types and camera motions, and for both real and synthetic scenes.

  19. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and

  20. Detection of Single Standing Dead Trees from Aerial Color Infrared Imagery by Segmentation with Shape and Intensity Priors

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U.

    2015-03-01

    Standing dead trees, known as snags, are an essential factor in maintaining biodiversity in forest ecosystems. Combined with their role as carbon sinks, this makes for a compelling reason to study their spatial distribution. This paper presents an integrated method to detect and delineate individual dead tree crowns from color infrared aerial imagery. Our approach consists of two steps which incorporate statistical information about prior distributions of both the image intensities and the shapes of the target objects. In the first step, we perform a Gaussian Mixture Model clustering in the pixel color space with priors on the cluster means, obtaining up to 3 components corresponding to dead trees, living trees, and shadows. We then refine the dead tree regions using a level set segmentation method enriched with a generative model of the dead trees' shape distribution as well as a discriminative model of their pixel intensity distribution. The iterative application of the statistical shape template yields the set of delineated dead crowns. The prior information enforces the consistency of the template's shape variation with the shape manifold defined by manually labeled training examples, which makes it possible to separate crowns located in close proximity and prevents the formation of large crown clusters. Also, the statistical information built into the segmentation gives rise to an implicit detection scheme, because the shape template evolves towards an empty contour if not enough evidence for the object is present in the image. We test our method on 3 sample plots from the Bavarian Forest National Park with reference data obtained by manually marking individual dead tree polygons in the images. Our results are scenario-dependent and range from a correctness/completeness of 0.71/0.81 up to 0.77/1, with an average center-of-gravity displacement of 3-5 pixels between the detected and reference polygons.

  1. Terrestrial and unmanned aerial system imagery for deriving photogrammetric three-dimensional point clouds and volume models of mass wasting sites

    NASA Astrophysics Data System (ADS)

    Hämmerle, Martin; Schütt, Fabian; Höfle, Bernhard

    2016-04-01

    Three-dimensional (3-D) geodata of mass wasting sites are important to model surfaces, volumes, and their changes over time. With a photogrammetric approach commonly known as structure from motion, 3-D point clouds can be derived from image collections in a straightforward way. The quality of point clouds covering a quarry dump derived from terrestrial and aerial imagery is compared and assessed. A comprehensive set of quality indicators is calculated and compared to surveyed reference data and to a terrestrial LiDAR point cloud. The examined indicators are completeness of coverage, point density, vertical accuracy, multiscale point cloud distance, scaling accuracy, and dump volume. It is found that the photogrammetric datasets generally represent the examined dump well with, for example, an area coverage of up to 90% and 100% in case of terrestrial and aerial imagery, respectively, a maximum scaling difference of 0.62%, and volume estimations reaching up to 100% of the LiDAR reference. Combining the advantages of 3-D geodata derived from terrestrial (high detail, accurate volume calculation even with a small number of input images) and aerial images (high coverage) can be a promising method to further improve the quality of 3-D geodata derived with low-cost approaches.

  2. Tree Crown Delineation on Vhr Aerial Imagery with Svm Classification Technique Optimized by Taguchi Method: a Case Study in Zagros Woodlands

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Behnia, N.; Moosavi, V.

    2013-09-01

    The Support Vector Machine (SVM) is a theoretically superior machine learning methodology with great results in classification of remotely sensed datasets. Determination of optimal parameters applied in SVM is still vague to some scientists. In this research, it is suggested to use the Taguchi method to optimize these parameters. The objective of this study was to detect tree crowns on very high resolution (VHR) aerial imagery in Zagros woodlands by SVM optimized by Taguchi method. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The VHR aerial imagery of the plot with 0.06 m spatial resolution was obtained from National Geographic Organization (NGO), Iran, to extract the crowns of Persian oak trees in this study. The SVM parameters were optimized by Taguchi method and thereafter, the imagery was classified by the SVM with optimal parameters. The results showed that the Taguchi method is a very useful approach to optimize the combination of parameters of SVM. It was also concluded that the SVM method could detect the tree crowns with a KHAT coefficient of 0.961 which showed a great agreement with the observed samples and overall accuracy of 97.7% that showed the accuracy of the final map. Finally, the authors suggest applying this method to optimize the parameters of classification techniques like SVM.

  3. Detecting new Buffel grass infestations in Australian arid lands: evaluation of methods using high-resolution multispectral imagery and aerial photography.

    PubMed

    Marshall, V M; Lewis, M M; Ostendorf, B

    2014-03-01

    We assess the feasibility of using airborne imagery for Buffel grass detection in Australian arid lands and evaluate four commonly used image classification techniques (visual estimate, manual digitisation, unsupervised classification and normalised difference vegetation index (NDVI) thresholding) for their suitability to this purpose. Colour digital aerial photography captured at approximately 5 cm of ground sample distance (GSD) and four-band (visible–near-infrared) multispectral imagery (25 cm GSD) were acquired (14 February 2012) across overlapping subsets of our study site. In the field, Buffel grass projected cover estimates were collected for quadrates (10 m diameter), which were subsequently used to evaluate the four image classification techniques. Buffel grass was found to be widespread throughout our study site; it was particularly prevalent in riparian land systems and alluvial plains. On hill slopes, Buffel grass was often present in depressions, valleys and crevices of rock outcrops, but the spread appeared to be dependent on soil type and vegetation communities. Visual cover estimates performed best (r 2 0.39), and pixel-based classifiers (unsupervised classification and NDVI thresholding) performed worst (r 2 0.21). Manual digitising consistently underrepresented Buffel grass cover compared with field- and image-based visual cover estimates; we did not find the labours of digitising rewarding. Our recommendation for regional documentation of new infestation of Buffel grass is to acquire ultra-high-resolution aerial photography and have a trained observer score cover against visual standards and use the scored sites to interpolate density across the region. PMID:24234223

  4. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    NASA Astrophysics Data System (ADS)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  5. Classifying Multiple Stages of Mountain Pine Beetle Disturbance Using Multispectral Aerial Imagery in North-Central Colorado

    NASA Astrophysics Data System (ADS)

    Meddens, A. J.; Hicke, J. A.; Vierling, L. A.

    2010-12-01

    Insect outbreaks are major forest disturbances, killing trees across millions of ha in the United States. These dead trees affect the condition of the ecosystems, leading to alterations of forest functioning and fuel arrangement, among other impacts. In this study, we evaluated methods for classifying 30-cm multispectral imagery including insect-caused tree mortality (both red and gray attack) classes and non-forest classes. We acquired 4-band imagery in lodgepole pine stands of central Colorado that were recently attacked by mountain pine beetle. The 30-cm resolution image facilitated delineation of field-observed trees, which were used for image classification. We employed the maximum likelihood classifier with the Normalized Difference Vegetation Index (NDVI), the Red-Green Index (RGI), and Green band (GREEN). Our initial classification used original spatial resolution imagery to identify green trees, red-attack, gray-attack, herbaceous, bare soil, and shadow classes. Although classification accuracies were good (overall accuracy of 85.95%, kappa = 0.826), we noted confusion between sunlit crowns of live (green) trees and herbaceous classes at this very fine spatial resolution, and confusion between sunlit crowns of gray- and red-attack trees and bare soil, and thus explored additional methods to reduce omission and commission errors. Classification confusion was overcome by aggregating the 30-cm multispectral imagery into a 2.4-m resolution image (matching very high resolution satellite imagery). Pixels in the 2.4-m resolution image included more shadow in the forested regions than the 30-cm resolution, thereby reducing forest canopy reflectance and improving the separability between the forest and non-forest classes that had caused previous errors. We conclude that operational mapping of insect-caused tree mortality with multispectral imagery has great potential for forest disturbance mapping, and that imagery with a spatial resolution about the crown width of

  6. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.

    PubMed

    Diaz-Varela, R A; Zarco-Tejada, P J; Angileri, V; Loudjani, P

    2014-02-15

    Agricultural terraces are features that provide a number of ecosystem services. As a result, their maintenance is supported by measures established by the European Common Agricultural Policy (CAP). In the framework of CAP implementation and monitoring, there is a current and future need for the development of robust, repeatable and cost-effective methodologies for the automatic identification and monitoring of these features at farm scale. This is a complex task, particularly when terraces are associated to complex vegetation cover patterns, as happens with permanent crops (e.g. olive trees). In this study we present a novel methodology for automatic and cost-efficient identification of terraces using only imagery from commercial off-the-shelf (COTS) cameras on board unmanned aerial vehicles (UAVs). Using state-of-the-art computer vision techniques, we generated orthoimagery and digital surface models (DSMs) at 11 cm spatial resolution with low user intervention. In a second stage, these data were used to identify terraces using a multi-scale object-oriented classification method. Results show the potential of this method even in highly complex agricultural areas, both regarding DSM reconstruction and image classification. The UAV-derived DSM had a root mean square error (RMSE) lower than 0.5 m when the height of the terraces was assessed against field GPS data. The subsequent automated terrace classification yielded an overall accuracy of 90% based exclusively on spectral and elevation data derived from the UAV imagery. PMID:24473345

  7. [Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model].

    PubMed

    Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long

    2015-05-01

    This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest. PMID:26571671

  8. Forest Inventory Attribute Estimation Using Airborne Laser Scanning, Aerial Stereo Imagery, Radargrammetry and Interferometry-Finnish Experiences of the 3d Techniques

    NASA Astrophysics Data System (ADS)

    Holopainen, M.; Vastaranta, M.; Karjalainen, M.; Karila, K.; Kaasalainen, S.; Honkavaara, E.; Hyyppä, J.

    2015-03-01

    Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widespread, and the popularity of ALS has also raised interest toward alternative 3D techniques, including airborne and spaceborne techniques. Point clouds can be generated using photogrammetry, radargrammetry and interferometry. Airborne stereo imagery can be used in deriving photogrammetric point clouds, as very-high-resolution synthetic aperture radar (SAR) data are used in radargrammetry and interferometry. ALS is capable of mapping both the terrain and tree heights in mixed forest conditions, which is an advantage over aerial images or SAR data. However, in many jurisdictions, a detailed ALS-based digital terrain model is already available, and that enables linking photogrammetric or SAR-derived heights to heights above the ground. In other words, in forest conditions, the height of single trees, height of the canopy and/or density of the canopy can be measured and used in estimation of forest inventory attributes. In this paper, first we review experiences of the use of digital stereo imagery and spaceborne SAR in estimation of forest inventory attributes in Finland, and we compare techniques to ALS. In addition, we aim to present new implications based on our experiences.

  9. Characterization of Shrubland-Atmosphere Interactions through Use of the Eddy Covariance Method, Distributed Footprint Sampling, and Imagery from Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Vivoni, E. R.; Pierini, N.; Robles-Morua, A.; Rango, A.; Laliberte, A.; Saripalli, S.

    2012-12-01

    Ecohydrological dynamics can be evaluated from field observations of land-atmosphere states and fluxes, including water, carbon, and energy exchanges measured through the eddy covariance method. In heterogeneous landscapes, the representativeness of these measurements is not well understood due to the variable nature of the sampling footprint and the mixture of underlying herbaceous, shrub, and soil patches. In this study, we integrate new field techniques to understand how ecosystem surface states are related to turbulent fluxes in two different semiarid shrubland settings in the Jornada (New Mexico) and Santa Rita (Arizona) Experimental Ranges. The two sites are characteristic of Chihuahuan (NM) and Sonoran (AZ) Desert mixed-shrub communities resulting from woody plant encroachment into grassland areas. In each study site, we deployed continuous soil moisture and soil temperature profile observations at twenty sites around an eddy covariance tower after local footprint estimation revealed the optimal sensor network design. We then characterized the tower footprint through terrain and vegetation analyses derived at high resolution (<1 m) from imagery obtained from a fixed-wing and rotary-wing Unmanned Aerial Vehicles (UAV). Our analysis focuses on the summertime land-atmosphere states and fluxes during which each ecosystem responded differentially to the North American monsoon. We found that vegetation heterogeneity induces spatial differences in soil moisture and temperature that are important to capture when relating these states to the eddy covariance flux measurements. Spatial distributions of surface states at different depths reveal intricate patterns linked to vegetation cover that vary between the two sites. Furthermore, single site measurements at the tower are insufficient to capture the footprint conditions and their influence on turbulent fluxes. We also discuss techniques for aggregating the surface states based upon the vegetation and soil

  10. Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction

    NASA Astrophysics Data System (ADS)

    Beger, Reinhard; Gedrange, Claudia; Hecht, Robert; Neubert, Marco

    2011-12-01

    The quality of remotely sensed data in regards of accuracy and resolution has considerably improved in recent years. Very small objects are detectable by means of imaging and laser scanning, yet there are only few studies to use such data for large scale mapping of railroad infrastructure.In this paper, an approach is presented that integrates extremely high resolution ortho-imagery and dense airborne laser scanning point clouds. These data sets are used to reconstruct railroad track centre lines. A feature level data fusion is carried out in order to combine the advantages of both data sets and to achieve a maximum of accuracy and completeness.The workflow consists of three successive processing steps. First, object-based image analysis is used to derive a railroad track mask from ortho-imagery. This spatial location information is then combined with the height information to classify the laser points. Lastly, the location of railroad track centre lines from these classified points were approximated using a feature extraction method based on an adapted random sample consensus algorithm. This workflow is tested on two railroad sections and was found to deliver very accurate results in a quickly and highly automated manner.

  11. A semantic approach to the efficient integration of interactive and automatic target recognition systems for the analysis of complex infrastructure from aerial imagery

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Peinsipp-Byma, E.

    2008-04-01

    The analysis of complex infrastructure from aerial imagery, for instance a detailed analysis of an airfield, requires the interpreter, besides to be familiar with the sensor's imaging characteristics, to have a detailed understanding of the infrastructure domain. The required domain knowledge includes knowledge about the processes and functions involved in the operation of the infrastructure, the potential objects used to provide those functions and their spatial and functional interrelations. Since it is not possible yet to provide reliable automatic object recognition (AOR) for the analysis of such complex scenes, we developed systems to support a human interpreter with either interactive approaches, able to assist the interpreter with previously acquired expert knowledge about the domain in question, or AOR methods, capable of detecting, recognizing or analyzing certain classes of objects for certain sensors. We believe, to achieve an optimal result at the end of an interpretation process in terms of efficiency and effectivity, it is essential to integrate both interactive and automatic approaches to image interpretation. In this paper we present an approach inspired by the advancing semantic web technology to represent domain knowledge, the capabilities of available AOR modules and the image parameters in an explicit way. This enables us to seamlessly extend an interactive image interpretation environment with AOR modules in a way that we can automatically select suitable AOR methods for the current subtask, focus them on an appropriate area of interest and reintegrate their results into the environment.

  12. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Cheng, Liang; Li, Manchun; Liu, Yongxue; Ma, Xiaoxue

    2015-04-01

    Unmanned Aerial Vehicle (UAV) has been used increasingly for natural resource applications in recent years due to their greater availability and the miniaturization of sensors. In addition, Geographic Object-Based Image Analysis (GEOBIA) has received more attention as a novel paradigm for remote sensing earth observation data. However, GEOBIA generates some new problems compared with pixel-based methods. In this study, we developed a strategy for the semi-automatic optimization of object-based classification, which involves an area-based accuracy assessment that analyzes the relationship between scale and the training set size. We found that the Overall Accuracy (OA) increased as the training set ratio (proportion of the segmented objects used for training) increased when the Segmentation Scale Parameter (SSP) was fixed. The OA increased more slowly as the training set ratio became larger and a similar rule was obtained according to the pixel-based image analysis. The OA decreased as the SSP increased when the training set ratio was fixed. Consequently, the SSP should not be too large during classification using a small training set ratio. By contrast, a large training set ratio is required if classification is performed using a high SSP. In addition, we suggest that the optimal SSP for each class has a high positive correlation with the mean area obtained by manual interpretation, which can be summarized by a linear correlation equation. We expect that these results will be applicable to UAV imagery classification to determine the optimal SSP for each class.

  13. Analysis of Biophysical Mechanisms of Gilgai Microrelief Formation in Dryland Swelling Soils Using Ultra-High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Krell, N.; DeCarlo, K. F.; Caylor, K. K.

    2015-12-01

    Microrelief formations ("gilgai"), which form due to successive wetting-drying cycles typical of swelling soils, provide ecological hotspots for local fauna and flora, including higher and more robust vegetative growth. The distribution of these gilgai suggests a remarkable degree of regularity. However, it is unclear to what extent the mechanisms that drive gilgai formation are physical, such as desiccation-induced fracturing, or biological in nature, namely antecedent vegetative clustering. We investigated gilgai genesis and pattern formation in a 100 x 100 meter study area with swelling soils in a semiarid grassland at the Mpala Research Center in central Kenya. Our ongoing experiment is composed of three 9m2 treatments: we removed gilgai and limited vegetative growth by herbicide application in one plot, allowed for unrestricted seed dispersal in another, and left gilgai unobstructed in a control plot. To estimate the spatial frequencies of the repeating patterns of gilgai, we obtained ultra-high resolution (0.01-0.03m/pixel) images with an unmanned aerial vehicle (UAV) from which digital elevation models were also generated. Geostatistical analyses using wavelet and fourier methods in 1- and 2-dimensions were employed to characterize gilgai size and distribution. Preliminary results support regular spatial patterning across the gilgaied landscape and heterogeneities may be related to local soil properties and biophysical influences. Local data on gilgai and fracture characteristics suggest that gilgai form at characteristic heights and spacing based on fracture morphology: deep, wide cracks result in large, highly vegetated mounds whereas shallow cracks, induced by animal trails, are less correlated with gilgai size and shape. Our experiments will help elucidate the links between shrink-swell processes and gilgai-vegetation patterning in high activity clay soils and advance our understanding of the mechanisms of gilgai formation in drylands.

  14. Assessing the relationship between urban parameters and the LST derived by satellite and aerial imageries in a GIS environment: the case of Bari (Italy).

    NASA Astrophysics Data System (ADS)

    Caprioli, Mauro; Ceppi, Claudia; Falchi, Ugo; Mancini, Francesco; Scarano, Mario

    2014-05-01

    The use of thermal remote sensing to estimate the phenomenon of urban heat islands (UHI) and development of climate anomalies in urban context represents a consolidated approach. In the current scientific literature a widespread case studies were focused on the estimation of the relationship between features related to the urban environment and the Land Surface Temperatures (LST). The latter is a basic starting observation in the investigation on the UHI phenomenon . However, the evaluation of these relationships is rather difficult. This is due to deficiencies in the detailed knowledge of parameters able to describe geometric and qualitative properties of land covers. These properties are very often not repeatable and not easily transferable in other contexts. In addition, many of the relevant parameters are difficult to be determined at the required spatial resolution and analyses are affected by a lack in the amount of quantitative parameters used. In addition to the LST, several useful indicators are introduced by the literature in the investigation of such phenomena. The objective of this work is to study the relationship between the LST and a set of variables that characterize the anthropic and natural domains of the urban areas, such as urban morphology, the Normalized Differenced Vegetation Index (NDVI), the Sky View Factor (SVF) and other morphometric parameters implemented within a GIS environment. The study case is the city of Bari (Southern Italy) where several recognizable morphologies exhibit a different thermal behavior. The LST parameter was derived from a collection of satellite ASTER images collected within a period spanning from July 2001 and July 2006, whereas aerial thermal imageries were acquired on September 2013. The basic data used for the determination of the descriptive parameters of the urban environmental are derived from digital maps(Geographic Information System of the Apulia Region), Digital Elevation Model and Land Use. The analysis

  15. An Automated Approach to Agricultural Tile Drain Detection and Extraction Utilizing High Resolution Aerial Imagery and Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Johansen, Richard A.

    Subsurface drainage from agricultural fields in the Maumee River watershed is suspected to adversely impact the water quality and contribute to the formation of harmful algal blooms (HABs) in Lake Erie. In early August of 2014, a HAB developed in the western Lake Erie Basin that resulted in over 400,000 people being unable to drink their tap water due to the presence of a toxin from the bloom. HAB development in Lake Erie is aided by excess nutrients from agricultural fields, which are transported through subsurface tile and enter the watershed. Compounding the issue within the Maumee watershed, the trend within the watershed has been to increase the installation of tile drains in both total extent and density. Due to the immense area of drained fields, there is a need to establish an accurate and effective technique to monitor subsurface farmland tile installations and their associated impacts. This thesis aimed at developing an automated method in order to identify subsurface tile locations from high resolution aerial imagery by applying an object-based image analysis (OBIA) approach utilizing eCognition. This process was accomplished through a set of algorithms and image filters, which segment and classify image objects by their spectral and geometric characteristics. The algorithms utilized were based on the relative location of image objects and pixels, in order to maximize the robustness and transferability of the final rule-set. These algorithms were coupled with convolution and histogram image filters to generate results for a 10km2 study area located within Clay Township in Ottawa County, Ohio. The eCognition results were compared to previously collected tile locations from an associated project that applied heads-up digitizing of aerial photography to map field tile. The heads-up digitized locations were used as a baseline for the accuracy assessment. The accuracy assessment generated a range of agreement values from 67.20% - 71.20%, and an average

  16. Use of Aerial high resolution visible imagery to produce large river bathymetry: a multi temporal and spatial study over the by-passed Upper Rhine

    NASA Astrophysics Data System (ADS)

    Béal, D.; Piégay, H.; Arnaud, F.; Rollet, A.; Schmitt, L.

    2011-12-01

    Aerial high resolution visible imagery allows producing large river bathymetry assuming that water depth is related to water colour (Beer-Bouguer-Lambert law). In this paper we aim at monitoring Rhine River geometry changes for a diachronic study as well as sediment transport after an artificial injection (25.000 m3 restoration operation). For that a consequent data base of ground measurements of river depth is used, built on 3 different sources: (i) differential GPS acquisitions, (ii) sounder data and (iii) lateral profiles realized by experts. Water depth is estimated using a multi linear regression over neo channels built on a principal component analysis over red, green and blue bands and previously cited depth data. The study site is a 12 km long reach of the by-passed section of the Rhine River that draws French and German border. This section has been heavily impacted by engineering works during the last two centuries: channelization since 1842 for navigation purposes and the construction of a 45 km long lateral canal and 4 consecutive hydroelectric power plants of since 1932. Several bathymetric models are produced based on 3 different spatial resolutions (6, 13 and 20 cm) and 5 acquisitions (January, March, April, August and October) since 2008. Objectives are to find the optimal spatial resolution and to characterize seasonal effects. Best performances according to the 13 cm resolution show a 18 cm accuracy when suspended matters impacted less water transparency. Discussions are oriented to the monitoring of the artificial reload after 2 flood events during winter 2010-2011. Bathymetric models produced are also useful to build 2D hydraulic model's mesh.

  17. Near infrared-red models for the remote estimation of chlorophyll- a concentration in optically complex turbid productive waters: From in situ measurements to aerial imagery

    NASA Astrophysics Data System (ADS)

    Gurlin, Daniela

    Today the water quality of many inland and coastal waters is compromised by cultural eutrophication in consequence of increased human agricultural and industrial activities and remote sensing is widely applied to monitor the trophic state of these waters. This study explores near infrared-red models for the remote estimation of chlorophyll-a concentration in turbid productive waters and compares several near infrared-red models developed within the last 35 years. Three of these near infrared-red models were calibrated for a dataset with chlorophyll-a concentrations from 2.3 to 81.2 mg m -3 and validated for independent and statistically significantly different datasets with chlorophyll-a concentrations from 4.0 to 95.5 mg m-3 and 4.0 to 24.2 mg m-3 for the spectral bands of the MEdium Resolution Imaging Spectrometer (MERIS) and Moderate-resolution Imaging Spectroradiometer (MODIS). The developed MERIS two-band algorithm estimated chlorophyll-a concentrations from 4.0 to 24.2 mg m-3, which are typical for many inland and coastal waters, very accurately with a mean absolute error 1.2 mg m-3. These results indicate a high potential of the simple MERIS two-band algorithm for the reliable estimation of chlorophyll-a concentration without any reduction in accuracy compared to more complex algorithms, even though more research seems required to analyze the sensitivity of this algorithm to differences in the chlorophyll-a specific absorption coefficient of phytoplankton. Three near infrared-red models were calibrated and validated for a smaller dataset of atmospherically corrected multi-temporal aerial imagery collected by the hyperspectral airborne imaging spectrometer for applications (AisaEAGLE). The developed algorithms successfully captured the spatial and temporal variability of the chlorophyll-a concentrations and estimated chlorophyll- a concentrations from 2.3 to 81.2 mg m-3 with mean absolute errors from 4.4 mg m-3 for the AISA two band algorithm to 5.2 mg m-3

  18. Characterisation of recently retrieved aerial photographs of Ethiopia (1935-1941) and their fusion with current remotely sensed imagery for retrospective geomorphological analysis

    NASA Astrophysics Data System (ADS)

    Nyssen, Jan; Gebremeskel, Gezahegne; Mohamed, Sultan; Petrie, Gordon; Seghers, Valérie; Meles Hadgu, Kiros; De Maeyer, Philippe; Haile, Mitiku; Frankl, Amaury

    2013-04-01

    8281 assemblages of aerial photographs (APs) acquired by the 7a Sezione Topocartografica during the Italian occupation of Ethiopia (1935-1941) have recently been discovered, scanned and organised. The oldest APs of the country that are known so far were taken in the period 1958-1964. The APs of the 1930s were analysed for their technical characteristics, scale, flight lines, coverage, use in topographic mapping, and potential future uses. The APs over Ethiopia in 1935-1941 are presented as assemblages on approx. 50 cm x 20 cm cardboard tiles, each holding a label, one nadir-pointing photograph flanked by two low-oblique photographs and one high-oblique photograph. The four APs were exposed simultaneously and were taken across the flight line; the high-oblique photograph is presented alternatively at left and at right; there is approx. 60% overlap between subsequent sets of APs. One of Santoni's glass plate multi-cameras was used, with focal length of 178 mm, flight height at 4000-4500 m a.s.l., which results in an approximate scale of 1:11 500 for the central photograph and 1:16 000 to 1:18 000 for the low-oblique APs. The surveyors oriented themselves with maps of Ethiopia at 1:400 000 scale, compiled in 1934. The flights present a dense AP coverage of Northern Ethiopia, where they were acquired in the context of upcoming battles with the Ethiopian army. Several flights preceded the later advance of the Italian army southwards towards the capital Addis Ababa. Further flights took place in central Ethiopia for civilian purposes. As of 1936, the APs were used to prepare highly detailed topographic maps at 1:100 000 scale. These APs (1935-1941) together with APs of 1958-1964, 1994 and recent high-resolution satellite imagery are currently being used in spatially explicit change studies of land cover, land management and (hydro)geomorphology in Ethiopia over a time span of almost 80 years, the first results of which will be presented.

  19. Absolute High-Precision Localisation of an Unmanned Ground Vehicle by Using Real-Time Aerial Video Imagery for Geo-referenced Orthophoto Registration

    NASA Astrophysics Data System (ADS)

    Kuhnert, Lars; Ax, Markus; Langer, Matthias; Nguyen van, Duong; Kuhnert, Klaus-Dieter

    This paper describes an absolute localisation method for an unmanned ground vehicle (UGV) if GPS is unavailable for the vehicle. The basic idea is to combine an unmanned aerial vehicle (UAV) to the ground vehicle and use it as an external sensor platform to achieve an absolute localisation of the robotic team. Beside the discussion of the rather naive method directly using the GPS position of the aerial robot to deduce the ground robot's position the main focus of this paper lies on the indirect usage of the telemetry data of the aerial robot combined with live video images of an onboard camera to realise a registration of local video images with apriori registered orthophotos. This yields to a precise driftless absolute localisation of the unmanned ground vehicle. Experiments with our robotic team (AMOR and PSYCHE) successfully verify this approach.

  20. Land cover/use mapping using multi-band imageries captured by Cropcam Unmanned Aerial Vehicle Autopilot (UAV) over Penang Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Fuyi, Tan; Boon Chun, Beh; Mat Jafri, Mohd Zubir; Hwee San, Lim; Abdullah, Khiruddin; Mohammad Tahrin, Norhaslinda

    2012-11-01

    The problem of difficulty in obtaining cloud-free scene at the Equatorial region from satellite platforms can be overcome by using airborne imagery. Airborne digital imagery has proved to be an effective tool for land cover studies. Airborne digital camera imageries were selected in this present study because of the airborne digital image provides higher spatial resolution data for mapping a small study area. The main objective of this study is to classify the RGB bands imageries taken from a low-altitude Cropcam UAV for land cover/use mapping over USM campus, penang Island, Malaysia. A conventional digital camera was used to capture images from an elevation of 320 meter on board on an UAV autopilot. This technique was cheaper and economical compared with other airborne studies. The artificial neural network (NN) and maximum likelihood classifier (MLC) were used to classify the digital imageries captured by using Cropcam UAV over USM campus, Penang Islands, Malaysia. The supervised classifier was chosen based on the highest overall accuracy (<80%) and Kappa statistic (<0.8). The classified land cover map was geometrically corrected to provide a geocoded map. The results produced by this study indicated that land cover features could be clearly identified and classified into a land cover map. This study indicates the use of a conventional digital camera as a sensor on board on an UAV autopilot can provide useful information for planning and development of a small area of coverage.

  1. The ASPRS Digital Imagery Product Guideline Project

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Kuper, Philip; Stanley, Thomas; Mondello, Charles

    2001-01-01

    The American Society for Photogrammetry and Remote Sensing (ASPRS) Primary Data Acquisition Division is developing a Digital Imagery Product Guideline in conjunction with NASA, the U.S. Geological Survey (USGS), the National Imagery and Mapping Agency (NIMA), academia, and industry. The goal of the guideline is to offer providers and users of digital imagery a set of recommendatons analogous those defined by the ASPRS Aerial Photography 1995 Draft Standard for film-based imagery. This article offers a general outline and description of the Digital Imagery Product Guideline and Digital Imagery Tutorial/Reference documents for defining digital imagery requirements.

  2. Estimating seasonal changes of land cover, surface wetness and latent heat flux of wet polygonal tundra (Samoylov Island, Lena-Delta, Siberia) with high-resolution aerial and hyperspectral CHRIS Proba satellite imagery

    NASA Astrophysics Data System (ADS)

    Muster, S.; Langer, M.; Boike, J.

    2009-12-01

    Vegetation cover, land cover and surface wetness are few of the many factors exerting control on the partitioning of energy to latent, sensible and ground heat flux. Spatial estimates of these factors can be inferred from remote sensing data. The fractionated polygonal tundra landscape of Samoylov Island of wet and dry surfaces induces strong spatial variations of resistance to evapotranspiration. The development of low-centered ice-wedge polygons results in a prominent microrelief that is the most important factor for small-scale differences in vegetation type and near surface soil moisture. Depressed polygon centers alternate with elevated polygon rims with elevation differences of up to 0.5 m over a few meters distance. In the depressed polygon centers, drainage is strongly impeded due to the underlying permafrost resulting in water-saturated soils or small ponds. A process-based understanding of the surface energy balance, however, needs to consider both the temporal and the spatial variations of the surface. In the course of the summer season, the surface wetness changes significantly since the water table falls about 5 cm below the surface. This change in surface wetness is likely to be associated with changing evapotranspiration rates. We consider the effect of seasonal changes in land cover, vegetation cover and surface wetness on latent heat flux by investigating a time-series of high-resolution aerial and hyperspectral satellite imagery and comparing them to ground-based measurements of near-surface soil moisture and latent heat flux. Two sets of aerial images from August 15 and September 11, 2008 in the VNIR provide detailed information of the polygonal landscape with a resolution of 0.3m. CHRIS Proba imagery provides hyperspectral data with 18 spectral bands in the VNIR range (400 - 1050 nm) and a resolution of 17 m. Acquisition dates are June 21, July 23 and September 10, 2008. Daily point-based measurements of near-surface soil moisture and latent

  3. Automatic vehicle detection based on automatic histogram-based fuzzy C-means algorithm and perceptual grouping using very high-resolution aerial imagery and road vector data

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Gökaşar, Ilgın

    2016-01-01

    This study presents an approach for the automatic detection of vehicles using very high-resolution images and road vector data. Initially, road vector data and aerial images are integrated to extract road regions. Then, the extracted road/street region is clustered using an automatic histogram-based fuzzy C-means algorithm, and edge pixels are detected using the Canny edge detector. In order to automatically detect vehicles, we developed a local perceptual grouping approach based on fusion of edge detection and clustering outputs. To provide the locality, an ellipse is generated using characteristics of the candidate clusters individually. Then, ratio of edge pixels to nonedge pixels in the corresponding ellipse is computed to distinguish the vehicles. Finally, a point-merging rule is conducted to merge the points that satisfy a predefined threshold and are supposed to denote the same vehicles. The experimental validation of the proposed method was carried out on six very high-resolution aerial images that illustrate two highways, two shadowed roads, a crowded narrow street, and a street in a dense urban area with crowded parked vehicles. The evaluation of the results shows that our proposed method performed 86% and 83% in overall correctness and completeness, respectively.

  4. Characterising Upland Swamps Using Object-Based Classification Methods and Hyper-Spatial Resolution Imagery Derived from AN Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Lechner, A. M.; Fletcher, A.; Johansen, K.; Erskine, P.

    2012-07-01

    Subsidence, resulting from underground coal mining can alter the structure of overlying rock formations changing hydrological conditions and potentially effecting ecological communities found on the surface. Of particular concern are impacts to endangered and/or protected swamp communities and swamp species sensitive to changes in hydrologic conditions. This paper describes a monitoring approach that uses UAVs with modified digital cameras and object-based image analysis methods to characterise swamp landcover on the Newnes plateau in the Blue Mountains near Sydney, Australia. The characterisation of swamp spatial distribution is key to identifying long term changes in swamp condition. In this paper we describe i) the characteristics of the UAV and the sensor, ii) the pre-processing of the remote sensing data with sub-decimeter pixel size to derive visible and near infrared multispectral imagery and a digital surface model (DSM), and iii) the application of object-based image analysis in eCognition using the multi-spectral data and DSM to map swamp extent. Finally, we conclude with a discussion of the potential application of remote sensing data derived from UAVs to conduct environmental monitoring.

  5. Physical controls and patterns of recruitment on the Drôme River (SE France): An analysis based on a chronosequence of high resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Piegay, H.; Stella, J. C.; Raepple, B.

    2014-12-01

    Along with the recent recognition of the role of vegetation in influencing channel hydraulics, and thus fluvial morphology comes the need for scientific research on vegetation recruitment and its control factors. Flood disturbance is known to create a suitable physical template for the establishment of woody pioneers. Sapling recruitment patterns and underlying physical controls were investigated on a 5 km braided reach of the Drôme River in South-eastern France, following the 2003 50-year flood event. The approach was based on the analysis of a chronosequence of high resolution aerial images acquired yearly between 2005 and 2011, complemented by airborne LiDAR data and field observations. The study highlights how physical complexity induced by natural variations in hydro-climatic and consequently hydro-geomorphic conditions facilitates variable patterns of recruitment. The initial post-flood vegetative units, which covered up to 10% of the total active channel area in 2005, was seen to double within six years. The variability of hydro-climatic conditions was reflected in the temporal and spatial patterns of recruitment, with a pronounced peak of vegetation expansion in 2007 and a decreasing trend following higher flows in 2009. Recruitment was further seen to be sustained in a variety of geomorphic units, which showed different probabilities and patterns of recruitment. Active channels were the prominent geomorphic unit in terms of total biomass development, while in-channel wood units showed the highest probability for recruitment. Vegetation recruitment understanding is becoming crucial for predicting fluvial system evolution in different hydroclimatic contexts. Applied, these findings may contribute to improve efforts made in the field of flood risk management, as well as restoration planning.

  6. Repeat, Low Altitude Measurements of Vegetation Status and Biomass Using Manned Aerial and UAS Imagery in a Piñon-Juniper Woodland

    NASA Astrophysics Data System (ADS)

    Krofcheck, D. J.; Lippitt, C.; Loerch, A.; Litvak, M. E.

    2015-12-01

    Measuring the above ground biomass of vegetation is a critical component of any ecological monitoring campaign. Traditionally, biomass of vegetation was measured with allometric-based approach. However, it is also time-consuming, labor-intensive, and extremely expensive to conduct over large scales and consequently is cost-prohibitive at the landscape scale. Furthermore, in semi-arid ecosystems characterized by vegetation with inconsistent growth morphologies (e.g., piñon-juniper woodlands), even ground-based conventional allometric approaches are often challenging to execute consistently across individuals and through time, increasing the difficulty of the required measurements and consequently the accuracy of the resulting products. To constrain the uncertainty associated with these campaigns, and to expand the extent of our measurement capability, we made repeat measurements of vegetation biomass in a semi-arid piñon-juniper woodland using structure-from-motion (SfM) techniques. We used high-spatial resolution overlapping aerial images and high-accuracy ground control points collected from both manned aircraft and multi-rotor UAS platforms, to generate digital surface model (DSM) for our experimental region. We extracted high-precision canopy volumes from the DSM and compared these to the vegetation allometric data, s to generate high precision canopy volume models. We used these models to predict the drivers of allometric equations for Pinus edulis and Juniperous monosperma (canopy height, diameter at breast height, and root collar diameter). Using this approach, we successfully accounted for the carbon stocks in standing live and standing dead vegetation across a 9 ha region, which contained 12.6 Mg / ha of standing dead biomass, with good agreement to our field plots. Here we present the initial results from an object oriented workflow which aims to automate the biomass estimation process of tree crown delineation and volume calculation, and partition

  7. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  8. Automated imagery orthorectification pilot

    NASA Astrophysics Data System (ADS)

    Slonecker, E. Terrence; Johnson, Brad; McMahon, Joe

    2009-10-01

    Automated orthorectification of raw image products is now possible based on the comprehensive metadata collected by Global Positioning Systems and Inertial Measurement Unit technology aboard aircraft and satellite digital imaging systems, and based on emerging pattern-matching and automated image-to-image and control point selection capabilities in many advanced image processing systems. Automated orthorectification of standard aerial photography is also possible if a camera calibration report and sufficient metadata is available. Orthorectification of historical imagery, for which only limited metadata was available, was also attempted and found to require some user input, creating a semi-automated process that still has significant potential to reduce processing time and expense for the conversion of archival historical imagery into geospatially enabled, digital formats, facilitating preservation and utilization of a vast archive of historical imagery. Over 90 percent of the frames of historical aerial photos used in this experiment were successfully orthorectified to the accuracy of the USGS 100K base map series utilized for the geospatial reference of the archive. The accuracy standard for the 100K series maps is approximately 167 feet (51 meters). The main problems associated with orthorectification failure were cloud cover, shadow and historical landscape change which confused automated image-to-image matching processes. Further research is recommended to optimize automated orthorectification methods and enable broad operational use, especially as related to historical imagery archives.

  9. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  10. Unmanned aerial vehicles for rangeland mapping and monitoring: a comparison of two systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial photography from unmanned aerial vehicles (UAVs) bridges the gap between ground-based observations and remotely sensed imagery from aerial and satellite platforms. UAVs can be deployed quickly and repeatedly, are less costly and safer than piloted aircraft, and can obtain very high-resolution...

  11. "A" Is for Aerial Maps and Art

    ERIC Educational Resources Information Center

    Todd, Reese H.; Delahunty, Tina

    2007-01-01

    The technology of satellite imagery and remote sensing adds a new dimension to teaching and learning about maps with elementary school children. Just a click of the mouse brings into view some images of the world that could only be imagined a generation ago. Close-up aerial pictures of the school and neighborhood quickly catch the interest of…

  12. Use of Kendall's coefficient of concordance to assess agreement among observers of very high resolution imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-based vegetation monitoring methods are expensive, time-consuming, and limited in sample-size. Aerial imagery is appealing to managers because of the reduced time and expense and the increase in sample size. One challenge of aerial imagery is detecting differences among observers of the sam...

  13. Using Airborne and Satellite Imagery to Distinguish and Map Black Mangrove

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the results of studies evaluating color-infrared (CIR) aerial photography, CIR aerial true digital imagery, and high resolution QuickBird multispectral satellite imagery for distinguishing and mapping black mangrove [Avicennia germinans (L.) L.] populations along the lower Texas g...

  14. Incorporation of texture, intensity, hue, and saturation for rangeland monitoring with unmanned aircraft imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial photography acquired with unmanned aerial vehicles (UAVs) has great potential for incorporation into rangeland health monitoring protocols, and object-based image analysis is well suited for this hyperspatial imagery. A major drawback, however, is the low spectral resolution of the imagery, b...

  15. High-resolution spatial patterns of Soil Organic Carbon content derived from low-altitude aerial multi-band imagery on the Broadbalk Wheat Experiment at Rothamsted,UK

    NASA Astrophysics Data System (ADS)

    Aldana Jague, Emilien; Goulding, Keith; Heckrath, Goswin; Macdonald, Andy; Poulton, Paul; Stevens, Antoine; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Soil organic C (SOC) contents in arable landscapes change as a function of management, climate and topography (Johnston et al, 2009). Traditional methods to measure soil C stocks are labour intensive, time consuming and expensive. Consequently, there is a need for developing low-cost methods for monitoring SOC contents in agricultural soils. Remote sensing methods based on multi-spectral images may help map SOC variation in surface soils. Recently, the costs of both Unmanned Aerial Vehicles (UAVs) and multi-spectral cameras have dropped dramatically, opening up the possibility for more widespread use of these tools for SOC mapping. Long-term field experiments with distinct SOC contents in adjacent plots, provide a very useful resource for systematically testing remote sensing approaches for measuring SOC. This study focusses on the Broadbalk Wheat Experiment at Rothamsted (UK). The Broadbalk experiment started in 1843. It is widely acknowledged to be the oldest continuing agronomic field experiment in the world. The initial aim of the experiment was to test the effects of different organic manures and inorganic fertilizers on the yield of winter wheat. The experiment initially contained 18 strips, each about 320m long and 6m wide, separated by paths of 1.5-2.5m wide. The strips were subsequently divided into ten sections (>180 plots) to test the effects of other factors (crop rotation, herbicides, pesticides etc.). The different amounts and combinations of mineral fertilisers (N,P,K,Na & Mg) and Farmyard Manure (FYM) applied to these plots for over 160 years has resulted in very different SOC contents in adjacent plots, ranging between 0.8% and 3.5%. In addition to large inter-plot variability in SOC there is evidence of within-plot trends related to the use of discard areas between plots and movement of soil as a result of ploughing. The objectives of this study are (i) to test whether low-altitude multi-band imagery can be used to accurately predict spatial

  16. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  17. Trends in quantitative aerial thermography

    SciTech Connect

    Schott, J.R.; Wilkinson, E.P.

    1983-06-01

    Recent improvements in aerial thermographic techniques, particularly in achievable spatial resolution and noise equivalent temperature variation, have enabled the use of thermography in a more objective fashion. Interpretation of the information contained in thermograms has also been improved through the use of certain techniques accounting for roof material type (emissivity), background effects, and atmospheric variables. With current methods, roof surface temperature from aerial imagery can be measured to within 1.8/sup 0/F (1.0/sup 0/C) of the actual temperature. These advances in thermogram analysis have opened the door for potential direct measurement of rooftop heat-loss levels from thermogram data. Ultimately, it is felt that this type of information would make it feasible to direct intensive energy-conservation efforts toward a smaller population, where the need and cost benefits will be the greatest.

  18. The availability of local aerial photography in southern California. [for solution of urban planning problems

    NASA Technical Reports Server (NTRS)

    Allen, W., III; Sledge, B.; Paul, C. K.; Landini, A. J.

    1974-01-01

    Some of the major photography and photogrammetric suppliers and users located in Southern California are listed. Recent trends in aerial photographic coverage of the Los Angeles basin area are also noted, as well as the uses of that imagery.

  19. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  20. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  1. Orthorectification, mosaicking, and analysis of sub-decimeter resolution UAV imagery for rangeland monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) offer an attractive platform for acquiring imagery for rangeland monitoring. UAVs can be deployed quickly and repeatedly, and they can obtain sub-decimeter resolution imagery at lower image acquisition costs than with piloted aircraft. Low flying heights result in ima...

  2. ERTS imagery for ground-water investigations

    USGS Publications Warehouse

    Moore, Gerald K.; Deutsch, Morris

    1975-01-01

    ERTS imagery offers the first opportunity to apply moderately high-resolution satellite data to the nationwide study of water resources. This imagery is both a tool and a form of basic data. Like other tools and basic data, it should be considered for use in ground-water investigations. The main advantage of its use will be to reduce the need for field work. In addition, however, broad regional features may be seen easily on ERTS imagery, whereas they would be difficult or impossible to see on the ground or on low-altitude aerial photographs. Some present and potential uses of ERTS imagery are to locate new aquifers, to study aquifer recharge and discharge, to estimate ground-water pumpage for irrigation, to predict the location and type of aquifer management problems, and to locate and monitor strip mines which commonly are sources for acid mine drainage. In many cases, boundaries which are gradational on the ground appear to be sharp on ERTS imagery. Initial results indicate that the accuracy of maps produced from ERTS imagery is completely adequate for some purposes.

  3. Better sensors = better imagery = better outputs

    NASA Astrophysics Data System (ADS)

    Smith, Michael

    2014-05-01

    The photogrammetric workflow has traditionally relied upon the use of high quality metric cameras that enable the acquisition of good quality imagery, from which outputs with a well constrained geometry can be obtained. However with the proliferation of low altitude aerial photography from a range of platforms, the quality of sensor itself has largely become of secondary importance in order to reduce weight and minimise cost. These instruments are often "off-the-shelf" consumer digital cameras, not designed for either aerial photography or photogrammetry. This imposes limitations upon the quality of imagery that can be collected and outputs subsequently produced. Photogrammetric techniques such as a self-calibrating bundle adjustment or Structure from Motion allow the use of "less stable" imagery. Yet at the simplest level, the better the sensor, the better the imagery, the better the output. Where analysis and the validity of scientific conclusions are dependent upon the quality of outputs it is critical that consideration is given to the choice of sensor - the wide availability and application of UAVs across disciplines means that users may not be aware of such choices and their implications. This presentation is designed to stimulate discussion around the use of consumer cameras with a focus upon the exposure triangle of ISO-aperture-shutter speed and how this is related to dynamic range and the signal-to-noise ratio. A further important factor is understanding the ground resolution element in terms of resolution, focal length, sensor size (crop factor) and height.

  4. Utility of a scanning densitometer in analyzing remotely sensed imagery

    NASA Technical Reports Server (NTRS)

    Dooley, J. T.

    1976-01-01

    The utility of a scanning densitometer for analyzing imagery in the NASA Lewis Research Center's regional remote sensing program was evaluated. Uses studied include: (1) quick-look screening of imagery by means of density slicing, magnification, color coding, and edge enhancement; (2) preliminary category classification of both low- and high-resolution data bases; and (3) quantitative measurement of the extent of features within selected areas. The densitometer was capable of providing fast, convenient, and relatively inexpensive preliminary analysis of aerial and satellite photography and scanner imagery involving land cover, water quality, strip mining, and energy conservation.

  5. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  6. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.

    PubMed

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew; Joost, Stéphane

    2016-03-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission's Joint Research Center (JRC) have noted that aerial imagery will inevitably present a big data challenge. The purpose of this article is to get ahead of this future challenge by proposing a hybrid crowdsourcing and real-time machine learning solution to rapidly process large volumes of aerial data for disaster response in a time-sensitive manner. Crowdsourcing can be used to annotate features of interest in aerial images (such as damaged shelters and roads blocked by debris). These human-annotated features can then be used to train a supervised machine learning system to learn to recognize such features in new unseen images. In this article, we describe how this hybrid solution for image analysis can be implemented as a module (i.e., Aerial Clicker) to extend an existing platform called Artificial Intelligence for Disaster Response (AIDR), which has already been deployed to classify microblog messages during disasters using its Text Clicker module and in response to Cyclone Pam, a category 5 cyclone that devastated Vanuatu in March 2015. The hybrid solution we present can be applied to both aerial and satellite imagery and has applications beyond disaster response such as wildlife protection, human rights, and archeological exploration. As a proof of concept, we recently piloted this solution using very high-resolution aerial photographs of a wildlife reserve in Namibia to support rangers with their wildlife conservation efforts (SAVMAP project, http://lasig.epfl.ch/savmap ). The

  7. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  8. SAR imagery of the Grand Banks (Newfoundland) pack ice pack and its relationship to surface features

    NASA Technical Reports Server (NTRS)

    Argus, S. D.; Carsey, F. D.

    1988-01-01

    Synthetic Aperture Radar (SAR) data and aerial photographs were obtained over pack ice off the East Coast of Canada in March 1987 as part of the Labrador Ice Margin Experiment (LIMEX) pilot project. Examination of this data shows that although the pack ice off the Canadian East Coast appears essentially homogeneous to visible light imagery, two clearly defined zones of ice are apparent on C-band SAR imagery. To identify factors that create the zones seen on the radar image, aerial photographs were compared to the SAR imagery. Floe size data from the aerial photographs was compared to digital number values taken from SAR imagery of the same ice. The SAR data of the inner zone acquired three days apart over the melt period was also examined. The studies indicate that the radar response is governed by floe size and meltwater distribution.

  9. Aerial imagery and structure-from-motion based DEM reconstruction of region-sized areas (Sierra Arana, Spain and Namur Province, Belgium) using an high-altitude drifting balloon platform.

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; María Mateos, Rosa; Azañón, Jose Miguel; Perez, José Vicente; Vanbrabant, Yves

    2015-04-01

    different elevations. A 1m/pixel ground resolution set covering an area of about 200km² and mapping the eastern part of the Sierra Arana (Andalucía, Spain) includes a kartsic field directly to the south-east of the ridge and the cliffs of the "Riscos del Moro". A 4m/pixel ground resolution set covering an area of about 900km² includes the landslide active Diezma region (Andalucía, Spain) and the water reserve of Francisco Abellan lake. The third set has a 3m/pixel ground resolution, covers about 100km² and maps the Famennian rocks formations, known as part of "La Calestienne", outcropping near Beauraing and Rochefort in the Namur Province (Belgium). The DEM and orthophoto's have been referenced using ground control points from satellite imagery (Spain, Belgium) and DPGS (Belgium). The quality of produced DEM were then evaluated by comparing the level and accuracy of details and surface artefacts between available topographic data (SRTM- 30m/pixel, topographic maps) and the three Stratochip sets. This evaluation showed that the models were in good correlation with existing data, and can be readily be used in geomorphology, structural and natural hazard studies.

  10. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  11. Review of the SAFARI 2000 RC-10 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Myers, Jeff; Shelton, Gary; Annegarn, Harrold; Peterson, David L. (Technical Monitor)

    2001-01-01

    This presentation will review the aerial photography collected by the NASA ER-2 aircraft during the SAFARI (Southern African Regional Science Initiative) year 2000 campaign. It will include specifications on the camera and film, and will show examples of the imagery. It will also detail the extent of coverage, and the procedures to obtain film products from the South African government. Also included will be some sample applications of aerial photography for various environmental applications, and its use in augmenting other SAFARI data sets.

  12. Preliminary assessment of aerial photography techniques for canvasback population analysis

    USGS Publications Warehouse

    Munro, R.E.; Trauger, D.L.

    1976-01-01

    Recent intensive research on the canvasback has focused attention on the need for more precise estimates of population parameters. During the 1972-75 period, various types of aerial photographing equipment were evaluated to determine the problems and potentials for employing these techniques in appraisals of canvasback populations. The equipment and procedures available for automated analysis of aerial photographic imagery were also investigated. Serious technical problems remain to be resolved, but some promising results were obtained. Final conclusions about the feasibility of operational implementation await a more rigorous analysis of the data collected.

  13. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    SciTech Connect

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected by high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.

  14. Efficient pedestrian detection from aerial vehicles with object proposals and deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2016-05-01

    As Unmanned Aerial Systems grow in numbers, pedestrian detection from aerial platforms is becoming a topic of increasing importance. By providing greater contextual information and a reduced potential for occlusion, the aerial vantage point provided by Unmanned Aerial Systems is highly advantageous for many surveillance applications, such as target detection, tracking, and action recognition. However, due to the greater distance between the camera and scene, targets of interest in aerial imagery are generally smaller and have less detail. Deep Convolutional Neural Networks (CNN's) have demonstrated excellent object classification performance and in this paper we adopt them to the problem of pedestrian detection from aerial platforms. We train a CNN with five layers consisting of three convolution-pooling layers and two fully connected layers. We also address the computational inefficiencies of the sliding window method for object detection. In the sliding window configuration, a very large number of candidate patches are generated from each frame, while only a small number of them contain pedestrians. We utilize the Edge Box object proposal generation method to screen candidate patches based on an "objectness" criterion, so that only regions that are likely to contain objects are processed. This method significantly reduces the number of image patches processed by the neural network and makes our classification method very efficient. The resulting two-stage system is a good candidate for real-time implementation onboard modern aerial vehicles. Furthermore, testing on three datasets confirmed that our system offers high detection accuracy for terrestrial pedestrian detection in aerial imagery.

  15. Interpretation of high-resolution imagery for detecting vegetation cover composition change after fuels reduction treatments in woodlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of very high resolution (VHR; ground sampling distances < ~5cm) aerial imagery to estimate site vegetation cover and to detect changes from management has been well documented. However, as the purpose of monitoring is to document change over time, the ability to detect changes from imagery a...

  16. Small UAV-Acquired, High-resolution, Georeferenced Still Imagery

    SciTech Connect

    Ryan Hruska

    2005-09-01

    Currently, small Unmanned Aerial Vehicles (UAVs) are primarily used for capturing and down-linking real-time video. To date, their role as a low-cost airborne platform for capturing high-resolution, georeferenced still imagery has not been fully utilized. On-going work within the Unmanned Vehicle Systems Program at the Idaho National Laboratory (INL) is attempting to exploit this small UAV-acquired, still imagery potential. Initially, a UAV-based still imagery work flow model was developed that includes initial UAV mission planning, sensor selection, UAV/sensor integration, and imagery collection, processing, and analysis. Components to support each stage of the work flow are also being developed. Critical to use of acquired still imagery is the ability to detect changes between images of the same area over time. To enhance the analysts’ change detection ability, a UAV-specific, GIS-based change detection system called SADI or System for Analyzing Differences in Imagery is under development. This paper will discuss the associated challenges and approaches to collecting still imagery with small UAVs. Additionally, specific components of the developed work flow system will be described and graphically illustrated using varied examples of small UAV-acquired still imagery.

  17. BOREAS Level-0 C-130 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), C-130 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The NASA C-130 Earth Resources aircraft can accommodate two mapping cameras during flight, each of which can be fitted with 6- or 12-inch focal-length lenses and black-and-white, natural-color, or color-IR film, depending upon requirements. Both cameras were often in operation simultaneously, although sometimes only the lower resolution camera was deployed. When both cameras were in operation, the higher resolution camera was often used in a more limited fashion. The acquired photography covers the period of April to September 1994. The aerial photography was delivered as rolls of large format (9 x 9 inch) color transparency prints, with imagery from multiple missions (hundreds of prints) often contained within a single roll. A total of 1533 frames were collected from the C-130 platform for BOREAS in 1994. Note that the level-0 C-130 transparencies are not contained on the BOREAS CD-ROM set. An inventory file is supplied on the CD-ROM to inform users of all the data that were collected. Some photographic prints were made from the transparencies. In addition, BORIS staff digitized a subset of the tranparencies and stored the images in JPEG format. The CD-ROM set contains a small subset of the collected aerial photography that were the digitally scanned and stored as JPEG files for most tower and auxiliary sites in the NSA and SSA. See Section 15 for information about how to acquire additional imagery.

  18. Use of unmanned aerial vehicles (UAV) for urban tree inventories

    NASA Astrophysics Data System (ADS)

    Ritter, Brian A.

    In contrast to standard aerial imagery, unmanned aerial systems (UAS) utilize recent technological advances to provide an affordable alternative for imagery acquisition. Increased value can be realized through clarity and detail providing higher resolution (2-5 cm) over traditional products. Many natural resource disciplines such as urban forestry will benefit from UAS. Tree inventories for risk assessment, biodiversity, planning, and design can be efficiently achieved with the UAS. Recent advances in photogrammetric processing have proved automated methods for three dimensional rendering of aerial imagery. Point clouds can be generated from images providing additional benefits. Association of spatial locational information within the point cloud can be used to produce elevation models i.e. digital elevation, digital terrain and digital surface. Taking advantage of this point cloud data, additional information such as tree heights can be obtained. Several software applications have been developed for LiDAR data which can be adapted to utilize UAS point clouds. This study examines solutions to provide tree inventory and heights from UAS imagery. Imagery taken with a micro-UAS was processed to produce a seamless orthorectified image. This image provided an accurate way to obtain a tree inventory within the study boundary. Utilizing several methods, tree height models were developed with variations in spatial accuracy. Model parameters were modified to offset spatial inconsistencies providing statistical equality of means. Statistical results (p = 0.756) with a level of significance (α = 0.01) between measured and modeled tree height means resulted with 82% of tree species obtaining accurate tree heights. Within this study, the UAS has proven to be an efficient tool for urban forestry providing a cost effective and reliable system to obtain remotely sensed data.

  19. Updating Maps Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  20. Yield mapping of high-biomass sorghum with aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To reach the goals laid out by the U.S. Government for displacing fossil fuels with biofuels, agricultural production of dedicated biomass crops is required. High-biomass sorghum is advantageous across wide regions because it requires less water per unit dry biomass and can produce very high biomass...

  1. High-biomass sorghum yield estimate with aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract. To reach the goals laid out by the U.S. Government for displacing fossil fuels with biofuels, agricultural production of dedicated biomass crops is required. High-biomass sorghum is advantageous across wide regions because it requires less water per unit dry biomass and can produce very hi...

  2. Aerial Photography Summary Record System

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  3. Within-field Corn Nitrogen Response Related to Aerial Photograph Color

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture management of nitrogen (N) using aerial imagery of corn [Zea mays L.] canopy color has been a proposed strategy to understand crop N health and base within-season N fertilizer application rates. The objective of this study was to evaluate at field scale the relationship between...

  4. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  5. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  6. Landscape-scale geospatial research utilizing low elevation aerial photography generated with commercial unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Lipo, C. P.; Lee, C.; Wechsler, S.

    2012-12-01

    With the ability to generate on demand high-resolution imagery across landscapes, unmanned aerial systems (UAS) are increasingly become the tools of choice for geospatial researchers. At CSULB, we have implemented a number of aerial systems in order to conduct archaeological, vegetation and terrain analyses. The platforms include the commercially available X100 by Gatewing, a hobby based aircraft, kites, and tethered blimps. From our experience, each platform has advantages and disadvantages n applicability int eh field and derived imagery. The X100, though comparatively more costly, produces images with excellent coverage of areas of interest and can fly in a wide range of weather conditions. The hobby plane solutions are low-cost and flexible in their configuration but their relative lightweight makes them difficult to fly in windy conditions and the sets of images produced can widely vary. The tethered blimp has a large payload and can fly under many conditions but its ability to systematically cover large areas is very limited. Kites are extremely low-cost but have similar limitations to blimps for area coverage and limited payload capabilities. Overall, we have found the greatest return for our investment from the Gatewing X100, despite its relatively higher cost, due to the quality of the images produced. Developments in autopilots, however, may improve the hobby aircraft solution and allow X100 like products to be produced in the near future. Results of imagery and derived products from these UAS missions will be presented and evaluated. Assessment of the viability of these UAS-products will inform the research community of their applicability to a range of applications, and if viable, could provide a lower cost alternative to other image acquisition methods.

  7. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  8. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  9. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  10. Application of airborne thermal imagery to surveys of Pacific walrus

    USGS Publications Warehouse

    Burn, D.M.; Webber, M.A.; Udevitz, M.S.

    2006-01-01

    We conducted tests of airborne thermal imagery of Pacific walrus to determine if this technology can be used to detect walrus groups on sea ice and estimate the number of walruses present in each group. In April 2002 we collected thermal imagery of 37 walrus groups in the Bering Sea at spatial resolutions ranging from 1-4 m. We also collected high-resolution digital aerial photographs of the same groups. Walruses were considerably warmer than the background environment of ice, snow, and seawater and were easily detected in thermal imagery. We found a significant linear relation between walrus group size and the amount of heat measured by the thermal sensor at all 4 spatial resolutions tested. This relation can be used in a double-sampling framework to estimate total walrus numbers from a thermal survey of a sample of units within an area and photographs from a subsample of the thermally detected groups. Previous methods used in visual aerial surveys of Pacific walrus have sampled only a small percentage of available habitat, resulting in population estimates with low precision. Results of this study indicate that an aerial survey using a thermal sensor can cover as much as 4 times the area per hour of flight time with greater reliability than visual observation.

  11. A comparison of real and simulated airborne multisensor imagery

    NASA Astrophysics Data System (ADS)

    Bloechl, Kevin; De Angelis, Chris; Gartley, Michael; Kerekes, John; Nance, C. Eric

    2014-06-01

    This paper presents a methodology and results for the comparison of simulated imagery to real imagery acquired with multiple sensors hosted on an airborne platform. The dataset includes aerial multi- and hyperspectral imagery with spatial resolutions of one meter or less. The multispectral imagery includes data from an airborne sensor with three-band visible color and calibrated radiance imagery in the long-, mid-, and short-wave infrared. The airborne hyperspectral imagery includes 360 bands of calibrated radiance and reflectance data spanning 400 to 2450 nm in wavelength. Collected in September 2012, the imagery is of a park in Avon, NY, and includes a dirt track and areas of grass, gravel, forest, and agricultural fields. A number of artificial targets were deployed in the scene prior to collection for purposes of target detection, subpixel detection, spectral unmixing, and 3D object recognition. A synthetic reconstruction of the collection site was created in DIRSIG, an image generation and modeling tool developed by the Rochester Institute of Technology, based on ground-measured reflectance data, ground photography, and previous airborne imagery. Simulated airborne images were generated using the scene model, time of observation, estimates of the atmospheric conditions, and approximations of the sensor characteristics. The paper provides a comparison between the empirical and simulated images, including a comparison of achieved performance for classification, detection and unmixing applications. It was found that several differences exist due to the way the image is generated, including finite sampling and incomplete knowledge of the scene, atmospheric conditions and sensor characteristics. The lessons learned from this effort can be used in constructing future simulated scenes and further comparisons between real and simulated imagery.

  12. Assessment of Photogrammetric Mapping Accuracy Based on Variation Flying Altitude Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Udin, W. S.; Ahmad, A.

    2014-02-01

    Photogrammetry is the earliest technique used to collect data for topographic mapping. The recent development in aerial photogrammetry is the used of large format digital aerial camera for producing topographic map. The aerial photograph can be in the form of metric or non-metric imagery. The cost of mapping using aerial photogrammetry is very expensive. In certain application, there is a need to map small area with limited budget. Due to the development of technology, small format aerial photogrammetry technology has been introduced and offers many advantages. Currently, digital map can be extracted from digital aerial imagery of small format camera mounted on light weight platform such as unmanned aerial vehicle (UAV). This study utilizes UAV system for large scale stream mapping. The first objective of this study is to investigate the use of light weight rotary-wing UAV for stream mapping based on different flying height. Aerial photograph were acquired at 60% forward lap and 30% sidelap specifications. Ground control points and check points were established using Total Station technique. The digital camera attached to the UAV was calibrated and the recovered camera calibration parameters were then used in the digital images processing. The second objective is to determine the accuracy of the photogrammetric output. In this study, the photogrammetric output such as stereomodel in three dimensional (3D), contour lines, digital elevation model (DEM) and orthophoto were produced from a small stream of 200m long and 10m width. The research output is evaluated for planimetry and vertical accuracy using root mean square error (RMSE). Based on the finding, sub-meter accuracy is achieved and the RMSE value decreases as the flying height increases. The difference is relatively small. Finally, this study shows that UAV is very useful platform for obtaining aerial photograph and subsequently used for photogrammetric mapping and other applications.

  13. Processing of SeaMARC swath sonar imagery

    SciTech Connect

    Pratson, L.; Malinverno, A.; Edwards, M.; Ryan, W. )

    1990-05-01

    Side-scan swath sonar systems have become an increasingly important means of mapping the sea floor. Two such systems are the deep-towed, high-resolution SeaMARC I sonar, which has a variable swath width of up to 5 km, and the shallow-towed, lower-resolution SeaMARC II sonar, which has a swath width of 10 km. The sea-floor imagery of acoustic backscatter output by the SeaMARC sonars is analogous to aerial photographs and airborne side-looking radar images of continental topography. Geologic interpretation of the sea-floor imagery is greatly facilitated by image processing. Image processing of the digital backscatter data involves removal of noise by median filtering, spatial filtering to remove sonar scans of anomalous intensity, across-track corrections to remove beam patterns caused by nonuniform response of the sonar transducers to changes in incident angle, and contrast enhancement by histogram equalization to maximize the available dynamic range. Correct geologic interpretation requires submarine structural fabrics to be displayed in their proper locations and orientations. Geographic projection of sea-floor imagery is achieved by merging the enhanced imagery with the sonar vehicle navigation and correcting for vehicle attitude. Co-registration of bathymetry with sonar imagery introduces sea-floor relief and permits the imagery to be displayed in three-dimensional perspectives, furthering the ability of the marine geologist to infer the processes shaping formerly hidden subsea terrains.

  14. Forestry, geology and hydrological investigations from ERTS-1 imagery in two areas of Ecuador, South America

    NASA Technical Reports Server (NTRS)

    Moreno, N. V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. In the Oriente area, well-drained forests containing commercially valuable hardwoods can be recognized confidently and delineated quickly on the ERTS imagery. In the tropical rainforest, ERTS can provide an abundance of inferential information about large scale geologic structures. ERTS imagery is better than normal aerial photography for recognizing linears. The imagery is particularly useful for updating maps of the distributary system of the Guagas River Basin and of any other river with a similarly rapid changing channel pattern.

  15. Applicability of ERTS-1 imagery to the study of suspended sediment and aquatic fronts

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Srna, R.; Treasure, W.; Otley, M.

    1973-01-01

    Imagery from three successful ERTS-1 passes over the Delaware Bay and Atlantic Coastal Region have been evaluated to determine visibility of aquatic features. Data gathered from ground truth teams before and during the overflights, in conjunction with aerial photographs taken at various altitudes, were used to interpret the imagery. The overpasses took place on August 16, October 10, 1972, and January 26, 1973, with cloud cover ranging from about zero to twenty percent. (I.D. Nos. 1024-15073, 1079-15133, and 1187-15140). Visual inspection, density slicing and multispectral analysis of the imagery revealed strong suspended sediment patterns and several distinct types of aquatic interfaces or frontal systems.

  16. Automatic Building Extraction and Roof Reconstruction in 3k Imagery Based on Line Segments

    NASA Astrophysics Data System (ADS)

    Köhn, A.; Tian, J.; Kurz, F.

    2016-06-01

    We propose an image processing workflow to extract rectangular building footprints using georeferenced stereo-imagery and a derivative digital surface model (DSM) product. The approach applies a line segment detection procedure to the imagery and subsequently verifies identified line segments individually to create a footprint on the basis of the DSM. The footprint is further optimized by morphological filtering. Towards the realization of 3D models, we decompose the produced footprint and generate a 3D point cloud from DSM height information. By utilizing the robust RANSAC plane fitting algorithm, the roof structure can be correctly reconstructed. In an experimental part, the proposed approach has been performed on 3K aerial imagery.

  17. A qualitative evaluation of Landsat imagery of Australian rangelands

    USGS Publications Warehouse

    Graetz, R.D.; Carneggie, David M.; Hacker, R.; Lendon, C.; Wilcox, D.G.

    1976-01-01

    The capability of multidate, multispectral ERTS-1 imagery of three different rangeland areas within Australia was evaluated for its usefulness in preparing inventories of rangeland types, assessing on a broad scale range condition within these rangeland types, and assessing the response of rangelands to rainfall events over large areas. For the three divergent rangeland test areas, centered on Broken W, Alice Springs and Kalgoorlie, detailed interpretation of the imagery only partially satisfied the information requirements set. It was most useful in the Broken Hill area where fenceline contrasts in range condition were readily visible. At this and the other sites an overstorey of trees made interpretation difficult. Whilst the low resolution characteristics and the lack of stereoscopic coverage hindered interpretation it was felt that this type of imagery with its vast coverage, present low cost and potential for repeated sampling is a useful addition to conventional aerial photography for all rangeland types.

  18. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  19. Multistage, Multiband and sequential imagery to identify and quantify non-forest vegetation resources

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.

    1971-01-01

    Analysis and recognition processing of multispectral scanner imagery for plant community classification and interpretations of various film-filter-scale aerial photographs are reported. Data analyses and manuscript preparation of research on microdensitometry for plant community and component identification and remote estimates of biomass are included.

  20. Mapping Broom Snakeweed Through Image Analysis of Color-infrared Photography and Digital Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted on a south Texas rangeland area to evaluate aerial color-infrared (CIR) photography and CIR digital imagery combined with unsupervised image analysis techniques to map broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rusby]. Accuracy assessments performed on compute...

  1. Multisensor data fusion of remotely sensed imagery for crop field mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wide variety of remote sensing data from airborne and satellite platforms is available for site-specific management in agricultural application and production. Aerial imaging system may offer less expensive and high spatial resolution imagery with Near Infra-Red, Red, Green and Blue spectral waveb...

  2. Prediction of senescent rangeland canopy structural attributes with airborne hyperspectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canopy structural and chemical data are needed for senescent, mixed-grass prairie landscapes in autumn, yet models driven by image data are lacking for rangelands dominated by non-photosynthetically active vegetation (NPV). Here, we report how aerial hyperspectral imagery might be modeled to predic...

  3. Imagery Integration Team

    NASA Technical Reports Server (NTRS)

    Calhoun, Tracy; Melendrez, Dave

    2014-01-01

    The Human Exploration Science Office (KX) provides leadership for NASA's Imagery Integration (Integration 2) Team, an affiliation of experts in the use of engineering-class imagery intended to monitor the performance of launch vehicles and crewed spacecraft in flight. Typical engineering imagery assessments include studying and characterizing the liftoff and ascent debris environments; launch vehicle and propulsion element performance; in-flight activities; and entry, landing, and recovery operations. Integration 2 support has been provided not only for U.S. Government spaceflight (e.g., Space Shuttle, Ares I-X) but also for commercial launch providers, such as Space Exploration Technologies Corporation (SpaceX) and Orbital Sciences Corporation, servicing the International Space Station. The NASA Integration 2 Team is composed of imagery integration specialists from JSC, the Marshall Space Flight Center (MSFC), and the Kennedy Space Center (KSC), who have access to a vast pool of experience and capabilities related to program integration, deployment and management of imagery assets, imagery data management, and photogrammetric analysis. The Integration 2 team is currently providing integration services to commercial demonstration flights, Exploration Flight Test-1 (EFT-1), and the Space Launch System (SLS)-based Exploration Missions (EM)-1 and EM-2. EM-2 will be the first attempt to fly a piloted mission with the Orion spacecraft. The Integration 2 Team provides the customer (both commercial and Government) with access to a wide array of imagery options - ground-based, airborne, seaborne, or vehicle-based - that are available through the Government and commercial vendors. The team guides the customer in assembling the appropriate complement of imagery acquisition assets at the customer's facilities, minimizing costs associated with market research and the risk of purchasing inadequate assets. The NASA Integration 2 capability simplifies the process of securing one

  4. Auditory imagery: empirical findings.

    PubMed

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  5. Aerial thermography studies of power plant heated lakes

    SciTech Connect

    Villa-Aleman, E.

    2000-01-26

    Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or skin water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center (SRTC) used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to produce a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.

  6. Synthesis of imagery with high spatial and spectral resolution from multiple image sources

    NASA Astrophysics Data System (ADS)

    Filiberti, Daniel P.; Marsh, Stuart E.; Schowengerdt, Robert A.

    1994-08-01

    We demonstrate how a realistic scene with high spatial and spectral resolution can be synthesized from color aerial photography and AVIRIS hyperspectral imagery. A review of techniques for image fusion is first presented. Image processing techniques were developed to extract a digital elevation model from stereo aerial photography in order to correct temporal shading differences between two image sets and to fuse aerial photography with AVIRIS imagery. A unique contribution is the explicit inclusion of corrections for topography and differing solar angles in fusion process. Color infrared photography and an AVIRIS image from a site near Cuprite, Nevada, were used as a test of an improved high-frequency modulation technique for the creation of hybrid images. Comparison of spectra extracted from the synthesized image with library spectra demonstrated that our methodology successfully preserved the spectral signatures of the ground surface.

  7. Organizing motor imageries.

    PubMed

    Hanakawa, Takashi

    2016-03-01

    Over the last few decades, motor imagery has attracted the attention of researchers as a prototypical example of 'embodied cognition' and also as a basis for neuro-rehabilitation and brain-machine interfaces. The current definition of motor imagery is widely accepted, but it is important to note that various abilities rather than a single cognitive entity are dealt with under a single term. Here, motor imagery has been characterized based on four factors: (1) motor control, (2) explicitness, (3) sensory modalities, and (4) agency. Sorting out these factors characterizing motor imagery may explain some discrepancies and variability in the findings from previous studies and will help to optimize a study design in accordance with the purpose of each study in the future. PMID:26602980

  8. MISR Field Campaign Imagery

    Atmospheric Science Data Center

    2014-07-23

      MISR Support of Field Campaigns Aerosol Arctic Research of the Composition of the ... Daily ARCTAS Aerosol Polar Imagery ​Gulf of Mexico Atmospheric Composition and Climate Study ( GoMACCS ) ​July - ...

  9. Applications of thermal infrared imagery for energy conservation and environmental surveys

    NASA Technical Reports Server (NTRS)

    Carney, J. R.; Vogel, T. C.; Howard, G. E., Jr.; Love, E. R.

    1977-01-01

    The survey procedures, developed during the winter and summer of 1976, employ color and color infrared aerial photography, thermal infrared imagery, and a handheld infrared imaging device. The resulting imagery was used to detect building heat losses, deteriorated insulation in built-up type building roofs, and defective underground steam lines. The handheld thermal infrared device, used in conjunction with the aerial thermal infrared imagery, provided a method for detecting and locating those roof areas that were underlain with wet insulation. In addition, the handheld infrared device was employed to conduct a survey of a U.S. Army installation's electrical distribution system under full operating loads. This survey proved to be cost effective procedure for detecting faulty electrical insulators and connections that if allowed to persist could have resulted in both safety hazards and loss in production.

  10. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  11. Exploration applications of satellite imagery in mature basins - A summation

    SciTech Connect

    Berger, Z. )

    1991-08-01

    A series of examples supported by surface and subsurface controls illustrates procedures used to integrate satellite imagery interpretation into a conventional exploration program, and the potential contribution of such an approach to the recognition of new hydrocarbon plays in mature basins. Integrated analysis of satellite imagery data consists of four major steps. The first step focuses on the recognition of style, trend, and timing of deformation of exposed structures located at the basin interior or around its margins. This information is obtained through an integrated analysis of satellite imagery data, stereo aerial photography, surface geological mapping, and field observations. The second step consists of integrating the satellite imagery with gravity and magnetic data to recognize obscured and/or buried structures. The third step involves the analysis of available seismic data which is specifically processes to enhance subtle basement topography in order to determine influences on reservoir quality. In the fourth step, subsurface structure, isopach, show, and pool maps derived from available well information are integrated into the structural interpretation. These four analytical steps are demonstrated with examples form the Powder River basin, Western Canada basin, Paris basin, and Central basin platform of west Texas. In all of these highly mature basins, it is easy to demonstrate that (1) hydrocarbon migration and accumulation was largely controlled by subtle basement structures, and (2) these structures can be detected through the integrated analysis of satellite imagery.

  12. FINDINGS ON THE USE OF LANDSAT-3 RETURN BEAM VIDICON IMAGERY FOR DETECTING LAND USE AND LAND COVER CHANGES.

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1983-01-01

    The spatial resolution of imagery from the return beam vidicon (RBV) camera aboard the Landsat-3 satellite suggested that such data might prove useful in inspecting land use and land cover maps. In this study, a 1972 land use and land cover map derived from aerial photographs is compared with a 1978 Landsat RBV image to delineate areas of change. Findings indicate RBV imagery useful in establishing the fact of change and in identifying gross category changes.

  13. Photogrammetry of the Viking Lander imagery

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.; Schafer, F. J.

    1982-01-01

    The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.

  14. Thermal imagery for census of ungulates

    NASA Technical Reports Server (NTRS)

    Wride, M. C.; Baker, K.

    1977-01-01

    A Daedalus thermal linescanner mounted in a light single engine aircraft was used to image the entire 270 square kilometers within the fenced perimeter of ElK Island Park, Alberta, Canada. The data were collected during winter, 1976 in morning and midday (overcast conditions) processed and analyzed to obtain a number for total ungulates. Five different ungulate species were present during the survey. Ungulates were easily observed during the analysis of linescanner imagery and the total number of ungulates was established at 2175 compared to figures of 1010 and 1231 for visual method aerial survey results of the same area that year. It was concluded that the scanner was much more accurate and precise for census of ungulates than visual techniques.

  15. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  16. AERIAL PHOTOGRAPHY AND LEGAL APPLICATIONS

    EPA Science Inventory

    Aerial photographic interpretation is the process of examining objects on aerial photographs and determining their significance. t is often defined as both art and science because the process, and the quality of the derived information, is often a qualitative nature and much depe...

  17. Multiscale assessment of green leaf area in a semi-arid rangeland with a small unmanned aerial vehicle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial variability in green leaf cover of a western rangeland was studied by comparing field measurements on 50 m crossed transects to aerial and satellite imagery. The normalized difference vegetation index was calculated for multiple 2 cm resolution images collected over the field transects with ...

  18. Thermal Imaging Using Small-Aerial Platforms for Assessment of Crop Water Stress in Humid Subtropical Climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf- or canopy-to-air temperature difference (hereafter called CATD) can provide information on crop energy status. Thermal imagery from agricultural aircraft or Unmanned Aerial Vehicles (UAVs) have the potential of providing thermal data for calculation of CATD and visual snapshots that can guide ...

  19. Measuring creative imagery abilities

    PubMed Central

    Jankowska, Dorota M.; Karwowski, Maciej

    2015-01-01

    Over the decades, creativity and imagination research developed in parallel, but they surprisingly rarely intersected. This paper introduces a new theoretical model of creative visual imagination, which bridges creativity and imagination research, as well as presents a new psychometric instrument, called the Test of Creative Imagery Abilities (TCIA), developed to measure creative imagery abilities understood in accordance with this model. Creative imagination is understood as constituted by three interrelated components: vividness (the ability to create images characterized by a high level of complexity and detail), originality (the ability to produce unique imagery), and transformativeness (the ability to control imagery). TCIA enables valid and reliable measurement of these three groups of abilities, yielding the general score of imagery abilities and at the same time making profile analysis possible. We present the results of nine studies on a total sample of more than 1700 participants, showing the factor structure of TCIA using confirmatory factor analysis, as well as provide data confirming this instrument's validity and reliability. The availability of TCIA for interested researchers may result in new insights and possibilities of integrating the fields of creativity and imagination science. PMID:26539140

  20. Measuring creative imagery abilities.

    PubMed

    Jankowska, Dorota M; Karwowski, Maciej

    2015-01-01

    Over the decades, creativity and imagination research developed in parallel, but they surprisingly rarely intersected. This paper introduces a new theoretical model of creative visual imagination, which bridges creativity and imagination research, as well as presents a new psychometric instrument, called the Test of Creative Imagery Abilities (TCIA), developed to measure creative imagery abilities understood in accordance with this model. Creative imagination is understood as constituted by three interrelated components: vividness (the ability to create images characterized by a high level of complexity and detail), originality (the ability to produce unique imagery), and transformativeness (the ability to control imagery). TCIA enables valid and reliable measurement of these three groups of abilities, yielding the general score of imagery abilities and at the same time making profile analysis possible. We present the results of nine studies on a total sample of more than 1700 participants, showing the factor structure of TCIA using confirmatory factor analysis, as well as provide data confirming this instrument's validity and reliability. The availability of TCIA for interested researchers may result in new insights and possibilities of integrating the fields of creativity and imagination science. PMID:26539140

  1. A temporal and ecological analysis of the Huntington Beach Wetlands through an unmanned aerial system remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Rafiq, Talha

    Wetland monitoring and preservation efforts have the potential to be enhanced with advanced remote sensing acquisition and digital image analysis approaches. Progress in the development and utilization of Unmanned Aerial Systems (UAS) and Unmanned Aerial Vehicles (UAV) as remote sensing platforms has offered significant spatial and temporal advantages over traditional aerial and orbital remote sensing platforms. Photogrammetric approaches to generate high spatial resolution orthophotos of UAV acquired imagery along with the UAV's low-cost and temporally flexible characteristics are explored. A comparative analysis of different spectral based land cover maps derived from imagery captured using UAV, satellite, and airplane platforms provide an assessment of the Huntington Beach Wetlands. This research presents a UAS remote sensing methodology encompassing data collection, image processing, and analysis in constructing spectral based land cover maps to augment the efforts of the Huntington Beach Wetlands Conservancy by assessing ecological and temporal changes at the Huntington Beach Wetlands.

  2. Ultramap v3 - a Revolution in Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.

    2012-07-01

    In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.

  3. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    PubMed Central

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  4. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  5. Imagery analysis and the need for standards

    NASA Astrophysics Data System (ADS)

    Grant, Barbara G.

    2014-09-01

    While efforts within the optics community focus on the development of high-quality systems and data products, comparatively little attention is paid to their use. Our standards for verification and validation are high; but in some user domains, standards are either lax or do not exist at all. In forensic imagery analysis, for example, standards exist to judge image quality, but do not exist to judge the quality of an analysis. In litigation, a high quality analysis is by default the one performed by the victorious attorney's expert. This paper argues for the need to extend quality standards into the domain of imagery analysis, which is expected to increase in national visibility and significance with the increasing deployment of unmanned aerial vehicle—UAV, or "drone"—sensors in the continental U. S.. It argues that like a good radiometric calibration, made as independent of the calibrated instrument as possible, a good analysis should be subject to standards the most basic of which is the separation of issues of scientific fact from analysis results.

  6. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  7. Ground-Cover Measurements: Assessing Correlation Among Aerial and Ground-Based Methods

    NASA Astrophysics Data System (ADS)

    Booth, D. Terrance; Cox, Samuel E.; Meikle, Tim; Zuuring, Hans R.

    2008-12-01

    Wyoming’s Green Mountain Common Allotment is public land providing livestock forage, wildlife habitat, and unfenced solitude, amid other ecological services. It is also the center of ongoing debate over USDI Bureau of Land Management’s (BLM) adjudication of land uses. Monitoring resource use is a BLM responsibility, but conventional monitoring is inadequate for the vast areas encompassed in this and other public-land units. New monitoring methods are needed that will reduce monitoring costs. An understanding of data-set relationships among old and new methods is also needed. This study compared two conventional methods with two remote sensing methods using images captured from two meters and 100 meters above ground level from a camera stand (a ground, image-based method) and a light airplane (an aerial, image-based method). Image analysis used SamplePoint or VegMeasure software. Aerial methods allowed for increased sampling intensity at low cost relative to the time and travel required by ground methods. Costs to acquire the aerial imagery and measure ground cover on 162 aerial samples representing 9000 ha were less than 3000. The four highest correlations among data sets for bare ground—the ground-cover characteristic yielding the highest correlations (r)—ranged from 0.76 to 0.85 and included ground with ground, ground with aerial, and aerial with aerial data-set associations. We conclude that our aerial surveys are a cost-effective monitoring method, that ground with aerial data-set correlations can be equal to, or greater than those among ground-based data sets, and that bare ground should continue to be investigated and tested for use as a key indicator of rangeland health.

  8. Gypsy moth defoliation assessment: Forest defoliation in detectable from satellite imagery. [New England, New York, Pennsylvania, and New Jersey

    NASA Technical Reports Server (NTRS)

    Moore, H. J. (Principal Investigator); Rohde, W. G.

    1975-01-01

    The author has identified the following significant results. ERTS-1 imagery obtained over eastern Pennsylvania during July 1973, indicates that forest defoliation is detectable from satellite imagery and correlates well with aerial visual survey data. It now appears that two damage classes (heavy and moderate-light) and areas of no visible defoliation can be detected and mapped from properly prepared false composite imagery. In areas where maple is the dominant species or in areas of small woodlots interspersed with agricultural areas, detection and subsequent mapping is more difficult.

  9. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  10. Low-altitude aerial color digital photographic survey of the San Andreas Fault

    USGS Publications Warehouse

    Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.

    2010-01-01

    Ever since 1858, when Gaspard-Félix Tournachon (pen name Félix Nadar) took the first aerial photograph (Professional Aerial Photographers Association 2009), the scientific value and popular appeal of such pictures have been widely recognized. Indeed, Nadar patented the idea of using aerial photographs in mapmaking and surveying. Since then, aerial imagery has flourished, eventually making the leap to space and to wavelengths outside the visible range. Yet until recently, the availability of such surveys has been limited to technical organizations with significant resources. Geolocation required extensive time and equipment, and distribution was costly and slow. While these situations still plague older surveys, modern digital photography and lidar systems acquire well-calibrated and easily shared imagery, although expensive, platform-specific software is sometimes still needed to manage and analyze the data. With current consumer-level electronics (cameras and computers) and broadband internet access, acquisition and distribution of large imaging data sets are now possible for virtually anyone. In this paper we demonstrate a simple, low-cost means of obtaining useful aerial imagery by reporting two new, high-resolution, low-cost, color digital photographic surveys of selected portions of the San Andreas fault in California. All pictures are in standard jpeg format. The first set of imagery covers a 92-km-long section of the fault in Kern and San Luis Obispo counties and includes the entire Carrizo Plain. The second covers the region from Lake of the Woods to Cajon Pass in Kern, Los Angeles, and San Bernardino counties (151 km) and includes Lone Pine Canyon soon after the ground was largely denuded by the Sheep Fire of October 2009. The first survey produced a total of 1,454 oblique digital photographs (4,288 x 2,848 pixels, average 6 Mb each) and the second produced 3,762 nadir images from an elevation of approximately 150 m above ground level (AGL) on the

  11. The Imagery-Creativity Connection.

    ERIC Educational Resources Information Center

    Daniels-McGhee, Susan; Davis, Gary A.

    1994-01-01

    This paper reviews historical highlights of the imagery-creativity connection, including early and contemporary accounts, along with notable examples of imagery in the creative process. It also looks at cross-modal imagery (synesthesia), a model of image-based creativity and the creative process, and implications for strengthening creativity by…

  12. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F., Jr.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  13. Photocopy of aerial photograph, Pacific Air Industries, Flight 123V, June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of aerial photograph, Pacific Air Industries, Flight 123V, June 29, 1960 (University of California, Santa Barbara, Map and Imagery Collection) PORTION OF IRVINE RANCH SHOWING SITE CA-2275-A IN LOWER LEFT QUADRANT AND SITE CA-2275-B IN UPPER RIGHT QUADRANT (see separate photograph index for 2275-B) - Irvine Ranch Agricultural Headquarters, Carillo Tenant House, Southwest of Intersection of San Diego & Santa Ana Freeways, Irvine, Orange County, CA

  14. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    NASA Astrophysics Data System (ADS)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  15. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  16. Applications of Landsat imagery to a coastal inlet stability study

    NASA Technical Reports Server (NTRS)

    Wang, Y.-H.

    1981-01-01

    Polcyn and Lyzenga (1975) and Middleton and Barber (1976) have demonstrated that it is possible to correlate the radiance values of a multispectral imagery, such as Landsat imagery, with the depth related information. The present study is one more example of such an effort. Two sets of Landsat magnetic tape were obtained and displayed on the screen of an Image-100 computer. Spectral analysis was performed to produce various signatures, their extent, and location. Subsequent ground truth observations and measurements were gathered by means of hydrographic surveys and low altitude aerial photographs for interpretation and calibration of the Landsat data. Finally, a coastal engineering assessment based on the Landsat data was made. Recommendations regarding the navigational canal alignment and dredging practice are presented in the light of inlet stability.

  17. Height Gradient Approach for Occlusion Detection in Uav Imagery

    NASA Astrophysics Data System (ADS)

    Oliveira, H. C.; Habib, A. F.; Dal Poz, A. P.; Galo, M.

    2015-08-01

    The use of Unmanned Aerial Vehicle (UAV) significantly increased in the last years. It is used for several different applications, such as mapping, publicity, security, natural disasters assistance, environmental monitoring, 3D building model generation, cadastral survey, etc. The imagery obtained by this kind of system has a great potential. To use these images in true orthophoto generation projects related to urban scenes or areas where buildings are present, it is important to consider the occlusion caused by surface height variation, platform attitude, and perspective projection. Occlusions in UAV imagery are usually larger than in conventional airborne dataset due to the low-altitude and excessive change in orientation due to the low-weight and wind effects during the flight mission. Therefore, this paper presents a method for occlusion detection together with some obtained results for images acquired by a UAV platform. The proposed method shows potential in occlusion detection and true orthophoto generation.

  18. Aerial-Photointerpretation of landslides along the Ohio and Mississippi rivers

    USGS Publications Warehouse

    Su, W.-J.; Stohr, C.

    2000-01-01

    A landslide inventory was conducted along the Ohio and Mississippi rivers in the New Madrid Seismic Zone of southern Illinois, between the towns of Olmsted and Chester, Illinois. Aerial photography and field reconnaissance identified 221 landslides of three types: rock/debris falls, block slides, and undifferentiated rotational/translational slides. Most of the landslides are small- to medium-size, ancient rotational/translational features partially ob-scured by vegetation and modified by weathering. Five imagery sources were interpreted for landslides: 1:250,000-scale side-looking airborne radar (SLAR); 1:40,000-scale, 1:20,000-scale, 1:6,000-scale, black and white aerial photography; and low altitude, oblique 35-mm color photography. Landslides were identified with three levels of confidence on the basis of distinguishing characteristics and ambiguous indicators. SLAR imagery permitted identification of a 520 hectare mega-landslide which would not have been identified on medium-scale aerial photography. The leaf-off, 35-mm color, oblique photography provided the best imagery for confident interpretation of detailed features needed for smaller landslides.

  19. Classification of wetlands vegetation using small scale color infrared imagery

    NASA Technical Reports Server (NTRS)

    Williamson, F. S. L.

    1975-01-01

    A classification system for Chesapeake Bay wetlands was derived from the correlation of film density classes and actual vegetation classes. The data processing programs used were developed by the Laboratory for the Applications of Remote Sensing. These programs were tested for their value in classifying natural vegetation, using digitized data from small scale aerial photography. Existing imagery and the vegetation map of Farm Creek Marsh were used to determine the optimal number of classes, and to aid in determining if the computer maps were a believable product.

  20. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  1. A study of the effects of degraded imagery on tactical 3D model generation using structure-from-motion

    NASA Astrophysics Data System (ADS)

    Bolick, Leslie; Harguess, Josh

    2016-05-01

    An emerging technology in the realm of airborne intelligence, surveillance, and reconnaissance (ISR) systems is structure-from-motion (SfM), which enables the creation of three-dimensional (3D) point clouds and 3D models from two-dimensional (2D) imagery. There are several existing tools, such as VisualSFM and open source project OpenSfM, to assist in this process, however, it is well-known that pristine imagery is usually required to create meaningful 3D data from the imagery. In military applications, such as the use of unmanned aerial vehicles (UAV) for surveillance operations, imagery is rarely pristine. Therefore, we present an analysis of structure-from-motion packages on imagery that has been degraded in a controlled manner.

  2. Optimizing view/illumination geometry for terrestrial features using Space Shuttle and aerial polarimetry

    NASA Technical Reports Server (NTRS)

    Israel, Steven A.; Holly, Mark H.; Whitehead, Victor S.

    1992-01-01

    This paper describes to relationship of polarimetric observations from orbital and aerial platforms and the determination optimum sun-target-sensor geometry. Polarimetric observations were evaluated for feature discrimination. The Space Shuttle experiment was performed using two boresighted Hasselblad 70 mm cameras with identical settings with linear polarizing filters aligned orthogonally about the optic axis. The aerial experiment was performed using a single 35 mm Nikon FE2 and rotating the linear polarizing filter 90 deg to acquire both minimum and maximum photographs. Characteristic curves were created by covertype and waveband for both aerial and Space Shuttle imagery. Though significant differences existed between the two datasets, the observed polarimetric signatures were unique and separable.

  3. Digital reproduction of historical aerial photographic prints for preserving a deteriorating archive

    USGS Publications Warehouse

    Luman, D.E.; Stohr, C.; Hunt, L.

    1997-01-01

    Aerial photography from the 1920s and 1930s is a unique record of historical information used by government agencies, surveyors, consulting scientists and engineers, lawyers, and individuals for diverse purposes. Unfortunately, the use of the historical aerial photographic prints has resulted in their becoming worn, lost, and faded. Few negatives exist for the earliest photography. A pilot project demonstrated that high-quality, precision scanning of historical aerial photography is an appealing alternative to traditional methods for reproduction. Optimum sampling rate varies from photograph to photograph, ranging between 31 and 42 ??m/pixel for the USDA photographs tested. Inclusion of an index, such as a photomosaic or gazetteer, and ability to view the imagery promptly upon request are highly desirable.

  4. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team.

    PubMed

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-01-01

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus' estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling. PMID:27618060

  5. The Potential of Unmanned Aerial Vehicle for Large Scale Mapping of Coastal Area

    NASA Astrophysics Data System (ADS)

    Darwin, N.; Ahmad, A.; Zainon, O.

    2014-02-01

    Many countries in the tropical region are covered with cloud for most of the time, hence, it is difficult to get clear images especially from high resolution satellite imagery. Aerial photogrammetry can be used but most of the time the cloud problem still exists. Today, this problem could be solved using a system known as unmanned aerial vehicle (UAV) where the aerial images can be acquired at low altitude and the system can fly under the cloud. The UAV system could be used in various applications including mapping coastal area. The UAV system is equipped with an autopilot system and automatic method known as autonomous flying that can be utilized for data acquisition. To achieve high resolution imagery, a compact digital camera of high resolution was used to acquire the aerial images at an altitude. In this study, the UAV system was employed to acquire aerial images of a coastal simulation model at low altitude. From the aerial images, photogrammetric image processing was executed to produce photogrammetric outputs such a digital elevation model (DEM), contour line and orthophoto. In this study, ground control point (GCP) and check point (CP) were established using conventional ground surveying method (i.e total station). The GCP is used for exterior orientation in photogrammetric processes and CP for accuracy assessment based on Root Mean Square Error (RMSE). From this study, it was found that the UAV system can be used for large scale mapping of coastal simulation model with accuracy at millimeter level. It is anticipated that the same system could be used for large scale mapping of real coastal area and produces good accuracy. Finally, the UAV system has great potential to be used for various applications that require accurate results or products at limited time and less man power.

  6. Feasibility of using multiplexed SLAR imagery for water resources management and mapping vegetation communities

    NASA Technical Reports Server (NTRS)

    Drake, B.; Shuchman, R. A.

    1974-01-01

    A two-wavelength (X band and L band) multiplexed synthetic aperture side-looking airborne radar (SLAR), providing parallel- and cross-polarized images, has been tested for application in mapping vegetation and water resources. Indications of the relative heights, densities, surface roughness and other parameters provided by the multiplexed radar imagery can be used to differentiate and map various types of vegetation. The multiplexed SLAR is superior to thermal IR imagery and aerial photography for determining heights of vegetation and water-land boundaries.

  7. Overall evaluation of LANDSAT (ERTS) follow on imagery for cartographic application

    NASA Technical Reports Server (NTRS)

    Colvocoresses, A. P. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. LANDSAT imagery can be operationally applied to the revision of nautical charts. The imagery depicts shallow seas in a form that permits accurate planimetric image mapping of features to 20 meters of depth where the conditions of water clarity and bottom reflection are suitable. LANDSAT data also provide an excellent simulation of the earth's surface, for such applications as aeronautical charting and radar image correlation in aircraft and aircraft simulators. Radiometric enhancement, particularly edge enhancement, a technique only marginally successful with aerial photographs has proved to be high value when applied to LANDSAT data.

  8. Edge-Based Registration for Airborne Imagery and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Chen, L. C.; Lo, C. Y.

    2012-07-01

    Aerial imagery and LIDAR points are two important data sources for building reconstruction in a geospatial area. Aerial imagery implies building contours with planimetric features; LIDAR data explicitly represent building geometries using three-dimensional discrete point clouds. Data integration may take advantage of merits from two data sources in building reconstruction and change detection. However, heterogeneous data may contain a relative displacement because of different sensors and the capture time. To reduce this displacement, data registration should be an essential step. Therefore, this investigation proposes an edge-based approach to register these two data sets in three parts: (1) data preprocessing; (2) feature detection; and (3) data registration. The first step rasterizes laser point clouds into a pseudo-grid digital surface model (PDSM), which describes the relief with the original elevation information. The second step implements topological analyses to detect image edges and three-dimensional structure lines from the aerial image and PDSM. These detected features provide the initial positions of building shapes for registration. The third part registers these two data sets in Hough space to compensate for the displacement. Because each building may have prominent geometric structures, the proposed scheme transforms these two groups of edges, and estimates the correspondence by the Hough distribution. The following procedure then iteratively compares two groups of Hough patterns, which are from an aerial image and LIDAR data. This iterative procedure stops when the displacement is within a threshold. The test area is located in Taipei City, Taiwan. DMC system captured the aerial image with 18-cm spatial resolution. The LIDAR data were scanned with a 10-point density per square meter using the Leica ALS50 system. This study proposed a 50 cm spatial resolution of PDSM, which is slightly larger than the point spacing. The experiment selected two

  9. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  10. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  11. Real-time people and vehicle detection from UAV imagery

    NASA Astrophysics Data System (ADS)

    Gaszczak, Anna; Breckon, Toby P.; Han, Jiwan

    2011-01-01

    A generic and robust approach for the real-time detection of people and vehicles from an Unmanned Aerial Vehicle (UAV) is an important goal within the framework of fully autonomous UAV deployment for aerial reconnaissance and surveillance. Here we present an approach for the automatic detection of vehicles based on using multiple trained cascaded Haar classifiers with secondary confirmation in thermal imagery. Additionally we present a related approach for people detection in thermal imagery based on a similar cascaded classification technique combining additional multivariate Gaussian shape matching. The results presented show the successful detection of vehicle and people under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance of the detector is optimized to reduce the overall false positive rate by aiming at the detection of each object of interest (vehicle/person) at least once in the environment (i.e. per search patter flight path) rather than every object in each image frame. Currently the detection rate for people is ~70% and cars ~80% although the overall episodic object detection rate for each flight pattern exceeds 90%.

  12. Preliminary Results from the Portable Imagery Quality Assessment Test Field (PIQuAT) of Uav Imagery for Imagery Reconnaissance Purposes

    NASA Astrophysics Data System (ADS)

    Dabrowski, R.; Orych, A.; Jenerowicz, A.; Walczykowski, P.

    2015-08-01

    The article presents a set of initial results of a quality assessment study of 2 different types of sensors mounted on an unmanned aerial vehicle, carried out over an especially designed and constructed test field. The PIQuAT (Portable Imagery Quality Assessment Test Field) field had been designed especially for the purposes of determining the quality parameters of UAV sensors, especially in terms of the spatial, spectral and radiometric resolutions and chosen geometric aspects. The sensor used include a multispectral framing camera and a high-resolution RGB sensor. The flights were conducted from a number of altitudes ranging from 10 m to 200 m above the test field. Acquiring data at a number of different altitudes allowed the authors to evaluate the obtained results and check for possible linearity of the calculated quality assessment parameters. The radiometric properties of the sensors were evaluated from images of the grayscale target section of the PIQuAT field. The spectral resolution of the imagery was determined based on a number of test samples with known spectral reflectance curves. These reference spectral reflectance curves were then compared with spectral reflectance coefficients at the wavelengths registered by the miniMCA camera. Before conducting all of these experiments in field conditions, the interior orientation parameters were calculated for the MiniMCA and RGB sensor in laboratory conditions. These parameters include: the actual pixel size on the detector, distortion parameters, calibrated focal length (CFL) and the coordinates of the principal point of autocollimation (miniMCA - for each of the six channels separately.

  13. Kinesthetic imagery of musical performance.

    PubMed

    Lotze, Martin

    2013-01-01

    Musicians use different kinds of imagery. This review focuses on kinesthetic imagery, which has been shown to be an effective complement to actively playing an instrument. However, experience in actual movement performance seems to be a requirement for a recruitment of those brain areas representing movement ideation during imagery. An internal model of movement performance might be more differentiated when training has been more intense or simply performed more often. Therefore, with respect to kinesthetic imagery, these strategies are predominantly found in professional musicians. There are a few possible reasons as to why kinesthetic imagery is used in addition to active training; one example is the need for mental rehearsal of the technically most difficult passages. Another reason for mental practice is that mental rehearsal of the piece helps to improve performance if the instrument is not available for actual training as is the case for professional musicians when they are traveling to various appearances. Overall, mental imagery in musicians is not necessarily specific to motor, somatosensory, auditory, or visual aspects of imagery, but integrates them all. In particular, the audiomotor loop is highly important, since auditory aspects are crucial for guiding motor performance. All these aspects result in a distinctive representation map for the mental imagery of musical performance. This review summarizes behavioral data, and findings from functional brain imaging studies of mental imagery of musical performance. PMID:23781196

  14. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  15. A Methodological Intercomparison of Topographic and Aerial Photographic Habitat Survey Techniques

    NASA Astrophysics Data System (ADS)

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2011-12-01

    A severe decline in Columbia River salmonid populations and subsequent Federal listing of subpopulations has mandated both the monitoring of populations and evaluation of the status of available habitat. Numerous field and analytical methods exist to assist in the quantification of the abundance and quality of in-stream habitat for salmonids. These methods range from field 'stick and tape' surveys to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although several previous studies have assessed the quality of specific individual survey methods, the intercomparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to enumerate relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from an array of ground-based and remotely sensed surveys of varying degrees of sophistication, as well as quantify the effort and cost in conducting the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Complete topographic surveys were attempted at each site using rtkGPS, total station, ground-based LiDaR and traditional airborne LiDaR. Separate high spatial resolution aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Here we also developed a relatively simplistic methodology for deriving bathymetry from aerial imagery that could be readily employed by instream habitat monitoring programs. The quality of bathymetric maps derived from aerial imagery was compared with rtkGPS topographic data. The results are helpful for understanding the strengths and weaknesses of different approaches in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete

  16. Identification of irrigated crop types from ERTS-1 density contour maps and color infrared aerial photography. [Wyoming

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.; Evans, M. A.

    1974-01-01

    The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.

  17. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  18. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  19. Assessing the Impacts of US Landfall Hurricanes in 2012 using Aerial Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bevington, John S.

    2013-04-01

    Remote sensing has become a widely-used technology for assessing and evaluating the extent and severity of impacts of natural disasters worldwide. Optical and radar data collected by air- and space-borne sensors have supported humanitarian and economic decision-making for over a decade. Advances in image spatial resolution and pre-processing speeds have meant images with centimetre spatial resolution are now available for analysis within hours following severe disaster events. This paper offers a retrospective view on recent large-scale responses to two of the major storms from the 2012 Atlantic hurricane season: Hurricane Isaac and post-tropical cyclone ("superstorm") Sandy. Although weak on the Saffir-Simpson hurricane wind scale, these slow-moving storms produced intense rainfall and coastal storm surges in the order of several metres in the Louisiana and Mississippi Gulf Coast (Isaac), and the Atlantic Seaboard (Sandy) of the United States. Data were generated for both events through interpretation of a combination of two types of aerial imagery: high spatial resolution optical imagery captured by fixed aerial sensors deployed by the National Oceanic and Atmospheric Administration (NOAA), and digital single lens reflex (DSLR) images captured by volunteers from the US Civil Air Patrol (CAP). Imagery for these events were collected over a period of days following the storms' landfall in the US, with availability of aerial data far outweighing the sub-metre satellite imagery. The imagery described were collected as vertical views (NOAA) and oblique views (CAP) over the whole affected coastal and major riverine areas. A network of over 150 remote sensing experts systematically and manually processed images through visual interpretation, culminating in hundreds of thousands of individual properties identified as damaged or destroyed by wind or surge. A discussion is presented on the challenges of responding at such a fine level of spatial granularity for coastal

  20. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lift, except in case of emergency. (x) Climbers shall not be worn while performing work from an aerial... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  1. Interactive projection for aerial dance using depth sensing camera

    NASA Astrophysics Data System (ADS)

    Dubnov, Tammuz; Seldess, Zachary; Dubnov, Shlomo

    2014-02-01

    This paper describes an interactive performance system for oor and Aerial Dance that controls visual and sonic aspects of the presentation via a depth sensing camera (MS Kinect). In order to detect, measure and track free movement in space, 3 degree of freedom (3-DOF) tracking in space (on the ground and in the air) is performed using IR markers. Gesture tracking and recognition is performed using a simpli ed HMM model that allows robust mapping of the actor's actions to graphics and sound. Additional visual e ects are achieved by segmentation of the actor body based on depth information, allowing projection of separate imagery on the performer and the backdrop. Artistic use of augmented reality performance relative to more traditional concepts of stage design and dramaturgy are discussed.

  2. Aerial detection of leaf senescence for a geobotanical study

    NASA Technical Reports Server (NTRS)

    Schwaller, M.; Tkach, S. J.

    1986-01-01

    A geobotanical investigation based on the detection of premature leaf senescence was conducted in an area of predominantly chalcocite mineralization of the Keweenaw Peninsula in Michigan's Upper Peninsula. Spectrophotometric measurements indicated that the region from 600 to 700 nm captures the rise in red reflectance characteristic of senescent leaves. Observations at other wavelengths do not distinguish between senescent and green leaves as clearly and unequivocably as observations at these wavelengths. Small format black and white aerial photographs filtered for the red band (600 to 700 nm) and Thematic Mapper Simulator imagery were collected during the period of fall senescence in the study area. Soil samples were collected from two areas identified by leaf senescence and from two additional sites where the leaf canopy was still green. Geochemical analysis revealed that the sites characterized by premature leaf senescence had a significantly higher median soil copper concentration than the other two areas.

  3. Imagery of pineal tumors.

    PubMed

    Deiana, G; Mottolese, C; Hermier, M; Louis-Tisserand, G; Berthezene, Y

    2015-01-01

    Pineal tumors are rare and include a large variety of entities. Germ cell tumors are relatively frequent and often secreting lesions. Pineal parenchymal tumors include pineocytomas, pineal parenchymal tumor of intermediate differentiation, pineoblastomas and papillary tumors of the pineal region. Other lesions including astrocytomas and meningiomas as well as congenital malformations i.e. benign cysts, lipomas, epidermoid and dermoid cysts, which can also arise from the pineal region. Imagery is often non-specific but detailed analysis of the images compared with the hormone profile can narrow the spectrum of possible diagnosis. PMID:25676911

  4. The use of historical imagery in the remediation of an urban hazardous waste site

    USGS Publications Warehouse

    Slonecker, E.T.

    2011-01-01

    The information derived from the interpretation of historical aerial photographs is perhaps the most basic multitemporal application of remote-sensing data. Aerial photographs dating back to the early 20th century can be extremely valuable sources of historical landscape activity. In this application, imagery from 1918 to 1927 provided a wealth of information about chemical weapons testing, storage, handling, and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5% of the features were spatially correlated with areas of known contamination or other remedial hazardous waste cleanup activity.

  5. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  6. Mapping Forest Edge Using Aerial Lidar

    NASA Astrophysics Data System (ADS)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  7. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  8. Utility of hyperspectral imagery for seagrass mapping in Tampa Bay

    NASA Astrophysics Data System (ADS)

    Carlson, P. R.

    2006-12-01

    Tampa Bay has lost significant amounts of seagrass as the result of declines in water clarity. Of the 16,300 ha of seagrass present in 1950, only 8800 ha remained in 1982. However, since the mid 1980's, a concerted effort has been made to improve Tampa Bay water quality, and seagrass cover increased to 10500 ha in 2002. This project was undertaken to determine whether hyperspectral imagery can be used to 1) replace traditional seagrass mapping methods and 2) distinguish between seagrasses and macroalgae such as Caulerpa prolifera. Hyperspectral imagery of the shoreline of Tampa Bay was acquired in May 2005, using the AISA hyperspectral sensor flown on an aircraft at an altitude of 1500 m. For seagrass mapping tests, a study area near Apollo Beach, Florida was selected for analysis. The area was selected because it contains a number of features which make seagrass classification from natural color aerial photographs extremely difficult: variable water depth, CDOM, and mixed seagrass/algal species composition. Classification accuracy was assessed using confusion matrices based on a separate group of 155 data points selected haphazardly throughout the image. Unsupervised classification by the Isodata method using all 90 spectral bands between 394 and 803 nm resulted in poor classification accuracy. However, first derivative spectra identified six key wavelengths with potential for habitat classification (770, 759, 717, 688, 589, and 492 nm). Minimum distance classification based on these six wavelengths improved overall classification accuracy to 95 percent. The prospect of replacing manual interpretation of aerial photography with supervised classification of hyperspectral imagery seems very feasible. With some additional testing, the technique may become the operational standard for seagrass mapping in Tampa Bay.

  9. D Object Classification Based on Thermal and Visible Imagery in Urban Area

    NASA Astrophysics Data System (ADS)

    Hasani, H.; Samadzadegan, F.

    2015-12-01

    The spatial distribution of land cover in the urban area especially 3D objects (buildings and trees) is a fundamental dataset for urban planning, ecological research, disaster management, etc. According to recent advances in sensor technologies, several types of remotely sensed data are available from the same area. Data fusion has been widely investigated for integrating different source of data in classification of urban area. Thermal infrared imagery (TIR) contains information on emitted radiation and has unique radiometric properties. However, due to coarse spatial resolution of thermal data, its application has been restricted in urban areas. On the other hand, visible image (VIS) has high spatial resolution and information in visible spectrum. Consequently, there is a complementary relation between thermal and visible imagery in classification of urban area. This paper evaluates the potential of aerial thermal hyperspectral and visible imagery fusion in classification of urban area. In the pre-processing step, thermal imagery is resampled to the spatial resolution of visible image. Then feature level fusion is applied to construct hybrid feature space include visible bands, thermal hyperspectral bands, spatial and texture features and moreover Principle Component Analysis (PCA) transformation is applied to extract PCs. Due to high dimensionality of feature space, dimension reduction method is performed. Finally, Support Vector Machines (SVMs) classify the reduced hybrid feature space. The obtained results show using thermal imagery along with visible imagery, improved the classification accuracy up to 8% respect to visible image classification.

  10. Photogrammetric Measurements in Fixed Wing Uav Imagery

    NASA Astrophysics Data System (ADS)

    Gülch, E.

    2012-07-01

    Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System) by Germap, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. A comparison is made to results from other open source multi-ray matching software to handle the issue of the described flight conditions. Flights over the same area at different times have been compared to each other. The major objective was here to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an influence on the AT and DTM/DSM generation. The results obtained so far do indicate problems in the stability of the camera calibration. This clearly requests a usage of GCPs for all

  11. Aspects of dem Generation from Uas Imagery

    NASA Astrophysics Data System (ADS)

    Greiwe, A.; Gehrke, R.; Spreckels, V.; Schlienkamp, A.

    2013-08-01

    Since a few years, micro UAS (unmanned aerial systems) with vertical take off and landing capabilities like quadro- or octocopter are used as sensor platform for Aerophotogrammetry. Since the restricted payload of micro UAS with a total weight up of 5 kg (payload only up to 1.5 kg), these systems are often equipped with small format cameras. These cameras can be classified as amateur cameras and it is often the case, that these systems do not meet the requirements of a geometric stable camera for photogrammetric measurement purposes. However, once equipped with a suitable camera system, an UAS is an interesting alternative to expensive manned flights for small areas. The operating flight height of the above described UAS is about 50 up to 150 meters above ground level. This low flight height lead on the one hand to a very high spatial resolution of the aerial imagery. Depending on the cameras focal length and the sensor's pixel size, the ground sampling distance (GSD) is usually about 1 up to 5 cm. This high resolution is useful especially for the automatic generation of homologous tie-points, which are a precondition for the image alignment (bundle block adjustment). On the other hand, the image scale depends on the object's height and the UAV operating height. Objects like mine heaps or construction sites show high variations of the object's height. As a result, operating the UAS with a constant flying height will lead to high variations in the image scale. For some processing approaches this will lead to problems e.g. the automatic tie-point generation in stereo image pairs. As precondition to all DEM generating approaches, first of all a geometric stable camera, sharp images are essentially. Well known calibration parameters are necessary for the bundle adjustment, to control the exterior orientations. It can be shown, that a simultaneous on site camera calibration may lead to misaligned aerial images. Also, the success rate of an automatic tie-point generation

  12. Imagery Rescripting for Personality Disorders

    ERIC Educational Resources Information Center

    Arntz, Arnoud

    2011-01-01

    Imagery rescripting is a powerful technique that can be successfully applied in the treatment of personality disorders. For personality disorders, imagery rescripting is not used to address intrusive images but to change the implicational meaning of schemas and childhood experiences that underlie the patient's problems. Various mechanisms that may…

  13. Visual Imagery without Visual Perception?

    ERIC Educational Resources Information Center

    Bertolo, Helder

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review…

  14. Guided Imagery in Career Awareness.

    ERIC Educational Resources Information Center

    Wilson, William C.; Eddy, John

    1982-01-01

    Suggests guided imagery can stimulate clients to become more aware of the role of personal values, attitudes, and beliefs in career decision making. Presents guidelines, examples, and implications to enable rehabilitation counselors to use guided imagery exercises in career counseling. (Author)

  15. Satellite Imagery Assisted Road-Based Visual Navigation System

    NASA Astrophysics Data System (ADS)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  16. Validation of Land Cover Maps Utilizing Astronaut Acquired Imagery

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Gebelein, Jennifer

    1999-01-01

    This report is produced in accordance with the requirements outlined in the NASA Research Grant NAG9-1032 titled "Validation of Land Cover Maps Utilizing Astronaut Acquired Imagery". This grant funds the Remote Sensing Research Unit of the University of California, Santa Barbara. This document summarizes the research progress and accomplishments to date and describes current on-going research activities. Even though this grant has technically expired, in a contractual sense, work continues on this project. Therefore, this summary will include all work done through and 5 May 1999. The principal goal of this effort is to test the accuracy of a sub-regional portion of an AVHRR-based land cover product. Land cover mapped to three different classification systems, in the southwestern United States, have been subjected to two specific accuracy assessments. One assessment utilizing astronaut acquired photography, and a second assessment employing Landsat Thematic Mapper imagery, augmented in some cases, high aerial photography. Validation of these three land cover products has proceeded using a stratified sampling methodology. We believe this research will provide an important initial test of the potential use of imagery acquired from Shuttle and ultimately the International Space Station (ISS) for the operational validation of the Moderate Resolution Imaging Spectrometer (MODIS) land cover products.

  17. Evaluating large scale orthophotos derived from high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Ioannou, Maria Teresa; Georgopoulos, Andreas

    2013-08-01

    For the purposes of a research project, for the compilation of the archaeological and environmental digital map of the island of Antiparos, the production of updated large scale orthophotos was required. Hence suitable stereoscopic high resolution satellite imagery was acquired. Two Geoeye-1 stereopairs were enough to cover this small island of the Cyclades complex in the central Aegean. For the orientation of the two stereopairs numerous ground control points were determined using GPS observations. Some of them would also serve as check points. The images were processed using commercial stereophotogrammetric software suitable to process satellite stereoscopic imagery. The results of the orientations are evaluated and the digital terrain model was produced using automated and manual procedures. The DTM was checked both internally and externally with comparison to other available DTMs. In this paper the procedures for producing the desired orthophotography are critically presented and the final result is compared and evaluated for its accuracy, completeness and efficiency. The final product is also compared against the orthophotography produced by Ktimatologio S.A. using aerial images in 2007. The orthophotography produced has been evaluated metrically using the available check points, while qualitative evaluation has also been performed. The results are presented and a critical approach for the usability of satellite imagery for the production of large scale orthophotos is attempted.

  18. Enhancement of low-contrast curvilinear features in imagery.

    PubMed

    Carlotto, Mark J

    2007-01-01

    A new method is described for enhancing low-contrast curvilinear features in imagery that combines directional filtering with Fischler, Tenenbaum and Wolf's F* algorithm for computing minimum cost paths. The method exploits a phenomenon called "the stability of lines over angle." The idea is that when a directionally filtered image contains a line plus noise, minimum cost paths tend to be aligned in the direction of the line with random jumps between parallel paths. When the input image contains noise only, the direction of minimum cost paths resemble random walks with drift. As the direction of the filter changes, minimum cost paths that follow true features persist and are more stable over angle than those that follow noise. Adding them up in an accumulator array over angle produces a larger number of votes along signal paths than along noise paths. This provides a means for enhancing trajectories of low-contrast features. Several examples illustrate the enhancement of forest trails in USGS aerial imagery, linear features on Mars, and roads in synthetic aperture radar imagery. PMID:17283780

  19. Application of ERTS imagery in estimating the environmental impact of a freeway through the Knysna area of South Africa

    NASA Technical Reports Server (NTRS)

    Williamson, D. T.; Gilbertson, B.

    1974-01-01

    In the coastal areas north-east and south-west of Knysna, South Africa lie natural forests, lakes and lagoons highly regarded by many for their aesthetic and ecological richness. A freeway construction project has given rise to fears of the degradation or destruction of these natural features. The possibility was investigated of using ERTS imagery to estimate the environmental impact of the freeway and found that: (1) All threatened features could readily be identified on the imagery. (2) It was possible within a short time to provide an area estimate of damage to indigenous forest. (3) In several important respects the imagery has advantages over maps and aerial photos for this type of work. (4) The imagery will enable monitoring of the actual environmental impact of the freeway when completed.

  20. An Antarctic Time Capsule: Compiling and Hosting 60 years of USGS Antarctic Aerial Photography

    NASA Astrophysics Data System (ADS)

    Niebuhr, S.; Child, S.; Porter, C.; Herried, B.; Morin, P. J.

    2010-12-01

    The Antarctic Geospatial Information Center (AGIC) and the US Geologic Survey (USGS) collaborated to scan, archive, and make available 330,000 trimetrogon aerial (TMA) photos from 1860 flight lines taken over Antarctica from 1946 to 2000. Staff at USGS scanned them at 400 dpi and 1024 dpi resolution. To geolocate them, AGIC digitized the flight line maps, added relevant metadata including flight line altitude, camera type, and focal length, and approximated geographic centers for each photo. Both USGS and AGIC host the medium resolution air photos online, and are adding high resolution scans as they become available. The development of these metadata allowed AGIC to create a web-based flight line and aerial photo browsing application to facilitate the searching process. The application allows the user to browse through air photos and flight lines by location with links to full resolution preview images and to image downloads. AGIC has also orthorectified selected photos of facilities and areas of high scientific interest and are making them available online. This includes a time series showing significant change in several glaciers and lakes in the McMurdo Dry Valleys over 50 years and a series illustrating how McMurdo Station has changed. For the first time, this collection of historical imagery over a swiftly changing continent are readily available to the Antarctic scientific community (www.agic.umn.edu/imagery/aerial).

  1. Mapping with MAV: Experimental Study on the Contribution of Absolute and Relative Aerial Position Control

    NASA Astrophysics Data System (ADS)

    Skaloud, J.; Rehak, M.; Lichti, D.

    2014-03-01

    This study highlights the benefit of precise aerial position control in the context of mapping using frame-based imagery taken by small UAVs. We execute several flights with a custom Micro Aerial Vehicle (MAV) octocopter over a small calibration field equipped with 90 signalized targets and 25 ground control points. The octocopter carries a consumer grade RGB camera, modified to insure precise GPS time stamping of each exposure, as well as a multi-frequency/constellation GNSS receiver. The GNSS antenna and camera are rigidly mounted together on a one-axis gimbal that allows control of the obliquity of the captured imagery. The presented experiments focus on including absolute and relative aerial control. We confirm practically that both approaches are very effective: the absolute control allows omission of ground control points while the relative requires only a minimum number of control points. Indeed, the latter method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified (e.g. the lever-arm between the camera perspective and antenna phase centers does not need to be determined) and, second, its principle allows employing a single-frequency antenna and carrier-phase GNSS receiver. This reduces the cost of the system as well as the payload, which in turn increases the flying time.

  2. Uncooled infrared development for small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Pitt, Timothy S.; Wood, Sam B.; Waddle, Caleb E.; Edwards, William D.; Yeske, Ben S.

    2010-04-01

    The US Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) is developing a micro-uncooled infrared (IR) capability for small unmanned aerial systems (SUAS). In 2007, AMRDEC procured several uncooled microbolometers for lab and field test evaluations, and static tower tests involving specific target sets confirmed initial modeling and simulation predictions. With these promising results, AMRDEC procured two captive flight test (CFT) vehicles and, in 2008, completed numerous captive flights to capture imagery with the micro-uncooled infrared sensors. Several test configurations were used to build a comprehensive data set. These configurations included variations in look-down angles, fields of view (FOV), environments, altitudes, and target scenarios. Data collected during these field tests is also being used to develop human tracking algorithms and image stabilization software by other AMRDEC personnel. Details of these ongoing efforts will be presented in this paper and will include: 1) onboard digital data recording capabilities; 2) analog data links for visual verification of imagery; 3) sensor packaging and design; which include both infrared and visible cameras; 4) field test and data collection results; 5) future plans; 6) potential applications. Finally, AMRDEC has recently acquired a 17 μm pitch detector array. The paper will include plans to test both 17 μm and 25 μm microbolometer technologies simultaneously in a side-by-side captive flight comparison.

  3. Evaluation of SPOT imagery data

    SciTech Connect

    Berger, Z.; Brovey, R.L.; Merembeck, B.F.; Hopkins, H.R.

    1988-01-01

    SPOT, the French satellite imaging system that became operational in April 1986, provides two major advances in satellite imagery technology: (1) a significant increase in spatial resolution of the data to 20 m multispectral and 10 m panchromatic, and (2) stereoscopic capabilities. The structural and stratigraphic mapping capabilities of SPOT data and compare favorably with those of other available space and airborne remote sensing data. In the Rhine graben and Jura Mountains, strike and dip of folded strata can be determined using SPOT stereoscopic imagery, greatly improving the ability to analyze structures in complex areas. The increased spatial resolution also allows many features to be mapped that are not visible on thematic mapper (TM) imagery. In the San Rafael swell, Utah, TM spectral data were combined with SPOT spatial data to map lithostratigraphic units of the exposed Jurassic and Cretaceous rocks. SPOT imagery provides information on attitude, geometry, and geomorphic expressions of key marker beds that is not available on TM imagery. Over the Central Basin platform, west Texas, SPOT imagery, compared to TM imagery, provided more precise information on the configuration of outcropping beds and drainage patterns that reflect the subtle surface expression of buried structures.

  4. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach

  5. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  6. Learner Generated versus Instructor Induced Visual Imagery.

    ERIC Educational Resources Information Center

    Lenze, James S.

    The concepts of imagery, mathemagenic behaviors, and generative imagery are reviewed; and the learner's use of visual imagery is discussed. Several studies have supported the idea that imagery is an active mental process that gives birth to learning. The concept of mathemagenic control or manipulation is of interest to the instructional designer.…

  7. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  8. Imagery mismatch negativity in musicians.

    PubMed

    Herholz, Sibylle C; Lappe, Claudia; Knief, Arne; Pantev, Christo

    2009-07-01

    The present study investigated musical imagery in musicians and nonmusicians by means of magnetoencephalography (MEG). We used a new paradigm in which subjects had to continue familiar melodies in their mind and then judged if a further presented tone was a correct continuation of the melody. Incorrect tones elicited an imagery mismatch negativity (iMMN) in musicians but not in nonmusicians. This finding suggests that the MMN component can be based on an imagined instead of a sensory memory trace and that imagery of music is modulated by musical expertise. PMID:19673775

  9. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  10. Dynamic aspects of musical imagery.

    PubMed

    Halpern, Andrea R

    2012-04-01

    Auditory imagery can represent many aspects of music, such as the starting pitches of a tune or the instrument that typically plays it. In this paper, I concentrate on more dynamic, or time-sensitive aspects of musical imagery, as demonstrated in two recently published studies. The first was a behavioral study that examined the ability to make emotional judgments about both heard and imagined music in real time. The second was a neuroimaging study on the neural correlates of anticipating an upcoming tune, after hearing a cue tune. That study found activation of several sequence-learning brain areas, some of which varied with the vividness of the anticipated musical memory. Both studies speak to the ways in which musical imagery allows us to judge temporally changing aspects of the represented musical experience. These judgments can be quite precise, despite the complexity of generating the rich internal representations of imagery. PMID:22524360

  11. Simulation of parafoil reconnaissance imagery

    NASA Astrophysics Data System (ADS)

    Kogler, Kent J.; Sutkus, Linas; Troast, Douglas; Kisatsky, Paul; Charles, Alain M.

    1995-08-01

    Reconnaissance from unmanned platforms is currently of interest to DoD and civil sectors concerned with drug trafficking and illegal immigration. Platforms employed vary from motorized aircraft to tethered balloons. One appraoch currently under evaluation deploys a TV camera suspended from a parafoil delivered to the area of interest by a cannon launched projectile. Imagery is then transmitted to a remote monitor for processing and interpretation. This paper presents results of imagery obtained from simulated parafoil flights in which software techniques were developed to process-in image degradation caused by atmospheric obscurants and perturbations in the normal parafoil flight trajectory induced by wind gusts. The approach to capturing continuous motion imagery from captive flight test recordings, the introduction of simulated effects, and the transfer of the processed imagery back to video tape is described.

  12. Imagery: Paintings in the Mind.

    ERIC Educational Resources Information Center

    Carey, Albert R.

    1986-01-01

    Describes using the overlapping areas of relaxation, meditation, hypnosis, and imagery as a counseling technique. Explains the methods in terms of right brain functioning, a capability children use naturally. (ABB)

  13. New Percepts via Mental Imagery?

    PubMed

    Mast, Fred W; Tartaglia, Elisa M; Herzog, Michael H

    2012-01-01

    We are able to extract detailed information from mental images that we were not explicitly aware of during encoding. For example, we can discover a new figure when we rotate a previously seen image in our mind. However, such discoveries are not "really" new but just new "interpretations." In two recent publications, we have shown that mental imagery can lead to perceptual learning (Tartaglia et al., 2009, 2012). Observers imagined the central line of a bisection stimulus for thousands of trials. This training enabled observers to perceive bisection offsets that were invisible before training. Hence, it seems that perceptual learning via mental imagery leads to new percepts. We will argue, however, that these new percepts can occur only within "known" models. In this sense, perceptual learning via mental imagery exceeds new discoveries in mental images. Still, the effects of mental imagery on perceptual learning are limited. Only perception can lead to really new perceptual experience. PMID:23060830

  14. Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs

    SciTech Connect

    Matsunaga, Tsuneo; Kayanne, Hajime

    1997-06-01

    Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changes occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.

  15. Wetland mapping from digitized aerial photography. [Sheboygen Marsh, Sheboygen County, Wisconsin

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Quirk, B. K.; Kiefer, R. W.; Wynn, S. L.

    1981-01-01

    Computer assisted interpretation of small scale aerial imagery was found to be a cost effective and accurate method of mapping complex vegetation patterns if high resolution information is desired. This type of technique is suited for problems such as monitoring changes in species composition due to environmental factors and is a feasible method of monitoring and mapping large areas of wetlands. The technique has the added advantage of being in a computer compatible form which can be transformed into any georeference system of interest.

  16. Quantitative analysis of drainage obtained from aerial photographs and RBV/LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Formaggio, A. R.; Epiphanio, J. C. N.; Filho, M. V.

    1981-01-01

    Data obtained from aerial photographs (1:60,000) and LANDSAT return beam vidicon imagery (1:100,000) concerning drainage density, drainage texture, hydrography density, and the average length of channels were compared. Statistical analysis shows that significant differences exist in data from the two sources. The highly drained area lost more information than the less drained area. In addition, it was observed that the loss of information about the number of rivers was higher than that about the length of the channels.

  17. Monitoring black-tailed prairie dog colonies with high-resolution satellite imagery

    USGS Publications Warehouse

    Sidle, John G.; Johnson, D.H.; Euliss, B.R.; Tooze, M.

    2002-01-01

    The United States Fish and Wildlife Service has determined that the black-tailed prairie dog (Cynomys ludovicianus) warrants listing as a threatened species under the Endangered Species Act. Central to any conservation planning for the black-tailed prairie dog is an appropriate detection and monitoring technique. Because coarse-resolution satellite imagery is not adequate to detect black-tailed prairie dog colonies, we examined the usefulness of recently available high-resolution (1-m) satellite imagery. In 6 purchased scenes of national grasslands, we were easily able to visually detect small and large colonies without using image-processing algorithms. The Ikonos (Space Imaging(tm)) satellite imagery was as adequate as large-scale aerial photography to delineate colonies. Based on the high quality of imagery, we discuss a possible monitoring program for black-tailed prairie dog colonies throughout the Great Plains, using the species' distribution in North Dakota as an example. Monitoring plots could be established and imagery acquired periodically to track the expansion and contraction of colonies.

  18. Classification of a wetland area along the upper Mississippi River with aerial videography

    USGS Publications Warehouse

    Jennings, C.A.; Vohs, P.A.; Dewey, M.R.

    1992-01-01

    We evaluated the use of aerial videography for classifying wetland habitats along the upper Mississippi River and found the prompt availability of habitat feature maps to be the major advantage of the video imagery technique. We successfully produced feature maps from digitized video images that generally agreed with the known distribution and areal coverages of the major habitat types independently identified and quantified with photointerpretation techniques. However, video images were not sufficiently detailed to allow us to consistently discriminate among the classes of aquatic macrophytes present or to quantify their areal coverage. Our inability to consistently distinguish among emergent, floating, and submergent macrophytes from the feature maps may have been related to the structural complexity of the site, to our limited vegetation sampling, and to limitations in video imagery. We expect that careful site selection (i.e., the desired level of resolution is available from video imagery) and additional vegetation samples (e.g., along a transect) will allow improved assignment of spectral values to specific plant types and enhance plant classification from feature maps produced from video imagery.

  19. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 2.2 km (1.4 miles) x 2.4 km (1.49 miles) Location: 34.16 deg. North lat., 118.16 deg. West lon. Orientation: looking straight down at land Original Data Resolution: SRTM, 30 meters; Aerial Photo, 3 meters. Date Acquired: February 16, 2000 Image: NASA/JPL/NIMA

  20. Enabling high-quality observations of surface imperviousness for water runoff modelling from unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Tokarczyk, Piotr; Leitao, Joao Paulo; Rieckermann, Jörg; Schindler, Konrad; Blumensaat, Frank

    2015-04-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual sub-catchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model

  1. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  2. Crop identification and acreage measurement utilizing ERTS imagery

    NASA Technical Reports Server (NTRS)

    Vonsteen, D. H. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. The microdensitometer will be used to analyze data acquired by ERTS-1 imagery. The classification programs and software packages have been acquired and are being prepared for use with the information as it is received. Photo and digital tapes have been acquired for coverage of virtually 100 percent of the test site areas. These areas are located in South Dakota, Idaho, Missouri, and Kansas. Hass 70mm color infrared, infrared, black and white high altitude aerial photography of the test sites is available. Collection of ground truth for updating the data base has been completed and a computer program written to count the number of fields and give total acres by size group for the segments in each test site. Results are given of data analysis performed on digitized data from densitometer measurements of fields of corn, sugar, beets, and alfalfa in Kansas.

  3. An augmentative gaze directing framework for multi-spectral imagery

    NASA Astrophysics Data System (ADS)

    Hsiao, Libby

    Modern digital imaging techniques have made the task of imaging more prolic than ever and the volume of images and data available through multi-spectral imaging methods for exploitation is exceeding that which can be solely processed by human beings. The researchers proposed and developed a novel eye movement contingent framework and display system through adaption of the demonstrated technique of subtle gaze direction by presenting modulations within the displayed image. The system sought to augment visual search task performance of aerial imagery by incorporating multi-spectral image processing algorithms to determine potential regions of interest within an image. The exploratory work conducted was to study the feasibility of visual gaze direction with the specic intent of extending this application to geospatial image analysis without need for overt cueing to areas of potential interest and thereby maintaining the benefits of an undirected and unbiased search by an observer.

  4. ERTS-1 imagery use in reconnaissance prospecting: Evaluation of commercial utility of ERTS-1 imagery in structural reconnaissance for minerals and petroleum

    NASA Technical Reports Server (NTRS)

    Saunders, D. F.; Thomas, G. E. (Principal Investigator); Kinsman, F. E.; Beatty, D. F.

    1973-01-01

    The author has identified the following significant results. This study was performed to investigate applications of ERTS-1 imagery in commercial reconnaissance for mineral and hydrocarbon resources. ERTS-1 imagery collected over five areas in North America (Montana; Colorado; New Mexico-West Texas; Superior Province, Canada; and North Slope, Alaska) has been analyzed for data content including linears, lineaments, and curvilinear anomalies. Locations of these features were mapped and compared with known locations of mineral and hydrocarbon accumulations. Results were analyzed in the context of a simple-shear, block-coupling model. Data analyses have resulted in detection of new lineaments, some of which may be continental in extent, detection of many curvilinear patterns not generally seen on aerial photos, strong evidence of continental regmatic fracture patterns, and realization that geological features can be explained in terms of a simple-shear, block-coupling model. The conculsions are that ERTS-1 imagery is of great value in photogeologic/geomorphic interpretations of regional features, and the simple-shear, block-coupling model provides a means of relating data from ERTS imagery to structures that have controlled emplacement of ore deposits and hydrocarbon accumulations, thus providing a basis for a new approach for reconnaissance for mineral, uranium, gas, and oil deposits and structures.

  5. USGS Earth Explorer Client for Co-Discovery of Aerial and Satellite Data

    NASA Astrophysics Data System (ADS)

    Longhenry, R.; Sohre, T.; McKinney, R.; Mentele, T.

    2011-12-01

    The United States Geological Survey (USGS) Earth Resources Observation Science (EROS) Center is home to one of the largest civilian collections of images of the Earth's surface. These images are collected from recent satellite platforms such as the Landsat, Terra, Aqua and Earth Observer-1, historical airborne systems such as digital cameras and side-looking radar, and digitized historical aerial photography dating to the 1930's. The aircraft scanners include instruments such as the Advanced Solid State Array Spectrometer (ASAS). Also archived at EROS are specialized collections of aerial images, such as high-resolution orthoimagery, extensive collections over Antarctica, and historical airborne campaigns such as the National Aerial Photography Program (NAPP) and the National High Altitude Photography (NHAP) collections. These collections, as well as digital map data, declassified historical space-based photography, and variety of collections such as the Global Land Survey 2000 (GLS2000) and the Shuttle Radar Topography Mission (SRTM) are accessible through the USGS Earth Explorer (EE) client. EE allows for the visual discovery and browse of diverse datasets simultaneously, permitting the co-discovery and selection refinement of both satellite and aircraft imagery. The client, in use for many years was redesigned in 2010 to support requirements for next generation Landsat Data Continuity Mission (LDCM) data access and distribution. The redesigned EE is now supported by standards-based, open source infrastructure. EE gives users the capability to search 189 datasets through one interface, including over 8.4 million frames of aerial imagery. Since April 2011, NASA datasets archived at the Land Processes Distributed Active Archive Center (LP DAAC) including the MODIS land data products and ASTER Level-1B data products over the U.S. and Territories were made available via the EE client enabling users to co-discover aerial data archived at the USGS EROS along with USGS

  6. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  7. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a) General requirements. (1) Unless otherwise provided...

  8. A Classroom Simulation of Aerial Photography.

    ERIC Educational Resources Information Center

    Baker, Simon

    1981-01-01

    Explains how a simulation of aerial photography can help students in a college level beginning course on interpretation of aerial photography understand the interrelationships of the airplane, the camera, and the earth's surface. Procedures, objectives, equipment, and scale are discussed. (DB)

  9. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  10. MAPPING NON-INDIGENOUS EELGRASS ZOSTERA JAPONICA, ASSOCIATED MACROALGAE AND EMERGENT AQUATIC VEGETARIAN HABITATS IN A PACIFIC NORTHWEST ESTUARY USING NEAR-INFRARED COLOR AERIAL PHOTOGRAPHY AND A HYBRID IMAGE CLASSIFICATION TECHNIQUE

    EPA Science Inventory

    We conducted aerial photographic surveys of Oregon's Yaquina Bay estuary during consecutive summers from 1997 through 2001. Imagery was obtained during low tide exposures of intertidal mudflats, allowing use of near-infrared color film to detect and discriminate plant communitie...

  11. Monitoring Seabirds and Marine Mammals by Georeferenced Aerial Photography

    NASA Astrophysics Data System (ADS)

    Kemper, G.; Weidauer, A.; Coppack, T.

    2016-06-01

    The assessment of anthropogenic impacts on the marine environment is challenged by the accessibility, accuracy and validity of biogeographical information. Offshore wind farm projects require large-scale ecological surveys before, during and after construction, in order to assess potential effects on the distribution and abundance of protected species. The robustness of site-specific population estimates depends largely on the extent and design of spatial coverage and the accuracy of the applied census technique. Standard environmental assessment studies in Germany have so far included aerial visual surveys to evaluate potential impacts of offshore wind farms on seabirds and marine mammals. However, low flight altitudes, necessary for the visual classification of species, disturb sensitive bird species and also hold significant safety risks for the observers. Thus, aerial surveys based on high-resolution digital imagery, which can be carried out at higher (safer) flight altitudes (beyond the rotor-swept zone of the wind turbines) have become a mandatory requirement, technically solving the problem of distant-related observation bias. A purpose-assembled imagery system including medium-format cameras in conjunction with a dedicated geo-positioning platform delivers series of orthogonal digital images that meet the current technical requirements of authorities for surveying marine wildlife at a comparatively low cost. At a flight altitude of 425 m, a focal length of 110 mm, implemented forward motion compensation (FMC) and exposure times ranging between 1/1600 and 1/1000 s, the twin-camera system generates high quality 16 bit RGB images with a ground sampling distance (GSD) of 2 cm and an image footprint of 155 x 410 m. The image files are readily transferrable to a GIS environment for further editing, taking overlapping image areas and areas affected by glare into account. The imagery can be routinely screened by the human eye guided by purpose-programmed software

  12. Adaptive planning of emergency aerial photogrammetric mission

    NASA Astrophysics Data System (ADS)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  13. Benchmarking High Density Image Matching for Oblique Airborne Imagery

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Haala, N.; Nebiker, S.; Rothermel, M.; Tutzauer, P.

    2014-08-01

    Both, improvements in camera technology and new pixel-wise matching approaches triggered the further development of software tools for image based 3D reconstruction. Meanwhile research groups as well as commercial vendors provide photogrammetric software to generate dense, reliable and accurate 3D point clouds and Digital Surface Models (DSM) from highly overlapping aerial images. In order to evaluate the potential of these algorithms in view of the ongoing software developments, a suitable test bed is provided by the ISPRS/EuroSDR initiative Benchmark on High Density Image Matching for DSM Computation. This paper discusses the proposed test scenario to investigate the potential of dense matching approaches for 3D data capture from oblique airborne imagery. For this purpose, an oblique aerial image block captured at a GSD of 6 cm in the west of Zürich by a Leica RCD30 Oblique Penta camera is used. Within this paper, the potential test scenario is demonstrated using matching results from two software packages, Agisoft PhotoScan and SURE from University of Stuttgart. As oblique images are frequently used for data capture at building facades, 3D point clouds are mainly investigated at such areas. Reference data from terrestrial laser scanning is used to evaluate data quality from dense image matching for several facade patches with respect to accuracy, density and reliability.

  14. Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery.

    PubMed

    Hall, Robert K; Watkins, Russell L; Heggem, Daniel T; Jones, K Bruce; Kaufmann, Philip R; Moore, Steven B; Gregory, Sandra J

    2009-12-01

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecological resources at different scales. High-resolution remote sensing provides unique capabilities in detecting a variety of features and indicators of environmental health and condition. LIDAR is an airborne scanning laser system that provides data on topography, channel dimensions (width, depth), slope, channel complexity (residual pools, volume, morphometric complexity, hydraulic roughness), riparian vegetation (height and density), dimensions of riparian zone, anthropogenic alterations and disturbances, and channel and riparian interaction. Hyperspectral aerial imagery offers the advantage of high spectral and spatial resolution allowing for the detection and identification of riparian vegetation and natural and anthropogenic features at a resolution not possible with satellite imagery. When combined, or fused, these technologies comprise a powerful geospatial data set for assessing and monitoring lentic and lotic environmental characteristics and condition. PMID:19165614

  15. IMPROVING BIOGENIC EMISSION ESTIMATES WITH SATELLITE IMAGERY

    EPA Science Inventory

    This presentation will review how existing and future applications of satellite imagery can improve the accuracy of biogenic emission estimates. Existing applications of satellite imagery to biogenic emission estimates have focused on characterizing land cover. Vegetation dat...

  16. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  17. Suomi NPP VIIRS Imagery evaluation

    NASA Astrophysics Data System (ADS)

    Hillger, Donald; Seaman, Curtis; Liang, Calvin; Miller, Steven; Lindsey, Daniel; Kopp, Thomas

    2014-06-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) combines the best aspects of both civilian and military heritage instrumentation. VIIRS has improved capabilities over its predecessors: a wider swath width and much higher spatial resolution at swath edge. The VIIRS day-night band (DNB) is sensitive to very low levels of visible light and is capable of detecting low clouds, land surface features, and sea ice at night, in addition to light emissions from both man-made and natural sources. Imagery from the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite has been in the checkout process since its launch on 28 October 2011. The ongoing evaluation of VIIRS Imagery helped resolve several imagery-related issues, including missing radiance measurements. In particular, near-constant contrast imagery, derived from the DNB, had a large number of issues to overcome, including numerous missing or blank-fill images and a stray light leakage problem that was only recently resolved via software fixes. In spite of various sensor issues, the VIIRS DNB has added tremendous operational and research value to Suomi NPP. Remarkably, it has been discovered to be sensitive enough to identify clouds even in very low light new moon conditions, using reflected light from the Earth's airglow layer. Impressive examples of the multispectral imaging capabilities are shown to demonstrate its applications for a wide range of operational users. Future members of the Joint Polar Satellite System constellation will also carry and extend the use of VIIRS. Imagery evaluation will continue with these satellites to ensure the quality of imagery for end users.

  18. Automatic Orientation and Mosaicking of Archived Aerial Photography Using Structure from Motion

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. A.

    2016-03-01

    Aerial photography has been acquired regularly for topographic mapping since the decade of 1930. In Portugal there are several archives of aerial photos in national mapping institutes, as well as in local authorities, containing a total of nearly one hundred thousand photographs, mainly from the 1940s, 1950s and some from 1930s. These data sets provide important information about the evolution of the territory, for environment and agricultural studies, land planning, and many other examples. There is an interest in making these aerial coverages available in the form of orthorectified mosaics for integration in a GIS. The orthorectification of old photographs may pose several difficulties. Required data about the camera and lens system used, such as the focal distance, fiducial marks coordinates or distortion parameters may not be available, making it difficult to process these data in conventional photogrammetric software. This paper describes an essentially automatic methodology for orientation, orthorectification and mosaic composition of blocks of old aerial photographs, using Agisoft Photoscan structure from motion software. The operation sequence is similar to the processing of UAV imagery. The method was applied to photographs from 1947 and 1958, provided by the Portuguese Army Geographic Institute. The orientation was done with GCPs collected from recent orthophototos and topographic maps. This may be a difficult task, especially in urban areas that went through many changes. Residuals were in general below 1 meter. The agreement of the orthomosaics with recent orthophotos and GIS vector data was in general very good. The process is relatively fast and automatic, and can be considered in the processing of full coverages of old aerial photographs.

  19. Oblique Aerial Images and Their Use in Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2013-07-01

    Oblique images enable three-dimensional (3d) modelling of objects with vertical dimensions. Such imagery is nowadays systematically taken of cities and may easily become available. The documentation of cultural heritage can take advantage of these sources of information. Two new oblique camera systems are presented and characteristics of such images are summarized. A first example uses images of a new multi-camera system for the derivation of orthoimages, façade plots with photo texture, 3d scatter plots, and dynamic 3d models of a historic church. The applied methodology is based on automatically derived point clouds of high density. Each point will be supplemented with colour and other attributes. The problems experienced in these processes and the solutions to these problems are presented. The applied tools are a combination of professional tools, free software, and of own software developments. Special attention is given to the quality of input images. Investigations are carried out on edges in the images. The combination of oblique and nadir images enables new possibilities in the processing. The use of the near-infrared channel besides the red, green, and blue channel of the applied multispectral imagery is also of advantage. Vegetation close to the object of interest can easily be removed. A second example describes the modelling of a monument by means of a non-metric camera and a standard software package. The presented results regard achieved geometric accuracy and image quality. It is concluded that the use of oblique aerial images together with image-based processing methods yield new possibilities of economic and accurate documentation of tall monuments.

  20. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses

    PubMed Central

    Corniglia, Matteo; Gaetani, Monica; Grossi, Nicola; Magni, Simone; Migliazzi, Mauro; Angelini, Luciana; Mazzoncini, Marco; Silvestri, Nicola; Fontanelli, Marco; Raffaelli, Michele; Peruzzi, Andrea; Volterrani, Marco

    2016-01-01

    Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) ‘Patriot’, Zoysia matrella (Zm) ‘Zeon’ and Paspalum vaginatum (Pv) ‘Salam’. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option. PMID:27341674

  1. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses.

    PubMed

    Caturegli, Lisa; Corniglia, Matteo; Gaetani, Monica; Grossi, Nicola; Magni, Simone; Migliazzi, Mauro; Angelini, Luciana; Mazzoncini, Marco; Silvestri, Nicola; Fontanelli, Marco; Raffaelli, Michele; Peruzzi, Andrea; Volterrani, Marco

    2016-01-01

    Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) 'Patriot', Zoysia matrella (Zm) 'Zeon' and Paspalum vaginatum (Pv) 'Salam'. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option. PMID:27341674

  2. Evaluation of Bare Ground on Rangelands using Unmanned Aerial Vehicles

    SciTech Connect

    Robert P. Breckenridge; Maxine Dakins

    2011-01-01

    Attention is currently being given to methods that assess the ecological condition of rangelands throughout the United States. There are a number of different indicators that assess ecological condition of rangelands. Bare Ground is being considered by a number of agencies and resource specialists as a lead indicator that can be evaluated over a broad area. Traditional methods of measuring bare ground rely on field technicians collecting data along a line transect or from a plot. Unmanned aerial vehicles (UAVs) provide an alternative to collecting field data, can monitor a large area in a relative short period of time, and in many cases can enhance safety and time required to collect data. In this study, both fixed wing and helicopter UAVs were used to measure bare ground in a sagebrush steppe ecosystem. The data were collected with digital imagery and read using the image analysis software SamplePoint. The approach was tested over seven different plots and compared against traditional field methods to evaluate accuracy for assessing bare ground. The field plots were located on the Idaho National Laboratory (INL) site west of Idaho Falls, Idaho in locations where there is very little disturbance by humans and the area is grazed only by wildlife. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  3. Agency Video, Audio and Imagery Library

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney

    2015-01-01

    The purpose of this presentation was to inform the ISS International Partners of the new NASA Agency Video, Audio and Imagery Library (AVAIL) website. AVAIL is a new resource for the public to search for and download NASA-related imagery, and is not intended to replace the current process by which the International Partners receive their Space Station imagery products.

  4. Semi-automated analysis of high-resolution aerial images to quantify docks in glacial lakes

    NASA Astrophysics Data System (ADS)

    Beck, Marcus W.; Vondracek, Bruce; Hatch, Lorin K.; Vinje, Jason

    2013-07-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on K^) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  5. Suitability of low cost commercial off-the-shelf aerial platforms and consumer grade digital cameras for small format aerial photography

    NASA Astrophysics Data System (ADS)

    Turley, Anthony Allen

    Many research projects require the use of aerial images. Wetlands evaluation, crop monitoring, wildfire management, environmental change detection, and forest inventory are but a few of the applications of aerial imagery. Low altitude Small Format Aerial Photography (SFAP) is a bridge between satellite and man-carrying aircraft image acquisition and ground-based photography. The author's project evaluates digital images acquired using low cost commercial digital cameras and standard model airplanes to determine their suitability for remote sensing applications. Images from two different sites were obtained. Several photo missions were flown over each site, acquiring images in the visible and near infrared electromagnetic bands. Images were sorted and analyzed to select those with the least distortion, and blended together with Microsoft Image Composite Editor. By selecting images taken within minutes apart, radiometric qualities of the images were virtually identical, yielding no blend lines in the composites. A commercial image stitching program, Autopano Pro, was purchased during the later stages of this study. Autopano Pro was often able to mosaic photos that the free Image Composite Editor was unable to combine. Using telemetry data from an onboard data logger, images were evaluated to calculate scale and spatial resolution. ERDAS ER Mapper and ESRI ArcGIS were used to rectify composite images. Despite the limitations inherent in consumer grade equipment, images of high spatial resolution were obtained. Mosaics of as many as 38 images were created, and the author was able to record detailed aerial images of forest and wetland areas where foot travel was impractical or impossible.

  6. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  7. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  8. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  9. A semi-automated system for plotting and computer cataloging of remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Gnauck, G. E.; Hurd, D. J.; Kroeck, R. M.

    1973-01-01

    Description of a computer-assisted system for plotting and descriptor-cataloging of aerial imagery - an ingredient of the aerial image data handling system of the NASA Earth Resources Aircraft Project (ERAP). The system under consideration uses two graphic tablets linked interactively with a digital computer as input devices for deriving frame coordinates by correlating image points to map points. The various software programs and operating modes facilitate a semiautomatic plotting of an image by selecting two or more points within the image for matching with map details. The computer performs the scaling and orientation transformations for the calculation of the center and corner coordinates of the frame. Twenty five other descriptors for each frame are fed into a computerized data base requiring a minimum operator's time for verification and correction.

  10. A Vegetation Analysis on Horn Island Mississippi, ca. 1940 using Habitat Characteristic Dimensions Derived from Historical Aerial Photography

    NASA Astrophysics Data System (ADS)

    Jeter, G. W.; Carter, G. A.

    2013-12-01

    Guy (Will) Wilburn Jeter Jr., Gregory A. Carter University of Southern Mississippi Geography and Geology Gulf Coast Geospatial Center The over-arching goal of this research is to assess habitat change over a seventy year period to better understand the combined effects of global sea level rise and storm impacts on the stability of Horn Island, MS habitats. Historical aerial photography is often overlooked as a resource for use in determining habitat change. However, the spatial information provided even by black and white imagery can give insight into past habitat composition via textural analysis. This research will evaluate characteristic dimensions; most notably patch size of habitat types using simple geo-statistics and textures of brightness values of historical aerial imagery. It is assumed that each cover type has an identifiable patch size that can be used as a unique classifier of each habitat type. Analytical methods applied to the 1940 imagery were developed using 2010 field data and USDA aerial imagery. Textural moving window methods and basic geo-statistics were used to estimate characteristic dimensions of each cover type in 1940 aerial photography. The moving window texture analysis was configured with multiple window sizes to capture the characteristic dimensions of six habitat types; water, bare sand , dune herb land, estuarine shrub land, marsh land and slash pine woodland. Coefficient of variation (CV), contrast, and entropy texture filters were used to analyze the spatial variability of the 1940 and 2010 imagery. (CV) was used to depict the horizontal variability of each habitat characteristic dimension. Contrast was used to represent the variability of bright versus dark pixel values; entropy was used to show the variation in the slash pine woodland habitat type. Results indicate a substantial increase in marshland habitat relative to other habitat types since 1940. Results also reveal each habitat-type, such as dune herb-land, marsh

  11. Vegetation monitoring using low-altitude, large-scale imagery from radio-controlled drones

    NASA Astrophysics Data System (ADS)

    Quilter, Mark Charles

    As both farmers and range managers are required to manage larger acreage, new methods for vegetation monitoring need to be developed. The methods need to increase information and yield, and at the same time reduce labor requirements and cost. This dissertation discusses how the use of radio controlled aircraft can collect large scale imagery that can be used to monitor vegetation. Several methods are explored which reduce the labor requirements for collecting and recording data. The work demonstrates the effectiveness of these methods and presents details of the procedures used. Many of the techniques have historically been used with aerial photographs and satellite imagery. However, the use of these procedures to collect detailed data at a scale required for vegetation monitoring is new. Image processing procedures are also demonstrated to have promise in changing the way ranges are monitored.

  12. Music, Hemisphere Preference and Imagery.

    ERIC Educational Resources Information Center

    Stratton, Valerie N.; Zalanowski, Annette H.

    Two experiments were conducted to determine a possible relationship between the right hemisphere, music perception, and mental imagery. The first experiment compared two groups of college students, one of which showed a preference for left hemisphere thinking (n=22) and the other a preference for right hemisphere thinking (n=20), in order to test…

  13. Dialectical Imagery and Postmodern Research

    ERIC Educational Resources Information Center

    Davison, Kevin G.

    2006-01-01

    This article suggests utilizing dialectical imagery, as understood by German social philosopher Walter Benjamin, as an additional qualitative data analysis strategy for research into the postmodern condition. The use of images mined from research data may offer epistemological transformative possibilities that will assist in the demystification of…

  14. Unmanned aerial optical systems for spatial monitoring of Antarctic mosses

    NASA Astrophysics Data System (ADS)

    Lucieer, Arko; Turner, Darren; Veness, Tony; Malenovsky, Zbynek; Harwin, Stephen; Wallace, Luke; Kelcey, Josh; Robinson, Sharon

    2013-04-01

    The Antarctic continent has experienced major changes in temperature, wind speed and stratospheric ozone levels during the last 50 years. In a manner similar to tree rings, old growth shoots of Antarctic mosses, the only plants on the continent, also preserve a climate record of their surrounding environment. This makes them an ideal bio-indicator of the Antarctic climate change. Spatially extensive ground sampling of mosses is laborious and time limited due to the short Antarctic growing season. Obviously, there is a need for an efficient method to monitor spatially climate change induced stress of the Antarctic moss flora. Cloudy weather and high spatial fragmentation of the moss turfs makes satellite imagery unsuitable for this task. Unmanned aerial systems (UAS), flying at low altitudes and collecting image data even under a full overcast, can, however, overcome the insufficiency of satellite remote sensing. We, therefore, developed scientific UAS, consisting of a remote-controlled micro-copter carrying on-board different remote sensing optical sensors, tailored to perform fast and cost-effective mapping of Antarctic flora at ultra-high spatial resolution (1-10 cm depending on flight altitude). A single lens reflex (SLR) camera carried by UAS acquires multi-view aerial photography, which processed by the Structure from Motion computer vision algorithm provides an accurate three-dimensional digital surface model (DSM) at ultra-high spatial resolution. DSM is the key input parameter for modelling a local seasonal snowmelt run-off, which provides mosses with the vital water supply. A lightweight multispectral camera on-board of UVS is collecting images of six selected spectral wavebands with the full-width-half-maximum (FWHM) of 10 nm. The spectral bands can be used to compute various vegetation optical indices, e.g. Difference Vegetation Index (NDVI) or Photochemical Reflectance Index (PRI), assessing the actual physiological state of polar vegetation. Recently

  15. Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Lay, Norman; Hine, Butler; Zornetzer, Steven

    2004-01-01

    Concepts are being investigated for exploratory missions to Mars based on Bioinspired Engineering of Exploration Systems (BEES), which is a guiding principle of this effort to develop biomorphic explorers. The novelty lies in the use of a robust telecom architecture for mission data return, utilizing multiple local relays (including the lander itself as a local relay and the explorers in the dual role of a local relay) to enable ranges 10 to 1,000 km and downlink of color imagery. As illustrated in Figure 1, multiple microflyers that can be both surface or aerially launched are envisioned in shepherding, metamorphic, and imaging roles. These microflyers imbibe key bio-inspired principles in their flight control, navigation, and visual search operations. Honey-bee inspired algorithms utilizing visual cues to perform autonomous navigation operations such as terrain following will be utilized. The instrument suite will consist of a panoramic imager and polarization imager specifically optimized to detect ice and water. For microflyers, particularly at small sizes, bio-inspired solutions appear to offer better alternate solutions than conventional engineered approaches. This investigation addresses a wide range of interrelated issues, including desired scientific data, sizes, rates, and communication ranges that can be accomplished in alternative mission scenarios. The mission illustrated in Figure 1 offers the most robust telecom architecture and the longest range for exploration with two landers being available as main local relays in addition to an ephemeral aerial probe local relay. The shepherding or metamorphic plane are in their dual role as local relays and image data collection/storage nodes. Appropriate placement of the landing site for the scout lander with respect to the main mission lander can allow coverage of extremely large ranges and enable exhaustive survey of the area of interest. In particular, this mission could help with the path planning and risk

  16. Improved seagrass mapping using linear spectral unmixing of aerial photographs

    NASA Astrophysics Data System (ADS)

    Uhrin, Amy V.; Townsend, Philip A.

    2016-03-01

    Mapping of seagrass is challenging, particularly in areas where seagrass cover ranges from extensive, continuous meadows to aggregations of patchy mounds often no more than a meter across. Manual delineation of seagrass habitat polygons through visual photointerpretation of high resolution aerial imagery remains the most widely adopted approach for mapping seagrass extent but polygons often include unvegetated gaps. Although mapped polygon data exist for many estuaries, these are likely insufficient to accurately characterize spatial pattern or estimate area actually occupied by seagrass. We evaluated whether a linear spectral unmixing (LSU) classifier applied to manually-delineated seagrass polygons clipped from digital aerial images could improve mapping of seagrass in North Carolina. Representative seagrass endmembers were chosen directly from images and used to unmix image-clipped polygons, resulting in fraction planes (maps) of the proportion of seagrass present in each image pixel. Thresholding was used to generate seagrass maps for each pixel proportion from 0 (no thresholding, all pixel proportions included) to 1 (only pixels having 100% seagrass) in 0.1 increments. The optimal pixel proportion for identifying seagrass was assessed using Euclidean distance calculated from Receiver Operating Characteristic (ROC) curves and overall thematic accuracy calculated from confusion matrices. We assessed overall classifier performance using Kappa statistics and Area Under the (ROC) Curve (AUC). We compared seagrass area calculated from each threshold map to the total area of the corresponding manually-delineated polygon. LSU effectively classified seagrass and performed better than a random classification as indicated by high values for both Kappa statistics (0.72-98) and AUC (0.80-0.99). The LSU classifier effectively distinguished between seagrass and bare substrate resulting in fine-scale seagrass maps with overall thematic accuracies that exceeded our expected

  17. Aerial Terrain Mapping Using Unmanned Aerial Vehicle Approach

    NASA Astrophysics Data System (ADS)

    Tahar, K. N.

    2012-08-01

    This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS) onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root mean square

  18. The Potential Uses of Commercial Satellite Imagery in the Middle East

    SciTech Connect

    Vannoni, M.G.

    1999-06-08

    It became clear during the workshop that the applicability of commercial satellite imagery to the verification of future regional arms control agreements is limited at this time. Non-traditional security topics such as environmental protection, natural resource management, and the development of infrastructure offer the more promising applications for commercial satellite imagery in the short-term. Many problems and opportunities in these topics are regional, or at least multilateral, in nature. A further advantage is that, unlike arms control and nonproliferation applications, cooperative use of imagery in these topics can be done independently of the formal Middle East Peace Process. The value of commercial satellite imagery to regional arms control and nonproliferation, however, will increase during the next three years as new, more capable satellite systems are launched. Aerial imagery, such as that used in the Open Skies Treaty, can also make significant contributions to both traditional and non-traditional security applications but has the disadvantage of requiring access to national airspace and potentially higher cost. There was general consensus that commercial satellite imagery is under-utilized in the Middle East and resources for remote sensing, both human and institutional, are limited. This relative scarcity, however, provides a natural motivation for collaboration in non-traditional security topics. Collaborations between scientists, businesses, universities, and non-governmental organizations can work at the grass-roots level and yield contributions to confidence building as well as scientific and economic results. Joint analysis projects would benefit the region as well as establish precedents for cooperation.

  19. Use of Remote Sensed Imagery to Evaluate Land Cover Change: North Platte River Basin

    NASA Astrophysics Data System (ADS)

    Kerr, G.; Piburn, J.; Rudolph, J.; Tootle, G.; Marks, J. A.

    2012-12-01

    High resolution remote sensed data for land cover classification, such as LiDAR, is often times not readily available in rural areas. For basin-wide and other small-scale projects, proprietary LiDAR collection may not be cost effective and an alternative is found with the use of the National Agricultural Imagery Program (NAIP). NAIP imagery provides 1-meter resolution aerial imagery for the entire United States, temporally updated on a state by state basis at no charge to the user. NAIP imagery was used to classify forest cover change due to beetle infestation in the roughly 4,000 square-mile North Platte River Basin (NPRB). Using an interactive classification method with an underlying maximum likelihood classification algorithm, it was found that forest cover in the NPRB decreased by approximately 25% from 2005-2006 to 2009. Using focal histograms to refine the classifications to large-scale USGS 7.5 minute quadrangles, the land cover results will be used as parameters in the Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model to estimate how this physical change in land cover affects the riparian system of the NPRB, specifically streamflow response.

  20. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The area of snow cover on land was determined from ERTS-1 imagery. Snow cover in specific drainage basins was measured with the Stanford Research Institute console by electronically superimposing basin outlines on imagery, with video density slicing to measure areas. Snow covered area and snowline altitudes were also determined by enlarging ERTS-1 imagery 1:250,000 and using a transparent map overlay. Under very favorable conditions, snowline altitude was determined to an accuracy of about 60 m. Ability to map snow cover or to determine snowline altitude depends primarily on cloud cover and vegetation and secondarily on slope, terrain roughness, sun angle, radiometric fidelity, and amount of spectral information available. Glacier accumulation area ratios were determined from ERTS-1 imagery. Also, subtle flow structures, undetected on aerial photographs, were visible. Surging glaciers were identified, and the changes resulting from the surge of a large glacier were measured as were changes in tidal glacier termini.

  1. Habitat Mapping and Classification of the Grand Bay National Estuarine Research Reserve using AISA Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Rose, K.

    2012-12-01

    Habitat mapping and classification provides essential information for land use planning and ecosystem research, monitoring and management. At the Grand Bay National Estuarine Research Reserve (GRDNERR), Mississippi, habitat characterization of the Grand Bay watershed will also be used to develop a decision-support tool for the NERR's managers and state and local partners. Grand Bay NERR habitat units were identified using a combination of remotely sensed imagery, aerial photography and elevation data. Airborne Imaging Spectrometer for Applications (AISA) hyperspectral data, acquired 5 and 6 May 2010, was analyzed and classified using ENVI v4.8 and v5.0 software. The AISA system was configured to return 63 bands of digital imagery data with a spectral range of 400 to 970 nm (VNIR), spectral resolution (bandwidth) at 8.76 nm, and 1 m spatial resolution. Minimum Noise Fraction (MNF) and Inverse Minimum Noise Fraction were applied to the data prior to using Spectral Angle Mapper ([SAM] supervised) and ISODATA (unsupervised) classification techniques. The resulting class image was exported to ArcGIS 10.0 and visually inspected and compared with the original imagery as well as auxiliary datasets to assist in the attribution of habitat characteristics to the spectral classes, including: National Agricultural Imagery Program (NAIP) aerial photography, Jackson County, MS, 2010; USFWS National Wetlands Inventory, 2007; an existing GRDNERR habitat map (2004), SAV (2009) and salt panne (2002-2003) GIS produced by GRDNERR; and USACE lidar topo-bathymetry, 2005. A field survey to validate the map's accuracy will take place during the 2012 summer season. ENVI's Random Sample generator was used to generate GIS points for a ground-truth survey. The broad range of coastal estuarine habitats and geomorphological features- many of which are transitional and vulnerable to environmental stressors- that have been identified within the GRDNERR point to the value of the Reserve for

  2. Chosen Aspects of the Production of the Basic Map Using Uav Imagery

    NASA Astrophysics Data System (ADS)

    Kedzierski, M.; Fryskowska, A.; Wierzbicki, D.; Nerc, P.

    2016-06-01

    For several years there has been an increasing interest in the use of unmanned aerial vehicles in acquiring image data from a low altitude. Considering the cost-effectiveness of the flight time of UAVs vs. conventional airplanes, the use of the former is advantageous when generating large scale accurate ortophotos. Through the development of UAV imagery, we can update large-scale basic maps. These maps are cartographic products which are used for registration, economic, and strategic planning. On the basis of these maps other cartographic maps are produced, for example maps used building planning. The article presents an assessesment of the usefulness of orthophotos based on UAV imagery to upgrade the basic map. In the research a compact, non-metric camera, mounted on a fixed wing powered by an electric motor was used. The tested area covered flat, agricultural and woodland terrains. The processing and analysis of orthorectification were carried out with the INPHO UASMaster programme. Due to the effect of UAV instability on low-altitude imagery, the use of non-metric digital cameras and the low-accuracy GPS-INS sensors, the geometry of images is visibly lower were compared to conventional digital aerial photos (large values of phi and kappa angles). Therefore, typically, low-altitude images require large along- and across-track direction overlap - usually above 70 %. As a result of the research orthoimages were obtained with a resolution of 0.06 meters and a horizontal accuracy of 0.10m. Digitized basic maps were used as the reference data. The accuracy of orthoimages vs. basic maps was estimated based on the study and on the available reference sources. As a result, it was found that the geometric accuracy and interpretative advantages of the final orthoimages allow the updating of basic maps. It is estimated that such an update of basic maps based on UAV imagery reduces processing time by approx. 40%.

  3. Detection of Tree Crowns Based on Reclassification Using Aerial Images and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Talebi, S.; Zarea, A.; Sadeghian, S.; Arefi, H.

    2013-09-01

    Tree detection using aerial sensors in early decades was focused by many researchers in different fields including Remote Sensing and Photogrammetry. This paper is intended to detect trees in complex city areas using aerial imagery and laser scanning data. Our methodology is a hierarchal unsupervised method consists of some primitive operations. This method could be divided into three sections, in which, first section uses aerial imagery and both second and third sections use laser scanners data. In the first section a vegetation cover mask is created in both sunny and shadowed areas. In the second section Rate of Slope Change (RSC) is used to eliminate grasses. In the third section a Digital Terrain Model (DTM) is obtained from LiDAR data. By using DTM and Digital Surface Model (DSM) we would get to Normalized Digital Surface Model (nDSM). Then objects which are lower than a specific height are eliminated. Now there are three result layers from three sections. At the end multiplication operation is used to get final result layer. This layer will be smoothed by morphological operations. The result layer is sent to WG III/4 to evaluate. The evaluation result shows that our method has a good rank in comparing to other participants' methods in ISPRS WG III/4, when assessed in terms of 5 indices including area base completeness, area base correctness, object base completeness, object base correctness and boundary RMS. With regarding of being unsupervised and automatic, this method is improvable and could be integrate with other methods to get best results.

  4. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.

    PubMed

    van Andel, Alexander C; Wich, Serge A; Boesch, Christophe; Koh, Lian Pin; Robbins, Martha M; Kelly, Joseph; Kuehl, Hjalmar S

    2015-10-01

    Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest. PMID

  5. High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery

    NASA Astrophysics Data System (ADS)

    Tokarczyk, P.; Leitao, J. P.; Rieckermann, J.; Schindler, K.; Blumensaat, F.

    2015-01-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual subcatchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model

  6. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.

    PubMed

    Ditmer, Mark A; Vincent, John B; Werden, Leland K; Tanner, Jessie C; Laske, Timothy G; Iaizzo, Paul A; Garshelis, David L; Fieberg, John R

    2015-08-31

    Unmanned aerial vehicles (UAVs) have the potential to revolutionize the way research is conducted in many scientific fields. UAVs can access remote or difficult terrain, collect large amounts of data for lower cost than traditional aerial methods, and facilitate observations of species that are wary of human presence. Currently, despite large regulatory hurdles, UAVs are being deployed by researchers and conservationists to monitor threats to biodiversity, collect frequent aerial imagery, estimate population abundance, and deter poaching. Studies have examined the behavioral responses of wildlife to aircraft (including UAVs), but with the widespread increase in UAV flights, it is critical to understand whether UAVs act as stressors to wildlife and to quantify that impact. Biologger technology allows for the remote monitoring of stress responses in free-roaming individuals, and when linked to locational information, it can be used to determine events or components of an animal's environment that elicit a physiological response not apparent based on behavior alone. We assessed effects of UAV flights on movements and heart rate responses of free-roaming American black bears. We observed consistently strong physiological responses but infrequent behavioral changes. All bears, including an individual denned for hibernation, responded to UAV flights with elevated heart rates, rising as much as 123 beats per minute above the pre-flight baseline. It is important to consider the additional stress on wildlife from UAV flights when developing regulations and best scientific practices. PMID:26279232

  7. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.

    2014-12-01

    Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.

  8. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  9. Mental Imagery in Depression: Phenomenology, Potential Mechanisms, and Treatment Implications.

    PubMed

    Holmes, Emily A; Blackwell, Simon E; Burnett Heyes, Stephanie; Renner, Fritz; Raes, Filip

    2016-03-28

    Mental imagery is an experience like perception in the absence of a percept. It is a ubiquitous feature of human cognition, yet it has been relatively neglected in the etiology, maintenance, and treatment of depression. Imagery abnormalities in depression include an excess of intrusive negative mental imagery; impoverished positive imagery; bias for observer perspective imagery; and overgeneral memory, in which specific imagery is lacking. We consider the contribution of imagery dysfunctions to depressive psychopathology and implications for cognitive behavioral interventions. Treatment advances capitalizing on the representational format of imagery (as opposed to its content) are reviewed, including imagery rescripting, positive imagery generation, and memory specificity training. Consideration of mental imagery can contribute to clinical assessment and imagery-focused psychological therapeutic techniques and promote investigation of underlying mechanisms for treatment innovation. Research into mental imagery in depression is at an early stage. Work that bridges clinical psychology and neuroscience in the investigation of imagery-related mechanisms is recommended. PMID:26772205

  10. Unmanned aerial systems for forest reclamation monitoring: throwing balloons in the air

    NASA Astrophysics Data System (ADS)

    Andrade, Rita; Vaz, Eric; Panagopoulos, Thomas; Guerrero, Carlos

    2014-05-01

    Wildfires are a recurrent phenomenon in Mediterranean landscapes, deteriorating environment and ecosystems, calling out for adequate land management. Monitoring burned areas enhances our abilities to reclaim them. Remote sensing has become an increasingly important tool for environmental assessment and land management. It is fast, non-intrusive, and provides continuous spatial coverage. This paper reviews remote sensing methods, based on space-borne, airborne or ground-based multispectral imagery, for monitoring the biophysical properties of forest areas for site specific management. The usage of satellite imagery for land use management has been frequent in the last decades, it is of great use to determine plants health and crop conditions, allowing a synergy between the complexity of environment, anthropogenic landscapes and multi-temporal understanding of spatial dynamics. Aerial photography increments on spatial resolution, nevertheless it is heavily dependent on airborne availability as well as cost. Both these methods are required for wide areas management and policy planning. Comprising an active and high resolution imagery source, that can be brought at a specific instance, reducing cost while maintaining locational flexibility is of utmost importance for local management. In this sense, unmanned aerial vehicles provide maximum flexibility with image collection, they can incorporate thermal and multispectral sensors, however payload and engine operation time limit flight time. Balloon remote sensing is becoming increasingly sought after for site specific management, catering rapid digital analysis, permitting greater control of the spatial resolution as well as of datasets collection in a given time. Different wavelength sensors may be used to map spectral variations in plant growth, monitor water and nutrient stress, assess yield and plant vitality during different stages of development. Proximity could be an asset when monitoring forest plants vitality

  11. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  12. The application of ERTS imagery to mapping snow cover in the western United States. [Salt Verde in Arizona and Sierra Nevada California

    NASA Technical Reports Server (NTRS)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.; Simmes, D. A.

    1974-01-01

    The author has identified the following significant results. In much of the western United States a large part of the utilized water comes from accumulated mountain snowpacks; thus, accurate measurements of snow distributions are required for input to streamflow prediction models. The application of ERTS-1 imagery for mapping snow has been evaluated for two geographic areas, the Salt-Verde watershed in central Arizona and the southern Sierra Nevada in California. Techniques have been developed to identify snow and to differentiate between snow and cloud. The snow extent for these two drainage areas has been mapped from the MSS-5 (0.6 - 0.7 microns) imagery and compared with aerial survey snow charts, aircraft photography, and ground-based snow measurements. The results indicate that ERTS imagery has substantial practical applications for snow mapping. Snow extent can be mapped from ERTS-1 imagery in more detail than is depicted on aerial survey snow charts. Moreover, in Arizona and southern California cloud obscuration does not appear to be a serious deterrent to the use of satellite data for snow survey. The costs involved in deriving snow maps from ERTS-1 imagery appear to be very reasonable in comparison with existing data collection methods.

  13. Officials: Aerial Spraying Working Against Miami Mosquitoes

    MedlinePlus

    ... Officials: Aerial Spraying Working Against Miami Mosquitoes The insects are to blame for first cases of Zika ... mosquitoes in a part of Miami where the insects have been linked to 16 cases of Zika ...

  14. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  15. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  16. AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES

    SciTech Connect

    Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

    2007-12-19

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  17. Reference LIDAR Surfaces for Enhanced Aerial Triangulation and Camera Calibration

    NASA Astrophysics Data System (ADS)

    Gneeniss, A. S.; Mills, J. P.; Miller, P. E.

    2013-04-01

    Due to the complementary characteristics of lidar and photogrammetry, the integration of data derived from these techniques continues to receive attention from the relevant research communities. The research presented in this paper draws on this by adopting lidar data as a control surface from which aerial triangulation and camera system calibration can be performed. The research methodology implements automatic registration between the reference lidar DTM and dense photogrammetric point clouds which are derived using Integrated Sensing Orientation (ISO). This utilises a robust least squares surface matching algorithm, which is iterated to improve results by increasing the photogrammetric point quality through self-calibrating bundle adjustment. After a successful registration, well distributed lidar control points (LCPs) are automatically extracted from the transformed photogrammetric point clouds using predefined criteria. Finally, self-calibrating bundle block adjustment using different configurations of LCPs is performed to refine camera interior orientation (IO) parameters. The methodology has been assessed using imagery from a Vexcel UltraCamX large format camera. Analysis and the performance of the camera and its impact on the registration accuracy was performed. Furthermore, refinement of camera IO parameters was also applied using the derived LCPs. Tests also included investigations into the influence of the number and weight of LCPs in the accuracy of the bundle adjustment. Results from the UltraCamX block were compared with reference calibration results using ground control points in the test area, with good agreement found between the two approaches.

  18. Aerial measurements of convection cell elements in heated lakes

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, E.; Salaymeh, S. R.; Brown, T. B.; Garrett, A. J.; Nichols, L. S.; Pendergast, M. M.

    2008-03-01

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  19. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  20. Aerial righting reflexes in flightless animals.

    PubMed

    Jusufi, Ardian; Zeng, Yu; Full, Robert J; Dudley, Robert

    2011-12-01

    Animals that fall upside down typically engage in an aerial righting response so as to reorient dorsoventrally. This behavior can be preparatory to gliding or other controlled aerial behaviors and is ultimately necessary for a successful landing. Aerial righting reflexes have been described historically in various mammals such as cats, guinea pigs, rabbits, rats, and primates. The mechanisms whereby such righting can be accomplished depend on the size of the animal and on anatomical features associated with motion of the limbs and body. Here we apply a comparative approach to the study of aerial righting to explore the diverse strategies used for reorientation in midair. We discuss data for two species of lizards, the gecko Hemidactylus platyurus and the anole Anolis carolinensis, as well as for the first instar of the stick insect Extatosoma tiaratum, to illustrate size-dependence of this phenomenon and its relevance to subsequent aerial performance in parachuting and gliding animals. Geckos can use rotation of their large tails to reorient their bodies via conservation of angular momentum. Lizards with tails well exceeding snout-vent length, and correspondingly large tail inertia to body inertia ratios, are more effective at creating midair reorientation maneuvers. Moreover, experiments with stick insects, weighing an order of magnitude less than the lizards, suggest that aerodynamic torques acting on the limbs and body may play a dominant role in the righting process for small invertebrates. Both inertial and aerodynamic effects, therefore, can play a role in the control of aerial righting. We propose that aerial righting reflexes are widespread among arboreal vertebrates and arthropods and that they represent an important initial adaptation in the evolution of controlled aerial behavior. PMID:21930662

  1. Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...

  2. Stocking rate effects on spatial heterogeneity in vegetation cover in a grazing-resistant grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...

  3. U.S. Geological Survey Aids Federal Agencies in ObtainingCommercial Satellite and Aerial Imagery

    USGS Publications Warehouse

    U.S. Geological Survey

    2005-01-01

    The U.S. Geological Survey (USGS) is a leading U.S. Federal civil agency in the implementation of the civil aspects of the Commercial Remote Sensing Space Policy (CRSSP). The USGS is responsible for collecting inter-agency near-term requirements, establishing an operational infrastructure, and supporting the policy and other Federal agencies.

  4. Use of aerial remote sensing imagery for estimating peanut ground cover and leaf area index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf area index (LAI) and ground cover (GC) are important parameters as they are directly related light interception, plant growth, and yield. However determination of LAI and GC are often tedious processes and, for LAI require destructive sampling. Hence, remote sensing can be a tool for determin...

  5. Estimating Rates of Sedimentation using LiDAR, GPS, and Historic Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Balazs, M. S.; Wolken, G. J.; Prakash, A.

    2011-12-01

    The city of Seward, Alaska is situated on several alluvial fans, within a glacially carved valley, at the head of Resurrection Bay on the Kenai Peninsula. During large-scale rain events, significant events of deposition from upslope debris have been noted in some areas of the fans, which have led to the migration of several active channels. In order to protect current infrastructure, the city and other governmental organizations are forced to continually modify several streams in the area in order to keep the active streams from migrating to new courses as result of a change in topography. This study examines one such stream, Japanese Creek, to determine if rates of sedimentation can be calculated for timespans, with the hopes to provide the city of Seward with this information for the purposes of natural disaster mitigation, planning, and budgeting. A portion of the stream bed below the apex of Japanese Creek was surveyed at a grid spacing of approximately 1 meter using a real-time kinematic (RTK) and Post Processing Kinematic GPS systems, from which, a high resolution digital surface model (DSM) was created. A DSM was also created using photogrammetric techniques on a block of images from the Alaska High Altitude Photography (AHAP) collection, circa 1978. The created DSMs, along with an additional three high resolution DSMs created from Light Detection and Ranging (LiDAR) and GPS surveys, were compared to one another. Through differencing of the datasets, estimates of the rates of sedimentation for five time periods were calculated. These rates are then compared to regional climate data in order to define correlations between sedimentation and climate.

  6. Estimating Forage Quantity and Quality Using Aerial Hyperspectral Imagery for Northern Mixed Grass Prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable rangeland stewardship calls for synoptic estimates of rangeland biomass quantity (kg dry matter ha-1) and quality [carbon:nitrogen (C:N) ratio] to calculate crude protein (CPc) as mass per unit area (CPm) available to grazing organisms. Rangelands are comprised of photosynthetically act...

  7. EROS Main Image File: A Picture Perfect Database for Landsat Imagery and Aerial Photography.

    ERIC Educational Resources Information Center

    Jack, Robert F.

    1984-01-01

    Describes Earth Resources Observation System online database, which provides access to computerized images of Earth obtained via satellite. Highlights include retrieval system and commands, types of images, search strategies, other online functions, and interpretation of accessions. Satellite information, sources and samples of accessions, and…

  8. Assessing greater sage-grouse breeding habitat with aerial and ground imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthropogenic disturbances, wildfires, and weedy-plant invasions have destroyed and fragmented sagebrush (Artemisia L. spp.) habitats. Sagebrush-dependent species like greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) are vulnerable to these changes, emphasizing the importance ...

  9. Assessing greater sage-grouse breeding habitat with aerial and ground imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural expansion, housing and energy developments, wildfires, and weedy plant invasions have led to loss and fragmentation of sagebrush (Artemisia spp.) habitats within the Intermountain West. Sagebrush-dependent species such as greater sage-grouse (Centrocercus urophasianus) are vulnerable t...

  10. Insect-Inspired Navigation Algorithm for an Aerial Agent Using Satellite Imagery

    PubMed Central

    Gaffin, Douglas D.; Dewar, Alexander; Graham, Paul; Philippides, Andrew

    2015-01-01

    Humans have long marveled at the ability of animals to navigate swiftly, accurately, and across long distances. Many mechanisms have been proposed for how animals acquire, store, and retrace learned routes, yet many of these hypotheses appear incongruent with behavioral observations and the animals’ neural constraints. The “Navigation by Scene Familiarity Hypothesis” proposed originally for insect navigation offers an elegantly simple solution for retracing previously experienced routes without the need for complex neural architectures and memory retrieval mechanisms. This hypothesis proposes that an animal can return to a target location by simply moving toward the most familiar scene at any given point. Proof of concept simulations have used computer-generated ant’s-eye views of the world, but here we test the ability of scene familiarity algorithms to navigate training routes across satellite images extracted from Google Maps. We find that Google satellite images are so rich in visual information that familiarity algorithms can be used to retrace even tortuous routes with low-resolution sensors. We discuss the implications of these findings not only for animal navigation but also for the potential development of visual augmentation systems and robot guidance algorithms. PMID:25874764

  11. Dubai 3d Textuerd Mesh Using High Quality Resolution Vertical/oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Tayeb Madani, Adib; Ziad Ahmad, Abdullateef; Christoph, Lueken; Hammadi, Zamzam; Manal Abdullah Sabeal, Manal Abdullah x.

    2016-06-01

    Providing high quality 3D data with reasonable quality and cost were always essential, affording the core data and foundation for developing an information-based decision-making tool of urban environments with the capability of providing decision makers, stakeholders, professionals, and public users with 3D views and 3D analysis tools of spatial information that enables real-world views. Helps and assist in improving users' orientation and also increase their efficiency in performing their tasks related to city planning, Inspection, infrastructures, roads, and cadastre management. In this paper, the capability of multi-view Vexcel UltraCam Osprey camera images is examined to provide a 3D model of building façades using an efficient image-based modeling workflow adopted by commercial software's. The main steps of this work include: Specification, point cloud generation, and 3D modeling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on the images to generate point cloud. Then, a mesh model of points is calculated using and refined to obtain an accurate model of buildings. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough LoD2 details of the building based on visual assessment. The objective of this paper is neither comparing nor promoting a specific technique over the other and does not mean to promote a sensor-based system over another systems or mechanism presented in existing or previous paper. The idea is to share experience.

  12. Estimation of cotton yield with varied irrigation and nitrogen treatments using aerial multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton yield varies spatially within a field. The variability can be caused by various production inputs such as soil properties, water management, and fertilizer application. Airborne multispectral imaging is capable of providing data and information to study effects of the inputs on yield qualitat...

  13. USING AERIAL HYPERSPECTRAL REMOTE SENSING IMAGERY TO ESTIMATE CORN PLANT STAND DENSITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since corn plant stand density is important for optimizing crop yield, several researchers have recently developed ground-based systems for automatic measurement of this crop growth parameter. Our objective was to use data from such a system to assess the potential for estimation of corn plant stan...

  14. Feature selection methods for object-based classification of sub-decimeter resolution digital aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...

  15. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long...

  16. Endurance bounds of aerial systems

    NASA Astrophysics Data System (ADS)

    Harrington, Aaron M.; Kroninger, Christopher M.

    2014-06-01

    Within the past few years micro aerial vehicles (MAVs) have received much more attention and are starting to proliferate into military as well as civilian roles. However, one of the major drawbacks for this technology currently, has been their poor endurance, usually below 10 minutes. This is a direct result of the inefficiencies inherent in their design. Often times, designers do not consider the various components in the vehicle design and match their performance to the desired mission for the vehicle. These vehicles lack a prescribed set of design guidelines or empirically derived design equations which often limits their design to selection of commercial off-the-shelf components without proper consideration of their affect on vehicle performance. In the current study, the design space for different vehicle configurations has been examined including insect flapping, avian flapping, rotary wing, and fixed wing, and their performance bounds are established. The propulsion system typical of a rotary wing vehicle is analyzed to establish current baselines for efficiency of vehicles at this scale. The power draw from communications is analyzed to determine its impact on vehicle performance. Finally, a representative fixed wing MAV is examined and the effects of adaptive structures as a means for increasing vehicle endurance and range are examined. This paper seeks to establish the performance bounds for micro air vehicles and establish a path forward for future designs so that efficiency may be maximized.

  17. Processing Satellite Imagery To Detect Waste Tire Piles

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  18. Geomorphic analyses from space imagery

    NASA Technical Reports Server (NTRS)

    Morisawa, M.

    1985-01-01

    One of the most obvious applications of space imagery to geomorphological analyses is in the study of drainage patterns and channel networks. LANDSAT, high altitude photography and other types of remote sensing imagery are excellent for depicting stream networks on a regional scale because of their broad coverage in a single image. They offer a valuable tool for comparing and analyzing drainage patterns and channel networks all over the world. Three aspects considered in this geomorphological study are: (1) the origin, evolution and rates of development of drainage systems; (2) the topological studies of network and channel arrangements; and (3) the adjustment of streams to tectonic events and geologic structure (i.e., the mode and rate of adjustment).

  19. Bistatic SAR: Imagery & Image Products.

    SciTech Connect

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  20. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  1. Cognitive constraints on motor imagery.

    PubMed

    Dahm, Stephan F; Rieger, Martina

    2016-03-01

    Executed bimanual movements are prepared slower when moving to symbolically different than when moving to symbolically same targets and when targets are mapped to target locations in a left/right fashion than when they are mapped in an inner/outer fashion [Weigelt et al. (Psychol Res 71:238-447, 2007)]. We investigated whether these cognitive bimanual coordination constraints are observable in motor imagery. Participants performed fast bimanual reaching movements from start to target buttons. Symbolic target similarity and mapping were manipulated. Participants performed four action conditions: one execution and three imagination conditions. In the latter they indicated starting, ending, or starting and ending of the movement. We measured movement preparation (RT), movement execution (MT) and the combined duration of movement preparation and execution (RTMT). In all action conditions RTs and MTs were longer in movements towards different targets than in movements towards same targets. Further, RTMTs were longer when targets were mapped to target locations in a left/right fashion than when they were mapped in an inner/outer fashion, again in all action conditions. RTMTs in imagination and execution were similar, apart from the imagination condition in which participants indicated the start and the end of the movement. Here MTs, but not RTs, were longer than in the execution condition. In conclusion, cognitive coordination constraints are present in the motor imagery of fast (<1600 ms) bimanual movements. Further, alternations between inhibition and execution may prolong the duration of motor imagery. PMID:25758054

  2. Searching for hidden houses: optical satellite imagery in archaeological prospection of the early Neolithic settlements in the Kujawy region, Poland

    NASA Astrophysics Data System (ADS)

    RÄ czkowski, Włodzimierz; Rucinski, Dominik

    2015-06-01

    Archaeologists have been applying remote sensing methods for over hundred years. New technological opportunities still appear and they may offer new data on remains from the Past. Effectiveness of remote sensing methods differs at scales. Aerial photographs play very important role at the regional scale of prospection. The question appears on usefulness of optical satellite imagery in the field dominated by aerial photography until now. Survey based on aerial recording of early farming settlements in Central Europe proofs the value and effectiveness of the method in this field. On the other hand whilst analyzing aerial photographs one might doubt about a spatial structure of the settlement, whether the whole space of the settlement has been recorded or not. Most of traces of houses can be recognized as cropmarks, however it applies only to specific geomorphological structures. It raises the question: did people in the past select those specific geomorphological structures for settling or whether existing soil and geomorphological conditions mask archaeological traces? An attempt to recognize the impact of local soils and geomorphological conditions on a possibility of identification of archaeological features is one of the tasks in the project ArchEO - archaeological applications of Earth Observation techniques. In the vicinity of Kaczkowo village in Kujawy Region (Poland) a cluster of traces of the early Neolithic farmers is located. This area has been a subject of aerial survey for several years. Yet the question on a completeness of recognition of the settlement pattern is still open. In the project we attempt to assess to what extent optical satellite imagery and a wide range of processing techniques (vegetation indices, color composites, spectral transformations, edge detection etc.) might allow an identification of the remains of settlements, especially in the neighborhood of already known clusters of Neolithic houses. It might help in defining the range of

  3. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  4. Identification of spatially corresponding imagery using content-based image retrieval in the context of UAS video exploitation

    NASA Astrophysics Data System (ADS)

    Brüstle, Stefan; Manger, Daniel; Mück, Klaus; Heinze, Norbert

    2014-06-01

    For many tasks in the fields of reconnaissance and surveillance it is important to know the spatial location represented by the imagery to be exploited. A task involving the assessment of changes, e.g. the appearance or disappearance of an object of interest at a certain location, can typically not be accomplished without spatial location information associated with the imagery. Often, such georeferenced imagery is stored in an archive enabling the user to query for the data with respect to its spatial location. Thus, the user is able to effectively find spatially corresponding imagery to be used for change detection tasks. In the field of exploitation of video taken from unmanned aerial systems (UAS), spatial location data is usually acquired using a GPS receiver, together with an INS device providing the sensor orientation, both integrated in the UAS. If during a flight valid GPS data becomes unavailable for a period of time, e.g. due to sensor malfunction, transmission problems or jamming, the imagery gathered during that time is not applicable for change detection tasks based merely on its georeference. Furthermore, GPS and INS inaccuracy together with a potentially poor knowledge of ground elevation can also render location information inapplicable. On the other hand, change detection tasks can be hard to accomplish even if imagery is well georeferenced as a result of occlusions within the imagery, due to e.g. clouds or fog, or image artefacts, due to e.g. transmission problems. In these cases a merely georeference based approach to find spatially corresponding imagery can also be inapplicable. In this paper, we present a search method based on the content of the images to find imagery spatially corresponding to given imagery independent from georeference quality. Using methods from content-based image retrieval, we build an image database which allows for querying even large imagery archives efficiently. We further evaluate the benefits of this method in the

  5. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    NASA Astrophysics Data System (ADS)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  6. Accuracy Comparison of Vhr Systematic-Ortho Satellite Imageries against Vhr Orthorectified Imageries Using Gcp

    NASA Astrophysics Data System (ADS)

    Widyaningrum, E.; Fajari, M.; Octariady, J.

    2016-06-01

    The Very High Resolution (VHR) satellite imageries such us Pleiades, WorldView-2, GeoEye-1 used for precise mapping purpose must be corrected from any distortion to achieve the expected accuracy. Orthorectification is performed to eliminate geometric errors of the VHR satellite imageries. Orthorectification requires main input data such as Digital Elevation Model (DEM) and Ground Control Point (GCP). The VHR systematic-ortho imageries were generated using SRTM 30m DEM without using any GCP data. The accuracy value differences of VHR systematic-ortho imageries and VHR orthorectified imageries using GCP currently is not exactly defined. This study aimed to identified the accuracy comparison of VHR systematic-ortho imageries against orthorectified imageries using GCP. Orthorectified imageries using GCP created by using Rigorous model. Accuracy evaluation is calculated by using several independent check points.

  7. ERTS-1 imagery and high flight photographs as aids to fire hazard appraisal at the NASA San Pablo Reservoir test site

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    The identification of fire hazards at the San Pablo Reservoir Test Site in California using ERTS-1 data is discussed. It is stated that the two primary fire hazards in the area are caused by wild oat plants and eucalyptus trees. The types of imagery used in conducting the study are reported. Aerial photographs of specific areas are included to show the extent of the fire hazards.

  8. Initial coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1980-01-01

    The characteristics of the Nimbus-7 Coastal Zone Color Scanner are presented and the atmospheric correction and bio-optical algorithms are reviewed. Comparison of imagery before and after atmospheric correction shows that water features such as color fronts and small scale eddies can be retrieved even through a hazy and horizontally inhomogeneous atmosphere. Imagery is also presented to show that features revealed in color are sometimes completely absent from simultaneous thermal imagery implying that color and thermal imagery can provide complementary rather than redundant information.

  9. Aerial radiation survey at a military range.

    SciTech Connect

    Williams, G. P.; Martino, L. E.; Wrobel, J.; Environmental Assessment; U.S. Army Aberdeen Proving Ground

    2001-04-01

    Aberdeen Proving Ground (APG) is currently listed on the Superfund National Priorities List because of past waste handling practices at 13 'study areas.' Concern has been expressed that anthropogenic radioisotopes may have been released at some of the study areas, with the potential of posing health risks to human or ecological receptors. This concern was addressed by thoroughly searching archival records, sampling and analyzing environmental media, and performing an aerial radiation survey. The aerial radiation survey techniques employed have been used over all U.S. Department of Energy and commercial reactor sites. Use of the Aerial Measurement System (AMS) allowed investigators to safely survey areas where surveys using hand-held instruments would be difficult to perform. In addition, the AMS delivered a full spectrum of the measured gamma radiation, thereby providing a means of determining which radioisotopes were present at the surface. As a quality check on the aerial measurements, four ground truth measurements were made at selected locations and compared with the aerial data for the same locations. The results of the survey revealed no evidence of surface radioactive contamination. The measured background radiation, including the cosmic contribution, ranged from 4 to 11 {mu}R/h.

  10. Ortho-Rectification of Narrow Band Multi-Spectral Imagery Assisted by Dslr RGB Imagery Acquired by a Fixed-Wing Uas

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.

    2015-08-01

    Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at

  11. The Functional Equivalence between Movement Imagery, Observation, and Execution Influences Imagery Ability

    ERIC Educational Resources Information Center

    Williams, Sarah E.; Cumming, Jennifer; Edwards, Martin G.

    2011-01-01

    Based on literature identifying movement imagery, observation, and execution to elicit similar areas of neural activity, research has demonstrated that movement imagery and observation successfully prime movement execution. To investigate whether movement and observation could prime ease of imaging from an external visual-imagery perspective, an…

  12. The Intersection of Imagery Ability, Imagery Use, and Learning Style: An Exploratory Study

    ERIC Educational Resources Information Center

    Bolles, Gina; Chatfield, Steven J.

    2009-01-01

    This study explores the intersection of the individual's imagery ability, imagery use in dance training and performance, and learning style. Thirty-four intermediate-level ballet and modern dance students at the University of Oregon completed the Movement Imagery Questionnaire-Revised (MIQ-R) and Kolb's Learning Style Inventory-3 (LSI-3). The four…

  13. A procedure for semi-Automatic Orthophoto Generation from High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, M. N.; Jacobsen, K.; Heipke, C.

    2013-10-01

    The General Directorate of Surveying and Mapping (GDSM), under the Ministry of Municipal and Rural Affairs (MOMRA) is responsible for the production and dissemination of accurate geospatial data for all the metropolitan cities, towns and rural settlements in the Kingdom of Saudi Arabia. GDSM maintains digital geospatial databases that support the production of conventional line and orthophoto maps at scales ranging from 1:1,000 to 1:20,000. The current procedures for the acquisition of new aerial imagery cover a long time cycle of three or more years. Consequently, the availability of recently acquired High Resolution Satellite Imagery (HRSI) presents an attractive alternative image data source for rapid response to updated geospatial data needs. The direct sensor orientation of HRSI is not accurate enough requiring ground control points (GCP). A field survey of GCP is time consuming and costly. Seeking an alternative approach, a research study has recently been completed to use existing image and data base information instead of traditional ground control for the orthoprojection of HRSI in order to automate and speed up as much as possible the whole process. Based on a series of practical experiments, the ability for automated matching of aerial and satellite images by using the Speeded-Up Robust Features (SURF) algorithm is demonstrated to be useful for this task. Practical results from matching with SURF validate the ability for multi-scale, multi-sensor and multi-season matching of aerial and satellite images. The matched tie points are then used to transform the satellite orthophoto to the aerial orthophoto through a 2D affine coordinate transformation. GeoEye-1 and IKONOS imagery, when geo-referenced through SURF-based matching and transformed meet the MOMRA Map Accuracy Standards for 1:10,000 and 1:20,000 scale. However, a similarly processed SPOT-5 image does not meet these standards. This research has led to the development of a simple and efficient tool

  14. High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations

    NASA Astrophysics Data System (ADS)

    Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas

    2007-10-01

    A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.

  15. Characterizing Levees using Polarimetric and Interferometric Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Dabbiru, L.; Aanstoos, J. V.; Mahrooghy, M.; Gokaraju, B.; Nobrega, R. A.; Younan, N. H.

    2011-12-01

    Monitoring the physical condition of levees is vital in order to protect them from flooding. The dynamics of subsurface water events can cause damage on levee structures which could lead to slough slides, sand boils or through seepage. Synthetic Aperture Radar (SAR) technology, due to its high spatial resolution and soil penetration capability, is a good choice to identify such problem areas so that they can be treated to avoid possible catastrophic failure. The radar polarimetric and interferometric data is capable of identifying variations in soil properties of the areas which might cause levee failure. The study area encompasses portion of levees of the lower Mississippi river in the United States. The methodology of this research is mainly categorized into two streams: 1) polarimetric data analysis and classification, and 2) interferometric analysis. Two sources of SAR imagery are used: a) quad-polarized, L-band data from Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) for polarimetric classification, and b) high resolution dual-polarized Terrasar-X data for interferometric analysis. NASA's UAVSAR imagery acquired between 2009 and 2011 are used for the analysis. The polarimetric classification is performed based on the decomposition parameters: entropy (H), anisotropy (A) and alpha (α) and the results detected slough slides on the levees and potential future slides. In the interferometric approach, the Terrasar-X SAR images acquired at different times in the year 2011 are combined into pairs to exploit the phase difference of the signals. The interferometric information is used to find evidence of potential small-scale deformations which could be pre-cursors to levee failure.

  16. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  17. Low-Altitude Coastal Aerial Photogrammetry for High-Resolution Seabed Imaging and Habitat Mapping of Shallow Areas

    NASA Astrophysics Data System (ADS)

    Alevizos, E.

    2012-04-01

    This paper explores the application of Kite Aerial Photography at the coastal environment along with digital photogrammetry for seabed geomorphological mapping. This method takes advantage of sea-water clearance that allows the transmission of sunlight through the water column and backscatter of seabed reflection under certain conditions of sunlight, weather and sea state. We analyze the procedure of acquisition, processing and interpretation of kite aerial imagery from the sub-littoral zone up to 5 meters depth. Using a calibrated non-metric digital compact camera we managed to acquire several vertical aerial images from two coastal sites in the Attica Peninsula (Greece) covering an area of approximately 200x100 meters. Both sites express significant geomorphological variability and they have a relatively smooth slope profile. For the photogrammetric processing we acquired topographic and bathymetric survey simultaneously with Kite Aerial Photography using a portable GPS of sub-meter accuracy. In order to deal with bottom control measurements we developed Bottom Control Points which were placed on the seabed. These act like the Ground Control Points and they can be easily deployed in the marine environment. The processing included interior and exterior orientation as well as ortho-rectification of images. This produced final orthomosaics for each site at scales 1:500 - 1:1500 with a resolution of a few centimeters. Interpretation of the seabed was based on color and texture features of certain areas with explicit seabed reflectivity and was supported by underwater photographs for ground truthing. At the final stage of image analysis, we recognized the boundaries (contrasting reflectivity) between different bottom types and digitized them as 2D objects using GIS. Concluding, this project emphasizes on the advantages and physical restrictions of Kite Aerial Photography in mapping small-scale geomorphological features in coastal, estuarine and lagoonal environments

  18. Anaglyph of Perspective View with Aerial Photo Overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    -band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 5.8 km (3.6 miles) x 10 km (6.2 miles) Location: 34.16 deg. North lat., 118.16 deg. West lon. Orientation: Looking North Original Data Resolution: SRTM, 30 m; aerial photo, 3 m; no vertical exaggeration Date Acquired: February 16, 2000 Image: NASA/JPL/NIMA

  19. Pasadena, California Perspective View with Aerial Photo and Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 5.8 km (3.6 miles) x 10 km (6.2 miles) Location: 34.16 deg. North lat., 118.16 deg. West lon. Orientation: Looking North Original Data Resolution: SRTM, 30 meters; Landsat, 30 meters; Aerial Photo, 3 meters (no vertical exaggeration) Date Acquired: February 16, 2000

  20. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  1. Vector statistics of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Underwood, D.

    1977-01-01

    A digitized multispectral image, such as LANDSAT data, is composed of numerous four dimensional vectors, which quantitatively describe the ground scene from which the data are acquired. The statistics of unique vectors that occur in LANDSAT imagery are studied to determine if that information can provide some guidance on reducing image processing costs. A second purpose of this report is to investigate how the vector statistics are changed by various types of image processing techniques and determine if that information can be useful in choosing one processing approach over another.

  2. Satellite imagery of the earth

    USGS Publications Warehouse

    Merifield, P.M.; Cronin, J.; Foshee, L.L.; Gawarecki, S.J.; Neal, J.T.; Stevenson, R.E.; Stone, R.O.; Williams, R.S., Jr.

    1969-01-01

    Photography of the Earth from spacecraft has application to both atmospheric and Earth sciences. Gemini and Apollo photographs have furnished information on sea surface roughness, areas of potential upwelling and oceanic current systems. Regional geologic structures and geomorphologic features are also recorded in orbital photographs. Infrared satellite imagery provides meteorological and hydrological data and is potentially useful for locating fresh water springs along coastal areas, sources of geothermal power and volcanic activity. Ground and airborne surveys are being undertaken to create a basis for the interpretation of data obtained from future satellite systems.

  3. Ground cover estimated from aerial photographs

    NASA Technical Reports Server (NTRS)

    Gerbermann, A. H.; Cuellar, J. A.; Wiegand, C. L.

    1976-01-01

    Estimates of per cent ground cover made by ground observers were compared with independent estimates made on the basis of low-altitude (640-1219 m) aerial photographs of the same fields. Standard statistical simple correlation and linear regression analyses revealed a high correlation between the two estimation methods. In crops such as grain, sorghum, corn, and forage sorghum, in which the broadest part of the leaf canopy is near the top of the plant, there was a tendency to overestimate the per cent ground cover from aerial photographs.

  4. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  5. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  6. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  7. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  8. AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    AERIAL OF VISITORS INFORMATION CENTER [VIC] & ROCKET GARDEN KSC-373C-0556.20 116-KSC-373C-556.20, P-01622-B, ARCHIVE-04455 Aerial view of Easter crowds at Visitors Information Center, Kennedy Space Center, Florida.

  9. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  10. Multipath sparse coding for scene classification in very high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Fan, Jiayuan; Tan, Hui Li; Lu, Shijian

    2015-10-01

    With the rapid development of various satellite sensors, automatic and advanced scene classification technique is urgently needed to process a huge amount of satellite image data. Recently, a few of research works start to implant the sparse coding for feature learning in aerial scene classification. However, these previous research works use the single-layer sparse coding in their system and their performances are highly related with multiple low-level features, such as scale-invariant feature transform (SIFT) and saliency. Motivated by the importance of feature learning through multiple layers, we propose a new unsupervised feature learning approach for scene classification on very high resolution satellite imagery. The proposed unsupervised feature learning utilizes multipath sparse coding architecture in order to capture multiple aspects of discriminative structures within complex satellite scene images. In addition, the dense low-level features are extracted from the raw satellite data by using different image patches with varying size at different layers, and this approach is not limited to a particularly designed feature descriptors compared with the other related works. The proposed technique has been evaluated on two challenging high-resolution datasets, including the UC Merced dataset containing 21 different aerial scene categories with a 1 foot resolution and the Singapore dataset containing 5 land-use categories with a 0.5m spatial resolution. Experimental results show that it outperforms the state-of-the-art that uses the single-layer sparse coding. The major contributions of this proposed technique include (1) a new unsupervised feature learning approach to generate feature representation for very high-resolution satellite imagery, (2) the first multipath sparse coding that is used for scene classification in very high-resolution satellite imagery, (3) a simple low-level feature descriptor instead of many particularly designed low-level descriptor

  11. An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery

    USGS Publications Warehouse

    Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley

    2009-01-01

    In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 x 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each the. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal infrared

  12. An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery

    NASA Astrophysics Data System (ADS)

    Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley

    2009-10-01

    In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus ( Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 × 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each tile. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal

  13. Beyond visual imagery: how modality-specific is enhanced mental imagery in synesthesia?

    PubMed

    Spiller, Mary Jane; Jonas, Clare N; Simner, Julia; Jansari, Ashok

    2015-01-01

    Synesthesia based in visual modalities has been associated with reports of vivid visual imagery. We extend this finding to consider whether other forms of synesthesia are also associated with enhanced imagery, and whether this enhancement reflects the modality of synesthesia. We used self-report imagery measures across multiple sensory modalities, comparing synesthetes' responses (with a variety of forms of synesthesia) to those of non-synesthete matched controls. Synesthetes reported higher levels of visual, auditory, gustatory, olfactory and tactile imagery and a greater level of imagery use. Furthermore, their reported enhanced imagery is restricted to the modalities involved in the individual's synesthesia. There was also a relationship between the number of forms of synesthesia an individual has, and the reported vividness of their imagery, highlighting the need for future research to consider the impact of multiple forms of synesthesia. We also recommend the use of behavioral measures to validate these self-report findings. PMID:25460242

  14. Imagery, Music, Cognitive Style and Memory.

    ERIC Educational Resources Information Center

    Stratton, Valerie N.; Zalanowski, Annette

    Paired associate memory was tested with imagery and repetition instructions, with and without background music. Subjects were 64 students enrolled in an introductory psychology course. Music was found to have no effect with imagery instructions, but significantly improved performance with the repetition instructions. Music had different effects on…

  15. Alcohol imagery on New Zealand television

    PubMed Central

    McGee, Rob; Ketchel, Juanita; Reeder, Anthony I

    2007-01-01

    Background To examine the extent and nature of alcohol imagery on New Zealand (NZ) television, a content analysis of 98 hours of prime-time television programs and advertising was carried out over 7 consecutive days' viewing in June/July 2004. The main outcome measures were number of scenes in programs, trailers and advertisements depicting alcohol imagery; the extent of critical versus neutral and promotional imagery; and the mean number of scenes with alcohol per hour, and characteristics of scenes in which alcohol featured. Results There were 648 separate depictions of alcohol imagery across the week, with an average of one scene every nine minutes. Scenes depicting uncritical imagery outnumbered scenes showing possible adverse health consequences of drinking by 12 to 1. Conclusion The evidence points to a large amount of alcohol imagery incidental to storylines in programming on NZ television. Alcohol is also used in many advertisements to market non-alcohol goods and services. More attention needs to be paid to the extent of alcohol imagery on television from the industry, the government and public health practitioners. Health education with young people could raise critical awareness of the way alcohol imagery is presented on television. PMID:17270053

  16. Mental Imagery and Visual Working Memory

    PubMed Central

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  17. Mental Imagery in Creative Problem Solving.

    ERIC Educational Resources Information Center

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  18. How Visual Imagery Interferes with Vision.

    ERIC Educational Resources Information Center

    Craver-Lemley, Catherine; Reeves, Adam

    1992-01-01

    The Perky effect, identified in 1910, is the reduction in performance from the no-imagery to the imagery condition. A series of experiments with over 100 undergraduates and graduates shows that the reduction reflects a true reduction in visual sensitivity, not just alteration in criteria for responding or response organization. (SLD)

  19. Cognitive maps in imagery neglect.

    PubMed

    Palermo, Liana; Ranieri, Giulia; Nemmi, Federico; Guariglia, Cecilia

    2012-04-01

    Patients with imagery neglect (RI+) show peculiar difficulties in orienting themselves in the environment. Navigational impairments could be due to a deficit in creating or using a mental representation of the environment (Guariglia, Piccardi, Iaria, Nico, & Pizzamiglio, 2005) or, according to the BBB model (Burgess, Becker, King, & O'Keefe, 2001), to a specific deficit in a mechanism that transforms an allocentric representation into an egocentric one and vice versa. Previous studies, however, do not allow discerning between a deficit in forming or in using a cognitive map, taking no notice of the fact that these are two different abilities underlain by different neuroanatomical areas, which could be independently impaired. Furthermore, the BBB model has never been verified in a population of brain-damaged patients. Therefore, we administered two tasks that separately assess the ability to create and use a cognitive map of the environment to 28 right brain-damaged patients (4 patients with imagery neglect and 4 patients with perceptual neglect) and 11 healthy participants. RI+ patients showed no specific deficit in creating or using a cognitive map, but failed to transform an egocentric representation of the environment into an allocentric one and vice versa, as predicted by the BBB model. PMID:22310104

  20. Commercial imagery archive product development

    NASA Astrophysics Data System (ADS)

    Sakkas, Alysa

    1999-12-01

    The Lockheed Martin (LM) team had garnered over a decade of operational experience in digital imagery management and analysis for the US Government at numerous worldwide sites. Recently, it set out to create a new commercial product to serve the needs of large-scale imagery archiving and analysis markets worldwide. LM decided to provide a turnkey commercial solution to receive, store, retrieve, process, analyze and disseminate in 'push' or 'pull' modes components and adapted and developed its own algorithms to provide added functionality not commercially available elsewhere. The resultant product, Intelligent Library System, satisfies requirements for (a) a potentially unbounded, data archive automated workflow management for increased user productivity; (c) automatic tracking and management of files stored on shelves; (d) ability to ingest, process and disseminate data involves with bandwidths ranging up to multi-gigabit per second; (e) access through a thin client- to-server network environment; (f) multiple interactive users needing retrieval of filters in seconds from both archived images or in real time, and (g) scalability that maintains information throughput performance as the size of the digital library grows.

  1. Remote sensing reconnaissance of faulting in alluvium, Lake Mead to Lake Havasu, California, Nevada and Arizona. An application of ERTS-1 satellite imagery

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator); Liggett, M. A.; Childs, J. F.

    1973-01-01

    The author has identified the following significant results. Analysis of ERTS-1 MSS and other imagery for a 125 x 25 mile area in the southern part of the Basin-Range Province of southeastern California, southern Nevada, and northwestern Arizona indicates the presence of numerous color and contrast anomalies in alluvium. Field work guided by high altitude U-2 and side-looking aerial radar imagery confirmed that these anomalies are fault zones, many of which are believed to be of recent age. Few faults in alluvium have been reported from previous ground based geologic studies in the area. ERTS-1 imagery provides a synoptic perspective previously unavailable for regional geologic studies. The ability to conduct rapid and inexpensive reconnaissance of recent faulting has important applications to land use planning, ground water exploration, geologic hazards, and the siting and design of engineering projects.

  2. Imagining predictions: mental imagery as mental emulation

    PubMed Central

    Moulton, Samuel T.; Kosslyn, Stephen M.

    2009-01-01

    We argue that the primary function of mental imagery is to allow us to generate specific predictions based upon past experience. All imagery allows us to answer ‘what if’ questions by making explicit and accessible the likely consequences of being in a specific situation or performing a specific action. Imagery is also characterized by its reliance on perceptual representations and activation of perceptual brain systems. We use this conception of imagery to argue that all imagery is simulation—more specifically, it is a specific type of simulation in which the mental processes that ‘run’ the simulation emulate those that would actually operate in the simulated scenario. This type of simulation, which we label emulation, has benefits over other types of simulations that merely mimic the content of the simulated scenario. PMID:19528008

  3. Mental Imagery: Functional Mechanisms and Clinical Applications

    PubMed Central

    Pearson, Joel; Naselaris, Thomas; Holmes, Emily A.; Kosslyn, Stephen M.

    2015-01-01

    Mental imagery research has weathered both disbelief of the phenomenon and inherent methodological limitations. Here we review recent behavioral, brain imaging, and clinical research that has reshaped our understanding of mental imagery. Research supports the claim that visual mental imagery is a depictive internal representation that functions like a weak form of perception. Brain imaging work has demonstrated that neural representations of mental and perceptual images resemble one another as early as the primary visual cortex (V1). Activity patterns in V1 encode mental images and perceptual images via a common set of low-level depictive visual features. Recent translational and clinical research reveals the pivotal role that imagery plays in many mental disorders and suggests how clinicians can utilize imagery in treatment. PMID:26412097

  4. 7 CFR 1755.507 - Aerial cable services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 1755.507 Aerial cable services. (a) Where more than six pairs are needed initially, and where an aerial service is necessary, the service shall consist of 22 AWG filled aerial cable of a pair size adequate for... from the building, the wall bracket shall be reinforced against pullout by an arrangement equivalent...

  5. 7 CFR 1755.507 - Aerial cable services.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 1755.507 Aerial cable services. (a) Where more than six pairs are needed initially, and where an aerial service is necessary, the service shall consist of 22 AWG filled aerial cable of a pair size adequate for... from the building, the wall bracket shall be reinforced against pullout by an arrangement equivalent...

  6. 7 CFR 1755.507 - Aerial cable services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 1755.507 Aerial cable services. (a) Where more than six pairs are needed initially, and where an aerial service is necessary, the service shall consist of 22 AWG filled aerial cable of a pair size adequate for... from the building, the wall bracket shall be reinforced against pullout by an arrangement equivalent...

  7. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  8. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  9. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  10. 47 CFR 32.6421 - Aerial cable expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  11. Geography via Aerial Field Trips: Do It This Way, 6.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.; Guell, Carl E.

    To provide guidance for geography teachers, this booklet presents information on how to plan and execute aerial field trips. The aerial field trip can be employed as an effective visual aid technique in the teaching of geography, especially for presenting earth generalizations and interrelationships. The benefits of an aerial field trip are…

  12. The use of remote sensing imagery for environmental land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Miller, D. A.; Foster, K. E.

    1976-01-01

    Flood hazard maps have been constructed for Graham, Yuma, and Yavapai Counties in Arizona using remote sensing techniques. Watershed maps of priority areas were selected on the basis of their interest to the county planning staff and represented areas of imminent or ongoing development and those known to be subject to inundation by storm runoff. Landsat color infrared imagery at scales of 1:1,000,000, 1:500,000, and 1:250,000 was used together with high-altitude aerial photography at scales of 1:120,000 and 1:60,000 to determine drainage patterns and erosional features, soil type, and the extent and type of ground cover. The satellite imagery was used in the form of 70 mm chips for enhancement in a color additive viewer and in all available enlargement modes. Field checking served as the main backup to the interpretations. Areas with high susceptibility to flooding were determined with a high level of confidence from the remotely sensed imagery.

  13. Polar Bears from Space: Assessing Satellite Imagery as a Tool to Track Arctic Wildlife

    PubMed Central

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark–recapture models. This estimate (: 94; 95% Confidence Interval: 92–105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (: 102; 95% CI: 69–152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics. PMID:25006979

  14. Quantifying sub-pixel urban impervious surface through fusion of optical and inSAR imagery

    USGS Publications Warehouse

    Yang, L.; Jiang, L.; Lin, H.; Liao, M.

    2009-01-01

    In this study, we explored the potential to improve urban impervious surface modeling and mapping with the synergistic use of optical and Interferometric Synthetic Aperture Radar (InSAR) imagery. We used a Classification and Regression Tree (CART)-based approach to test the feasibility and accuracy of quantifying Impervious Surface Percentage (ISP) using four spectral bands of SPOT 5 high-resolution geometric (HRG) imagery and three parameters derived from the European Remote Sensing (ERS)-2 Single Look Complex (SLC) SAR image pair. Validated by an independent ISP reference dataset derived from the 33 cm-resolution digital aerial photographs, results show that the addition of InSAR data reduced the ISP modeling error rate from 15.5% to 12.9% and increased the correlation coefficient from 0.71 to 0.77. Spatially, the improvement is especially noted in areas of vacant land and bare ground, which were incorrectly mapped as urban impervious surfaces when using the optical remote sensing data. In addition, the accuracy of ISP prediction using InSAR images alone is only marginally less than that obtained by using SPOT imagery. The finding indicates the potential of using InSAR data for frequent monitoring of urban settings located in cloud-prone areas. Copyright ?? 2009 by Bellwether Publishing, Ltd. All right reserved.

  15. GeoEarthScope Airborne LiDAR and Satellite InSAR Imagery

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Jackson, M. E.; Meertens, C.

    2008-12-01

    UNAVCO has successfully acquired a significant volume of aerial and satellite geodetic imagery as part of GeoEarthScope, a component of the EarthScope Facility project funded by the National Science Foundation. All GeoEarthScope acquisition activities are now complete. Airborne LiDAR data acquisitions took place in 2007 and 2008 and cover a total area of more than 5000 square kilometers. The primary LiDAR survey regions cover features in Northern California, Southern/Eastern California, the Pacific Northwest, the Intermountain Seismic Belt (including the Wasatch and Teton faults and Yellowstone), and Alaska. We have ordered and archived more than 28,000 scenes (more than 81,000 frames) of synthetic aperture radar (SAR) data suitable for interferometric analyses covering most of the western U.S. and parts of Alaska and Hawaii from several satellite platforms, including ERS-1/2, ENVISAT and RADARSAT. In addition to ordering data from existing archives, we also tasked the ESA ENVISAT satellite to acquire new SAR data in 2007 and 2008. GeoEarthScope activities were led by UNAVCO, guided by the community and conducted in partnership with the USGS and NASA. Processed imagery products, in addition to formats intended for use in standard research software, can also be viewed using general purpose tools such as Google Earth. We present a summary of these vast geodetic imagery datasets, totaling tens of terabytes, which are freely available to the community.

  16. Stream network analysis from orbital and suborbital imagery, Colorado River Basin, Texas

    NASA Technical Reports Server (NTRS)

    Baker, V. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Orbital SL-2 imagery (earth terrain camera S-190B), received September 5, 1973, was subjected to quantitative network analysis and compared to 7.5 minute topographic mapping (scale: 1/24,000) and U.S.D.A. conventional black and white aerial photography (scale: 1/22,200). Results can only be considered suggestive because detail on the SL-2 imagery was badly obscured by heavy cloud cover. The upper Bee Creek basin was chosen for analysis because it appeared in a relatively cloud-free portion of the orbital imagery. Drainage maps were drawn from the three sources digitized into a computer-compatible format, and analyzed by the WATER system computer program. Even at its small scale (1/172,000) and with bad haze the orbital photo showed much drainage detail. The contour-like character of the Glen Rose Formation's resistant limestone units allowed channel definition. The errors in pattern recognition can be attributed to local areas of dense vegetation and to other areas of very high albedo caused by surficial exposure of caliche. The latter effect caused particular difficulty in the determination of drainage divides.

  17. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    PubMed

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics. PMID:25006979

  18. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife

    USGS Publications Warehouse

    Stapleton, Seth P.; LaRue, Michelle A.; Lecomte, Nicolas; Atkinson, Stephen N.; Garshelis, David L.; Porter, Claire; Atwood, Todd C.

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark- recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  19. Environmental waste site characterization utilizing aerial photographs, remote sensing, and surface geophysics

    SciTech Connect

    Pope, P.; Van Eeckhout, E.; Rofer, C.; Baldridge, S.; Ferguson, J.; Jiracek, G.; Balick, L.; Josten, N.; Carpenter, M.

    1996-04-18

    Six different techniques were used to delineate 40 year old trench boundary at Los Alamos National Laboratory. Data from historical aerial photographs, a magnetic gradient survey, airborne multispectral and thermal infra-red imagery, seismic refraction, DC resistivity, and total field magnetometry were utilized in this process. Each data set indicated a southern and northern edge for the trench. Average locations and 95% confidence limits for each edge were determined along a survey line perpendicular to the trench. Trench edge locations were fairly consistent among all six techniques. Results from a modeling effort performed with the total magnetic field data was the least consistent. However, each method provided unique and complementary information, and the integration of all this information led to a more complete characterization of the trench boundaries and contents.

  20. Demonstration of a multimode longwave infrared imaging system on an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Jones, Terry L.; Romanski, John G.; Buckley, John J.; Girata, Anthony J.

    1999-07-01

    The RISTA II sensor was integrated into the Altus Unmanned Aerial Vehicle (UAV) and flown over Camp Roberts and Ft. Hunter Ligget, CA in July 1998. The RISTA II demonstration system consisted of a long-wave IR imager, a digital data link, and a ground processing facility (GPF) containing an aided target recognizer, data storage devices, and operator workstations. Imagery was compressed on the UAV and sent on the GPF over a 10.71 Mbit per second digital data link. Selected image frames from the GPF were sent near real-time over a T1 link to observers in Rosslyn, VA. The sensor operated in a variety of scanning and framing modes. Both manual and automatic sensor pointing were demonstrated. Seven flights were performed at altitudes up to 7500m and range sup to 60 km from the GPF. Applicability to numerous military and civilian scenarios was demonstrated.

  1. Modelling and representation issues in automated feature extraction from aerial and satellite images

    NASA Astrophysics Data System (ADS)

    Sowmya, Arcot; Trinder, John

    New digital systems for the processing of photogrammetric and remote sensing images have led to new approaches to information extraction for mapping and Geographic Information System (GIS) applications, with the expectation that data can become more readily available at a lower cost and with greater currency. Demands for mapping and GIS data are increasing as well for environmental assessment and monitoring. Hence, researchers from the fields of photogrammetry and remote sensing, as well as computer vision and artificial intelligence, are bringing together their particular skills for automating these tasks of information extraction. The paper will review some of the approaches used in knowledge representation and modelling for machine vision, and give examples of their applications in research for image understanding of aerial and satellite imagery.

  2. The sky is the limit? 20 years of small-format aerial photography taken from UAS for monitoring geomorphological processes

    NASA Astrophysics Data System (ADS)

    Marzolff, Irene

    2014-05-01

    One hundred years after the first publication on aerial photography taken from unmanned aerial platforms (Arthur Batut 1890), small-format aerial photography (SFAP) became a distinct niche within remote sensing during the 1990s. Geographers, plant biologists, archaeologists and other researchers with geospatial interests re-discovered the usefulness of unmanned platforms for taking high-resolution, low-altitude photographs that could then be digitized and analysed with geographical information systems, (softcopy) photogrammetry and image processing techniques originally developed for digital satellite imagery. Even before the ubiquity of digital consumer-grade cameras and 3D analysis software accessible to the photogrammetric layperson, do-it-yourself remote sensing using kites, blimps, drones and micro air vehicles literally enabled the questing researcher to get their own pictures of the world. As a flexible, cost-effective method, SFAP offered images with high spatial and temporal resolutions that could be ideally adapted to the scales of landscapes, forms and distribution patterns to be monitored. During the last five years, this development has been significantly accelerated by the rapid technological advancements of GPS navigation, autopiloting and revolutionary softcopy-photogrammetry techniques. State-of-the-art unmanned aerial systems (UAS) now allow automatic flight planning, autopilot-controlled aerial surveys, ground control-free direct georeferencing and DEM plus orthophoto generation with centimeter accuracy, all within the space of one day. The ease of use of current UAS and processing software for the generation of high-resolution topographic datasets and spectacular visualizations is tempting and has spurred the number of publications on these issues - but which advancements in our knowledge and understanding of geomorphological processes have we seen and can we expect in the future? This presentation traces the development of the last two decades

  3. Aerial Infrared Photos for Citrus Growers

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W. J.

    1982-01-01

    Handbook advises on benefits and methods of aerial photography with color infrared film. Interpretation of photographs is discussed in detail. Necessary equipment for interpretation is described--light table, magnifying lenses, and microfiche viewers, for example. Advice is given on rating tree condition; identifying effects of diseases, insects, and nematodes; and evaluating effects of soil, water, and weather.

  4. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National...) Vertical towers; and (v) A combination of any such devices. Aerial equipment may be made of metal, wood... on the edge of the basket or use planks, ladders, or other devices for a work position. (v) A...

  5. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National...) Vertical towers; and (v) A combination of any such devices. Aerial equipment may be made of metal, wood... on the edge of the basket or use planks, ladders, or other devices for a work position. (v) A...

  6. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National...) Vertical towers; and (v) A combination of any such devices. Aerial equipment may be made of metal, wood... on the edge of the basket or use planks, ladders, or other devices for a work position. (v) A...

  7. Using Unmanned Aerial Vehicles and GPS Receivers

    NASA Technical Reports Server (NTRS)

    Gary, B.

    1995-01-01

    It is proposed that a small fleet of unmanned aerial vehicles (UAVs) be used over a period of years to monitor the rise of pressure surfaces caused by the hypothesized rise in average temperature of the troposphere due to global warming. Global Positioning Satellite System (GPS) receivers would be used for the precise tracking required.

  8. Sea Ice Mapping using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  9. ENVIRONMENTAL APPLICATION OF LOW ALTITUDE AERIAL PHOTOGRAPHY

    EPA Science Inventory

    The most practical avenue for development of these goals is to continue to use the LAAPS system at field sites that require aerial imaging. For the sake of convenience, I believe that the local field sites can provide a convenient location to develop new applications and test enh...

  10. A TOOL FOR PLANNING AERIAL PHOTOGRAPHY

    EPA Science Inventory

    abstract The U.S. EPAs Pacific Coastal Ecology Branch has developed a tool in the form of an Excel. spreadsheet that facilitates planning aerial photography missions. The spreadsheet accepts various input parameters such as desired photo-scale and boundary coordinates of the stud...

  11. The Art and Science of Aerial Perspective

    ERIC Educational Resources Information Center

    Kegel, Susan

    2006-01-01

    The author is always looking for ways to see connections and to adapt experiences across different subjects. Combining art with other disciplines helps keep students engaged, even the really analytical and verbal learners. Aerial perspective is an art technique, a scientific principle, and a vehicle for introducing Chinese painting and…

  12. Calculating aerial images from EUV masks

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1999-06-01

    Aerial images for line/space patterns, arrays of posts and an arbitrary layout pattern are calculated for EUV masks in a 4X EUV imaging system. Both mask parameters and illumination parameters are varied to investigate their effects on the aerial image. To facilitate this study, a parallel version of TEMPEST with a Fourier transform boundary condition was developed and run on a network of 24 microprocessors. Line width variations are observed when absorber thickness or sidewall angle changes. As the line/space pattern scales to smaller dimensions, the aspect ratios of the absorber features increase, introducing geometric shadowing and reducing aerial image intensity and contrast. 100nm square posts have circular images of diameter close to 100nm, but decreasing in diameter significantly when the corner round radius at the mask becomes greater than 50 nm. Exterior mask posts image slightly smaller and with higher ellipticity than interior mask posts. The aerial image of the arbitrary test pattern gives insight into the effects of the off-axis incidence employed in EUV lithography systems.

  13. Investigation of selected imagery from SKYLAB/EREP S190 system for medium and small scale mapping

    NASA Technical Reports Server (NTRS)

    Stewart, R. A.

    1975-01-01

    Satellite photography provided by the Skylab mission was investigated as a tool in planimetric mapping at medium and small scales over land surface in Canada. The main interest involved the potential usage of Skylab imagery for new and revision line mapping, photomapping possibilities, and the application of this photography as control for conventional high altitude aerial surveys. The results of six independent investigations clearly indicate that certain selected sets of this photography are adequate for planimetric mapping purposes at scales of 1:250,000 and smaller. In limited cases, the NATO planimetric accuracy requirements for Class B 1:50,000 scale mapping were also achieved. Of the S190A photography system, the camera containing the Pan X Aerial Black and White film offers the greatest potential to mapping at small scales. However, the S190B system continually proved to offer more versatility throughout the entire investigation.

  14. Object-based spatiotemporal analysis of vine canopy vigor using an inexpensive unmanned aerial vehicle remote sensing system

    NASA Astrophysics Data System (ADS)

    Mathews, Adam J.

    2014-01-01

    Remotely sensed imagery provides a rapid assessment of spatial variability in grapevine canopy vigor that correlates with crop performance. Unmanned aerial vehicles (UAVs) provide a low-cost image acquisition platform with high spatial and temporal resolutions. Using a UAV and digital cameras, aerial images of a Texas vineyard were captured at postflowering, veraison, and harvest. Imagery was processed to generate orthophotos in units of reflectance, which were then segmented to extract per-vine estimates of canopy area (planimetric extent) and normalized difference vegetation index (NDVI)-based canopy density. Derived canopy area and density values were compared to the harvest variables of number of clusters, cluster size, and yield to explore correlations. Planimetrically derived canopy area yielded significant, positive relationships, whereas NDVI-based canopy density exhibited no significant relationships due to sensor-related radiometric inaccuracy. A vine performance index was calculated to map spatial variation in canopy vigor for the entire growing season. Future management zones were delineated using spatial grouping analysis.

  15. Semi-automted analysis of high-resolution aerial images to quantify docks in Upper Midwest glacial lakes

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.; Vinje, Jason

    2013-01-01

    Lake resources can be negatively affected by environmental stressors originating from multiple sources and different spatial scales. Shoreline development, in particular, can negatively affect lake resources through decline in habitat quality, physical disturbance, and impacts on fisheries. The development of remote sensing techniques that efficiently characterize shoreline development in a regional context could greatly improve management approaches for protecting and restoring lake resources. The goal of this study was to develop an approach using high-resolution aerial photographs to quantify and assess docks as indicators of shoreline development. First, we describe a dock analysis workflow that can be used to quantify the spatial extent of docks using aerial images. Our approach incorporates pixel-based classifiers with object-based techniques to effectively analyze high-resolution digital imagery. Second, we apply the analysis workflow to quantify docks for 4261 lakes managed by the Minnesota Department of Natural Resources. Overall accuracy of the analysis results was 98.4% (87.7% based on ) after manual post-processing. The analysis workflow was also 74% more efficient than the time required for manual digitization of docks. These analyses have immediate relevance for resource planning in Minnesota, whereas the dock analysis workflow could be used to quantify shoreline development in other regions with comparable imagery. These data can also be used to better understand the effects of shoreline development on aquatic resources and to evaluate the effects of shoreline development relative to other stressors.

  16. Radiometric and Geometric Accuracy Analysis of Rasat Pan Imagery

    NASA Astrophysics Data System (ADS)

    Kocaman, S.; Yalcin, I.; Guler, M.

    2016-06-01

    RASAT is the second Turkish Earth Observation satellite which was launched in 2011. It operates with pushbroom principle and acquires panchromatic and MS images with 7.5 m and 15 m resolutions, respectively. The swath width of the sensor is 30 km. The main aim of this study is to analyse the radiometric and geometric quality of RASAT images. A systematic validation approach for the RASAT imagery and its products is being applied. RASAT image pair acquired over Kesan city in Edirne province of Turkey are used for the investigations. The raw RASAT data (L0) are processed by Turkish Space Agency (TUBITAK-UZAY) to produce higher level image products. The image products include radiometrically processed (L1), georeferenced (L2) and orthorectified (L3) data, as well as pansharpened images. The image quality assessments include visual inspections, noise, MTF and histogram analyses. The geometric accuracy assessment results are only preliminary and the assessment is performed using the raw images. The geometric accuracy potential is investigated using 3D ground control points extracted from road intersections, which were measured manually in stereo from aerial images with 20 cm resolution and accuracy. The initial results of the study, which were performed using one RASAT panchromatic image pair, are presented in this paper.

  17. Evolving forest fire burn severity classification algorithms for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Harvey, Neal R.; Bloch, Jeffrey J.; Theiler, James P.; Perkins, Simon J.; Young, Aaron C.; Szymanski, John J.

    2001-08-01

    Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.

  18. Pricise Target Geolocation and Tracking Based on Uav Video Imagery

    NASA Astrophysics Data System (ADS)

    Hosseinpoor, H. R.; Samadzadegan, F.; Dadrasjavan, F.

    2016-06-01

    There is an increasingly large number of applications for Unmanned Aerial Vehicles (UAVs) from monitoring, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using an extended Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors, Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process. The results of this study compared with code-based ordinary GPS, indicate that RTK observation with proposed method shows more than 10 times improvement of accuracy in target geolocation.

  19. Object and activity detection from aerial video

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Shi, Feng; Liu, Xin; Ghazel, Mohsen

    2015-05-01

    Aerial video surveillance has advanced significantly in recent years, as inexpensive high-quality video cameras and airborne platforms are becoming more readily available. Video has become an indispensable part of military operations and is now becoming increasingly valuable in the civil and paramilitary sectors. Such surveillance capabilities are useful for battlefield intelligence and reconnaissance as well as monitoring major events, border control and critical infrastructure. However, monitoring this growing flood of video data requires significant effort from increasingly large numbers of video analysts. We have developed a suite of aerial video exploitation tools that can alleviate mundane monitoring from the analysts, by detecting and alerting objects and activities that require analysts' attention. These tools can be used for both tactical applications and post-mission analytics so that the video data can be exploited more efficiently and timely. A feature-based approach and a pixel-based approach have been developed for Video Moving Target Indicator (VMTI) to detect moving objects at real-time in aerial video. Such moving objects can then be classified by a person detector algorithm which was trained with representative aerial data. We have also developed an activity detection tool that can detect activities of interests in aerial video, such as person-vehicle interaction. We have implemented a flexible framework so that new processing modules can be added easily. The Graphical User Interface (GUI) allows the user to configure the processing pipeline at run-time to evaluate different algorithms and parameters. Promising experimental results have been obtained using these tools and an evaluation has been carried out to characterize their performance.

  20. Facilitating the exploitation of ERTS imagery using snow enhancement techniques. [geological mapping of New England test area

    NASA Technical Reports Server (NTRS)

    Wobber, F. J.; Martin, K. R. (Principal Investigator); Amato, R. V.; Leshendok, T.

    1974-01-01

    The author has identified the following significant results. The procedure for conducting a regional geological mapping program utilizing snow-enhanced ERTS-1 imagery has been summarized. While it is recognized that mapping procedures in geological programs will vary from area to area and from geologist to geologist, it is believed that the procedure tested in this project is applicable over a wide range of mapping programs. The procedure is designed to maximize the utility and value of ERTS-1 imagery and aerial photography within the initial phase of geological mapping programs. Sample products which represent interim steps in the mapping formula (e.g. the ERTS Fracture-Lineament Map) have been prepared. A full account of these procedures and products will be included within the Snow Enhancement Users Manual.

  1. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images

    NASA Astrophysics Data System (ADS)

    Fiorucci, F.; Cardinali, M.; Carlà, R.; Rossi, M.; Mondini, A. C.; Santurri, L.; Ardizzone, F.; Guzzetti, F.

    2011-06-01

    We tested the possibility of using digital, color aerial ortho-photographs and monoscopic, panchromatic satellite images of comparable spatial and radiometric resolution, to map recent landslides in Italy and to update existing measures of landslide mobilization. In a 90-km 2 area in Umbria, central Apennines, rainfall resulted in abundant landslides in the period from September 2004 to June 2005. Analysis of the rainfall record determined the approximate dates of landslide occurrence and revealed that the slope failures occurred in response to moderately wet rainfall periods. The slope failures occurred primarily in cultivated terrain and left subtle morphological and land cover signatures, making the recognition and mapping of the individual landslides problematic. Despite the difficulty with the identification of the landslides without the use of stereoscopic visualization, visual analysis of the aerial and satellite images allowed mapping 457 new landslides, ranging in area 3.0 × 10 1 < AL < 2.5 × 10 4 m 2, for a total landslide area ALT = 6.92 × 10 5 m 2. To identify the landslides, the investigators adopted the interpretation criteria commonly used to identify and map landslides on aerial photography. The result confirms that monoscopic, very high resolution images taken by airborne and satellite sensors can be used to prepare landslide maps even where slope failures are difficult to detect, provided the imagery has sufficient geometric and radiometric resolutions. The different dates of the aerial (March 2005) and the satellite (June-July 2005) images allowed the temporal segmentation of the landslide information, and studying the statistics of landslide area and volume for different periods. Compared to pre-existing information on the abundance and size of the landslides in the area, the inventory obtained by studying the aerial and satellite images proved more complete. The new mapping showed 145% more landslides and 85% more landslide area than a pre

  2. Use of remote sensing techniques for geological hazard surveys in vegetated urban regions. [multispectral imagery for lithological mapping

    NASA Technical Reports Server (NTRS)

    Stow, S. H.; Price, R. C.; Hoehner, F.; Wielchowsky, C.

    1976-01-01

    The feasibility of using aerial photography for lithologic differentiation in a heavily vegetated region is investigated using multispectral imagery obtained from LANDSAT satellite and aircraft-borne photography. Delineating and mapping of localized vegetal zones can be accomplished by the use of remote sensing because a difference in morphology and physiology results in different natural reflectances or signatures. An investigation was made to show that these local plant zones are affected by altitude, topography, weathering, and gullying; but are controlled by lithology. Therefore, maps outlining local plant zones were used as a basis for lithologic map construction.

  3. Evaluation of ERTS-1 imagery in mapping and managing soil and range resources in the Sand Hills Region of Nebraska

    NASA Technical Reports Server (NTRS)

    Seevers, P. M.; Drew, J. V.

    1973-01-01

    Interpretations of high altitude photography of test sites in the Sandhills of Nebraska permitted identification of subirrigated range sites as well as complexes of choppy sands and sands range sites, units composing approximately 85% of the Sandhills rangeland. These range sites form the basic units necessary for the interpretation of range condition classes used in grazing management. Analysis of ERTS-1 imagery acquired during August, September and October, 1972 indicated potential for the identification of gross differences in forage density within given range sites identified on early season aerial photography.

  4. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    PubMed

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  5. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed

    2014-01-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  6. Motor imagery facilitates force field learning.

    PubMed

    Anwar, Muhammad Nabeel; Tomi, Naoki; Ito, Koji

    2011-06-13

    Humans have the ability to produce an internal reproduction of a specific motor action without any overt motor output. Recent findings show that the processes underlying motor imagery are similar to those active during motor execution and both share common neural substrates. This suggests that the imagery of motor movements might play an important role in acquiring new motor skills. In this study we used haptic robot in conjunction with motor imagery technique to improve learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent and position-dependent mixed force field. The groups performed movements with motor imagery produced higher after effects and decreased muscle co-contraction with respect to no-motor imagery group. These results showed a positive influence of motor imagery on acquiring new motor skill and suggest that motor learning can be facilitated by mental practice and could be used to increase the rate of adaptation. PMID:21555118

  7. Binary coding for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu

    2004-10-01

    Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.

  8. Sonar imagery of mobile targets

    NASA Astrophysics Data System (ADS)

    Medynski, D.; Dorey, Ph.

    A spectral autoregression model is presented for extracting imagery from the brilliant reflections of pure tone sonar signals reflected from a moving target. The model is intended for bypassing the resolution degradation normally caused by temporal and frequency shifts. The Doppler shift caused by a large, moving object (100 m long) is shown to be large enough at a 1000 m distance with a 30 kHz signal that sequential autospectral analysis of the shifts can provide transverse image data of the target. A Fourier transformation would be inadequate for characterizing the difference in the return signals. The autoregression analysis proceeds by pattern recognition and error prediction steps at a set time interval. A SNR of 20 dB is obtained, which exceeds that available using PCM techniques.

  9. Crop identification using ERTS imagery

    NASA Technical Reports Server (NTRS)

    Horton, M. L.; Heilman, J. L.

    1973-01-01

    Digital analysis of August 15 ERTS-I imagery for southeastern South Dakota was performed to determine the feasibility of conducting crop surveys from satellites. Selected areas of bands 4, 5, 6, and 7 positive transparencies were converted to digital form utilizing Signal Analysis and Dissemination Equipment (SADE). The optical transmission values were printed out in a spatial format. Visual analysis of the printouts indicated that cultivated areas were readily distinguished from non-cultivated areas in all four bands. Bare soil was easily recognized in all four bands. Corn and soybeans, the two major crops in the area, were treated as separate classes rather than as a single class called row crops. Bands 6 and 7 provided good results in distinguishing between corn and soybeans.

  10. User services available from USDA'S aerial photography field office

    NASA Technical Reports Server (NTRS)

    Dickson, R. A.

    1975-01-01

    APFO furnishes LANDSAT imagery and supporting NASA aircraft imagery to NASA-funded principal investigators who are working within the agriculture discipline. The office holds and reproduces Skylab imagery and a variety of aircraft photography (including infrared) from various government agencies. Available products are listed. Other topics discussed include quality control of photographic materials, analytical aerotriangulation, and photographic processes.

  11. Loss of form vision impairs spatial imagery

    PubMed Central

    Occelli, Valeria; Lin, Jonathan B.; Lacey, Simon; Sathian, K.

    2014-01-01

    Previous studies have reported inconsistent results when comparing spatial imagery performance in the blind and the sighted, with some, but not all, studies demonstrating deficits in the blind. Here, we investigated the effect of visual status and individual preferences (“cognitive style”) on performance of a spatial imagery task. Participants with blindness resulting in the loss of form vision at or after age 6, and age- and gender-matched sighted participants, performed a spatial imagery task requiring memorization of a 4 × 4 lettered matrix and subsequent mental construction of shapes within the matrix from four-letter auditory cues. They also completed the Santa Barbara Sense of Direction Scale (SBSoDS) and a self-evaluation of cognitive style. The sighted participants also completed the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ). Visual status affected performance on the spatial imagery task: the blind performed significantly worse than the sighted, independently of the age at which form vision was completely lost. Visual status did not affect the distribution of preferences based on self-reported cognitive style. Across all participants, self-reported verbalizer scores were significantly negatively correlated with accuracy on the spatial imagery task. There was a positive correlation between the SBSoDS score and accuracy on the spatial imagery task, across all participants, indicating that a better sense of direction is related to a more proficient spatial representation and that the imagery task indexes ecologically relevant spatial abilities. Moreover, the older the participants were, the worse their performance was, indicating a detrimental effect of age on spatial imagery performance. Thus, spatial skills represent an important target for rehabilitative approaches to visual impairment, and individual differences, which can modulate performance, should be taken into account in such approaches. PMID:24678294

  12. Loss of form vision impairs spatial imagery.

    PubMed

    Occelli, Valeria; Lin, Jonathan B; Lacey, Simon; Sathian, K

    2014-01-01

    Previous studies have reported inconsistent results when comparing spatial imagery performance in the blind and the sighted, with some, but not all, studies demonstrating deficits in the blind. Here, we investigated the effect of visual status and individual preferences ("cognitive style") on performance of a spatial imagery task. Participants with blindness resulting in the loss of form vision at or after age 6, and age- and gender-matched sighted participants, performed a spatial imagery task requiring memorization of a 4 × 4 lettered matrix and subsequent mental construction of shapes within the matrix from four-letter auditory cues. They also completed the Santa Barbara Sense of Direction Scale (SBSoDS) and a self-evaluation of cognitive style. The sighted participants also completed the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ). Visual status affected performance on the spatial imagery task: the blind performed significantly worse than the sighted, independently of the age at which form vision was completely lost. Visual status did not affect the distribution of preferences based on self-reported cognitive style. Across all participants, self-reported verbalizer scores were significantly negatively correlated with accuracy on the spatial imagery task. There was a positive correlation between the SBSoDS score and accuracy on the spatial imagery task, across all participants, indicating that a better sense of direction is related to a more proficient spatial representation and that the imagery task indexes ecologically relevant spatial abilities. Moreover, the older the participants were, the worse their performance was, indicating a detrimental effect of age on spatial imagery performance. Thus, spatial skills represent an important target for rehabilitative approaches to visual impairment, and individual differences, which can modulate performance, should be taken into account in such approaches. PMID:24678294

  13. Landslide detection and susceptibility analysis using aerial photographs and weight of evidence

    NASA Astrophysics Data System (ADS)

    Saro, Lee; Hyun-Joo, Oh

    2010-05-01

    susceptibility using GIS. Using landslide location and a spatial database containing information such as topography, soil, forest, geology, lineament and land cover, the weights-of-evidence model was applied to calculate each relevant factor's rating for the Jinbu-myeon area in Korea, which had suffered substantial landslide damage following heavy rain in 2006. In the topographic database, the factors were slope, aspect, curvature, Topographic Wetness Index (TWI) and Stream Power Index (SPI); in the soil database, they were soil texture, soil material, soil drainage, soil effective thickness and topographic type; in the forest map, they were forest type, timber diameter, timber age and forest density; lithology was derived from the geological database; land cover information came from SPOT satellite imagery; and lineament data from hillshade map. For the analysis of mapping landslide susceptibility, W+ and W-, of each factor's rating were overlaid spatially. The result of the analysis was validated using the known landslide locations (30% of total landslide occurrence), which were not used during the training of the weight-of-evidence model. The demonstrated prediction accuracy was 82.82%. Tests of conditional independence were performed for the selection of factors, allowing 17 combinations of factors to be analysed. The combination of slope, aspect, curvature, SPI, lineament, land cover, timber density, soil drainage and topography showed the best results. The results can be used for hazard prevention and land-use planning. The photograph was a time and cost effective to identify landslide prone area in the study area, and the landslide locations were equal to the locations where were checked in the field. In addition, it can help to assess a better understanding of the landslide processes. Keyword: Landslide susceptibility, Digital aerial photograph, GIS, Korea, Weight of evidence.

  14. The Sport Imagery Questionnaire for Children (SIQ-C)

    ERIC Educational Resources Information Center

    Hall, C. R.; Munroe-Chandler, K. J.; Fishburne, G. J.; Hall, N. D.

    2009-01-01

    Athletes of all ages report using imagery extensively to enhance their sport performance. The Sport Imagery Questionnaire (Hall, Mack, Paivio, & Hausenblas, 1998) was developed to assess cognitive and motivational imagery used by adult athletes. No such instrument currently exists to measure the use of imagery by young athletes. The aim of the…

  15. Identification of disrupted surfaces due to military activity at the Ft. Irwin National Training Center: An aerial photograph and satellite image analysis

    SciTech Connect

    McCarthy, L.E.; Marsh, S.E.; Lee, C.

    1996-07-01

    Concern for environmental management of our natural resources is most often focused on the anthropogenic impacts placed upon these resources. Desert landscapes, in particular, are fragile environments, and minimal stresses on surficial materials can greatly increase the rate and character of erosional responses. The National Training Center, Ft. Irwin, located in the middle of the Mojave Desert, California, provides an isolated study area of intense ORV activity occurring over a 50-year period. Geomorphic surfaces, and surficial disruption from two study sites within the Ft. Irwin area were mapped from 1947, 1:28,400, and 1993 1:12,000 black and white aerial photographs. Several field checks were conducted to verify this mapping. However, mapping from black and white aerial photography relies heavily on tonal differences, patterns, and morphological criteria. Satellite imagery, sensitive to changes in mineralogy, can help improve the ability to distinguish geomorphic units in desert regions. In order to assess both the extent of disrupted surfaces and the surficial geomorphology discemable from satellite imagery, analysis was done on SPOT panchromatic and Landsat Thematic Mapper (TM) multispectral imagery acquired during the spring of 1987 and 1993. The resulting classified images provide a clear indication of the capabilities of the satellite data to aid in the delineation of disrupted geomorphic surfaces.

  16. Semantic Segmentation and Difference Extraction via Time Series Aerial Video Camera and its Application

    NASA Astrophysics Data System (ADS)

    Amit, S. N. K.; Saito, S.; Sasaki, S.; Kiyoki, Y.; Aoki, Y.

    2015-04-01

    Google earth with high-resolution imagery basically takes months to process new images before online updates. It is a time consuming and slow process especially for post-disaster application. The objective of this research is to develop a fast and effective method of updating maps by detecting local differences occurred over different time series; where only region with differences will be updated. In our system, aerial images from Massachusetts's road and building open datasets, Saitama district datasets are used as input images. Semantic segmentation is then applied to input images. Semantic segmentation is a pixel-wise classification of images by implementing deep neural network technique. Deep neural network technique is implemented due to being not only efficient in learning highly discriminative image features such as road, buildings etc., but also partially robust to incomplete and poorly registered target maps. Then, aerial images which contain semantic information are stored as database in 5D world map is set as ground truth images. This system is developed to visualise multimedia data in 5 dimensions; 3 dimensions as spatial dimensions, 1 dimension as temporal dimension, and 1 dimension as degenerated dimensions of semantic and colour combination dimension. Next, ground truth images chosen from database in 5D world map and a new aerial image with same spatial information but different time series are compared via difference extraction method. The map will only update where local changes had occurred. Hence, map updating will be cheaper, faster and more effective especially post-disaster application, by leaving unchanged region and only update changed region.

  17. Validating high-resolution California coastal flood modeling with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)

    NASA Astrophysics Data System (ADS)

    O'Neill, A.

    2015-12-01

    The Coastal Storm Modeling System (CoSMoS) is a numerical modeling scheme used to predict coastal flooding due to sea level rise and storms influenced by climate change, currently in use in central California and in development for Southern California (Pt. Conception to the Mexican border). Using a framework of circulation, wave, analytical, and Bayesian models at different geographic scales, high-resolution results are translated as relevant hazards projections at the local scale that include flooding, wave heights, coastal erosion, shoreline change, and cliff failures. Ready access to accurate, high-resolution coastal flooding data is critical for further validation and refinement of CoSMoS and improved coastal hazard projections. High-resolution Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides an exceptional data source as appropriately-timed flights during extreme tides or storms provide a geographically-extensive method for determining areas of inundation and flooding extent along expanses of complex and varying coastline. Landward flood extents are numerically identified via edge-detection in imagery from single flights, and can also be ascertained via change detection using additional flights and imagery collected during average wave/tide conditions. The extracted flooding positions are compared against CoSMoS results for similar tide, water level, and storm-intensity conditions, allowing for robust testing and validation of CoSMoS and providing essential feedback for supporting regional and local model improvement.

  18. Low-cost Tools for Aerial Video Geolocation and Air Traffic Analysis for Delay Reduction Using Google Earth

    NASA Astrophysics Data System (ADS)

    Zetterlind, V.; Pledgie, S.

    2009-12-01

    Low-cost, low-latency, robust geolocation and display of aerial video is a common need for a wide range of earth observing as well as emergency response and security applications. While hardware costs for aerial video collection systems, GPS, and inertial sensors have been decreasing, software costs for geolocation algorithms and reference imagery/DTED remain expensive and highly proprietary. As part of a Federal Small Business Innovative Research project, MosaicATM and EarthNC, Inc have developed a simple geolocation system based on the Google Earth API and Google's 'built-in' DTED and reference imagery libraries. This system geolocates aerial video based on platform and camera position, attitude, and field-of-view metadata using geometric photogrammetric principles of ray-intersection with DTED. Geolocated video can be directly rectified and viewed in the Google Earth API during processing. Work is underway to extend our geolocation code to NASA World Wind for additional flexibility and a fully open-source platform. In addition to our airborne remote sensing work, MosaicATM has developed the Surface Operations Data Analysis and Adaptation (SODAA) tool, funded by NASA Ames, which supports analysis of airport surface operations to optimize aircraft movements and reduce fuel burn and delays. As part of SODAA, MosaicATM and EarthNC, Inc have developed powerful tools to display national airspace data and time-animated 3D flight tracks in Google Earth for 4D analysis. The SODAA tool can convert raw format flight track data, FAA National Flight Data (NFD), and FAA 'Adaptation' airport surface data to a spatial database representation and then to Google Earth KML. The SODAA client provides users with a simple graphical interface through which to generate queries with a wide range of predefined and custom filters, plot results, and export for playback in Google Earth in conjunction with NFD and Adaptation overlays.

  19. LiDAR data and SAR imagery acquired by an unmanned helicopter for rapid landslide investigation

    NASA Astrophysics Data System (ADS)

    Kasai, M.; Tanaka, Y.; Yamazaki, T.

    2012-12-01

    When earthquakes or heavy rainfall hits a landslide prone area, initial actions require estimation of the size of damage to people and infrastructure. This includes identifying the number and size of newly collapsed or expanded landslides, and appraising subsequent risks from remobilization of landslides and debris materials. In inapproachable areas, the UAV (Unmanned Aerial Vehicles) is likely to be of greatest use. In addition, repeat monitoring of sites after the event is a way of utilizing UAVs, particularly in terms of cost and convenience. In this study, LiDAR (SkEyesBox MP-1) data and SAR (Nano SAR) imagery, acquired over 0.5 km2 landslide prone area, are presented to assess the practicability of using unmanned helicopters (in this case a 10 year old YAMAHA RMAX G1) in these situations. LiDAR data was taken in July 2012, when tree foliage covered the ground surface. However, imagery was of sufficient quality to identify and measure landslide features. Nevertheless, LiDAR data obtained by a manned helicopter in the same area in August 2008 was more detailed, reflecting the function of the LiDAR scanner. On the other hand, 2 m resolution Nano SAR imagery produced reasonable results to elucidate hillslope condition. A quick method for data processing without loss of image quality was also investigated. In conclusion, the LiDAR scanner and UAV employed here could be used to plan immediate remedial activity of the area, before LiDAR measurement with a manned helicopter can be organized. SAR imagery from UAV is also available for this initial activity, and can be further applied to long term monitoring.

  20. Early aerial photography and contributions to Digital Earth - The case of the 1921 Halifax air survey mission in Canada

    NASA Astrophysics Data System (ADS)

    Werle, D.

    2016-04-01

    This paper presents research into the military and civilian history, technological development, and practical outcomes of aerial photography in Canada immediately after the First World War. The collections of early aerial photography in Canada and elsewhere, as well as the institutional and practical circumstances and arrangements of their creation, represent an important part of remote sensing heritage. It is argued that the digital rendition of the air photos and their representation in mosaic form can make valuable contributions to Digital Earth historic inquiries and mapping exercises today. An episode of one of the first urban surveys, carried out over Halifax, Nova Scotia, in 1921, is highlighted and an air photo mosaic and interpretation key is presented. Using the almost one hundred year old air photos and a digitally re-assembled mosaic of a substantial portion of that collection as a guide, a variety of features unique to the post-war urban landscape of the Halifax peninsula are analysed, illustrated, and compared with records of past and current land use. The pan-chromatic air photo ensemble at a nominal scale of 1:5,000 is placed into the historical context with contemporary thematic maps, recent air photos, and modern satellite imagery. Further research opportunities and applications concerning early Canadian aerial photography are outlined.

  1. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  2. Payette National Forest aerial survey project using the Kodak digital color infrared camera

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1997-11-01

    Staff of the Payette National Forest located in central Idaho used the Kodak Digital Infrared Camera to collect digital photographic images over a wide variety of selected areas. The objective of this aerial survey project is to collect airborne digital camera imagery and to evaluate it for potential use in forest assessment and management. The data collected from this remote sensing system is being compared with existing resource information and with personal knowledge of the areas surveyed. Resource specialists are evaluating the imagery to determine if it may be useful for; identifying cultural sites (pre-European settlement tribal villages and camps); recognizing ecosystem landscape pattern; mapping recreation areas; evaluating the South Fork Salmon River road reconstruction project; designing the Elk Summit Road; assessing the impact of sediment on anadramous fish in the South Fork Salmon River; assessing any contribution of sediment to the South Fork from the reconstructed road; determining post-wildfire stress development in conifer timber; in assessing the development of insect populations in areas initially determined to be within low intensity wildfire burn polygons; and to search for Idaho Ground Squirrel habitat. Project sites include approximately 60 linear miles of the South Fork of the Salmon River; a parallel road over about half that distance; 3 archaeological sites; two transects of about 6 miles each for landscape patterns; 3 recreation areas; 5 miles of the Payette River; 4 miles of the Elk Summit Road; a pair of transects 4.5 miles long for stress assessment in timber; a triplet of transects about 3 miles long for the assessment of the identification of species; and an area of about 640 acres to evaluate habitat for the endangered Idaho Ground Squirrel. Preliminary results indicate that the imagery is an economically viable way to collect site specific resource information that is of value in the management of a national forest.

  3. Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems

    SciTech Connect

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Sera White

    2011-09-01

    In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems and assessment of rangeland health. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species (including sage grouse and pygmy rabbit). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluations. In this project, two UAV platforms, fixed wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate percent cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and (2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Engineering (INL) site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percent cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  4. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    SciTech Connect

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  5. Cortical activity during motor execution, motor imagery, and imagery-based online feedback

    PubMed Central

    Miller, Kai J.; Schalk, Gerwin; Fetz, Eberhard E.; den Nijs, Marcel; Ojemann, Jeffrey G.; Rao, Rajesh P. N.

    2010-01-01

    Imagery of motor movement plays an important role in learning of complex motor skills, from learning to serve in tennis to perfecting a pirouette in ballet. What and where are the neural substrates that underlie motor imagery-based learning? We measured electrocorticographic cortical surface potentials in eight human subjects during overt action and kinesthetic imagery of the same movement, focusing on power in “high frequency” (76–100 Hz) and “low frequency” (8–32 Hz) ranges. We quantitatively establish that the spatial distribution of local neuronal population activity during motor imagery mimics the spatial distribution of activity during actual motor movement. By comparing responses to electrocortical stimulation with imagery-induced cortical surface activity, we demonstrate the role of primary motor areas in movement imagery. The magnitude of imagery-induced cortical activity change was ∼25% of that associated with actual movement. However, when subjects learned to use this imagery to control a computer cursor in a simple feedback task, the imagery-induced activity change was significantly augmented, even exceeding that of overt movement. PMID:20160084

  6. Mass Balance of Glaciers In Southern Chile, Based On Dems From Aster and Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Casassa, G.; Bown, F.; Fernandez, A.

    The glaciers located in the Chilean southern Andes region (41-51S) have been re- treating and shrinking during most of the last century, in response to a climate warm- ing trend recognised in many climatic stations of the country. During recent years, several calving and small mountain glaciers have been analysed, in an attempt to cor- relate the short historical glacier variation (no longer than 150 years) with long term dendrochronological series (from 300 to 1000 years). The aim of this analysis is to un- derstand climate change during the last millennia, as well as the mechanisms of glacier response to such climatic changes. In this context, mass balance studies are one of the most important approaches to determine the specific relationship of glaciers to annual and decadal climatic changes. In Chile, only one glacier (glaciar Echaurren, 33S) has been systematically measured since 1975, generating the longest mass balance series of the country. To account for the mass balance of glaciers in the southern region of Chile, a geodetic method is presented, based upon the comparison of digital elevation models (DEM) obtained from aerial photographs and ASTER imagery from different dates. This method have been applied to glaciar Chico located at 49S in the Southern Patagonia Icefield, where we have generated DEMs from aerial photographs of 1975 and 1995, as well as one DEM from an ASTER image of October 2001. The DEMs are geo-referenced to a network of GPS points, measured in several field campaigns carried out during recent years at rock outcrops and in the accumulation area of the glacier. The last campaign was done during September and October 2001, allowing a high accuracy ground control validation for DEM derived from the contemporary ASTER image. The mass balance analysis is complemented with frontal variations derived from Landsat TM imagery, as well as field data and aerial photographs. One preliminary result of this study shows a consistent ice thinning, at

  7. Aerial measurement of heat loss: Phase II

    SciTech Connect

    Not Available

    1982-07-01

    The purpose of the program described was to develop techniques to reduce or eliminate some of the variables associated with thermogram analysis in order to provide more objective interpretation of the data collected with greater potential for accuracy. A procedure is given for measuring temperature which accounts for atmospheric, background, and differential emissivity effects. The residual error was found to be 1.0/sup 0/C. A technique was then identified and developed for determining heat loss lovels from roof top surface temperature data. A thermal integrity factor was defined as a function of insulation level and thermostat setting. Comparing these thermal integrity factors with aerial thermography data indicates that aerial thermography can be used to objectively and confidently define heat loss levels from building roofs. (LEW)

  8. Aerial color infrared photography applications to citriculture

    NASA Technical Reports Server (NTRS)

    Blazquez, C. H.; Horn, F. W., Jr.

    1980-01-01

    Results of a one-year experimental study on the use of aerial color infrared photography in citrus grove management are presented. It is found that the spring season, when trees are in flush (have young leaves), is the best season to photograph visible differences between healthy and diseased trees. It is also shown that the best photography can be obtained with a 12-in. focal length lens. The photographic scale that allowed good photo interpretation with simple inexpensive equipment was 1 in. = 330 ft. The use of a window-overlay transparency method allowed rapid photo interpretation and data recording in computer-compatible forms. Aerial color infrared photography carried out during the spring season revealed a more accurate status of tree condition than visual inspection.

  9. Controller Design of Quadrotor Aerial Robot

    NASA Astrophysics Data System (ADS)

    Yali, Yu; SunFeng; Yuanxi, Wang

    This paper deduced the nonlinear dynamic model of a quadrotor aerial robot, which was a VTOL (vertical tale-off and landing) unmanned air vehicle. Since that is a complex model with the highly nonlinear multivariable strongly coupled and under-actuated property, the controller design of it was very difficult. Aimed at attaining the excellent controller, the whole system can be divided into three interconnected parts: attitude subsystem, vertical subsystem, position subsystem. Then nonlinear control strategy of them has been described, such as SDRE and Backstepping. The controller design was presented to stabilize the whole system. Through simulation result indicates, the various models have shown that the control law stabilize a quadrotor aerial robot with good tracking performance and robotness of the system.

  10. Competence imagery: a case study treating emetophobia.

    PubMed

    Moran, Daniel J; O'Brien, Richard M

    2005-06-01

    An emetophobic child is nonresponsive to conventional systematic desensitization and has her anxiety responses counterconditioned by using Competence Imagery instead of physical relaxation responses while progressing through her fear hierarchy. PMID:16050615

  11. Technical parameters for specifying imagery requirements

    NASA Technical Reports Server (NTRS)

    Coan, Paul P.; Dunnette, Sheri J.

    1994-01-01

    Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.

  12. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  13. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  14. Reflectance Data Processing of High Resolution Multispectral Data Acquired with an Autonomous Unmanned Aerial Vehicle AggieairTM

    NASA Astrophysics Data System (ADS)

    Zaman, B.; Jensen, A.; McKee, M.

    2012-12-01

    In this study, the performance and accuracy of a method for converting airborne multispectral data to reflectance data are characterized. Spectral reflectance is the ratio of reflected to incident radiant flux and it may have values only in the interval 0-1, inclusive. Reflectance is a key physical property of a surface and is empirically derived from on-ground observations. The paper presents a method for processing multispectral data acquired by an unmanned aerial vehicle (UAV) platform, called AggieAirTM, and a process for converting raw digital numbers to calibrated reflectance values. Imagery is acquired by two identical sets of cameras. One set is aboard the UAV and the other is over a barium sulfate reference panel. The cameras have identical settings. The major steps for producing the reflectance data involve the calibration of the reference panel, calibration of the multispectral UAV cameras, zenith angle calculations and image processing. The method converts airborne multispectral data by calculating the ratio of linearly-interpolated reference values from the pre- and post-flight reference panel readings. The flight interval is typically approximately 30 minutes and the imagery is acquired around local solar noon. The UAV is typically flown at low altitudes to reduce atmospheric effects to a negligible level. Data acquired over wetlands near Great Salt Lake, Utah is used to illustrate ground data and processed imagery. The spectral resolution of the multispectral data is 25 cms. The paper discusses the accuracy issues and errors associated with the proposed method.

  15. A Morphology Independent Methodology for Quantifying River Planform Change and Characteristics from Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Gangodagamage, C.; Shelef, E.; Pope, P. A.; Brumby, S. P.; Wilson, C. J.

    2014-12-01

    (both mean and effective in multi-threaded systems). Using our set of algorithms, we have successfully analyzed rivers varying in width from 10s of meters to greater than 1000 meters. Imagery sources have included aerial photography, high resolution satellite imagery, and coarser imagery such as SPOT, ASTER, and Landsat.

  16. Realistic texture in simulated thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Ward, Jason T.

    Creating a visually-realistic yet radiometrically-accurate simulation of thermal infrared (TIR) imagery is a challenge that has plagued members of industry and academia alike. The goal of imagery simulation is to provide a practical alternative to the often staggering effort required to collect actual data. Previous attempts at simulating TIR imagery have suffered from a lack of texture---the simulated scenes generally failed to reproduce the natural variability seen in actual TIR images. Realistic synthetic TIR imagery requires modeling sources of variability including surface effects such as solar insolation and convective heat exchange as well as sub-surface effects such as density and water content. This research effort utilized the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, developed at the Rochester Institute of Technology, to investigate how these additional sources of variability could be modeled to correctly and accurately provide simulated TIR imagery. Actual thermal data were collected, analyzed, and exploited to determine the underlying thermodynamic phenomena and ascertain how these phenomena are best modeled. The underlying task was to determine how to apply texture in the thermal region to attain radiometrically-correct, visually-appealing simulated imagery. Three natural desert scenes were used to test the methodologies that were developed for estimating per-pixel thermal parameters which could then be used for TIR image simulation by DIRSIG. Additional metrics were devised and applied to the synthetic images to further quantify the success of this research. The resulting imagery demonstrated that these new methodologies for modeling TIR phenomena and the utilization of an improved DIRSIG tool improved the root mean-squared error (RMSE) of our synthetic TIR imagery by up to 88%.

  17. Remotely deployable aerial inspection using tactile sensors

    NASA Astrophysics Data System (ADS)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Sullivan, J. C.; Pipe, A. G.; Dobie, G.; Summan, R.

    2014-02-01

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  18. Localization of aerial broadband noise by pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.; Schusterman, Ronald J.; Southall, Brandon L.; Kastak, David

    2004-05-01

    Although many pinnipeds (seals, sea lions, and walruses) emit broadband calls on land as part of their communication system, few studies have addressed these animals' ability to localize aerial broadband sounds. In this study, the aerial sound localization acuities of a female northern elephant seal (Mirounga angustirostris), a male harbor seal (Phoca vitulina), and a female California sea lion (Zalophus californianus) were measured in the horizontal plane. The stimulus was broadband white noise that was band pass filtered between 1.2 and 15 kHz. Testing was conducted in a hemi-anechoic chamber using a left/right forced choice procedure to measure the minimum audible angle (MAA) for each subject. MAAs were defined as half the angular separation of two sound sources bisected by a subject's midline that corresponded to 75% correct discrimination. MAAs were 4.7°, 3.6°, and 4.2° for the northern elephant seal, harbor seal, and California sea lion, respectively. These results demonstrate that individuals of these pinniped species have sound localization abilities comparable to the domestic cat and rhesus macaque. The acuity differences between our subjects were small and not predicted by head size. These results likely reflect the relatively acute general abilities of pinnipeds to localize aerial broadband signals.

  19. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  20. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.