Science.gov

Sample records for aerially applied glyphosate

  1. Effects of aerially applied glyphosate and hexazinone on hardwoods and pines in a loblolly pine plantation. Forest Service research paper

    SciTech Connect

    Haywood, J.D.

    1993-09-01

    Areas in a 4-year-old loblolly pine (Pinus taeda L.) plantation were treated with aerially applied Roundup (glyphosate), Pronone 10G (hexazinone), and Velpar L (hexazinone) plus Lo Drift (a spray additive). All herbicides were applied with appropriate helicopter-mounted equipment. The proportion of free-to-grow pine trees increased over a 2-year period in both the treated and untreated areas, but the increase was slightly greater in the treated areas. Final loblolly pine height, d.b.h., and volume per tree did not differ significantly among the four treatments. About 1,200 hardwood trees and 4,700 shrubs over 3 ft tall per acre were present at the beginning of the study.

  2. Biological response of soybean and cotton to aerial glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aerial application drift study was conducted in 2009 to determine biological effects of glyphosate on cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.]. Glyphosate at 866 g ae/ha was applied using an Air Tractor 402B agricultural aircraft in an 18.3 m spray swath to crops at the...

  3. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.

    PubMed

    Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P

    2009-01-01

    A wind tunnel atomization study was conducted to measure the emission droplet size spectra for water and Glyphos (a glyphosate formulation sold in Colombia) + Cosmo-flux sprays for aerial application to control coca and poppy crops in Colombia. The droplet size spectra were measured in a wind tunnel for an Accu-Flo nozzle (with 16 size 0.085 [2.16 mm] orifices), under appropriate simulated aircraft speeds (up to 333 km/h), using a laser diffraction instrument covering a dynamic size range for droplets of 0.5 to 3,500 microm. The spray drift potential of the glyphosate was modeled using the AGDISP spray application and drift model, using input parameters representative of those occurring in Colombia for typical aerial application operations. The droplet size spectra for tank mixes containing glyphosate and Cosmo-Flux were considerably finer than water and became finer with higher aircraft speeds. The tank mix with 44% glyphosate had a D(v0.5) of 128 microm, while the value at the 4.9% glyphosate rate was 140 microm. These are classified as very fine to fine sprays. Despite being relatively fine, modeling showed that the droplets would not evaporate as rapidly as most similarly sized agricultural sprays because the nonvolatile proportion of the tank mix (active and inert adjuvant ingredients) was large. Thus, longer range drift is small and most drift that does occur will deposit relatively close to the application area. Drift will only occur downwind and, with winds of velocity less than the modeled maximum of 9 km/h, the drift distance would be substantially reduced. Spray drift potential might be additionally reduced through various practices such as the selection of nozzles, tank mix adjuvants, aircraft speeds, and spray pressures that would produce coarser sprays. Species sensitivity distributions to glyphosate were constructed for plants and amphibians. Based on modeled drift and 5th centile concentrations, appropriate no-spray buffer zones (distance from the

  4. Glyphosate

    Integrated Risk Information System (IRIS)

    Glyphosate ; CASRN 1071 - 83 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  5. Meteorological influences on mass accountability of aerially applied sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The deposition and drift of aerially applied crop protection materials is influenced by a number of factors including equpment setup and operational parameters, spray material characteristics, and meteorological effects. This work examines the meteorological influences that effect the ultimate fate...

  6. Marking adult mosquitoes using an aerially applied fluorescent pigment.

    PubMed

    Meek, C L; Broussard, B B; Andis, M D

    1987-09-01

    A water soluble, fluorescent pigment was aerially applied to caged Culex quinquefasciatus adults in a south Louisiana marshland pasture. Mosquitoes held in cages on 1 m stakes were greater than 90% marked. This number was significantly greater (P less than 0.01) than the number of marked mosquitoes held in cages that were placed in dense vegetation (greater than or equal to 0.5 m high) near the ground surface (70% marked). In a second aerial test with caged Aedes sollicitans in an open, grassy area of the marshland pasture, the pigment marked 100% of the adult mosquitoes held in cages 1 m above the ground and 98% of the caged mosquitoes on the ground surface. Greater than 96% of the adults collected from an emerging population of Ae. sollicitans within the test area were marked as well as 100% of wild caught deer fly adults, Chrysops flavidus complex, in the test area. PMID:2904958

  7. Glyphosate persistence in seawater.

    PubMed

    Mercurio, Philip; Flores, Florita; Mueller, Jochen F; Carter, Steve; Negri, Andrew P

    2014-08-30

    Glyphosate is one of the most widely applied herbicides globally but its persistence in seawater has not been reported. Here we quantify the biodegradation of glyphosate using standard "simulation" flask tests with native bacterial populations and coastal seawater from the Great Barrier Reef. The half-life for glyphosate at 25 °C in low-light was 47 days, extending to 267 days in the dark at 25 °C and 315 days in the dark at 31 °C, which is the longest persistence reported for this herbicide. AMPA, the microbial transformation product of glyphosate, was detected under all conditions, confirming that degradation was mediated by the native microbial community. This study demonstrates glyphosate is moderately persistent in the marine water under low light conditions and is highly persistent in the dark. Little degradation would be expected during flood plumes in the tropics, which could potentially deliver dissolved and sediment-bound glyphosate far from shore.

  8. Apply Pesticides Correctly, A Guide for Commercial Applicators: Aerial Application.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the calibration of dry and liquid pesticide systems for aerial application. Additionally, dispersal equipment is discussed with considerations for environmental and safety factors. (CS)

  9. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants.

    PubMed

    Eker, Selim; Ozturk, Levent; Yazici, Atilla; Erenoglu, Bulent; Romheld, Volker; Cakmak, Ismail

    2006-12-27

    Evidence clearly shows that cationic micronutrients in spray solutions reduce the herbicidal effectiveness of glyphosate for weed control due to the formation of metal-glyphosate complexes. The formation of these glyphosate-metal complexes in plant tissue may also impair micronutrient nutrition of nontarget plants when exposed to glyphosate drift or glyphosate residues in soil. In the present study, the effects of simulated glyphosate drift on plant growth and uptake, translocation, and accumulation (tissue concentration) of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were investigated in sunflower (Helianthus annuus L.) plants grown in nutrient solution under controlled environmental conditions. Glyphosate was sprayed on plant shoots at different rates between 1.25 and 6.0% of the recommended dosage (i.e., 0.39 and 1.89 mM glyphosate isopropylamine salt). Glyphosate applications significantly decreased root and shoot dry matter production and chlorophyll concentrations of young leaves and shoot tips. The basal parts of the youngest leaves and shoot tips were severely chlorotic. These effects became apparent within 48 h after the glyphosate spray. Glyphosate also caused substantial decreases in leaf concentration of Fe and Mn while the concentration of Zn and Cu was less affected. In short-term uptake experiments with radiolabeled Fe (59Fe), Mn (54Mn), and Zn (65Zn), root uptake of 59Fe and 54Mn was significantly reduced in 12 and 24 h after application of 6% of the recommended dosage of glyphosate, respectively. Glyphosate resulted in almost complete inhibition of root-to-shoot translocation of 59Fe within 12 h and 54Mn within 24 h after application. These results suggest that glyphosate residues or drift may result in severe impairments in Fe and Mn nutrition of nontarget plants, possibly due to the formation of poorly soluble glyphosate-metal complexes in plant tissues and/or rhizosphere interactions.

  10. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    SciTech Connect

    Geis, J.; Arnold, J.H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  11. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Technical Reports Server (NTRS)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  12. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Pace, Patrick F; Reddy, Krishna N; Smeda, Reid J

    2003-01-01

    The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a

  13. Glyphosate poisoning.

    PubMed

    Bradberry, Sally M; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Glyphosate is used extensively as a non-selective herbicide by both professional applicators and consumers and its use is likely to increase further as it is one of the first herbicides against which crops have been genetically modified to increase their tolerance. Commercial glyphosate-based formulations most commonly range from concentrates containing 41% or more glyphosate to 1% glyphosate formulations marketed for domestic use. They generally consist of an aqueous mixture of the isopropylamine (IPA) salt of glyphosate, a surfactant, and various minor components including anti-foaming and colour agents, biocides and inorganic ions to produce pH adjustment. The mechanisms of toxicity of glyphosate formulations are complicated. Not only is glyphosate used as five different salts but commercial formulations of it contain surfactants, which vary in nature and concentration. As a result, human poisoning with this herbicide is not with the active ingredient alone but with complex and variable mixtures. Therefore, It is difficult to separate the toxicity of glyphosate from that of the formulation as a whole or to determine the contribution of surfactants to overall toxicity. Experimental studies suggest that the toxicity of the surfactant, polyoxyethyleneamine (POEA), is greater than the toxicity of glyphosate alone and commercial formulations alone. There is insufficient evidence to conclude that glyphosate preparations containing POEA are more toxic than those containing alternative surfactants. Although surfactants probably contribute to the acute toxicity of glyphosate formulations, the weight of evidence is against surfactants potentiating the toxicity of glyphosate. Accidental ingestion of glyphosate formulations is generally associated with only mild, transient, gastrointestinal features. Most reported cases have followed the deliberate ingestion of the concentrated formulation of Roundup (The use of trade names is for product identification purposes only and

  14. Multiple resistance to glyphosate and pyrithiobac in Palmer amaranth (Amaranthus palmeri) from Mississippi and response to flumiclorac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and laboratory studies were conducted to confirm and quantify glyphosate resistance, to investigate interactions between flumiclorac and glyphosate mixtures on weed control, to determine patterns of absorption and translocation of glyphosate applied alone and in combination with flumiclor...

  15. Detecting lost persons using the k-mean method applied to aerial photographs taken by unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Stec, Magdalena; Wieczorek, Malgorzata; Slopek, Jacek; Jurecka, Miroslawa

    2016-04-01

    The objective of this work is to discuss the usefulness of the k-mean method in the process of detecting persons on oblique aerial photographs acquired by unmanned aerial vehicles (UAVs). The detection based on the k-mean procedure belongs to one of the modules of a larger Search and Rescue (SAR) system which is being developed at the University of Wroclaw, Poland (research project no. IP2014 032773 financed by the Ministry of Science and Higher Education of Poland). The module automatically processes individual geotagged visual-light UAV-taken photographs or their orthorectified versions. Firstly, we separate red (R), green (G) and blue (B) channels, express raster data as numeric matrices and acquire coordinates of centres of images using the exchangeable image file format (EXIF). Subsequently, we divide the matrices into matrices of smaller dimensions, the latter being associated with the size of spatial window which is suitable for discriminating between human and terrain. Each triplet of the smaller matrices (R, G and B) serves as input spatial data for the k-mean classification. We found that, in several configurations of the k-mean parameters, it is possible to distinguish a separate class which characterizes a person. We compare the skills of this approach by performing two experiments, based on UAV-taken RGB photographs and their orthorectified versions. This allows us to verify the hypothesis that the two exercises lead to similar classifications. In addition, we discuss the performance of the approach for dissimilar spatial windows, hence various dimensions of the above-mentioned matrices, and we do so in order to find the one which offers the most adequate classification. The numerical experiment is carried out using the data acquired during a dedicated observational UAV campaign carried out in the Izerskie Mountains (SW Poland).

  16. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    PubMed

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant. PMID:27092715

  17. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    PubMed

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  18. The toxicity of glyphosate alone and glyphosate-surfactant mixtures to western toad (Anaxyrus boreas) tadpoles.

    PubMed

    Vincent, Kim; Davidson, Carlos

    2015-12-01

    Pesticide choice based on toxicity to nontarget wildlife is reliant on available toxicity data. Despite a number of recent studies examining the effects of glyphosate on amphibians, very few have aimed to understand the toxicological effects of glyphosate in combination with surfactants as it is commonly applied in the field. Land managers interested in making pesticide choices based on minimizing impacts to nontarget wildlife are hindered by a lack of published toxicity data. Short-term acute toxicity trials were conducted for glyphosate in the form of isopropylamine salt (IPA) alone and mixed with 2 surfactants: Agri-dex and Competitor with western toad (Anaxyrus [Bufo] boreas) tadpoles. Glyphosate IPA mixed with Competitor was 6 times more toxic than glyphosate IPA mixed with Agri-dex, and both mixtures were more toxic than glyphosate IPA alone. The median lethal concentrations reported for 24-h and 48-h exposures were 8279 mg/L (24 h) and 6392 mg/L (48 h) for glyphosate IPA alone; 5092 mg/L (24 h) and 4254 mg/L (48 h) for glyphosate IPA mixed with Agri-dex; and 853 mg/L (24 h) and 711 mg/L (48 h) for glyphosate IPA mixed with Competitor. The present study indicates that the toxicity of a tank mix may be greatly increased by the addition of surfactants and may vary widely depending on the specific surfactant.

  19. The Smart Aerial Release Machine, a Universal System for Applying the Sterile Insect Technique

    PubMed Central

    Mubarqui, Ruben Leal; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2014-01-01

    Background Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Methodology/Principal Findings Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. Conclusions/Significance This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600 000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its

  20. Potato (Solanum tuberosum) response to simulated glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2008 in Ontario, OR and Paterson, WA to determine the effect of simulated glyphosate drift on 'Ranger Russet' potato injury, shikimic acid accumulation, and tuber yield. Glyphosate was applied at 8.5-, 54-, 107-, 215-, and 423 g ae ha-1; which corresponds to 0.01, 0.0...

  1. Statistical techniques applied to aerial radiometric surveys (STAARS): principal components analysis user's manual. [NURE program

    SciTech Connect

    Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.

    1981-01-01

    A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From this analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.

  2. Fate and availability of glyphosate and AMPA in agricultural soil.

    PubMed

    Simonsen, Louise; Fomsgaard, Inge S; Svensmark, Bo; Spliid, Niels Henrik

    2008-06-01

    The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT(50) values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, (14)C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 +/- 0.002% and 0.005 +/- 0.001% of the applied radioactivity was measured in rape and barley

  3. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils.

    PubMed

    Wang, Yu-Jun; Zhou, Dong-mei; Sun, Rui-juan

    2005-01-01

    Glyphosate (GPS) is a non-selective, post-mergence herbicide that is widely used throughout the world. Due to the similar molecular structures of glyphosate and phosphate, adsorption of glyphosate on soil is easily affected by coexisting phosphate, especially when phosphate is applied at a significant rate in farmland. This paper studied the effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils including two variable charge soils and one permanent charge soil. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients (0.990-0.998) with K values of 2751, 2451 and 166 for the zhuanhong soil(ZH soil, Laterite), red soil(RS, Udic Ferrisol) and Wushan paddy soil (WS soil, Anthrosol), respectively. The more the soil iron and aluminum oxides and clay contained, the more glyphosate adsorbed. The presence of phosphate significantly decreased the adsorption of glyphosate to the soils by competing with glyphosate for adsorption sites of soils. Meanwhile, the effects of phosphate on adsorption of glyphosate on the two variable charge soils were more significant than that on the permanent charge soil. When phosphate and glyphosate were added in the soils in different orders, the adsorption quantities of glyphosate on the soils were different, which followed GPS-soil > GPS-P-soil = GPS-soil-P > P-soil-GPS, meaning a complex interaction occurred among glyphosate, phosphate and the soils. PMID:16312989

  4. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils.

    PubMed

    Wang, Yu-Jun; Zhou, Dong-mei; Sun, Rui-juan

    2005-01-01

    Glyphosate (GPS) is a non-selective, post-mergence herbicide that is widely used throughout the world. Due to the similar molecular structures of glyphosate and phosphate, adsorption of glyphosate on soil is easily affected by coexisting phosphate, especially when phosphate is applied at a significant rate in farmland. This paper studied the effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils including two variable charge soils and one permanent charge soil. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients (0.990-0.998) with K values of 2751, 2451 and 166 for the zhuanhong soil(ZH soil, Laterite), red soil(RS, Udic Ferrisol) and Wushan paddy soil (WS soil, Anthrosol), respectively. The more the soil iron and aluminum oxides and clay contained, the more glyphosate adsorbed. The presence of phosphate significantly decreased the adsorption of glyphosate to the soils by competing with glyphosate for adsorption sites of soils. Meanwhile, the effects of phosphate on adsorption of glyphosate on the two variable charge soils were more significant than that on the permanent charge soil. When phosphate and glyphosate were added in the soils in different orders, the adsorption quantities of glyphosate on the soils were different, which followed GPS-soil > GPS-P-soil = GPS-soil-P > P-soil-GPS, meaning a complex interaction occurred among glyphosate, phosphate and the soils.

  5. Glyphosate in northern ecosystems.

    PubMed

    Helander, Marjo; Saloniemi, Irma; Saikkonen, Kari

    2012-10-01

    Glyphosate is the main nonselective, systemic herbicide used against a wide range of weeds. Its worldwide use has expanded because of extensive use of certain agricultural practices such as no-till cropping, and widespread application of glyphosate-resistant genetically modified crops. Glyphosate has a reputation of being nontoxic to animals and rapidly inactivated in soils. However, recent evidence has cast doubts on its safety. Glyphosate may be retained and transported in soils, and there may be cascading effects on nontarget organisms. These processes may be especially detrimental in northern ecosystems because they are characterized by long biologically inactive winters and short growing seasons. In this opinion article, we discuss the potential ecological, environmental and agricultural risks of intensive glyphosate use in boreal regions.

  6. Glyphosate applications on arable fields considerably coincide with migrating amphibians.

    PubMed

    Berger, Gert; Graef, Frieder; Pfeffer, Holger

    2013-01-01

    Glyphosate usage is increasing worldwide and the application schemes of this herbicide are currently changing. Amphibians migrating through arable fields may be harmed by Glyphosate applied to field crops. We investigated the population-based temporal coincidence of four amphibian species with Glyphosate from 2006 to 2008. Depending on a) age- and species-specific main migration periods, b) crop species, c) Glyphosate application mode for crops, and d) the presumed DT50 value (12 days or 47 days) of Glyphosate, we calculated up to 100% coincidence with Glyphosate. The amphibians regularly co-occur with pre-sowing/pre-emerging Glyphosate applications to maize in spring and with stubble management prior to crop sowing in late summer and autumn. Siccation treatment in summer coincides only with early pond-leaving juveniles. We suggest in-depth investigations of both acute and long-term effects of Glyphosate applications on amphibian populations not only focussed on exposure during aquatic periods but also terrestrial life stages.

  7. Glyphosate effects on soil rhizosphere-associated bacterial communities.

    PubMed

    Newman, Molli M; Hoilett, Nigel; Lorenz, Nicola; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-02-01

    Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago, there is now concern for non-target effects on soil microbial communities that has potential to negatively affect soil functions, plant health, and crop productivity. Although extensive research has been done on short-term response to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objective was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from rhizoboxes following 4 growth periods, and bacterial community composition was compared between glyphosate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abundance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in response to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere. Our results also highlight the need for applying culture-independent approaches in studying the effects of pesticides on the soil and rhizosphere microbial community. PMID:26580738

  8. Glyphosate effects on soil rhizosphere-associated bacterial communities.

    PubMed

    Newman, Molli M; Hoilett, Nigel; Lorenz, Nicola; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-02-01

    Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago, there is now concern for non-target effects on soil microbial communities that has potential to negatively affect soil functions, plant health, and crop productivity. Although extensive research has been done on short-term response to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objective was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from rhizoboxes following 4 growth periods, and bacterial community composition was compared between glyphosate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abundance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in response to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere. Our results also highlight the need for applying culture-independent approaches in studying the effects of pesticides on the soil and rhizosphere microbial community.

  9. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    PubMed

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  10. The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge.

    PubMed

    Shen, Jiangnan; Huang, Jie; Liu, Lifen; Ye, Wenyuan; Lin, Jiuyang; Van der Bruggen, Bart

    2013-09-15

    Alkaline glyphosate neutralization liquors containing a high salinity pose a severe environmental pollution problem by the pesticide industry. However, there is a high potential for glyphosate recovery due to the high concentration of glyphosate in the neutralization liquors. In the study, a three-compartment bipolar membrane electrodialysis (BMED) process was applied on pilot scale for the recovery of glyphosate and the production of base/acid with high concentration in view of zero discharge of wastewater. The experimental results demonstrate that BMED can remove 99.0% of NaCl from the feed solution and transform this fraction into HCl and NaOH with high concentration and purity. This is recycled for the hydrolysis reaction of the intermediate product generated by the means of the Mannich reaction of paraformaldehyde, glycine and dimethylphosphite catalyzed by triethylamine in the presence of HCl and reclamation of the triethylamine catalyst during the production process of glyphosate. The recovery of glyphosate in the feed solution was over 96%, which is acceptable for industrial production. The current efficiency for producing NaOH with a concentration of 2.0 mol L(-1) is above 67% and the corresponding energy consumption is 2.97 kWh kg(-1) at a current density of 60 mA cm(-2). The current efficiency increases and energy consumption decreases as the current density decreases, to 87.13% and 2.37 kWh kg(-1), respectively, at a current density of 30 mA cm(-2). Thus, BMED has a high potential for desalination of glyphosate neutralization liquor and glyphosate recovery, aiming at zero discharge and resource recycling in industrial application.

  11. Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions.

    PubMed

    Piola, Lucas; Fuchs, Julio; Oneto, María Luisa; Basack, Silvana; Kesten, Eva; Casabé, Norma

    2013-04-01

    Glyphosate-based products are the leading post-emergent agricultural herbicides in the world, particularly in association with glyphosate tolerant crops. However, studies on the effects of glyphosate-based formulations on terrestrial receptors are scarce. This study was conducted to evaluate the comparative toxicity of two glyphosate-based products: Roundup FG (monoammonium salt, 72% acid equivalent, glyphosate-A) and Mon 8750 (monoammonium salt, 85.4% acid equivalent, glyphosate-B), towards the earthworm Eisenia andrei. Median lethal concentration (LC50) showed that glyphosate-A was 4.5-fold more toxic than glyphosate-B. Sublethal concentrations caused a concentration-dependent weight loss, consistent with the reported effect of glyphosate as uncoupler of oxidative phosphorylation. Glyphosate-A showed deleterious effects on DNA and lysosomal damage at concentrations close to the applied environmental concentrations (14.4 μg ae cm(-2)). With glyphosate-B toxic effects were observed at higher doses, close to its LC50, suggesting that the higher toxicity of formulate A could be attributed to the effects of some of the so-called "inert ingredients", either due to a direct intrinsic toxicity, or to an enhancement in the bioavailability and/or bioaccumulation of the active ingredient. Our results highlight the importance of ecotoxicological assessment not only of the active ingredients, but also of the different formulations usually employed in agricultural practices.

  12. What have the mechanisms of resistance to glyphosate taught us?

    PubMed

    Shaner, Dale L; Lindenmeyer, Richard Bradley; Ostlie, Michael H

    2012-01-01

    The intensive use of glyphosate alone to manage weeds has selected populations that are glyphosate resistant. The three mechanisms of glyphosate resistance that have been elucidated are (1) target-site mutations, (2) gene amplification and (3) altered translocation due to sequestration. What have we learned from the selection of these mechanisms, and how can we apply those lessons to future herbicide-resistant crops and new mechanisms of action? First, the diversity of glyphosate resistance mechanisms has helped further our understanding of the mechanism of action of glyphosate and advanced our knowledge of plant physiology. Second, the relatively rapid evolution of glyphosate-resistant weed populations provides further evidence that no herbicide is invulnerable to resistance. Third, as new herbicide-resistant crops are developed and new mechanisms of action are discovered, the weed science community needs to ensure that we apply the lessons we have learned on resistance management from the experience with glyphosate. Every new weed management system must be evaluated during development for its potential to select for resistance, and stewardship programs should be in place when the new program is introduced.

  13. Facilitated transport of diuron and glyphosate in high copper vineyard soils.

    PubMed

    Dousset, Sylvie; Jacobson, Astrid R; Dessogne, Jean-Baptiste; Guichard, Nathalie; Baveye, Philippe C; Andreux, Francis

    2007-12-01

    The fate of organic herbicides applied to agricultural fields may be affected by other soil amendments, such as copper applied as a fungicide. The effect of copper on the leaching of diuron and glyphosate through a granitic and a calcareous soil was studied in the laboratory using sieved-soil columns. Each soil was enriched with copper sulfate to obtain soil copper concentrations of 125, 250, 500, and 1000 mg kg(-1). Glyphosate leaching was influenced by soil pH and copper concentration, whereas diuron leaching was not. In the calcareous soil, glyphosate leaching decreased as copper levels increased from 17 mg kg(-1) (background) to 500 mg kg(-1). In the granitic soil, glyphosate leaching increased as copper levels increased from 34 mg kg(-1) (background) to 500 mg kg(-1). The shapes of the copper elution curves in presence of glyphosate were similar to shapes of the glyphosate curves, suggesting the formation of Cu-glyphosate complexes that leach through the soil. Soil copper concentration does not influence diuron leaching. In contrast, increasing copper concentrations reduces glyphosate leaching through calcareous soils, and conversely, increases glyphosate leaching through granitic soils. Our findings suggest that the risk of groundwater contamination by glyphosate increases in granitic soils with elevated copper concentrations.

  14. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil.

    PubMed

    Weaver, Mark A; Krutz, L Jason; Zablotowicz, Robert M; Reddy, Krishna N

    2007-04-01

    Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] has enabled highly effective and economical weed control. The concomitant increased application of glyphosate could lead to shifts in the soil microbial community. The objective of these experiments was to evaluate the effects of glyphosate on soil microbial community structure, function and activity. Field assessments on soil microbial communities were conducted on a silt loam soil near Stoneville, MS, USA. Surface soil was collected at time of planting, before initial glyphosate application and 14 days after two post-emergence glyphosate applications. Microbial community fatty acid methyl esters (FAMEs) were analyzed from these soil samples and soybean rhizospheres. Principal component analysis of the total FAME profile revealed no differentiation between field treatments, although the relative abundance of several individual fatty acids differed significantly. There was no significant herbicide effect in bulk soil or rhizosphere soils. Collectively, these findings indicate that glyphosate caused no meaningful whole microbial community shifts in this time period, even when applied at greater than label rates. Laboratory experiments, including up to threefold label rates of glyphosate, resulted in up to a 19% reduction in soil hydrolytic activity and small, brief (<7 days) changes in the soil microbial community. After incubation for 42 days, 32-37% of the applied glyphosate was mineralized when applied at threefold field rates, with about 9% forming bound residues. These results indicate that glyphosate has only small and transient effects on the soil microbial community, even when applied at greater than field rates.

  15. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.).

    PubMed

    Pline, Wendy A; Wilcut, John W; Duke, Stephen O; Edmisten, Keith L; Wells, Randy

    2002-01-30

    Measurement of shikimic acid accumulation in response to glyphosate inhibition of 5-enolpyruvylshikimate-3-phosphate synthase is a rapid and accurate assay to quantify glyphosate-induced damage in sensitive plants. Two methods of assaying shikimic acid, a spectrophotometric and a high-performance liquid chromatography (HPLC) method, were compared for their accuracy of recovering known amounts of shikimic acid spiked into plant samples. The HPLC method recovered essentially 100% of shikimic acid as compared with only 73% using the spectrophotometric method. Relative sensitivity to glyphosate was measured in glyphosate-resistant (GR) and non-GR cotton leaves, fruiting branches, and squares (floral buds) by assaying shikimic acid. Accumulation of shikimic acid was not observed in any tissue, either GR or non-GR, at rates of 5 mM glyphosate or less applied to leaves. All tissues of non-GR plants accumulated shikimic acid in response to glyphosate treatment; however, only fruiting branches and squares of GR plants accumulated a slight amount of shikimic acid. In non-GR cotton, fruiting branches and squares accumulated 18 and 11 times, respectively, more shikimic acid per micromolar of translocated glyphosate than leaf tissue, suggesting increased sensitivity to glyphosate of reproductive tissue over vegetative tissue. GR cotton leaves treated with 80 mM of glyphosate accumulated 57 times less shikimic acid per micromolar of translocated glyphosate than non-GR cotton but only 12.4- and 4-fold less in fruiting branches and squares, respectively. The increased sensitivity of reproductive structures to glyphosate inhibition may be due to a higher demand for shikimate pathway products and may provide an explanation for reports of fruit abortion from glyphosate-treated GR cotton.

  16. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB

  17. Seasonal timing of glyphosate ripener application affects sugarcane’s response in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is applied as a ripener to ratoon sugarcane in Louisiana to increase theoretically recoverable sugar (TRS) in harvested sugarcane. While glyphosate is applied as a ripener throughout the harvest season, recommendations for these applications have been based primarily on the response of s...

  18. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  19. Secondary effects of glyphosate on plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a unique herbicide with interesting secondary effects. Unfortunately, some have assumed that the secondary effects that occur in glyphosate-susceptible plants treated with glyphosate, such as altered mineral nutrition, reduced phenolic compound production and pathogen resistance, also ...

  20. Laser-diffraction characterization of flat-fan nozzles used to develop aerosol clouds of aerially applied mosquito adulticides.

    PubMed

    Hornby, Jonathan A; Robinson, Jim; Opp, William; Sterling, Milton

    2006-12-01

    The importance of appropriate drop size and density for successful mosquito adulticide applications mandates the necessity for accurate determination of drop spectra of a particular nozzle. There is considerable disparity between mass median diameter (MMD) determinations for flat-fan nozzles relative to the horizontal or vertical orientation of the microscope slide used to collect the drops. To remove this ambiguity, the definitive MMDs of flat-fan nozzles used in aerially applied mosquito control adulticides were determined by laser-diffraction-based characterization and analysis. These data were compared with previous data, and the impact of these data on aerial adult mosquito control was discussed. At The Florida Wind Tunnel for Mosquito Control, the Malvern Spraytec Spray Particle Analysis System was used to characterize the entire aerosol plume of the nozzles. Nozzle characterizations were carried out at aircraft operational wind speeds and pressures with nozzles mounted at 135 degrees relative to the direction of air flow. The mean drop-diameter volumes (Dv) Dv(0.1), Dv(0.5), and Dv(0.9) with 95% confidence intervals for each scenario were determined. Characterizations of flat-fan nozzles of 80005 to 8005 for Orchex 796, Dibrom and a Permanone:Orchex 796 mix (1:1) resulted in no Dv(0.5) less than 50 microm and a maximum of 133 microm. The Dv(0.1) was greater than 25 min for 52% of the nozzles and ranged from 14 to 42 microm. The Dv(0.9) ranged from 130 to 296 microm. There was a decrease in drop-diameter values (Dv(0.1), Dv(0.5), Dv(0.9)) relative to increased wind speed and/or pressure for any particular nozzle. Relative to characterizations with Orchex 796, drop-diameter values for Dibrom varied from the same to slightly larger, whereas the Permanone:Orchex 796 mix values were larger except for 2. Relative to the goal of creating an aerosol cloud efficient in controlling adult mosquitoes, none of the nozzles were capable of producing a Dv(0.5) of less than

  1. Glyphosate Suppression of an Elicited Defense Response 1

    PubMed Central

    Sharon, Amir; Amsellem, Ziva; Gressel, Jonathan

    1992-01-01

    The major effort in developing pathogenic fungi into potential mycoherbicides is aimed at increasing fungal virulence to weeds without affecting crop selectivity. Specific suppression of biosynthesis of a phytoalexin derived from the shikimate pathway in Cassia obtusifolia L. by a sublethal dose (50 micromolar) of glyphosate increased susceptibility to the mycoherbicide Alternaria cassiae Jurair & Khan. Glyphosate applied with conidia suppressed phytoalexin synthesis beginning at 12 hours, but not an earlier period 8 to 10 hours after inoculation. The phytoalexin synthesis elicited by fungal inoculation was also suppressed by darkness. The magnitudes of virulence of the mycoherbicide in the dark or with glyphosate in the light were both higher than after inoculation in the light with the same concentration of conidia in the absence of glyphosate. Five times less inoculum was needed to cause disease symptoms when applied with glyphosate than without. Glyphosate did not render A. cassiae virulent on soybean (Glycine max), a crop related to the host. These results suggest that a specific inhibition of a weed's elicited defense response can be a safe way to enhance virulence and improve the efficacy of the mycoherbicide. ImagesFigure 1Figure 3Figure 6 PMID:16668691

  2. Effects of the herbicide glyphosate on avian community structure in the Oregon coast range

    USGS Publications Warehouse

    Morrison, M.L.; Meslow, E.C.

    1984-01-01

    A study was conducted on vegetative changes induced by the herbicide glyphosate, and the resultant habitat use of birds nesting on two clearcuts in western Oregon. About 23 percent of total plant cover was initially damaged by aerial application of glyphosate. Most measures of vegetation on the treated site decreased relative to the untreated site 1 year after glyphosate application. By 2 years post-spray, vegetation on the treated site had recovered to near pre-spray status. No difference in density of the bird community was evident between treated and untreated sites during all years of study although individual species densities were modified. Several bird species decreased their use of shrub cover, and increased their use of deciduous trees 1 year after treatment. By 2 years post-spray, many species had returned to pre-spray use of most measured habitat components. Results indicated that application of glyphosate can modify the density and habitat use of birds.

  3. EFFECTS OF AERIALLY APPLIED FENTHION ON SURVIVAL AND REPRODUCTION OF THE PANACEA SAND FIDDLER, UCA PANACEA, IN LABORATORY HABITATS

    EPA Science Inventory

    Sand fiddler crabs, Uca panacea, were exposed in laboratory habitats to measured concentrations of ULV-grade fenthion via simulated aerial spray at 5% and 50% of field-rate application of 6-12 mg fenthion/m2 (0.05-0.10 lbs fenthion/acre). Two habitats served as controls and two h...

  4. Glyphosate affects seed composition in glyphosate-resistant soybean.

    PubMed

    Zobiole, Luiz H S; Oliveira, Rubem S; Visentainer, Jesui V; Kremer, Robert J; Bellaloui, Nacer; Yamada, Tsuioshi

    2010-04-14

    The cultivation of glyphosate-resistant (GR) soybeans has continuously increased worldwide in recent years mainly due to the importance of glyphosate in current weed management systems. However, not much has been done to understand eventual effects of glyphosate application on GR soybean physiology, especially those related to seed composition with potential effects on human health. Two experiments were conducted to evaluate the effects of glyphosate application on GR soybeans compared with its near-isogenic non-GR parental lines. Results of the first experiment showed that glyphosate application resulted in significant decreases in shoot nutrient concentrations, photosynthetic parameters, and biomass production. Similar trends were observed for the second experiment, although glyphosate application significantly altered seed nutrient concentrations and polyunsaturated fatty acid percentages. Glyphosate resulted in significant decreases in polyunsaturated linoleic acid (18:2n-6) (2.3% decrease) and linolenic acid (18:3n-3) (9.6% decrease) and a significant increase in monounsaturated fatty acids 17:1n-7 (30.3% increase) and 18:1n-7 (25% increase). The combined observations of decreased photosynthetic parameters and low nutrient availability in glyphosate-treated plants may explain potential adverse effects of glyphosate in GR soybeans.

  5. Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn.

    PubMed

    Reddy, Krishna N; Bellaloui, Nacer; Zablotowicz, Robert M

    2010-03-24

    When glyphosate is applied to glyphosate-resistant (GR) crops, drift to nonglyphosate-resistant (non-GR) crops may cause significant injury and reduce yields. Tools are needed to quantify injury and predict crop losses. In this study, glyphosate drift was simulated by direct application at 12.5% of the recommended label rate to non-GR corn (Zea mays L.) at 3 or 6 weeks after planting (WAP) during two field seasons in the Mississippi delta region of the southeastern USA. Visual plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition were evaluated. Effects were also evaluated in GR corn and GR corn with stacked glufosinate-resistant gene at the recommended label rate at 3 and 6 WAP. Glyphosate at 105 g ae/ha was applied once at 3 or 6 weeks after planting to non-GR corn. Glyphosate at 840 (lower label limit) or 1260 (upper label limit) g ae/ha was applied twice at 3 and 6 WAP to transgenic corn. Glyphosate caused injury (45-55%) and increased shikimate levels (24-86%) in non-GR compared to nontreated corn. In non-GR corn, glyphosate drift did not affect starch content but increased seed protein 8-21% while reducing leaf nitrogen reductase activity 46-64%, leaf nitrogen 7-16%, grain yield 49-54%, and seed oil 18-23%. In GR and GR stacked with glufosinate-resistant corn, glyphosate applied at label rates did not affect corn yield, leaf and seed nitrogen, or seed composition (protein, oil, and starch content). Yet, nitrate reductase activity was reduced 5-19% with glyphosate at 840 + 840 g/ha rate and 8-42% with glyphosate at 1260 + 1260 g/ha rate in both GR and GR stacked corn. These results demonstrate the potential for severe yield loss in non-GR corn exposed to glyphosate drift.

  6. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  7. Urban contributions of glyphosate and its degradate AMPA to streams in the United States

    USGS Publications Warehouse

    Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.

    2006-01-01

    Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).

  8. The Fate and Transport of Glyphosate and AMPA into Surface Waters of Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2010-12-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops, but is particularly heavily used on crops which are genetically modified to be glyphosate tolerant: predominately soybeans, corn, potatoes, and cotton. Glyphosate is used extensively in almost all agricultural areas of the United States, and annual application has increased from less than 10,000 Mg in 1992 to more than 80,000 Mg in 2007. The greatest areal use is in the Midwest where glyphosate is applied on genetically modified corn and soybeans. Although use is increasing, the characterization of glyphosate transport on the watershed scale is lacking. Glyphosate, and its degradate AMPA [aminomethylphosphoric acid], was frequently detected in the surface waters of four agricultural watersheds. The load as a percent of use of glyphosate ranged from 0.009 to 0.86 percent and can be related to three factors: source strength, hydrology, and flowpath. Glyphosate use within a watershed results in some occurrence in surface water at the part per billion level; however watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  9. Effects of glyphosate application timing and rate on sicklepod (Senna obtusifolia) fecundity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse experiments were conducted to examine the effect of glyphosate on reproductive development in sicklepod. Glyphosate was applied postemergence over the top at 112 and 280 g ai/ha to sicklepod at 4-leaf stage (L), 8-L, 4-L followed by 8-L, and 12-L. A nontreated control was included. Immedi...

  10. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    EPA Science Inventory

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  11. Glyphosate carryover in seed potato: effects on mother crop and daughter tubers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2008 and 2009 in Aberdeen, ID, Ontario, OR, and Paterson, WA to determine the effect of simulated glyphosate drift on ‘Ranger Russet’ potato during the application year and the crop growing the next year from the daughter tubers. Glyphosate was applied at 8.5, 54, 107...

  12. 76 FR 27268 - Glyphosate; Pesticide Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... glyphosate and its metabolite N-acetyl glyphosate. N-acetyl glyphosate is found in genetically modified (GMO... glyphosate in or on corn, field, forage. Monsanto Company requested this tolerance under the Federal Food... affected by this action if you are an agricultural producer, food manufacturer, or pesticide...

  13. Geomatics techniques applied to time series of aerial images for multitemporal geomorphological analysis of the Miage Glacier (Mont Blanc).

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Carletti, Roberto; Giardino, Marco; Mortara, Giovanni

    2010-05-01

    The Miage glacier is the major one in the Italian side of the Mont Blanc Massif, the third by area and the first by longitudinal extent among Italian glaciers. It is a typical debris covered glacier, since the end of the L.I.A. The debris coverage reduces ablation, allowing a relative stability of the glacier terminus, which is characterized by a wide and articulated moraine apparatus. For its conservative landforms, the Miage Glacier has a great importance for the analysis of the geomorphological response to recent climatic changes. Thanks to an organized existing archive of multitemporal aerial images (1935 to present) a photogrammetric approach has been applied to detect recent geomorphological changes in the Miage glacial basin. The research team provided: a) to digitize all the available images (still in analogic form) through photogrammetric scanners (very low image distortions devices) taking care of correctly defining the resolution of the acquisition compared to the scale mapping images are suitable for; b) to import digitized images into an appropriate digital photogrammetry software environment; c) to manage images in order, where possible, to carried out the stereo models orientation necessary for 3D navigation and plotting of critical geometric features of the glacier. Recognized geometric feature, referring to different periods, can be transferred to vector layers and imported in a GIS for further comparisons and investigations; d) to produce multi-temporal Digital Elevation Models for glacier volume changes; e) to perform orthoprojection of such images to obtain multitemporal orthoimages useful for areal an planar terrain evaluation and thematic analysis; f) to evaluate both planimetric positioning and height determination accuracies reachable through the photogrammetric process. Users have to known reliability of the measures they can do over such products. This can drive them to define the applicable field of this approach and this can help them to

  14. Influence of glyphosate on amino acid composition of Egyptian broomrape.

    PubMed

    Nandula, V K; Westwood, J H; Foster, J G; Foy, C L

    2001-03-01

    The parasitic plant broomrape is entirely dependent on its host for reduced carbon and nitrogen and is also susceptible to inhibition by glyphosate that is translocated to the parasite through a host. Studies were conducted to examine the effect of broomrape parasitism on amino acid concentrations of two hosts: common vetch that is tolerant of low levels of glyphosate and oilseed rape that has been genetically engineered for glyphosate resistance. The influence of glyphosate on the amino acid content of broomrape and the two hosts was also examined. Amino acid concentrations in leaves and roots of parasitized common vetch plants were generally similar to those of the corresponding tissues of nonparasitized plants. Amino acid concentrations in broomrape were lower than those of the parasitized common vetch root. For common vetch, glyphosate applied at rates that selectively inhibited broomrape growth did not alter individual amino acid concentrations in the leaves, but generally increased amino acid levels at 0.18 kg ha-1. Glyphosate application also increased the amino acid concentrations, with the exception of arginine, of broomrape growing on common vetch and did not generally influence concentrations in leaves or roots of common vetch. In oilseed rape, parasitization by broomrape generally led to higher amino acid concentrations in leaves but lower concentrations in roots of parasitized plants. Broomrape had higher amino acid concentrations than roots of the parasitized oilseed rape. Glyphosate applied at 0.25 and 0.5 kg ha-1 generally increased the amino acid concentrations in oilseed rape leaves, but the 0.75 kg ha-1 application caused the amino acid concentrations to decrease compared to those of untreated plants. In oilseed rape root the general trend was an increase in the concentration of amino acids at the two highest rates of glyphosate. Individual amino acid concentrations in broomrape attachments growing on oilseed rape were generally increased

  15. Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils

    NASA Astrophysics Data System (ADS)

    Todorovic, Gorana Rampazzo; Rampazzo, Nicola; Mentler, Axel; Blum, Winfried E. H.; Eder, Alexander; Strauss, Peter

    2014-03-01

    Erosion processes can strongly influence the dissipation of glyphosate and aminomethylphosphonic acid applied with Roundup Max® in agricultural soils; in addition, the soil structure state shortly before erosive precipitations fall can be a key parameter for the distribution of glyphosate and its metabolite. Field rain simulation experiments showed that severe erosion processes immediately after application of Roundup Max® can lead to serious unexpected glyphosate loss even in soils with a high presumed adsorption like the Cambisols, if their structure is unfavourable. In one of the no-tillage-plot of the Cambisol, up to 47% of the applied glyphosate amount was dissipated with surface run-off. Moreover, at the Chernozem site with high erosion risk and lower adsorption potential, glyphosate could be found in collected percolation water transported far outside the 2x2 m experimental plots. Traces of glyphosate were found also outside the treated agricultural fields.

  16. Mode of Action of Glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although glyphosate is the most used and studied herbicide in the world, the available information is not enough to fully understand its mode of action. The molecular site of action of glyphosate is the enzyme 5-enolpyruvlyshikimate-3-phosphate synthase (EPSPS). It is the only known compound that ...

  17. Glyphosate resistance: state of knowledge

    PubMed Central

    Sammons, Robert Douglas; Gaines, Todd A

    2014-01-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance. PMID:25180399

  18. Testing Tools for Glyphosate Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are multiple tools available for testing for glyphosate resistance. Whole plant screens, whether in the field or greenhouse, should be used as an initial method to determine if a biotype is glyphosate resistant. Screening for resistance using seedling assays such as in Petri plates, sand cul...

  19. Glyphosate resistance: state of knowledge.

    PubMed

    Sammons, Robert Douglas; Gaines, Todd A

    2014-09-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance.

  20. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release

    PubMed Central

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS*), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS* expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha−1. To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS* also can be a promising candidate gene in other species for developing glyphosate-tolerant crops. PMID:27625652

  1. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release.

    PubMed

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops. PMID:27625652

  2. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release

    PubMed Central

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS*), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS* expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha−1. To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS* also can be a promising candidate gene in other species for developing glyphosate-tolerant crops.

  3. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release.

    PubMed

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops.

  4. Degradation and Isotope Source Tracking of Glyphosate and Aminomethylphosphonic Acid.

    PubMed

    Li, Hui; Joshi, Sunendra R; Jaisi, Deb P

    2016-01-27

    Glyphosate [N-(phosphonomethyl) glycine], an active ingredient of the herbicide Roundup, and its main metabolite, aminomethylphosphonic acid (AMPA), have been frequently reported to be present in soils and other environments and thus have heightened public concerns on their potential adverse effects. Understanding the fate of these compounds and differentiating them from other naturally occurring compounds require a toolbox of methods that can go beyond conventional methods. Here, we applied individual isotope labeling technique whereby each compound or mineral involved in the glyphosate and AMPA degradation reaction was either synthesized or chosen to have distinct (18)O/(16)O ratios so that the source of incorporated oxygen in the orthophosphate generated and corresponding isotope effect during C-P bond cleavage could be identified. Furthermore, we measured original isotope signatures of a few commercial glyphosate sources to identify their source-specific isotope signatures. Our degradation kinetics results showed that the rate of glyphosate degradation was higher than that of AMPA in all experimental conditions, and both the rate and extent of degradation were lowest under anoxic conditions. Oxygen isotope ratios (δ(18)OP) of orthophosphate generated from glyphosate and AMPA degradation suggested that one external oxygen atom from ambient water, not from dissolved oxygen or mineral, was incorporated into orthophosphate with the other three oxygen atoms inherited from the parent molecule. Interestingly, δ(18)OP values of all commercial glyphosate products studied were found to be the lightest among all orthophosphates known so far. Furthermore, isotope composition was found to be unaffected due to variable degradation kinetics, light/dark, and oxic/anoxic conditions. These results highlight the importance of phosphate oxygen isotope ratios as a nonconventional tool to potentially distinguish glyphosate sources and products from other organophosphorus compounds

  5. Degradation and Isotope Source Tracking of Glyphosate and Aminomethylphosphonic Acid.

    PubMed

    Li, Hui; Joshi, Sunendra R; Jaisi, Deb P

    2016-01-27

    Glyphosate [N-(phosphonomethyl) glycine], an active ingredient of the herbicide Roundup, and its main metabolite, aminomethylphosphonic acid (AMPA), have been frequently reported to be present in soils and other environments and thus have heightened public concerns on their potential adverse effects. Understanding the fate of these compounds and differentiating them from other naturally occurring compounds require a toolbox of methods that can go beyond conventional methods. Here, we applied individual isotope labeling technique whereby each compound or mineral involved in the glyphosate and AMPA degradation reaction was either synthesized or chosen to have distinct (18)O/(16)O ratios so that the source of incorporated oxygen in the orthophosphate generated and corresponding isotope effect during C-P bond cleavage could be identified. Furthermore, we measured original isotope signatures of a few commercial glyphosate sources to identify their source-specific isotope signatures. Our degradation kinetics results showed that the rate of glyphosate degradation was higher than that of AMPA in all experimental conditions, and both the rate and extent of degradation were lowest under anoxic conditions. Oxygen isotope ratios (δ(18)OP) of orthophosphate generated from glyphosate and AMPA degradation suggested that one external oxygen atom from ambient water, not from dissolved oxygen or mineral, was incorporated into orthophosphate with the other three oxygen atoms inherited from the parent molecule. Interestingly, δ(18)OP values of all commercial glyphosate products studied were found to be the lightest among all orthophosphates known so far. Furthermore, isotope composition was found to be unaffected due to variable degradation kinetics, light/dark, and oxic/anoxic conditions. These results highlight the importance of phosphate oxygen isotope ratios as a nonconventional tool to potentially distinguish glyphosate sources and products from other organophosphorus compounds

  6. Studies on degradation of glyphosate by several oxidative chemical processes: ozonation, photolysis and heterogeneous photocatalysis.

    PubMed

    Assalin, Marcia R; De Moraes, Sandra G; Queiroz, Sonia C N; Ferracini, Vera L; Duran, Nelson

    2010-01-01

    Several different Advanced Oxidation Processes (AOPs) including ozonation at pH 6.5 and 10, photolysis and heterogeneous photocatalysis using TiO(2) as semiconductor and dissolved oxygen as electron acceptor were applied to study the degradation of glyphosate (N-phosphonomethyl glycine) in water. The degree of glyphosate degradation, the reactions kinetic and the formation of the major metabolite, aminomethyl phosphonic acid (AMPA), were evaluated. Ozonation at pH 10 resulted in the maximum mineralization of glyphosate. It was observed that under the experimental conditions used in this study the degradation of glyphosate followed the first-order kinetics. The half-life obtained for glyphosate degradation in the O(3)/pH 10 process was 1.8 minutes.

  7. Early detection of crop injury from herbicide glyphosate by leaf biochemical parameter inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Guo, Yiqing; Huang, Yanbo; Reddy, Krishna N.; Lee, Matthew A.; Fletcher, Reginald S.; Thomson, Steven J.

    2014-09-01

    Early detection of crop injury from herbicide glyphosate is of significant importance in crop management. In this paper, we attempt to detect glyphosate-induced crop injury by PROSPECT (leaf optical PROperty SPECTra model) inversion through leaf hyperspectral reflectance measurements for non-Glyphosate-Resistant (non-GR) soybean and non-GR cotton leaves. The PROSPECT model was inverted to retrieve chlorophyll content (Ca+b), equivalent water thickness (Cw), and leaf mass per area (Cm) from leaf hyperspectral reflectance spectra. The leaf stress conditions were then evaluated by examining the temporal variations of these biochemical constituents after glyphosate treatment. The approach was validated with greenhouse-measured datasets. Results indicated that the leaf injury caused by glyphosate treatments could be detected shortly after the spraying for both soybean and cotton by PROSPECT inversion, with Ca+b of the leaves treated with high dose solution decreasing more rapidly compared with leaves left untreated, whereas the Cw and Cm showed no obvious difference between treated and untreated leaves. For both non-GR soybean and non-GR cotton, the retrieved Ca+b values of the glyphosate treated plants from leaf hyperspectral data could be distinguished from that of the untreated plants within 48 h after the treatment, which could be employed as a useful indicator for glyphosate injury detection. These findings demonstrate the feasibility of applying the PROSPECT inversion technique for the early detection of leaf injury from glyphosate and its potential for agricultural plant status monitoring.

  8. Herbicide-resistant weed management: focus on glyphosate.

    PubMed

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds.

  9. Effect of manure on glyphosate and trifluralin mineralization in soil.

    PubMed

    Reimer, M; Farenhorst, A; Gaultier, J

    2005-01-01

    Manure additions to soil may alter soil chemical, physical, and biological characteristics, and thereby change pesticide fate processes in soil. This is the first study to examine the impact of liquid hog manure amendments on glyphosate and trifluralin mineralization in soil. Experiments were conducted in soil microcosms in the laboratory for a total of 332 (glyphosate) and 430 (trifluralin) days. The rate and amount of mineralization of both glyphosate and trifluralin were significantly influenced by the additions of fresh manure to soil in the laboratory and by the history of manure applications in the field. However, the maximum difference in herbicide mineralization between soils that were free of manure application and those amended with manure in the field or in the laboratory was only 6.1% and 7.3% of that initially applied, for trifluralin and glyphosate, respectively. Therefore, we conclude that liquid hog manure application to soil will have no significant effect on the mineralization of glyphosate and trifluralin under field conditions.

  10. Herbicide-resistant weed management: focus on glyphosate.

    PubMed

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. PMID:21548004

  11. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    PubMed

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  12. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  13. Nontarget effects of the mosquito adulticide pyrethrin applied aerially during a West Nile virus outbreak in an urban California environment.

    PubMed

    Boyce, Walter M; Lawler, Sharon P; Schultz, Jennifer M; McCauley, Shannon J; Kimsey, Lynn S; Niemela, Michael K; Nielsen, Carrie F; Reisen, William K

    2007-09-01

    In August 2006, a pyrethrin insecticide synergized with piperonyl butoxide (EverGreen Crop Protection EC 60-6, McLaughlin Gormley King Company, Golden Valley, MN) was sprayed in ultralow volumes over the city of Davis, CA, by the Sacramento-Yolo Mosquito and Vector Control District to control mosquitoes transmitting West Nile virus. Concurrently, we evaluated the impact of the insecticide on nontarget arthropods by 1) comparing mortality of treatment and control groups of sentinel arthropods, and 2) measuring the diversity and abundance of dead arthropods found on treatment and control tarps placed on the ground. We found no effect of spraying on nontarget sentinel species including dragonflies (Sympetrum corruptum), spiders (Argiope aurantia), butterflies (Colias eurytheme), and honeybees (Apis mellifera). In contrast, significantly higher diversity and numbers of nontarget arthropods were found on ground tarps placed in sprayed versus unsprayed areas. All of the dead nontarget species were small-bodied arthropods as opposed to the large-bodied sentinels that were not affected. The mortality of sentinel mosquitoes placed at the same sites as the nontarget sentinels and ground tarps ranged from 0% to 100%. Dead mosquitoes were not found on the ground tarps. We conclude that aerial spraying with pyrethrins had no impact on the large-bodied arthropods placed in the spray zone, but did have a measurable impact on a wide range of small-bodied organisms. PMID:17939516

  14. Effect of foliar treatments on distribution of /sup 14/C-glyphosate in Convolvulus arvensis L

    SciTech Connect

    Lauridson, T.C.

    1986-01-01

    Field bindweed is a perennial weed which produces shoots from buds on its roots. Herbicides, such as glyphosate (N-(phosphonomethyl)glycine) used for control of field bindweed usually do not kill all shoot buds on the roots, thus field bindweed often reinfests areas within 3 to 6 weeks of treatment. This dissertation deals with the development of a technique to change glyphosate distribution in field bindweed roots and could result in less shoot regrowth after glyphosate application. In field studies eight plant growth regulators were applied in September, 3 days before 2.24 kg/ha of 2.4-D((2,4-dichlorophenoxy) acetic acid) or 1.68 kg/ha of glyphosate. Eight months later, regrowth of shoots was least where glyphosate was applied at 0.028 kg/ha as a pretreatment, followed by a standard rate of 1.68 kg/ha. In subsequent greenhouse studies, typical patterns of shoot growth and /sup 14/C-glyphosate distribution in isolated root sections taken from 15-week-old intact plants were determined. In subsequent growth chamber studies, plants were decapitated to observe the effect of shoot apical dominance on /sup 14/C-glyphosate translocation. After /sup 14/C-glyphosate was applied, intact plants had about twice as much /sup 14/C in distal root sections as in proximal or middle root sections. Decapitated plants had more /sup 14/C in proximal and middle root sections than in distal sections, and about twice as much /sup 14/C was translocated to roots of decapitated plants than intact plants. Eight concentrations of 2,4,-D or glyphosate from 1 to 5000 ppm were applied in logarithmic series to 6-week old plants.

  15. Effects of glyphosate and foliar amendments on activity of microorganisms in the soybean rhizosphere.

    PubMed

    Means, Nathan E; Kremer, Robert J; Ramsier, Clifford

    2007-02-01

    A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha(-1) was applied GR soybean at the V4-V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha(-1) and 9.2 kg ha(-1), respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.

  16. 75 FR 24969 - Glyphosate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Notice of... gives notice that its antidumping investigation concerning glyphosate from China (investigation No....

  17. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    EPA Science Inventory

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  18. Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment.

    PubMed

    Yang, Xiaomei; Wang, Fei; Bento, Célia P M; Xue, Sha; Gai, Lingtong; van Dam, Ruud; Mol, Hans; Ritsema, Coen J; Geissen, Violette

    2015-04-15

    Repeated applications of glyphosate may contaminate the soil and water and threaten their quality both within the environmental system and beyond it through water erosion related processes and leaching. In this study, we focused on the transport of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) related to soil erosion at two slope gradients (10 and 20°), two rates of pesticide with a formulation of glyphosate (Roundup®) application (360 and 720 mg m(-2)), and a rain intensity of 1.0 mm min(-1) for 1 h on bare soil in hydraulic flumes. Runoff and erosion rate were significantly different within slope gradients (p<0.05) while suspended load concentration was relatively constant after 15 min of rainfall. The glyphosate and AMPA concentration in the runoff and suspended load gradually decreased. Significant power and exponent function relationship were observed between rainfall duration and the concentration of glyphosate and AMPA (p<0.01) in runoff and suspended load, respectively. Meanwhile, glyphosate and AMPA content in the eroded material depended more on the initial rate of application than on the slope gradients. The transport rate of glyphosate by runoff and suspended load was approximately 14% of the applied amount, and the chemicals were mainly transported in the suspended load. The glyphosate and AMPA content in the flume soil at the end of the experiment decreased significantly with depth (p<0.05), and approximately 72, 2, and 3% of the applied glyphosate (including AMPA) remained in the 0-2, 2-5, and 5-10 cm soil layers, respectively. The risk of contamination in deep soil and the groundwater was thus low, but 5% of the initial application did reach the 2-10 cm soil layer. The risk of contamination of surface water through runoff and sedimentation, however, can be considerable, especially in regions where rain-induced soil erosion is common.

  19. Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment.

    PubMed

    Yang, Xiaomei; Wang, Fei; Bento, Célia P M; Xue, Sha; Gai, Lingtong; van Dam, Ruud; Mol, Hans; Ritsema, Coen J; Geissen, Violette

    2015-04-15

    Repeated applications of glyphosate may contaminate the soil and water and threaten their quality both within the environmental system and beyond it through water erosion related processes and leaching. In this study, we focused on the transport of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) related to soil erosion at two slope gradients (10 and 20°), two rates of pesticide with a formulation of glyphosate (Roundup®) application (360 and 720 mg m(-2)), and a rain intensity of 1.0 mm min(-1) for 1 h on bare soil in hydraulic flumes. Runoff and erosion rate were significantly different within slope gradients (p<0.05) while suspended load concentration was relatively constant after 15 min of rainfall. The glyphosate and AMPA concentration in the runoff and suspended load gradually decreased. Significant power and exponent function relationship were observed between rainfall duration and the concentration of glyphosate and AMPA (p<0.01) in runoff and suspended load, respectively. Meanwhile, glyphosate and AMPA content in the eroded material depended more on the initial rate of application than on the slope gradients. The transport rate of glyphosate by runoff and suspended load was approximately 14% of the applied amount, and the chemicals were mainly transported in the suspended load. The glyphosate and AMPA content in the flume soil at the end of the experiment decreased significantly with depth (p<0.05), and approximately 72, 2, and 3% of the applied glyphosate (including AMPA) remained in the 0-2, 2-5, and 5-10 cm soil layers, respectively. The risk of contamination in deep soil and the groundwater was thus low, but 5% of the initial application did reach the 2-10 cm soil layer. The risk of contamination of surface water through runoff and sedimentation, however, can be considerable, especially in regions where rain-induced soil erosion is common. PMID:25644837

  20. The Fate and Transport of Glyphosate and its Degradation Product, Aminomethylphosphonic Acid (AMPA), in Water

    NASA Astrophysics Data System (ADS)

    Scribner, E.; Meyer, M. T.

    2006-05-01

    Since 2001, the U.S. Geological Survey (USGS) has investigated the fate and transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), in surface water, and more recently in tile-drain flow, soil, and wet deposition. According to U.S. Environmental Protection Agency sources, glyphosate is among the world's most widely used herbicides. In 2004, glyphosate usage estimates indicated that between 103 and 113 million pounds were applied annually to crops in the United States. The use of glyphosate over a wide geographic area suggests that this herbicide might be a potential concern for air, water, and soil quality as well as measured in high concentrations in streams; therefore, it is important to monitor its fate and transport in ground-water/surface-water systems. National, regional, and field-scale studies conducted by the USGS National Water-Quality Assessment and Toxic Substance Hydrology Programs have studied the fate and transport of glyphosate in overland flow, tile- drain flow, surface water, soil, and wet-deposition samples. The samples were analyzed for glyphosate and AMPA by using derivatization and online solid-phase extraction with liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS methods developed by the USGS Organic Geochemistry Research Laboratory in Lawrence, Kansas. During spring, summer, and fall 2002 runoff periods in 50 Midwestern streams, glyphosate was detected at or above the 0.10 micrograms per liter detection limit in 35, 41, and 31 percent of samples, respectively. AMPA was detected in 53, 82, and 75 percent of samples, respectively. Results of 128 samples from a field study showed that glyphosate was transported as a narrow high- concentration pulse during the first period of runoff after application and that the concentration of glyphosate in runoff was greater than the concentration of AMPA. In tile-drain flow, glyphosate and AMPA were transported in a broad low-concentration pulse during these same

  1. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate.

    PubMed

    Solomon, Keith R; Thompson, Dean G

    2003-01-01

    this surfactant presents an insignificant acute risk to aquatic organisms. Assuming similar applications rates, significant ecological effects would not be expected from the use of some other surfactants such as Induce or X-77. Risks from the use of glyphosate +MON 0818 (Roundup) were slightly greater than those from glyphosate and surfactants such as LI 700; however, in over-water uses, risks were still considered small. Similar small risks were observed for measured concentrations of glyphosate in surface waters resulting from aerial application of Vision (a formulation equivalent to Roundup) to forestry areas in Canada. Concentrations measured after ground application presented a greater risk, but the data were sparse and the assessment is more uncertain.

  2. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    USGS Publications Warehouse

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  3. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere.

    PubMed

    Chang, Feng-chih; Simcik, Matt F; Capel, Paul D

    2011-03-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from <0.01 to 9.1 ng/m(3) and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥ 30 mm.

  4. Losses of glyphosate and AMPA via drainflow in a typical Belgian residential area

    NASA Astrophysics Data System (ADS)

    Tang, Ting; Boënne, Wesley; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan; Desmet, Nele

    2014-05-01

    Urban hard surfaces are considered as important facilitators for pesticide transport into urban streams. To obtain concurrent high-resolution data for a detailed investigation on the losses of pesticide runoff from hard surfaces, a monitoring campaign was performed in a typical Belgian residential area (9.5 ha) between 7 May and 7 August, 2013. The campaign yielded a concurrent dataset of rainfall (1-mm rainfall interval), discharge (1-min interval), glyphosate application by the residents and the occurrences of glyphosate and its major degradation product - aminomethylphosphonic acid (AMPA) in the separated storm drainage outflow during 12 rainfall events. In addition, detailed information was obtained on the spatial characteristics of the study area. The resulting dataset allows us to investigate the relevance of catchment hydrology, urban surface properties and pesticide application to the transport and losses of glyphosate in a residential environment. During the campaign, glyphosate was only applied by local residents, mainly on their private driveways. As a result of their continuous use, both glyphosate and AMPA were detected in all analysed outflow samples, with maximum concentrations of 6.1 μg/L and 5.8 μg/L, respectively. Overall, the storm drainage system collected 0.43% of the applied amount of glyphosate. However, this loss rate varied considerably among rainfall events, ranging from 0.04% to 23.36%. According to statistical analysis of the 12 rainfall events, the loss rate was significantly correlated with three factors: the application amount prior to a rainfall event (p < 0.005), rainfall amount during the event (p < 0.02) and the weighted lag time between glyphosate application and the start of the rainfall event (negatively, p < 0.05). A regression analysis showed that these three factors can explain more than 85% of the variation in the loss rate of glyphosate. Furthermore, three types of glyphosate runoff were classified by a clustering

  5. Carbon-14-glyphosate behavior in relationship to pedoclimatic conditions and crop sequence.

    PubMed

    Rampoldi, E Ariel; Hang, Susana; Barriuso, Enrique

    2014-03-01

    The recognition of glyphosate [(-phosphonomethyl) glycine] behavioral patterns can be readily examined using a pedoclimatic gradient. In the present study, glyphosate adsorption-desorption and degradation were examined under different scenarios in relationship to soil properties and soil use applications. Three sites with varied pedoclimatic conditions and two crop sequences were selected. Adsorption-desorption and glyphosate distribution in mineralized, extractable, and nonextractable fractions were assessed under laboratory conditions. Glyphosate sorption was characterized by isotherms and glyphosate degradation using the distribution of C-glyphosate radioactivity among mineralized fractions, two extractable fractions (in water, ER1; in NHOH, ER2), and nonextractable fractions. Results showed sorption indices (distribution coefficient and Freundlich sorption coefficient : 13.4 ± 0.3-64.1 ± 0.9 L kg and 16.2-60.6, respectively), and hysteresis increased among soil sites associated with decreasing soil particle size <2 μm, soil organic matter, and other soil properties associated with soil granulometry. A multiple stepwise regression analysis was applied to estimate the relationship between values and soil properties. Cation exchange capacity, water field capacity, and Bray-1 P were the soil properties retained in the equation. Soils under continuous soybean [ (L.) Merr.] (monoculture) treatment exhibited reduced glyphosate adsorption and decreased hysteresis desorption relative to soils under rotation. To our knowledge, these results are the first to demonstrate that soils with identical properties exhibited different glyphosate retention capacities based on crop sequence. We propose possible explanations for this observation. Our results suggested that characterization of the variability in soil property gradients can serve to determine glyphosate behavioral patterns, which can establish a criterion for use in reducing potential environmental risks.

  6. Glyphosate-resistant and conventional canola (Brassica napus L.)responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  7. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  8. Glyphosate catabolism by Pseudomonas sp

    SciTech Connect

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing (3-/sup 14/C) glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO/sub 2/. Fractionation of stationary phase cells labeled with (3-/sup 14/C)glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with (3-/sup 14/C)glyphosate revealed that (3-/sup 14/C)sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates.

  9. Efficacy of glyphosate and five surfactants for controlling giant salvinia

    USGS Publications Warehouse

    Fairchild, J.F.; Allert, A.L.; Riddle, J.S.; Gladwin, D.R.

    2002-01-01

    Giant salvinia (Salvinia molesta Mitchell) is a non-native, invasive aquatic fern that was recently introduced to the southern United States. The aggressive nature of the species has led to concerns over its potential adverse impacts to native plants, fish, and invertebrates. We conducted a study to determine the efficacy of glyphosate [isopropylamine salt of N-(phosphono-methyl)glycine] and several surfactants for control of giant salvinia. Studies were conducted over a 42-day period using static renewals (twice weekly) with 4% Hoagland's medium (10 mg/L N equivalent) in replicated 2-L containers. Five concentrations of glyphosate (0, 0.45, 0.91, 1.82, and 3.60% v:v) and five surfactants (0.25% concentration, v:v; Optima???, Kinetic???, Mon 0818???, Cygnet Plus???, and LI-700???) were applied with a pressurized sprayer as a single surface application in a fully nested experimental design. Untreated giant salvinia grew rapidly and exhibited an increase of 800% wet weight biomass over the 42-day test duration. Glyphosate, with and without surfactants, exhibited efficacy at concentrations as low as 0.45% of the commercial formulation. Glyphosate with Optima was the only mixture that resulted in complete mortality of plants with no regrowth.

  10. Glyphosate distribution in loess soils as a result of dynamic sediment transport processes during a simulated rainstorm

    NASA Astrophysics Data System (ADS)

    Commelin, Meindert; Martins Bento, Celia; Baartman, Jantiene; Geissen, Violette

    2016-04-01

    Glyphosate is one of the most widely used herbicides in the world. The wide and extensive use of glyphosate makes it important to be certain about the safety of glyphosate to off-target environments and organisms. This research aims to create more detailed insight into the distribution processes of glyphosate, and the effect that dynamic sediment transport processes have on this distribution, during water erosion in agricultural fields. Glyphosate distribution characteristics are investigated for two different soil surfaces: a smooth surface, and a surface with seeding lines on the contour. The capacity to transport glyphosate for different sediment groups was investigated. These groups were water-eroded sediment and sedimentation areas found on the plot surface. The contribution of particle bonded and dissolved transport to total overland transportation of glyphosate was analysed with a mass balance study. The experiment was conducted in the Wageningen UR rainfall simulator. Plots of 0.5m2 were used, with a 5% slope, and a total of six experimental simulations were done. A rainfall event with an intensity of 30mm/h was simulated, applied in four showers of 15 minutes each with 30 minutes pause in between. Glyphosate (16mg/kg) was applied on the top 20cm of each plot, and in the downstream part, soil samples were taken. Glyphosate analysis was done using HPLC-MS/MS (High Performance Liquid Chromatography tandem Mass Spectrometry). Besides that, photo analysis with eCognition was used to derive the soil surface per sediment group. The results show that particle bonded transport of glyphosate contributes significantly (for at least 25%) to glyphosate transport during a rainstorm event. Particle size and organic matter have a large influence on the mobility of glyphosate and on the transported quantity to off-target areas. Moreover, seeding lines on the soil surface decreased total overland transport, both of sediment and glyphosate. Taking this into account, plots

  11. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes.

    PubMed

    González-Torralva, Fidel; Rojano-Delgado, Antonia M; Luque de Castro, María D; Mülleder, Norbert; De Prado, Rafael

    2012-11-15

    The physiological and biochemical bases for glyphosate resistance and susceptibility in horseweed (Conyza canadensis L. Cronq.) populations collected from Córdoba, Huelva, Málaga, Jaén and Seville in southern Spain were investigated. Screening 25 populations treated with glyphosate (238gacidequivalentha(-1)) at the rosette stage (BBCH 14-15) revealed reductions in fresh weight (fw) of 9-99%. The resistant biotype (R C004) was 6.1 times more resistant than the susceptible biotype (S). Shikimate accumulation in both biotypes increased until 72h after treatment (HAT), and then continued to increase (to 61.2%) in the S biotype, but decreased by 40% in the R (C004) biotype. Differential glyphosate spray retention and foliar uptake of applied (14)C-glyphosate between the R (C004) and S biotype had no effect on resistance to this herbicide. Quantitative and qualitative tests showed greater (14)C-glyphosate mobility in the S biotype than in the R (C004) biotype. Glyphosate was metabolized faster in the R (C004) biotype than in the S biotype. The herbicide disappeared completely from the R (C004) biotype by conversion into glyoxylate, sarcosine and aminomethylphosphonic acid within 96 HAT. On the other hand, 41.43nmolg(-1)fw of all glyphosate applied remained in the S biotype and glyoxylate was its only non-toxic metabolite. These results suggest that glyphosate resistance in horseweed is due to two different non-target mechanisms, namely: (a) impaired glyphosate translocation and (b) glyphosate metabolism to other compounds.

  12. Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes.

    PubMed

    Hansen, Lone Rykær; Roslev, Peter

    2016-10-01

    Glyphosate (N-(phosphonomethyl)glycine) is the active ingredient in a range of popular broad-spectrum herbicide formulations. Glyphosate is a chelating agent that can form stable complexes with divalent metal ions including Cu(II). Little is known about the bioavailability and ecotoxicity of glyphosate-Cu(II) complexes to aquatic organisms. In this study, we used video tracking and behavior analysis to investigate sublethal effects of binary mixtures of glyphosate and Cu(II) to juvenile D. magna. Behavioral responses were quantified for individual D. magna after 24h and 48h exposure to glyphosate and glyhosate-Cu(II) mixtures. Sublethal concentrations resulted in decreases in swimming velocity, acceleration speed, and distance moved whereas inactive time of D. magna increased. Distance moved and inactive time were the most responsive parameters to glyphosate and glyphosate-Cu(II) exposure. On a molar basis, glyphosate-Cu(II) complexes appeared more toxic to D. magna than glyphosate alone. The 48h EC50 for glyphosate and glyphosate-Cu(II) determined from swimming distance were 75.2μM and 8.4μM, respectively. In comparison, traditional visual observation of mobility resulted in 48h EC50 values of 52.8μM and 25.5μM for glyphosate and glyphosate-Cu(II), respectively. The behavioral responses indicated that exposure of D. magna to mixtures of glyphosate and Cu(II) attenuated acute metal toxicity but increased apparent glyphosate toxicity due to complexation with Cu(II). The study suggests that glyphosate is a likely mediator of aquatic metal toxicity, and that video tracking provides an opportunity for quantitative studies of sublethal effects of pesticide complexes.

  13. Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes.

    PubMed

    Hansen, Lone Rykær; Roslev, Peter

    2016-10-01

    Glyphosate (N-(phosphonomethyl)glycine) is the active ingredient in a range of popular broad-spectrum herbicide formulations. Glyphosate is a chelating agent that can form stable complexes with divalent metal ions including Cu(II). Little is known about the bioavailability and ecotoxicity of glyphosate-Cu(II) complexes to aquatic organisms. In this study, we used video tracking and behavior analysis to investigate sublethal effects of binary mixtures of glyphosate and Cu(II) to juvenile D. magna. Behavioral responses were quantified for individual D. magna after 24h and 48h exposure to glyphosate and glyhosate-Cu(II) mixtures. Sublethal concentrations resulted in decreases in swimming velocity, acceleration speed, and distance moved whereas inactive time of D. magna increased. Distance moved and inactive time were the most responsive parameters to glyphosate and glyphosate-Cu(II) exposure. On a molar basis, glyphosate-Cu(II) complexes appeared more toxic to D. magna than glyphosate alone. The 48h EC50 for glyphosate and glyphosate-Cu(II) determined from swimming distance were 75.2μM and 8.4μM, respectively. In comparison, traditional visual observation of mobility resulted in 48h EC50 values of 52.8μM and 25.5μM for glyphosate and glyphosate-Cu(II), respectively. The behavioral responses indicated that exposure of D. magna to mixtures of glyphosate and Cu(II) attenuated acute metal toxicity but increased apparent glyphosate toxicity due to complexation with Cu(II). The study suggests that glyphosate is a likely mediator of aquatic metal toxicity, and that video tracking provides an opportunity for quantitative studies of sublethal effects of pesticide complexes. PMID:27564378

  14. GLYPHOSATE REMOVAL FROM DRINKING WATER

    EPA Science Inventory

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  15. Glyphosate induces neurotoxicity in zebrafish.

    PubMed

    Roy, Nicole M; Carneiro, Bruno; Ochs, Jeremy

    2016-03-01

    Glyphosate based herbicides (GBH) like Roundup(®) are used extensively in agriculture as well as in urban and rural settings as a broad spectrum herbicide. Its mechanism of action was thought to be specific only to plants and thus considered safe and non-toxic. However, mounting evidence suggests that GBHs may not be as safe as once thought as initial studies in frogs suggest that GBHs may be teratogenic. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate exposure using technical grade glyphosate and the Roundup(®) Classic formulation. We find morphological abnormalities including cephalic and eye reductions and a loss of delineated brain ventricles. Concomitant with structural changes in the developing brain, using in situ hybridization analysis, we detect decreases in genes expressed in the eye, fore and midbrain regions of the brain including pax2, pax6, otx2 and ephA4. However, we do not detect changes in hindbrain expression domains of ephA4 nor exclusive hindbrain markers krox-20 and hoxb1a. Additionally, using a Retinoic Acid (RA) mediated reporter transgenic, we detect no alterations in the RA expression domains in the hindbrain and spinal cord, but do detect a loss of expression in the retina. We conclude that glyphosate and the Roundup(®) formulation is developmentally toxic to the forebrain and midbrain but does not affect the hindbrain after 24 h exposure.

  16. Glyphosate induces neurotoxicity in zebrafish.

    PubMed

    Roy, Nicole M; Carneiro, Bruno; Ochs, Jeremy

    2016-03-01

    Glyphosate based herbicides (GBH) like Roundup(®) are used extensively in agriculture as well as in urban and rural settings as a broad spectrum herbicide. Its mechanism of action was thought to be specific only to plants and thus considered safe and non-toxic. However, mounting evidence suggests that GBHs may not be as safe as once thought as initial studies in frogs suggest that GBHs may be teratogenic. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate exposure using technical grade glyphosate and the Roundup(®) Classic formulation. We find morphological abnormalities including cephalic and eye reductions and a loss of delineated brain ventricles. Concomitant with structural changes in the developing brain, using in situ hybridization analysis, we detect decreases in genes expressed in the eye, fore and midbrain regions of the brain including pax2, pax6, otx2 and ephA4. However, we do not detect changes in hindbrain expression domains of ephA4 nor exclusive hindbrain markers krox-20 and hoxb1a. Additionally, using a Retinoic Acid (RA) mediated reporter transgenic, we detect no alterations in the RA expression domains in the hindbrain and spinal cord, but do detect a loss of expression in the retina. We conclude that glyphosate and the Roundup(®) formulation is developmentally toxic to the forebrain and midbrain but does not affect the hindbrain after 24 h exposure. PMID:26773362

  17. Effect of glyphosate application on foliar diseases in glyphosate-tolerant alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate, the active ingredient in Roundup herbicide, inhibits 5-enol-pyruvyl shikimate 3-phophate synthase (EPSPS), an enzyme found in plants, fungi, and bacteria. Plants engineered for glyphosate tolerance with a glyphosate-insensitive EPSPS take up and translocate the herbicide throughout the p...

  18. Aerial Photography

    NASA Technical Reports Server (NTRS)

    1985-01-01

    John Hill, a pilot and commercial aerial photographer, needed an information base. He consulted NERAC and requested a search of the latest developments in camera optics. NERAC provided information; Hill contacted the manufacturers of camera equipment and reduced his photographic costs significantly.

  19. Economic impacts of glyphosate-resistant crops.

    PubMed

    Gianessi, Leonard P

    2008-04-01

    Glyphosate-resistant crops have been widely planted since their introduction in 1996. Growers have numerous choices for herbicide treatments and have chosen to plant glyphosate-resistant crops on the basis of economic factors. The economic effects of the widespread planting of glyphosate-resistant crops have included reductions in herbicide expenses, increases in seed costs, increased yield and changes in the relative profitability of crops that has resulted in changes in which crops are planted. In addition, non-pecuniary benefits have accrued as a result of the simplicity of weed management in the glyphosate-resistant crop systems.

  20. Economic impacts of glyphosate-resistant crops.

    PubMed

    Gianessi, Leonard P

    2008-04-01

    Glyphosate-resistant crops have been widely planted since their introduction in 1996. Growers have numerous choices for herbicide treatments and have chosen to plant glyphosate-resistant crops on the basis of economic factors. The economic effects of the widespread planting of glyphosate-resistant crops have included reductions in herbicide expenses, increases in seed costs, increased yield and changes in the relative profitability of crops that has resulted in changes in which crops are planted. In addition, non-pecuniary benefits have accrued as a result of the simplicity of weed management in the glyphosate-resistant crop systems. PMID:18181242

  1. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean

    PubMed Central

    Feng, Paul C. C.; Baley, G. James; Clinton, William P.; Bunkers, Greg J.; Alibhai, Murtaza F.; Paulitz, Timothy C.; Kidwell, Kimberlee K.

    2005-01-01

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. Growth-chamber studies demonstrated wheat rust control at multiple plant growth stages with a glyphosate spray dose typically recommended for weed control. Rust control was absent in formulation controls without glyphosate, dependent on systemic glyphosate concentrations in leaf tissues, and not mediated through induction of four common systemic acquired resistance genes. A field test with endemic stripe rust inoculum confirmed the activities of glyphosate pre- and postinfestation. Preliminary greenhouse studies also demonstrated that application of glyphosate in glyphosate-resistant soybeans suppressed Asian soybean rust, caused by Phakopsora pachyrhizi. PMID:16293685

  2. Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds.

    PubMed

    Duke, Stephen O

    2011-06-01

    High levels of aminomethylphosphonic acid (AMPA), the main glyphosate metabolite, have been found in glyphosate-treated, glyphosate-resistant (GR) soybean, apparently due to plant glyphosate oxidoreductase (GOX)-like activity. AMPA is mildly phytotoxic, and under some conditions the AMPA accumulating in GR soybean correlates with glyphosate-caused phytotoxicity. A bacterial GOX is used in GR canola, and an altered bacterial glyphosate N-acetyltransferase is planned for a new generation of GR crops. In some weed species, glyphosate degradation could contribute to natural resistance. Neither an isolated plant GOX enzyme nor a gene for it has yet been reported in plants. Gene mutation or amplification of plant genes for GOX-like enzyme activity or horizontal transfer of microbial genes from glyphosate-degrading enzymes could produce GR weeds. Yet, there is no evidence that metabolic degradation plays a significant role in evolved resistance to glyphosate. This is unexpected, considering the extreme selection pressure for evolution of glyphosate resistance in weeds and the difficulty in plants of evolving glyphosate resistance via other mechanisms.

  3. Review of genotoxicity biomonitoring studies of glyphosate-based formulations.

    PubMed

    Kier, Larry D

    2015-03-01

    Abstract Human and environmental genotoxicity biomonitoring studies involving exposure to glyphosate-based formulations (GBFs) were reviewed to complement an earlier review of experimental genotoxicity studies of glyphosate and GBFs. The environmental and most of the human biomonitoring studies were not informative because there was either a very low frequency of GBF exposure or exposure to a large number of pesticides without analysis of specific pesticide effects. One pesticide sprayer biomonitoring study indicated there was not a statistically significant relationship between frequency of GBF exposure reported for the last spraying season and oxidative DNA damage. There were three studies of human populations in regions of GBF aerial spraying. One study found increases for the cytokinesis-block micronucleus endpoint but these increases did not show statistically significant associations with self-reported spray exposure and were not consistent with application rates. A second study found increases for the blood cell comet endpoint at high exposures causing toxicity. However, a follow-up to this study 2 years after spraying did not indicate chromosomal effects. The results of the biomonitoring studies do not contradict an earlier conclusion derived from experimental genotoxicity studies that typical GBFs do not appear to present significant genotoxic risk under normal conditions of human or environmental exposures.

  4. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism

    PubMed Central

    Ge, Xia; Avignon, D André d’; Ackerman, Joseph JH; Sammons, R Douglas

    2010-01-01

    BACKGROUND Glyphosate-resistant (GR) weed species are now found with increasing frequency and threaten the critically importantGR weed management system. RESULTS The reported 31P NMR experiments on glyphosate-sensitive (S) and glyphosate-resistant (R) horseweed, Conyza canadensis (L.) Cronq., show significantly more accumulation of glyphosate within the R biotype vacuole. CONCLUSIONS Selective sequestration of glyphosate into the vacuole confers the observed horseweed resistance to glyphosate. This observation represents the first clear evidence for the glyphosate resistance mechanism in C. canadensis. PMID:20063320

  5. Natural glyphosate tolerance in sweetvetch Hedysarum boreale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetvetch (Hedysarum boreale Nutt.) a legume native to the western USA and Canada, is purported to have tolerance to glyphosate {N-(phosphonomethyl) glycine} herbide. Eight rates of glyphosate were tested for their effect on biomass yield (BMY) and survival of seedlings and mature plants. Treatme...

  6. Glyphosate-resistant goosegrass from Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A glyphosate resistant population of goosegrass (Eleusine indica (L.) Gaertn.) was documented near Stoneville, Mississippi, USA, in an area which had received multiple applications of glyphosate each year for the previous eleven years. Resistance ratios based on dose response growth reduction assays...

  7. Toxic, cytotoxic, and genotoxic effects of a glyphosate formulation (Roundup®SL-Cosmoflux®411F) in the direct-developing frog Eleutherodactylus johnstonei.

    PubMed

    Meza-Joya, Fabio Leonardo; Ramírez-Pinilla, Martha Patricia; Fuentes-Lorenzo, Jorge Luis

    2013-06-01

    The aerial spraying of glyphosate formulations in Colombia to eradicate illegal crops has generated great concern about its possible impact on nontarget organisms, particularly amphibians. This study evaluated the toxic, cytotoxic, and genotoxic effects of a glyphosate formulation (Roundup®SL-Cosmoflux®411F) in the direct-developing frog Eleutherodactylus johnstonei by estimating the median lethal application rate (LC50 ), median hemolytic application rate (HD50 ), and extent of DNA damage using the in vitro and in vivo Comet assays. Toxicity results indicated that the application rate [37.4 µg acid equivalent (a.e.)/cm(2) ] equivalent to that used in aerial spraying (3.74 kg a.e./ha) is not lethal in male and female adult frogs, whereas neonates are highly sensitive. Glyphosate formulation at application rates above 5.4 µg a.e./cm(2) (in vivo) and concentrations above 95 µg a.e./mL (in vitro) showed clear evidence of cytotoxicity. In vivo and in vitro exposure of E. johnstonei erythrocytes to the glyphosate formulation induced DNA breaks in a dose-dependent manner with statistically significant values (P < 0.05) at all doses tested. DNA damage initially increased with the duration of exposure and then decreased, suggesting that DNA repair events were occurring during in vivo and in vitro exposures. These results are discussed from the perspective of possible ecotoxicological risks to anuran species from exposure to glyphosate formulation.

  8. Depth distribution of glyphosate and AMPA under diferent tillage system and soils in long-term experiments

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Costa, Jose Luis; De Geronimo, Eduardo

    2016-04-01

    Glyphosate (N-(phosphonomethyl glycine) is a post-emergence, non-selective, foliar herbicide. Around 200 million liters of this herbicide are applied every year in Argentina, where the main agricultural practice is no-till (NT), accounting for 78 % of the cultivated land. In this work, we studied the depth distribution of glyphosate in long-term experiments (more than 15 years) at different locations under NT and conventional tillage (CT). Samples from 0-2, 2-5, 5-10, 10-15, and 15-20 cm depth with four replication and two treatments NT CT at three locations: Balcarce (BA) a loam soil, Bordenave (BO) a sandy loam soil y Marcos Juarez a silty loam soil (MJ). The glyphosate concentration in the first 2 cm of soil was, on the average, 70% greater than in the next 2-5 cm. The mass of glyphosate in CT was higher at 2 to 10 cm depth. The depth concentration of AMPA follows the same trend than glyphosate, although its average concentration at 0-2 cm depth is 28 times higher than the glyphosate concentration at 2-5 cm (glyphosate = 147 ppb and AMPA = 4100 ppb). Beside the AMPA concentration at 0-2 cm depth is greater in NT than in CT, the mass of AMPA is higher in CT only for the Balcarce location. To our knowledge, this study is the first dealing with the depth distribution of glyphosate concentration in soils under different soil managements. In the present study, it was demonstrated that glyphosate and AMPA are present in soils under agricultural activity with maximum concentration in the first two cm of soil and the AMPA concentration at this depth is greater in NT than in CT.

  9. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement.

    PubMed

    Myers, John Peterson; Antoniou, Michael N; Blumberg, Bruce; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vandenberg, Laura N; Vom Saal, Frederick S; Welshons, Wade V; Benbrook, Charles M

    2016-02-17

    The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air

  10. Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils.

    PubMed

    Kjær, Jeanne; Ernsten, Vibeke; Jacobsen, Ole H; Hansen, Nis; de Jonge, Lis Wollesen; Olsen, Preben

    2011-07-01

    Leaching of the strongly sorbing pesticides glyphosate and pendimethalin was evaluated in an 8-month field study focussing on preferential flow and particle-facilitated transport, both of which may enhance the leaching of such pesticides in structured soils. Glyphosate mainly sorbs to mineral sorption sites, while pendimethalin mainly sorbs to organic sorption sites. The two pesticides were applied in equal dosage to a structured, tile-drained soil, and the concentration of the pesticides was then measured in drainage water sampled flow-proportionally. The leaching pattern of glyphosate resembled that of pendimethalin, suggesting that the leaching potential of pesticides sorbed to either the inorganic or organic soil fractions is high in structured soils. Both glyphosate and pendimethalin leached from the root zone, with the average concentration in the drainage water being 3.5 and 2.7 μg L(-1), respectively. Particle-facilitated transport (particles >0.24 μm) accounted for only a small proportion of the observed leaching (13-16% for glyphosate and 16-31% for pendimethalin). Drain-connected macropores located above or in the vicinity of the drains facilitated very rapid transport of pesticide to the drains. That the concentration of glyphosate and pendimethalin in the drainage water remained high (>0.1 μg L(-1)) for up to 7d after a precipitation event indicates that macropores between the drains connected to underlying fractures were able to transport strongly sorbing pesticides in the dissolved phase. Lateral transport of dissolved pesticide via such discontinuities implies that strongly sorbing pesticides such as glyphosate and pendimethalin could potentially be present in high concentrations (>0.1 μg L(-1)) in both water originating from the drainage system and the shallow groundwater located at the depth of the drainage system. PMID:21481435

  11. Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils.

    PubMed

    Kjær, Jeanne; Ernsten, Vibeke; Jacobsen, Ole H; Hansen, Nis; de Jonge, Lis Wollesen; Olsen, Preben

    2011-07-01

    Leaching of the strongly sorbing pesticides glyphosate and pendimethalin was evaluated in an 8-month field study focussing on preferential flow and particle-facilitated transport, both of which may enhance the leaching of such pesticides in structured soils. Glyphosate mainly sorbs to mineral sorption sites, while pendimethalin mainly sorbs to organic sorption sites. The two pesticides were applied in equal dosage to a structured, tile-drained soil, and the concentration of the pesticides was then measured in drainage water sampled flow-proportionally. The leaching pattern of glyphosate resembled that of pendimethalin, suggesting that the leaching potential of pesticides sorbed to either the inorganic or organic soil fractions is high in structured soils. Both glyphosate and pendimethalin leached from the root zone, with the average concentration in the drainage water being 3.5 and 2.7 μg L(-1), respectively. Particle-facilitated transport (particles >0.24 μm) accounted for only a small proportion of the observed leaching (13-16% for glyphosate and 16-31% for pendimethalin). Drain-connected macropores located above or in the vicinity of the drains facilitated very rapid transport of pesticide to the drains. That the concentration of glyphosate and pendimethalin in the drainage water remained high (>0.1 μg L(-1)) for up to 7d after a precipitation event indicates that macropores between the drains connected to underlying fractures were able to transport strongly sorbing pesticides in the dissolved phase. Lateral transport of dissolved pesticide via such discontinuities implies that strongly sorbing pesticides such as glyphosate and pendimethalin could potentially be present in high concentrations (>0.1 μg L(-1)) in both water originating from the drainage system and the shallow groundwater located at the depth of the drainage system.

  12. The effect of the herbicide glyphosate on non-target spiders: Part II. Indirect effects on Lepthyphantes tenuis in field margins.

    PubMed

    Haughton, A J; Bell, J R; Boatman, N D; Wilcox, A

    2001-11-01

    We have examined the indirect effect of the herbicide glyphosate on the spider Lepthyphantes tenuis in field margins. Glyphosate was applied to a randomised block design field experiment comprising 360, 720 and 1440 g glyphosate AE ha-1 treatments and an unsprayed control. Spiders were sampled in each month from June to October 1998. Spider abundance was significantly lower in all the treatments than in the unsprayed control. Abundance was also significantly lower in the 720 and 1440 g treatments than in the 360 g treatment. No significant difference could be detected between the 720 and 1440 g treatments. Poisson regression models showed that patterns of decline in L tenuis were related to increasing dead vegetation and decreasing vegetation height. Glyphosate applications only had a within-season indirect habitat effect on L tenuis as field margins sprayed 16 months after an application of 360 g glyphosate ha-1 showed no detrimental effect.

  13. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate.

    PubMed

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  14. Influence of glyphosate on the copper dissolution in phosphate buffer

    NASA Astrophysics Data System (ADS)

    Coutinho, C. F. B.; Silva, M. O.; Machado, S. A. S.; Mazo, L. H.

    2007-01-01

    The electrochemical behavior of copper microelectrode in phosphate buffer in the presence of glyphosate was investigated by electrochemical techniques. It was observed that the additions of glyphosate in the phosphate buffer increased the anodic current of copper microelectrode and the electrochemical dissolution was observed. This phenomenon could be associated with the Cu(II) complexation by glyphosate forming a soluble complex. Physical characterization of the surface showed that, in absence of glyphosate, an insoluble layer covered the copper surface; on the other hand, in presence of glyphosate, it was observed a corroded copper surface with the formation of glyphosate complex in solution.

  15. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example.

    PubMed

    Thompson, Helen M; Levine, Steven L; Doering, Janine; Norman, Steve; Manson, Philip; Sutton, Peter; von Mérey, Georg

    2014-07-01

    This study aimed to develop an approach to evaluate potential effects of plant protection products on honeybee brood with colonies at realistic worst-case exposure rates. The approach comprised 2 stages. In the first stage, honeybee colonies were exposed to a commercial formulation of glyphosate applied to flowering Phacelia tanacetifolia with glyphosate residues quantified in relevant matrices (pollen and nectar) collected by foraging bees on days 1, 2, 3, 4, and 7 postapplication and glyphosate levels in larvae were measured on days 4 and 7. Glyphosate levels in pollen were approximately 10 times higher than in nectar and glyphosate demonstrated rapid decline in both matrices. Residue data along with foraging rates and food requirements of the colony were then used to set dose rates in the effects study. In the second stage, the toxicity of technical glyphosate to developing honeybee larvae and pupae, and residues in larvae, were then determined by feeding treated sucrose directly to honeybee colonies at dose rates that reflect worst-case exposure scenarios. There were no significant effects from glyphosate observed in brood survival, development, and mean pupal weight. Additionally, there were no biologically significant levels of adult mortality observed in any glyphosate treatment group. Significant effects were observed only in the fenoxycarb toxic reference group and included increased brood mortality and a decline in the numbers of bees and brood. Mean glyphosate residues in larvae were comparable at 4 days after spray application in the exposure study and also following dosing at a level calculated from the mean measured levels in pollen and nectar, showing the applicability and robustness of the approach for dose setting with honeybee brood studies. This study has developed a versatile and predictive approach for use in higher tier honeybee toxicity studies. It can be used to realistically quantify exposure of colonies to pesticides to allow the

  16. 75 FR 20862 - Glyphosate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ..., the Commission established a schedule for the conduct of the subject investigation (75 FR 17768, April... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Glyphosate From China AGENCY: United States International Trade Commission. ACTION:...

  17. Impact of phosphate on glyphosate uptake and toxicity in willow.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Moingt, Matthieu; Smedbol, Elise; Paquet, Serge; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-03-01

    Phosphate (PO4(3-)) has been shown to increase glyphosate uptake by willow, a plant species known for its phytoremediation potential. However, it remains unclear if this stimulation of glyphosate uptake can result in an elevated glyphosate toxicity to plants (which could prevent the use of willows in glyphosate-remediation programs). Consequently, we studied the effects of PO4(3-) on glyphosate uptake and toxicity in a fast growing willow cultivar (Salix miyabeana SX64). Plants were grown in hydroponic solution with a combination of glyphosate (0, 0.001, 0.065 and 1 mg l(-1)) and PO4(3-) (0, 200 and 400 mg l(-1)). We demonstrated that PO4(3-) fertilization greatly increased glyphosate uptake by roots and its translocation to leaves, which resulted in increased shikimate concentration in leaves. In addition to its deleterious effects in photosynthesis, glyphosate induced oxidative stress through hydrogen peroxide accumulation. Although it has increased glyphosate accumulation, PO4(3-) fertilization attenuated the herbicide's deleterious effects by increasing the activity of antioxidant systems and alleviating glyphosate-induced oxidative stress. Our results indicate that in addition to the glyphosate uptake, PO4(3-) is involved in glyphosate toxicity in willow by preventing glyphosate induced oxidative stress. PMID:26561751

  18. Impact of phosphate on glyphosate uptake and toxicity in willow.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Moingt, Matthieu; Smedbol, Elise; Paquet, Serge; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-03-01

    Phosphate (PO4(3-)) has been shown to increase glyphosate uptake by willow, a plant species known for its phytoremediation potential. However, it remains unclear if this stimulation of glyphosate uptake can result in an elevated glyphosate toxicity to plants (which could prevent the use of willows in glyphosate-remediation programs). Consequently, we studied the effects of PO4(3-) on glyphosate uptake and toxicity in a fast growing willow cultivar (Salix miyabeana SX64). Plants were grown in hydroponic solution with a combination of glyphosate (0, 0.001, 0.065 and 1 mg l(-1)) and PO4(3-) (0, 200 and 400 mg l(-1)). We demonstrated that PO4(3-) fertilization greatly increased glyphosate uptake by roots and its translocation to leaves, which resulted in increased shikimate concentration in leaves. In addition to its deleterious effects in photosynthesis, glyphosate induced oxidative stress through hydrogen peroxide accumulation. Although it has increased glyphosate accumulation, PO4(3-) fertilization attenuated the herbicide's deleterious effects by increasing the activity of antioxidant systems and alleviating glyphosate-induced oxidative stress. Our results indicate that in addition to the glyphosate uptake, PO4(3-) is involved in glyphosate toxicity in willow by preventing glyphosate induced oxidative stress.

  19. Effect of Glyphosate on Symbiotic N2 Fixation and Nickel Concentration in Glyphosate-Resistant Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of widespread cultivation of glyphosate-resistant (GR) soybean and the use of one herbicide class on biological processes has received considerable attention. Decreased biological nitrogen fixation in GR soybean has been attributed directly to toxicity of glyphosate or its metabolites to ...

  20. Quantification and characterization of glyphosate use and loss in a residential area.

    PubMed

    Tang, Ting; Boënne, Wesley; Desmet, Nele; Seuntjens, Piet; Bronders, Jan; van Griensven, Ann

    2015-06-01

    Urban runoff can be a significant source of pesticides in urban streams. However, quantification of this source has been difficult because pesticide use by urban residents (e.g., on pavements or in gardens) is often unknown, particularly at the scale of a residential catchment. Proper quantification and characterization of pesticide loss via urban runoff require sound information on the use and occurrence of pesticides at hydrologically-relevant spatial scales, involving various hydrological conditions. We conducted a monitoring study in a residential area (9.5 ha, Flanders, Belgium) to investigate the use and loss of a widely-used herbicide (glyphosate) and its major degradation product (aminomethylphosphonic acid, AMPA). The study covered 13 rainfall events over 67 days. Overall, less than 0.5% of glyphosate applied was recovered from the storm drain outflow in the catchment. Maximum detected concentrations were 6.1 μg/L and 5.8 μg/L for glyphosate and AMPA, respectively, both of which are below the predicted no-effect concentration for surface water proposed by the Flemish environmental agency (10 μg/L), but are above the EU drinking water standard (0.1 μg/L). The measured concentrations and percentage loss rates can be attributed partially to the strong sorption capacity of glyphosate and low runoff potential in the study area. However, glyphosate loss varied considerably among rainfall events and event load of glyphosate mass was mainly controlled by rainfall amount, according to further statistical analyses. To obtain urban pesticide management insights, robust tools are required to investigate the loss and occurrence of pesticides influenced by various factors, particularly the hydrological and spatial factors.

  1. Quantification and characterization of glyphosate use and loss in a residential area.

    PubMed

    Tang, Ting; Boënne, Wesley; Desmet, Nele; Seuntjens, Piet; Bronders, Jan; van Griensven, Ann

    2015-06-01

    Urban runoff can be a significant source of pesticides in urban streams. However, quantification of this source has been difficult because pesticide use by urban residents (e.g., on pavements or in gardens) is often unknown, particularly at the scale of a residential catchment. Proper quantification and characterization of pesticide loss via urban runoff require sound information on the use and occurrence of pesticides at hydrologically-relevant spatial scales, involving various hydrological conditions. We conducted a monitoring study in a residential area (9.5 ha, Flanders, Belgium) to investigate the use and loss of a widely-used herbicide (glyphosate) and its major degradation product (aminomethylphosphonic acid, AMPA). The study covered 13 rainfall events over 67 days. Overall, less than 0.5% of glyphosate applied was recovered from the storm drain outflow in the catchment. Maximum detected concentrations were 6.1 μg/L and 5.8 μg/L for glyphosate and AMPA, respectively, both of which are below the predicted no-effect concentration for surface water proposed by the Flemish environmental agency (10 μg/L), but are above the EU drinking water standard (0.1 μg/L). The measured concentrations and percentage loss rates can be attributed partially to the strong sorption capacity of glyphosate and low runoff potential in the study area. However, glyphosate loss varied considerably among rainfall events and event load of glyphosate mass was mainly controlled by rainfall amount, according to further statistical analyses. To obtain urban pesticide management insights, robust tools are required to investigate the loss and occurrence of pesticides influenced by various factors, particularly the hydrological and spatial factors. PMID:25727676

  2. What have the mechanisms of resistance to glyphosate taught us?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intensive use of glyphosate alone to manage weeds has selected populations that are glyphosate resistant. The three mechanisms of glyphosate resistance that have been elucidated are 1) target site mutations; 2) gene amplification; and 3) altered translocation due to sequestration. What have we...

  3. Circadian response of annual weeds to glyphosate and glufosinate.

    PubMed

    Martinson, Krishona B; Sothern, Robert B; Koukkari, Willard L; Durgan, Beverly R; Gunsolus, Jeffrey L

    2002-03-01

    Five field experiments were conducted in 1998 and 1999 in Minnesota to examine the influence of time of day efficacy of glyphosate [N-(phosphonomethyl)glycine] and glufosinate [2-amino-4-(hydroxymethyl-phosphinyl)butanoic acid] applications on the control of annual weeds. Each experiment was designed to be a randomized complete block with four replications using plot sizes of 3 x 9 m. Glyphosate and glufosinate were applied at rates of 0.421 kg ae/ha and 0.292 kg ai/ha, respectively, with and without an additional adjuvant that consisted of 20% nonionic surfactant and 80% ammonium sulfate. All treatments were applied with water at 94 L/ha. Times of day for the application of herbicide were 06:00h, 09:00h, 12:00h, 15:00h, 18:00h, 21:00h, and 24:00h. Efficacy was evaluated 14 d after application by visual ratings. At 14 d, a circadian response to each herbicide was found, with greatest annual weed control observed with an application occurring between 09:00h and 18:00h and significantly less weed control observed with an application at 06:00h, 21:00h, or 24:00h. The addition of an adjuvant to both herbicides increased overall efficacy, but did not overcome the rhythmic time of day effect. Results of the multiple regression analysis showed that after environmental temperature, time of day was the second most important predictor of percent weed kill. Thus, circadian timing of herbicide application significantly influenced weed control with both glyphosate and glufosinate.

  4. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.).

    PubMed

    Mueller, Thomas C; Massey, Joseph H; Hayes, Robert M; Main, Chris L; Stewart, C Neal

    2003-01-29

    Horseweed (Conyza canadensis) is a cosmopolitan weed that commonly grows throughout North America. Horseweed that is not completely controlled by normal applications of glyphosate has been reported in western Tennessee. This research had three objectives: (1) to develop and validate an analytical procedure for the quantitative determination of shikimate, an important indicator of glyphosate activity in plants; (2) to confirm resistance to glyphosate in a horseweed population; and (3) to examine the accumulation of shikimate in both glyphosate-resistant and glyphosate-susceptible horseweed plants. The analytical procedure to determine shikimate used extraction with 1 M HCl for 24 h, followed by liquid chromatography using photodiode array detection, and shikimate recoveries were >or=82%. Glyphosate applications of both 0.84 kg ae/ha (the standard application rate) and 3.8 kg ae/ha to susceptible plants caused complete plant death. The same glyphosate applications to putative resistant populations caused less than 15% growth reduction as determined by visual evaluations, and fresh weights of these resistant plants 17 days after glyphosate treatment (DAT) were reduced an average of 45% in one population and were not affected in a different population. This direct comparison conclusively confirms that horseweed plants collected in western Tennessee in 2002 are resistant to 4 times the normal application dosage of glyphosate. The glyphosate-resistant horseweed biotypes still exhibited some herbicidal effects from the glyphosate, such as yellowing in the most actively growing, apical shoot meristems. The yellowing in the shoot apexes was transitory, and the plants recovered from this damage. Shikimate concentrations in all untreated horseweed plants were less than 100 microg/g, which was significantly less than that in all plants which had been treated with 0.84 kg ae/ha of glyphosate. Unexpectedly, shikimate accumulated (>1000 microg/g) in both resistant populations and

  5. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    PubMed Central

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops. PMID:26528311

  6. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean.

    PubMed

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  7. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean.

    PubMed

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops. PMID:26528311

  8. Glyphosate induces cardiovascular toxicity in Danio rerio.

    PubMed

    Roy, Nicole M; Ochs, Jeremy; Zambrzycka, Ewelina; Anderson, Ariann

    2016-09-01

    Glyphosate is a broad spectrum herbicide used aggressively in agricultural practices as well as home garden care. Although labeled "safe" by the chemical industry, doses tested by industry do not mimic chronic exposures to sublethal doses that organisms in the environment are exposed to over long periods of time. Given the widespread uses of and exposure to glyphosate, studies on developmental toxicity are needed. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate on the developing heart. Treatment by embryo soaking with 50μg/ml glyphosate starting at gastrulation results in structural abnormalities in the atrium and ventricle, irregular heart looping, situs inversus as well as decreased heartbeats by 48h as determined by live imaging and immunohistochemistry. Vasculature in the body was also affected as determined using fli-1 transgenic embryos. To determine if the effects noted at 48h post fertilization are due to early stage alterations in myocardial precursors, we also investigate cardiomyocyte development with a Mef2 antibody and by mef2ca in situ hybridization and find alterations in the Mef2/mef2ca staining patterns during early cardiac patterning stages. We conclude that glyphosate is developmentally toxic to the zebrafish heart. PMID:27525560

  9. Glyphosate induces cardiovascular toxicity in Danio rerio.

    PubMed

    Roy, Nicole M; Ochs, Jeremy; Zambrzycka, Ewelina; Anderson, Ariann

    2016-09-01

    Glyphosate is a broad spectrum herbicide used aggressively in agricultural practices as well as home garden care. Although labeled "safe" by the chemical industry, doses tested by industry do not mimic chronic exposures to sublethal doses that organisms in the environment are exposed to over long periods of time. Given the widespread uses of and exposure to glyphosate, studies on developmental toxicity are needed. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate on the developing heart. Treatment by embryo soaking with 50μg/ml glyphosate starting at gastrulation results in structural abnormalities in the atrium and ventricle, irregular heart looping, situs inversus as well as decreased heartbeats by 48h as determined by live imaging and immunohistochemistry. Vasculature in the body was also affected as determined using fli-1 transgenic embryos. To determine if the effects noted at 48h post fertilization are due to early stage alterations in myocardial precursors, we also investigate cardiomyocyte development with a Mef2 antibody and by mef2ca in situ hybridization and find alterations in the Mef2/mef2ca staining patterns during early cardiac patterning stages. We conclude that glyphosate is developmentally toxic to the zebrafish heart.

  10. Possible glyphosate tolerance mechanism in pitted morningglory (Ipomoea lacunosa L.).

    PubMed

    Ribeiro, Daniela N; Nandula, Vijay K; Dayan, Franck E; Rimando, Agnes M; Duke, Stephen O; Reddy, Krishna N; Shaw, David R

    2015-02-18

    Natural tolerance of Ipomoea lacunosa to glyphosate has made it problematic in the southeastern U.S. since the adoption of glyphosate-resistant crops. Experiments were conducted to determine (i) the variability in tolerance to glyphosate among accessions, (ii) if there is any correlation between metabolism of glyphosate to aminomethylphosponic acid (AMPA) or sarcosine and the level of tolerance, and (iii) the involvement of differential translocation in tolerance to glyphosate. Fourteen I. lacunosa accessions had GR50 values ranging from 58 to 151 grams of acid equivalent per hectare (ae/ha) glyphosate, a 2.6-fold variability in tolerance to glyphosate. There was no evidence of the most tolerant (MT) accession metabolizing glyphosate to AMPA more rapidly than the least tolerant (LT) accession. Metabolism to sarcosine was not found. (14)C-glyphosate absorption was similar in the two accessions. LT accession translocated more (14)C-glyphosate than MT accession at 24 and 48 h after treatment. Differential translocation partly explains glyphosate tolerance in MT accession.

  11. Oral bioavailability of glyphosate: studies using two intestinal cell lines.

    PubMed

    Vasiluk, Luba; Pinto, Linda J; Moore, Margo M

    2005-01-01

    Glyphosate is a commonly used nonselective herbicide that inhibits plant growth through interference with the production of essential aromatic amino acids. In vivo studies in mammals with radiolabeled glyphosate have shown that 34% of radioactivity was associated with intestinal tissue 2 h after oral administration. The aim of our research was to investigate the transport, binding, and toxicity of glyphosate to the cultured human intestinal epithelial cell line, Caco-2, and the rat small intestinal crypt-derived cell line, ileum epithelial cells-18 (IEC-18). An in vitro analysis of the transport kinetics of [14C]-glyphosate showed that 4 h after exposure, approximately 8% of radiolabeled glyphosate moved through the Caco-2 monolayer in a dose-dependent manner. Binding of glyphosate to cells was saturable and approximately 4 x 10(11) binding sites/cell were estimated from bound [14C]. Exposure of Caco-2 cells to > or =10 mg/ml glyphosate reduced transmembrane electrical resistance (TEER) by 82 to 96% and increased permeability to [3H]-mannitol, indicating that paracellular permeability increased in glyphosate-treated cells. At 10-mg/ml glyphosate, both IEC-18 and Caco-2 cells showed disruption in the actin cytoskeleton. In Caco-2 cells, significant lactate dehydrogenase leakage was observed when cells were exposed to 15 mg/ml of glyphosate. These data indicate that at doses >10 mg/ml, glyphosate significantly disrupts the barrier properties of cultured intestinal cells.

  12. Effect of glyphosate on reproductive organs in male rat.

    PubMed

    Dai, Pengyuan; Hu, Ping; Tang, Juan; Li, Yansen; Li, Chunmei

    2016-06-01

    Glyphosate as an active ingredient of Roundup(®) which is thought to be one of the most popular herbicide was used worldwide. Many studies have focused on reproductive toxicity on glyphosate-based herbicide, but few evidence exists to imply the male reproductive toxicity of glyphosate alone in vivo. In this study SD rats were Lavaged with glyphosate at doses of 5, 50, 500mg/kg to detect the toxicity of glyphosate on rat testis. Glyphosate significantly decreased the average daily feed intake at dose of 50mg/kg, and the weight of seminal vesicle gland, coagulating gland as well as the total sperm count at dose of 500mg/kg. Immunohistochemistry of androgen receptor (AR) has no difference among all groups. As to testosterone, estradiol, progesterone and oxidative stress parameters, the level of them has no differences amidst all doses. Taken together, we conclude that glyphosate alone has low toxicity on male rats reproductive system.

  13. Effect of glyphosate on reproductive organs in male rat.

    PubMed

    Dai, Pengyuan; Hu, Ping; Tang, Juan; Li, Yansen; Li, Chunmei

    2016-06-01

    Glyphosate as an active ingredient of Roundup(®) which is thought to be one of the most popular herbicide was used worldwide. Many studies have focused on reproductive toxicity on glyphosate-based herbicide, but few evidence exists to imply the male reproductive toxicity of glyphosate alone in vivo. In this study SD rats were Lavaged with glyphosate at doses of 5, 50, 500mg/kg to detect the toxicity of glyphosate on rat testis. Glyphosate significantly decreased the average daily feed intake at dose of 50mg/kg, and the weight of seminal vesicle gland, coagulating gland as well as the total sperm count at dose of 500mg/kg. Immunohistochemistry of androgen receptor (AR) has no difference among all groups. As to testosterone, estradiol, progesterone and oxidative stress parameters, the level of them has no differences amidst all doses. Taken together, we conclude that glyphosate alone has low toxicity on male rats reproductive system. PMID:27286640

  14. Characterization of glyphosate resistance in Amaranthus tuberculatus populations.

    PubMed

    Lorentz, Lothar; Gaines, Todd A; Nissen, Scott J; Westra, Philip; Strek, Harry J; Dehne, Heinz W; Ruiz-Santaella, Juan Pedro; Beffa, Roland

    2014-08-13

    The evolution of glyphosate-resistant weeds has recently increased dramatically. Six suspected glyphosate-resistant Amaranthus tuberculatus populations were studied to confirm resistance and determine the resistance mechanism. Resistance was confirmed in greenhouse for all six populations with glyphosate resistance factors (R/S) between 5.2 and 7.5. No difference in glyphosate absorption or translocation was observed between resistant and susceptible individuals. No mutation at amino acid positions G101, T102, or P106 was detected in the EPSPS gene coding sequence, the target enzyme of glyphosate. Analysis of EPSPS gene copy number revealed that all glyphosate-resistant populations possessed increased EPSPS gene copy number, and this correlated with increased expression at both RNA and protein levels. EPSPS Vmax and Kcat values were more than doubled in resistant plants, indicating higher levels of catalytically active expressed EPSPS protein. EPSPS gene amplification is the main mechanism contributing to glyphosate resistance in the A. tuberculatus populations analyzed.

  15. A comparison of multicopter and fixed-wing unmanned aerial systems (UAS) applied to mapping debris flows in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Sotier, Bernadette; Lechner, Veronika

    2016-04-01

    The use of unmanned aerial systems (UAS) for documenting natural hazard events (e.g. debris flows) is becoming increasingly popular, as UAS allow on-demand, flexible and cost-efficient data acquisition. In this paper, we present the results of a comparison of multicopter and fixed-wing UAS. They were employed in the summer of 2015 to map two small alpine catchments located in Western Austria, where debris flows had occurred recently: The first event took place in the Seigesbach (Tyrol), the second occurred in the Plojergraben (Salzburg). For the Seigesbach mission, a fixed-wing UAS (Multiplex Mentor), equipped with a Sony NEX5 (50 mm prime lens, 14 MP sensor resolution) was employed to acquire approximately 4,000 images. In the Plojergraben an AustroDrones X18 octocopter was used, carrying a Sony ILCE-7R (35 mm prime lens, 36 MP sensor resolution) to record 1,700 images. Both sites had a size of approximately 2km². 20 ground control points (GCP) were distributed within both catchments, and their location was measured (Trimble GeoXT, expected accuracy 0.15 m). Using standard structure-from-motion photogrammetry software (AgiSoft PhotoScan Pro, v. 1.1.6), orthophotos (5 cm ground sampling distance - GSD) and digital surface models (DSM) (20 cm GSD) were calculated. Volume differences caused by the debris flow (i.e. deposition heights and erosion depths) computed by subtracting post-event from pre-event DSMs. Even though the terrain conditions in the two catchments were comparable, the challenges during the field campaign and the evaluation of the aerial images were very different. The main difference between the two campaigns was the number of flights required to cover the catchment: only four were needed by the fixed-wing UAS, while the multicopter required eleven in the Plojergraben. The fixed-wing UAS is specially designed for missions in hardly accessible regions, requiring only two people to carry the whole equipment, while in this case a car was needed for the

  16. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  17. Determination of glyphosate and AMPA on polyester-toner electrophoresis microchip with contactless conductivity detection.

    PubMed

    da Silva, Eduardo R; Segato, Thiago P; Coltro, Wendell K T; Lima, Renato S; Carrilho, Emanuel; Mazo, Luiz H

    2013-07-01

    This paper reports a method for rapid, simple, direct, and reproducible determination of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA). The platform described herein uses polyester-toner microchips incorporating capacitively coupled contactless conductivity detection and electrophoresis separation of the analytes. The polyester-toner microchip presented 150 μm-wide and 12 μm-deep microchannels, with injection and separation lengths of 10 and 40 mm long, respectively. The best results were obtained with 320 kHz frequency, 4.5 Vpp excitation voltage, 80 mmol/L CHES/Tris buffer at pH 8.8, injection in -1.0 kV for 7 s, and separation in -1.5 kV. RSD values related to the peak areas for glyphosate and AMPA were 1.5 and 3.3% and 10.1 and 8.6% for intra- and interchip assays, respectively. The detection limits were 45.1 and 70.5 μmol/L, respectively, without any attempt of preconcentration of the analytes. Finally, the method was applied to river water samples in which glyphosate and AMPA (1.0 mmol/L each) were added. The recovery results were 87.4 and 83.7% for glyphosate and AMPA, respectively. The recovery percentages and LOD values obtained here were similar to others reported in the literature. PMID:23595638

  18. Identifying priority zones in an agricultural catchment to mitigate glyphosate runoff

    NASA Astrophysics Data System (ADS)

    Joris, Ingeborg; Desmet, Nele; Wilczek, Daniel; Boënne, Wesley; Seuntjens, Piet; Koopmans, Kim; Bylemans, Dany; Wouters, Katrien; Vandaele, Karel

    2015-04-01

    Pesticide concentrations in rivers generally have a very dynamic signature and are strongly dependent on time and space. The dynamic time course is due to the time- and space-variant input conditions resulting from fast overland (runoff and erosion, direct losses) and subsurface flow (artificial drainage), directly connecting surfaces and/or agricultural fields where pesticides are applied, to receiving rivers. A thorough understanding of pesticide behavior at the watershed scale is needed to increase the effectiveness of mitigation measures. We developed a method to derive priority zones for applying mitigation measures for erosion control and mitigation of glyphosate runoff in an agricultural catchment. The study catchment was selected based on results from geospatial pesticide emission modeling, historical glyphosate concentrations, and crop cover. Priority zones were derived based on a risk map which includes information about the topography, crop cover, the estimated glyphosate use, the potential erosion risk, and the connectivity of the agricultural parcels to the river. The theoretical risk map was then validated in the field using field observations of runoff during stormflow events, and observations of roads short-circuiting the runoff to the river. The validated risk map was used to define priority zones for measures related to erosion control. Suggestions for specific measures such as grass buffer strips and small dams at the field scale were made. The information will be used to target farmers that may have a significant impact on the glyphosate load to surface water. Those farmers will be encouraged to participate in a voluntary erosion control program supported by the local government. The effect of mitigation measures on the glyphosate concentrations in the river will be assessed by monitoring two years before and three years after implementation of the measures. We will present the general setup of the study and the selection methodology of the

  19. Glyphosate fate in soils when arriving in plant residues.

    PubMed

    Mamy, Laure; Barriuso, Enrique; Gabrielle, Benoît

    2016-07-01

    A significant fraction of pesticides sprayed on crops may be returned to soils via plant residues, but its fate has been little documented. The objective of this work was to study the fate of glyphosate associated to plants residues. Oilseed rape was used as model plant using two lines: a glyphosate-tolerant (GT) line and a non-GT one, considered as a crucifer weed. The effects of different fragmentation degrees and placements in soil of plant residues were tested. A control was set up by spraying glyphosate directly on the soil. The mineralization of glyphosate in soil was slower when incorporated into plant residues, and the amounts of extractable and non-extractable glyphosate residues increased. Glyphosate availability for mineralization increased when the size of plant residues decreased, and as the distribution of plant residues in soil was more homogeneous. After 80 days of soil incubation, extractable (14)C-residues mostly involved one metabolite of glyphosate (AMPA) but up to 2.6% of initial (14)C was still extracted from undecayed leaves as glyphosate. Thus, the trapping of herbicides in plant materials provided a protection against degradation, and crops residues returns may increase the persistence of glyphosate in soils. This pattern appeared more pronounced for GT crops, which accumulated more non-degraded glyphosate in their tissues. PMID:27077537

  20. Glyphosate fate in soils when arriving in plant residues.

    PubMed

    Mamy, Laure; Barriuso, Enrique; Gabrielle, Benoît

    2016-07-01

    A significant fraction of pesticides sprayed on crops may be returned to soils via plant residues, but its fate has been little documented. The objective of this work was to study the fate of glyphosate associated to plants residues. Oilseed rape was used as model plant using two lines: a glyphosate-tolerant (GT) line and a non-GT one, considered as a crucifer weed. The effects of different fragmentation degrees and placements in soil of plant residues were tested. A control was set up by spraying glyphosate directly on the soil. The mineralization of glyphosate in soil was slower when incorporated into plant residues, and the amounts of extractable and non-extractable glyphosate residues increased. Glyphosate availability for mineralization increased when the size of plant residues decreased, and as the distribution of plant residues in soil was more homogeneous. After 80 days of soil incubation, extractable (14)C-residues mostly involved one metabolite of glyphosate (AMPA) but up to 2.6% of initial (14)C was still extracted from undecayed leaves as glyphosate. Thus, the trapping of herbicides in plant materials provided a protection against degradation, and crops residues returns may increase the persistence of glyphosate in soils. This pattern appeared more pronounced for GT crops, which accumulated more non-degraded glyphosate in their tissues.

  1. Potential microbial toxicity and non-target impact of different concentrations of glyphosate-containing herbicide (GCH) in a model Pervious Paving System.

    PubMed

    Mbanaso, F U; Coupe, S J; Charlesworth, S M; Nnadi, E O; Ifelebuegu, A O

    2014-04-01

    Pervious Pavement Systems are Sustainable Drainage devices that meet the three-fold SUDS functions of stormwater quantity reduction, quality improvement and amenity benefits. This paper reports on a study to determine the impact of different concentrations of glyphosate-containing herbicides on non-target microorganisms and on the pollutant retention performance of PPS. The experiment was conducted using 0.0484 m(2) test rigs based on a four-layered design. Previous studies have shown that PPS can trap up to 98.7% of applied hydrocarbons, but results of this study show that application of glyphosate-containing herbicides affected this capability as 15%, 9% and 5% of added hydrocarbons were released by high (7200 mg L(-1)), medium (720 mg L(-1)) and low (72 mg L(-1)) glyphosate-containing herbicides concentrations respectively. The concentrations of nutrients released also indicate a potential for eutrophication if these effluents were to infiltrate into aquifers or be released into surface waters. The effect of glyphosate-containing herbicides application on the bacterial and fungal communities was slightly different; fungi exhibited a "top-down" trend as doses of 7200 mg L(-1) glyphosate-containing herbicides yielded the highest fungal growth whilst those with a concentration of 720 mg L(-1) glyphosate-containing herbicides applied yielded the highest bacterial growth. In the case of protists, doses of glyphosate-containing herbicides above 72 mg L(-1) were fatal, but they survived at the lower concentration, especially the ciliates Colpoda cucullus and Colpoda steinii thus indicating potential for their use as biomarkers of herbicide-polluted environments. Data also showed that at the lowest concentration of glyphosate-containing herbicides (72 mg L(-1)), biodegradation processes may not be affected as all trophic levels required for optimum biodegradation of contaminants were present.

  2. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    PubMed Central

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  3. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde ( p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (A R) against the concentration were linear in the range 50-500 μg mL -1, with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL -1. The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively.

  4. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis.

    PubMed

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios

    2016-04-20

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.

  5. Glyphosate-resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate.

    PubMed

    Nandula, Vijay K; Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Poston, Daniel H

    2007-05-01

    Experiments were conducted to determine (1) dose response of glyphosate-resistant (GR) and -susceptible (non-GR) soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.) to glyphosate, (2) if differential metabolism of glyphosate to aminomethyl phosphonic acid (AMPA) is the underlying mechanism for differential resistance to glyphosate among GR soybean varieties, and (3) the extent of metabolism of glyphosate to AMPA in GR canola and to correlate metabolism to injury from AMPA. GR50 (glyphosate dose required to cause a 50% reduction in plant dry weight) values for GR (Asgrow 4603RR) and non-GR (HBKC 5025) soybean were 22.8 kg ae ha-1 and 0.47 kg ha-1, respectively, with GR soybean exhibiting a 49-fold level of resistance to glyphosate as compared to non-GR soybean. Differential reduction in chlorophyll by glyphosate was observed between GR soybean varieties, but there were no differences in shoot fresh weight reduction. No significant differences were found between GR varieties in metabolism of glyphosate to AMPA, and in shikimate levels. These results indicate that GR soybean varieties were able to outgrow the initial injury from glyphosate, which was previously caused at least in part by AMPA. GR50 values for GR (Hyola 514RR) and non-GR (Hyola 440) canola were 14.1 and 0.30 kg ha-1, respectively, with GR canola exhibiting a 47-fold level of resistance to glyphosate when compared to non-GR canola. Glyphosate did not cause reduction in chlorophyll content and shoot fresh weight in GR canola, unlike GR soybean. Less glyphosate (per unit leaf weight) was recovered in glyphosate-treated GR canola as compared to glyphosate-treated GR soybean. External application of AMPA caused similar injury in both GR and non-GR canola. The presence of a bacterial glyphosate oxidoreductase gene in GR canola contributes to breakdown of glyphosate to AMPA. However, the AMPA from glyphosate breakdown could have been metabolized to nonphytotoxic metabolites before causing injury

  6. 78 FR 60707 - Glyphosate; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... April 20, 2011 (76 FR 22067) (FRL-8869- 7), EPA issued a document pursuant to FFDCA section 408(d)(3... with glyphosate follows. In the Federal Register of May 1, 2013 (78 FR 25396) (FRL-9384-3), EPA issued... Register of May 1, 2013 (78 FR 25396), EPA concludes that there is a reasonable certainty that no harm...

  7. The effect of glyphosate, paraquat and paclobutrazol on lolitrem B levels in endophyte-infected perennial ryegrass.

    PubMed

    Prestidge, R A; Sprosen, J M

    1995-08-01

    Two herbicides (glyphosate and paraquat) and a plant growth regulator (paclobutrazol) were applied to endophyteinfected (Acremonium lolii) perennial ryegrass swards. Subsamples of these swards were then chemically analysed at intervals up to 28 days later for lolitrem B, the compound responsible for perennial ryegrass staggers in domestic livestock. Glyphosate and paclobutrazol had no effect on lolitrem B concentrations. Paraquat applications decreased lolitrem B concentrations in the herbage. Because none of the chemicals tested increased the concentration of lolitrem B in the herbage, they are unlikely to be directly implicated in perennial ryegrass staggers in grazing animals.

  8. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  9. Environmental fate and non-target impact of glyphosate-based herbicide (Roundup) in a subtropical wetland.

    PubMed

    Tsui, M T K; Chu, L M

    2008-03-01

    Mai Po Nature Reserve (Hong Kong) is an internationally important wetland for waterbirds. Roundup, a formulation based on glyphosate, has been used to control the widespread weeds within the reserve for many years but the fate and non-target impact of the herbicide is unknown. To fill this knowledge gap, we applied Roundup by hand-held sprayer to an estuarine and a freshwater pond in the dry season of year 2002. The surface water and sediment were sampled routinely for glyphosate concentrations following one month of application. In situ bioassays using local edible fish species were performed along with the herbicide application. Up to 52% of glyphosate in the surface water was transported to the unapplied regions by wind-driven current in the estuarine pond at 1 DPT (day post treatment). For both ponds, glyphosate concentrations in the water decreased rapidly after 1-3 DPT, but then decreased gradually over time. Both physical adsorption to the bottom sediments and microbial degradation are thought to contribute to these decreases. Interestingly, the persistence of glyphosate in the freshwater pond was longer than in the estuarine system, which is likely due to the considerably higher concentrations of chelating metals (i.e. Cu and Fe) present in the sediment (4.5 and 11-fold higher, respectively) which potentially reduced the bioavailability of glyphosate to the microbial decomposers. Lastly, fishes used in the in situ bioassays (both in applied and unapplied areas) showed similar survival rates, indicating that the use of Roundup at the provided application rate posed no serious hazard.

  10. 11. Photocopy of aerial photograph (original aerial located in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of aerial photograph (original aerial located in the U.S. Forest Service, Toiyabe National Forest, Carson District Office). AERIAL VIEW OF THE GENOA PEAK ROAD, SPUR. - Genoa Peak Road, Spur, Glenbrook, Douglas County, NV

  11. Analysis of glyphosate and aminomethylphosphonic acid in leaves from Coffea arabica using high performance liquid chromatography with quadrupole mass spectrometry detection.

    PubMed

    Schrübbers, Lars C; Masís-Mora, Mario; Rojas, Elizabeth Carazo; Valverde, Bernal E; Christensen, Jan H; Cedergreen, Nina

    2016-01-01

    Glyphosate is a commonly applied herbicide in coffee plantations. Because of its non-selective mode of action it can damage the crop exposed through spray drift. Therefore, it is of interest to study glyphosate fate in coffee plants. The aim of this study was to develop an analytical method for accurate and precise quantification of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) at trace levels in coffee leaves using liquid chromatography with single-quadrupole mass spectrometry detection. The method is based on a two-step solid phase extraction (SPE) with an intermediate derivatization reaction using 9-fluorenylmethylchloroformate (FMOC). An isotope dilution method was used to account for matrix effects and to enhance the confidence in analyte identification. The limit of quantification (LOQ) for glyphosate and AMPA in coffee leaves was 41 and 111 μg kg(-1) dry weight, respectively. For the method optimization a design of experiments (DOE) approach was used. The sample clean-up procedure can be simplified for the analysis of less challenging matrices, for laboratories having a tandem mass spectrometry detector and for cases in which quantification limits above 0.1 mg kg(-1) are acceptable, which is often the case for glyphosate. The method is robust, possesses high identification confidence, while being suitable for most commercial and academic laboratories. All leaf samples from five coffee fields analyzed (n=21) contained glyphosate, while AMPA was absent. The simplified clean-up procedure was successfully validated for coffee leaves, rice, black beans and river water.

  12. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement.

    PubMed

    Myers, John Peterson; Antoniou, Michael N; Blumberg, Bruce; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vandenberg, Laura N; Vom Saal, Frederick S; Welshons, Wade V; Benbrook, Charles M

    2016-01-01

    The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air

  13. Sustainable use of glyphosate in North American cropping systems.

    PubMed

    Gustafson, David I

    2008-04-01

    Roundup Ready (glyphosate-resistant) cropping systems enable the use of glyphosate, a non-selective herbicide that offers growers several benefits, including superior weed control, flexibility in weed control timing and economic advantages. The rapid adoption of such crops in North America has resulted in greater glyphosate use and concern over the potential for weed resistance to erode the sustainability of its efficacy. Computer modeling is one method that can be used to explore the sustainability of glyphosate when used in glyphosate-resistant cropping systems. Field tests should help strengthen the assumptions on which the models are based, and have been initiated for this purpose. Empirical evaluations of published data show that glyphosate-resistant weeds have an appearance rate of 0.007, defined as the number of newly resistant species per million acres treated, which ranks low among herbicides used in North America. Modeling calculations and ongoing field tests support a practical recommendation for growers occasionally to include other herbicides in glyphosate-resistant cropping systems, to lower further the potential for new resistance to occur. The presented data suggest that the sustainability of glyphosate in North America would be enhanced by prudent use of additional herbicides in glyphosate-resistant cropping systems.

  14. Aerial photographic reproductions

    USGS Publications Warehouse

    ,

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  15. Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation.

    PubMed

    Dousset, S; Chauvin, C; Durlet, P; Thévenot, M

    2004-10-01

    Field studies monitoring pesticide pollution in the Morvan region (France) have revealed surface water contamination by some herbicides. The purpose of this study was to investigate in greater detail the transport of two herbicides, used in Christmas tree production in the Morvan, under controlled laboratory conditions. Thus, the leaching of hexazinone (3-cyclohexyl-6-dimethyl-amino-1-methyl-1,3,5-triazine-2,4 (1H,3H) dione) and glyphosate (N-(phosphono-methyl-glycine)) through structured soil columns was studied using one loamy sand and two sandy loams from sites currently under Christmas tree cultivation in the Morvan. The three soils were cultivated sandy brunisol [Sound reference base for soils, D. Baize, M.C. Girard (Coord.), INRA, Versailles, 1998, 322 p] or, according to the FAO [FAO, World reference base for soil resources, ISSS-ISRIC-FAO, FAO, Rome, Italy, 1998], the La Garenne was an arenosol and the two other soils were cambisols. The clay contents of the soils ranged from 86 to 156 g kg(-1) and the organic carbon ranged from 98 to 347 g kg(-1). After 160 mm of simulated rainfall applied over 12 days, 2-11% of the applied hexazinone was recovered in the leachate. The recovery was much higher than that of glyphosate, which was less than 0.01%. The greater mobility of hexazinone might be related to its much lower adsorption coefficient, K(oc), 19-300 l kg(-1), compared with 8.5-10231 l kg(-1) for glyphosate (literature values). Another factor that may explain the higher amounts of hexazinone recovered in the leachates of the three soil columns is its greater persistence (19.7-91 days) relative to that of glyphosate (7.9-14.4 days). The mobility of both herbicides was greater in the soils with higher gravel contents, coarser textures, and lower organic carbon contents. Moreover, glyphosate migration seems negatively correlated not only to soil organic carbon, but also to aluminium and iron contents of soils. This soil column study suggests that at the

  16. Phosphate fertilizer impacts on glyphosate sorption by soil.

    PubMed

    Munira, Sirajum; Farenhorst, Annemieke; Flaten, Don; Grant, Cynthia

    2016-06-01

    This research examined the impact of field-aged phosphate and cadmium (Cd) concentrations, and fresh phosphate co-applications, on glyphosate sorption by soil. Soil samples were collected in 2013 from research plots that had received, from 2002 to 2009, annual applications of mono ammonium phosphate (MAP) at 20, 40 and 80 kg P ha(-1) and from products containing 0.4, 70 or 210 mg Cd kg(-1) as an impurity. A series of batch equilibrium experiments were carried out to quantify the glyphosate sorption distribution constant, Kd. Extractable Cd concentrations in soil had no significant effect on glyphosate sorption. Glyphosate Kd values significantly decreased with increasing Olsen-P concentrations in soil, regardless of the pH conditions studied. Experiments repeated with a commercially available glyphosate formulation showed statistically similar results as the experiments performed with analytical-grade glyphosate. Co-applications of MAP with glyphosate also reduced the available sorption sites to retain glyphosate, but less so when soils already contain large amounts of phosphate. Glyphosate Kd values in soils ranged from 173 to 939 L kg(-1) under very strong to strongly acidic condition but the Kd was always <100 L kg(-1) under moderately acidic to slightly alkaline conditions. The highest Olsen-P concentrations in soil reduced Kd values by 25-44% relative to control soils suggesting that, under moderately acidic to slightly alkaline conditions, glyphosate may become mobile by water in soils with high phosphate levels. Otherwise, glyphosate residues in agricultural soils are more likely to be transported off-site by wind and water-eroded sediments than by leaching or runoff. PMID:27035384

  17. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    PubMed

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  18. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    PubMed

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  19. Phosphate fertilizer impacts on glyphosate sorption by soil.

    PubMed

    Munira, Sirajum; Farenhorst, Annemieke; Flaten, Don; Grant, Cynthia

    2016-06-01

    This research examined the impact of field-aged phosphate and cadmium (Cd) concentrations, and fresh phosphate co-applications, on glyphosate sorption by soil. Soil samples were collected in 2013 from research plots that had received, from 2002 to 2009, annual applications of mono ammonium phosphate (MAP) at 20, 40 and 80 kg P ha(-1) and from products containing 0.4, 70 or 210 mg Cd kg(-1) as an impurity. A series of batch equilibrium experiments were carried out to quantify the glyphosate sorption distribution constant, Kd. Extractable Cd concentrations in soil had no significant effect on glyphosate sorption. Glyphosate Kd values significantly decreased with increasing Olsen-P concentrations in soil, regardless of the pH conditions studied. Experiments repeated with a commercially available glyphosate formulation showed statistically similar results as the experiments performed with analytical-grade glyphosate. Co-applications of MAP with glyphosate also reduced the available sorption sites to retain glyphosate, but less so when soils already contain large amounts of phosphate. Glyphosate Kd values in soils ranged from 173 to 939 L kg(-1) under very strong to strongly acidic condition but the Kd was always <100 L kg(-1) under moderately acidic to slightly alkaline conditions. The highest Olsen-P concentrations in soil reduced Kd values by 25-44% relative to control soils suggesting that, under moderately acidic to slightly alkaline conditions, glyphosate may become mobile by water in soils with high phosphate levels. Otherwise, glyphosate residues in agricultural soils are more likely to be transported off-site by wind and water-eroded sediments than by leaching or runoff.

  20. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    PubMed Central

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  1. Differentiating glyphosate-resistant and glyphosate-sensitive Italian ryegrass using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Huang, Yanbo; Nandula, Vijay K.; Reddy, Krishna N.

    2014-05-01

    Glyphosate based herbicide programs are most preferred in current row crop weed control practices. With the increased use of glyphosate, weeds, including Italian ryegrass (Lolium multiflorum), have developed resistance to glyphosate. The identification of glyphosate resistant weeds in crop fields is critical because they must be controlled before they reduce the crop yield. Conventionally, the method for the identification with whole plant or leaf segment/disc shikimate assays is tedious and labor-intensive. In this research, we investigated the use of high spatial resolution hyperspectral imagery to extract spectral curves derived from the whole plant of Italian ryegrass to determine if the plant is glyphosate resistant (GR) or glyphosate sensitive (GS), which provides a way for rapid, non-contact measurement for differentiation between GR and GS weeds for effective site-specific weed management. The data set consists of 226 greenhouse grown plants (119 GR, 107 GS), which were imaged at three and four weeks after emergence. In image preprocessing, the spectral curves are normalized to remove lighting artifacts caused by height variation in the plants. In image analysis, a subset of hyperspectral bands is chosen using a forward selection algorithm to optimize the area under the receiver operating characteristic (ROC) between GR and GS plants. Then, the dimensionality of selected bands is reduced using linear discriminant analysis (LDA). Finally, the maximum likelihood classification was conducted for plant sample differentiation. The results show that the overall classification accuracy is between 75% and 80% depending on the age of the plants. Further refinement of the described methodology is needed to correlate better with plant age.

  2. Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy.

    PubMed

    Cartigny, Bernard; Azaroual, Nathalie; Imbenotte, Michel; Mathieu, Daniel; Parmentier, Erika; Vermeersch, Gaston; Lhermitte, Michel

    2008-01-15

    The determination and quantification of glyphosate in serum using (1)H NMR spectroscopy is reported. This method permitted serum samples to be analysed without derivatization or any other sample pre-treatment, using 3-trimethylsilyl 2,2',3,3'-tetradeuteropropionic acid (TSP-d(4)) as a qualitative and quantitative standard. Characterization of the herbicide N-(phosphonomethyl)glycine was performed by analysing chemical shifts and coupling constant patterns. Quantification was performed by relative integration of CH(2)-P protons to the TSP-d(4) resonance peak. The method was tested for repeatability (n=5) and yielded coefficients of variation of 1% and 3%, respectively: detection and quantification limits were also determined and were 0.03 and 0.1mmol/L, respectively. The method was applied to the quantification of glyphosate in a case of acute poisoning. PMID:18371753

  3. Glyphosate Tolerance in Tobacco (Nicotiana tabacum L.) 1

    PubMed Central

    Dyer, William E.; Weller, Stephen C.; Bressan, Ray A.; Herrmann, Klaus M.

    1988-01-01

    A glyphosate-tolerant tobacco cell line, Nicotiana tabacum L. Indiana (I7), was selected from the glyphosate-sensitive Wisconsin 38 (W38) line through a single step exposure to the herbicide. Tolerance and growth characteristics of I7 cells were the same for cells maintained for more than 1 year in the presence or absence of glyphosate. Glyphosate tolerance levels were constant through the growth cycle. Tolerance is not due to reduced uptake of glyphosate. Shikimate levels in I7 and W38 cells maintained in glyphosate-free medium were similar, whereas W38 cells accumulated 46 times more shikimate than I7 cells, when cells of both lines were exposed to the herbicide. Glyphosate treatment caused increased levels of aromatic amino acids in W38 cells and slightly lower levels in I7 cells. Specific activities of dehydroquinate synthase, shikimate dehydrogenase, and shikimate kinase were similar in the two cell types, whereas DAHP synthase and EPSP synthase specific activities were elevated in I7 cells. Plants regenerated from I7 cells retained tolerance to glyphosate. Images Fig. 7 PMID:16666365

  4. Transcriptome response to glyphosate in sensitive and resistant soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of soybeans planted in the United States are resistant to glyphosate due to introduction of a gene encoding for a glyphosate-insensitive 5-enolypyruvylshikimate-3-phosphate synthase (EPSPS). Gene expression profiling was conducted using cDNA microarrays to address questions related to p...

  5. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. Greenhouse studies were conducted to determine the glyphosate I50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected legum...

  6. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  7. Characterization of glyphosate resistance in cloned Amaranthus palmeri plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth from Georgia (GA) possesses multiple copies of the target site, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of this herbicide. Cloned plants of glyphosate-resistant Palmer amaranth biotypes from Mississippi (MS) were compared with GA populations using le...

  8. Study of glyphosate transport through suspended particulate matter

    NASA Astrophysics Data System (ADS)

    Amiot, Audrey; Landry, David; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Sourice, Stéphane; Ballouche, Aziz

    2014-05-01

    The results have been produced in a project aiming to improve the water quality of the Layon localy supported by stakeholders involved in the implementation of the Water Framework Directive as the SAGE-Layon Aubance. The study site is a small vineyard catchment (2.2 ha) of the Loire Valley. The slopes of the study site are between 8 and 40% resulting in strong erosive episodes during rainy event. The main objective is to understand the transfer of pesticide residues to stream. Preliminary results have shown glyphosate can be found with high concentrations during runoff. However this study was realized only in the dissolved phase. The objective is now to understand the glyphosate transport driven by SPM. The methodology developed has been (i) characterization and production of the erodible water fraction from soils aggregates; (ii) achievement of the adsorption of glyphosate on these erodible materials to compare this results with adsorption on soil sieved to 2 mm, (iii) achievement of the desorption of glyphosate on these erodible materials. Measurements have been performed on soil samples distinguishing weed or grassed soils. Soils are sieved to 2 mm or between 2 and 5 mm (to produce the erodible water fraction). Both fractions are then used to glyphosate sorption and desorption. The erodible fraction was produce with a wet sieving machine (eijkelkampt Method Kemper and Rosenau, 1986), using sieve porosity of 250 microns. The fraction obtained at 250 microns is considered to be the erodible water fraction and is used to study the adsorption and desorption of glyphosate. Kinetics has been first carried out then the isotherm to obtain the value of Kd. A ratio soil/solution of 1/5 was used. Successive desorption's method was chosen with a stirring time of 20 min, centrifugation at 6000 g and the supernatant in each desorption of 20 min is analyzed. This step is repeated 25 times. The main results of the study are: (i) adsorption of glyphosate is rapid and almost

  9. Impairment of carbon metabolism induced by the herbicide glyphosate.

    PubMed

    Orcaray, Luis; Zulet, Amaia; Zabalza, Ana; Royuela, Mercedes

    2012-01-01

    The herbicide glyphosate reduces plant growth and causes plant death by inhibiting the biosynthesis of aromatic amino acids. The objective of this work was to determine whether glyphosate-treated plants show a carbon metabolism pattern comparable to that of plants treated with herbicides that inhibit branched-chain amino acid biosynthesis. Glyphosate-treated plants showed impaired carbon metabolism with an accumulation of carbohydrates in the leaves and roots. The growth inhibition detected after glyphosate treatment suggested impaired metabolism that impedes the utilization of available carbohydrates or energy at the expected rate. These effects were common to both types of amino acid biosynthesis inhibitors. Under aerobic conditions, ethanolic fermentative metabolism was enhanced in the roots of glyphosate-treated plants. This fermentative response was not related to changes in the respiratory rate or to a limitation of the energy charge. This response, which was similar for both types of herbicides, might be considered a general response to stress conditions.

  10. Exposure assessment to glyphosate of two species of annelids.

    PubMed

    García-Torres, Tristán; Giuffré, Lidia; Romaniuk, Romina; Ríos, Ruth P; Pagano, Eduardo A

    2014-08-01

    Adult mortality, biomass, fecundity and viability of cocoons were studied in Eisenia fetida and Octolasion tyrtaeum, in response to glyphosate exposure in soil. Exposure tests were carried out following USEPA procedure, with five concentrations of glyphosate in soil and a control. O. tyrtaeum was more sensitive to the highest concentration of glyphosate (50,000 mg kg(-1)), with 100 % mortality by day 7 of exposure, compared with 71 % for E. fetida. Although biomass of O. tyrtaeum was significantly different between the control and 5,000 mg kg(-1) dose at day 14, E. fetida was not affected at that concentration, and only showed a significant weight loss after 7 days of exposure to 50,000 mg kg(-1). Adverse effects upon adult fecundity and cocoon viability were observed at glyphosate concentrations of 5,000 mg kg(-1) and above. Adverse effects were observed at concentrations that greatly exceeded the recommended field application rates of glyphosate.

  11. Studies on synthesis esterified zirconium glyphosates and their hydrophobic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqing; Li, Minglei; Ji, Xuemei; Xu, Qinghong

    2010-03-01

    A series of new organic-modified zirconium glyphosate compounds were synthesized based on the reactions between esterified glyphosates and ZrOCl 2. FT-IR spectra, solid-state 31P MAS NMR and elementary analysis proved the formation of these new compounds. Powder X-ray diffraction (PXRD) patterns and transmission electron microscope (TEM) images proved these compounds had lamellar structures. Scanning electronic microscope (SEM) images showed that solvents used in synthesis had great influence on the morphologies of products. Water contact angle measurements showed that the hydrophobic property of the products was a function of the number of carbon in esterified glyphosates, increased from 0° of zirconium glyphosate to 133° of dodecyl zirconium glyphosate. The present study offered a new route to synthesize organic-modified α-Zr(HPO 4) 2·H 2O (α-ZrP) materials with various morphology and controllable hydrophobic property.

  12. Impact of glyphosate resistant corn, glyphosate applications, and tillage on soil nutrient ratios, exoenzyme activities, and nutrient acquisition ratios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report results of the last two years of a 7-year (2008-2014) field experiment designed to test the null hypothesis that applications of glyphosate on glyphosate resistant corn (Zea mays L.) as a routine weed control practice under both conventional and reduced tillage practices would have no effe...

  13. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    PubMed

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria. PMID:26901800

  14. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    PubMed

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria.

  15. Low doses of glyphosate change the response of soybean to later glyphosate exposures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stimulatory effect of low doses of toxic substances is known as hormesis. Many herbicides that cause severe injury to plants at recommended rates, promote growth or have other stimulatory effects at very low doses. The objective of this study was to evaluate glyphosate-induced hormesis in soyb...

  16. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS.

    PubMed

    Steinborn, Angelika; Alder, Lutz; Michalski, Britta; Zomer, Paul; Bendig, Paul; Martinez, Sandra Aleson; Mol, Hans G J; Class, Thomas J; Pinheiro, Nathalie Costa

    2016-02-17

    This study describes the validation and application of two independent analytical methods for the determination of glyphosate in breast milk. They are based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively. For LC-MS/MS, sample preparation involved an ultrafiltration followed by chromatography on an anion exchange column. The analysis by GC-MS/MS involved an extraction step, cleanup on a cation exchange column, and derivatization with heptafluorobutanol and trifluoroacetic acid anhydride. Both methods were newly developed for breast milk and are able to quantify glyphosate residues at concentrations as low as 1 ng/mL. The methods were applied to quantify glyphosate levels in 114 breast milk samples, which had been collected from August to September of 2015 in Germany. The mothers participated at their own request and thus do not form a representative sample. In none of the investigated samples were glyphosate residues above the limit of detection found.

  17. Efficacy and fate of glyphosate on Swedish railway embankments.

    PubMed

    Torstensson, Lennart; Börjesson, Elisabet; Stenström, John

    2005-09-01

    The herbicide glyphosate, N-(phosphonomethyl)glycine, as Spectra (240 g AI litre(-1) SL; Monsanto Europe AB), RoundUp (360 g AI litre(-1) SL; Monsanto) and RoundUp Bio (360 g AI litre(-1) SL; Monsanto), have been used for weed control on Swedish railway embankments since 1986. This article summarizes results from studies of the weed effect and behaviour of glyphosate for the period 1984-2003. Studies on a railway embankment with a range of application rates showed excellent weed control at 5 litre ha(-1) of RoundUp Bio. The appearance of glyphosate and its metabolite AMPA [(aminomethyl)phosphonic acid] in the embankment, eg mobility and persistence, was also studied. Mobility was low in most cases, the main proportion of both glyphosate and AMPA being found in the upper 30-cm layer although minor amounts penetrated to lower depths. The 50% disappearance time of glyphosate was generally <5 months in railway embankments but cases with longer persistence were found. Transport to the groundwater was observed for glyphosate and AMPA in groundwater pipes along tracks. Downward transport appears to be dependent on the application rate, which should not exceed 3 litre ha(-1) of RoundUp Bio to avoid groundwater contamination. A lower rate of glyphosate mixed with a low rate of another herbicide may achieve acceptable weed control and be environmentally safer.

  18. Glyphosate effects on the gene expression of the apical bud in soybean (Glycine max).

    PubMed

    Jiang, Ling-Xue; Jin, Long-Guo; Guo, Yong; Tao, Bo; Qiu, Li-Juan

    2013-08-01

    Glyphosate is a broad spectrum, non-selective herbicide which has been widely used for weed control. Much work has focused on elucidating the high accumulation of glyphosate in shoot apical bud (shoot apex). However, to date little is known about the molecular mechanisms of the sensitivity of shoot apical bud to glyphosate. Global gene expression profiling of the soybean apical bud response to glyphosate treatment was performed in this study. The results revealed that the glyphosate inhibited tryptophan biosynthesis of the shikimic acid pathway in the soybean apical bud, which was the target site of glyphosate. Glyphosate inhibited the expression of most of the target herbicide site genes. The promoter sequence analysis of key target genes revealed that light responsive elements were important regulators in glyphosate induction. These results will facilitate further studies of cloning genes and molecular mechanisms of glyphosate on soybean shoot apical bud.

  19. EPSPS amplification in glyphosate-resistant spiny amaranth (Amaranthus spinosus): a case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer amaranth (Amaranthus palmeri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amaranthus spinosus, a common weed of pastures, is a close relative of Amaranthus palmeri, a problematic agricultural weed with widespread glyphosate resistance. These two species have been known to hybridize, allowing for transfer of glyphosate resistance. Glyphosate-resistant A. spinosus was rec...

  20. Glyphosate-resistant and glyphosate-susceptible Palmer amaranth (Amaranthus palmeri S Wats.): hyperspectral reflectance properties of plants and potential for classification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Palmer amaranth (Amaranthus palmeri S. Wats.) is a troublesome agronomic weed in the southern United States, and several populations have evolved resistance to glyphosate. This paper reports spectral signatures of glyphosate-resistant (GR) and glyphosate-sensitive (GS) plants, and explor...

  1. Adsorption of glyphosate and aminomethylphosphonic acid in soils

    NASA Astrophysics Data System (ADS)

    Rampazzo, N.; Rampazzo Todorovic, G.; Mentler, A.; Blum, W. E. H.

    2013-03-01

    The results showed that glyphosate is initially adsorbed mostly in the upper 2 cm. It is than transported and adsorbed after few days in deeper soil horizons with concomitant increasing content of its metabolite aminomethylphosphonic acid. Moreover, Fe-oxides seem to be a key parameter for glyphosate and aminomethylphosphonic adsorption in soils. This study confirmed previous studies: the analysis showed lower contents of dithionite-soluble and Fe-oxides for the Chernozem, with consequently lower adsorption of glyphosate and aminomethylphosphonic as compared with the Cambisol and the Stagnosol.

  2. Aerial Photography Summary Record System

    USGS Publications Warehouse

    ,

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  3. Modeling biodegradation and kinetics of glyphosate by artificial neural network.

    PubMed

    Nourouzi, Mohsen M; Chuah, Teong G; Choong, Thomas S Y; Rabiei, F

    2012-01-01

    An artificial neural network (ANN) model was developed to simulate the biodegradation of herbicide glyphosate [2-(Phosphonomethylamino) acetic acid] in a solution with varying parameters pH, inoculum size and initial glyphosate concentration. The predictive ability of ANN model was also compared with Monod model. The result showed that ANN model was able to accurately predict the experimental results. A low ratio of self-inhibition and half saturation constants of Haldane equations (< 8) exhibited the inhibitory effect of glyphosate on bacteria growth. The value of K(i)/K(s) increased when the mixed inoculum size was increased from 10(4) to 10(6) bacteria/mL. It was found that the percentage of glyphosate degradation reached a maximum value of 99% at an optimum pH 6-7 while for pH values higher than 9 or lower than 4, no degradation was observed. PMID:22424071

  4. Partial desalination and concentration of glyphosate liquor by nanofiltration.

    PubMed

    Xie, Ming; Xu, Yanhua

    2011-02-15

    Partial desalination and concentration of glyphosate liquor by nanofiltration under different operation modes were investigated experimentally in this study. These operation modes were direct nanofiltration, diafiltration, dilute-diafiltration and interval washing-nanofiltration. The four different operation modes were evaluated and compared in terms of glyphosate recovery and NaCl removal. Diafiltration and dilute-diafiltration performed better than direct nanofiltration. The glyphosate loss was between 11.5% and 18.8% when the dilution factor varied from 0.4 to 0.8. Interval washing-nanofiltration alleviated the concentration polarization and membrane fouling to a certain extent. Dilute-diafiltration may be the best operation mode in terms of glyphosate recovery, salt removal and cost.

  5. Evolved glyphosate-resistant weeds around the world: lessons to be learnt.

    PubMed

    Powles, Stephen B

    2008-04-01

    Glyphosate is the world's most important herbicide, with many uses that deliver effective and sustained control of a wide spectrum of unwanted (weedy) plant species. Until recently there were relatively few reports of weedy plant species evolving resistance to glyphosate. Since 1996, the advent and subsequent high adoption of transgenic glyphosate-resistant crops in the Americas has meant unprecedented and often exclusive use of glyphosate for weed control over very large areas. Consequently, in regions of the USA where transgenic glyphosate-resistant crops dominate, there are now evolved glyphosate-resistant populations of the economically damaging weed species Ambrosia artemissifolia L., Ambrosia trifida L., Amaranthus palmeri S Watson, Amaranthus rudis JD Sauer, Amaranthus tuberculatus (Moq) JD Sauer and various Conyza and Lolium spp. Likewise, in areas of transgenic glyphosate-resistant crops in Argentina and Brazil, there are now evolved glyphosate-resistant populations of Sorghum halepense (L.) Pers and Euphorbia heterophylla L. respectively. As transgenic glyphosate-resistant crops will remain very popular with producers, it is anticipated that glyphosate-resistant biotypes of other prominent weed species will evolve over the next few years. Therefore, evolved glyphosate-resistant weeds are a major risk for the continued success of glyphosate and transgenic glyphosate-resistant crops. However, glyphosate-resistant weeds are not yet a problem in many parts of the world, and lessons can be learnt and actions taken to achieve glyphosate sustainability. A major lesson is that maintenance of diversity in weed management systems is crucial for glyphosate to be sustainable. Glyphosate is essential for present and future world food production, and action to secure its sustainability for future generations is a global imperative.

  6. Glyphosate-resistant weeds of South American cropping systems: an overview.

    PubMed

    Vila-Aiub, Martin M; Vidal, Ribas A; Balbi, Maria C; Gundel, Pedro E; Trucco, Frederico; Ghersa, Claudio M

    2008-04-01

    Herbicide resistance is an evolutionary event resulting from intense herbicide selection over genetically diverse weed populations. In South America, orchard, cereal and legume cropping systems show a strong dependence on glyphosate to control weeds. The goal of this report is to review the current knowledge on cases of evolved glyphosate-resistant weeds in South American agriculture. The first reports of glyphosate resistance include populations of highly diverse taxa (Lolium multiflorum Lam., Conyza bonariensis L., C. canadensis L.). In all instances, resistance evolution followed intense glyphosate use in fruit fields of Chile and Brazil. In fruit orchards from Colombia, Parthenium hysterophorus L. has shown the ability to withstand high glyphosate rates. The recent appearance of glyphosate-resistant Sorghum halepense L. and Euphorbia heterophylla L. in glyphosate-resistant soybean fields of Argentina and Brazil, respectively, is of major concern. The evolution of glyphosate resistance has clearly taken place in those agroecosystems where glyphosate exerts a strong and continuous selection pressure on weeds. The massive adoption of no-till practices together with the utilization of glyphosate-resistant soybean crops are factors encouraging increase in glyphosate use. This phenomenon has been more evident in Argentina and Brazil. The exclusive reliance on glyphosate as the main tool for weed management results in agroecosystems biologically more prone to glyphosate resistance evolution.

  7. Removal of glyphosate herbicide from water using biopolymer membranes.

    PubMed

    Carneiro, Rafael T A; Taketa, Thiago B; Gomes Neto, Reginaldo J; Oliveira, Jhones L; Campos, Estefânia V R; de Moraes, Mariana A; da Silva, Camila M G; Beppu, Marisa M; Fraceto, Leonardo F

    2015-03-15

    Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to

  8. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  9. Transgenic tobacco simultaneously overexpressing glyphosate N-acetyltransferase and 5-enolpyruvylshikimate-3-phosphate synthase are more resistant to glyphosate than those containing one gene.

    PubMed

    Liu, Yunjun; Cao, Gaoyi; Chen, Rongrong; Zhang, Shengxue; Ren, Yuan; Lu, Wei; Wang, Jianhua; Wang, Guoying

    2015-08-01

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) and glyphosate N-acetyltransferase (GAT) can detoxify glyphosate by alleviating the suppression of shikimate pathway. In this study, we obtained transgenic tobacco plants overexpressing AM79 aroA, GAT, and both of them, respectively, to evaluate whether overexpression of both genes could confer transgenic plants with higher glyphosate resistance. The transgenic plants harboring GAT or AM79 aroA, respectively, showed good glyphosate resistance. As expected, the hybrid plants containing both GAT and AM79 aroA exhibited improved glyphosate resistance than the transgenic plants overexpressing only a single gene. When grown on media with high concentration of glyphosate, seedlings containing a single gene were severely inhibited, whereas plants expressing both genes were affected less. When transgenic plants grown in the greenhouse were sprayed with glyphosate, less damage was observed for the plants containing both genes. Metabolomics analysis showed that transgenic plants containing two genes could maintain the metabolism balance better than those containing one gene after glyphosate treatment. Glyphosate treatment did not lead to a huge increase of shikimate contents of tobacco leaves in transgenic plants overexpressing two genes, whereas significant increase of shikimate contents in transgenic plants containing only a single gene was observed. These results demonstrated that pyramiding both aroA and GAT in transgenic plants can enhance glyphosate resistance, and this strategy can be used for the development of transgenic glyphosate-resistant crops.

  10. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  11. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  12. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  13. Effects of Glyphosate on Metabolism of Phenolic Compounds

    PubMed Central

    Duke, Stephen O.; Hoagland, Robert E.; Elmore, C. Dennis

    1980-01-01

    The phenylalanine ammonia-lyase (PAL) inhibitor l-α-aminooxy-β-phenylpropionic acid (AOPP) was root-fed to light-exposed soybean seedlings alone or with glyphosate [N-(phosphonomethyl)glycine] to test further the hypothesis that PAL activity is involved in the mode of action of glyphosate. Extractable PAL activity was increased by 0.01 and 0.1 millimolar AOPP. AOPP reduced total soluble hydroxyphenolic compound levels and increased phenylalanine and tyrosine levels, indicating that in vivo PAL activity was inhibited by AOPP. The increase in extractable PAL caused by AOPP may be a result of decreased feedback inhibition of PAL synthesis by cinnamic acid and/or its derivatives. AOPP alone had no effect on growth (fresh weight and elongation) at either concentration, but at 0.1 millimolar it slightly alleviated growth (fresh weight) inhibition caused by 0.5 millimolar glyphosate after 4 days. Reduction of the free pool of phenylalanine by glyphosate was reversed by AOPP. These results indicate that glyphosate exerts some of its effects through reduction of aromatic amino acid pools through increases in PAL activity and that not all growth effects of glyphosate are due to reductions of aromatic amino acids. PMID:16661135

  14. Pool of resistance mechanisms to glyphosate in Digitaria insularis.

    PubMed

    de Carvalho, Leonardo Bianco; Alves, Pedro Luis da Costa Aguiar; González-Torralva, Fidel; Cruz-Hipolito, Hugo Enrique; Rojano-Delgado, Antonia María; De Prado, Rafael; Gil-Humanes, Javier; Barro, Francisco; de Castro, María Dolores Luque

    2012-01-18

    Digitaria insularis biotypes resistant to glyphosate have been detected in Brazil. Studies were carried out in controlled conditions to determine the role of absorption, translocation, metabolism, and gene mutation as mechanisms of glyphosate resistance in D. insularis. The susceptible biotype absorbed at least 12% more (14)C-glyphosate up to 48 h after treatment (HAT) than resistant biotypes. High differential (14)C-glyphosate translocation was observed at 12 HAT, so that >70% of the absorbed herbicide remained in the treated leaf in resistant biotypes, whereas 42% remained in the susceptible biotype at 96 HAT. Glyphosate was degraded to aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine by >90% in resistant biotypes, whereas a small amount of herbicide (up to 11%) was degraded by the susceptible biotype up to 168 HAT. Two amino acid changes were found at positions 182 and 310 in EPSPS, consisting of a proline to threonine and a tyrosine to cysteine substitution, respectively, in resistant biotypes. Therefore, absorption, translocation, metabolism, and gene mutation play an important role in the D. insularis glyphosate resistance.

  15. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    PubMed Central

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  16. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops.

    PubMed

    Mamy, Laure; Gabrielle, Benoît; Barriuso, Enrique

    2010-10-01

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops.

  17. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    PubMed

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects. PMID:25039071

  18. Loss of glyphosate efficacy: a changing weed spectrum in Georgia cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of glyphosate resistance into crops through genetic modification has revolutionized crop protection. Glyphosate, the proverbial silver bullet, is a broad spectrum herbicide with favorable environmental characteristics and effective broad-spectrum weed control that has greatly improved ...

  19. Impact of seven years of glyphosate resistant corn and glyphosate applications under conventional and reduced tillage on bulk and rhizosphere soil exoenzyme activities and corn root endophytic microbial community structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Conservation tillage practices across the country have been implementing genetically engineered glyphosate resistant corn crops along with applications of the herbicide glyphosate. We tested the hypothesis that seven years of glyphosate applications to both glyphosate resistant and non-r...

  20. Changes in constructed Brassica communities treated with glyphosate drift.

    PubMed

    Watrud, Lidia S; King, George; Londo, Jason P; Colasanti, Ricardo; Smith, Bonnie M; Waschmann, Ronald S; Lee, E Henry

    2011-03-01

    We constructed a mixed-species community designed to simulate roadside and field edge plant communities and exposed it to glyphosate drift in order to test three hypotheses: (1) higher fitness in transgenic Brassica carrying the CP4 EPSPS transgene that confers resistance to glyphosate will result in significant changes in the plant community relative to control communities; (2) given repeated years of glyphosate drift selective pressure, the increased fitness of the transgenic Brassica with CP4 EPSPS will contribute to an increase in the proportion of transgenic progeny produced in plant communities; and (3) the increased fitness of Brassica carrying the CP4 EPSPS transgene will contribute to decreased levels of mycorrhizal infection and biomass in a host species (Trifolium incarnatum). Due to regulatory constraints that prevented the use of outdoor plots for our studies, in 2005 we established multispecies communities in five large cylindrical outdoor sunlit mesocosms (plastic greenhouses) designed for pollen confinement. Three of the community members were sexually compatible Brassica spp.: transgenic glyphosate-resistant canola (B. napus) cultivar (cv.) RaideRR, glyphosate-sensitive non-transgenic B. napus cv. Sponsor, and a weedy B. rapa (GRIN Accession 21735). Additional plant community members were the broadly distributed annual weeds Digitaria sanguinalis, Panicum capillare, and Lapsana communis. Once annually in 2006 and 2007, two mesocosms were sprayed with glyphosate at 10% of the field application rate to simulate glyphosate drift as a selective pressure. After two years, changes were observed in community composition, plant density, and biomass in both control and treatment mesocosms. In control mesocosms, the weed D. sanguinalis (crabgrass) began to dominate. In glyphosate drift-treated mesocosms, Brassica remained the dominant genus and the incidence of the CP4 EPSPS transgene increased in the community. Shoot biomass and mycorrhizal infection in

  1. Changes in constructed Brassica communities treated with glyphosate drift.

    PubMed

    Watrud, Lidia S; King, George; Londo, Jason P; Colasanti, Ricardo; Smith, Bonnie M; Waschmann, Ronald S; Lee, E Henry

    2011-03-01

    We constructed a mixed-species community designed to simulate roadside and field edge plant communities and exposed it to glyphosate drift in order to test three hypotheses: (1) higher fitness in transgenic Brassica carrying the CP4 EPSPS transgene that confers resistance to glyphosate will result in significant changes in the plant community relative to control communities; (2) given repeated years of glyphosate drift selective pressure, the increased fitness of the transgenic Brassica with CP4 EPSPS will contribute to an increase in the proportion of transgenic progeny produced in plant communities; and (3) the increased fitness of Brassica carrying the CP4 EPSPS transgene will contribute to decreased levels of mycorrhizal infection and biomass in a host species (Trifolium incarnatum). Due to regulatory constraints that prevented the use of outdoor plots for our studies, in 2005 we established multispecies communities in five large cylindrical outdoor sunlit mesocosms (plastic greenhouses) designed for pollen confinement. Three of the community members were sexually compatible Brassica spp.: transgenic glyphosate-resistant canola (B. napus) cultivar (cv.) RaideRR, glyphosate-sensitive non-transgenic B. napus cv. Sponsor, and a weedy B. rapa (GRIN Accession 21735). Additional plant community members were the broadly distributed annual weeds Digitaria sanguinalis, Panicum capillare, and Lapsana communis. Once annually in 2006 and 2007, two mesocosms were sprayed with glyphosate at 10% of the field application rate to simulate glyphosate drift as a selective pressure. After two years, changes were observed in community composition, plant density, and biomass in both control and treatment mesocosms. In control mesocosms, the weed D. sanguinalis (crabgrass) began to dominate. In glyphosate drift-treated mesocosms, Brassica remained the dominant genus and the incidence of the CP4 EPSPS transgene increased in the community. Shoot biomass and mycorrhizal infection in

  2. Analysis of glyphosate and aminomethylphosphonic acid in leaves from Coffea arabica using high performance liquid chromatography with quadrupole mass spectrometry detection.

    PubMed

    Schrübbers, Lars C; Masís-Mora, Mario; Rojas, Elizabeth Carazo; Valverde, Bernal E; Christensen, Jan H; Cedergreen, Nina

    2016-01-01

    Glyphosate is a commonly applied herbicide in coffee plantations. Because of its non-selective mode of action it can damage the crop exposed through spray drift. Therefore, it is of interest to study glyphosate fate in coffee plants. The aim of this study was to develop an analytical method for accurate and precise quantification of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) at trace levels in coffee leaves using liquid chromatography with single-quadrupole mass spectrometry detection. The method is based on a two-step solid phase extraction (SPE) with an intermediate derivatization reaction using 9-fluorenylmethylchloroformate (FMOC). An isotope dilution method was used to account for matrix effects and to enhance the confidence in analyte identification. The limit of quantification (LOQ) for glyphosate and AMPA in coffee leaves was 41 and 111 μg kg(-1) dry weight, respectively. For the method optimization a design of experiments (DOE) approach was used. The sample clean-up procedure can be simplified for the analysis of less challenging matrices, for laboratories having a tandem mass spectrometry detector and for cases in which quantification limits above 0.1 mg kg(-1) are acceptable, which is often the case for glyphosate. The method is robust, possesses high identification confidence, while being suitable for most commercial and academic laboratories. All leaf samples from five coffee fields analyzed (n=21) contained glyphosate, while AMPA was absent. The simplified clean-up procedure was successfully validated for coffee leaves, rice, black beans and river water. PMID:26695310

  3. Effects of Glyphosate Application on Seed Iron and Root Ferric (III) Reductase in Soybean Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research demonstrated that nitrate assimilation and nitrogen fixation were significantly reduced by glyphosate (Gly) drift in glyphosate-susceptible (GS) soybean, but soybean had the ability to recover from the physiological stress caused by glyphosate drift. The objective of this study was...

  4. Glyphosate Effect on Shikimate, Nitrate Reductase Activity, Yield, and Seed Composition in Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr field study investigated the effects of glyphosate drift rate on plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition in non-glyphosate-resistant (non-GR) corn (Zea mays L.) and the effects of glyphosate at label rates on nitrate reducta...

  5. Mechanism Of Resistance Of Evolved Glyphosate-Resistant Palmer Amaranth (Amaranthus Palmeri L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolved glyphosate resistance in weedy species represents a challenge for the continued success and utility of glyphosate-resistant crops. The first case of evolved glyphosate resistance in Palmer amaranth was a population from the U.S. state of Georgia, which was previously reported to have amplif...

  6. Glyphosate resistance in giant ragweed (Ambrosia trifida L.) from Mississippi is partly due to reduced translocation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A giant ragweed population from a glyphosate-resistant (GR) soybean field in Mississippi was suspected to be resistant to glyphosate. Greenhouse and laboratory studies were conducted to confirm and quantify the magnitude of glyphosate resistance in the giant ragweed population and to elucidate the p...

  7. Weed escapes and delayed weed emergence in glyphosate-resistant soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2001 and 2002, field experiments were conducted in soybean crops at four Minnesota locations with the aim of studying the effects of different glyphosate treatments (one-pass glyphosate, two-pass glyphosate) on weed control and weed community composition by focusing on the identity and abunda...

  8. Early detection of crop injury from herbicide glyphosate by leaf biochemical parameter inversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early detection of crop injury from glyphosate is of significant importance in crop management. In this paper, we attempt to detect glyphosate-induced crop injury by PROSPECT (leaf optical PROperty SPECTra model) inversion through leaf hyperspectral reflectance measurements for non-Glyphosate-Resist...

  9. ESPS gene amplification endows resistance to glyphosate in Italian ryegrass (Lolium perene ssp multiflorum) from Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to glyphosate in weed species is a major challenge for the sustainability of glyphosate use in crop and non-crop systems, and especially in glyphosate-resistant crops. A glyphosate-resistant Italian ryegrass population has been identified in Arkansas. This research was conducted to elucid...

  10. Genotoxic effects of glyphosate or paraquat on earthworm coelomocytes.

    PubMed

    Muangphra, Ptumporn; Kwankua, Wimon; Gooneratne, Ravi

    2014-06-01

    The potential genotoxicity (nuclear anomalies, damage to single-strand DNA) and pinocytic adherence activity of two (glyphosate-based and paraquat-based) commercial herbicides to earthworm coelomocytes (immune cells in the coelomic cavity) were assessed. Coelomocytes were extracted from earthworms (Pheretima peguana) exposed to concentrations glyphosate-based or paraquat-based herbicides on filter paper for 48 h. Three assays were performed: Micronucleus (light microscopy count of micronuclei, binuclei, and trinuclei), Comet (epifluorescent microscope and LUCIA image analyzer measure of tail DNA %, tail length, and tail moment), and Neutral Red (to detect phagocytic or pinocytic activity). The LC50 value for paraquat was 65-fold lower than for glyphosate indicating that paraquat was far more acutely toxic to P. peguana. There were significant (P < 0.05) differences from the control group in total coelomocyte micronuclei, binuclei, and trinuclei frequencies of earthworms exposed to glyphosate at 25 × 10(-1) (10(-3) LC50) and paraquat at 39 × 10(-5) (10(-4) LC50) μg cm(-2) filter paper. In earthworms exposed to glyphosate, no differences in tail DNA%, tail length, and tail moment of coelomocytes were detected. In contrast, for paraquat at 10(-1) LC50 concentration, there were significant (P < 0.05) differences between tail DNA % and tail length, and at LC50 concentration, tail moment was also significantly different when compared with controls. A decline in pinocytic adherence activity in coelomocytes occurred on exposure to glyphosate or paraquat at 10(-3) LC50 concentration. This study showed that, at concentrations well below field application rates, paraquat induces both clastogenic and aneugenic effects on earthworm coelomocytes whereas glyphosate causes only aneugenic effects and therefore does not pose a risk of gene mutation in this earthworm.

  11. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  12. Aerial image retargeting (AIR): achieving litho-friendly designs

    NASA Astrophysics Data System (ADS)

    Yehia Hamouda, Ayman; Word, James; Anis, Mohab; Karim, Karim S.

    2011-04-01

    In this work, we present a new technique to detect non-Litho-Friendly design areas based on their Aerial Image signature. The aerial image is calculated for the litho target (pre-OPC). This is followed by the fixing (retargeting) the design to achieve a litho friendly OPC target. This technique is applied and tested on 28 nm metal layer and shows a big improvement in the process window performance. For an optimized Aerial-Image-Retargeting (AIR) recipe is very computationally efficient and its runtime doesn't consume more than 1% of the OPC flow runtime.

  13. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  14. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  15. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  16. Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil.

    PubMed

    Zhao, Haoyu; Tao, Ke; Zhu, Jianyi; Liu, Shengnan; Gao, Han; Zhou, Xiaogang

    2015-01-01

    Bacterial strains capable of utilizing glyphosate as the sole carbon source were isolated from contaminated soil by the enrichment culture method and identified based on partial 16S rRNA gene sequence analysis. Pseudomonas spp. strains GA07, GA09 and GC04 demonstrated the best degradation capabilities towards glyphosate and were used for the laboratory experiments of glyphosate bioremediation. Inoculating glyphosate-treated soil samples with these three strains resulted in a 2-3 times higher rate of glyphosate removal than that in non-inoculated soil. The degradation kinetics was found to follow a first-order model with regression values greater than 0.96. Cell numbers of the introduced bacteria decreased from 4.4 × 10(6) CFU/g to 3.4-6.7 × 10(5) CFU/g dry soil within 18 days of inoculation. Due to the intense degradation of glyphosate, the total dehydrogenase activity of the soil microbial community increased by 21.2-25.6%. Analysis of glyphosate degradation products in cell-free extracts showed that glyphosate breakdown in strain GA09 was catalyzed both by C-P lyase and glyphosate oxidoreductase. Strains GA07 and GC04 degraded glyphosate only via glyphosate oxidoreductase, but no further metabolite was detected. These results highlight the potential of the isolated bacteria to be used in the bioremediation of GP-contaminated soils. PMID:26582285

  17. No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri.

    PubMed

    Vila-Aiub, Martin M; Goh, Sou S; Gaines, Todd A; Han, Heping; Busi, Roberto; Yu, Qin; Powles, Stephen B

    2014-04-01

    Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.

  18. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter.

    PubMed

    Staub, Jeffrey M; Brand, Leslie; Tran, Minhtien; Kong, Yifei; Rogers, Stephen G

    2012-04-01

    Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.

  19. Foliar nickel application alleviates detrimental effects of glyphosate drift on yield and seed quality of wheat.

    PubMed

    Kutman, Bahar Yildiz; Kutman, Umit Baris; Cakmak, Ismail

    2013-09-01

    Glyphosate drift to nontarget crops causes growth aberrations and yield losses. This herbicide can also interact with divalent nutrients and form poorly soluble complexes. The possibility of using nickel (Ni), an essential divalent metal, for alleviating glyphosate drift damage to wheat was investigated in this study. Effects of Ni applications on various growth parameters, seed yield, and quality of durum wheat ( Triticum durum ) treated with sublethal glyphosate at different developmental stages were investigated in greenhouse experiments. Nickel concentrations of various plant parts and glyphosate-induced shikimate accumulation were measured. Foliar but not soil Ni applications significantly reduced glyphosate injuries including yield losses, stunting, and excessive tillering. Both shoot and grain Ni concentrations were enhanced by foliar Ni treatment. Seed germination and seedling vigor were impaired by glyphosate and improved by foliar Ni application to parental plants. Foliar Ni application appears to have a great potential to ameliorate glyphosate drift injury to wheat.

  20. Glyphosate loss by runoff and its relationship with phosphorus fertilization.

    PubMed

    Sasal, María Carolina; Demonte, Luisina; Cislaghi, Andrea; Gabioud, Emmanuel A; Oszust, José D; Wilson, Marcelo G; Michlig, Nicolás; Beldoménico, Horacio R; Repetti, María Rosa

    2015-05-13

    The aim of this study was to evaluate the relationship between glyphosate and phosphate fertilizer application and their contribution to surface water runoff contamination. The study was performed in Aquic Argiudoll soil (Tezanos Pinto series). Four treatments were assessed on three dates of rainfall simulation after fertilizer and herbicide application. The soluble phosphorus in runoff water was determined by a colorimetric method. For the determination of glyphosate and aminomethylphosphonic acid (AMPA), a method based on fluorenylmethyloxycarbonyl (FMOC) group derivatization, solid phase extraction (SPE) purification, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was employed. The application of phosphorus fertilizer resulted in an increased loss of glyphosate by runoff after 1 day of application. These results suggest the need for further study to understand the interactions and to determine appropriate application timing with the goal of reducing the pollution risk by runoff. PMID:25775388

  1. Acute eosinophilic pneumonia associated with glyphosate-surfactant exposure.

    PubMed

    De Raadt, Wanda M; Wijnen, Petal A; Bast, Aalt; Bekers, Otto; Drent, Marjolein

    2015-01-01

    We report a case of a female patient who developed acute eosinophilic pneumonia (AEP) after recent onset of smoking and exposure to glyphosate-surfactant.The additional exposure associated with the recent start of smoking may have contributed to the development and/or severity of AEP.A clinical relapse after re-challenge four years later both with smoking and glyphosate-surfactant made the association highly likely.Respiratory distress is a factor of poor outcome and mortality after ingestion of glyphosate-surfactant.This case highlights the importance of a thorough exposure history e.g., possible occupational and environmental exposures together with drug-intake.Genotyping should be considered in cases of severe unexplained pulmonary damage. PMID:26278698

  2. Glyphosate loss by runoff and its relationship with phosphorus fertilization.

    PubMed

    Sasal, María Carolina; Demonte, Luisina; Cislaghi, Andrea; Gabioud, Emmanuel A; Oszust, José D; Wilson, Marcelo G; Michlig, Nicolás; Beldoménico, Horacio R; Repetti, María Rosa

    2015-05-13

    The aim of this study was to evaluate the relationship between glyphosate and phosphate fertilizer application and their contribution to surface water runoff contamination. The study was performed in Aquic Argiudoll soil (Tezanos Pinto series). Four treatments were assessed on three dates of rainfall simulation after fertilizer and herbicide application. The soluble phosphorus in runoff water was determined by a colorimetric method. For the determination of glyphosate and aminomethylphosphonic acid (AMPA), a method based on fluorenylmethyloxycarbonyl (FMOC) group derivatization, solid phase extraction (SPE) purification, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was employed. The application of phosphorus fertilizer resulted in an increased loss of glyphosate by runoff after 1 day of application. These results suggest the need for further study to understand the interactions and to determine appropriate application timing with the goal of reducing the pollution risk by runoff.

  3. Glyphosate-resistant crops: history, status and future.

    PubMed

    Dill, Gerald M

    2005-03-01

    The commercial launch of glyphosate-resistant soybeans in 1996 signaled the beginning of a new era in weed management in row crops. Today, over 80% of the soybeans grown in the USA are glyphosate resistant. Since that time, many crops have been transformed that have allowed crop applications of many classes of herbicide chemistries. Crops currently under production include maize, soybean, cotton and canola. Transformation technology and selection methods have improved and the rate of development as well as the breadth of crops being considered as commercial targets has increased. On the basis of recent adoption rates by growers around the world, it appears that glyphosate-resistant crops will continue to grow in number and in hectares planted. However, global public acceptance of biotechnology-derived products will continue to impact the rate of adoption of this and other new innovations derived from transformation technology.

  4. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Collavo, Alberto; Sattin, Maurizio; Ostrander, Elizabeth L; Hall, Erin L; Sammons, R Douglas; Preston, Christopher

    2012-02-01

    Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well.

  5. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  6. Effects of a glyphosate-based herbicide on mate location in a wolf spider that inhabits agroecosystems.

    PubMed

    Griesinger, Laurie M; Evans, Samuel C; Rypstra, Ann L

    2011-09-01

    Chemical communication is important to many arthropod species but the potential exists for anthropogenic chemicals to disrupt information flow. Although glyphosate-based herbicides are not acutely toxic to arthropods, little is known regarding their effects on natural chemical communication pathways. The wolf spider, Pardosamilvina, is abundant in agroecosystems where herbicides are regularly applied and uses air- and substrate-borne chemical signals extensively during mating. The aim of this study was to examine effects of a commercial formulation of a glyphosate-based herbicide on the ability of males to find females. In the field, virgin females, when hidden inside pitfall traps with herbicide, attracted fewer males than females with water. Likewise females in traps with a ring of herbicide surrounding the opening were less likely to attract males than those in traps surrounded by water. We explored the reaction of males to any airborne component of the herbicide in a laboratory two-choice olfactometer experiment. When no female pheromones were present, males were equally likely to select herbicide or water treated corridors and they all moved through the apparatus at similar speeds. When female pheromones were present, the males that selected control corridors moved more slowly than those that selected herbicide and, if we control for the initial decision time, more males selected the control corridors over the herbicide. These data suggest that glyphosate-based herbicides are "info-disruptors" that alter the ability of males to detect and/or react fully to female signals.

  7. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  8. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  9. Glyphosate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus) to nontransgenic B. napus and B. rapa.

    PubMed

    Londo, Jason P; Bollman, Michael A; Sagers, Cynthia L; Lee, E Henry; Watrud, Lidia S

    2011-08-01

    • Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. • We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. • Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. • The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow.

  10. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  11. Combining glyphosate with burning or mowing improves control of Yellow Bluestem (Bothriochloa ischaemum)

    USGS Publications Warehouse

    Robertson, S.; Hickman, Karen R.; Harmoney, Keith R.; Leslie,, David M.

    2013-01-01

    The invasive yellow bluestem (Bothriochloa ischaemum [L.] Keng) threatens native biodiversity, and its control is of interest to land managers involved in restoration of invaded grasslands. We used single, double, and triple applications of glyphosate (2.125 kg ai.ha-1.application-1) over the course of one growing season in combinations at different timings (early, middle, late season) with and without a mechanical treatment of mowing or burning to determine the most effective control method. One year after treatment, burning and mowing prior to a mid-season single or double early, middle, and/or late season herbicide application resulted in a similar level of control of yellow bluestem relative to a triple herbicide application, all of which had greater control relative to herbicide treatment alone. Reproductive tiller density and visual obstruction increased 2 yr after treatment with two herbicide treatments applied either early and middle season or early and late season, but it was prevented with burning and mowing prior to herbicide application. With the exception of three herbicide applications, combining burning or mowing with herbicide applications provided more effective control of yellow bluestem than any individual herbicide applications. Burning or mowing likely improves glyphosate effectiveness by altering the invasive grass structure so that plants are clear of standing dead and have shorter, active regrowth to enhance herbicide effectiveness. During restoration projects requiring control of invasive yellow bluestem, an effective management option is a combination of mechanical and chemical control.

  12. Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots.

    PubMed

    Ozturk, Levent; Yazici, Atilla; Eker, Selim; Gokmen, Ozgur; Römheld, Volker; Cakmak, Ismail

    2008-01-01

    Iron (Fe) deficiency is increasingly being observed in cropping systems with frequent glyphosate applications. A likely reason for this is that glyphosate interferes with root uptake of Fe by inhibiting ferric reductase in roots required for Fe acquisition by dicot and nongrass species. This study investigated the role of drift rates of glyphosate (0.32, 0.95 or 1.89 mm glyphosate corresponding to 1, 3 and 6% of the recommended herbicidal dose, respectively) on ferric reductase activity of sunflower (Helianthus annuus) roots grown under Fe deficiency conditions. Application of 1.89 mm glyphosate resulted in almost 50% inhibition of ferric reductase within 6 h and complete inhibition 24 h after the treatment. Even at lower rates of glyphosate (e.g. 0.32 mm and 0.95 mm), ferric reductase was inhibited. Soluble sugar concentration and the NAD(P)H oxidizing capacity of apical roots were not decreased by the glyphosate applications. To our knowledge, this is the first study reporting the effects of glyphosate on ferric reductase activity. The nature of the inhibitory effect of glyphosate on ferric reductase could not be identified. Impaired ferric reductase could be a major reason for the increasingly observed Fe deficiency in cropping systems associated with widespread glyphosate usage.

  13. The effect of two glyphosate formulations on a small, diurnal lizard (Oligosoma polychroma).

    PubMed

    Carpenter, Joanna K; Monks, Joanne M; Nelson, Nicola

    2016-04-01

    Formulations of glyphosate-based herbicides continue to dominate the global herbicide market, while there continue to be concerns regarding the impact of this herbicide on non-target organisms. Research also indicates that the additives within certain glyphosate formulations, such as surfactants, are actually more toxic than the glyphosate active ingredient alone. Concerns arise in particular when glyphosate formulations are proposed for vegetation control in areas inhabited by rare or threatened species. Although the effect of glyphosate on birds and mammals is well studied, reptiles remain neglected in ecotoxicological studies. We investigated whether dermal exposure to two different commercial glyphosate formulations affected performance measures in the New Zealand common skink (Oligosoma polychroma). Fifty-eight skinks were each placed in a box of straw to simulate field conditions and sprayed once with Agpro Glyphosate 360, Yates Roundup Weedkiller (both at the label-specified concentrations of 144 mg glyphosate per 1 L water), or water (control). Agpro Glyphosate 360 contained ethoxylated tallow amine at a concentration of <200 g/L, while the surfactant within Yates Roundup Weedkiller was unknown. Following treatment skinks were kept in captivity and sampled for selected temperature and mass over a four-week period. Neither glyphosate formulation had a significant impact on mass. However, skinks treated with Yates Roundup Weedkiller selected significantly higher temperatures across 3 weeks following exposure. This heat-seeking behaviour could be a fever response to increase metabolism and thereby counteract physiological stress.

  14. Transport and attenuation of dissolved glyphosate and AMPA in a stormwater wetland.

    PubMed

    Imfeld, Gwenaël; Lefrancq, Marie; Maillard, Elodie; Payraudeau, Sylvain

    2013-01-01

    Glyphosate is an herbicide used widely and increasingly since the early 1990s in production of many crops and in urban areas. However, knowledge on the transport of glyphosate and its degradation to aminomethylphosphonic acid (AMPA) in ecosystems receiving urban or agricultural runoff is lacking. Here we show that transport and attenuation of runoff-associated glyphosate and AMPA in a stormwater wetland differ and largely vary over time. Dissolved concentrations and loads of glyphosate and AMPA in a wetland receiving runoff from a vineyard catchment were assessed during three consecutive seasons of glyphosate use (March to June 2009, 2010 and 2011). The load removal of glyphosate and AMPA by the wetland gradually varied yearly from 75% to 99%. However, glyphosate and AMPA were not detected in the wetland sediment, which emphasises that sorption on the wetland vegetation, which increased over time, and biodegradation were prevailing attenuation processes. The relative load of AMPA as a percentage of total glyphosate increased in the wetland and ranged from 0% to 100%, which indicates the variability of glyphosate degradation via the AMPA pathway. Our results demonstrate that transport and degradation of glyphosate in stormwater wetlands can largely change over time, mainly depending on the characteristics of the runoff event and the wetland vegetation. We anticipate our results to be a starting point for considering degradation products of runoff-associated pesticides during their transfer in wetlands, in particular when using stormwater wetlands as a management practice targeting pesticide attenuation.

  15. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil.

    PubMed

    Fan, Jieyu; Yang, Guoxia; Zhao, Haoyu; Shi, Guanying; Geng, Yucong; Hou, Taiping; Tao, Ke

    2012-01-01

    A bacterial strain named CB4, with highly effective glyphosate degradation capability, was isolated from soil after enrichment. On the basis of the Biolog omniLog identification system (Biolog) and 16S ribosomal RNA (rRNA) gene sequencing methods, strain CB4 was identified as Bacillus cereus. Further experiments were carried out to optimize the growth of strain CB4 and the glyphosate degradation activity by high performance liquid chromatography (HPLC). The optimal conditions were found as follows: initial pH 6.0, incubation temperature 35°C, glyphosate concentration 6 g L(-1), inoculation amount 5% and incubation time 5 days. Under the optimal conditions, stain CB4 utilized 94.47% of glyphosate. This is the first report on B. cereus with a capacity to utilize herbicide glyphosate, and it can degrade glyphosate concentrations up to 12 g L(-1). Metabolization of glyphosate by strain B. cereus CB4 was studied. Results indicated that two concurrent pathways were capable of degrading glyphosate to AMPA, glyoxylate, sarcosine, glycine and formaldehyde as products. Glyphosate breakdown in B. cereus CB4 was achieved by the C-P lyase activity and the glyphosate oxidoreductase activity. PMID:22990486

  16. Differential impact of Limnoperna fortunei-herbicide interaction between Roundup Max® and glyphosate on freshwater microscopic communities.

    PubMed

    Gattás, F; Vinocur, A; Graziano, M; Dos Santos Afonso, M; Pizarro, H; Cataldo, D

    2016-09-01

    Multiple anthropogenic stressors act simultaneously on the environment, with consequences different from those caused by single-stressor exposure. We investigated how the combination of the invasive mussel Limnoperna fortunei and a widely applied herbicide, Roundup Max®, affected freshwater microscopic communities and water quality. Further, we compared these results with those induced by the combination of the mussel and technical-grade glyphosate. We carried out a 34-day experiment in outdoor mesocosms, applying the following six treatments: 6 mg L(-1) of technical-grade glyphosate (G), the equivalent concentration of glyphosate in Roundup Max® (R), 100 mussels (M), the combination of mussels and herbicide either in the technical-grade or formulated form (MG and MR, respectively), and control (C). Herbicides significantly increased total phosphorus in water; R and MR showed greater initial total nitrogen and ammonium. R increased picoplankton abundance and caused an eightfold increase in phytoplankton, with high turbidity values; G had a lower effect on these variables. Herbicide-mussel combination induced an accelerated dissipation of glyphosate in water (MG 6.36 ± 0.83 mg G g DW(-1) day(-1) and MR 5.16 ± 1.26 mg G g DW(-1) day(-1)). A synergistic effect on ammonium was observed in MR but not in MG. MR and MG had an antagonistic effect on phytoplankton, which showed a drastic reduction due to grazing, as revealed by M. We provide evidence of differential effects of Roundup Max® and technical-grade glyphosate over water quality and microscopic communities, and in combination with mussels. However, in the combination of mussels and herbicides, mussels seem to play a leading role. In the presence of L. fortunei, the effects of higher nutrient availability provided by herbicides addition were counteracted by the filtration activity of mussels, which released nutrients, grazed on picoplankton and phytoplankton, and boosted the development of other

  17. Differential impact of Limnoperna fortunei-herbicide interaction between Roundup Max® and glyphosate on freshwater microscopic communities.

    PubMed

    Gattás, F; Vinocur, A; Graziano, M; Dos Santos Afonso, M; Pizarro, H; Cataldo, D

    2016-09-01

    Multiple anthropogenic stressors act simultaneously on the environment, with consequences different from those caused by single-stressor exposure. We investigated how the combination of the invasive mussel Limnoperna fortunei and a widely applied herbicide, Roundup Max®, affected freshwater microscopic communities and water quality. Further, we compared these results with those induced by the combination of the mussel and technical-grade glyphosate. We carried out a 34-day experiment in outdoor mesocosms, applying the following six treatments: 6 mg L(-1) of technical-grade glyphosate (G), the equivalent concentration of glyphosate in Roundup Max® (R), 100 mussels (M), the combination of mussels and herbicide either in the technical-grade or formulated form (MG and MR, respectively), and control (C). Herbicides significantly increased total phosphorus in water; R and MR showed greater initial total nitrogen and ammonium. R increased picoplankton abundance and caused an eightfold increase in phytoplankton, with high turbidity values; G had a lower effect on these variables. Herbicide-mussel combination induced an accelerated dissipation of glyphosate in water (MG 6.36 ± 0.83 mg G g DW(-1) day(-1) and MR 5.16 ± 1.26 mg G g DW(-1) day(-1)). A synergistic effect on ammonium was observed in MR but not in MG. MR and MG had an antagonistic effect on phytoplankton, which showed a drastic reduction due to grazing, as revealed by M. We provide evidence of differential effects of Roundup Max® and technical-grade glyphosate over water quality and microscopic communities, and in combination with mussels. However, in the combination of mussels and herbicides, mussels seem to play a leading role. In the presence of L. fortunei, the effects of higher nutrient availability provided by herbicides addition were counteracted by the filtration activity of mussels, which released nutrients, grazed on picoplankton and phytoplankton, and boosted the development of other

  18. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation.

    PubMed

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A; Adhikari, Atin

    2014-11-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4-/-, and IL-13-/- mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  19. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation.

    PubMed

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A; Adhikari, Atin

    2014-11-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4-/-, and IL-13-/- mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease.

  20. Glyphosate resistant weeds - a threat to conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant weeds are now present throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity tillage systems....

  1. Effectiveness evaluation of glyphosate oxidation employing the H(2)O(2)/UVC process: toxicity assays with Vibrio fischeri and Rhinella arenarum tadpoles.

    PubMed

    Junges, Celina M; Vidal, Eduardo E; Attademo, Andrés M; Mariani, Melisa L; Cardell, Leandro; Negro, Antonio C; Cassano, Alberto; Peltzer, Paola M; Lajmanovich, Rafael C; Zalazar, Cristina S

    2013-01-01

    The H(2)O(2)/UVC process was applied to the photodegradation of a commercial formulation of glyphosate in water. Two organisms (Vibrio fischeri bacteria and Rhinella arenarum tadpoles) were used to investigate the toxicity of glyphosate in samples M(1,) M(2), and M(3) following different photodegradation reaction times (120, 240 and 360 min, respectively) that had differing amounts of residual H(2)O(2). Subsamples of M(1), M(2), and M(3) were then used to create samples M(1,E), M(2,E) and M(3,E) in which the H(2)O(2) had been removed. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in tadpoles to determine possible sub-lethal effects. In V. fischeri, M(1,E), which was collected early in the photodegradation process, caused 52% inhibition, while M(3,E), which was collected at the end of the photodegradation process, caused only 17% inhibition. Survival of tadpoles was 100% in samples M(2), M(3), and in M(1,E), M(2,E) and M(3,E). The lowest percentages of enzymatic inhibition were observed in samples without removal of H(2)O(2): 13.96% (AChE) and 16% (BChE) for M(2), and 24.12% (AChE) and 13.83% (BChE) for M(3). These results show the efficiency of the H(2)O(2)/UVC process in reducing the toxicity of water or wastewater polluted by commercial formulations of glyphosate. According to the ecotoxicity assays, the conditions corresponding to M(2) (11 ± 1 mg a.e. L(-1) glyphosate and 11 ± 1 mg L(-1) H(2)O(2)) could be used as a final point for glyphosate treatment with the H(2)O(2)/UV process. PMID:23356336

  2. In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed1[W

    PubMed Central

    Ge, Xia; d’Avignon, D. André; Ackerman, Joseph J.H.; Sammons, R. Douglas

    2014-01-01

    Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. 31P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. 31P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells. PMID:25185124

  3. Glyphosate spray drift in Coffea arabica - sensitivity of coffee plants and possible use of shikimic acid as a biomarker for glyphosate exposure.

    PubMed

    Schrübbers, Lars C; Valverde, Bernal E; Sørensen, Jens C; Cedergreen, Nina

    2014-10-01

    Glyphosate is widely used in coffee plantations to control weeds. Lacking selectivity, glyphosate spray drift is suspected to cause adverse effects in coffee plants. Symptoms caused by glyphosate can be similar to those produced by other stress factors. However, shikimic acid accumulation should be a useful biomarker for glyphosate exposure as shown for other crops. The aim of this study was to assess the sensitivity of coffee plants towards glyphosate on different biological response variables and to evaluate the use of shikimic acid as biomarker. Dose-response experiments yielded ED50 values (50% effect dose) in the range of 38-550 ga.e.ha(-1) depending on the quantitative or qualitative variable monitored. The frequency of plants showing symptoms was the most sensitive variable. The best sampling time for shikimic acid accumulation was 1-2 weeks after glyphosate application, depending on experimental conditions. The highest shikimic acid accumulation was observed in young leaves. Shikimic acid is a suitable biomarker for a glyphosate exposure in coffee, using only young leaves for the analysis. Young coffee plants are susceptible to glyphosate damage. If symptoms are absent the risk of severe crop damage or yield loss is low. PMID:25307461

  4. In vivo ³¹P-nuclear magnetic resonance studies of glyphosate uptake, vacuolar sequestration, and tonoplast pump activity in glyphosate-resistant horseweed.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Sammons, R Douglas

    2014-11-01

    Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. (31)P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. (31)P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells.

  5. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002

    USGS Publications Warehouse

    Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples

  6. Impact of agricultural practices on runoff and glyphosate peaks in a small vineyard catchment

    NASA Astrophysics Data System (ADS)

    Amiot, Audrey; La Jeunesse, Isabelle; Jadas-Hécart, Alain; Landry, David; Sourice, Stéphane; Communal, Pierre-Yves; Ballouche, Aziz

    2013-04-01

    The Layon River, a tributary of the Loire River, does frequently not comply with water quality standards because of pesticides. Vineyard is generally denounced. The aim of this project is to explain the transfer of pesticides during runoff events and its interaction with erosion. Pesticides and suspended particulate matter (SPM) concentrations are monitored at the outlet of the vineyards catchment each 2 minutes during floods to follow peaks. The results of three different hydrological years (2009, 2011, 2012) are exposed. The 2.2ha catchment is composed of two main vineyards plots managed by two independent farmers. Mean slopes are of 8% and can reach 40% in terraces. A gauging station has been installed at the end of the slope with a calibrated Venturi channel. The measurement station is composed of (a) an approach channel of 10 meters long for the establishment of a stable water surface, (b) a trapezoidal long-throated flume to assess the flow rate with the water level measured with (c) a bubbler sensor, (d) an automatic rain gauge, (e) an automatic sampler, (f) a modem and (g) a logosens OTT® data logger. 2009 was an average year, 2011 was particularly dry and 2012 particularly wet. Quantities of glyphosate applied were respectively 1087, 645 and 720g. Maximum discharges in the gauging station were 5, 12 and 25L.s-1. Minimum and maximum concentrations of glyphosate in runoff waters were 1-449.1 µg.L-1 in 2009, 0.62-13.6 µg.L-1 in 2011 and 0.1-3.7 µg.L-1 in 2012. Minimum and maximum concentrations of SPM were 14-1261mg.L-1 in 2009, 108- 6454 mg.L-1 in 2011 and 9-1541 mg.L-1 in 2012. While flows, quantities of glyphosate applied and peaks of concentrations observed in 2011 are more important in 2009, SPM generated in the runoff waters are lower than 2011 and 2012, even though 2012 has particularly been a wet year. Also, maximum runoff coefficients are 7% in 2009 and 2011 and 57% in 2012. In fact, this latest explains differences between years better than

  7. Civility in scientific publishing: The glyphosate paper

    PubMed Central

    Blaylock, Russell Lane

    2015-01-01

    In recent years, we have witnessed a decline in civility in the public arena when various socially sensitive issues are being presented. Those of us engaged in the publishing of scientific papers and in our comments on these papers, need to be cognizant of the social graces, courteous demeanor, and chivalry. Debates are essential to our learning and in being able to ferret out the essentials of various scientific issues that are of value. Because of the amount of time and effort connected with analyzing the complex problems and the years invested in such endeavors, we often resort to the behavior, that is, contentious and at times even quite insulting to our opponents during our defense. This is the part of human nature but as civilized human beings, we must strive to maintain the courtesy and a calm demeanor during such discussions and debates. I have yielded to such temptations myself but am striving to repent of my sins. The medical and scientific history should have taught us that in defending our ideas we learn and sometimes come to the realization that our paradigm or hypothesis is wrong, either in part or whole. Such debates allow us to fine tune our ideas and correct our errors in thinking, which are easily, consciously, or subconsciously sublimated by our enthusiasm. The glyphosate papers presented ideas that, while well supported by the scientific studies and logical conclusions, also contained some possible errors in its suppositions. Dr. Miguel Faria challenged some of these concepts and was met with some degree of derision by one of the authors. This editorial comment is in response to these issues. PMID:26543672

  8. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  9. Effects of glyphosate-resistant crop cultivation on soil and water quality.

    PubMed

    Cerdeira, Antonio L; Duke, Stephen O

    2010-01-01

    Transgenic glyphosate-resistant crops (GRCs) have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. GRCs have generally become dominant in those countries where they have been approved for growing. Potential effects of glyphosate on soil and water are minimal, compared the effects of the herbicides that are replaced when GRCs are adopted. Perhaps the most important indirect effect is that GRCs crops promote the adoption of reduced- or no-tillage agriculture, resulting in a significant reduction in soil erosion and water contamination. Glyphosate and its degradation product, aminomethylphosphonate (AMPA), residues are not usually detected in high levels in ground or surface water in areas where glyphosate is used extensively.  Furthermore, both glyphosate and AMPA are considered to be much more toxicologically and environmentally benign than most of the herbicides replaced by glyphosate.

  10. Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida.

    PubMed

    Zhou, Chui-Fan; Wang, Yu-Jun; Sun, Rui-Juan; Liu, Cun; Fan, Guang-Ping; Qin, Wen-Xiu; Li, Cheng-Cheng; Zhou, Dong-Mei

    2014-10-01

    The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio. The subcellular distribution of Cd in E. fetida tissues showed that internal Cd was dominant in the intact cells fraction and the heat-stable proteins fraction. The presence of glyphosate reduced the concentration of Cd in all fractions, especially the intact cells. During a longer period of exposure, the weight loss of earthworm and the total Cd absorption was alleviated by glyphosate. Thus, the herbicide glyphosate can reduce the toxicity and bioavailability of Cd in the soil ecosystems at both short- and long-term exposures.

  11. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro.

    PubMed

    Shehata, Awad A; Schrödl, Wieland; Aldin, Alaa A; Hafez, Hafez M; Krüger, Monika

    2013-04-01

    The use of glyphosate modifies the environment which stresses the living microorganisms. The aim of the present study was to determine the real impact of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. The presented results evidence that the highly pathogenic bacteria as Salmonella Entritidis, Salmonella Gallinarum, Salmonella Typhimurium, Clostridium perfringens and Clostridium botulinum are highly resistant to glyphosate. However, most of beneficial bacteria as Enterococcus faecalis, Enterococcus faecium, Bacillus badius, Bifidobacterium adolescentis and Lactobacillus spp. were found to be moderate to highly susceptible. Also Campylobacter spp. were found to be susceptible to glyphosate. A reduction of beneficial bacteria in the gastrointestinal tract microbiota by ingestion of glyphosate could disturb the normal gut bacterial community. Also, the toxicity of glyphosate to the most prevalent Enterococcus spp. could be a significant predisposing factor that is associated with the increase in C. botulinum-mediated diseases by suppressing the antagonistic effect of these bacteria on clostridia.

  12. Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis.

    PubMed

    Han, Jing; Tian, Yong-Sheng; Xu, Jing; Wang, Li-Juan; Wang, Bo; Peng, Ri-He; Yao, Quan-Hong

    2014-09-01

    Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroAR. leguminosarum) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroAR. leguminosarum is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroAR. leguminosarum gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  13. Safety assessment of genetically engineered food: detection and monitoring of glyphosate-tolerant soybeans.

    PubMed

    Shirai, N; Momma, K; Ozawa, S; Hashimoto, W; Kito, M; Utsumi, S; Murata, K

    1998-07-01

    A detection technique for the genetically engineered food, glyphosate-tolerant soybean (GTS), was designed. Commercial soybeans imported from North America were cultured in pots and genomic DNA was isolated from their leaves. To detect the genes, promoter and terminator, involved in the expression of glyphosate tolerance, PCR was done using the genomic DNA and chemically synthesized primers specific to the genes. DNAs with predicted sizes were amplified and confirmed by DNA sequencing to be the genes responsible for the expression of glyphosate tolerance. Glyphosate-tolerant soybeans were found to form approximately 1.1% of the commercial soybeans, when commercially available soybeans were cultivated and number of soybeans resistant to glyphosate was found. This level is somewhat lower than an estimated value announced officially on the basis of the cultivation area of the glyphosate-tolerant soybeans.

  14. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  15. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  16. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  17. Neutralization of the antimicrobial effect of glyphosate by humic acid in vitro.

    PubMed

    Shehata, Awad A; Kühnert, Manfred; Haufe, Svent; Krüger, Monika

    2014-06-01

    In the present study, the neutralization ability of the antimicrobial effect of glyphosate by different humic acids was investigated. The minimal inhibitory concentrations of glyphosate for different bacteria such as Bacillus badius, Bifidobacterium adolescentis, Escherichia coli, E. coli 1917 strain Nissle, Enterococcus faecalis, Enterococcus faecium, Salmonella enteritidis and Salmonella typhimurium were determined in the presence or absence of different concentrations of humic acid (0.25, 0.5 and 1.0 mg mL(-1)). Our findings indicated that humic acids inhibited the antimicrobial effect of glyphosate on different bacteria. This information can help overcome the negative impact of glyphosate residues in feed and water. PMID:24268342

  18. Differential effects of glyphosate and roundup on human placental cells and aromatase.

    PubMed

    Richard, Sophie; Moslemi, Safa; Sipahutar, Herbert; Benachour, Nora; Seralini, Gilles-Eric

    2005-06-01

    Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricultural use, and this effect increases with concentration and time or in the presence of Roundup adjuvants. Surprisingly, Roundup is always more toxic than its active ingredient. We tested the effects of glyphosate and Roundup at lower nontoxic concentrations on aromatase, the enzyme responsible for estrogen synthesis. The glyphosate-based herbicide disrupts aromatase activity and mRNA levels and interacts with the active site of the purified enzyme, but the effects of glyphosate are facilitated by the Roundup formulation in microsomes or in cell culture. We conclude that endocrine and toxic effects of Roundup, not just glyphosate, can be observed in mammals. We suggest that the presence of Roundup adjuvants enhances glyphosate bioavailability and/or bioaccumulation.

  19. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. PMID:27155486

  20. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.

  1. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  2. Development and prospect of unmanned aerial vehicles for agricultural production management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  3. Vehicle detection in aerial surveillance using dynamic Bayesian networks.

    PubMed

    Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying

    2012-04-01

    We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.

  4. Cropping practices modulate the impact of glyphosate on arbuscular mycorrhizal fungi and rhizosphere bacteria in agroecosystems of the semiarid prairie.

    PubMed

    Sheng, Min; Hamel, Chantal; Fernandez, Myriam R

    2012-08-01

    A growing body of evidence obtained from studies performed under controlled conditions suggests that glyphosate use can modify microbial community assemblages. However, few studies have examined the influence of glyphosate in agroecosystems. We examined 4 wheat-based production systems typical of the Canadian prairie over 2 years to answer the following question: Does preseeding of glyphosate impact soil rhizosphere microorganisms? If so, do cropping practices influence this impact? Glyphosate caused a shift in the species dominating the arbuscular mycorrhizal fungal community in the rhizosphere, possibly through the modification of host plant physiology. Glyphosate stimulated rhizobacterial growth while having no influence on saprotrophic fungi, suggesting a greater abundance of glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in bacteria than in fungi. Glyphosate stimulated rhizosphere bacteria in pea but not in urea-fertilized durum wheat, which is consistent with inhibition of EPSPS tolerance to residual glyphosate through high ammonium levels. Mitigation of the effects of glyphosate on rhizosphere bacteria through tillage suggests a reduction in residual glyphosate activity through increased adsorption to soil binding sites upon soil mixing. The influence of glyphosate on Gram-negative bacteria was mitigated under drought conditions in 2007. Our experiment suggests that interactions between soil fertility, tillage, and cropping practices shape the influence of glyphosate use on rhizosphere microorganisms.

  5. Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non-target-site glyphosate resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic informat...

  6. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  7. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  8. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  9. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  10. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  11. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    PubMed

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-11-23

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P < 0.01) after 72 h. In the presence of Bs-15, the 5 functional diversity indices (Shannon index, Shannon uniformity, Simpson index, McIntosh index, and McIntosh uniformity) were greater (P < 0.01) compared with the control soil. These results indicate that Bs-15 could be used to alleviate contamination from glyphosate-containing herbicides, increasing the microbial functional diversity in glyphosate-contaminated soils and thus enhancing the bioremediation of glyphosate-contaminated soils.

  12. Selection and characterization of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus)

    SciTech Connect

    Boerboom, C.M.

    1989-01-01

    If birdsfoot trefoil (Lotus corniculatus L.) was tolerant to glyphosate (N-(phosphonomethyl)glycine), Canada thistle (Cirsium arvense (L.) Scop.) and other dicot weeds could be selectively controlled in certified seed production fields. Glyphosate tolerance in birdsfoot trefoil was identified in plants from the cultivar Leo, plants regenerated from tolerant callus, and selfed progeny of plants regenerated from callus. Plants from the three sources were evaluated in field studies for tolerance to glyphosate at rates up to 1.6 kg ae/ha. Plants of Leo selected for tolerance exhibited a twofold range in the rate required to reduce shoot weight 50% (I{sub 50}s from 0.6 to 1.2 kg/ha glyphosate). Plants regenerated from tolerant callus had tolerance up to 66% greater than plants regenerated from unselected callus. Transgressive segregation for glyphosate tolerance was observed in the selfed progeny of two regenerated plants that both had I{sub 50}s of 0.7 kg/ha glyphosate. The selfed progeny ranged from highly tolerant (I{sub 50} of 1.5 kg/ha) to susceptible (I{sub 50} of 0.5 kg/ha). Spray retention, {sup 14}C-glyphosate absorption and translocation did not account for the differential tolerance of nine plants that were evaluated from the three sources. The specific activity of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase ranged from 1.3 to 3.5 nmol/min{sm bullet}mg among the nine plants and was positively correlated with glyphosate tolerance. Leo birdsfoot trefoil was found to have significant variation in glyphosate tolerance which made it possible to initiate a recurrent selection program to select for glyphosate tolerance in birdsfoot trefoil. Two cycles of selection for glyphosate tolerance were practiced in three birdsfoot trefoil populations, Leo, Norcen, and MU-81.

  13. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance.

    PubMed

    Samsel, Anthony; Seneff, Stephanie

    2013-12-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup(®), is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent

  14. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance

    PubMed Central

    Samsel, Anthony

    2013-01-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup®, is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of “ripening” sugar cane with glyphosate may explain the recent

  15. Consequences of phosphate application on glyphosate uptake by roots: Impacts for environmental management practices.

    PubMed

    Gomes, Marcelo Pedrosa; Maccario, Sophie; Lucotte, Marc; Labrecque, Michel; Juneau, Philippe

    2015-12-15

    Phosphate (PO4(3-)) fertilization is a common practice in agricultural fields also targets for glyphosate application. Due to their chemical similarities, PO4(3-) and glyphosate compete for soil adsorbing sites, with PO4(3-) fertilization increasing glyphosate bioavailability in the soil solution. After PO4(3-) fertilization, its concentration will be elevated in the soil solution and both PO4(3-) and glyphosate will be readily available for runoff into aquatic ecosystems. In this context, man-made riparian buffer strips (RBS) at the interface of agricultural lands and waterways can be used as a green technology to mitigate water contamination. The plants used in RBS form a barrier to agricultural wastes that can limit runoff, and the ability of these plants to take up these compounds through their roots plays an important role in RBS efficacy. However, the implications of PO4(3-) for glyphosate uptake by roots are not yet clearly demonstrated. Here, we addressed this problem by hydroponically cultivating willow plants in nutrient solutions amended with glyphosate and different concentrations of PO4(3-), assuring full availability of both chemicals to the roots. Using a phosphate carrier inhibitor (phosphonophormic acid-PFA), we found that part of the glyphosate uptake is mediated by PO4(3-) transporters. We observed, however, that PO4(3-) increased glyphosate uptake by roots, an effect that was related to increased root cell membrane stability. Our results indicate that PO4(3-) has an important role in glyphosate physiological effects. Under agricultural conditions, PO4(3-) fertilization can amplify glyphosate efficiency by increasing its uptake by the roots of undesired plants. On the other hand, since simultaneous phosphate and glyphosate runoffs are common, non-target species found near agricultural fields can be affected. PMID:26282745

  16. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    PubMed

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-01-01

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P < 0.01) after 72 h. In the presence of Bs-15, the 5 functional diversity indices (Shannon index, Shannon uniformity, Simpson index, McIntosh index, and McIntosh uniformity) were greater (P < 0.01) compared with the control soil. These results indicate that Bs-15 could be used to alleviate contamination from glyphosate-containing herbicides, increasing the microbial functional diversity in glyphosate-contaminated soils and thus enhancing the bioremediation of glyphosate-contaminated soils. PMID:26600533

  17. Consequences of phosphate application on glyphosate uptake by roots: Impacts for environmental management practices.

    PubMed

    Gomes, Marcelo Pedrosa; Maccario, Sophie; Lucotte, Marc; Labrecque, Michel; Juneau, Philippe

    2015-12-15

    Phosphate (PO4(3-)) fertilization is a common practice in agricultural fields also targets for glyphosate application. Due to their chemical similarities, PO4(3-) and glyphosate compete for soil adsorbing sites, with PO4(3-) fertilization increasing glyphosate bioavailability in the soil solution. After PO4(3-) fertilization, its concentration will be elevated in the soil solution and both PO4(3-) and glyphosate will be readily available for runoff into aquatic ecosystems. In this context, man-made riparian buffer strips (RBS) at the interface of agricultural lands and waterways can be used as a green technology to mitigate water contamination. The plants used in RBS form a barrier to agricultural wastes that can limit runoff, and the ability of these plants to take up these compounds through their roots plays an important role in RBS efficacy. However, the implications of PO4(3-) for glyphosate uptake by roots are not yet clearly demonstrated. Here, we addressed this problem by hydroponically cultivating willow plants in nutrient solutions amended with glyphosate and different concentrations of PO4(3-), assuring full availability of both chemicals to the roots. Using a phosphate carrier inhibitor (phosphonophormic acid-PFA), we found that part of the glyphosate uptake is mediated by PO4(3-) transporters. We observed, however, that PO4(3-) increased glyphosate uptake by roots, an effect that was related to increased root cell membrane stability. Our results indicate that PO4(3-) has an important role in glyphosate physiological effects. Under agricultural conditions, PO4(3-) fertilization can amplify glyphosate efficiency by increasing its uptake by the roots of undesired plants. On the other hand, since simultaneous phosphate and glyphosate runoffs are common, non-target species found near agricultural fields can be affected.

  18. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A tall waterhemp population in a glyphosate-resistant soybean field, Washington County, Missisippi, was suspected to be resistant to glyphosate. Glyphosate dose response experiments resulted in GR50 (glyphosate dose required to cause a 50% reduction in growth of treated plants) values of 1.28 and 0....

  19. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  20. Ecotoxicological assessment of soil microbial community tolerance to glyphosate.

    PubMed

    Allegrini, Marco; Zabaloy, María Celina; Gómez, Elena del V

    2015-11-15

    Glyphosate is the most used herbicide worldwide. While contrasting results have been observed related with its impact on soil microbial communities, more studies are necessary to elucidate the potential effects of the herbicide. Differences in tolerance detected by Pollution Induced Community Tolerance (PICT) approach could reflect these effects. The objective of the present study was to assess the tolerance to glyphosate (the active ingredient and a commercial formulation) of contrasting soils with (H) and without (NH) history of exposure. The hypothesis of a higher tolerance in H soils due to a sustained selection pressure on community structure was tested through the PICT approach. Results indicated that tolerance to glyphosate is not consistent with previous history of exposure to the herbicide either for the active ingredient or for a commercial formulation. Soils of H and NH sites were also characterized in order to determine to what extent they differ in their functional diversity and structure of microbial communities. Denaturant Gradient Gel Electrophoresis (DGGE) and Quantitative Real Time PCR (Q-PCR) indicated high similarity of Eubacteria profiles as well as no significant differences in abundance, respectively, between H and NH sites. Community level physiological profiling (CLPP) indicated some differences in respiration of specific sources but functional diversity was very similar as reflected by catabolic evenness (E). These results support PICT assay, which ideally requires soils with differences in their exposure to the contaminant but minor differences in other characteristics. This is, to our knowledge, the first report of PICT approach with glyphosate examining tolerance at soil microbial community level.

  1. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos.

    PubMed

    Schaumburg, Laura G; Siroski, Pablo A; Poletta, Gisela L; Mudry, Marta D

    2016-06-01

    Environmental contaminants produce multiple adverse consequences at individual, population and ecosystem levels. High volumes of agrochemicals applied to great variety of crops, together with agricultural expansion, generate great concerns due to the impact for the environment and large risk implicated for wildlife. The lack of data on these threats is striking. The tegu lizard (Salvator merianae) is one of the species that live in environments under contaminant effects. Several characteristics allow proposing this species as a potential sentinel organism for the monitoring of pesticides in their habitat. The present study is the first report about genotoxicity in tegu lizard neonates after embryonic exposure to Roundup® (glyphosate 66.2%). The micronucleus test (MN), nuclear abnormalities (NAs) assay and comet assay (CA) were used as biomarkers of genotoxic effects induced in erythrocytes by topical exposure of the eggs to the glyphosate commercial formulation Roundup® (RU), in laboratory controlled conditions. A total of 96 eggs were distributed in six groups exposed to RU (50, 100, 200, 400, 800, 1600μg/egg), one positive control (PC; 200μg cyclophosphamide/egg) and one negative control (NC; distilled water). No teratogenic effects were observed in any of the exposed or control neonates. A significant increase in DNA damage was observed in all concentrations higher than 100μg/egg with respect to NC (p<0.05). However, no statistical differences were found in the frequencies of MN and NAs in any group exposed to RU compared to the NC. No statistically significant differences were found in the size of the lizards at birth or after six months post-exposure (p>0.05). Our results provide new information about the undesirable effects of the glyphosate-based herbicide formulations RU on this lizard species that inhabits areas permanently exposed to several pesticide formulations. We consider of utmost necessity a strict regulation of the agrochemical application

  2. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos.

    PubMed

    Schaumburg, Laura G; Siroski, Pablo A; Poletta, Gisela L; Mudry, Marta D

    2016-06-01

    Environmental contaminants produce multiple adverse consequences at individual, population and ecosystem levels. High volumes of agrochemicals applied to great variety of crops, together with agricultural expansion, generate great concerns due to the impact for the environment and large risk implicated for wildlife. The lack of data on these threats is striking. The tegu lizard (Salvator merianae) is one of the species that live in environments under contaminant effects. Several characteristics allow proposing this species as a potential sentinel organism for the monitoring of pesticides in their habitat. The present study is the first report about genotoxicity in tegu lizard neonates after embryonic exposure to Roundup® (glyphosate 66.2%). The micronucleus test (MN), nuclear abnormalities (NAs) assay and comet assay (CA) were used as biomarkers of genotoxic effects induced in erythrocytes by topical exposure of the eggs to the glyphosate commercial formulation Roundup® (RU), in laboratory controlled conditions. A total of 96 eggs were distributed in six groups exposed to RU (50, 100, 200, 400, 800, 1600μg/egg), one positive control (PC; 200μg cyclophosphamide/egg) and one negative control (NC; distilled water). No teratogenic effects were observed in any of the exposed or control neonates. A significant increase in DNA damage was observed in all concentrations higher than 100μg/egg with respect to NC (p<0.05). However, no statistical differences were found in the frequencies of MN and NAs in any group exposed to RU compared to the NC. No statistically significant differences were found in the size of the lizards at birth or after six months post-exposure (p>0.05). Our results provide new information about the undesirable effects of the glyphosate-based herbicide formulations RU on this lizard species that inhabits areas permanently exposed to several pesticide formulations. We consider of utmost necessity a strict regulation of the agrochemical application

  3. Toxicity of the herbicide glyphosate to Chordodes nobilii (Gordiida, Nematomorpha).

    PubMed

    Achiorno, Cecilia L; Villalobos, Cristina de; Ferrari, Lucrecia

    2008-05-01

    Nematomorpha (horsehair worms) is a poorly known group of worm-like animals similar to nematodes. Adults are free-living and reproduction takes place in freshwater environments, where preparasitic larvae undergo development. All species have a parasitic juvenil stage and infection may result in the host's death, insects being the most frequent host. Most of the life cycle occurs in freshwater environments, which are often contaminated by different pollutants. Based on the lack of information on the toxicity of herbicides to horsehair worms, the objective of this study is to evaluate the effect of different concentrations of glyphosate (technical grade and formulated product) on Chordodes nobilii (Gordiida, Nematomorpha). Bioassays were performed with embryos and larvae (preparasitic stages), and adults (postparasitic stage). Test organisms were exposed for a short period of time to concentrations ranging between 0.1 and 8 mga.e.l(-1) of glyphosate (technical and formulated). Although embryo development was not inhibited, there was a significant decrease in the infective capacity of larvae derived from eggs that had been exposed to >or= 0.1mg/l. Similar results were obtained for directly exposed larvae. No differences in toxicity were detected between the active ingredient and formulated product. Adult exposed for 96 h to 1.76 mgl(-1) formulated Gly shown a mortality of 50%. Results indicate that C. nobilii is affected at glyphosate concentrations lower than those expected to be found in freshwater environments and those specified in the legislation.

  4. A review of the meteorological parameters which affect aerial application

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1979-01-01

    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.

  5. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  6. Towards aerial natural gas leak detection system based on TDLAS

    NASA Astrophysics Data System (ADS)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong

    2014-11-01

    Pipeline leakage is a complex scenario for sensing system due to the traditional high cost, low efficient and labor intensive detection scheme. TDLAS has been widely accepted as industrial trace gas detection method and, thanks to its high accuracy and reasonable size, it has the potential to meet pipeline gas leakage detection requirements if it combines with the aerial platform. Based on literature study, this paper discussed the possibility of applying aerial TDLAS principle in pipeline gas leak detection and the key technical foundation of implementing it. Such system is able to result in a high efficiency and accuracy measurement which will provide sufficient data in time for the pipeline leakage detection.

  7. Dynamics and environmental risk assessment of the herbicide glyphosate and its metabolite AMPA in a small vineyard river of the Lake Geneva catchment.

    PubMed

    Daouk, Silwan; Copin, Pierre-Jean; Rossi, Luca; Chèvre, Nathalie; Pfeifer, Hans-Rudolf

    2013-09-01

    The use of pesticides may lead to environmental problems, such as surface water pollution, with a risk for aquatic organisms. In the present study, a typical vineyard river of western Switzerland was first monitored to measure discharged loads, identify sources, and assess the dynamic of the herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Second, based on river concentrations, an associated environmental risk was calculated using laboratory tests and ecotoxicity data from the literature. Measured concentrations confirmed the mobility of these molecules with elevated peaks during flood events, up to 4970 ng/L. From April 2011 to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Compared with the existing literature, this load represents an important fraction (6-12%) of the estimated amount applied because of the steep vineyard slopes (∼10%). The associated risk of these compounds toward aquatic species was found to be negligible in the present study, as well as for other rivers in Switzerland. A growth stimulation was nevertheless observed for the algae Scenedesmus vacuolatus with low concentrations of glyphosate, which could indicate a risk of perturbation in aquatic ecosystems, such as eutrophication. The combination of field and ecotoxicity data allowed the performance of a realistic risk assessment for glyphosate and AMPA, which should be applied to other pesticide molecules.

  8. Response of Pennsylvania native plant species to dicamba and/or glyphosate

    EPA Science Inventory

    Weeds may become resistant to intensive and extensive use of specific herbicides associated with the growth of herbicide tolerant crops, e.g., the use of glyphosate for weed control with glyphosate tolerant soybeans. To counter this resistance, crops modified to contain genes for...

  9. Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio).

    PubMed

    Uren Webster, Tamsyn M; Laing, Lauren V; Florance, Hannah; Santos, Eduarda M

    2014-01-21

    Roundup and its active ingredient glyphosate are among the most widely used herbicides worldwide and may contaminate surface waters. Research suggests both Roundup and glyphosate induce oxidative stress in fish and may also cause reproductive toxicity in mammalian systems. We aimed to investigate the reproductive effects of Roundup and glyphosate in fish and the potential associated mechanisms of toxicity. To do this, we conducted a 21-day exposure of breeding zebrafish (Danio rerio) to 0.01, 0.5, and 10 mg/L (glyphosate acid equivalent) Roundup and 10 mg/L glyphosate. 10 mg/L glyphosate reduced egg production but not fertilization rate in breeding colonies. Both 10 mg/L Roundup and glyphosate increased early stage embryo mortalities and premature hatching. However, exposure during embryogenesis alone did not increase embryo mortality, suggesting that this effect was caused primarily by exposure during gametogenesis. Transcript profiling of the gonads revealed 10 mg/L Roundup and glyphosate induced changes in the expression of cyp19a1 and esr1 in the ovary and hsd3b2, cat, and sod1 in the testis. Our results demonstrate that these chemicals cause reproductive toxicity in zebrafish, although only at high concentrations unlikely to occur in the environment, and likely mechanisms of toxicity include disruption of the steroidogenic biosynthesis pathway and oxidative stress.

  10. Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its Roundup® formulation.

    PubMed

    Qiu, Huimin; Geng, Jinju; Ren, Hongqiang; Xia, Xiaomeng; Wang, Xiaorong; Yu, Yang

    2013-03-15

    Glyphosate may have dual effect on bloom algae as a phosphorus source or pesticide. The physiological and biochemical responses of Microcystis aeruginosa (M. aeruginosa) to glyphosate and its formulation in the common herbicide, Roundup(®), were compared. The result suggested that both the cell numbers and Chl-a content of M. aeruginosa increased when the glyphosate concentration increased from 0.01 to 5mg P L(-1). However, Roundup(®) showed low-dose (below 1mg P L(-1)) stimulation and high-dose (above 1mg P L(-1)) inhibition on M. aeruginosa cell density and Chl-a content (hormesis effect). Phosphate was more available than glyphosate or Roundup(®), and Roundup(®) was more toxic than glyphosate itself at 3mg P L(-1). Analysis of the maximum yield of PSII indicated that glyphosate stimulated the photosynthesis process while Roundup(®) inhibited the photosynthesis of M. aeruginosa. The photosynthesis process was enhanced on the 21st day compared with that on the 14th day in all P mediums. The extracellular alkaline phosphatase activity (APA) decreased with the increasing glyphosate or Roundup(®) concentration. The change pattern of APA was similar in both the glyphosate and Roundup(®) mediums.

  11. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Gregoire, Caroline; Capel, Paul D.; Coupe, Richard H.; Kalkhoff, Stephen J.

    2011-01-01

    CONCLUSIONS: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil.

  12. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  13. Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio).

    PubMed

    Uren Webster, Tamsyn M; Laing, Lauren V; Florance, Hannah; Santos, Eduarda M

    2014-01-21

    Roundup and its active ingredient glyphosate are among the most widely used herbicides worldwide and may contaminate surface waters. Research suggests both Roundup and glyphosate induce oxidative stress in fish and may also cause reproductive toxicity in mammalian systems. We aimed to investigate the reproductive effects of Roundup and glyphosate in fish and the potential associated mechanisms of toxicity. To do this, we conducted a 21-day exposure of breeding zebrafish (Danio rerio) to 0.01, 0.5, and 10 mg/L (glyphosate acid equivalent) Roundup and 10 mg/L glyphosate. 10 mg/L glyphosate reduced egg production but not fertilization rate in breeding colonies. Both 10 mg/L Roundup and glyphosate increased early stage embryo mortalities and premature hatching. However, exposure during embryogenesis alone did not increase embryo mortality, suggesting that this effect was caused primarily by exposure during gametogenesis. Transcript profiling of the gonads revealed 10 mg/L Roundup and glyphosate induced changes in the expression of cyp19a1 and esr1 in the ovary and hsd3b2, cat, and sod1 in the testis. Our results demonstrate that these chemicals cause reproductive toxicity in zebrafish, although only at high concentrations unlikely to occur in the environment, and likely mechanisms of toxicity include disruption of the steroidogenic biosynthesis pathway and oxidative stress. PMID:24364672

  14. Evaluation of Glyphosate-Resistant Soybean Cultivars for Resistance to Bacterial Pustule

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas axonopodis pv. glycines causes bacterial pustule of soybean, which is a common disease in many soybean-growing areas of the world and is controlled by a single recessive gene that was commonly found in many conventional glyphosate-sensitive soybean cultivars. Since glyphosate-resistant c...

  15. Annual Glyphosate Treatments Alter Growth of Unaffected Bentgrass (Agrostis) Weeds and Plant Community Composition

    PubMed Central

    Ahrens, Collin W.; Auer, Carol A.

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530

  16. Glyphosate-resistant horseweed (conyza canadensis) control with dicamba in Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread horseweed resistance to glyphosate has resulted in the use of dicamba as an alternative treatment. Horseweed populations in Cherokee and DeKalb counties in northern Alabama were not well controlled following glyphosate and dicamba treatments. This research evaluates horseweed populations ...

  17. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inheritance of glyphosate resistance in two Amaranthus palmeri populations (R1 and R2) was examined in reciprocal crosses (RC) and second reciprocal crosses (2RC) between glyphosate-resistant (R) and -susceptible (S) parents of this dioecious species. R populations and Female-R × Male-S crosses...

  18. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    PubMed

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment. PMID:27541149

  19. Evaluation of glyphosate application on transgenic soybean and its relationship with shikimic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate [N-(phosphonomethyl)glycine]-resistant crops (GRC) are the transgenic crops most extensively grown worldwide, with soybean being the major GRC. It is important to evaluate the impact of glyphosate on the shikimate pathway, growth and yield of GR soybean in the field. Furthermore, whether...

  20. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    PubMed

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  1. Influence of glyphosate on Rhizoctonia and Fusarium root rot in sugar beet.

    PubMed

    Larson, Rebecca L; Hill, Amy L; Fenwick, Ann; Kniss, Andrew R; Hanson, Linda E; Miller, Stephen D

    2006-12-01

    This study tests the effect of glyphosate application on disease severity in glyphosate-resistant sugar beet, and examines whether the increase in disease is fungal or plant mediated. In greenhouse studies of glyphosate-resistant sugar beet, increased disease severity was observed following glyphosate application and inoculation with certain isolates of Rhizoctonia solani Kuhn and Fusarium oxysporum Schlecht. f. sp. betae Snyd. & Hans. Significant increases in disease severity were noted for R. solani AG-2-2 isolate R-9 and moderately virulent F. oxysporum isolate FOB13 on both cultivars tested, regardless of the duration between glyphosate application and pathogen challenge, but not with highly virulent F. oxysporum isolate F-19 or an isolate of R. solani AG-4. The increase in disease does not appear to be fungal mediated, since in vitro studies showed no positive impact of glyphosate on fungal growth or overwintering structure production or germination for either pathogen. Studies of glyphosate impact on sugar beet physiology showed that shikimic acid accumulation is tissue specific and the rate of accumulation is greatly reduced in resistant cultivars when compared with a susceptible cultivar. The results indicate that precautions need to be taken when certain soil-borne diseases are present if weed management for sugar beet is to include post-emergence glyphosate treatments.

  2. An Interlaboratory Comparative Study on the Quantitative Determination of Glyphosate at Low Levels in Wheat Flour.

    PubMed

    Simonetti, Emanuela; Cartaud, Gérald; Quinn, Robert M; Marotti, Ilaria; Dinelli, Giovanni

    2015-01-01

    In recent years, the use of glyphosate has dramatically increased worldwide, and there is growing concern about contamination of organic products caused by its heavy use on neighboring fields. Glyphosate is found as a residue not only in soil, plants, and groundwater but also in humans and animals. Considering the controversy on glyphosate maximum residue level in foodstuff and the difficulties in its analytical determination, the main purpose of the present paper was to investigate the competence and accuracy of 13 accredited European laboratories in determining glyphosate in wheat flour at a level close to their reporting limit of 10 μg/kg. According to the results of this performance assessment, the laboratories were not able to quantify glyphosate at trace levels. Therefore, their specified reporting limits of 10 μg/kg were not supported by their results, and a reporting limit of around 50 μg/kg of glyphosate in flour seems to be more appropriate to guarantee reliable and robust results. The widespread use of glyphosate and its harmfulness to humans make its detection at trace levels a primary goal for analytical laboratories. This is achievable through the improvement of QA and/or the optimization of the method of analysis used for glyphosate detection.

  3. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently claims have been made that the use of glyphosate and transgenic crop traits increases the risk of plant diseases. Transgenic traits used widely for years in dent corn are now available in commercial sweet corn cultivars, specifically, the combination of glyphosate resistance (GR) and Lepid...

  4. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis) weeds and plant community composition.

    PubMed

    Ahrens, Collin W; Auer, Carol A

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  5. Investigating the Mechanism of Glyphosate Resistance in Rigid Ryegrass (Lolium rigidum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a broad-spectrum herbicide that has been used extensively for more than 20 yr. The first glyphosate-resistant weed biotype appeared in 1996; it involved a rigid ryegrass population from Australia that exhibited an LD50 value approximately 10-fold higher than that of sensitive biotypes....

  6. Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri).

    PubMed

    Gaines, Todd A; Shaner, Dale L; Ward, Sarah M; Leach, Jan E; Preston, Christopher; Westra, Philip

    2011-06-01

    Evolved glyphosate resistance in weedy species represents a challenge for the continued success and utility of glyphosate-resistant crops. Glyphosate functions by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). The resistance mechanism was determined in a population of glyphosate-resistant Palmer amaranth from Georgia (U.S.). Within this population, glyphosate resistance correlates with increases in (a) genomic copy number of EPSPS, (b) expression of the EPSPS transcript, (c) EPSPS protein level, and (d) EPSPS enzymatic activity. Dose response results from the resistant and an F(2) population suggest that between 30 and 50 EPSPS genomic copies are necessary to survive glyphosate rates between 0.5 and 1.0 kg ha(-1). These results further confirm the role of EPSPS gene amplification in conferring glyphosate resistance in this population of Palmer amaranth. Questions remain related to how the EPSPS amplification initially occurred and the occurrence of this mechanism in other Palmer amaranth populations and other glyphosate-resistant species.

  7. Weed control and yield comparisons of glyphosate- and glufosinate-resistant corn grown in rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 6-yr field study was conducted from 2004 to 2009 at Stoneville, MS to examine the effects of rotating glyphosate-resistant and glufosinate-resistant corn (Zea mays L.) under reduced tillage conditions on weed control, soil weed seedbank, and yield. The four rotation systems were glyphosate-resista...

  8. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    PubMed

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.

  9. [Mutual Effect on Determination of Gibberellins and Glyphosate in Groundwater by Spectrophotometry].

    PubMed

    Zhang, Li; Chen, Liang; Liu, Fei

    2015-04-01

    In the present study, a spectrophotometry method for the simultaneous determination of gibberellins (GA3) and glyphosate in groundwater was established and optimized. In addition, the mutual effect on simultaneous determination of GA3 and glyphosate was studied. Based on the experiment, good linearity (R2 > 0.99) was obtained for GA3 in the range of 0-20 and 0-100 µg and for glyphosate in the range of 0-8 and 5-15 µg. The method's detection limit (MDL) of GA3 and glyphosate was 0.48 and 0.82 µg, respectively; and the recovery rates of 15 to 150 µg GA3 and 3 to 10 µg glyphosate in all samples at a spiked level were 71.3% ± 1.9% and 98.4% ± 8.1%, respectively. No obvious influence of glyphosate (0-100 mg · L(-1)) on the recovery rates of GA3 was observed, but the presence of glyphosate could cause slight determination precision decrease of GA3. Meanwhile, adding 2 mg · L(-1) GA3 can increase the recovery rate of glyphosate.

  10. Determination of glyphosate and its metabolite in emergency room in Korea.

    PubMed

    Han, Joseph; Moon, Hantae; Hong, Youngki; Yang, Songhee; Jeong, Won-Joon; Lee, Kwang-Sik; Chung, Heesun

    2016-08-01

    The number of glyphosate intoxication cases has been increased after the regulation of paraquat. Unfortunately, there are no reports on the potential concentration of glyphosate for those acute intoxicated patients admitted to emergency rooms and the correlation between the concentration of glyphosate and clinical symptoms in Korea up to our knowledge. As a nonselective herbicide, analysis of glyphosate requires derivatization because of its amphoteric and strongly polar nature. In order to develop a method to determine the concentration of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA) in blood samples without derivatization, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was utilized with a hydrophilic interaction chromatography (HILIC) column. The validation of this method showed that the limits of detection (LODs) and limits of quantitation (LOQs) for glyphosate and AMPA were 50 and 100ng/mL, respectively. In addition, matrix effect, recovery rate, and accuracy and precision in intra and inter-day were evaluated during the validation study of this method. Blood samples acquired from five glyphosate intoxicated patients were analyzed to investigate the correlation between the concentration of glyphosate and clinical symptoms. These patients were previously admitted to the emergency room at a University Hospital in Korea after glyphosate was self-administered in suicide attempts or by accident. As results of blood sample study, the concentration of glyphosate and AMPA were found in the range of 1.0-171.1 and 0.2-2.6μg/mL, respectively. The concentration ratio of glyphosate to AMPA was 55-71. According to the clinical reports for those patients, they were in the age between 47 and 82 years old and administered about 50-400mL. The blood samples were collected within 2-5h after administration of glyphosate. Among the intoxicated patients, the most common clinical symptom was metabolic acidosis, identified in four patients

  11. Determination of glyphosate and its metabolite in emergency room in Korea.

    PubMed

    Han, Joseph; Moon, Hantae; Hong, Youngki; Yang, Songhee; Jeong, Won-Joon; Lee, Kwang-Sik; Chung, Heesun

    2016-08-01

    The number of glyphosate intoxication cases has been increased after the regulation of paraquat. Unfortunately, there are no reports on the potential concentration of glyphosate for those acute intoxicated patients admitted to emergency rooms and the correlation between the concentration of glyphosate and clinical symptoms in Korea up to our knowledge. As a nonselective herbicide, analysis of glyphosate requires derivatization because of its amphoteric and strongly polar nature. In order to develop a method to determine the concentration of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA) in blood samples without derivatization, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was utilized with a hydrophilic interaction chromatography (HILIC) column. The validation of this method showed that the limits of detection (LODs) and limits of quantitation (LOQs) for glyphosate and AMPA were 50 and 100ng/mL, respectively. In addition, matrix effect, recovery rate, and accuracy and precision in intra and inter-day were evaluated during the validation study of this method. Blood samples acquired from five glyphosate intoxicated patients were analyzed to investigate the correlation between the concentration of glyphosate and clinical symptoms. These patients were previously admitted to the emergency room at a University Hospital in Korea after glyphosate was self-administered in suicide attempts or by accident. As results of blood sample study, the concentration of glyphosate and AMPA were found in the range of 1.0-171.1 and 0.2-2.6μg/mL, respectively. The concentration ratio of glyphosate to AMPA was 55-71. According to the clinical reports for those patients, they were in the age between 47 and 82 years old and administered about 50-400mL. The blood samples were collected within 2-5h after administration of glyphosate. Among the intoxicated patients, the most common clinical symptom was metabolic acidosis, identified in four patients

  12. Glyphosate impacts on polyphenolic composition in grapevine (Vitis vinifera L.) berries and wine.

    PubMed

    Donnini, Silvia; Tessarin, Paola; Ribera-Fonseca, Alejandra; Di Foggia, Michele; Parpinello, Giuseppina Paola; Rombolà, Adamo Domenico

    2016-12-15

    Glyphosate is the most widespread herbicide for weed management, being extensively used in viticulture. In this study we tested, under field conditions, the effects of glyphosate applications on the quality of berry and wine, from cv. Ancellotta (Vitis vinifera L.), with particular regard to anthocyanin concentration and composition. Ripening and growth were monitored by analyzing berry technological parameters and weight. Additionally, microvinifications were performed, in order to analyze the concentration of anthocyanins, other flavonoids and phenolic acids in wine. Our findings indicated that, at harvest, both pH and anthocyanin concentration were significantly lower and titratable acidity higher in berries collected from vines of plots under glyphosate-treatment compared with those of non-treated parcels. Data suggest that treatment with glyphosate did not change the concentration of anthocyanins, other flavonoids and phenolic acids in the wine. Our results indicate that treatment with glyphosate may affect fruit metabolism and nutritional value in non-target plants.

  13. New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity.

    PubMed

    Hadi, Faranak; Mousavi, Amir; Noghabi, Kambiz Akbari; Tabar, Hadi Ghaderi; Salmanian, Ali Hatef

    2013-01-01

    Thirty bacterial strains with various abilities to utilize glyphosate as the sole phosphorus source were isolated from farm soils using the glyphosate enrichment cultivation technique. Among them, a strain showing a remarkable glyphosate-degrading activity was identified by biochemical features and 16S rRNA sequence analysis as Ochrobactrum sp. (GDOS). Herbicide (3 mM) degradation was induced by phosphate starvation, and was completed within 60 h. Aminomethylphosphonic acid was detected in the exhausted medium, suggesting glyphosate oxidoreductase as the enzyme responsible for herbicide breakdown. As it grew even in the presence of glyphosate concentrations as high as 200 mM, Ochrobactrum sp. could be used for bioremediation purposes and treatment of heavily contaminated soils.

  14. Glyphosate impacts on polyphenolic composition in grapevine (Vitis vinifera L.) berries and wine.

    PubMed

    Donnini, Silvia; Tessarin, Paola; Ribera-Fonseca, Alejandra; Di Foggia, Michele; Parpinello, Giuseppina Paola; Rombolà, Adamo Domenico

    2016-12-15

    Glyphosate is the most widespread herbicide for weed management, being extensively used in viticulture. In this study we tested, under field conditions, the effects of glyphosate applications on the quality of berry and wine, from cv. Ancellotta (Vitis vinifera L.), with particular regard to anthocyanin concentration and composition. Ripening and growth were monitored by analyzing berry technological parameters and weight. Additionally, microvinifications were performed, in order to analyze the concentration of anthocyanins, other flavonoids and phenolic acids in wine. Our findings indicated that, at harvest, both pH and anthocyanin concentration were significantly lower and titratable acidity higher in berries collected from vines of plots under glyphosate-treatment compared with those of non-treated parcels. Data suggest that treatment with glyphosate did not change the concentration of anthocyanins, other flavonoids and phenolic acids in the wine. Our results indicate that treatment with glyphosate may affect fruit metabolism and nutritional value in non-target plants. PMID:27451151

  15. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study.

    PubMed

    Cassigneul, A; Benoit, P; Bergheaud, V; Dumeny, V; Etiévant, V; Goubard, Y; Maylin, A; Justes, E; Alletto, L

    2016-03-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of (14)C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. (14)C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH4OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends (14)C-glyphosate degradation half-life from 7 to 28 days depending on the CC. (14)C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity.

  16. Molecular basis of glyphosate resistance-different approaches through protein engineering.

    PubMed

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-08-01

    Glyphosate (N-phosphonomethyl-glycine) is the most widely used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple, small molecule is mainly attributable to the high specificity of glyphosate for the plant enzyme enolpyruvyl shikimate-3-phosphate synthase in the shikimate pathway, leading to the biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced, thus allowing application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on mechanisms of resistance to glyphosate as obtained through natural diversity, the gene-shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer a rationale for the means by which the modifications made have had their intended effect.

  17. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  18. In vitro percutaneous absorption of model compounds glyphosate and malathion from cotton fabric into and through human skin.

    PubMed

    Wester, R C; Quan, D; Maibach, H I

    1996-08-01

    Chemicals are introduced to fabric at many steps during manufacture and use. Fabrics containing chemicals can cause medical problems such as dermatitis and death. Insecticides impregnated into uniforms worn by "Desert Storm" personnel are implicated in "Gulf War Syndrome'. These chemicals must get from fabric into and through skin to cause toxic effects. The objective of the present study was to determine in vitro percutaneous absorption of model chemicals glyphosate (water soluble) and malathion (relative water insoluble) from cotton fabric into and through human skin. The percutaneous absorption of glyphosate from water solution was 1.42 +/- 0.25% dose. This decreased to 0.74 +/- 0.26% for glyphosate added to cotton sheets and immediately put onto skin. If the cotton sheets were dried for 1 or 2 days, then applied to skin, absorption was 0.08 +/- 0.02% and 0.08 +/- 0.01% respectively. However, wetting the 2-day dried cotton sheet with water to simulate sweating or wet conditions increased absorption to 0.36 +/- 0.07%. Similar results were found for malathion. Absorption of malathion from aqueous ethanol solution was 8.77 +/- 1.43%. This decreased to 3.92 +/- 0.49%, 0.62 +/- 0.11% and 0.60 +/- 0.14% for 0, 1- and 2-day-treated cotton sheets. However, malathion absorption from 2-day treated/dried cotton sheets increased to 7.34 +/- 0.61% when wetted with aqueous ethanol. These results show that chemicals in fabric (clothing, rug, upholstery, etc.) can transfer from fabric into and through human skin to cause toxic effects.

  19. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    PubMed Central

    Fernández-Moreno, Pablo T.; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E.; Rojano-Delgado, Antonia M.; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha−1 for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  20. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia

    PubMed Central

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure. PMID:26580558

  1. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    SciTech Connect

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.

  2. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  3. Physiological, morphological and biochemical studies of glyphosate tolerance in Mexican Cologania (Cologania broussonetii (Balb.) DC.).

    PubMed

    Alcántara de la Cruz, Ricardo; Barro, Francisco; Domínguez-Valenzuela, José Alfredo; De Prado, Rafael

    2016-01-01

    In recent years, glyphosate-tolerant legumes have been used as cover crops for weed management in tropical areas of Mexico. Mexican cologania (Cologania broussonetii (Balb.) DC.) is an innate glyphosate-tolerant legume with a potential as a cover crop in temperate areas of the country. In this work, glyphosate tolerance was characterized in two Mexican cologania (a treated (T) and an untreated (UT)) populations as being representatives of the species, compared in turn to a glyphosate-susceptible hairy fleabane (S) (Conyza bonariensis (L.) Cronq.) population. Experiments revealed that T and UT Mexican cologania populations had a higher tolerance index (TI), and a lower shikimic acid accumulation and foliar retention than the hairy fleabane S population. Absorption and translocation, leaf morphology and metabolism studies were only carried out in the Mexican cologania T population and the hairy fleabane S population. The latter absorbed 37% more (14)C-glyphosate compared to the Mexican cologania T at 96 h after treatment (HAT). Mexican cologania T translocated less herbicide from the treated leaf to the remainder of the plant than hairy fleabane S. The Mexican cologania T presented a greater epicuticular wax coverage percentage than the hairy fleabane S. This morphological characteristic contributed to the low glyphosate absorption observed in the Mexican cologania. In addition, the Mexican cologania T metabolized glyphosate mainly into AMPA, formaldehyde and sarcosine. These results indicate that the high glyphosate tolerance observed in Mexican cologania is mainly due to the poor penetration and translocation of glyphosate into the active site, and the high glyphosate degradation into non-toxic substances.

  4. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia.

    PubMed

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure.

  5. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia.

    PubMed

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure. PMID:26580558

  6. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  7. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  8. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).

    PubMed

    Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro

    2014-11-01

    We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

  9. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  10. Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: a critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies.

    PubMed

    Báez, María E; Fuentes, Edwar; Espina, María José; Espinoza, Jeannette

    2014-11-01

    The assessment of the environmental fate of glyphosate and its degradation product (aminomethylphosphonic acid) is of great interest given the widespread use of the herbicide. Studies of adsorption-desorption and transport processes in soils require analytical methods with sensitivity, accuracy, and precision suitable for determining the analytes in aqueous equilibrium solutions of varied complexity. In this work, the effect of factors on the yield of the derivatization of both compounds with 9-fluorenylmethyl chloroformate for applying in aqueous solutions derived from soils was evaluated through factorial experimental designs. Interference effects coming from background electrolytes and soil matrices were established. The whole method had a linear response up to 640 ng/mL (R(2) > 0.999) under optimized conditions for high-performance liquid chromatography with fluorescence detection. Limits of detection were 0.6 and 0.4 ng/mL for glyphosate and aminomethylphosphonic acid, respectively. The relative standard deviation was 4.4% for glyphosate (20 ng/mL) and 5.9% for aminomethylphosphonic acid (10 ng/mL). Adsorption of compounds on four different soils was assessed. Isotherm data fitted well the Freundlich model (R(2) > 0.97). Kf constants varied between 93 ± 3.1 and 2045 ± 157 for glyphosate and between 99 ± 4.1 and 1517 ± 56 (μg(1-1/) (n)  mL(1/) (n) ( ) g(-1) ) for aminomethylphosphonic acid, showing the broad range of applicability of the proposed method. PMID:25137606

  11. Natural herbicide resistance (HR) to broad-spectrum herbicide, glyphosate among traditional and inbred-cultivated rice (Oryza sativa L.) varieties in Sri Lanka.

    PubMed

    Weerakoon, S R; Somaratne, S; Wijeratne, R G D; Ekanyaka, E M S I

    2013-08-15

    Weeds along with insect pests and plant diseases are sources of biotic stress in crop systems. Weeds are responsible for serious problems in rice worldwide affecting growth and causing a considerable reduction in quality and quantity in yield. High concentrations of pre-emergent-broad-spectrum systemic herbicide, Glyphosate is prevalently applied to control rice weeds which intern causes severe damages to cultivated rice varieties, susceptible to Glyphosate. However, there may be rice varieties with natural Herbicide Resistance (HR) which are so far, has not been evaluated. In this study Six traditional and eighteen developed-cultivated rice varieties (Bg, Bw, At and Ld series developed by Rice Research Development Institute, Sri Lanka) were used to screen their natural HR. RCBD with five replicates and three blocks in each treatment-combination was used as the experimental design. As observations, time taken-to seed germination, time taken to flowering; plant height and number of leaves at 12-weeks after sawing, leaf-length, breadth, panicle-length, number of seeds/panicle of resistant plants and controls were recorded. Plants with > or = 40% resistance were considered as resistant to Glyphosate. Ten inbred-cultivated rice varieties (Bg250, Bg94-1, Bg304, Bg359, Bg406, Bg379-2, Bg366, Bg300, Bw364, At362) and three traditional rice varieties ("Kalu Heenati", "Sudu Heenati", "Pachchaperumal") were naturally resistant to 0.25 g L(-1) Glyphosate concentration and when increased the concentration (0.5 g L(-1)) resistance was reduced. This study showed the usefulness of modern statistical method, classification and regression tree analysis (CART) in exploring and visualizing the patterns reflected by a large number of rice varieties (larger experimental database) on herbicide resistance in future.

  12. Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: a critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies.

    PubMed

    Báez, María E; Fuentes, Edwar; Espina, María José; Espinoza, Jeannette

    2014-11-01

    The assessment of the environmental fate of glyphosate and its degradation product (aminomethylphosphonic acid) is of great interest given the widespread use of the herbicide. Studies of adsorption-desorption and transport processes in soils require analytical methods with sensitivity, accuracy, and precision suitable for determining the analytes in aqueous equilibrium solutions of varied complexity. In this work, the effect of factors on the yield of the derivatization of both compounds with 9-fluorenylmethyl chloroformate for applying in aqueous solutions derived from soils was evaluated through factorial experimental designs. Interference effects coming from background electrolytes and soil matrices were established. The whole method had a linear response up to 640 ng/mL (R(2) > 0.999) under optimized conditions for high-performance liquid chromatography with fluorescence detection. Limits of detection were 0.6 and 0.4 ng/mL for glyphosate and aminomethylphosphonic acid, respectively. The relative standard deviation was 4.4% for glyphosate (20 ng/mL) and 5.9% for aminomethylphosphonic acid (10 ng/mL). Adsorption of compounds on four different soils was assessed. Isotherm data fitted well the Freundlich model (R(2) > 0.97). Kf constants varied between 93 ± 3.1 and 2045 ± 157 for glyphosate and between 99 ± 4.1 and 1517 ± 56 (μg(1-1/) (n)  mL(1/) (n) ( ) g(-1) ) for aminomethylphosphonic acid, showing the broad range of applicability of the proposed method.

  13. Natural herbicide resistance (HR) to broad-spectrum herbicide, glyphosate among traditional and inbred-cultivated rice (Oryza sativa L.) varieties in Sri Lanka.

    PubMed

    Weerakoon, S R; Somaratne, S; Wijeratne, R G D; Ekanyaka, E M S I

    2013-08-15

    Weeds along with insect pests and plant diseases are sources of biotic stress in crop systems. Weeds are responsible for serious problems in rice worldwide affecting growth and causing a considerable reduction in quality and quantity in yield. High concentrations of pre-emergent-broad-spectrum systemic herbicide, Glyphosate is prevalently applied to control rice weeds which intern causes severe damages to cultivated rice varieties, susceptible to Glyphosate. However, there may be rice varieties with natural Herbicide Resistance (HR) which are so far, has not been evaluated. In this study Six traditional and eighteen developed-cultivated rice varieties (Bg, Bw, At and Ld series developed by Rice Research Development Institute, Sri Lanka) were used to screen their natural HR. RCBD with five replicates and three blocks in each treatment-combination was used as the experimental design. As observations, time taken-to seed germination, time taken to flowering; plant height and number of leaves at 12-weeks after sawing, leaf-length, breadth, panicle-length, number of seeds/panicle of resistant plants and controls were recorded. Plants with > or = 40% resistance were considered as resistant to Glyphosate. Ten inbred-cultivated rice varieties (Bg250, Bg94-1, Bg304, Bg359, Bg406, Bg379-2, Bg366, Bg300, Bw364, At362) and three traditional rice varieties ("Kalu Heenati", "Sudu Heenati", "Pachchaperumal") were naturally resistant to 0.25 g L(-1) Glyphosate concentration and when increased the concentration (0.5 g L(-1)) resistance was reduced. This study showed the usefulness of modern statistical method, classification and regression tree analysis (CART) in exploring and visualizing the patterns reflected by a large number of rice varieties (larger experimental database) on herbicide resistance in future. PMID:24498832

  14. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  15. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  16. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  17. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    PubMed

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  18. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    PubMed

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration.

  19. Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy.

    PubMed

    Liu, Bijun; Dong, Lan; Yu, Qianhong; Li, Xingliang; Wu, Fengchang; Tan, Zhaoyi; Luo, Shunzhong

    2016-03-10

    Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject (J. Phys. Chem. A 2015, 119, 5241-5249). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action.

  20. Atrazine and glyphosate dynamics in a lotic ecosystem: the common snapping turtle as a sentinel species.

    PubMed

    Douros, Derrick L; Gaines, Karen F; Novak, James M

    2015-03-01

    Atrazine and glyphosate are two of the most common pesticides used in the US Midwest that impact water quality via runoff, and the common snapping turtle (Chelydra serpentina) is an excellent indicator species to monitor these pesticides especially in lotic systems. The goals of this study were to (1) quantify atrazine, the atrazine metabolite diaminochlorotriazine (DACT), and glyphosate burdens in common snapping turtle tissue from individuals collected within the Embarras River in Illinois; (2) quantify atrazine, DACT, and glyphosate loads in water from the aquatic habitats in which common snapping turtles reside; and (3) investigate tissue loads based on turtle morphology and habitat choice. Concentrations of atrazine, DACT, and glyphosate in tissue did not show any relationship with lake habitat, carapace length, width, or mass. Both atrazine and glyphosate tissue samples varied as a function of site (river vs. lake), but DACT did not. Atrazine and glyphosate concentrations in water samples showed a linear effect on distance from the reservoir spillway and a deviation from linearity. Water column concentrations of all three contaminants varied across capture sites, but atrazine water concentration did not influence DACT water concentration nor did it exhibit a site interaction. Water atrazine and glyphosate concentrations were greater than tissue concentrations, whereas DACT water and tissue concentrations did not differ. This study showed that turtles are useful in long-term pesticide monitoring, and because DACT as a metabolite is less sensitive to variation, it should be considered as a preferred biomarker for pesticide runoff. PMID:25678354

  1. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa.

    PubMed

    Wu, Liang; Qiu, Zhihao; Zhou, Ya; Du, Yuping; Liu, Chaonan; Ye, Jing; Hu, Xiaojun

    2016-09-01

    Glyphosate has been used extensively for weed control in agriculture in many countries. However, glyphosate can be transported into the aquatic environment and might cause adverse effects on aquatic life. This study investigated the physiological characteristics of cyanobacteria Microcystis aeruginosa (M. aeruginosa) after exposure to glyphosate, and the results showed that changes in cell density production, chlorophyll a and protein content are consistent. In M. aeruginosa, oxidative stress caused by glyphosate indicated that 48h of exposure increased the concentration of malondialdehyde (MDA) and enhanced the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). To further investigate the toxicity of glyphosate on M. aeruginosa, the viability of treated cells was monitored and the toxin release was determined. The results indicated that glyphosate induced apoptosis of and triggered toxin release in M. aeruginosa. These results are helpful for understanding the toxic effects of glyphosate on cyanobacteria, which is important for environmental assessment and protection. These results are also useful for guidance on the application of this type of herbicide in agricultural settings. PMID:27472782

  2. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa.

    PubMed

    Wu, Liang; Qiu, Zhihao; Zhou, Ya; Du, Yuping; Liu, Chaonan; Ye, Jing; Hu, Xiaojun

    2016-09-01

    Glyphosate has been used extensively for weed control in agriculture in many countries. However, glyphosate can be transported into the aquatic environment and might cause adverse effects on aquatic life. This study investigated the physiological characteristics of cyanobacteria Microcystis aeruginosa (M. aeruginosa) after exposure to glyphosate, and the results showed that changes in cell density production, chlorophyll a and protein content are consistent. In M. aeruginosa, oxidative stress caused by glyphosate indicated that 48h of exposure increased the concentration of malondialdehyde (MDA) and enhanced the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). To further investigate the toxicity of glyphosate on M. aeruginosa, the viability of treated cells was monitored and the toxin release was determined. The results indicated that glyphosate induced apoptosis of and triggered toxin release in M. aeruginosa. These results are helpful for understanding the toxic effects of glyphosate on cyanobacteria, which is important for environmental assessment and protection. These results are also useful for guidance on the application of this type of herbicide in agricultural settings.

  3. Atrazine and glyphosate dynamics in a lotic ecosystem: the common snapping turtle as a sentinel species.

    PubMed

    Douros, Derrick L; Gaines, Karen F; Novak, James M

    2015-03-01

    Atrazine and glyphosate are two of the most common pesticides used in the US Midwest that impact water quality via runoff, and the common snapping turtle (Chelydra serpentina) is an excellent indicator species to monitor these pesticides especially in lotic systems. The goals of this study were to (1) quantify atrazine, the atrazine metabolite diaminochlorotriazine (DACT), and glyphosate burdens in common snapping turtle tissue from individuals collected within the Embarras River in Illinois; (2) quantify atrazine, DACT, and glyphosate loads in water from the aquatic habitats in which common snapping turtles reside; and (3) investigate tissue loads based on turtle morphology and habitat choice. Concentrations of atrazine, DACT, and glyphosate in tissue did not show any relationship with lake habitat, carapace length, width, or mass. Both atrazine and glyphosate tissue samples varied as a function of site (river vs. lake), but DACT did not. Atrazine and glyphosate concentrations in water samples showed a linear effect on distance from the reservoir spillway and a deviation from linearity. Water column concentrations of all three contaminants varied across capture sites, but atrazine water concentration did not influence DACT water concentration nor did it exhibit a site interaction. Water atrazine and glyphosate concentrations were greater than tissue concentrations, whereas DACT water and tissue concentrations did not differ. This study showed that turtles are useful in long-term pesticide monitoring, and because DACT as a metabolite is less sensitive to variation, it should be considered as a preferred biomarker for pesticide runoff.

  4. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    PubMed

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater. PMID:19482331

  5. Role of physiological mechanisms and EPSPS gene expression in glyphosate resistance in wild soybeans (Glycine soja).

    PubMed

    Gao, Yue; Tao, Bo; Qiu, Lijuan; Jin, Longguo; Wu, Jing

    2014-02-01

    The physiological mechanisms underlying glyphosate resistance in wild soybean germplasm and relevant EPSPS gene expression were evaluated. These germplasms were selected by gradually increasing glyphosate selection pressure started from 2010. As indicated by a whole-plant dose response bioassay, ZYD-254 plants were resistant to glyphosate at concentrations of 1230gaeha(-1), but the susceptible plants (ZYD-16) were unable to survive in the presence of 300gaeha(-1) glyphosate. The ED50 values of resistant germplasm were approximately 8.8 times of the susceptible germplasm. Chlorophyll content was significantly decreased in ZYD-16 plants in comparison with ZYD-254 plants. ZYD-16 plants accumulated 10.1 times more shikimate in leaves at 5days after glyphosate treatment at 1230gaeha(-1) than ZYD-254 did. GST activity differed between ZYD-254 and ZYD-16 in three tissues. It was highest in leaves. There were no significant differences in EPSPS1 or EPSPS3 expression between two germplasms before exposure to glyphosate treatment. After glyphosate treatment, there was a 2- to 4-fold increase in EPSPS1 mRNA levels in ZYD-254, but there was no change in EPSPS3 mRNA levels in ZYD-254 or ZYD-16.

  6. Glyphosate selected amplification of the 5-enolpyruvylshikimate-3-phosphate synthase gene in cultured carrot cells.

    PubMed

    Shyr, Y Y; Hepburn, A G; Widholm, J M

    1992-04-01

    CAR and C1, two carrot (Daucus carota L.) suspension cultures of different genotypes, were subjected to stepwise selection for tolerance to the herbicide glyphosate [(N-phosphonomethyl)glycine]. The specific activity of the target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), as well as the mRNA level and copy number of the structural gene increased with each glyphosate selection step. Therefore, the tolerance to glyphosate is due to stepwise amplification of the EPSPS genes. During the amplification process, DNA rearrangement did not occur within the EPSPS gene of the CAR cell line but did occur during the selection step from 28 to 35 mM glyphosate for the C1 cell line, as determined by Southern hybridization of selected cell DNA following EcoRI restriction endonuclease digestion. Two cell lines derived from a previously selected glyphosate-tolerant cell line (PR), which also had undergone EPSPS gene amplification but have been maintained in glyphosate-free medium for 2 and 5 years, have lost 36 and 100% of the increased EPSPS activity, respectively. Southern blot analysis of these lines confirms that the amplified DNA is relatively stable in the absence of selection. These studies demonstrate that stepwise selection for glyphosate resistance reproducibly produces stepwise amplification of the EPSPS genes. The relative stability of this amplification indicates that the amplified genes are not extrachromosomal.

  7. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops.

    PubMed

    Mamy, Laure; Barriuso, Enrique; Gabrielle, Benoît

    2005-09-01

    The introduction of crops resistant to the broad spectrum herbicide glyphosate, N-(phosphonomethyl)glycine, may constitute an answer to increased contamination of the environment by herbicides, since it should reduce the total amount of herbicide needed and the number of active ingredients. However, there are few published data comparing the fate of glyphosate in the environment, particularly in soil, with that of substitute herbicides. The objective of this study is to compare the fate of glyphosate in three soils with that of four herbicides frequently used on crops that might be glyphosate resistant: trifluralin, alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine, and metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide for oilseed rape, metamitron, 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazin-5-one for sugarbeet and sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione for maize. The distribution of herbicides between the volatilized, mineralized, extractable and non-extractable fractions was studied, along with the formation of their metabolites in laboratory experiments using 14C-labelled herbicides, over a period of 140 days. The main dissipation pathways were mineralization for glyphosate and sulcotrione, volatilization for trifluralin and non-extractable residues formation for metazachlor and metamitron. The five herbicides had low persistence. Glyphosate had the shortest half-life, which varied with soil type, whereas trifluralin had the longest. The half-lives of metazachlor and sulcotrione were comparable, whereas that of metamitron was highly variable. Glyphosate, metazachlor and sulcotrione were degraded into persistent metabolites. Low amounts of trifluralin and metamitron metabolites were observed. At 140 days after herbicide applications, the amounts of glyphosate and its metabolite residues in soils were the lowest in two soils, but not in the third soil, a loamy sand with low pH. The environmental advantage

  8. Surfactant-Increased Glyphosate Uptake into Plasma Membrane Vesicles Isolated from Common Lambsquarters Leaves.

    PubMed Central

    Riechers, D. E.; Wax, L. M.; Liebl, R. A.; Bush, D. R.

    1994-01-01

    Plasma membrane vesicles were isolated from mature leaves of lambsquarters (Chenopodium album L.) to investigate whether this membrane is a barrier to glyphosate uptake and whether surfactants possess differential abilities to enhance glyphosate permeability. Amino acids representing several structural classes showed [delta]pH-dependent transport, indicating that the proteins necessary for active, proton-coupled amino acid transport were present and functional. Glyphosate uptake was very low compared to the acidic amino acid glutamate, indicating that glyphosate is not utilizing an endogenous amino acid carrier to enter the leaf cells and that the plasma membrane appears to be a significant barrier to cellular uptake. In addition, glyphosate flux was much lower than that measured for either bentazon or atrazine, both lipid-permeable herbicides that diffuse through the bilayer. Glyphosate uptake was stimulated by 0.01% (v:v) MON 0818, the cationic surfactant used in the commercial formulation of this herbicide for foliar application. This concentration of surfactant did not disrupt the integrity of the plasma membrane vesicles, as evidenced by the stability of imposed pH gradients and active amino acid transport. Nonionic surfactants that disrupt the cuticle but that do not promote glyphosate toxicity in the field also increased glyphosate transport into the membrane vesicles. Thus, no correlation was observed between whole plant toxicity and surfactant-aided uptake. Current data suggest that surfactant efficacy may be the result of charged surfactants' ability to diffuse away from the cuticle into the subtending apoplastic space, where they act directly on the plasma membrane to increase glyphosate uptake. PMID:12232297

  9. The current status and environmental impacts of glyphosate-resistant crops: a review.

    PubMed

    Cerdeira, Antonio L; Duke, Stephen O

    2006-01-01

    Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is permitted. Effects of glyphosate on contamination of soil, water, and air are minimal, compared to some of the herbicides that they replace. No risks have been found with food or feed safety or nutritional value in products from currently available GRCs. Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit. Weed species in GRC fields have shifted to those that can more successfully withstand glyphosate and to those that avoid the time of its application. Three weed species have evolved resistance to glyphosate in GRCs. Glyphosate-resistant crops have greater potential to become problems as volunteer crops than do conventional crops. Glyphosate resistance transgenes have been found in fields of canola that are supposed to be non-transgenic. Under some circumstances, the largest risk of GRCs may be transgene flow (introgression) from GRCs to related species that might become problems in natural ecosystems. Glyphosate resistance transgenes themselves are highly unlikely to be a risk in wild plant populations, but when linked to transgenes that may impart fitness benefits outside of agriculture (e.g., insect resistance), natural ecosystems could be affected. The development and use of failsafe introgression barriers in crops with such linked genes is needed. PMID:16899736

  10. Alteration in the cytokine levels and histopathological damage in common carp induced by glyphosate.

    PubMed

    Ma, Junguo; Li, Xiaoyu

    2015-06-01

    Glyphosate is one of the most frequently used herbicides, and it has been demonstrated to generate a series of toxicological problems in animals and humans. However, relatively little is known about the effects of glyphosate on the immune system of fish. In the present study, the acute toxicity of glyphosate on common carp was first determined; then, the contents of interferon-γ (IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor -α (TNF-α) and histopathological alterations in the liver, kidneys, and spleen of common carp exposed to 52.08 or 104.15 mg L(-1) of glyphosate for 168 h were also determined and evaluated. The results of the acute toxicity tests showed that the 96 h LC50 of glyphosate for common carp was 520.77 mg L(-1). Moreover, sub-acute exposure of glyphosate altered the contents of IFN-γ, IL-1β, and TNF-α in fish immune organs. For example, there was a remarkable increase in the IFN-γ content in the kidneys, while there was a decrease in the liver and spleen. The IL-1β content increased in liver and kidneys, but it decreased in the spleen, and TNF-α mainly increased in the fish liver, kidneys, and spleen. In addition, glyphosate-exposure also caused remarkable histopathological damage in the fish liver, kidneys, and spleen. These results suggest that glyphosate-caused cytokine alterations may result in an immune suppression or excessive activation in the treated common carp as well as may cause immune dysfunction or reduced immunity. In conclusion, glyphosate has immunotoxic effects on common carp.

  11. The current status and environmental impacts of glyphosate-resistant crops: a review.

    PubMed

    Cerdeira, Antonio L; Duke, Stephen O

    2006-01-01

    Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is permitted. Effects of glyphosate on contamination of soil, water, and air are minimal, compared to some of the herbicides that they replace. No risks have been found with food or feed safety or nutritional value in products from currently available GRCs. Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit. Weed species in GRC fields have shifted to those that can more successfully withstand glyphosate and to those that avoid the time of its application. Three weed species have evolved resistance to glyphosate in GRCs. Glyphosate-resistant crops have greater potential to become problems as volunteer crops than do conventional crops. Glyphosate resistance transgenes have been found in fields of canola that are supposed to be non-transgenic. Under some circumstances, the largest risk of GRCs may be transgene flow (introgression) from GRCs to related species that might become problems in natural ecosystems. Glyphosate resistance transgenes themselves are highly unlikely to be a risk in wild plant populations, but when linked to transgenes that may impart fitness benefits outside of agriculture (e.g., insect resistance), natural ecosystems could be affected. The development and use of failsafe introgression barriers in crops with such linked genes is needed.

  12. Long-term sub-lethal effects of low concentration commercial herbicide (glyphosate/pelargonic acid) formulation in Bryophyllum pinnatum.

    PubMed

    Pokhrel, Lok R; Karsai, Istvan

    2015-12-15

    Potential long-term (~7months) sub-lethal impacts of soil-applied low levels of Roundup herbicide formulation were investigated in a greenhouse environment using the vegetative clones of succulent non-crop plant model, Bryophyllum pinnatum (Lam.) Oken. An eleven day LC50 (concentration that killed 50% of the plants) was found to be 6.25% (~1.25mg glyphosate/mL and 1.25mg pelargonic acid/mL combined), and complete mortality occurred at 12.5%, of the field application rate (i.e., ~20mg glyphosate/mL and 20mg pelargonic acid/mL as active ingredients). While sub-lethal Roundup (1-5%) exposures led to hormesis-characterized by a significant increase in biomass and vegetative reproduction, higher concentrations (≥6.25%) were toxic. A significant interaction between Roundup concentrations and leaf biomass was found to influence the F1 plantlets' biomass. Biomass asymmetry generally increased with increasing Roundup concentrations, indicating that plants were more stressed at higher Roundup treatments but within the low-dose regime (≤5% of the as-supplied formulation). While leaf apex region demonstrated higher reproduction with lower biomass increase, leaf basal area showed lower reproduction with greater biomass increase, in plantlets. The results suggest long-term exposures to drifted low levels of Roundup in soil may promote biomass and reproduction in B. pinnatum.

  13. Long-term sub-lethal effects of low concentration commercial herbicide (glyphosate/pelargonic acid) formulation in Bryophyllum pinnatum.

    PubMed

    Pokhrel, Lok R; Karsai, Istvan

    2015-12-15

    Potential long-term (~7months) sub-lethal impacts of soil-applied low levels of Roundup herbicide formulation were investigated in a greenhouse environment using the vegetative clones of succulent non-crop plant model, Bryophyllum pinnatum (Lam.) Oken. An eleven day LC50 (concentration that killed 50% of the plants) was found to be 6.25% (~1.25mg glyphosate/mL and 1.25mg pelargonic acid/mL combined), and complete mortality occurred at 12.5%, of the field application rate (i.e., ~20mg glyphosate/mL and 20mg pelargonic acid/mL as active ingredients). While sub-lethal Roundup (1-5%) exposures led to hormesis-characterized by a significant increase in biomass and vegetative reproduction, higher concentrations (≥6.25%) were toxic. A significant interaction between Roundup concentrations and leaf biomass was found to influence the F1 plantlets' biomass. Biomass asymmetry generally increased with increasing Roundup concentrations, indicating that plants were more stressed at higher Roundup treatments but within the low-dose regime (≤5% of the as-supplied formulation). While leaf apex region demonstrated higher reproduction with lower biomass increase, leaf basal area showed lower reproduction with greater biomass increase, in plantlets. The results suggest long-term exposures to drifted low levels of Roundup in soil may promote biomass and reproduction in B. pinnatum. PMID:26311583

  14. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.

    PubMed

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng

    2015-08-01

    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (p<0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction (NaHCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction (HCl-glyphosate) and concomitantly reduced that of the NaHCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution pH on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils.

  15. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  16. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-03-17

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  17. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  18. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    ,

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  19. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  20. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  1. Unmanned Aerial Vehicle Use for Wood Chips Pile Volume Estimation

    NASA Astrophysics Data System (ADS)

    Mokroš, M.; Tabačák, M.; Lieskovský, M.; Fabrika, M.

    2016-06-01

    The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000). We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993). We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  2. Predator foraging altitudes reveal the structure of aerial insect communities

    PubMed Central

    Helms, Jackson A.; Godfrey, Aaron P.; Ames, Tayna; Bridge, Eli S.

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  3. Predator foraging altitudes reveal the structure of aerial insect communities.

    PubMed

    Helms, Jackson A; Godfrey, Aaron P; Ames, Tayna; Bridge, Eli S

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  4. Objective recognition of cough sound as biomarker for aerial pollutants.

    PubMed

    Van Hirtum, A; Berckmans, D

    2004-02-01

    A relationship among air quality, respiratory health, and comfort in man and animal is widely shown. In general, a state of respiratory discomfort is prevailed by an increase in acoustic audible symptoms. The general concept of sound analysis as an objective contactless non-invasive biomarker for aerial pollution is studied on free-field cough sound of 12 Belgian Landrace piglets. A citric-acid-induced cough sound recognition algorithm with recognition rate of 95% is applied to cough sounds registered in the presence of distinct types of aerial pollutants: irritating gas (ammonia), respirable particles (dust), and temperature. The recognition performance for all aerial pollutants was >90% and maintained 94% on average. It is concluded that sound analysis allows an effective biomarker for all three types of aerial pollution. The generality of the biomarker is hypothesized to be due to the common mechanism involved in protective cough. As a consequence, it is suggested to use sound analysis as a biomarker for respiratory state in studies of exposure to air pollutants.

  5. FlyAR: augmented reality supported micro aerial vehicle navigation.

    PubMed

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding. PMID:24650983

  6. FlyAR: augmented reality supported micro aerial vehicle navigation.

    PubMed

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.

  7. Genotoxicity Study of Polysaccharide Fraction from Astragalus membranaceus's Aerial Parts

    PubMed Central

    Park, Yeong-Chul; Kim, Min Hee; Kim, Jung Woo; Kim, Jong-Bong; Lee, Jae Geun; Yu, Chang Yeon; Kim, Seung-Hyun; Chung, Ill Min; Kim, Jae Kwang; Choi, Ri Na

    2014-01-01

    Radix Astragali, the root of Astragalus (A.) membranaceus, has been applied in a variety of diseases for a long time in Asian countries such as Korea and China. In addition, the aerial parts such as leaves and stems of A. membranaceus have received a great deal of attention. Recently, the polysaccharide fraction showing a potent immunomoduating activity was isolated from the aerial parts of A. membranaceus. Thus, the aerial parts of A. membranaceus would be worthy enough for a food material and a dietary supplement. However, they should be safe even though valuable. In our previous study, it was estimated that NOAEL for female rats are 5000 mg/kg/day of the crude polysaccharide fraction from A. membranaceus-aboveground parts. As a series of safety evaluation, genotoxicity test for the crude polysaccharide fraction was carried out in this study. In conclusion, the three genotoxicity assays provided strong overall support that the crude polysaccharide fraction lacks mutagenic and/or clastogenic potential under the GLP-based test conditions. This indicates the aerial parts of A. membranaceus would be safe enough for a food material and a dietary supplement. PMID:25071923

  8. Influence of glyphosate and its formulation (Roundup) on the toxicity and bioavailability of metals to Ceriodaphnia dubia.

    PubMed

    Tsui, Martin T K; Wang, Wen-Xiong; Chu, L M

    2005-11-01

    This study examined the toxicological interaction between glyphosate (or its formulation, Roundup) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited "less than additive" mixture toxicity, with 48-h LC50 toxic unit > 1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur.

  9. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  10. Uptake and toxicity of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr.

    PubMed

    Vannini, Andrea; Guarnieri, Massimo; Bačkor, Martin; Bilová, Ivana; Loppi, Stefano

    2015-12-01

    This study investigated if treatment of the lichen Xanthoria parietina (L.) Th. Fr. with glyphosate caused uptake of this herbicide as well as physiological alterations. Samples were treated with Glifene SL®, a common commercial glyphosate-based herbicide, at the lowest recommended doses (3.6g/L) as well as with doses slightly higher than the highest suggested (36 g/L). The results clearly showed glyphosate uptake in X. parietina proportionally to the dose provided. Adverse physiological effects were evident on the photosynthetic apparatus (photosynthetic efficiency, chlorophyll a content, chlorophyll degradation) as well as on the fungal respiration rates and cell membrane integrity (ergosterol content, dehydrogenase activity) already after 24h from treatment, also at the low application dose. It is concluded that lichens are suitable organisms for monitoring unwanted biological effects from the application of glyphosate-based herbicides, as well as for detecting the accumulation of this compound in the biota, thus screening for its environmental fate.

  11. Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study.

    PubMed

    Skeff, Wael; Neumann, Christine; Schulz-Bull, Detlef E

    2015-11-15

    Water samples from ten German Baltic estuaries were collected in 2012 in order to study the presence of the herbicide glyphosate, its primary metabolite AMPA and their potential transport to the marine environment. For the analyses an LC-MS/MS based analytical method after derivatization with FMOC-Cl was optimized and validated for marine water samples. All investigated estuarine stations were contaminated with AMPA and nine of them also with glyphosate. Concentration ranges observed were 28 to 1690ng/L and 45 to 4156ng/L for glyphosate and AMPA, respectively with strong spatial and temporal fluctuations. Both contaminants were found at inbound sampling sites in the stream Muehlenfliess and concentrations decreased along the salinity gradient to the estuaries of the Baltic Sea. The data obtained in this study clearly depict the transport of glyphosate and AMPA to the Baltic Sea. Hence, detailed fate and risk assessment for both contaminants in marine environments are required.

  12. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  13. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem.

    PubMed

    Zaller, Johann G; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-09

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  14. How-To-Do-It: Glyphosate: Herbicidal Effects, Mode of Action and Degradation in Soil.

    ERIC Educational Resources Information Center

    Kafarski, Pawel; And Others

    1988-01-01

    Describes the usefulness of glyphosate for a demonstration of its herbicidal properties. Includes a list of the materials, preparation of solutions, procedures, data collection and analysis for three activities involving this chemical. (CW)

  15. Characterization of the Amaranthus palmeri Physiological Response to Glyphosate in Susceptible and Resistant Populations.

    PubMed

    Fernández-Escalada, Manuel; Gil-Monreal, Miriam; Zabalza, Ana; Royuela, Mercedes

    2016-01-13

    The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway. The physiologies of an Amaranthus palmeri population exhibiting resistance to glyphosate by EPSPS gene amplification (NC-R) and a susceptible population (NC-S) were compared. The EPSPS copy number of NC-R plants was 47.5-fold the copy number of NC-S plants. Although the amounts of EPSPS protein and activity were higher in NC-R plants than in NC-S plants, the AAA concentrations were similar. The increases in total free amino acid and in AAA contents induced by glyphosate were more evident in NC-S plants. In both populations, the EPSPS protein increased after glyphosate exposure, suggesting regulation of gene expression. EPSPS activity seems tightly controlled in vivo. Carbohydrate accumulation and a slight induction of ethanol fermentation were detected in both populations.

  16. Characterization of the Amaranthus palmeri Physiological Response to Glyphosate in Susceptible and Resistant Populations.

    PubMed

    Fernández-Escalada, Manuel; Gil-Monreal, Miriam; Zabalza, Ana; Royuela, Mercedes

    2016-01-13

    The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway. The physiologies of an Amaranthus palmeri population exhibiting resistance to glyphosate by EPSPS gene amplification (NC-R) and a susceptible population (NC-S) were compared. The EPSPS copy number of NC-R plants was 47.5-fold the copy number of NC-S plants. Although the amounts of EPSPS protein and activity were higher in NC-R plants than in NC-S plants, the AAA concentrations were similar. The increases in total free amino acid and in AAA contents induced by glyphosate were more evident in NC-S plants. In both populations, the EPSPS protein increased after glyphosate exposure, suggesting regulation of gene expression. EPSPS activity seems tightly controlled in vivo. Carbohydrate accumulation and a slight induction of ethanol fermentation were detected in both populations. PMID:26652930

  17. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans.

    PubMed

    Williams, G M; Kroes, R; Munro, I C

    2000-04-01

    Reviews on the safety of glyphosate and Roundup herbicide that have been conducted by several regulatory agencies and scientific institutions worldwide have concluded that there is no indication of any human health concern. Nevertheless, questions regarding their safety are periodically raised. This review was undertaken to produce a current and comprehensive safety evaluation and risk assessment for humans. It includes assessments of glyphosate, its major breakdown product [aminomethylphosphonic acid (AMPA)], its Roundup formulations, and the predominant surfactant [polyethoxylated tallow amine (POEA)] used in Roundup formulations worldwide. The studies evaluated in this review included those performed for regulatory purposes as well as published research reports. The oral absorption of glyphosate and AMPA is low, and both materials are eliminated essentially unmetabolized. Dermal penetration studies with Roundup showed very low absorption. Experimental evidence has shown that neither glyphosate nor AMPA bioaccumulates in any animal tissue. No significant toxicity occurred in acute, subchronic, and chronic studies. Direct ocular exposure to the concentrated Roundup formulation can result in transient irritation, while normal spray dilutions cause, at most, only minimal effects. The genotoxicity data for glyphosate and Roundup were assessed using a weight-of-evidence approach and standard evaluation criteria. There was no convincing evidence for direct DNA damage in vitro or in vivo, and it was concluded that Roundup and its components do not pose a risk for the production of heritable/somatic mutations in humans. Multiple lifetime feeding studies have failed to demonstrate any tumorigenic potential for glyphosate. Accordingly, it was concluded that glyphosate is noncarcinogenic. Glyphosate, AMPA, and POEA were not teratogenic or developmentally toxic. There were no effects on fertility or reproductive parameters in two multigeneration reproduction studies with

  18. Glyphosate and AMPA in U.S. streams, groundwater, precipitation and soils

    USGS Publications Warehouse

    Battaglin, William A.; Meyer, Michael T.; Kuivila, Kathryn M.; Dietze, Julie E.

    2014-01-01

    Herbicides containing glyphosate are used in more than 130 countries on more than 100 crops. In the United States (U.S.), agricultural use of glyphosate [N-(phosphonomethyl)glycine] has increased from less than 10,000 metric tons per year (active ingredient) in 1993 to more than 70,000 metric tons per year in 2006. In 2006, glyphosate accounted for about 20 percent of all herbicide use (by weight of active ingredient). Glyphosate formulations such as Roundup® are used in homes and in agriculture. Part of the reason for the popularity of glyphosate is the perception that it is an “environmentally benign” herbicide that has low toxicity and little mobility or persistence in the environment. The U.S. Geological Survey developed an analytical method using liquid chromatography/tandem mass spectrometry that can detect small amounts of glyphosate and its primary degradation product aminomethylphosphonic acid (AMPA) in water and sediment. Results from more than 2,000 samples collected from locations distributed across the U.S. indicate that glyphosate is more mobile and occurs more widely in the environment than was previously thought. Glyphosate and AMPA were detected (reporting limits between 0.1 and 0.02 micrograms per liter) in samples collected from surface water, groundwater, rainfall, soil water, and soil, at concentrations from less than 0.1 to more than 100 micrograms per liter. Glyphosate was detected more frequently in rain (86%), ditches and drains (71%), and soil (63%); and less frequently in groundwater (3%) and large rivers (18%). AMPA was detected more frequently in rain (86%), soil (82%), and large rivers (78%); and less frequently in groundwater (8%) and wetlands or vernal pools (37%). Most observed concentrations of glyphosate were well below levels of concern for humans or wildlife, and none exceeded the U.S. Environmental Protection Agency’s Maximum Contaminant Level of 700 micrograms per liter. However, the ecosystem effects of chronic low

  19. Preliminary statistical studies concerning the Campos RJ sugar cane area, using LANDSAT imagery and aerial photographs

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Costa, S. R. X.; Paiao, L. B. F.; Mendonca, F. J.; Shimabukuro, Y. E.; Duarte, V.

    1983-01-01

    The two phase sampling technique was applied to estimate the area cultivated with sugar cane in an approximately 984 sq km pilot region of Campos. Correlation between existing aerial photography and LANDSAT data was used. The two phase sampling technique corresponded to 99.6% of the results obtained by aerial photography, taken as ground truth. This estimate has a standard deviation of 225 ha, which constitutes a coefficient of variation of 0.6%.

  20. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions. PMID:27140906

  1. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions.

  2. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    PubMed

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190

  3. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity.

    PubMed

    Mesnage, R; Bernay, B; Séralini, G-E

    2013-11-16

    Pesticides are always used in formulations as mixtures of an active principle with adjuvants. Glyphosate, the active ingredient of the major pesticide in the world, is an herbicide supposed to be specific on plant metabolism. Its adjuvants are generally considered as inert diluents. Since side effects for all these compounds have been claimed, we studied potential active principles for toxicity on human cells for 9 glyphosate-based formulations. For this we detailed their compositions and toxicities, and as controls we used a major adjuvant (the polyethoxylated tallowamine POE-15), glyphosate alone, and a total formulation without glyphosate. This was performed after 24h exposures on hepatic (HepG2), embryonic (HEK293) and placental (JEG3) cell lines. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. The compositions in adjuvants were analyzed by mass spectrometry. Here we demonstrate that all formulations are more toxic than glyphosate, and we separated experimentally three groups of formulations differentially toxic according to their concentrations in ethoxylated adjuvants. Among them, POE-15 clearly appears to be the most toxic principle against human cells, even if others are not excluded. It begins to be active with negative dose-dependent effects on cellular respiration and membrane integrity between 1 and 3ppm, at environmental/occupational doses. We demonstrate in addition that POE-15 induces necrosis when its first micellization process occurs, by contrast to glyphosate which is known to promote endocrine disrupting effects after entering cells. Altogether, these results challenge the establishment of guidance values such as the acceptable daily intake of glyphosate, when these are mostly based on a long term in vivo test of glyphosate alone. Since pesticides are always used with adjuvants that could change their toxicity, the necessity to assess their whole formulations as mixtures becomes obvious. This challenges

  4. Degradation of 14C-glyphosate and aminomethylphosphonic acid (AMPA) in three agricultural soils.

    PubMed

    Al-Rajab, Abdul Jabbar; Schiavon, Michel

    2010-01-01

    Glyphosate (N-phosphonomethyl glycine) is the most used herbicide worldwide. The degradation of 14C-labeled glyphosate was studied under controlled laboratory conditions in three different agricultural soils: a silt clay loam, a clay loam and a sandy loam soil. The kinetic and intensity of glyphosate degradation varied considerably over time within the same soil and among different types of soil. Our results demonstrated that the mineralization rate of glyphosate was high at the beginning of incubation and then decreased with time until the end of the experiment. The same kinetic was observed for the water extractable residues. The degradation of glyphosate was rapid in the soil with low adsorption capacity (clay loam soil) with a short half-life of 4 days. However, the persistence of glyphosate in high adsorption capacity, soils increased, with half-live of 19 days for silt clay loam soil and 14.5 days for sandy loam soil. HPLC analyses showed that the main metabolite of glyphosate, aminomethylphosphonic acid (AMPA) was detected after three days of incubation in the extracts of all three soils. Our results suggested that the possibility of contamination of groundwater by glyphosate was high on a long-term period in soils with high adsorption capacity and low degrading activities and/or acid similar to sandy loam soil. This risk might be faster but less sustainable in soil with low adsorption capacity and high degrading activity like the clay loam soil. However, the release of non-extractable residues may increase the risk of contamination of groundwater regardless of the type of soil.

  5. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7.

    PubMed

    Kryuchkova, Yelena V; Burygin, Gennady L; Gogoleva, Natalia E; Gogolev, Yuri V; Chernyshova, Marina P; Makarov, Oleg E; Fedorov, Evgenii E; Turkovskaya, Olga V

    2014-01-20

    Plant-growth-promoting rhizobacteria exert beneficial effects on plants through their capacity for nitrogen fixation, phytohormone production, phosphate solubilization, and improvement of the water and mineral status of plants. We suggested that these bacteria may also have the potential to express degradative activity toward glyphosate, a commonly used organophosphorus herbicide. In this study, 10 strains resistant to a 10 mM concentration of glyphosate were isolated from the rhizoplane of various plants. Five of these strains--Alcaligenes sp. K1, Comamonas sp. K4, Azomonas sp. K5, Pseudomonas sp. K3, and Enterobacter cloacae K7--possessed a number of associative traits, including fixation of atmospheric nitrogen, solubilization of phosphates, and synthesis of the phytohormone indole-3-acetic acid. One strain, E. cloacae K7, could utilize glyphosate as a source of P. Gas-liquid chromatography showed that E. cloacae growth correlated with a decline in herbicide content in the culture medium (40% of the initial 5mM content), with no glyphosate accumulating inside the cells. Thin-layer chromatography analysis of the intermediate metabolites of glyphosate degradation found that E. cloacae K7 had a C-P lyase activity and degraded glyphosate to give sarcosine, which was then oxidized to glycine. In addition, strain K7 colonized the roots of common sunflower (Helianthus annuus L.) and sugar sorghum (Sorghum saccharatum Pers.), promoting the growth and development of sunflower seedlings. Our findings extend current knowledge of glyphosate-degrading rhizosphere bacteria and may be useful for developing a biotechnology for the cleanup and restoration of glyphosate-polluted soils. PMID:23545355

  6. Agricultural impacts of glyphosate-resistant soybean cultivation in South America.

    PubMed

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B

    2011-06-01

    In the 2009/2010 growing season, Brazil was the second largest world soybean producer, followed by Argentina. Glyphosate-resistant soybeans (GRS) are being cultivated in most of the soybean area in South America. Overall, the GRS system is beneficial to the environment when compared to conventional soybean. GRS resulted in a significant shift toward no-tillage practices in Brazil and Argentina, but weed resistance may reduce this trend. Probably the highest agricultural risk in adopting GRS in Brazil and South America is related to weed resistance due to use of glyphosate. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. Five weed species, in order of importance, Conyza bonariensis (L.) Cronquist, Conyza canadensis (L.) Cronquist, Lolium multiflorum Lam., Digitaria insularis (L.) Mez ex Ekman, and Euphorbia heterophylla L., have evolved resistance to glyphosate in GRS in Brazil. Conyza spp. are the most difficult to control. A glyphosate-resistant biotype of Sorghum halepense L. has evolved in GRS in Argentina and one of D. insularis in Paraguay. The following actions are proposed to minimize weed resistance problem: (a) rotation of GRS with conventional soybeans in order to rotate herbicide modes of action; (b) avoidance of lower than recommended glyphosate rates; (c) keeping soil covered with a crop or legume at intercrop intervals; (d) keeping machinery free of weed seeds; and (d) use of a preplant nonselective herbicide plus residuals to eliminate early weed interference with the crop and to minimize escapes from later applications of glyphosate due to natural resistance of older weeds and/or incomplete glyphosate coverage.

  7. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity.

    PubMed

    Mesnage, R; Bernay, B; Séralini, G-E

    2013-11-16

    Pesticides are always used in formulations as mixtures of an active principle with adjuvants. Glyphosate, the active ingredient of the major pesticide in the world, is an herbicide supposed to be specific on plant metabolism. Its adjuvants are generally considered as inert diluents. Since side effects for all these compounds have been claimed, we studied potential active principles for toxicity on human cells for 9 glyphosate-based formulations. For this we detailed their compositions and toxicities, and as controls we used a major adjuvant (the polyethoxylated tallowamine POE-15), glyphosate alone, and a total formulation without glyphosate. This was performed after 24h exposures on hepatic (HepG2), embryonic (HEK293) and placental (JEG3) cell lines. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. The compositions in adjuvants were analyzed by mass spectrometry. Here we demonstrate that all formulations are more toxic than glyphosate, and we separated experimentally three groups of formulations differentially toxic according to their concentrations in ethoxylated adjuvants. Among them, POE-15 clearly appears to be the most toxic principle against human cells, even if others are not excluded. It begins to be active with negative dose-dependent effects on cellular respiration and membrane integrity between 1 and 3ppm, at environmental/occupational doses. We demonstrate in addition that POE-15 induces necrosis when its first micellization process occurs, by contrast to glyphosate which is known to promote endocrine disrupting effects after entering cells. Altogether, these results challenge the establishment of guidance values such as the acceptable daily intake of glyphosate, when these are mostly based on a long term in vivo test of glyphosate alone. Since pesticides are always used with adjuvants that could change their toxicity, the necessity to assess their whole formulations as mixtures becomes obvious. This challenges

  8. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    PubMed

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.

  9. Effect of glyphosate-boron application on seed composition and nitrogen metabolism in glyphosate-resistant soybean.

    PubMed

    Bellaloui, Nacer; Abbas, Hamed K; Gillen, Anne M; Abel, Craig A

    2009-10-14

    The objective of this study was to evaluate the effects of foliar application of glyphosate (Gly) alone, boron (B) alone, and Gly-B combined on seed composition and nitrogen metabolism in glyphosate-resistant soybean (Glycine max (L.) Merr.). No Gly and no B application plants were used as control (C). Results showed that Gly, Gly-B, or B applications increased protein, oleic acid, and total amino acid concentrations in seed. However, oil and linolenic acid concentrations decreased under those treatments compared with the nontreated control. Gly-B combined or B treatments increased B concentration in leaves and seed, nitrate reductase activity (NRA), and nitrogenase activity and resulted in a significant positive correlation between B concentration in leaves and NRA (r = 0.54; P < 0.0001) and B concentration in leaves and nitrogenase activity (r = 0.35; P = 0.005). The results suggest that Gly-B tank mixing may not antagonize B uptake and translocation to leaves and seeds, and the inhibitory effect of Gly on nutrient uptake and translocation may depend on the ion species and form of the nutrient mixed with Gly. These results demonstrate that Gly-B application alters seed composition, nitrogen metabolism, and B status in leaves and seed.

  10. Observing snow cover using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  11. Clastogenic Effects of Glyphosate in Bone Marrow Cells of Swiss Albino Mice

    PubMed Central

    Prasad, Sahdeo; Srivastava, Smita; Singh, Madhulika; Shukla, Yogeshwer

    2009-01-01

    Glyphosate (N-(phosphonomethyl) glycine, C3H8NO5P), a herbicide, used to control unwanted annual and perennial plants all over the world. Nevertheless, occupational and environmental exposure to pesticides can pose a threat to nontarget species including human beings. Therefore, in the present study, genotoxic effects of the herbicide glyphosate were analyzed by measuring chromosomal aberrations (CAs) and micronuclei (MN) in bone marrow cells of Swiss albino mice. A single dose of glyphosate was given intraperitoneally (i.p) to the animals at a concentration of 25 and 50 mg/kg b.wt. Animals of positive control group were injected i.p. benzo(a)pyrene (100 mg/kg b.wt., once only), whereas, animals of control (vehicle) group were injected i.p. dimethyl sulfoxide (0.2 mL). Animals from all the groups were sacrificed at sampling times of 24, 48, and 72 hours and their bone marrow was analyzed for cytogenetic and chromosomal damage. Glyphosate treatment significantly increases CAs and MN induction at both treatments and time compared with the vehicle control (P < .05). The cytotoxic effects of glyphosate were also evident, as observed by significant decrease in mitotic index (MI). The present results indicate that glyphosate is clastogenic and cytotoxic to mouse bone marrow. PMID:20107585

  12. Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal.

    PubMed

    Mayakaduwa, S S; Kumarathilaka, Prasanna; Herath, Indika; Ahmad, Mahtab; Al-Wabel, Mohammed; Ok, Yong Sik; Usman, Adel; Abduljabbar, Adel; Vithanage, Meththika

    2016-02-01

    We investigated the removal of aqueous glyphosate using woody (dendro) biochar obtained as a waste by product from bioenergy industry. Equilibrium isotherms and kinetics data were obtained by adsorption experiments. Glyphosate adsorption was strongly pH dependent occurring maximum in the pH range of 5-6. The protonated amino moiety of the glyphosate molecule at this pH may interact with π electron rich biochar surface via π-π electron donor-acceptor interactions. Isotherm data were best fitted to the Freundlich and Temkin models indicating multilayer sorption of glyphosate. The maximum adsorption capacity of dendro biochar for glyphosate was determined by the isotherm modeling to be as 44 mg/g. Adsorption seemed to be quite fast, reaching the equilibrium <1 h. Pseudo-second order model was found to be the most effective in describing kinetics whereas the rate limiting step possibly be chemical adsorption involving valence forces through sharing or exchanging electrons between the adsorbent and sorbate. The FTIR spectral analysis indicated the involvement of functional groups such as phenolic, amine, carboxylic and phosphate in adsorption. Hence, a heterogeneous chemisorption process between adsorbate molecules and functional groups on biochar surface can be suggested as the mechanisms involved in glyphosate removal. PMID:26340852

  13. Expression of the hygromycin B phosphotransferase gene confers tolerance to the herbicide glyphosate.

    PubMed

    Peñaloza-Vázquez, A; Oropeza, A; Mena, G L; Bailey, A M

    1995-05-01

    Escherichia coli cells and tobacco (cv. Xanthi) plants transformed with the hygromycin B phosphotransferase gene were able to grow in culture medium containing glyphosate at 2.0 mM. The growth of tobacco calli in media containing increasing glyphosate concentrations was measured. The ID50 for glyphosate was 1.70±0.03 mM for hygromycin-B resistant plants, and 0.45±0.02 mM for control plants. Regenerated plants and progeny selected for resistance to hygromycin B were tested for glyphosate tolerance by spraying them with Faena herbicide (formulated glyphosate with surfactant) at a dose equal to 0.24 kg/ha. This was two times the dose required to kill 100 percent of the control plants. Phosphotransferase activity was measured in the extracts of the transformed leaves by the incorporation of (32)P from [γ(-32)P]ATP and it was observed that hygromycin B phosphotransferase was able to recognize the molecule of glyphosate as substrate. PMID:24185516

  14. Pathological and toxicological findings in glyphosate-surfactant herbicide fatality: a case report.

    PubMed

    Sribanditmongkol, Pongruk; Jutavijittum, Prapan; Pongraveevongsa, Pattaravadee; Wunnapuk, Klintean; Durongkadech, Piya

    2012-09-01

    Glyphosate herbicide is promoted by the manufacturer as having no risks to human health, with acute toxicity being very low in normal use. In Thailand, however, poisoning from glyphosate agricultural herbicides has been increasing. A case of rapid lethal intoxication from glyphosate-surfactant herbicide involved a 37-year-old woman, who deliberately ingested approximately 500 mL of concentrated Roundup formulation (41% glyphosate as the isopropylamine salt and 15% polyoxyethylene amine; Mosanto Company). The postmortem examination revealed that the stomach contained 550 mL of yellow fluid. The gastric mucosa of anterior fundus revealed hemorrhage and the small intestines had marked dilatation and thin walls. We used the high-performance liquid chromatography method for determination of serum and gastric content levels of glyphosate. The glyphosate levels of serum and gastric content were 3.05 and 59.72 mg/mL, respectively. Toxic effects of polyoxyethylene amine and Roundup were caused by their ability to erode tissues including mucous membranes and linings of the gastrointestinal and respiratory tracts. A mild degree of pulmonary congestion and edema was observed in both lungs. We proposed that the characteristic picture of microvesicular steatosis of the hepatocytes, seen predominantly in centrilobular zones of the liver, resembled drug-induced hepatic toxicity or secondary hypoxic stress.

  15. Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal.

    PubMed

    Mayakaduwa, S S; Kumarathilaka, Prasanna; Herath, Indika; Ahmad, Mahtab; Al-Wabel, Mohammed; Ok, Yong Sik; Usman, Adel; Abduljabbar, Adel; Vithanage, Meththika

    2016-02-01

    We investigated the removal of aqueous glyphosate using woody (dendro) biochar obtained as a waste by product from bioenergy industry. Equilibrium isotherms and kinetics data were obtained by adsorption experiments. Glyphosate adsorption was strongly pH dependent occurring maximum in the pH range of 5-6. The protonated amino moiety of the glyphosate molecule at this pH may interact with π electron rich biochar surface via π-π electron donor-acceptor interactions. Isotherm data were best fitted to the Freundlich and Temkin models indicating multilayer sorption of glyphosate. The maximum adsorption capacity of dendro biochar for glyphosate was determined by the isotherm modeling to be as 44 mg/g. Adsorption seemed to be quite fast, reaching the equilibrium <1 h. Pseudo-second order model was found to be the most effective in describing kinetics whereas the rate limiting step possibly be chemical adsorption involving valence forces through sharing or exchanging electrons between the adsorbent and sorbate. The FTIR spectral analysis indicated the involvement of functional groups such as phenolic, amine, carboxylic and phosphate in adsorption. Hence, a heterogeneous chemisorption process between adsorbate molecules and functional groups on biochar surface can be suggested as the mechanisms involved in glyphosate removal.

  16. Enhanced UV-B radiation increases glyphosate resistance in velvetleaf (Abutilon theophrasti).

    PubMed

    Yin, Lina; Zhang, Mingcai; Li, Zhaohu; Duan, Liusheng; Wang, Shiwen

    2012-01-01

    Depletion of the ozone layer leads to increasing UV-B radiation on the earth's surface, which may affect weeds and their responses to herbicides. However, the effect of increased UV-B radiation on weeds and the interaction of weeds and herbicides are still obscure. The objective of this study was to compare glyphosate efficacy on velvetleaf that was grown under with and without increased UV-B radiation. Leaf area, dry weight and net photosynthesis of velvetleaf seedlings were adversely affected by increased UV-B radiation. Leaf cuticle wax significantly increased by 28% under increased UV-B radiation. Glyphosate efficacy on velvetleaf, evaluated by shoot dry weight, was significantly decreased by increased UV-B radiation. Exposure to increased UV-B radiation significantly decreased (14)C-glyphosate absorption from 49% to 43%, and also resulted in less (14)C-glyphosate translocation out of treated leaves and less glyphosate accumulation in newly expanded leaves. The decrease in glyphosate efficacy was due to changes in absorption and distribution, which were attributed to increased cuticle wax and decreased photosynthesis caused by increased UV-B radiation. These results suggest that the responses of weeds to herbicides may be affected by increased UV-B radiation, to the extent that higher rates may be required to achieve the desired effects.

  17. Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity.

    PubMed

    Yanniccari, Marcos; Tambussi, Eduardo; Istilart, Carolina; Castro, Ana María

    2012-08-01

    Despite the extensive use of glyphosate, how it alters the physiology and metabolism of plants is still unclear. Photosynthesis is not regarded to be a primary inhibitory target of glyphosate, but it has been reported to be affected by this herbicide. The aim of the current research was to determine the effects of glyphosate on the light and dark reactions of photosynthesis by comparing glyphosate-susceptible and glyphosate-resistant Lolium perenne biotypes. After glyphosate treatment, accumulation of reduced carbohydrates occurred before a decrease in gas exchange. Stomatal conductance and CO(2) assimilation were reduced earlier than chlorophyll fluorescence and the amount of chlorophyll in susceptible plants. In the glyphosate-resistant biotype, stomatal conductance was the only parameter slightly affected only 5 days post-application. In susceptible plants, the initial glyphosate effects on gas exchange could be a response to a feedback regulation of photosynthesis. Since the herbicide affects actively growing tissues regardless of the inhibition of photosynthesis, the demand of assimilates decreased and consequently induced an accumulation of carbohydrates in leaves. We concluded that stomatal conductance could be a very sensitive parameter to assess both the susceptibility/resistance to glyphosate before the phytotoxic symptoms become evident.

  18. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants.

    PubMed

    Cao, Gaoyi; Liu, Yunjun; Zhang, Shengxue; Yang, Xuewen; Chen, Rongrong; Zhang, Yuwen; Lu, Wei; Liu, Yan; Wang, Jianhua; Lin, Min; Wang, Guoying

    2012-01-01

    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops.

  19. Stable isotope resolved metabolomics revealed the role of anabolic and catabolic processes in glyphosate-induced amino acid accumulation in Amaranthus palmeri biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using stable isotope resolved metabolomics (SIRM), we characterized the role of anabolic (de novo synthesis) vs catabolic (protein catalysis) processes contributing to free amino acid pools in glyphosate susceptible (S) and resistant (R) Amaranthus palmeri biotypes. Following exposure to glyphosate ...

  20. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  1. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    NASA Astrophysics Data System (ADS)

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  2. Long-term fate of glyphosate associated with repeated rodeo applications to control smooth cordgrass (Spartina alterniflora) in Willapa Bay, Washington.

    PubMed

    Kilbride, K M; Paveglio, F L

    2001-02-01

    Cordgrasses (Spartina sp.) are exotic, invasive species that threaten to degrade the intertidal zones of estuaries along the West Coast of North America. Integrated pest management (IPM) strategies primarily focus on the use of aerial and ground applications of Rodeo in conjunction with mowing, but IPM treatments over multiple years usually are necessary to control Spartina. Although information exists regarding the short-term fate and effects to marine biota of a single Rodeo application to control Spartina, little information is available regarding the fate and biotic effects associated with repeated Rodeo applications necessary for control. Consequently, we conducted a 3-year study to assess the short- and long-term fate and potential effects to marine biota associated with repeated applications of Rodeo to control smooth cordgrass in a southwestern Washington estuary. At each of three intertidal locations in Willapa Bay, we established plots on exposed mudflats and along the edge of a Spartina meadow that were hand sprayed with Rodeo (5% solution) and LI-700 (2% solution) during July 1997 and 1998. Glyphosate concentrations in sediment from mudflat plots declined 88% to 96% from 1 day posttreatment in 1997 to 1 year after the second Rodeo applications in 1999. In contrast, glyphosate concentrations in Spartina plots increased 231% to 591% from 1997 to 1999 because Spartina rhizomes likely did not readily metabolize or exude it. Comparison of concentrations from mudflat and Spartina plots with toxicity test values for marine biota indicates that under worst-case conditions short- and long-term detrimental effects to aquatic biota from repeated application of Rodeo for Spartina control would be highly unlikely.

  3. No observable effect of a glyphosate-based herbicide on two top predators of temporal water bodies.

    PubMed

    Ujszegi, János; Gál, Zoltán; Mikó, Zsanett; Hettyey, Attila

    2015-02-01

    It has been implied that the application of pesticides is involved in the world-wide decline of biodiversity, but little is known about the influence of these chemicals on key predators of temporary wetlands. The direct impacts were examined of a frequently applied glyphosate-based herbicide on larval Aeshna cyanea (Müller, 1764; Odonata, Insecta) and adult male Lissotriton vulgaris (Linnaeus, 1758; Caudata, Amphibia), 2 top predators of Central European ephemeral ponds. The effects of herbicide exposure were measured on survival, behavior, body mass change, and predatory activity in an outdoor mesocosm experiment lasting for 17 d. No significant effects of exposure were observed in either predator species. The results suggest that the herbicide has no immediate effect on the predators studied at environmentally relevant concentrations and that these predators can also fulfill their top-down regulatory role in contaminated ecosystems. PMID:25378294

  4. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  5. Studies on adsorption of formaldehyde in zirconium phosphate-glyphosates

    NASA Astrophysics Data System (ADS)

    Zhang, Yuejuan; Yi, Jianjun; Xu, Qinghong

    2011-01-01

    In our previous work [22], a kind of layered compound of zirconium phosphate-glyphosate (ZrGP) was synthesized. Its large surface area (445 m 2/g) indicates this compound has possible application in adsorptions. In this paper, adsorption to formaldehyde in ZrGP and mechanisms of the adsorption were studied carefully. Balance time of adsorption (about 6 h) and largest adsorbed amount (7.8%) were found when adsorption temperature was at 40 °C and pH value of adsorption environment was about 3.0. H-bonds were found existing between molecules of formaldehyde and ZrGP, and formaldehyde molecules could exist in ZrGP stably.

  6. The fate of glyphosate in water hyacinth and its physiological and biochemical influences on growth of algae

    SciTech Connect

    Tsai, Baolong.

    1989-01-01

    Absorption, translocation, distribution, exudation, and guttation of {sup 14}C-glyphosate in water hyacinth (Eichhornia crassipes) were studied. Glyphosphate entered the plant by foliage and solution treatment. Plants were harvested and separated into the following parts: treated leaf blade, treated leaf petiole, young leaf blade, young leaf petiole, old leak blade, old leaf petiole, and root. Each part was extracted with methanol. Treated leaves, which exist only in foliage treatment, were washed with water and chloroform to remove the glyphosate residues. All {sup 14}C counting was made by liquid scintillation spectrometry. Autoradiography was used to locate {sup 14}C-glyphosate after foliage treatment. Results indicated that glyphosate can be absorbed from the leaf surface and translocated rapidly through phloem tissues into the whole plant body. The roots of water hyacinth absorbed glyphosate without vertical transport. Guttation of glyphosate occurred in treated leaf tips. Exudation of glyphosate from roots of water hyacinth occurred within 8 hr after foliage treatment. Chlorella vulgaris, Chlamydomonas reihardii, Anabaena cylindrica, and Chroococcus turgidus were used to explore the physiological and biochemical effects of glyphosate on algae. Spectrophotometric assays were performed for algal growth, chlorophyll, carotenoids, phycobiliprotein, carbohydrate, and protein. TLC procedures and an image analyzer were used to detect the metabolites of glyphosate inside algal cells. The common visible symptom of glyphosate toxicity in all algal cells were bleaching effect and reduction of contents of carbohydrate, protein, and pigments. The results highly suggested that glyphosate injured the algal cells by destruction of photosynthetic pigments and resulted in lowering the contents of carbohydrate and protein in algal cells.

  7. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  8. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2011-07-01 2011-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  9. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2014-07-01 2014-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  10. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  11. Aerial shaking performance of wet Anna's hummingbirds.

    PubMed

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2012-05-01

    External wetting poses problems of immediate heat loss and long-term pathogen growth for vertebrates. Beyond these risks, the locomotor ability of smaller animals, and particularly of fliers, may be impaired by water adhering to the body. Here, we report on the remarkable ability of hummingbirds to perform rapid shakes in order to expel water from their plumage even while in flight. Kinematic performance of aerial versus non-aerial shakes (i.e. those performed while perching) was compared. Oscillation frequencies of the head, body and tail were lower in aerial shakes. Tangential speeds and accelerations of the trunk and tail were roughly similar in aerial and non-aerial shakes, but values for head motions while perching were twice as high when compared with aerial shakes [corrected] . Azimuthal angular amplitudes for both aerial and non-aerial shakes reached values greater than 180° for the head, greater than 45° for the body trunk and slightly greater than 90° for the tail and wings. Using a feather on an oscillating disc to mimic shaking motions, we found that bending increased average speeds by up to 36 per cent and accelerations of the feather tip up to fourfold relative to a hypothetical rigid feather. Feather flexibility may help to enhance shedding of water and reduce body oscillations during shaking.

  12. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  13. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire....

  14. A Classroom Simulation of Aerial Photography.

    ERIC Educational Resources Information Center

    Baker, Simon

    1981-01-01

    Explains how a simulation of aerial photography can help students in a college level beginning course on interpretation of aerial photography understand the interrelationships of the airplane, the camera, and the earth's surface. Procedures, objectives, equipment, and scale are discussed. (DB)

  15. Synthesis of the unmanned aerial vehicle remote control augmentation system

    NASA Astrophysics Data System (ADS)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  16. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  17. Adaptive planning of emergency aerial photogrammetric mission

    NASA Astrophysics Data System (ADS)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  18. Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate.

    PubMed

    Lee, E A; Zimmerman, L R; Bhullar, B S; Thurman, E M

    2002-10-01

    A novel, sensitive, linker-assisted enzyme-linked immunosorbent assay (L'ELISA) was compared to on-line solid-phase extraction (SPE) with high-performance liquid chromatography/mass spectrometry (HPLC/MS) for the analysis of glyphosate in surface water and groundwater samples. The L'ELISA used succinic anhydride to derivatize glyphosate, which mimics the epitotic attachment of glyphosate to horseradish peroxidase hapten. Thus, L'ELISA recognized the derivatized glyphosate more effectively (detection limit of 0.1 microg/L) and with increased sensitivity (10-100 times) over conventional ELISA and showed the potential for other applications. The precision and accuracy of L'ELISA then was compared with on-line SPE/HPLC/MS, which detected glyphosate and its degradate derivatized with 9-fluorenylmethyl chloroformate using negative-ion electrospray (detection limit 0.1 microg/ L, relative standard deviation +/- 15%). Derivatization efficiency and matrix effects were minimized by adding an isotope-labeled glyphosate (2-13C15N). The accuracy of L'EUSA gave a false positive rate of 18% between 0.1 and 1.0 microg/L and a false positive rate of only 1% above 1.0 microg/L The relative standard deviation was +/- 20%. The correlation of L'ELISA and HPLC/MS for 66 surface water and groundwater samples was 0.97 with a slope of 1.28, with many detections of glyphosate and its degradate in surface water but not in groundwater.

  19. Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate

    USGS Publications Warehouse

    Lee, E.A.; Zimmerman, L.R.; Bhullar, B.S.; Thurman, E.M.

    2002-01-01

    A novel, sensitive, linker-assisted enzyme-linked immunosorbent assay (L'ELISA) was compared to on-line solidphase extraction (SPE) with high-performance liquid chromatography/mass spectrometry (HPLC/MS) for the analysis of glyphosate in surface water and groundwater samples. The L'ELISA used succinic anhydride to derivatize glyphosate, which mimics the epitotic attachment of glyphosate to horseradish peroxidase hapten. Thus, L'ELISA recognized the derivatized glyphosate more effectively (detection limit of 0.1 ??g/L) and with increased sensitivity (10-100 times) over conventional ELISA and showed the potential for other applications. The precision and accuracy of L'ELISA then was compared with on-line SPE/HPLC/MS, which detected glyphosate and its degradate derivatized with 9-fluorenylmethyl chloroformate using negative-ion electrospray (detection limit 0.1 ??g/L, relative standard deviation ??15%). Derivatization efficiency and matrix effects were minimized by adding an isotope-labeled glyphosate (2-13C15N). The accuracy of L'ELISA gave a false positive rate of 18% between 0.1 and 1.0 ??g/L and a false positive rate of only 1% above 1.0 ??g/L. The relative standard deviation was ??20%. The correlation of L'ELISA and HPLC/MS for 66 surface water and groundwater samples was 0.97 with a slope of 1.28, with many detections of glyphosate and its degradate in surface water but not in groundwater.

  20. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate.

    PubMed

    El-Shenawy, Nahla S

    2009-11-01

    Glyphosate is the active ingredient and polyoxyethyleneamine, the major component, is the surfactant present in the herbicide Roundup formulation. The objective of this study was to analyze potential cytotoxicity of the Roundup and its fundamental substance (glyphosate). Albino male rats were intraperitoneally treated with sub-lethal concentration of Roundup (269.9mg/kg) or glyphosate (134.95mg/kg) each 2 days, during 2 weeks. Hepatotoxicity was monitored by quantitative analysis of the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities, total protein, albumin, triglyceride and cholesterol. Creatinine and urea were used as the biochemical markers of kidney damages. The second aim of this study to investigate how glyphosate alone or included in herbicide Roundup affected hepatic reduced glutathione (GSH) and lipid peroxidation (LPO) levels of animals as an index of antioxidant status and oxidative stress, respectively, as well as the serum nitric oxide (NO) and alpha tumour necrosis factor (TNF-α) were measured. Treatment of animals with Roundup induced the leakage of hepatic intracellular enzymes, ALT, AST and ALP suggesting irreversible damage in hepatocytes starting from the first week. It was found that the effects were different on the enzymes in Roundup and glyphosate-treated groups. Significant time-dependent depletion of GSH levels and induction of oxidative stress in liver by the elevated levels of LPO, further confirmed the potential of Roundup to induce oxidative stress in hepatic tissue. However, glyphosate caused significant increases in NO levels more than Roundup after 2 weeks of treatment. Both treatments increased the level of TNF-α by the same manner. The results suggest that excessive antioxidant disruptor and oxidative stress is induced with Roundup than glyphosate.

  1. Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents

    PubMed Central

    Bataller, Román; Campos, Inmaculada; Laguarda-Miro, Nicolas; Alcañiz, Miguel; Soto, Juan; Martínez-Máñez, Ramón; Gil, Luís; García-Breijo, Eduardo; Ibáñez-Civera, Javier

    2012-01-01

    A new electronic tongue to monitor the presence of glyphosate (a non-selective systemic herbicide) has been developed. It is based on pulse voltammetry and consists in an array of three working electrodes (Pt, Co and Cu) encapsulated on a methacrylate cylinder. The electrochemical response of the sensing array was characteristic of the presence of glyphosate in buffered water (phosphate buffer 0.1 mol·dm−3, pH 6.7). Rotating disc electrode (RDE) studies were carried out with Pt, Co and Cu electrodes in water at room temperature and at pH 6.7 using 0.1 mol·dm−3 of phosphate as a buffer. In the presence of glyphosate, the corrosion current of the Cu and Co electrodes increased significantly, probably due to the formation of Cu2+ or Co2+ complexes. The pulse array waveform for the voltammetric tongue was designed by taking into account some of the redox processes observed in the electrochemical studies. The PCA statistical analysis required four dimensions to explain 95% of variance. Moreover, a two-dimensional representation of the two principal components differentiated the water mixtures containing glyphosate. Furthermore, the PLS statistical analyses allowed the creation of a model to correlate the electrochemical response of the electrodes with glyphosate concentrations, even in the presence of potential interferents such as humic acids and Ca2+. The system offers a PLS prediction model for glyphosate detection with values of 098, −2.3 × 10−5 and 0.94 for the slope, the intercept and the regression coefficient, respectively, which is in agreement with the good fit between the predicted and measured concentrations. The results suggest the feasibility of this system to help develop electronic tongues for glyphosate detection. PMID:23250277

  2. A practical interpretation and use of the USDA aerial fixed-wing nozzle models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper selection and operation of spray nozzles associated with aerial applications is critical to insuring efficacy while mitigating off-target movement. Labels for most agrochemical products applied in the U.S. specifically define the droplet size or spray classification that can be used to apply...

  3. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, Chlorophyll Fluorescence (ChlF) was used to detect the onset of soybean plant injury from glyphosate, the most widely used herbicide. Thirty-six pots of non-glyphosate-resistant soybean (cultivar FM955LL) were randomly divided into three groups and treated with different doses of glyp...

  4. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings

    EPA Science Inventory

    Weed species are becoming resistant to intensive and extensive use of specific herbicides associated with the production of herbicide resistant crops, e.g., the use of glyphosate for weed management with glyphosate resistant soybeans. To counter this resistance, crops engineered ...

  5. Concerted action of target-site mutations and high EPSPS activity in glyphosate-resistant junglerice (Echinochloa colona) from California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is the most widely used non-selective herbicide and Echinochloa colona is an annual weed affecting field crops and orchards in California. A population carrying a glyphosate-resistance-endowing mutation in the EPSPS gene was found in the Northern Sacramento Valley. We used selfed lines ...

  6. Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5-enolpyruvylshikimate-3-phosphate Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD50 value approxima...

  7. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study.

    PubMed

    Li, Wei; Wang, Yu-Jun; Zhu, Mengqiang; Fan, Ting-Ting; Zhou, Dong-Mei; Phillips, Brian L; Sparks, Donald L

    2013-05-01

    In this research, the effects of glyphosate (GPS) on Zn sorption/precipitation on γ-alumina were investigated using a batch technique, Zn K-edge EXAFS, and (31)P NMR spectroscopy. The EXAFS analysis revealed that, in the absence of glyphosate, Zn adsorbed on the aluminum oxide surface mainly as bidentate mononuclear surface complexes at pH 5.5, whereas Zn-Al layered double hydroxide (LDH) precipitates formed at pH 8.0. In the presence of glyphosate, the EXAFS spectra of Zn sorption samples at pH 5.5 and 8.0 were very similar, both of which demonstrated that Zn did not directly bind to the mineral surface but bonded with the carboxyl group of glyphosate. Formation of γ-alumina-GPS-Zn ternary surface complexes was further suggested by (31)P solid state NMR data which indicated the glyphosate binds to γ-alumina via a phosphonate group, bridging the mineral surface and Zn. Additionally, we showed the sequence of additional glyphosate and Zn can influence the sorption mechanism. At pH 8, Zn-Al LDH precipitates formed if Zn was added first, and no precipitates formed if glyphosate was added first or simultaneously with Zn. In contrast, at pH 5.5, only γ-alumina-GPS-Zn ternary surface complexes formed regardless of whether glyphosate or Zn was added first or both were added simultaneously. PMID:23550510

  8. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway.

    PubMed

    Coullery, Romina P; Ferrari, María E; Rosso, Silvana B

    2016-01-01

    The growth and morphological differentiation of neurons are critical events in the establishment of proper neuronal connectivity and functioning. The developing nervous system is highly susceptible to damage caused by exposure to environmental contaminants. Glyphosate-containing herbicides are the most used agrochemicals in the world, particularly on genetically modified plants. Previous studies have demonstrated that glyphosate induces neurotoxicity in mammals. Therefore, its action mechanism on the nervous system needs to be determined. In this study, we report about impaired neuronal development caused by glyphosate exposure. Particularly, we observed that the initial axonal differentiation and growth of cultured neurons is affected by glyphosate since most treated cells remained undifferentiated after 1 day in culture. Although they polarized at 2 days in vitro, they elicited shorter and unbranched axons and they also developed less complex dendritic arbors compared to controls. To go further, we attempted to identify the cellular mechanism by which glyphosate affected neuronal morphology. Biochemical approaches revealed that glyphosate led to a decrease in Wnt5a level, a key factor for the initial neurite development and maturation, as well as inducing a down-regulation of CaMKII activity. This data suggests that the morphological defects would likely be a consequence of the decrease in both Wnt5a expression and CaMKII activity induced by glyphosate. Additionally, these changes might be reflected in a subsequent neuronal dysfunction. Therefore, our findings highlight the importance of establishing rigorous control on the use of glyphosate-based herbicides in order to protect mammals' health.

  9. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study.

    PubMed

    Li, Wei; Wang, Yu-Jun; Zhu, Mengqiang; Fan, Ting-Ting; Zhou, Dong-Mei; Phillips, Brian L; Sparks, Donald L

    2013-05-01

    In this research, the effects of glyphosate (GPS) on Zn sorption/precipitation on γ-alumina were investigated using a batch technique, Zn K-edge EXAFS, and (31)P NMR spectroscopy. The EXAFS analysis revealed that, in the absence of glyphosate, Zn adsorbed on the aluminum oxide surface mainly as bidentate mononuclear surface complexes at pH 5.5, whereas Zn-Al layered double hydroxide (LDH) precipitates formed at pH 8.0. In the presence of glyphosate, the EXAFS spectra of Zn sorption samples at pH 5.5 and 8.0 were very similar, both of which demonstrated that Zn did not directly bind to the mineral surface but bonded with the carboxyl group of glyphosate. Formation of γ-alumina-GPS-Zn ternary surface complexes was further suggested by (31)P solid state NMR data which indicated the glyphosate binds to γ-alumina via a phosphonate group, bridging the mineral surface and Zn. Additionally, we showed the sequence of additional glyphosate and Zn can influence the sorption mechanism. At pH 8, Zn-Al LDH precipitates formed if Zn was added first, and no precipitates formed if glyphosate was added first or simultaneously with Zn. In contrast, at pH 5.5, only γ-alumina-GPS-Zn ternary surface complexes formed regardless of whether glyphosate or Zn was added first or both were added simultaneously.

  10. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  11. Whitecap coverage from aerial photography

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1970-01-01

    A program for determining the feasibility of deriving sea surface wind speeds by remotely sensing ocean surface radiances in the nonglitter regions is discussed. With a knowledge of the duration and geographical extent of the wind field, information about the conventional sea state may be derived. The use of optical techniques for determining sea state has obvious limitations. For example, such means can be used only in daylight and only when a clear path of sight is available between the sensor and the surface. However, sensors and vehicles capable of providing the data needed for such techniques are planned for the near future; therefore, a secondary or backup capability can be provided with little added effort. The information currently being sought regarding white water coverage is also of direct interest to those working with passive microwave systems, the study of energy transfer between winds and ocean currents, the aerial estimation of wind speeds, and many others.

  12. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys.

  13. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  14. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  15. Determination of glyphosate using off-line ion exchange preconcentration and capillary electrophoresis-laser induced fluorescence detection.

    PubMed

    Jiang, Jiang; Lucy, Charles A

    2007-04-15

    An enrichment method for the herbicide glyphosate is presented based on ion exchange solid phase extraction (SPE) technique. A 200-mul micro-pipette tip packed with 50mg of Bio-Rad AG1-X8 anion exchanger beads was used for offline extraction of glyphosate from 50ml of spiked river water sample. The retained glyphosate was eluted with 10mM HCl and then converted quantitatively to the corresponding amine (glycine) using hypochlorite. Subsequent fluorescent labeling using naphthalene-2,3-dicarboxaldehyde (NDA)-cyanide allowed micellar electrokinetic chromatography (MEKC) separation and laser-induced fluorescence detection (LIF) with a violet diode laser. Optimization of the sample clean-up, extraction, elution, conversion and labeling steps enabled analysis of glyphosate in river water in the nanomolar range. Detection limits were 0.04nM glyphosate in standards and 1.6nM in spiked river.

  16. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    PubMed

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. PMID:22015254

  17. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  18. Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L.

    PubMed

    Nesković, N K; Poleksić, V; Elezovíc, I; Karan, V; Budimir, M

    1996-02-01

    Glyphosate, also known by the trade names Roundup and Rodeo for agricultural use, is a broad-spectrum, translocated herbicide, used primarily in agricultural applications, and for vegetation control in non-crop areas. It is used as non-selective herbicide and for aquatic weed control in fish-ponds, lakes, canals, slow running water, etc. (USDA 1984). Glyphosate is perhaps the most important herbicide ever developed. Literature of toxicological and ecotoxicological properties of glyphosate is extremely sparse, considering its importance as herbicide. Generally, glyphosate is slightly toxic to mammals and fish, but it may have an impact on the aquatic environment and also on the other aquatic organisms (USDA 1984). Due to this, its toxicity investigation is very important. The study of sublethal effects is of special importance for toxicological evaluation of compound. The objective of this study was to investigate acute and subacute toxic effects of sublethal glyphosate concentrations in water to carp (Cyprinus carpio L.), one of the commercially most important fish species populating freshwaters of Yugoslavia.

  19. Mild salinization stimulated glyphosate degradation and microbial activities in a riparian soil from Chongming Island, China.

    PubMed

    Yang, Changming; Shen, Shuo; Wang, Mengmeng; Li, Jianhua

    2013-04-01

    An incubation experiment was conducted to investigate the effects of simulated saltwater treatment with different percentages of artificial seawater on degradation dynamics of herbicide glyphosate and microbial activities in a riparian soil in Chongming Island, China. The results showed that 10% seawater treatment showed significantly enhancing effects on degradation efficiency of glyphosate with the lowest residual concentration among all the treatments. However, glyphosate degradation was markedly decreased in the riparian soil with 20% and 50% seawater treatments. The half-lives for 20% and 50% seawater treatments were prolonged by 12.1 and 39.0%, respectively, as compared to control. Microbial investigation indicated that 10% seawater treatment significantly stimulated microbial activities in the glyphosate-spiked riparian soil throughout the incubation period. At 42 day of incubation experiment, flourescein diacetate (FDA) hydrolysis rate, microbial adenosine triphosphate (ATP), and basal soil respiration (BSR) in the glyphosate-spiked riparian soil with 10% seawater were 59.2, 42.5 and 31.8% higher than those with no saltwater treatment, respectively. In contrast, saltwater treatment with 50% seawater significantly inhibited microbial activities. Especially, FDA hydrolysis rate, microbial ATP and BSR were decreased by 66.4, 58.6 and 66.8%, respectively, as compared to control. The results indicate that levels of simulated saltwater can exert variable effects on herbicide degradation dynamics and microbial parameters in the riparian soil.

  20. Assessment of toxicity of a glyphosate-based formulation using bacterial systems in lake water.

    PubMed

    Amorós, I; Alonso, J L; Romaguera, S; Carrasco, J M

    2007-05-01

    A new Aeromonas bioassay is described to assess the potential harmful effects of the glyphosate-based herbicide, Roundup, in the Albufera lake, a protected area near Valencia. Viability markers as membrane integrity, culturability and beta-galactosidase production of Aeromonas caviae were studied to determine the influence of the herbicide in the bacterial cells. Data from the multifactor analysis of variance test showed no significant differences (P>0.05) between A. caviae counts of viability markers at the studied concentrations (0, 50 and 100 mg l-1 of glyphosate). The effects of Roundup on microbial biota present in the lake were assessed by measuring the number of indigenous mesophilic Aeromonas in presence of different amounts of the herbicide at 0, 50 and 100 mg l-1 of glyphosate. In samples containing 50 and 100 mg l-1 of glyphosate a significant (P<0.05) increase in Aeromonas spp. counts and accompanying flora was observed. The acute toxicity of Roundup and of Roundup diluted with Albufera lake water to Microtox luminescent bacterium (Vibrio fischeri) also was determined. The EC50 values obtained were 36.4 mg l-1 and 64.0 mgl-1 of glyphosate respectively. The acidity (pH 4.5) of the herbicide formulation was the responsible of the observed toxicity.

  1. The teratogenic potential of the herbicide glyphosate-Roundup in Wistar rats.

    PubMed

    Dallegrave, Eliane; Mantese, Fabiana DiGiorgio; Coelho, Ricardo Soares; Pereira, Janaina Drawans; Dalsenter, Paulo Roberto; Langeloh, Augusto

    2003-04-30

    The aim of this study was to assess the teratogenicity of the herbicide glyphosate-Roundup (as commercialized in Brazil) to Wistar rats. Dams were treated orally with water or 500, 750 or 1000 mg/kg glyphosate from day 6 to 15 of pregnancy. Cesarean sections were performed on day 21 of pregnancy, and number of corpora lutea, implantation sites, living and dead fetuses, and resorptions were recorded. Weight and gender of the fetuses were determined, and fetuses were examined for external malformations and skeletal alterations. The organs of the dams were removed and weighed. Results showed a 50%, mortality rate for dams treated with 1000 mg/kg glyphosate. Skeletal alterations were observed in 15.4, 33.1, 42.0 and 57.3% of fetuses from the control, 500, 750 and 1000 mg/kg glyphosate groups, respectively. We may conclude that glyphosate-Roundup is toxic to the dams and induces developmental retardation of the fetal skeleton.

  2. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.

    PubMed

    Hove-Jensen, Bjarne; Zechel, David L; Jochimsen, Bjarne

    2014-03-01

    After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.

  3. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    PubMed Central

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  4. Epidemiologic studies of glyphosate and non-cancer health outcomes: a review.

    PubMed

    Mink, Pamela J; Mandel, Jack S; Lundin, Jessica I; Sceurman, Bonnielin K

    2011-11-01

    The United States (US) Environmental Protection Agency (EPA) and other regulatory agencies around the world have registered glyphosate as a broad-spectrum herbicide for use on multiple food and non-food use crops. To examine potential health risks in humans, we searched and reviewed the literature to evaluate whether exposure to glyphosate is associated causally with non-cancer health risks in humans. We also reviewed biomonitoring studies of glyphosate to allow for a more comprehensive discussion of issues related to exposure assessment and misclassification. Cohort, case-control and cross-sectional studies on glyphosate and non-cancer outcomes evaluated a variety of endpoints, including non-cancer respiratory conditions, diabetes, myocardial infarction, reproductive and developmental outcomes, rheumatoid arthritis, thyroid disease, and Parkinson's disease. Our review found no evidence of a consistent pattern of positive associations indicating a causal relationship between any disease and exposure to glyphosate. Most reported associations were weak and not significantly different from 1.0. Because accurate exposure measurement is crucial for valid results, it is recommended that pesticide-specific exposure algorithms be developed and validated. PMID:21798302

  5. Effect of glyphosate on the sperm quality of zebrafish Danio rerio.

    PubMed

    Lopes, Fernanda Moreira; Varela Junior, Antonio Sergio; Corcini, Carine Dahl; da Silva, Alessandra Cardoso; Guazzelli, Vitória Gasperin; Tavares, Georgia; da Rosa, Carlos Eduardo

    2014-10-01

    Glyphosate is a systemic, non-selective herbicide widely used in agriculture worldwide. It acts as an inhibitor of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase by interrupting the synthesis of essential aromatic amino acids. This pathway is not present in animals, although some studies have shown that the herbicide glyphosate can affect fish reproduction. In this study, the effect of glyphosate on sperm quality of the fish Danio rerio was investigated after 24 and 96 h of exposure at concentrations of 5mg/L and 10mg/L. The spermatic cell concentration, sperm motility and motility period were measured employing conventional microscopy. The mitochondrial functionality, membrane integrity and DNA integrity were measured by fluorescence microscopy using specific probes. No significant differences in sperm concentration were observed; however, sperm motility and the motility period were reduced after exposure to both glyphosate concentrations during both exposure periods. The mitochondrial functionality and membrane and DNA integrity were also reduced at the highest concentration during both exposure periods. The results showed that glyphosate can induce harmful effects on reproductive parameters in D. rerio and that this change would reduce the fertility rate of these animals. PMID:25089920

  6. Effects of subchronic exposure to glyphosate in juvenile oysters (Crassostrea gigas): From molecular to individual levels.

    PubMed

    Mottier, Antoine; Séguin, Alexis; Devos, Alexandre; Pabic, Charles Le; Voiseux, Claire; Lebel, Jean Marc; Serpentini, Antoine; Fievet, Bruno; Costil, Katherine

    2015-06-30

    Glyphosate-based herbicides are extensively used and can be measured in aquatic ecosystems, including coastal waters. The effect of glyphosate on non-target organisms is an issue of worldwide concern. The aim of this study was to investigate the effects of subchronic exposure to glyphosate in juvenile oysters, Crassostrea gigas. Yearling oysters were exposed to three concentrations of glyphosate (0.1, 1 and 100μgL(-1)) for 56days. Various endpoints were studied, from the individual level (e.g., gametogenesis and tissue alterations) to the molecular level (mRNA quantification), including biochemical endpoints such as glutathione-S-transferase (GST) and catalase activities and malondialdehyde content. No mortality and growth occurred during the experiment, and individual biomarkers revealed only slight effects. The levels of gene expression significantly increased in oysters exposed to the highest glyphosate concentration (GST and metallothioneins) or to all concentrations (multi-xenobiotic resistance). These results suggested an activation of defence mechanisms at the molecular level.

  7. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  8. Compositional analysis of grain and forage from MON 87427, an inducible male sterile and tissue selective glyphosate-tolerant maize product for hybrid seed production.

    PubMed

    Venkatesh, Tyamagondlu V; Breeze, Matthew L; Liu, Kang; Harrigan, George G; Culler, Angela H

    2014-02-26

    Conventional maize hybrid seed production has historically relied upon detasseling using either manual methods or semiautomated processes to ensure the purity of the hybrid cross. Monsanto Co. has developed biotechnology-derived MON 87427 maize with tissue-selective glyphosate tolerance to facilitate the production of hybrid maize seed. MON 87427 utilizes a specific promoter and intron combination to drive expression of CP4 EPSPS protein in vegetative and female reproductive tissues, conferring tolerance to glyphosate. This specific combination of regulatory elements also results in limited or no production of CP4 EPSPS protein in two key male reproductive tissues: pollen microspores, which develop into pollen grains, and tapetum cells that supply nutrients to the pollen. Thus, MON 87427 induces a male sterile phenotype after appropriately timed glyphosate applications. To confer additional benefits of herbicide tolerance and/or insect resistance, MON 87427 was combined with MON 89034 and NK603 by conventional breeding to develop MON 87427 × MON 89034 × NK603. The work described here is an assessment of the nutrient, antinutrient, and secondary metabolite levels in grain and forage tissues of MON 87427 and MON 87427 × MON 89034 × NK603. Results demonstrated that MON 87427 is compositionally equivalent to a near-isogenic conventional comparator. Results from this analysis established that the compositional equivalence observed for the single-event product MON 87427 is extendable to the combined-trait product, MON 87427 × MON 89034 × NK603. With increasing global demand for food production, the development of more efficient seed production strategies is important to sustainable agriculture. The study reported here demonstrated that biotechnology can be applied to simplify hybrid maize seed production without affecting crop composition. PMID:24397242

  9. Compositional analysis of grain and forage from MON 87427, an inducible male sterile and tissue selective glyphosate-tolerant maize product for hybrid seed production.

    PubMed

    Venkatesh, Tyamagondlu V; Breeze, Matthew L; Liu, Kang; Harrigan, George G; Culler, Angela H

    2014-02-26

    Conventional maize hybrid seed production has historically relied upon detasseling using either manual methods or semiautomated processes to ensure the purity of the hybrid cross. Monsanto Co. has developed biotechnology-derived MON 87427 maize with tissue-selective glyphosate tolerance to facilitate the production of hybrid maize seed. MON 87427 utilizes a specific promoter and intron combination to drive expression of CP4 EPSPS protein in vegetative and female reproductive tissues, conferring tolerance to glyphosate. This specific combination of regulatory elements also results in limited or no production of CP4 EPSPS protein in two key male reproductive tissues: pollen microspores, which develop into pollen grains, and tapetum cells that supply nutrients to the pollen. Thus, MON 87427 induces a male sterile phenotype after appropriately timed glyphosate applications. To confer additional benefits of herbicide tolerance and/or insect resistance, MON 87427 was combined with MON 89034 and NK603 by conventional breeding to develop MON 87427 × MON 89034 × NK603. The work described here is an assessment of the nutrient, antinutrient, and secondary metabolite levels in grain and forage tissues of MON 87427 and MON 87427 × MON 89034 × NK603. Results demonstrated that MON 87427 is compositionally equivalent to a near-isogenic conventional comparator. Results from this analysis established that the compositional equivalence observed for the single-event product MON 87427 is extendable to the combined-trait product, MON 87427 × MON 89034 × NK603. With increasing global demand for food production, the development of more efficient seed production strategies is important to sustainable agriculture. The study reported here demonstrated that biotechnology can be applied to simplify hybrid maize seed production without affecting crop composition.

  10. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    PubMed

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. PMID:26701683

  11. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    PubMed

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities.

  12. Neural dynamic optimization for autonomous aerial vehicle trajectory design

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Verma, Ajay; Mayer, Richard J.

    2007-04-01

    Online aerial vehicle trajectory design and reshaping are crucial for a class of autonomous aerial vehicles such as reusable launch vehicles in order to achieve flexibility in real-time flying operations. An aerial vehicle is modeled as a nonlinear multi-input-multi-output (MIMO) system. The inputs include the control parameters and current system states that include velocity and position coordinates of the vehicle. The outputs are the new system states. An ideal trajectory control design system generates a series of control commands to achieve a desired trajectory under various disturbances and vehicle model uncertainties including aerodynamic perturbations caused by geometric damage to the vehicle. Conventional approaches suffer from the nonlinearity of the MIMO system, and the high-dimensionality of the system state space. In this paper, we apply a Neural Dynamic Optimization (NDO) based approach to overcome these difficulties. The core of an NDO model is a multilayer perceptron (MLP) neural network, which generates the control parameters online. The inputs of the MLP are the time-variant states of the MIMO systems. The outputs of the MLP and the control parameters will be used by the MIMO to generate new system states. By such a formulation, an NDO model approximates the time-varying optimal feedback solution.

  13. A real time in situ ATR-FTIR spectroscopic study of glyphosate desorption from goethite as induced by phosphate adsorption: effect of surface coverage.

    PubMed

    Waiman, Carolina V; Avena, Marcelo J; Regazzoni, Alberto E; Zanini, Graciela P

    2013-03-15

    The desorption of glyphosate from goethite as induced by the adsorption of phosphate was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in combination with adsorption isotherms. Desorption of glyphosate was very low in the absence of phosphate. Addition of phosphate promoted glyphosate desorption. At low initial surface coverages, added phosphate adsorbed on free surface sites, mainly, displacing a small amount of glyphosate. At high initial surface coverages, on the contrary, phosphate adsorption resulted in a significant glyphosate desorption. In the latter conditions, the ratio desorbed glyphosate to adsorbed phosphate was 0.60. The desorption process can be explained by assuming that phosphate adsorbs first forming a monodentate mononuclear complex, which rapidly evolves into a bidentate binuclear complex that displaces glyphosate.

  14. Comparison of herbicide regimes and the associated potential environmental effects of glyphosate-resistant crops versus what they replace in Europe.

    PubMed

    Kleter, Gijs A; Harris, Caroline; Stephenson, Gerry; Unsworth, John

    2008-04-01

    While cultivation of transgenic crops takes place in seven of the EU member states, this constitutes a relatively limited part of the total acreage planted to these crops worldwide. The only glyphosate-resistant (GR) crop grown commercially until recently has been soybean in Romania. In addition, large-scale experimental European data exist for GR sugar and fodder beets, and, to a lesser extent, GR oilseed rape. These GR crops are likely to have an impact both on the use of herbicides and on the environmental impact of the latter. From the data on these GR crops, it appears that quantities of herbicides applied to GR beets are decreased while those on GR soybean are slightly increased compared with their conventional counterparts. Depending on the parameters used for prediction or measurement of environmental impacts of GR crops, generally similar or less negative impacts were observed compared with conventional crops. Favourable environmental effects of the glyphosate-containing herbicide regimes on GR crops appear feasible, provided appropriate measures for maintaining biodiversity and prevention of volunteers and gene flow are applied.

  15. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  16. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  17. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  18. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  19. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  20. 7 CFR 611.21 - Availability of aerial photography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  1. Real-time quantification of wild-type contaminants in glyphosate tolerant soybean

    PubMed Central

    Battistini, Elena; Noli, Enrico

    2009-01-01

    Background Trait purity is a key factor for the successful utilization of biotech varieties and is currently assessed by analysis of individual seeds or plants. Here we propose a novel PCR-based approach to test trait purity that can be applied to bulk samples. To this aim the insertion site of a transgene is characterized and the corresponding sequence of the wild-type (wt) allele is used as diagnostic target for amplification. As a demonstration, we developed a real-time quantitative PCR method to test purity of glyphosate tolerant (Roundup Ready®, RR) soybean. Results The soybean wt sequence at the RR locus was characterized and found to be highly conserved among conventional genotypes, thus allowing the detection of possibly any soybean non-trait contaminant. On the other hand, no amplification product was obtained from RR soybean varieties, indicating that the wt sequence is single copy and represents a suitable marker of conventional soybean presence. In addition, results obtained from the analysis of wt-spiked RR samples demonstrate that it is possible to use the real-time PCR assay to quantify the non-trait contamination with an acceptable degree of accuracy. Conclusion In principle this approach could be successfully applied to any transgenic event, provided that the wild-type sequence is conserved and single copy. The main advantages of the assay here described derive from its applicability to bulk samples, which would allow to increase the number of single seeds or plants forming the analytical sample, thus improving accuracy and throughput while containing costs. For these reasons this application of quantitative PCR could represent a useful tool in agricultural biotechnology. PMID:19267904

  2. Apparent effects of glyphosate on alkaloid production in coca plants grown in Colombia.

    PubMed

    Casale, John; Lydon, John

    2007-05-01

    During the routine analysis of coca leaf material from South America, alkaloids in Erythroxylum coca var. ipadu (ECVI) leaf samples from fields suspected of being treated with glyphosate were compared with those from non-treated E. coca var. ipadu and Erythroxylum novogranatense var. novogranatense (ENVN) plants. Cocaine levels in leaf tissue from non-treated ECVI and ENVN were 0.53+/-0.08% and 0.64+/-0.08% (w/w), respectively, whereas leaves from treated plants were nearly devoid of cocaine. Further analysis demonstrated the presence of several previously undescribed N-nortropane alkaloids, several of which were tentatively identified. The results suggest that applications of glyphosate to coca plants can have dramatic effects on the quantity and quality of alkaloids produced by surviving or subsequent leaves. The analytical data presented will be of value to forensic chemists who encounter illicit cocaine preparations containing alkaloids produced from coca plants treated with glyphosate.

  3. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.

    PubMed

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew; Joost, Stéphane

    2016-03-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission's Joint Research Center (JRC) have noted that aerial imagery will inevitably present a big data challenge. The purpose of this article is to get ahead of this future challenge by proposing a hybrid crowdsourcing and real-time machine learning solution to rapidly process large volumes of aerial data for disaster response in a time-sensitive manner. Crowdsourcing can be used to annotate features of interest in aerial images (such as damaged shelters and roads blocked by debris). These human-annotated features can then be used to train a supervised machine learning system to learn to recognize such features in new unseen images. In this article, we describe how this hybrid solution for image analysis can be implemented as a module (i.e., Aerial Clicker) to extend an existing platform called Artificial Intelligence for Disaster Response (AIDR), which has already been deployed to classify microblog messages during disasters using its Text Clicker module and in response to Cyclone Pam, a category 5 cyclone that devastated Vanuatu in March 2015. The hybrid solution we present can be applied to both aerial and satellite imagery and has applications beyond disaster response such as wildlife protection, human rights, and archeological exploration. As a proof of concept, we recently piloted this solution using very high-resolution aerial photographs of a wildlife reserve in Namibia to support rangers with their wildlife conservation efforts (SAVMAP project, http://lasig.epfl.ch/savmap ). The

  4. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.

    PubMed

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew; Joost, Stéphane

    2016-03-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission's Joint Research Center (JRC) have noted that aerial imagery will inevitably present a big data challenge. The purpose of this article is to get ahead of this future challenge by proposing a hybrid crowdsourcing and real-time machine learning solution to rapidly process large volumes of aerial data for disaster response in a time-sensitive manner. Crowdsourcing can be used to annotate features of interest in aerial images (such as damaged shelters and roads blocked by debris). These human-annotated features can then be used to train a supervised machine learning system to learn to recognize such features in new unseen images. In this article, we describe how this hybrid solution for image analysis can be implemented as a module (i.e., Aerial Clicker) to extend an existing platform called Artificial Intelligence for Disaster Response (AIDR), which has already been deployed to classify microblog messages during disasters using its Text Clicker module and in response to Cyclone Pam, a category 5 cyclone that devastated Vanuatu in March 2015. The hybrid solution we present can be applied to both aerial and satellite imagery and has applications beyond disaster response such as wildlife protection, human rights, and archeological exploration. As a proof of concept, we recently piloted this solution using very high-resolution aerial photographs of a wildlife reserve in Namibia to support rangers with their wildlife conservation efforts (SAVMAP project, http://lasig.epfl.ch/savmap ). The

  5. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  6. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  7. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  8. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems.

    PubMed

    Pizarro, H; Vera, M S; Vinocur, A; Pérez, G; Ferraro, M; Menéndez Helman, R J; Dos Santos Afonso, M

    2016-03-01

    Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4 ± 0.1 mg l(-1) of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a = 2.04 μg l(-1); turbidity = 2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a = 50.3 μg l(-1); turbidity = 16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body. PMID:26552793

  9. Leaching of glyphosate and amino-methylphosphonic acid from Danish agricultural field sites.

    PubMed

    Kjaer, Jeanne; Olsen, Preben; Ullum, Marlene; Grant, Ruth

    2005-01-01

    Pesticide leaching is an important process with respect to contamination risk to the aquatic environment. The risk of leaching was thus evaluated for glyphosate (N-phosphonomethyl-glycine) and its degradation product AMPA (amino-methylphosphonic acid) under field conditions at one sandy and two loamy sites. Over a 2-yr period, tile-drainage water, ground water, and soil water were sampled and analyzed for pesticides. At a sandy site, the strong soil sorption capacity and lack of macropores seemed to prevent leaching of both glyphosate and AMPA. At one loamy site, which received low precipitation with little intensity, the residence time within the root zone seemed sufficient to prevent leaching of glyphosate, probably due to degradation and sorption. Minor leaching of AMPA was observed at this site, although the concentration was generally low, being on the order of 0.05 microg L(-1) or less. At another loamy site, however, glyphosate and AMPA leached from the root zone into the tile drains (1 m below ground surface [BGS]) in average concentrations exceeding 0.1 microg L(-1), which is the EU threshold value for drinking water. The leaching of glyphosate was mainly governed by pronounced macropore flow occurring within the first months after application. AMPA was frequently detected more than 1.5 yr after application, thus indicating a minor release and limited degradation capacity within the soil. Leaching has so far been confined to the depth of the tile drains, and the pesticides have rarely been detected in monitoring screens located at lower depths. This study suggests that as both glyphosate and AMPA can leach through structured soils, they thereby pose a potential risk to the aquatic environment.

  10. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  11. Observing river stages using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Witek, Matylda; Spallek, Waldemar

    2016-08-01

    We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal five orthophotomaps produced from the UAV-taken visible light images of nine sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on five dates. The logarithms of the fractions are later calculated, producing five samples, each consisted of nine elements. In order to detect statistically significant increments of water surface areas between two orthophotomaps, we apply the asymptotic and bootstrapped versions of the Student's t test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (south-western (SW) Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012-2014). We have found that it is possible to detect transitions between water surface areas associated with all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to mean, intermediate and high stages; (2) from mean stages to intermediate and high stages; and (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows as well as monitoring water levels of rivers in ungauged basins.

  12. Analysis of Moms Across America report suggesting bioaccumulation of glyphosate in U.S. mother's breast milk: Implausibility based on inconsistency with available body of glyphosate animal toxicokinetic, human biomonitoring, and physico-chemical data.

    PubMed

    Bus, James S

    2015-12-01

    The non-peer-reviewed biomonitoring report published online by Moms Across America (MAA; Honeycutt and Rowlands, 2014) does not support the conclusion that glyphosate concentrations detected in a limited number of urine samples from women, men and children, or breast milk from nursing mothers, pose a health risk to the public, including nursing children. Systemically absorbed doses of glyphosate estimated from the MAA urine biomonitoring data and from other published biomonitoring studies indicate that daily glyphosate doses are substantially below health protective reference standards (ADIs; RfDs) established by regulatory agencies. The MAA report also suggested that detection of relatively high glyphosate concentrations in breast milk in 3 of 10 sampled women raised a concern for bioaccumulation in breast milk. However, the breast milk concentrations reported by MAA are highly implausible when considered in context to low daily systemic doses of glyphosate estimated from human urine biomonitoring data, and also are inconsistent with animal toxicokinetic data demonstrating no evidence of retention in tissues or milk after single- or multiple-dose glyphosate treatment. In addition, toxicokinetic studies in lactating goats have shown that glyphosate does not partition into milk at concentrations greater than blood, and that only a very small percentage of the total administered dose (<0.03%) is ultimately excreted into milk. The toxicokinetic studies also indicate that human glyphosate exposures estimated from urine biomonitoring fall thousands-of-fold short of external doses capable of producing blood concentrations sufficient to result in the breast milk concentrations described in the MAA report. Finally, in contrast to highly lipophilic compounds with bioaccumulation potential in breast milk, the physico-chemical properties of glyphosate indicate that it is highly hydrophilic (ionized) at physiological pH and unlikely to preferentially distribute into breast

  13. Soil microbial activity is affected by Roundup WeatherMax and pesticides applied to cotton (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adoption of glyphosate-based weed control systems has led to increased use of the herbicide with continued use of additional pesticides. Combinations of pesticides may affect soil microbial activity differently than pesticides applied alone. Research was conducted to evaluate the influence of glypho...

  14. Intramolecular indicator displacement assay for anions: supramolecular sensor for glyphosate.

    PubMed

    Minami, Tsuyoshi; Liu, Yuanli; Akdeniz, Ali; Koutnik, Petr; Esipenko, Nina A; Nishiyabu, Ryuhei; Kubo, Yuji; Anzenbacher, Pavel

    2014-08-13

    One of the well-known strategies for anion sensing is an indicator (dye) displacement assay. However, the disadvantage of the dye displacement assays is the low sensitivity due to the excess of the dye used. To overcome this setback, we have developed an "Intramolecular Indicator Displacement Assay (IIDA)". The IIDAs comprise a receptor and a spacer with an attached anionic chromophore in a single-molecule assembly. In the resting state, the environment-sensitive anionic chromophore is bound by the receptor, while the anionic substrate competes for binding into the receptor. The photophysical properties of the dye exhibit change in fluorescence when displaced by anions, which results in cross-reactive response. To illustrate the concept, we have prepared IID sensors 1 and 2. Here, the characterization of sensors and microtiter arrays comprising the IIDA are reported. The microtiter array including IID sensors 1 and 2 is capable of recognizing biological phosphates in water. The utility of the IIDA approach is demonstrated on sensing of a phosphonate herbicide glyphosate and other biologically important anions such as pyrophosphate in the presence of interferent sodium chloride.

  15. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  16. Uas for Archaeology - New Perspectives on Aerial Documentation

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Balsi, M.; Esposito, S.; Melis, M. G.; Milanese, M.; Zappino, L.

    2013-08-01

    In this work some Unmanned Aerial Systems applications are discussed and applied to archaeological sites survey and 3D model reconstructions. Interesting results are shown for three important and different aged sites on north Sardinia (Italy). An easy and simplified procedure has proposed permitting the adoption of multi-rotor aircrafts for daily archaeological survey during excavation and documentation, involving state of art in UAS design, flight control systems, high definition sensor cameras and innovative photogrammetric software tools. Very high quality 3D models results are shown and discussed and how they have been simplified the archaeologist work and decisions.

  17. Acquisition and registration of aerial video imagery of urban traffic

    SciTech Connect

    Loveland, Rohan C

    2008-01-01

    The amount of information available about urban traffic from aerial video imagery is extremely high. Here we discuss the collection of such video imagery from a helicopter platform with a low-cost sensor, and the post-processing used to correct radial distortion in the data and register it. The radial distortion correction is accomplished using a Harris model. The registration is implemented in a two-step process, using a globally applied polyprojective correction model followed by a fine scale local displacement field adjustment. The resulting cleaned-up data is sufficiently well-registered to allow subsequent straight-forward vehicle tracking.

  18. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  19. Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico.

    PubMed

    Ruiz-Toledo, Jovani; Castro, Ricardo; Rivero-Pérez, Norma; Bello-Mendoza, Ricardo; Sánchez, Daniel

    2014-09-01

    Glyphosate is an agrochemical widely used to control weeds. However, glyphosate spreads to water bodies by spray-drift, run-off and leaching, potentially causing detrimental effects on non-target biota. There is no information on the occurrence of this herbicide in water bodies near crop fields in Mexico, although it is the most commonly used pesticide in this country. To fill this gap, we quantified glyphosate in water bodies from twenty-three locations, including natural protected areas and agricultural areas in southern Mexico, during the dry and the rainy seasons. We expected (1) higher concentrations during the dry season due to reduced dilution by precipitation and, (2) absence of glyphosate in the protected areas. In agreement with our expectation, concentration of glyphosate was higher during the dry season (up to 36.7 μg/L). Nonetheless, glyphosate was detected in all samples-including natural protected areas. These results emphasize the need for an evaluation of the impact of glyphosate on native species as well as regulate its use.

  20. Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes.

    PubMed

    Contardo-Jara, Valeska; Klingelmann, Eva; Wiegand, Claudia

    2009-01-01

    The bioaccumulation potential of glyphosate and the formulation Roundup Ultra, as well as possible effects on biotransformation and antioxidant enzymes in Lumbriculus variegatus were compared by four days exposure to concentrations between 0.05 and 5 mg L(-1) pure glyphosate and its formulation. Bioaccumulation was determined using (14)C labeled glyphosate. The bioaccumulation factor (BCF) varied between 1.4 and 5.9 for the different concentrations, and was higher than estimated from logP(ow). Glyphosate and its surfactant POEA caused elevation of biotransformation enzyme soluble glutathione S-transferase at non-toxic concentrations. Membrane bound glutathione S-transferase activity was significantly elevated in Roundup Ultra exposed worms, compared to treatment with equal glyphosate concentrations, but did not significantly differ from the control. Antioxidant enzyme superoxide dismutase was significantly increased by glyphosate but in particular by Roundup Ultra exposure indicating oxidative stress. The results show that the formulation Roundup Ultra is of more ecotoxicological relevance than the glyphosate itself.

  1. Effects of Roundup and glyphosate formulations on intracellular transport, microtubules and actin filaments in Xenopus laevis melanophores.

    PubMed

    Hedberg, Daniel; Wallin, Margareta

    2010-04-01

    Glyphosate containing herbicides, such as Roundup, are commonly used and generally considered to be safe. However, some toxic effects are found on amphibians in vivo and human and mouse cells in vitro. In this study the effects of Roundup, glyphosate, glyphosateisopropylamine and isopropylamine were studied on intracellular transport by measuring aggregation capacity in Xenopus laevis melanophores. The chemicals inhibited retrograde transport of melanosomes in the range of 0.5-5mM. Cellular morphology and localization of microtubules and actin filaments were affected as determined by immunocytochemistry. Both glyphosate and Roundup decreased pH in the media. Acidic pH inhibited melanosome transport and altered microtubule and actin morphology in the absence of chemicals, while transport inhibiting concentrations of glyphosate, Roundup and glyphosateisopropylamine disassembled both microtubules and actin filaments. At physiological pH the effects of Roundup decreased whereas glyphosate failed to inhibit transport. Physiological pH decreases glyphosate lipophilicity and its diffusion into the cytoplasm. The Roundup formulation contains surfactants, such as POEA (polyetylated tallow amine) that increases membrane permeability allowing cellular uptake at physiological pH. Our results show that the effects of glyphosate containing compounds are pH-dependent and that they inhibit intracellular transport through disassembly of the cytoskeleton possibly by interfering with intracellular Ca(2+)-balance.

  2. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies.

    PubMed

    Greim, Helmut; Saltmiras, David; Mostert, Volker; Strupp, Christian

    2015-03-01

    Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are that glyphosate is of low toxicological concern, and no concerns exist with respect to glyphosate use and cancer in humans. This manuscript discusses the basis for these conclusions. Most toxicological studies informing regulatory evaluations are of commercial interest and are proprietary in nature. Given the widespread attention to this molecule, the authors gained access to carcinogenicity data submitted to regulatory agencies and present overviews of each study, followed by a weight of evidence evaluation of tumor incidence data. Fourteen carcinogenicity studies (nine rat and five mouse) are evaluated for their individual reliability, and select neoplasms are identified for further evaluation across the data base. The original tumor incidence data from study reports are presented in the online data supplement. There was no evidence of a carcinogenic effect related to glyphosate treatment. The lack of a plausible mechanism, along with published epidemiology studies, which fail to demonstrate clear, statistically significant, unbiased and non-confounded associations between glyphosate and cancer of any single etiology, and a compelling weight of evidence, support the conclusion that glyphosate does not present concern with respect to carcinogenic potential in humans.

  3. EPSPS Gene Amplification in Glyphosate-Resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) Populations from Arkansas (United States).

    PubMed

    Salas, Reiofeli A; Scott, Robert C; Dayan, Franck E; Burgos, Nilda R

    2015-07-01

    Glyphosate-resistant Italian ryegrass was detected in Arkansas (United States) in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations were studied to assess the severity of the problem and identify alternative management approaches. Dose-response bioassays, glyphosate absorption and translocation experiments, herbicide target (EPSPS) gene sequence analysis, and gene amplification assays were conducted. The dose causing 50% growth reduction (GR50) was 7-19 times higher for the resistant population than for the susceptible standard. Uptake and translocation of (14)C-glyphosate were similar in resistant and susceptible plants, and no mutation in the EPSPS gene known to be associated with resistance to glyphosate was detected. Resistant plants contained from 11- to >100-fold more copies of the EPSPS gene than the susceptible plants, whereas the susceptible plants had only one copy of EPSPS. Plants surviving the recommended dose of glyphosate contained at least 10 copies. The EPSPS copy number was positively related to glyphosate resistance level (r = 80). Therefore, resistance to glyphosate in these populations is due to multiplication of the target site. Resistance mechanisms could be location-specific. Suppressing the mechanism for gene amplification may overcome resistance.

  4. Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa.

    PubMed

    Nicolia, A; Ferradini, N; Molla, G; Biagetti, E; Pollegioni, L; Veronesi, F; Rosellini, D

    2014-08-20

    The main strategy for resistance to the herbicide glyphosate in plants is the overexpression of an herbicide insensitive, bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). A glyphosate resistance strategy based on the ability to degrade the herbicide can be useful to reduce glyphosate phytotoxicity to the crops. Here we present the characterization of glyphosate resistance in transgenic alfalfa (Medicago sativa L.) expressing a plant-optimized variant of glycine oxidase (GO) from Bacillus subtilis, evolved in vitro by a protein engineering approach to efficiently degrade glyphosate. Two constructs were used, one with (GO(TP+)) and one without (GO(TP-)) the pea rbcS plastid transit peptide. Molecular and biochemical analyses confirmed the stable integration of the transgene and the correct localization of the plastid-imported GO protein. Transgenic alfalfa plants were tested for glyphosate resistance both in vitro and in vivo. Two GO(TP+) lines showed moderate resistance to the herbicide in both conditions. Optimization of expression of this GO variant may allow to attain sufficient field resistance to glyphosate herbicides, thus providing a resistance strategy based on herbicide degradation.

  5. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    PubMed

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance.

  6. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance.

    PubMed

    Tian, Yong-Sheng; Xu, Jing; Peng, Ri-He; Xiong, Ai-Sheng; Xu, Hu; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Yao, Quan-Hong

    2013-09-01

    A new 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Malus domestica (MdEPSPS) was cloned and characterized by rapid amplification of cDNA ends to identify an EPSPS gene appropriate for the development of transgenic glyphosate-tolerant plants. However, wild-type MdEPSPS is not suitable for the development of transgenic glyphosate-tolerant plants because of its poor glyphosate resistance. Thus, we performed DNA shuffling on MdEPSPS, and one highly glyphosate-resistant mutant with mutations in eight amino acids (N63D, N86S, T101A, A187T, D230G, H317R, Y399R and C413A.) was identified after five rounds of DNA shuffling and screening. Among the eight amino acid substitutions on this mutant, only two residue changes (T101A and A187T) were identified by site-directed mutagenesis as essential and additive in altering glyphosate resistance, which was further confirmed by kinetic analyses. The single-site A187T mutation has also never been previously reported as an important residue for glyphosate resistance. Furthermore, transgenic rice was used to confirm the potential of MdEPSPS mutant in developing glyphosate-resistant crops.

  7. A Novel Naturally Occurring Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. Confers High Glyphosate Tolerance to Rice

    PubMed Central

    Yi, Shu-yuan; Cui, Ying; Zhao, Yan; Liu, Zi-duo; Lin, Yong-jun; Zhou, Fei

    2016-01-01

    As glyphosate is a broad spectrum herbicide extensively used in agriculture worldwide, identification of new aroA genes with high level of glyphosate tolerance is essential for the development and breeding of transgenic glyphosate-tolerant crops. In this study, an aroA gene was cloned from a Janibacter sp. strain isolated from marine sediment (designated as aroAJ. sp). The purified aroAJ. sp enzyme has a Km value of 30 μM for PEP and 83 μM for S3P, and a significantly higher Ki value for glyphosate (373 μM) than aroAE. coli. AroAJ. sp is characterized as a novel and naturally occurring class I aroA enzyme with glyphosate tolerance. Furthermore, we show that aroAJ. sp can be used as an effective selectable marker in both japonica and indica rice cultivar. Transgenic rice lines were tested by herbicide bioassay and it was confirmed that they could tolerate up to 3360 g/ha glyphosate, a dosage four-fold that of the recommended agricultural application level. To our knowledge, it is the first report of a naturally occurring novel class I aroA gene which can be efficiently utilized to study and develop transgenic glyphosate-tolerant crops, and can facilitate a more economical and simplified weed control system. PMID:26754957

  8. Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: models in glyphosate-resistant and -susceptible crops.

    PubMed

    Zelaya, Ian A; Anderson, Jennifer A H; Owen, Micheal D K; Landes, Reid D

    2011-03-23

    Endogenous shikimic acid determinations are routinely used to assess the efficacy of glyphosate in plants. Numerous analytical methods exist in the public domain for the detection of shikimic acid, yet the most commonly cited comprise spectrophotometric and high-pressure liquid chromatography (HPLC) methods. This paper compares an HPLC and two spectrophotometric methods (Spec 1 and Spec 2) and assesses the effectiveness in the detection of shikimic acid in the tissues of glyphosate-treated plants. Furthermore, the study evaluates the versatility of two acid-based shikimic acid extraction methods and assesses the longevity of plant extract samples under different storage conditions. Finally, Spec 1 and Spec 2 are further characterized with respect to (1) the capacity to discern between shikimic acid and chemically related alicyclic hydroxy acids, (2) the stability of the chromophore (t1/2), (3) the detection limits, and (4) the cost and simplicity of undertaking the analytical procedure. Overall, spectrophotometric methods were more cost-effective and simpler to execute yet provided a narrower detection limit compared to HPLC. All three methods were specific to shikimic acid and detected the compound in the tissues of glyphosate-susceptible crops, increasing exponentially in concentration within 24 h of glyphosate application and plateauing at approximately 72 h. Spec 1 estimated more shikimic acid in identical plant extract samples compared to Spec 2 and, likewise, HPLC detection was more effective than spectrophotometric determinations. Given the unprecedented global adoption of glyphosate-resistant crops and concomitant use of glyphosate, an effective and accurate assessment of glyphosate efficacy is important. Endogenous shikimic acid determinations are instrumental in corroborating the efficacy of glyphosate and therefore have numerous applications in herbicide research and related areas of science as well as resolving many commercial issues as a consequence of

  9. Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry

    USGS Publications Warehouse

    Tush, Daniel; Loftin, Keith A.; Meyer, Michael T.

    2013-01-01

    Little is known about the occurrence, fate, and effects of the ancillary additives in pesticide formulations. Polyoxyethylene tallow amine (POEA) is a non-ionic surfactant used in many glyphosate formulations, a widely applied herbicide both in agricultural and urban environments. POEA has not been previously well characterized, but has been shown to be toxic to various aquatic organisms. Characterization of technical mixtures using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry shows POEA is a complex combination of homologs of different aliphatic moieties and ranges of ethoxylate units. Tandem mass spectrometry experiments indicate that POEA homologs generate no product ions readily suitable for quantitative analysis due to poor sensitivity. A comparison of multiple high performance liquid chromatography (HPLC) and UHPLC analytical columns indicates that the stationary phase is more important in column selection than other parameters for the separation of POEA. Analysis of several agricultural and household glyphosate formulations confirms that POEA is a common ingredient but ethoxylate distributions among formulations vary.

  10. Exposure to a commercial glyphosate formulation (Roundup®) alters normal gill and liver histology and affects male sexual activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes).

    PubMed

    Hued, Andrea Cecilia; Oberhofer, Sabrina; de los Ángeles Bistoni, María

    2012-01-01

    Roundup is the most popular commercial glyphosate formulation applied in the cultivation of genetically modified glyphosate-resistant crops. The aim of this study was to evaluate the histological lesions of the neotropical native fish, Jenynsia multidentata, in response to acute and subchronic exposure to Roundup and to determine if subchronic exposure to the herbicide causes changes in male sexual activity of individuals exposed to a sublethal concentration (0.5 mg/l) for 7 and 28 days. The estimated 96-h LC50 was 19.02 mg/l for both male and female fish. Gill and liver histological lesions were evaluated through histopathological indices allowing quantification of the histological damages in fish exposed to different concentrations of the herbicide. Roundup induced different histological alterations in a concentration-dependent manner. In subchronic-exposure tests, Roundup also altered normal histology of the studied organs and caused a significant decrease in the number of copulations and mating success in male fish exposed to the herbicide. It is expected that in natural environments contaminated with Roundup, both general health condition and reproductive success of J. multidenatata could be seriously affected.

  11. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    PubMed

    Tush, Daniel; Meyer, Michael T

    2016-06-01

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season. PMID:27163278

  12. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  13. The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails.

    PubMed

    Omran, Nahla Elsayed; Salama, Wesam Mohamed

    2016-04-01

    Atrazine (AZ) and glyphosate (GL) are herbicides that are widely applied to cereal crops in Egypt. The present study was designed to investigate the response of the snailBiomphalaria alexandrina(Mollusca: Gastropoda) as a bioindicator for endocrine disrupters in terms of steroid levels (testosterone (T) and 17β-estradiol (E)), alteration of microsomal CYP4501B1-like immunoreactivity, total protein (TP) level, and gonadal structure after exposure to sublethal concentrations of AZ or GL for 3 weeks. In order to study the ability of the snails' recuperation, the exposed snails were subjected to a recovery period for 2 weeks. The results showed that the level of T, E, and TP contents were significantly decreased (p ≤ 0.05) in both AZ- and GL-exposed groups compared with control (unexposed) group. The level of microsomal CYP4501B1-like immunoreactivity increased significantly (p ≤ 0.05) in GL- and AZ-exposed snails and reach nearly a 50% increase in AZ-exposed group. Histological investigation of the ovotestis showed that AZ and GL caused degenerative changes including azoospermia and oocytes deformation. Interestingly, all the recovered groups did not return back to their normal state. It can be concluded that both herbicides are endocrine disrupters and cause cellular toxicity indicated by the decrease of protein content and the increase in CYP4501B1-like immunoreactivity. This toxicity is irreversible and the snail is not able to recover its normal state. The fluctuation of CYP4501B1 suggests that this vertebrate-like enzyme may be functional also in the snail and may be used as a biomarker for insecticide toxicity.

  14. Training and Practice in Geographic Skills: An Aerial Photo Interpretation Course Project.

    ERIC Educational Resources Information Center

    Rumney, Thomas

    1982-01-01

    Describes a college level geography project which focused on land use identification from aerial photographs, land use mapping, and the identification and analysis of land use changes in the field. The project was intended to help students apply geographic skills to real world problems. (AM)

  15. EVALUATION OF THE AGDISP AERIAL SPRAY ALGORITHMS IN THE AGDRIFT MODEL

    EPA Science Inventory

    A systematic evaluation of the AgDISP algorithms, which simulate off-site drift and deposition of aerially applied pesticides, contained in the AgDRIFT model was performed by comparing model simulations to field-trial data collected by the Spray Drift Task Force. Field-trial data...

  16. Interaction of the bioherbicide Myrothecium verrucarria and glyphosate for kudzu control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spore and mycelial formulations of the bioherbicidal fungus Myrothecium verrucaria (MV) were tested alone and in combination with glyphosate for control of kudzu (Pueraria lobata) under greenhouse and field conditions in naturally-infested sites at Lexington and Eden, MS. Control of kudzu increased...

  17. Bioherbicidal effects of Myrothecium verrucaria on Glyphosate-resistant and -susceptible Palmer amaranth biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioherbicidal effects of the fungus Myrothecium verrucaria (MV) on glyphosate-resistant and -susceptible Palmer amaranth were examined on whole plants and in leaf bioassays of young and mature plants. Leaf bioassays using mycelia from the fermentation product of MV indicated that excised leaves of ...

  18. Influence of weed species and time of glyphosate application on Rhizoctonia root rot of barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG-8 causes root disease in wheat, barley, canola and other small grains in the dryland inland Pacific Northwest. The pathogen survives between crops on roots of volunteers and grassy weeds. Destroying this green bridge with herbicides such as glyphosate is a common tactic to cont...

  19. Response of Pennsylvania native plant species, corn and soybean to tank mixes of dicamba and glyphosate

    EPA Science Inventory

    Crops such as soybean are being genetically modified to be tolerant to multiple herbicides, such as dicamba and glyphosate, in order to allow treatment with several herbicides to control the development of herbicide resistance in weeds. However, with increased use of multiple-he...

  20. Leaf anatomy and morphometry in three eucalypt clones treated with glyphosate.

    PubMed

    Tuffi Santos, L D; Sant'Anna-Santos, B F; Meira, R M S A; Ferreira, F A; Tiburcio, R A S; Machado, A F L

    2009-02-01

    This work aimed to evaluate the effects of simulated drift of glyphosate on the morphoanatomy of three eucalypt clones and to correlate the intoxication symptoms on a microscopic scale with those observed in this visual analysis. The effects of glyphosate drift were proportional to the five doses tested, with Eucalyptus urophylla being more tolerant to the herbicide than E. grandis and urograndis hybrid. The symptoms of intoxication which were similar for the different clones at 7 and 15 days after application were characterized by leaf wilting, chlorosis and curling and, at the highest rates, by necrosis, leaf senescence and death. Anatomically glyphosate doses higher than 86.4 g.ha-1 caused cellular plasmolysis, hypertrophy and hyperplasia, formation of the cicatrization tissue and dead cells on the adaxial epidermis. The spongy parenchyma had a decrease, and the palisade parenchyma and leaf blade thickness had an increase. The increased thickness in leaf blade and palisade parenchyma may be related to the plant response to glyphosate action, as a form of recovering the photosynthetically active area reduced by necroses and leaf senescence caused by the herbicide. PMID:19347155