Science.gov

Sample records for aerially applied glyphosate

  1. Assessing crop injury caused by aerially applied glyphosate drift using spray sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop injury caused by off-target drift of aerially applied glyphosate is of great concern to farmers and aerial applicators. An experiment was conducted in 2009 to determine the extent of injury due to near-field glyphosate drift from aerial application to glyphosate-sensitive cotton, corn and soybe...

  2. Ground-based spectral reflectance measurements for evaluating the efficacy of aerially-applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set...

  3. Ground-based spectral reflectance measurements for efficacy evaluation of aerially applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set u...

  4. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of aerially applied glyphosate can cause plant injury, which is of great concern to farmers and aerial applicators. To determine the extent of crop injury due to near-field drift, an experiment was conducted with a single aerial application of glyphosate. For identification of the d...

  5. Coca and poppy eradication in Colombia: environmental and human health assessment of aerially applied glyphosate.

    PubMed

    Solomon, Keith R; Anadón, Arturo; Carrasquilla, Gabriel; Cerdeira, Antonio L; Marshall, Jon; Sanin, Luz-Helena

    2007-01-01

    The production of coca and poppy as well as the processing and production of cocaine and heroin involve significant environmental impacts. Both coca and poppy are grown intensively in a process that involves the clearing of land in remote areas, the planting of the crop, and protection against pests such as weeds, insects, and pathogens. The aerial spray program to control coca and poppy production in Colombia with the herbicide glyphosate is conducted with modern state-of-the-art aircraft and spray equipment. As a result of the use of best available spray and navigation technology, the likelihood of accidental off-target spraying is small and is estimated to be less than 1% of the total area sprayed. Estimated exposures in humans resulting from direct overspray, contact with treated foliage after reentry to fields, inhalation, diet, and drinking water were small and infrequent. Analyses of surface waters in five watersheds showed that, on most occasions, glyphosate was not present at measurable concentrations; only two samples had residues just above the method detection limit of 25 microg/L. Concentrations of glyphosate in air were predicted to be very small because of negligible volatility. Glyphosate in soils that are directly sprayed will be tightly bound and biologically unavailable and have no residual activity. Concentrations of glyphosate plus Cosmo-Flux will be relatively large in shallow surface waters that are directly oversprayed (maximum instantaneous concentration of 1,229microgAE/L in water 30cm deep); however, no information was available on the number of fields in close proximity to surface waters, and thus it was not possible to estimate the likelihood of such contamination. The formulation used in Colombia, a mixture of glyphosate and Cosmo-Flux, has low toxicity to mammals by all routes of exposure, although some temporary eye irritation may occur. Published epidemiological studies have not suggested a strong or consistent linkage between

  6. Effects of aerially applied glyphosate and hexazinone on hardwoods and pines in a loblolly pine plantation. Forest Service research paper

    SciTech Connect

    Haywood, J.D.

    1993-09-01

    Areas in a 4-year-old loblolly pine (Pinus taeda L.) plantation were treated with aerially applied Roundup (glyphosate), Pronone 10G (hexazinone), and Velpar L (hexazinone) plus Lo Drift (a spray additive). All herbicides were applied with appropriate helicopter-mounted equipment. The proportion of free-to-grow pine trees increased over a 2-year period in both the treated and untreated areas, but the increase was slightly greater in the treated areas. Final loblolly pine height, d.b.h., and volume per tree did not differ significantly among the four treatments. About 1,200 hardwood trees and 4,700 shrubs over 3 ft tall per acre were present at the beginning of the study.

  7. Biological response of soybean and cotton to aerial glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aerial application drift study was conducted in 2009 to determine biological effects of glyphosate on cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.]. Glyphosate at 866 g ae/ha was applied using an Air Tractor 402B agricultural aircraft in an 18.3 m spray swath to crops at the...

  8. Biological responses to glyphosate drift from aerial application in non-glyphosate-resistant corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate drift from aerial application onto susceptible crops is inevitable, yet the biological responses to glyphosate drift in crops are not well characterized. The objectives of this research were to determine the effects of glyphosate drift from a single aerial application (18.3 m swath, 866 ...

  9. Determination of Cotton Plant Injury by Aerial Application of Glyphosate Using Remote Sensing and Spray Drift Sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-target drift of aerially applied glyphosate can cause plant injury, which is of great concern to farmers and aerial applicators. To determine the extent of crop injury due to near-field drift, an experiment was conducted from a single aerial application of glyphosate. For a larger-scoped project...

  10. Determination of differences in crop injury from aerial application of glyphosate using vegetation indices and geostatistics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Injury to crops caused by off-target drift of glyphosate can seriously reduce growth and yield, and is of great concern to farmers and aerial applicators. Determining an indirect method for assessing the levels and extent of crop injury could support management decisions. The objectives of this stud...

  11. Glyphosate

    Integrated Risk Information System (IRIS)

    Glyphosate ; CASRN 1071 - 83 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  12. Glyphosate Applied at Low Doses Can Stimulate Plant Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate blocks the shikimic acid pathway, inhibiting the production of aromatic amino acids and several secondary compounds derived from these amino acids. Non-target plants can be exposed to low doses of glyphosate by herbicide drift of spray droplets and contact with treated weeds. Previous s...

  13. Efficacy of Residual and Non-Residual Herbicides Used in Cotton Production Systems When Applied with Glyphosate, Glufosinate, or MSMA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to evaluate weed control provided by glyphosate, glufosinate, and MSMA applied alone or in mixture with residual and non-residual LAYBY herbicides. Herbicide treatments included glyphosate early postemergence (EPOST) alone or followed by: 1) glyphosate, 2) glufosin...

  14. In-Crop and Autumn-Applied Glyphosate Reduced Purple Nutsedge (Cyperus rotundus)Density in No-Till Glyphosate-Resistant Corn and Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 3-yr field study was conducted from 2005 to 2007 at Stoneville, MS to determine efficacy of in-crop and fall-applied glyphosate on purple nutsedge density and yield of no-till glyphosate-resistant (GR) corn and GR soybean. Separate experiments were conducted in GR corn and GR soybean in areas main...

  15. Influence of Cotton Size on Injury from Flumioxazin and Glyphosate Applied Post-Directed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2004 and 2005, glyphosate + diuron and flumioxazin + MSMA were applied to cotton at 20, 30, 40, and 50 cm in height. These herbicides were directed to either the lower 2 cm on the cotton stem or to the lower 50% of the cotton stem to determine the impact of application timing and placement on cot...

  16. Meteorological influences on mass accountability of aerially applied sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The deposition and drift of aerially applied crop protection materials is influenced by a number of factors including equpment setup and operational parameters, spray material characteristics, and meteorological effects. This work examines the meteorological influences that effect the ultimate fate...

  17. Determination of differences in crop injury from aerial application of glyphosate using vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop injury caused by off-target drift of herbicide can seriously reduce growth and yield and is of great concern to farmers and aerial applicators. Farmers can benefit from identifying an indirect method for assessing the levels and extent of crop injury. This study evaluates the combined use of ge...

  18. Cotton (Gossypium hirsutum) Response to Glyphosate Applied in Irrigated and Non-irrigated Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted in Alabama during 1999 and 2000 to test the hypothesis that any glyphosate-induced yield suppression in glyphosate-tolerant cotton would be less with irrigation compared to without irrigation. This objective was best served by measuring for possible yield-compensati...

  19. Optimizing selection of controllable variables to minimize downwind drift from aerially applied sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drift of aerially applied crop protection and production materials is studied using a novel simulation-based approach. This new approach first studies many factors that can potentially contribute to downwind deposition from aerial spray application to narrow down the major contributing factors. An o...

  20. Atmospheric effects on the fate of aerially applied agricultural sprays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drift from aerial application of crop protection materials is influenced by many factors such as mean wind, temperature, relative humidity, and atmospheric stability. The applicator is responsible for making all possible efforts to reduce drift. Atmospheric conditions and stability must be conside...

  1. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Pace, Patrick F; Reddy, Krishna N; Smeda, Reid J

    2003-01-01

    The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a

  2. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Geis, Jack; Arnold, Jack H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  3. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    SciTech Connect

    Geis, J.; Arnold, J.H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  4. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Technical Reports Server (NTRS)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  5. [Microbial degradation of glyphosate herbicides (review)].

    PubMed

    Sviridov, A V; Shushkova, T V; Ermakova, I T; Ivanova, E V; Epiktetov, D O; Leont'evskii, A A

    2015-01-01

    This review analyzes the issues associated with biodegradation of glyphosate (N-(phosphonomethyl)glycine), one of the most widespread herbicides. Glyphosate can accumulate in natural environments and can be toxic not only for plants but also for animals and bacteria. Microbial transformation and mineralization ofglyphosate, as the only means of its rapid degradation, are discussed in detail. The different pathways of glyphosate catabolism employed by the known destructing bacteria representing different taxonomic groups are described. The potential existence of alternative glyphosate degradation pathways, apart from those mediated by C-P lyase and glyphosate oxidoreductase, is considered. Since the problem of purifying glyphosate-contaminated soils and water bodies is a topical issue, the possibilities of applying glyphosate-degrading bacteria for their bioremediation are discussed. PMID:26027353

  6. Glyphosate poisoning.

    PubMed

    Bradberry, Sally M; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Glyphosate is used extensively as a non-selective herbicide by both professional applicators and consumers and its use is likely to increase further as it is one of the first herbicides against which crops have been genetically modified to increase their tolerance. Commercial glyphosate-based formulations most commonly range from concentrates containing 41% or more glyphosate to 1% glyphosate formulations marketed for domestic use. They generally consist of an aqueous mixture of the isopropylamine (IPA) salt of glyphosate, a surfactant, and various minor components including anti-foaming and colour agents, biocides and inorganic ions to produce pH adjustment. The mechanisms of toxicity of glyphosate formulations are complicated. Not only is glyphosate used as five different salts but commercial formulations of it contain surfactants, which vary in nature and concentration. As a result, human poisoning with this herbicide is not with the active ingredient alone but with complex and variable mixtures. Therefore, It is difficult to separate the toxicity of glyphosate from that of the formulation as a whole or to determine the contribution of surfactants to overall toxicity. Experimental studies suggest that the toxicity of the surfactant, polyoxyethyleneamine (POEA), is greater than the toxicity of glyphosate alone and commercial formulations alone. There is insufficient evidence to conclude that glyphosate preparations containing POEA are more toxic than those containing alternative surfactants. Although surfactants probably contribute to the acute toxicity of glyphosate formulations, the weight of evidence is against surfactants potentiating the toxicity of glyphosate. Accidental ingestion of glyphosate formulations is generally associated with only mild, transient, gastrointestinal features. Most reported cases have followed the deliberate ingestion of the concentrated formulation of Roundup (The use of trade names is for product identification purposes only and

  7. Effects of drift from 39 aerially-applied herbicides on production pond plankton and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-nine, aerially-applied row crop herbicides were tested for possible adverse effects from drift on fish pond plankton and water quality over 10 years of testing at the University of Arkansas at Pine Bluff. Phytoplankton biomass and productivity, 6 water quality parameters of interest in aquac...

  8. Response of Ranger Russet potato to simulated glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2008 at Ontario, OR, Paterson, WA, and Aberdeen, ID to determine the effect of simulated glyphosate drift on potato. Glyphosate was applied at 10-15cm height, stolon-hooking, tuber-initiation, and bulking stage. Glyphosate was applied at 0, 8.5, 54, 107, 215, and 423g...

  9. Multiple resistance to glyphosate and pyrithiobac in Palmer amaranth (Amaranthus palmeri) from Mississippi and response to flumiclorac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and laboratory studies were conducted to confirm and quantify glyphosate resistance, to investigate interactions between flumiclorac and glyphosate mixtures on weed control, to determine patterns of absorption and translocation of glyphosate applied alone and in combination with flumiclor...

  10. Development and testing of a laboratory spray table methodology to bioassay simulated levels of aerial spray drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to develop a repeatable methodology for bioassaying simulated levels of aerially applied glyphosate at deposition levels ranging from 1/3 to 1/100 of labeled rate at droplet sizes of 100 µm in a spray table environment. These drift deposition levels are consistent wit...

  11. Influence of glyphosate on Rhizoctonia crown and root rot (Rhizoctonia solani) in glyphosate-resistant sugarbeet (Beta vulgaris L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous greenhouse studies with a non-commercial glyphosate-resistant sugarbeet variety indicated that susceptibility to Rhizoctonia crown and root rot could increase after glyphosate was applied. Greenhouse and field experiments were conducted in 2008 and 2009 to determine if glyphosate influenced...

  12. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    PubMed

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant. PMID:27092715

  13. Detecting lost persons using the k-mean method applied to aerial photographs taken by unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Stec, Magdalena; Wieczorek, Malgorzata; Slopek, Jacek; Jurecka, Miroslawa

    2016-04-01

    The objective of this work is to discuss the usefulness of the k-mean method in the process of detecting persons on oblique aerial photographs acquired by unmanned aerial vehicles (UAVs). The detection based on the k-mean procedure belongs to one of the modules of a larger Search and Rescue (SAR) system which is being developed at the University of Wroclaw, Poland (research project no. IP2014 032773 financed by the Ministry of Science and Higher Education of Poland). The module automatically processes individual geotagged visual-light UAV-taken photographs or their orthorectified versions. Firstly, we separate red (R), green (G) and blue (B) channels, express raster data as numeric matrices and acquire coordinates of centres of images using the exchangeable image file format (EXIF). Subsequently, we divide the matrices into matrices of smaller dimensions, the latter being associated with the size of spatial window which is suitable for discriminating between human and terrain. Each triplet of the smaller matrices (R, G and B) serves as input spatial data for the k-mean classification. We found that, in several configurations of the k-mean parameters, it is possible to distinguish a separate class which characterizes a person. We compare the skills of this approach by performing two experiments, based on UAV-taken RGB photographs and their orthorectified versions. This allows us to verify the hypothesis that the two exercises lead to similar classifications. In addition, we discuss the performance of the approach for dissimilar spatial windows, hence various dimensions of the above-mentioned matrices, and we do so in order to find the one which offers the most adequate classification. The numerical experiment is carried out using the data acquired during a dedicated observational UAV campaign carried out in the Izerskie Mountains (SW Poland).

  14. EFFECTS OF GLYPHOSATE AND FOLIAR AMENDMENTS ON ACTIVITY OF MICROORGANISMS IN THE SOYBEAN RHIZOSPHERE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha-1 was applied to GR soybean at the V4 - V5 development stages. Check tre...

  15. Glyphosate-tolerance mechanism in Italian ryegrass (Lolium multiflorum) from Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 3-fold glyphosate tolerance was identified in two Italian ryegrass populations, T1 and T2, from Mississippi. Laboratory experiments were conducted to characterize the mechanism of glyphosate tolerance in these populations. The T1 population absorbed less 14C-glyphosate (43% of applied) compared to...

  16. Mortality in two ditch species exposed to root-zone glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is one of the most widely applied herbicides globally. While extensive research exists on the effects of glyphosate on non-target species exposed via drift and by-spray, little work has been done investigating the effects of root-zone glyphosate exposure that is associated with runoff fr...

  17. Hormesis with glyphosate depends on coffee growth stage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed management systems in almost all Brazilian coffee plantations allow herbicide spray to drift on crop plants. In order to evaluate if there is any effect of the most commonly used herbicide in coffee production, glyphosate, on coffee plants, a range of glyphosate doses were applied directly on ...

  18. Pitted and Hybrid Morningglory Accessions Have Variable Tolerance to Glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse studies were conducted to investigate the variability in tolerance to glyphosate among 38 accessions of pitted morningglory collected from several southern United States. Glyphosate at 420 g ae/ha was applied postemergence to plants at 4- to 5-leaf stage and control was visually estimated...

  19. Potato (Solanum tuberosum) response to simulated glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2008 in Ontario, OR and Paterson, WA to determine the effect of simulated glyphosate drift on 'Ranger Russet' potato injury, shikimic acid accumulation, and tuber yield. Glyphosate was applied at 8.5-, 54-, 107-, 215-, and 423 g ae ha-1; which corresponds to 0.01, 0.0...

  20. Aerial spray deposition on corn silks applied at high and low spray rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn earworm is a major pest of sweet corn, especially when grown organically. Aerial application of insecticides is important for both conventionally- and organically-grown sweet corn production as sweet corn is frequently irrigated to assure return on investment given the high production costs. ...

  1. Atmospheric and stability effects on aerially applied agricultural sprays - Preliminary results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drift from aerial application of crop protection materials is influenced by many factors such as mean wind, temperature, relative humidity, and atmospheric stability. The applicator is responsible for making all possible efforts to reduce drift. Atmospheric conditions and stability must be conside...

  2. Glyphosate metabolism in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many soil microbes and plant species metabolically degrade the herbicide glyphosate. The primary degradation routes are by a glyphosate oxidoreductase (GOX) to form aminomethylphosphonic acid (AMPA) as the distinctive metabolite and by a C-P lyase that forms sarcosine as a main metabolite. AMPA app...

  3. The Smart Aerial Release Machine, a Universal System for Applying the Sterile Insect Technique

    PubMed Central

    Mubarqui, Ruben Leal; Perez, Rene Cano; Kladt, Roberto Angulo; Lopez, Jose Luis Zavala; Parker, Andrew; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy

    2014-01-01

    Background Beyond insecticides, alternative methods to control insect pests for agriculture and vectors of diseases are needed. Management strategies involving the mass-release of living control agents have been developed, including genetic control with sterile insects and biological control with parasitoids, for which aerial release of insects is often required. Aerial release in genetic control programmes often involves the use of chilled sterile insects, which can improve dispersal, survival and competitiveness of sterile males. Currently available means of aerially releasing chilled fruit flies are however insufficiently precise to ensure homogeneous distribution at low release rates and no device is available for tsetse. Methodology/Principal Findings Here we present the smart aerial release machine, a new design by the Mubarqui Company, based on the use of vibrating conveyors. The machine is controlled through Bluetooth by a tablet with Android Operating System including a completely automatic guidance and navigation system (MaxNav software). The tablet is also connected to an online relational database facilitating the preparation of flight schedules and automatic storage of flight reports. The new machine was compared with a conveyor release machine in Mexico using two fruit flies species (Anastrepha ludens and Ceratitis capitata) and we obtained better dispersal homogeneity (% of positive traps, p<0.001) for both species and better recapture rates for Anastrepha ludens (p<0.001), especially at low release densities (<1500 per ha). We also demonstrated that the machine can replace paper boxes for aerial release of tsetse in Senegal. Conclusions/Significance This technology limits damages to insects and allows a large range of release rates from 10 flies/km2 for tsetse flies up to 600 000 flies/km2 for fruit flies. The potential of this machine to release other species like mosquitoes is discussed. Plans and operating of the machine are provided to allow its

  4. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils.

    PubMed

    Wang, Yu-Jun; Zhou, Dong-mei; Sun, Rui-juan

    2005-01-01

    Glyphosate (GPS) is a non-selective, post-mergence herbicide that is widely used throughout the world. Due to the similar molecular structures of glyphosate and phosphate, adsorption of glyphosate on soil is easily affected by coexisting phosphate, especially when phosphate is applied at a significant rate in farmland. This paper studied the effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils including two variable charge soils and one permanent charge soil. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients (0.990-0.998) with K values of 2751, 2451 and 166 for the zhuanhong soil(ZH soil, Laterite), red soil(RS, Udic Ferrisol) and Wushan paddy soil (WS soil, Anthrosol), respectively. The more the soil iron and aluminum oxides and clay contained, the more glyphosate adsorbed. The presence of phosphate significantly decreased the adsorption of glyphosate to the soils by competing with glyphosate for adsorption sites of soils. Meanwhile, the effects of phosphate on adsorption of glyphosate on the two variable charge soils were more significant than that on the permanent charge soil. When phosphate and glyphosate were added in the soils in different orders, the adsorption quantities of glyphosate on the soils were different, which followed GPS-soil > GPS-P-soil = GPS-soil-P > P-soil-GPS, meaning a complex interaction occurred among glyphosate, phosphate and the soils. PMID:16312989

  5. Regional differences in time to pregnancy among fertile women from five Colombian regions with different use of glyphosate.

    PubMed

    Sanin, Luz-Helena; Carrasquilla, Gabriel; Solomon, Keith R; Cole, Donald C; Marshall, E J P

    2009-01-01

    The objective of this study was to test whether there was an association between the use of glyphosate when applied by aerial spray for the eradication of illicit crops (cocaine and poppy) and time to pregnancy (TTP) among fertile women. A retrospective cohort study (with an ecological exposure index) of first pregnancies was undertaken in 2592 fertile Colombian women from 5 regions with different uses of glyphosate. Women were interviewed regarding potential reproductive, lifestyle, and work history predictors of TTP, which was measured in months. Fecundability odds ratios (fOR) were estimated using a discrete time analogue of Cox's proportional hazard model. There were differences in TTP between regions. In the final multivariate model, the main predictor was the region adjusted by irregular relationship with partner, maternal age at first pregnancy, and, marginally, coffee consumption and self-perception of water pollution. Boyaca, a region with traditional crops and. recently, illicit crops without glyphosate eradication spraying (manual eradication), displayed minimal risk and was the reference region. Other regions, including Sierra Nevada (control area, organic agriculture), Putumayo and Narino (illicit crops and intensive eradication spray program), and Valle del Cauca, demonstrated greater risk of longer TTP, with the highest risk for Valle del Cauca (fOR 0.15, 95% CI 0.12, 0.18), a sugar-cane region with a history of use of glyphosate and others chemicals for more than 30 yr. The reduced fecundability in some regions was not associated with the use of glyphosate for eradication spraying. The observed ecological differences remain unexplained and may be produced by varying exposures to environmental factors, history of contraceptive programs in the region, or psychological distress. Future studies examining these or other possible causes are needed. PMID:19672763

  6. Glyphosate effects on soil rhizosphere-associated bacterial communities.

    PubMed

    Newman, Molli M; Hoilett, Nigel; Lorenz, Nicola; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-02-01

    Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago, there is now concern for non-target effects on soil microbial communities that has potential to negatively affect soil functions, plant health, and crop productivity. Although extensive research has been done on short-term response to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objective was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from rhizoboxes following 4 growth periods, and bacterial community composition was compared between glyphosate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abundance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in response to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere. Our results also highlight the need for applying culture-independent approaches in studying the effects of pesticides on the soil and rhizosphere microbial community. PMID:26580738

  7. The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge.

    PubMed

    Shen, Jiangnan; Huang, Jie; Liu, Lifen; Ye, Wenyuan; Lin, Jiuyang; Van der Bruggen, Bart

    2013-09-15

    Alkaline glyphosate neutralization liquors containing a high salinity pose a severe environmental pollution problem by the pesticide industry. However, there is a high potential for glyphosate recovery due to the high concentration of glyphosate in the neutralization liquors. In the study, a three-compartment bipolar membrane electrodialysis (BMED) process was applied on pilot scale for the recovery of glyphosate and the production of base/acid with high concentration in view of zero discharge of wastewater. The experimental results demonstrate that BMED can remove 99.0% of NaCl from the feed solution and transform this fraction into HCl and NaOH with high concentration and purity. This is recycled for the hydrolysis reaction of the intermediate product generated by the means of the Mannich reaction of paraformaldehyde, glycine and dimethylphosphite catalyzed by triethylamine in the presence of HCl and reclamation of the triethylamine catalyst during the production process of glyphosate. The recovery of glyphosate in the feed solution was over 96%, which is acceptable for industrial production. The current efficiency for producing NaOH with a concentration of 2.0 mol L(-1) is above 67% and the corresponding energy consumption is 2.97 kWh kg(-1) at a current density of 60 mA cm(-2). The current efficiency increases and energy consumption decreases as the current density decreases, to 87.13% and 2.37 kWh kg(-1), respectively, at a current density of 30 mA cm(-2). Thus, BMED has a high potential for desalination of glyphosate neutralization liquor and glyphosate recovery, aiming at zero discharge and resource recycling in industrial application. PMID:23832058

  8. Distribution patterns of MCA-coated granules aerially applied to corn fields of Southern Hungary between 2000 and 2002.

    PubMed

    Wennemann, L; Hummel, H E

    2003-01-01

    Field studies in corn (Zea mays L.) were conducted to evaluate distribution patterns of 4-methoxy-cinnamaldehyde (MCA) coated corn grits after aerial application with a Dromader fixed wing aircraft. The kairomone mimic MCA is synthetically available and a quite specific and efficient adult attractant for the invasive alien maize pest western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. Orientation disruptive properties of MCA for WCR when applied at unphysiologically high concentrations are currently under investigation. For successful implementation of the MCA disruption technique, the distribution patterns of MCA coated corn granules ('grits') in the field are important. Grits are degrained corn cobs, shredded to different sizes, coated with MCA and used as a carrier material to disseminate MCA vapors into corn fields. Granules of 10-12 mesh size were aerially applied eight times at rates ranging from 12.4 to 25.0 kg/ha. The goal is to evaluate distribution patterns of corn grits treated with MCA in three fields located at Csanadpalota, Kardoskút and Mezöhegyes in Southern Hungary between 2000 and 2002. Increasing rates reflect our attempts in finding and optimising the most even distribution of granules in the field. Field experiments were evaluated by collecting grits in 30-cm plastic saucers and by counting grits accumulated on corn plant parts. Variation in grit number per unit area and frequency of corn granule number per plant showed some transient technical application problems. Analysis of grits collected in the saucers revealed some statistical difference between the different application dates as well as differences in rates applied. Altogether grits in saucers were more evenly distributed in comparison to the grits collected on plant parts. As the corn plants age, their leaves and whorls present a smaller and smaller surface area where granules can accumulate. Altogether, however, grit distribution patterns indicate that aerial

  9. Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions.

    PubMed

    Piola, Lucas; Fuchs, Julio; Oneto, María Luisa; Basack, Silvana; Kesten, Eva; Casabé, Norma

    2013-04-01

    Glyphosate-based products are the leading post-emergent agricultural herbicides in the world, particularly in association with glyphosate tolerant crops. However, studies on the effects of glyphosate-based formulations on terrestrial receptors are scarce. This study was conducted to evaluate the comparative toxicity of two glyphosate-based products: Roundup FG (monoammonium salt, 72% acid equivalent, glyphosate-A) and Mon 8750 (monoammonium salt, 85.4% acid equivalent, glyphosate-B), towards the earthworm Eisenia andrei. Median lethal concentration (LC50) showed that glyphosate-A was 4.5-fold more toxic than glyphosate-B. Sublethal concentrations caused a concentration-dependent weight loss, consistent with the reported effect of glyphosate as uncoupler of oxidative phosphorylation. Glyphosate-A showed deleterious effects on DNA and lysosomal damage at concentrations close to the applied environmental concentrations (14.4 μg ae cm(-2)). With glyphosate-B toxic effects were observed at higher doses, close to its LC50, suggesting that the higher toxicity of formulate A could be attributed to the effects of some of the so-called "inert ingredients", either due to a direct intrinsic toxicity, or to an enhancement in the bioavailability and/or bioaccumulation of the active ingredient. Our results highlight the importance of ecotoxicological assessment not only of the active ingredients, but also of the different formulations usually employed in agricultural practices. PMID:23332878

  10. Computational inspection applied to a mask inspection system with advanced aerial imaging capability

    NASA Astrophysics Data System (ADS)

    Pang, Linyong; Peng, Danping; He, Lin; Chen, Dongxue; Dam, Thuc; Tolani, Vikram; Tam, Aviram; Staud, Wolf

    2010-03-01

    At the most advanced technology nodes, such as 32nm and 22nm, aggressive OPC and Sub-Resolution Assist Features (SRAFs) are required. However, their use results in significantly increased mask complexity, challenging mask defect dispositioning more than ever. To address these challenges in mask inspection and defect dispositioning, new mask inspection technologies have been developed that not only provide high resolution masks imaged at the same wavelength as the scanner, but that also provide aerial images by using both: software simulation and hardware emulation. The original mask patterns stored by the optics of mask inspection systems can be recovered using a patented algorithm based on the Level Set Method. More accurate lithography simulation models can be used to further evaluate defects on simulated resist patterns using the recovered mask pattern in high resolution and aerial mode. An automated defect classification based on lithography significance and local CD changes is also developed to disposition tens of thousands of potential defects in minutes, so that inspection throughput is not impacted.

  11. Glyphosate affects seed composition in glyphosate-resistant soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cultivation of glyphosate-resistant (GR) soybeans has continuously increased worldwide in recent years mainly due to the importance of glyphosate in current weed management systems. However, not much has been done to understand eventual effects of glyphosate on GR soybean physiology, especially ...

  12. Runoff and degradation of aerially applied dinotefuran in paddy fields and river.

    PubMed

    Yokoyama, Sayako; Ito, Masataka; Nagasawa, Shunsuke; Morohashi, Masayuki; Ohno, Masaki; Todate, Yukitaka; Kose, Tomohiro; Kawata, Kuniaki

    2015-06-01

    Variation, run-off and degradation characteristics of the insecticide dinotefuran, (EZ)-(RS)-1-methyl-2-nitro-3-(tetrahydro-3-furyl-methyl)guanidine, in water and soil from two paddy fields after aerial application was investigated as well as in river water. Maximum concentrations of dinotefuran were 290 and 720 µg/L in the two paddy waters, 25 and 28 µg/kg dry in the two paddy soils, and 10 µg/L in the river water. Runoff ratios of dinotefuran from the paddy fields were calculated as 14%-41%. Mean half-lives of dinotefuran were 5.4 days in the paddy water and 12 days in the paddy soil. Results obtained in this study are important for the evaluation of the actual behavior of dinotefuran in paddy fields and rivers. PMID:25917847

  13. EFFECT OF NOZZLE TYPE ON GLYPHOSATE APPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory studies were conducted to determine the spray patterns and droplet sizes produced with combinations of glyphosate applied at 0.4 lb ai in 10 gallons per acre as Rodeo which has no surfactant and as Roundup Ultra Max which has a proprietary surfactant with each of two deposition aids, 1) H...

  14. Seasonal timing of glyphosate ripener application affects sugarcane’s response in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is applied as a ripener to ratoon sugarcane in Louisiana to increase theoretically recoverable sugar (TRS) in harvested sugarcane. While glyphosate is applied as a ripener throughout the harvest season, recommendations for these applications have been based primarily on the response of s...

  15. TREATABILITY STUDIES OF PESTICIDE MANUFACTURING WASTEWATERS: GLYPHOSATE

    EPA Science Inventory

    The report gives results of subjecting various combinations of glyphosate production wastestreams to biological treatment following lime-pretreatment to reduce high levels of glyphosate. Bench-scale biological treatment demonstrated that glyphosate did not appear to interfere wit...

  16. Secondary effects of glyphosate on plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a unique herbicide with interesting secondary effects. Unfortunately, some have assumed that the secondary effects that occur in glyphosate-susceptible plants treated with glyphosate, such as altered mineral nutrition, reduced phenolic compound production and pathogen resistance, also ...

  17. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  18. Studies on a new group of biodegradable surfactants for glyphosate.

    PubMed

    Haefs, Roland; Schmitz-Eiberger, Michaela; Mainx, Hans-G; Mittelstaedt, Werner; Noga, Georg

    2002-08-01

    The effectiveness of a homologous series of biodegradable rapeseed oil derivatives (triglyceride ethoxylates; Agnique RSO series containing an average of 5, 10, 30 and 60 units of ethylene oxide (EO) as adjuvants for foliage-applied, water-soluble, systemic active ingredients was evaluated employing glyphosate as an example. Previous experiments had revealed that the surfactants used are not phytotoxic at concentrations ranging from 1 to 10 g litre-1. The experiments were performed using Phaseolus vulgaris L and nine selected weed species, grown in a growth chamber at 25/20 (+/- 2) degrees C day/night temperature and 40/70 (+/- 10)% relative humidity. The surfactants were evaluated for enhancement of spray retention, and foliar penetration biological efficacy of glyphosate. Glyphosate was applied at a concentration of 43 mM. The surfactants were added at concentrations of 1 g litre-1. The commercial glyphosate 360 g AE litre-1 SL Roundup Ultra and unformulated glyphosate served as references. The surfactants used improved spray retention, foliar penetration and biological efficacy. Some of the formulations were comparable to the performance of Roundup Ultra in the aspects evaluated; some were even more effective in enhancing spray liquid retention and promoting glyphosate phytotoxicity in several plant species. In these studies Agnique RSO 60 generally was most effective. PMID:12192908

  19. Effects of the herbicide glyphosate on avian community structure in the Oregon coast range

    USGS Publications Warehouse

    Morrison, M.L.; Meslow, E.C.

    1984-01-01

    A study was conducted on vegetative changes induced by the herbicide glyphosate, and the resultant habitat use of birds nesting on two clearcuts in western Oregon. About 23 percent of total plant cover was initially damaged by aerial application of glyphosate. Most measures of vegetation on the treated site decreased relative to the untreated site 1 year after glyphosate application. By 2 years post-spray, vegetation on the treated site had recovered to near pre-spray status. No difference in density of the bird community was evident between treated and untreated sites during all years of study although individual species densities were modified. Several bird species decreased their use of shrub cover, and increased their use of deciduous trees 1 year after treatment. By 2 years post-spray, many species had returned to pre-spray use of most measured habitat components. Results indicated that application of glyphosate can modify the density and habitat use of birds.

  20. Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn.

    PubMed

    Reddy, Krishna N; Bellaloui, Nacer; Zablotowicz, Robert M

    2010-03-24

    When glyphosate is applied to glyphosate-resistant (GR) crops, drift to nonglyphosate-resistant (non-GR) crops may cause significant injury and reduce yields. Tools are needed to quantify injury and predict crop losses. In this study, glyphosate drift was simulated by direct application at 12.5% of the recommended label rate to non-GR corn (Zea mays L.) at 3 or 6 weeks after planting (WAP) during two field seasons in the Mississippi delta region of the southeastern USA. Visual plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition were evaluated. Effects were also evaluated in GR corn and GR corn with stacked glufosinate-resistant gene at the recommended label rate at 3 and 6 WAP. Glyphosate at 105 g ae/ha was applied once at 3 or 6 weeks after planting to non-GR corn. Glyphosate at 840 (lower label limit) or 1260 (upper label limit) g ae/ha was applied twice at 3 and 6 WAP to transgenic corn. Glyphosate caused injury (45-55%) and increased shikimate levels (24-86%) in non-GR compared to nontreated corn. In non-GR corn, glyphosate drift did not affect starch content but increased seed protein 8-21% while reducing leaf nitrogen reductase activity 46-64%, leaf nitrogen 7-16%, grain yield 49-54%, and seed oil 18-23%. In GR and GR stacked with glufosinate-resistant corn, glyphosate applied at label rates did not affect corn yield, leaf and seed nitrogen, or seed composition (protein, oil, and starch content). Yet, nitrate reductase activity was reduced 5-19% with glyphosate at 840 + 840 g/ha rate and 8-42% with glyphosate at 1260 + 1260 g/ha rate in both GR and GR stacked corn. These results demonstrate the potential for severe yield loss in non-GR corn exposed to glyphosate drift. PMID:20180575

  1. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  2. The Fate and Transport of Glyphosate and AMPA into Surface Waters of Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2010-12-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops, but is particularly heavily used on crops which are genetically modified to be glyphosate tolerant: predominately soybeans, corn, potatoes, and cotton. Glyphosate is used extensively in almost all agricultural areas of the United States, and annual application has increased from less than 10,000 Mg in 1992 to more than 80,000 Mg in 2007. The greatest areal use is in the Midwest where glyphosate is applied on genetically modified corn and soybeans. Although use is increasing, the characterization of glyphosate transport on the watershed scale is lacking. Glyphosate, and its degradate AMPA [aminomethylphosphoric acid], was frequently detected in the surface waters of four agricultural watersheds. The load as a percent of use of glyphosate ranged from 0.009 to 0.86 percent and can be related to three factors: source strength, hydrology, and flowpath. Glyphosate use within a watershed results in some occurrence in surface water at the part per billion level; however watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  3. Urban contributions of glyphosate and its degradate AMPA to streams in the United States

    USGS Publications Warehouse

    Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.

    2006-01-01

    Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).

  4. Glyphosate-resistant and conventional canola (Brassica napus L.)responses to glyphosate and AMPA treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  5. Glyphosate carryover in seed potato: effects on mother crop and daughter tubers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2008 and 2009 in Aberdeen, ID, Ontario, OR, and Paterson, WA to determine the effect of simulated glyphosate drift on ‘Ranger Russet’ potato during the application year and the crop growing the next year from the daughter tubers. Glyphosate was applied at 8.5, 54, 107...

  6. Effects of glyphosate application timing and rate on sicklepod (Senna obtusifolia) fecundity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse experiments were conducted to examine the effect of glyphosate on reproductive development in sicklepod. Glyphosate was applied postemergence over the top at 112 and 280 g ai/ha to sicklepod at 4-leaf stage (L), 8-L, 4-L followed by 8-L, and 12-L. A nontreated control was included. Immedi...

  7. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    EPA Science Inventory

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  8. Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid a metabolite of glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is formed in glyphosate-treated glyphosate-resistant (GR) and glyphosate-sensitive (GS) soybean [Glycine max (L.) Merr.] plants and is known to cause yellowing in soybean. Although, AMPA is less phytotoxic than glyphosate, its mode of action is different from that o...

  9. GLYPHOSATE AND GLYPHOSATE-RESISTANT CROP INTERACTIONS WITH RHIZOSPHERE MICROORGANISMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate and glyphosate-resistant crops represent a major advancement in effective weed management that is now widely used in many crop production systems. Studies conducted during 1997-2007 showed that Fusarium root colonization was consistently higher on Roundup Ready (RR) soybean treated with g...

  10. Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate.

    PubMed

    Ding, Wei; Reddy, Krishna N; Zablotowicz, Robert M; Bellaloui, Nacer; Arnold Bruns, H

    2011-04-01

    Aminomethylphosphonic acid (AMPA) is formed in glyphosate-treated glyphosate-resistant (GR) and glyphosate-sensitive (GS) soybean [Glycine max (L.) Merr.] plants and is known to cause yellowing in soybean. Although, AMPA is less phytotoxic than glyphosate, its mode of action is different from that of glyphosate and is still unknown. Greenhouse studies were conducted at Stoneville, MS to determine the effects of AMPA on plant growth, chlorophyll content, photosynthesis, nodulation, nitrogenase activity, nitrate reductase activity, and shoot nitrogen content in GR and GS soybeans. AMPA was applied to one- to two-trifoliolate leaf stage soybeans at 0.1 and 1.0 kg ha(-1), representing a scenario of 10% and 100% degradation of glyphosate (1.0 kg ae ha(-1) use rate) to AMPA, respectively. Overall, AMPA effects were more pronounced at 1.0 kg ha(-1) than at 0.1 kg ha(-1) rate. Visual plant injury (18-27%) was observed on young leaves within 3d after treatment (DAT) with AMPA at the higher rate regardless of soybean type. AMPA injury peaked to 46-49% at 14 DAT and decreased to 17-18% by 28 DAT, in both soybean types. AMPA reduced the chlorophyll content by 37%, 48%, 66%, and 23% in GR soybean, and 17%, 48%, 57%, and 22% in GS soybean at 3, 7, 14, and 28 DAT, respectively. AMPA reduced the photosynthesis rate by 65%, 85%, and 77% in GR soybean and 59%, 88%, and 69% in GS soybean at 3, 7, and 14 DAT, respectively, compared to non-treated plants. Similarly, AMPA reduced stomatal conductance to water vapor and transpiration rates at 3, 7, and 14 DAT compared to non-treated plants in both soybean types. Photosynthesis rate, stomatal conductance, and transpiration rate recovered to the levels of non-treated plants by 28 DAT. Plant height and shoot dry weight at 28 DAT; nodulation, nitrogenase activity at 10 DAT, and nitrate reductase activity at 3 and 14 DAT were unaffected by AMPA. AMPA reduced root respiration and shoot nitrogen content at 10 DAT. These results suggest that a

  11. Influence of glyphosate on amino acid composition of Egyptian broomrape.

    PubMed

    Nandula, V K; Westwood, J H; Foster, J G; Foy, C L

    2001-03-01

    The parasitic plant broomrape is entirely dependent on its host for reduced carbon and nitrogen and is also susceptible to inhibition by glyphosate that is translocated to the parasite through a host. Studies were conducted to examine the effect of broomrape parasitism on amino acid concentrations of two hosts: common vetch that is tolerant of low levels of glyphosate and oilseed rape that has been genetically engineered for glyphosate resistance. The influence of glyphosate on the amino acid content of broomrape and the two hosts was also examined. Amino acid concentrations in leaves and roots of parasitized common vetch plants were generally similar to those of the corresponding tissues of nonparasitized plants. Amino acid concentrations in broomrape were lower than those of the parasitized common vetch root. For common vetch, glyphosate applied at rates that selectively inhibited broomrape growth did not alter individual amino acid concentrations in the leaves, but generally increased amino acid levels at 0.18 kg ha-1. Glyphosate application also increased the amino acid concentrations, with the exception of arginine, of broomrape growing on common vetch and did not generally influence concentrations in leaves or roots of common vetch. In oilseed rape, parasitization by broomrape generally led to higher amino acid concentrations in leaves but lower concentrations in roots of parasitized plants. Broomrape had higher amino acid concentrations than roots of the parasitized oilseed rape. Glyphosate applied at 0.25 and 0.5 kg ha-1 generally increased the amino acid concentrations in oilseed rape leaves, but the 0.75 kg ha-1 application caused the amino acid concentrations to decrease compared to those of untreated plants. In oilseed rape root the general trend was an increase in the concentration of amino acids at the two highest rates of glyphosate. Individual amino acid concentrations in broomrape attachments growing on oilseed rape were generally increased

  12. Glyphosate resistance: state of knowledge

    PubMed Central

    Sammons, Robert Douglas; Gaines, Todd A

    2014-01-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance. PMID:25180399

  13. Testing Tools for Glyphosate Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are multiple tools available for testing for glyphosate resistance. Whole plant screens, whether in the field or greenhouse, should be used as an initial method to determine if a biotype is glyphosate resistant. Screening for resistance using seedling assays such as in Petri plates, sand cul...

  14. Mode of Action of Glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although glyphosate is the most used and studied herbicide in the world, the available information is not enough to fully understand its mode of action. The molecular site of action of glyphosate is the enzyme 5-enolpyruvlyshikimate-3-phosphate synthase (EPSPS). It is the only known compound that ...

  15. Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils

    NASA Astrophysics Data System (ADS)

    Todorovic, Gorana Rampazzo; Rampazzo, Nicola; Mentler, Axel; Blum, Winfried E. H.; Eder, Alexander; Strauss, Peter

    2014-03-01

    Erosion processes can strongly influence the dissipation of glyphosate and aminomethylphosphonic acid applied with Roundup Max® in agricultural soils; in addition, the soil structure state shortly before erosive precipitations fall can be a key parameter for the distribution of glyphosate and its metabolite. Field rain simulation experiments showed that severe erosion processes immediately after application of Roundup Max® can lead to serious unexpected glyphosate loss even in soils with a high presumed adsorption like the Cambisols, if their structure is unfavourable. In one of the no-tillage-plot of the Cambisol, up to 47% of the applied glyphosate amount was dissipated with surface run-off. Moreover, at the Chernozem site with high erosion risk and lower adsorption potential, glyphosate could be found in collected percolation water transported far outside the 2x2 m experimental plots. Traces of glyphosate were found also outside the treated agricultural fields.

  16. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB

  17. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release.

    PubMed

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops. PMID:27625652

  18. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release

    PubMed Central

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS*), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS* expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha−1. To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS* also can be a promising candidate gene in other species for developing glyphosate-tolerant crops. PMID:27625652

  19. Degradation and Isotope Source Tracking of Glyphosate and Aminomethylphosphonic Acid.

    PubMed

    Li, Hui; Joshi, Sunendra R; Jaisi, Deb P

    2016-01-27

    Glyphosate [N-(phosphonomethyl) glycine], an active ingredient of the herbicide Roundup, and its main metabolite, aminomethylphosphonic acid (AMPA), have been frequently reported to be present in soils and other environments and thus have heightened public concerns on their potential adverse effects. Understanding the fate of these compounds and differentiating them from other naturally occurring compounds require a toolbox of methods that can go beyond conventional methods. Here, we applied individual isotope labeling technique whereby each compound or mineral involved in the glyphosate and AMPA degradation reaction was either synthesized or chosen to have distinct (18)O/(16)O ratios so that the source of incorporated oxygen in the orthophosphate generated and corresponding isotope effect during C-P bond cleavage could be identified. Furthermore, we measured original isotope signatures of a few commercial glyphosate sources to identify their source-specific isotope signatures. Our degradation kinetics results showed that the rate of glyphosate degradation was higher than that of AMPA in all experimental conditions, and both the rate and extent of degradation were lowest under anoxic conditions. Oxygen isotope ratios (δ(18)OP) of orthophosphate generated from glyphosate and AMPA degradation suggested that one external oxygen atom from ambient water, not from dissolved oxygen or mineral, was incorporated into orthophosphate with the other three oxygen atoms inherited from the parent molecule. Interestingly, δ(18)OP values of all commercial glyphosate products studied were found to be the lightest among all orthophosphates known so far. Furthermore, isotope composition was found to be unaffected due to variable degradation kinetics, light/dark, and oxic/anoxic conditions. These results highlight the importance of phosphate oxygen isotope ratios as a nonconventional tool to potentially distinguish glyphosate sources and products from other organophosphorus compounds

  20. Early detection of crop injury from herbicide glyphosate by leaf biochemical parameter inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Guo, Yiqing; Huang, Yanbo; Reddy, Krishna N.; Lee, Matthew A.; Fletcher, Reginald S.; Thomson, Steven J.

    2014-09-01

    Early detection of crop injury from herbicide glyphosate is of significant importance in crop management. In this paper, we attempt to detect glyphosate-induced crop injury by PROSPECT (leaf optical PROperty SPECTra model) inversion through leaf hyperspectral reflectance measurements for non-Glyphosate-Resistant (non-GR) soybean and non-GR cotton leaves. The PROSPECT model was inverted to retrieve chlorophyll content (Ca+b), equivalent water thickness (Cw), and leaf mass per area (Cm) from leaf hyperspectral reflectance spectra. The leaf stress conditions were then evaluated by examining the temporal variations of these biochemical constituents after glyphosate treatment. The approach was validated with greenhouse-measured datasets. Results indicated that the leaf injury caused by glyphosate treatments could be detected shortly after the spraying for both soybean and cotton by PROSPECT inversion, with Ca+b of the leaves treated with high dose solution decreasing more rapidly compared with leaves left untreated, whereas the Cw and Cm showed no obvious difference between treated and untreated leaves. For both non-GR soybean and non-GR cotton, the retrieved Ca+b values of the glyphosate treated plants from leaf hyperspectral data could be distinguished from that of the untreated plants within 48 h after the treatment, which could be employed as a useful indicator for glyphosate injury detection. These findings demonstrate the feasibility of applying the PROSPECT inversion technique for the early detection of leaf injury from glyphosate and its potential for agricultural plant status monitoring.

  1. EFFECTS OF AERIALLY APPLIED FENTHION ON SURVIVAL AND REPRODUCTION OF THE PANACEA SAND FIDDLER, UCA PANACEA, IN LABORATORY HABITATS

    EPA Science Inventory

    Sand fiddler crabs, Uca panacea, were exposed in laboratory habitats to measured concentrations of ULV-grade fenthion via simulated aerial spray at 5% and 50% of field-rate application of 6-12 mg fenthion/m2 (0.05-0.10 lbs fenthion/acre). Two habitats served as controls and two h...

  2. Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography-mass spectrometry.

    PubMed

    Motojyuku, Megumi; Saito, Takeshi; Akieda, Kazuki; Otsuka, Hiroyuki; Yamamoto, Isotoshi; Inokuchi, Sadaki

    2008-11-15

    This paper describes an assay for the determination of glyphosate (GLYP), glyphosate metabolites [(aminomethyl) phosphonic acid] (AMPA), and glufosinate (GLUF) in human serum. After protein precipitation using acetonitrile and solid-phase extraction, serum samples were derivatized and analyzed by gas chromatography-mass spectrometry (GC-MS). The assay was linear over a concentration range of 3-100.0 microg/ml for GLYP, AMPA, and GLUF. The overall recoveries for the three compounds were >73%. The intra- and inter-day variations were <15%. Precision and accuracy were 6.4-10.6% and 88.2-103.7%, respectively. The validated method was applied to quantify the GLYP and AMPA content in the serum of a GLYP-poisoned patient. In conclusion, the method was successfully applied for the determination of GLYP and its metabolite AMPA in serum obtained from patient of GLYP-poisoning. PMID:18945648

  3. Herbicide-resistant weed management: focus on glyphosate.

    PubMed

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. PMID:21548004

  4. Glyphosate degradation in glyphosate-resistant crops and weeds and susceptible crops and weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High levels of aminomethylphosphonic acid (AMPA), the main glyphosate metabolite, have been found in glyphosate-treated, glyphosate-resistant (GR) soybean, apparently due to plant glyphosate oxidoreductase (GOX) – like activity. AMPA is mildly phytotoxic, and under some conditions the AMPA accumula...

  5. Effect of foliar treatments on distribution of /sup 14/C-glyphosate in Convolvulus arvensis L

    SciTech Connect

    Lauridson, T.C.

    1986-01-01

    Field bindweed is a perennial weed which produces shoots from buds on its roots. Herbicides, such as glyphosate (N-(phosphonomethyl)glycine) used for control of field bindweed usually do not kill all shoot buds on the roots, thus field bindweed often reinfests areas within 3 to 6 weeks of treatment. This dissertation deals with the development of a technique to change glyphosate distribution in field bindweed roots and could result in less shoot regrowth after glyphosate application. In field studies eight plant growth regulators were applied in September, 3 days before 2.24 kg/ha of 2.4-D((2,4-dichlorophenoxy) acetic acid) or 1.68 kg/ha of glyphosate. Eight months later, regrowth of shoots was least where glyphosate was applied at 0.028 kg/ha as a pretreatment, followed by a standard rate of 1.68 kg/ha. In subsequent greenhouse studies, typical patterns of shoot growth and /sup 14/C-glyphosate distribution in isolated root sections taken from 15-week-old intact plants were determined. In subsequent growth chamber studies, plants were decapitated to observe the effect of shoot apical dominance on /sup 14/C-glyphosate translocation. After /sup 14/C-glyphosate was applied, intact plants had about twice as much /sup 14/C in distal root sections as in proximal or middle root sections. Decapitated plants had more /sup 14/C in proximal and middle root sections than in distal sections, and about twice as much /sup 14/C was translocated to roots of decapitated plants than intact plants. Eight concentrations of 2,4,-D or glyphosate from 1 to 5000 ppm were applied in logarithmic series to 6-week old plants.

  6. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    EPA Science Inventory

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  7. 75 FR 24969 - Glyphosate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Notice of... gives notice that its antidumping investigation concerning glyphosate from China (investigation No....

  8. GLYPHOSATE-RESISTANT SOYBEAN RESPONSE TO VARIOUS SALTS OF GLYPHOSATE AND GLYPHOSATE ACCUMULATION IN SOYBEAN NODULES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted during 2000 and 2001 at Stoneville, MS to determine the effects of isopropylamine (Ipa), trimethylsulfonium (Tms), diammonium (Dia), and aminomethanamide dihydrogen tetraoxosulfate (Adt) salt formulations of glyphosate on weed control, growth, chlorophyll content, nodulat...

  9. Response of direct-seeded dry bulb onion to simulated glyphosate drift with variable rates and application timings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2011 at the Malheur Experiment Station, Ontario, OR and Prosser, WA to evaluate the effect of simulated glyphosate drift on direct-seeded dry bulb onion. Glyphosate was applied at 8.6, 25.8, 86, 290, 434, and 860 g ae ha-1 when onion plants were at the flag-, 2-, 4-, ...

  10. Geomatics techniques applied to time series of aerial images for multitemporal geomorphological analysis of the Miage Glacier (Mont Blanc).

    NASA Astrophysics Data System (ADS)

    Perotti, Luigi; Carletti, Roberto; Giardino, Marco; Mortara, Giovanni

    2010-05-01

    The Miage glacier is the major one in the Italian side of the Mont Blanc Massif, the third by area and the first by longitudinal extent among Italian glaciers. It is a typical debris covered glacier, since the end of the L.I.A. The debris coverage reduces ablation, allowing a relative stability of the glacier terminus, which is characterized by a wide and articulated moraine apparatus. For its conservative landforms, the Miage Glacier has a great importance for the analysis of the geomorphological response to recent climatic changes. Thanks to an organized existing archive of multitemporal aerial images (1935 to present) a photogrammetric approach has been applied to detect recent geomorphological changes in the Miage glacial basin. The research team provided: a) to digitize all the available images (still in analogic form) through photogrammetric scanners (very low image distortions devices) taking care of correctly defining the resolution of the acquisition compared to the scale mapping images are suitable for; b) to import digitized images into an appropriate digital photogrammetry software environment; c) to manage images in order, where possible, to carried out the stereo models orientation necessary for 3D navigation and plotting of critical geometric features of the glacier. Recognized geometric feature, referring to different periods, can be transferred to vector layers and imported in a GIS for further comparisons and investigations; d) to produce multi-temporal Digital Elevation Models for glacier volume changes; e) to perform orthoprojection of such images to obtain multitemporal orthoimages useful for areal an planar terrain evaluation and thematic analysis; f) to evaluate both planimetric positioning and height determination accuracies reachable through the photogrammetric process. Users have to known reliability of the measures they can do over such products. This can drive them to define the applicable field of this approach and this can help them to

  11. Degradation dynamics of glyphosate in different types of citrus orchard soils in China.

    PubMed

    Zhang, Changpeng; Hu, Xiuqing; Luo, Jinyan; Wu, Zhiyi; Wang, Li; Li, Bin; Wang, Yanli; Sun, Guochang

    2015-01-01

    Glyphosate formulations that are used as a broad-spectrum systemic herbicide have been widely applied in agriculture, causing increasing concerns about residues in soils. In this study, the degradation dynamics of glyphosate in different types of citrus orchard soils in China were evaluated under field conditions. Glyphosate soluble powder and aqueous solution were applied at 3000 and 5040 g active ingredient/hm2, respectively, in citrus orchard soils, and periodically drawn soil samples were analyzed by high performance liquid chromatography. The results showed that the amount of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in soils was reduced with the increase of time after application of glyphosate formulations. Indeed, the amount of glyphosate in red soil from Hunan and Zhejiang Province, and clay soil from Guangxi Province varied from 0.13 to 0.91 µg/g at 42 days after application of aqueous solution. Furthermore, the amount of glyphosate in medium loam from Zhejiang and Guangdong Province, and brown loam from Guizhou Province varied from less than 0.10 to 0.14 µg/g, while the amount of AMPA varied from less than 0.10 to 0.99 µg/g at 42 days after application of soluble powder. Overall, these findings demonstrated that the degradation dynamics of glyphosate aqueous solution and soluble powder as well as AMPA depend on the physicochemical properties of the applied soils, in particular soil pH, which should be carefully considered in the application of glyphosate herbicide. PMID:25587790

  12. Soybean mineral composition and glyphosate use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate has become the most widely used herbicide in soybeans, primarily because of its use in transgenic, glyphosate-resistant (GR) cultivars of this crop. There have been claims that glyphosate reduces the levels of certain minerals, especially Mn, in GR crops. The published literature related ...

  13. Glyphosate: A Once in a Century Herbicide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its commercial introduction in 1974, glyphosate (N-phosphonomethyl glycine) has become the dominant herbicide worldwide. There are several reasons for its success. Glyphosate is a highly effective broad spectrum herbicide, yet it is very toxicologically and environmentally safe. Glyphosate ...

  14. The Fate and Transport of Glyphosate and its Degradation Product, Aminomethylphosphonic Acid (AMPA), in Water

    NASA Astrophysics Data System (ADS)

    Scribner, E.; Meyer, M. T.

    2006-05-01

    Since 2001, the U.S. Geological Survey (USGS) has investigated the fate and transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), in surface water, and more recently in tile-drain flow, soil, and wet deposition. According to U.S. Environmental Protection Agency sources, glyphosate is among the world's most widely used herbicides. In 2004, glyphosate usage estimates indicated that between 103 and 113 million pounds were applied annually to crops in the United States. The use of glyphosate over a wide geographic area suggests that this herbicide might be a potential concern for air, water, and soil quality as well as measured in high concentrations in streams; therefore, it is important to monitor its fate and transport in ground-water/surface-water systems. National, regional, and field-scale studies conducted by the USGS National Water-Quality Assessment and Toxic Substance Hydrology Programs have studied the fate and transport of glyphosate in overland flow, tile- drain flow, surface water, soil, and wet-deposition samples. The samples were analyzed for glyphosate and AMPA by using derivatization and online solid-phase extraction with liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS methods developed by the USGS Organic Geochemistry Research Laboratory in Lawrence, Kansas. During spring, summer, and fall 2002 runoff periods in 50 Midwestern streams, glyphosate was detected at or above the 0.10 micrograms per liter detection limit in 35, 41, and 31 percent of samples, respectively. AMPA was detected in 53, 82, and 75 percent of samples, respectively. Results of 128 samples from a field study showed that glyphosate was transported as a narrow high- concentration pulse during the first period of runoff after application and that the concentration of glyphosate in runoff was greater than the concentration of AMPA. In tile-drain flow, glyphosate and AMPA were transported in a broad low-concentration pulse during these same

  15. Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment.

    PubMed

    Yang, Xiaomei; Wang, Fei; Bento, Célia P M; Xue, Sha; Gai, Lingtong; van Dam, Ruud; Mol, Hans; Ritsema, Coen J; Geissen, Violette

    2015-04-15

    Repeated applications of glyphosate may contaminate the soil and water and threaten their quality both within the environmental system and beyond it through water erosion related processes and leaching. In this study, we focused on the transport of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) related to soil erosion at two slope gradients (10 and 20°), two rates of pesticide with a formulation of glyphosate (Roundup®) application (360 and 720 mg m(-2)), and a rain intensity of 1.0 mm min(-1) for 1 h on bare soil in hydraulic flumes. Runoff and erosion rate were significantly different within slope gradients (p<0.05) while suspended load concentration was relatively constant after 15 min of rainfall. The glyphosate and AMPA concentration in the runoff and suspended load gradually decreased. Significant power and exponent function relationship were observed between rainfall duration and the concentration of glyphosate and AMPA (p<0.01) in runoff and suspended load, respectively. Meanwhile, glyphosate and AMPA content in the eroded material depended more on the initial rate of application than on the slope gradients. The transport rate of glyphosate by runoff and suspended load was approximately 14% of the applied amount, and the chemicals were mainly transported in the suspended load. The glyphosate and AMPA content in the flume soil at the end of the experiment decreased significantly with depth (p<0.05), and approximately 72, 2, and 3% of the applied glyphosate (including AMPA) remained in the 0-2, 2-5, and 5-10 cm soil layers, respectively. The risk of contamination in deep soil and the groundwater was thus low, but 5% of the initial application did reach the 2-10 cm soil layer. The risk of contamination of surface water through runoff and sedimentation, however, can be considerable, especially in regions where rain-induced soil erosion is common. PMID:25644837

  16. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere.

    PubMed

    Chang, Feng-chih; Simcik, Matt F; Capel, Paul D

    2011-03-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from <0.01 to 9.1 ng/m(3) and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥ 30 mm. PMID:21128261

  17. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    USGS Publications Warehouse

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  18. Losses of glyphosate and AMPA via drainflow in a typical Belgian residential area

    NASA Astrophysics Data System (ADS)

    Tang, Ting; Boënne, Wesley; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan; Desmet, Nele

    2014-05-01

    Urban hard surfaces are considered as important facilitators for pesticide transport into urban streams. To obtain concurrent high-resolution data for a detailed investigation on the losses of pesticide runoff from hard surfaces, a monitoring campaign was performed in a typical Belgian residential area (9.5 ha) between 7 May and 7 August, 2013. The campaign yielded a concurrent dataset of rainfall (1-mm rainfall interval), discharge (1-min interval), glyphosate application by the residents and the occurrences of glyphosate and its major degradation product - aminomethylphosphonic acid (AMPA) in the separated storm drainage outflow during 12 rainfall events. In addition, detailed information was obtained on the spatial characteristics of the study area. The resulting dataset allows us to investigate the relevance of catchment hydrology, urban surface properties and pesticide application to the transport and losses of glyphosate in a residential environment. During the campaign, glyphosate was only applied by local residents, mainly on their private driveways. As a result of their continuous use, both glyphosate and AMPA were detected in all analysed outflow samples, with maximum concentrations of 6.1 μg/L and 5.8 μg/L, respectively. Overall, the storm drainage system collected 0.43% of the applied amount of glyphosate. However, this loss rate varied considerably among rainfall events, ranging from 0.04% to 23.36%. According to statistical analysis of the 12 rainfall events, the loss rate was significantly correlated with three factors: the application amount prior to a rainfall event (p < 0.005), rainfall amount during the event (p < 0.02) and the weighted lag time between glyphosate application and the start of the rainfall event (negatively, p < 0.05). A regression analysis showed that these three factors can explain more than 85% of the variation in the loss rate of glyphosate. Furthermore, three types of glyphosate runoff were classified by a clustering

  19. Glyphosate-resistant and conventional canola (Brassica napus L.)responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  20. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  1. Glyphosate catabolism by Pseudomonas sp

    SciTech Connect

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing (3-/sup 14/C) glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO/sub 2/. Fractionation of stationary phase cells labeled with (3-/sup 14/C)glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with (3-/sup 14/C)glyphosate revealed that (3-/sup 14/C)sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates.

  2. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  3. Glyphosate immunosensor. Application for water and soil analysis.

    PubMed

    González-Martínez, Miguel Angel; Brun, Eva María; Puchades, Rosa; Maquieira, Angel; Ramsey, Kristy; Rubio, Fernando

    2005-07-01

    A fully automated immunosensor for the herbicide glyphosate has been developed on the basis of the immunocomplex capture assay protocol. The sensor carries out on-line analyte derivatization prior to the assay and uses a selective anti-glyphosate serum, a glyphosate peroxidase enzyme tracer, and fluorescent detection. Under optimal conditions, the detection limit achieved is 0.021 microg/L with an analysis rate of 25 min per assay, autonomy of more than 48 h, and sensor reusability >500 analytical cycles. The immunosensor is able to discriminate structurally related molecules, such as aminomethylphosphonic acid, the main metabolite of glyphosate, and other related herbicides, such as glufosinate and glyphosine. Interferences from naturally occurring species (anions, cations, and humic substances) and their elimination were also studied. The immunosensor has been successfully applied to water and soil sample analysis, with good recoveries at levels lower than 1 microg/L. Results obtained with the immunosensor correlate well with data from a magnetic particle ELISA and LC/LC/MS chromatographic method. PMID:15987130

  4. Efficacy of glyphosate and five surfactants for controlling giant salvinia

    USGS Publications Warehouse

    Fairchild, J.F.; Allert, A.L.; Riddle, J.S.; Gladwin, D.R.

    2002-01-01

    Giant salvinia (Salvinia molesta Mitchell) is a non-native, invasive aquatic fern that was recently introduced to the southern United States. The aggressive nature of the species has led to concerns over its potential adverse impacts to native plants, fish, and invertebrates. We conducted a study to determine the efficacy of glyphosate [isopropylamine salt of N-(phosphono-methyl)glycine] and several surfactants for control of giant salvinia. Studies were conducted over a 42-day period using static renewals (twice weekly) with 4% Hoagland's medium (10 mg/L N equivalent) in replicated 2-L containers. Five concentrations of glyphosate (0, 0.45, 0.91, 1.82, and 3.60% v:v) and five surfactants (0.25% concentration, v:v; Optima???, Kinetic???, Mon 0818???, Cygnet Plus???, and LI-700???) were applied with a pressurized sprayer as a single surface application in a fully nested experimental design. Untreated giant salvinia grew rapidly and exhibited an increase of 800% wet weight biomass over the 42-day test duration. Glyphosate, with and without surfactants, exhibited efficacy at concentrations as low as 0.45% of the commercial formulation. Glyphosate with Optima was the only mixture that resulted in complete mortality of plants with no regrowth.

  5. Glyphosate distribution in loess soils as a result of dynamic sediment transport processes during a simulated rainstorm

    NASA Astrophysics Data System (ADS)

    Commelin, Meindert; Martins Bento, Celia; Baartman, Jantiene; Geissen, Violette

    2016-04-01

    Glyphosate is one of the most widely used herbicides in the world. The wide and extensive use of glyphosate makes it important to be certain about the safety of glyphosate to off-target environments and organisms. This research aims to create more detailed insight into the distribution processes of glyphosate, and the effect that dynamic sediment transport processes have on this distribution, during water erosion in agricultural fields. Glyphosate distribution characteristics are investigated for two different soil surfaces: a smooth surface, and a surface with seeding lines on the contour. The capacity to transport glyphosate for different sediment groups was investigated. These groups were water-eroded sediment and sedimentation areas found on the plot surface. The contribution of particle bonded and dissolved transport to total overland transportation of glyphosate was analysed with a mass balance study. The experiment was conducted in the Wageningen UR rainfall simulator. Plots of 0.5m2 were used, with a 5% slope, and a total of six experimental simulations were done. A rainfall event with an intensity of 30mm/h was simulated, applied in four showers of 15 minutes each with 30 minutes pause in between. Glyphosate (16mg/kg) was applied on the top 20cm of each plot, and in the downstream part, soil samples were taken. Glyphosate analysis was done using HPLC-MS/MS (High Performance Liquid Chromatography tandem Mass Spectrometry). Besides that, photo analysis with eCognition was used to derive the soil surface per sediment group. The results show that particle bonded transport of glyphosate contributes significantly (for at least 25%) to glyphosate transport during a rainstorm event. Particle size and organic matter have a large influence on the mobility of glyphosate and on the transported quantity to off-target areas. Moreover, seeding lines on the soil surface decreased total overland transport, both of sediment and glyphosate. Taking this into account, plots

  6. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes.

    PubMed

    González-Torralva, Fidel; Rojano-Delgado, Antonia M; Luque de Castro, María D; Mülleder, Norbert; De Prado, Rafael

    2012-11-15

    The physiological and biochemical bases for glyphosate resistance and susceptibility in horseweed (Conyza canadensis L. Cronq.) populations collected from Córdoba, Huelva, Málaga, Jaén and Seville in southern Spain were investigated. Screening 25 populations treated with glyphosate (238gacidequivalentha(-1)) at the rosette stage (BBCH 14-15) revealed reductions in fresh weight (fw) of 9-99%. The resistant biotype (R C004) was 6.1 times more resistant than the susceptible biotype (S). Shikimate accumulation in both biotypes increased until 72h after treatment (HAT), and then continued to increase (to 61.2%) in the S biotype, but decreased by 40% in the R (C004) biotype. Differential glyphosate spray retention and foliar uptake of applied (14)C-glyphosate between the R (C004) and S biotype had no effect on resistance to this herbicide. Quantitative and qualitative tests showed greater (14)C-glyphosate mobility in the S biotype than in the R (C004) biotype. Glyphosate was metabolized faster in the R (C004) biotype than in the S biotype. The herbicide disappeared completely from the R (C004) biotype by conversion into glyoxylate, sarcosine and aminomethylphosphonic acid within 96 HAT. On the other hand, 41.43nmolg(-1)fw of all glyphosate applied remained in the S biotype and glyoxylate was its only non-toxic metabolite. These results suggest that glyphosate resistance in horseweed is due to two different non-target mechanisms, namely: (a) impaired glyphosate translocation and (b) glyphosate metabolism to other compounds. PMID:22841626

  7. Glyphosate induces neurotoxicity in zebrafish.

    PubMed

    Roy, Nicole M; Carneiro, Bruno; Ochs, Jeremy

    2016-03-01

    Glyphosate based herbicides (GBH) like Roundup(®) are used extensively in agriculture as well as in urban and rural settings as a broad spectrum herbicide. Its mechanism of action was thought to be specific only to plants and thus considered safe and non-toxic. However, mounting evidence suggests that GBHs may not be as safe as once thought as initial studies in frogs suggest that GBHs may be teratogenic. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate exposure using technical grade glyphosate and the Roundup(®) Classic formulation. We find morphological abnormalities including cephalic and eye reductions and a loss of delineated brain ventricles. Concomitant with structural changes in the developing brain, using in situ hybridization analysis, we detect decreases in genes expressed in the eye, fore and midbrain regions of the brain including pax2, pax6, otx2 and ephA4. However, we do not detect changes in hindbrain expression domains of ephA4 nor exclusive hindbrain markers krox-20 and hoxb1a. Additionally, using a Retinoic Acid (RA) mediated reporter transgenic, we detect no alterations in the RA expression domains in the hindbrain and spinal cord, but do detect a loss of expression in the retina. We conclude that glyphosate and the Roundup(®) formulation is developmentally toxic to the forebrain and midbrain but does not affect the hindbrain after 24 h exposure. PMID:26773362

  8. Glyphosate hinders nutsedge tuber production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many alternative fumigants have struggled to achieve nutsedge control equivalent to methyl bromide. Effective management strategies will need to minimize nutsedge tuber production. Glyphosate has been shown to reduce tuber production, but it is not clear what the minimum dose is to reduce tuber prod...

  9. GLYPHOSATE REMOVAL FROM DRINKING WATER

    EPA Science Inventory

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  10. Effect of glyphosate application on foliar diseases in glyphosate-tolerant alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate, the active ingredient in Roundup herbicide, inhibits 5-enol-pyruvyl shikimate 3-phophate synthase (EPSPS), an enzyme found in plants, fungi, and bacteria. Plants engineered for glyphosate tolerance with a glyphosate-insensitive EPSPS take up and translocate the herbicide throughout the p...

  11. Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies demonstrated that the photosynthesis of some cultivars of first (GR1) and second generation (GR2) glyphosate-resistant soybean was reduced by glyphosate. The reduction in photosynthesis caused by glyphosate might affect nutrient uptake and lead to lower plant biomass production and ...

  12. Nitrogen Metabolism and Seed Composition as Influenced by Glyphosate Application in Glyphosate-Resistant Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous research demonstrated that glyphosate drift affected nitrogen fixation and nitrogen assimilation in glyphosate-sensitive soybean at early growth stage. The objective of the present study was to investigate the effects of glyphosate application (Gly) of 1.12 kg ae ha-1 and 3.36 kg ae ka...

  13. Experimental aerodynamic and static elastic deformation characterization of low aspect ratio flexible fixed wings applied to micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Albertani, Roberto

    The concept of micro aerial vehicles (MAVs) is for a small, inexpensive and sometimes expendable platform, flying by remote pilot, in the field or autonomously. Because of the requirement to be flown either by almost inexperienced pilots or by autonomous control, they need to have very reliable and benevolent flying characteristics drive the design guidelines. A class of vehicles designed by the University of Florida adopts a flexible-wing concept, featuring a carbon fiber skeleton and a thin extensible latex membrane skin. Another typical feature of MAVs is a wingspan to propeller diameter ratio of two or less, generating a substantial influence on the vehicle aerodynamics. The main objectives of this research are to elucidate and document the static elastic flow-structure interactions in terms of measurements of the aerodynamic coefficients and wings' deformation as well as to substantiate the proposed inferences regarding the influence of the wings' structural flexibility on their performance; furthermore the research will provide experimental data to support the validation of CFD and FEA numerical models. A unique facility was developed at the University of Florida to implement a combination of a low speed wind tunnel and a visual image correlation system. The models tested in the wind tunnel were fabricated at the University MAV lab and consisted of a series of ten models with an identical geometry but differing in levels of structural flexibility and deformation characteristics. Results in terms of full-field displacements and aerodynamic coefficients from wind tunnel tests for various wind velocities and angles of attack are presented to demonstrate the deformation of the wing under steady aerodynamic load. The steady state effects of the propeller slipstream on the flexible wing's shape and its performance are also investigated. Analytical models of the aerodynamic and propulsion characteristics are proposed based on a multi dimensional linear regression

  14. Economic impacts of glyphosate-resistant crops.

    PubMed

    Gianessi, Leonard P

    2008-04-01

    Glyphosate-resistant crops have been widely planted since their introduction in 1996. Growers have numerous choices for herbicide treatments and have chosen to plant glyphosate-resistant crops on the basis of economic factors. The economic effects of the widespread planting of glyphosate-resistant crops have included reductions in herbicide expenses, increases in seed costs, increased yield and changes in the relative profitability of crops that has resulted in changes in which crops are planted. In addition, non-pecuniary benefits have accrued as a result of the simplicity of weed management in the glyphosate-resistant crop systems. PMID:18181242

  15. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism

    PubMed Central

    Ge, Xia; Avignon, D André d’; Ackerman, Joseph JH; Sammons, R Douglas

    2010-01-01

    BACKGROUND Glyphosate-resistant (GR) weed species are now found with increasing frequency and threaten the critically importantGR weed management system. RESULTS The reported 31P NMR experiments on glyphosate-sensitive (S) and glyphosate-resistant (R) horseweed, Conyza canadensis (L.) Cronq., show significantly more accumulation of glyphosate within the R biotype vacuole. CONCLUSIONS Selective sequestration of glyphosate into the vacuole confers the observed horseweed resistance to glyphosate. This observation represents the first clear evidence for the glyphosate resistance mechanism in C. canadensis. PMID:20063320

  16. Review of genotoxicity biomonitoring studies of glyphosate-based formulations

    PubMed Central

    Kier, Larry D.

    2015-01-01

    Abstract Human and environmental genotoxicity biomonitoring studies involving exposure to glyphosate-based formulations (GBFs) were reviewed to complement an earlier review of experimental genotoxicity studies of glyphosate and GBFs. The environmental and most of the human biomonitoring studies were not informative because there was either a very low frequency of GBF exposure or exposure to a large number of pesticides without analysis of specific pesticide effects. One pesticide sprayer biomonitoring study indicated there was not a statistically significant relationship between frequency of GBF exposure reported for the last spraying season and oxidative DNA damage. There were three studies of human populations in regions of GBF aerial spraying. One study found increases for the cytokinesis-block micronucleus endpoint but these increases did not show statistically significant associations with self-reported spray exposure and were not consistent with application rates. A second study found increases for the blood cell comet endpoint at high exposures causing toxicity. However, a follow-up to this study 2 years after spraying did not indicate chromosomal effects. The results of the biomonitoring studies do not contradict an earlier conclusion derived from experimental genotoxicity studies that typical GBFs do not appear to present significant genotoxic risk under normal conditions of human or environmental exposures. PMID:25687244

  17. 76 FR 27268 - Glyphosate; Pesticide Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ...) 305-5805. II. Summary of Petitioned-For Tolerance In the Federal Register of February 4, 2011 (76 FR... with glyphosate follows. In the Federal Register of April 8, 2011 (76 FR 19701) (FRL-8866- 8), EPA... estimated aggregate risks resulting from use of glyphosate, as discussed in the April 8, 2011 (76 FR...

  18. Glyphosate-resistant goosegrass from Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A glyphosate resistant population of goosegrass (Eleusine indica (L.) Gaertn.) was documented near Stoneville, Mississippi, USA, in an area which had received multiple applications of glyphosate each year for the previous eleven years. Resistance ratios based on dose response growth reduction assays...

  19. Natural glyphosate tolerance in sweetvetch Hedysarum boreale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetvetch (Hedysarum boreale Nutt.) a legume native to the western USA and Canada, is purported to have tolerance to glyphosate {N-(phosphonomethyl) glycine} herbide. Eight rates of glyphosate were tested for their effect on biomass yield (BMY) and survival of seedlings and mature plants. Treatme...

  20. Nitrogen metabolism and seed composition as influenced by glyphosate application in glyphosate-resistant soybean.

    PubMed

    Bellaloui, Nacer; Zablotowicz, Robert M; Reddy, Krishna N; Abel, Craig A

    2008-04-23

    Previous research has demonstrated that glyphosate can affect nitrogen fixation or nitrogen assimilation in soybean. This 2-year field study investigated the effects of glyphosate application of 1.12 and 3.36 kg of ae ha(-1) on nitrogen metabolism and seed composition in glyphosate-resistant (GR) soybean. There was no effect of glyphosate application on nitrogen fixation as measured by acetylene reduction assay, soybean yield, or seed nitrogen content. However, there were significant effects of glyphosate application on nitrogen assimilation, as measured by in vivo nitrate reductase activity (NRA) in leaves, roots, and nodules, especially at high rate. Transiently lower leaf nitrogen or (15)N natural abundance in high glyphosate application soybean supports the inhibition of NRA. With the higher glyphosate application level protein was significantly higher (10.3%) in treated soybean compared to untreated soybean. Inversely, total oil and linolenic acid were lowest at the high glyphosate application rate, but oleic acid was greatest (22%) in treated soybean. These results suggest that nitrate assimilation in GR soybean was more affected than nitrogen fixation by glyphosate application and that glyphosate application may alter nitrogen and carbon metabolism. PMID:18363356

  1. Glyphosate degradation by immobilized bacteria: laboratory studies showing feasibility for glyphosate removal from waste water.

    PubMed

    Heitkamp, M A; Adams, W J; Hallas, L E

    1992-09-01

    To evaluate immobilized bacteria technology for the removal of low levels of glyphosate (N-phosphonomethylglycine) from aqueous industrial effluents, microorganisms with glyphosate-degrading activity obtained from a fill and draw enrichment reactor inoculated with activated sludge were first exposed to glyphosate production wastes containing 500-2000 mg glyphosate/L. The microorganisms were then immobilized by adsorption onto a diatomaceous earth biocarrier contained in upflow Plexiglas columns. The columns were aerated, maintained at pH 7.0-8.0, incubated at 25 degrees C, supplemented with NH4NO3 (50 mg/L), and exposed to glyphosate process wastes pumped upflow through the biocarrier. Glyphosate degradation to aminomethylphosphonic acid was initially > 96% for 21 days of operation at flows yielding hydraulic residence times (HRTs) as short as 42 min. Higher flow rate studies showed > 98% removal of 50 mg glyphosate/L from the waste stream could be achieved at a HRT of 23 min. Glyphosate removal of > 99% at a 37-min HRT was achieved under similar conditions with a column inoculated with a pure culture of Pseudomonas sp. strain LBr, a bacterium known to have high glyphosate-degrading activity. After acid shocking (pH 2.8 for 18 h) of a column of immobilized bacteria, glyphosate-degrading activity was regained within 4 days without reinoculation. Although microbial growth and glyphosate degradation were not maintained under low organic nutrient conditions in the laboratory, the low levels of degradable carbon (45-94 mg/L) in the industrial effluent were sufficient to support prolonged glyphosate-degrading activity. The results demonstrated that immobilized bacteria technology is effective in removing low levels of glyphosate in high-volume liquid waste streams. PMID:1464067

  2. Depth distribution of glyphosate and AMPA under diferent tillage system and soils in long-term experiments

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Costa, Jose Luis; De Geronimo, Eduardo

    2016-04-01

    Glyphosate (N-(phosphonomethyl glycine) is a post-emergence, non-selective, foliar herbicide. Around 200 million liters of this herbicide are applied every year in Argentina, where the main agricultural practice is no-till (NT), accounting for 78 % of the cultivated land. In this work, we studied the depth distribution of glyphosate in long-term experiments (more than 15 years) at different locations under NT and conventional tillage (CT). Samples from 0-2, 2-5, 5-10, 10-15, and 15-20 cm depth with four replication and two treatments NT CT at three locations: Balcarce (BA) a loam soil, Bordenave (BO) a sandy loam soil y Marcos Juarez a silty loam soil (MJ). The glyphosate concentration in the first 2 cm of soil was, on the average, 70% greater than in the next 2-5 cm. The mass of glyphosate in CT was higher at 2 to 10 cm depth. The depth concentration of AMPA follows the same trend than glyphosate, although its average concentration at 0-2 cm depth is 28 times higher than the glyphosate concentration at 2-5 cm (glyphosate = 147 ppb and AMPA = 4100 ppb). Beside the AMPA concentration at 0-2 cm depth is greater in NT than in CT, the mass of AMPA is higher in CT only for the Balcarce location. To our knowledge, this study is the first dealing with the depth distribution of glyphosate concentration in soils under different soil managements. In the present study, it was demonstrated that glyphosate and AMPA are present in soils under agricultural activity with maximum concentration in the first two cm of soil and the AMPA concentration at this depth is greater in NT than in CT.

  3. Gene flow from glyphosate-resistant crops.

    PubMed

    Mallory-Smith, Carol; Zapiola, Maria

    2008-04-01

    Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health. PMID:18181145

  4. Bases for interactions between saflufenacil and glyphosate in plants.

    PubMed

    Ashigh, Jamshid; Hall, J Christopher

    2010-06-23

    Buckwheat (Fagropyrum esculentum Moench.), cabbage (Brassica oleracea L), and conventional and glyphosate-resistant varieties of canola (Brassica napus L.) were used to study the bases of saflufenacil and glyphosate interactions. Compared to the addition of Merge (surfactant), the addition of both Transorb (i.e., commercial product, Transorb formulation with glyphosate) and Merge increased the cuticular absorption of [(14)C] saflufenacil in cabbage plants with thick epicuticular wax layers. However, in all cases, the addition of glyphosate reduced the translocation of [(14)C]saflufenacil in glyphosate-susceptible plants, while translocation was not affected in glyphosate-resistant canola. Moreover, the phytotoxicity of saflufenacil reduced the activity of glyphosate, possibly by reducing its translocation in all plant species studied. Increased absorption of saflufenacil by the addition of Transorb (i.e., Transorb formulation with glyphosate) plus Merge appears to increase its contact activity, thus the interaction of saflufenacil and glyphosate involves two separate processes, absorption and translocation. PMID:20481603

  5. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate.

    PubMed

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  6. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    PubMed Central

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  7. Influence of glyphosate on the copper dissolution in phosphate buffer

    NASA Astrophysics Data System (ADS)

    Coutinho, C. F. B.; Silva, M. O.; Machado, S. A. S.; Mazo, L. H.

    2007-01-01

    The electrochemical behavior of copper microelectrode in phosphate buffer in the presence of glyphosate was investigated by electrochemical techniques. It was observed that the additions of glyphosate in the phosphate buffer increased the anodic current of copper microelectrode and the electrochemical dissolution was observed. This phenomenon could be associated with the Cu(II) complexation by glyphosate forming a soluble complex. Physical characterization of the surface showed that, in absence of glyphosate, an insoluble layer covered the copper surface; on the other hand, in presence of glyphosate, it was observed a corroded copper surface with the formation of glyphosate complex in solution.

  8. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example.

    PubMed

    Thompson, Helen M; Levine, Steven L; Doering, Janine; Norman, Steve; Manson, Philip; Sutton, Peter; von Mérey, Georg

    2014-07-01

    This study aimed to develop an approach to evaluate potential effects of plant protection products on honeybee brood with colonies at realistic worst-case exposure rates. The approach comprised 2 stages. In the first stage, honeybee colonies were exposed to a commercial formulation of glyphosate applied to flowering Phacelia tanacetifolia with glyphosate residues quantified in relevant matrices (pollen and nectar) collected by foraging bees on days 1, 2, 3, 4, and 7 postapplication and glyphosate levels in larvae were measured on days 4 and 7. Glyphosate levels in pollen were approximately 10 times higher than in nectar and glyphosate demonstrated rapid decline in both matrices. Residue data along with foraging rates and food requirements of the colony were then used to set dose rates in the effects study. In the second stage, the toxicity of technical glyphosate to developing honeybee larvae and pupae, and residues in larvae, were then determined by feeding treated sucrose directly to honeybee colonies at dose rates that reflect worst-case exposure scenarios. There were no significant effects from glyphosate observed in brood survival, development, and mean pupal weight. Additionally, there were no biologically significant levels of adult mortality observed in any glyphosate treatment group. Significant effects were observed only in the fenoxycarb toxic reference group and included increased brood mortality and a decline in the numbers of bees and brood. Mean glyphosate residues in larvae were comparable at 4 days after spray application in the exposure study and also following dosing at a level calculated from the mean measured levels in pollen and nectar, showing the applicability and robustness of the approach for dose setting with honeybee brood studies. This study has developed a versatile and predictive approach for use in higher tier honeybee toxicity studies. It can be used to realistically quantify exposure of colonies to pesticides to allow the

  9. 75 FR 20862 - Glyphosate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ..., the Commission established a schedule for the conduct of the subject investigation (75 FR 17768, April... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Glyphosate From China AGENCY: United States International Trade Commission. ACTION:...

  10. Impact of phosphate on glyphosate uptake and toxicity in willow.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Moingt, Matthieu; Smedbol, Elise; Paquet, Serge; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-03-01

    Phosphate (PO4(3-)) has been shown to increase glyphosate uptake by willow, a plant species known for its phytoremediation potential. However, it remains unclear if this stimulation of glyphosate uptake can result in an elevated glyphosate toxicity to plants (which could prevent the use of willows in glyphosate-remediation programs). Consequently, we studied the effects of PO4(3-) on glyphosate uptake and toxicity in a fast growing willow cultivar (Salix miyabeana SX64). Plants were grown in hydroponic solution with a combination of glyphosate (0, 0.001, 0.065 and 1 mg l(-1)) and PO4(3-) (0, 200 and 400 mg l(-1)). We demonstrated that PO4(3-) fertilization greatly increased glyphosate uptake by roots and its translocation to leaves, which resulted in increased shikimate concentration in leaves. In addition to its deleterious effects in photosynthesis, glyphosate induced oxidative stress through hydrogen peroxide accumulation. Although it has increased glyphosate accumulation, PO4(3-) fertilization attenuated the herbicide's deleterious effects by increasing the activity of antioxidant systems and alleviating glyphosate-induced oxidative stress. Our results indicate that in addition to the glyphosate uptake, PO4(3-) is involved in glyphosate toxicity in willow by preventing glyphosate induced oxidative stress. PMID:26561751

  11. Effect of Glyphosate on Symbiotic N2 Fixation and Nickel Concentration in Glyphosate-Resistant Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of widespread cultivation of glyphosate-resistant (GR) soybean and the use of one herbicide class on biological processes has received considerable attention. Decreased biological nitrogen fixation in GR soybean has been attributed directly to toxicity of glyphosate or its metabolites to ...

  12. SUSCEPTIBILITY TO GLYPHOSATE OF WEED ESCAPES IN GLYPHOSATE-TOLERANT SOYBEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plots of glyphosate-tolerant soybeans at twelve locations in five states were monitored for weed escapes. Seeds were collected from each of these sites in the glyphosate and non-treated weedy check plots. These seeds were planted and grown in a greenhouse and then sprayed one time with 10% of a stan...

  13. Effects of glyphosate on mineral content of glyphosate-resistant soybeans (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This paper describes experiments designed to ...

  14. Water use efficiency and photosynthesis of glyphosate-resistant soybean as affected by glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies comparing cultivars of different maturity groups in different soils demonstrated that early maturity group cultivars were more sensitive to glyphosate injury than those of other maturity groups. In this work, we evaluated the effect of increasing rates of glyphosate on water absorpt...

  15. Effect of glyphosate application timings and methods on glyphosate-resistant cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under certain conditions, application of glyphosate to glyphosate-resistant (GR) cotton can lead to fruit shedding and yield reductions. Field studies were conducted at the Texas Agricultural Experiment Station using GR cotton, cv. ‘DeltaPine 5690RR’, to determine if application method and timing af...

  16. Glyphosate-resistant Palmer Amaranth in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since glyphosate-resistant (GR) crops were commercialized, glyphosate has been extensively used to effectively and economically manage weeds. The adoption of GR technology also provided growers with the capabilities needed to rapidly adopt conservation tillage production systems. Selection pressure ...

  17. What have the mechanisms of resistance to glyphosate taught us?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intensive use of glyphosate alone to manage weeds has selected populations that are glyphosate resistant. The three mechanisms of glyphosate resistance that have been elucidated are 1) target site mutations; 2) gene amplification; and 3) altered translocation due to sequestration. What have we...

  18. Possible glyphosate tolerance mechanism in pitted morningglory (Ipomoea lacunosa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is the most historic herbicide ever developed. Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in higher plants. The natural tolerance of Ipomoea lacunosa to glyphosate has made these plants among the most common and troublesome weeds in the sou...

  19. Quantification and characterization of glyphosate use and loss in a residential area.

    PubMed

    Tang, Ting; Boënne, Wesley; Desmet, Nele; Seuntjens, Piet; Bronders, Jan; van Griensven, Ann

    2015-06-01

    Urban runoff can be a significant source of pesticides in urban streams. However, quantification of this source has been difficult because pesticide use by urban residents (e.g., on pavements or in gardens) is often unknown, particularly at the scale of a residential catchment. Proper quantification and characterization of pesticide loss via urban runoff require sound information on the use and occurrence of pesticides at hydrologically-relevant spatial scales, involving various hydrological conditions. We conducted a monitoring study in a residential area (9.5 ha, Flanders, Belgium) to investigate the use and loss of a widely-used herbicide (glyphosate) and its major degradation product (aminomethylphosphonic acid, AMPA). The study covered 13 rainfall events over 67 days. Overall, less than 0.5% of glyphosate applied was recovered from the storm drain outflow in the catchment. Maximum detected concentrations were 6.1 μg/L and 5.8 μg/L for glyphosate and AMPA, respectively, both of which are below the predicted no-effect concentration for surface water proposed by the Flemish environmental agency (10 μg/L), but are above the EU drinking water standard (0.1 μg/L). The measured concentrations and percentage loss rates can be attributed partially to the strong sorption capacity of glyphosate and low runoff potential in the study area. However, glyphosate loss varied considerably among rainfall events and event load of glyphosate mass was mainly controlled by rainfall amount, according to further statistical analyses. To obtain urban pesticide management insights, robust tools are required to investigate the loss and occurrence of pesticides influenced by various factors, particularly the hydrological and spatial factors. PMID:25727676

  20. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.).

    PubMed

    Mueller, Thomas C; Massey, Joseph H; Hayes, Robert M; Main, Chris L; Stewart, C Neal

    2003-01-29

    Horseweed (Conyza canadensis) is a cosmopolitan weed that commonly grows throughout North America. Horseweed that is not completely controlled by normal applications of glyphosate has been reported in western Tennessee. This research had three objectives: (1) to develop and validate an analytical procedure for the quantitative determination of shikimate, an important indicator of glyphosate activity in plants; (2) to confirm resistance to glyphosate in a horseweed population; and (3) to examine the accumulation of shikimate in both glyphosate-resistant and glyphosate-susceptible horseweed plants. The analytical procedure to determine shikimate used extraction with 1 M HCl for 24 h, followed by liquid chromatography using photodiode array detection, and shikimate recoveries were >or=82%. Glyphosate applications of both 0.84 kg ae/ha (the standard application rate) and 3.8 kg ae/ha to susceptible plants caused complete plant death. The same glyphosate applications to putative resistant populations caused less than 15% growth reduction as determined by visual evaluations, and fresh weights of these resistant plants 17 days after glyphosate treatment (DAT) were reduced an average of 45% in one population and were not affected in a different population. This direct comparison conclusively confirms that horseweed plants collected in western Tennessee in 2002 are resistant to 4 times the normal application dosage of glyphosate. The glyphosate-resistant horseweed biotypes still exhibited some herbicidal effects from the glyphosate, such as yellowing in the most actively growing, apical shoot meristems. The yellowing in the shoot apexes was transitory, and the plants recovered from this damage. Shikimate concentrations in all untreated horseweed plants were less than 100 microg/g, which was significantly less than that in all plants which had been treated with 0.84 kg ae/ha of glyphosate. Unexpectedly, shikimate accumulated (>1000 microg/g) in both resistant populations and

  1. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    PubMed Central

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops. PMID:26528311

  2. Glyphosate resistant and susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to determine 1) dose response of glyphosate-resistant (GR) and –susceptible (non-GR) soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.) to glyphosate, 2) if differential metabolism of glyphosate to aminomethylphosphonic acid (AMPA) is the underlying mechanism ...

  3. Glyphosate induces cardiovascular toxicity in Danio rerio.

    PubMed

    Roy, Nicole M; Ochs, Jeremy; Zambrzycka, Ewelina; Anderson, Ariann

    2016-09-01

    Glyphosate is a broad spectrum herbicide used aggressively in agricultural practices as well as home garden care. Although labeled "safe" by the chemical industry, doses tested by industry do not mimic chronic exposures to sublethal doses that organisms in the environment are exposed to over long periods of time. Given the widespread uses of and exposure to glyphosate, studies on developmental toxicity are needed. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate on the developing heart. Treatment by embryo soaking with 50μg/ml glyphosate starting at gastrulation results in structural abnormalities in the atrium and ventricle, irregular heart looping, situs inversus as well as decreased heartbeats by 48h as determined by live imaging and immunohistochemistry. Vasculature in the body was also affected as determined using fli-1 transgenic embryos. To determine if the effects noted at 48h post fertilization are due to early stage alterations in myocardial precursors, we also investigate cardiomyocyte development with a Mef2 antibody and by mef2ca in situ hybridization and find alterations in the Mef2/mef2ca staining patterns during early cardiac patterning stages. We conclude that glyphosate is developmentally toxic to the zebrafish heart. PMID:27525560

  4. Resistance to glyphosate from altered herbicide translocation patterns.

    PubMed

    Preston, Christopher; Wakelin, Angela M

    2008-04-01

    Glyphosate-resistant weeds have evolved as a result of the intensive use of glyphosate for weed control. An alteration in the way glyphosate is translocated within the plant has been identified as a mechanism of glyphosate resistance in populations of Lolium rigidum Gaud., L. multiflorum Lam. and Conyza canadensis (L.) Cronq. In these resistant plants, glyphosate becomes concentrated in the leaves rather than being translocating throughout the plant. This type of resistance is inherited as a single dominant or semi-dominant allele. Resistance due to reduced translocation appears to be a common mechanism of resistance in L. rigidum and C. canadensis, probably because it provides a greater level of resistance than other mechanisms. This type of glyphosate resistance also appears to reduce the fitness of plants that carry it. This may influence how glyphosate resistance can be managed. PMID:18080284

  5. Effect of glyphosate on reproductive organs in male rat.

    PubMed

    Dai, Pengyuan; Hu, Ping; Tang, Juan; Li, Yansen; Li, Chunmei

    2016-06-01

    Glyphosate as an active ingredient of Roundup(®) which is thought to be one of the most popular herbicide was used worldwide. Many studies have focused on reproductive toxicity on glyphosate-based herbicide, but few evidence exists to imply the male reproductive toxicity of glyphosate alone in vivo. In this study SD rats were Lavaged with glyphosate at doses of 5, 50, 500mg/kg to detect the toxicity of glyphosate on rat testis. Glyphosate significantly decreased the average daily feed intake at dose of 50mg/kg, and the weight of seminal vesicle gland, coagulating gland as well as the total sperm count at dose of 500mg/kg. Immunohistochemistry of androgen receptor (AR) has no difference among all groups. As to testosterone, estradiol, progesterone and oxidative stress parameters, the level of them has no differences amidst all doses. Taken together, we conclude that glyphosate alone has low toxicity on male rats reproductive system. PMID:27286640

  6. Glyphosate surfactant herbicide poisoning and management.

    PubMed

    Mahendrakar, Kranthi; Venkategowda, Pradeep M; Rao, S Manimala; Mutkule, Dnyaneshwar P

    2014-05-01

    Glyphosate is a widely used herbicide in agriculture, forestry, industrial weed control and aquatic environments. Glyphosate potential as herbicide was first reported in 1971. It is a non-selective herbicide. It can cause a wide range of clinical manifestations in human beings like skin and throat irritation to hypotension, oliguria and death. We are reporting a case of a 35-year-old male patient who was admitted to our tertiary care hospital following intentional ingestion of around 200 ml of herbicide containing glyphosate. Initially, gastric lavage done and the patient was managed with intubation and mechanical ventilation, noradrenaline and vasopressin infusion, continuous veno-venous hemodiafiltration and intravenous (IV) lipid emulsion (20% intralipid 100 ml), patient was successfully treated and discharged home. This case report emphasizes on timely systemic supportive measure as a sole method of treatment since this poison has no known specific antidote and the use of IV lipid emulsion for a successful outcome. PMID:24914265

  7. AUXIN-PRODUCING BACTERIA AND UREASE ACTIVITY IN THE RHIZOSPHERE OF GLYPHOSATE-RESISTANT SOYBEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repeated use of glyphosate on glyphosate-resistant crops has raised concerns regarding the potential environmental impacts of this herbicide. Glyphosate may affect microbial production of plant-growth-regulating compounds including hydrogen cyanide, phytohormones including auxins, and other unidenti...

  8. Identifying priority zones in an agricultural catchment to mitigate glyphosate runoff

    NASA Astrophysics Data System (ADS)

    Joris, Ingeborg; Desmet, Nele; Wilczek, Daniel; Boënne, Wesley; Seuntjens, Piet; Koopmans, Kim; Bylemans, Dany; Wouters, Katrien; Vandaele, Karel

    2015-04-01

    Pesticide concentrations in rivers generally have a very dynamic signature and are strongly dependent on time and space. The dynamic time course is due to the time- and space-variant input conditions resulting from fast overland (runoff and erosion, direct losses) and subsurface flow (artificial drainage), directly connecting surfaces and/or agricultural fields where pesticides are applied, to receiving rivers. A thorough understanding of pesticide behavior at the watershed scale is needed to increase the effectiveness of mitigation measures. We developed a method to derive priority zones for applying mitigation measures for erosion control and mitigation of glyphosate runoff in an agricultural catchment. The study catchment was selected based on results from geospatial pesticide emission modeling, historical glyphosate concentrations, and crop cover. Priority zones were derived based on a risk map which includes information about the topography, crop cover, the estimated glyphosate use, the potential erosion risk, and the connectivity of the agricultural parcels to the river. The theoretical risk map was then validated in the field using field observations of runoff during stormflow events, and observations of roads short-circuiting the runoff to the river. The validated risk map was used to define priority zones for measures related to erosion control. Suggestions for specific measures such as grass buffer strips and small dams at the field scale were made. The information will be used to target farmers that may have a significant impact on the glyphosate load to surface water. Those farmers will be encouraged to participate in a voluntary erosion control program supported by the local government. The effect of mitigation measures on the glyphosate concentrations in the river will be assessed by monitoring two years before and three years after implementation of the measures. We will present the general setup of the study and the selection methodology of the

  9. Glyphosate fate in soils when arriving in plant residues.

    PubMed

    Mamy, Laure; Barriuso, Enrique; Gabrielle, Benoît

    2016-07-01

    A significant fraction of pesticides sprayed on crops may be returned to soils via plant residues, but its fate has been little documented. The objective of this work was to study the fate of glyphosate associated to plants residues. Oilseed rape was used as model plant using two lines: a glyphosate-tolerant (GT) line and a non-GT one, considered as a crucifer weed. The effects of different fragmentation degrees and placements in soil of plant residues were tested. A control was set up by spraying glyphosate directly on the soil. The mineralization of glyphosate in soil was slower when incorporated into plant residues, and the amounts of extractable and non-extractable glyphosate residues increased. Glyphosate availability for mineralization increased when the size of plant residues decreased, and as the distribution of plant residues in soil was more homogeneous. After 80 days of soil incubation, extractable (14)C-residues mostly involved one metabolite of glyphosate (AMPA) but up to 2.6% of initial (14)C was still extracted from undecayed leaves as glyphosate. Thus, the trapping of herbicides in plant materials provided a protection against degradation, and crops residues returns may increase the persistence of glyphosate in soils. This pattern appeared more pronounced for GT crops, which accumulated more non-degraded glyphosate in their tissues. PMID:27077537

  10. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy.

    PubMed

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (AR) against the concentration were linear in the range 50-500 μg mL(-1), with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL(-1). The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively. PMID:21689973

  11. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis.

    PubMed

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  12. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde ( p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (A R) against the concentration were linear in the range 50-500 μg mL -1, with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL -1. The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively.

  13. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    PubMed Central

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  14. Potential microbial toxicity and non-target impact of different concentrations of glyphosate-containing herbicide (GCH) in a model Pervious Paving System.

    PubMed

    Mbanaso, F U; Coupe, S J; Charlesworth, S M; Nnadi, E O; Ifelebuegu, A O

    2014-04-01

    Pervious Pavement Systems are Sustainable Drainage devices that meet the three-fold SUDS functions of stormwater quantity reduction, quality improvement and amenity benefits. This paper reports on a study to determine the impact of different concentrations of glyphosate-containing herbicides on non-target microorganisms and on the pollutant retention performance of PPS. The experiment was conducted using 0.0484 m(2) test rigs based on a four-layered design. Previous studies have shown that PPS can trap up to 98.7% of applied hydrocarbons, but results of this study show that application of glyphosate-containing herbicides affected this capability as 15%, 9% and 5% of added hydrocarbons were released by high (7200 mg L(-1)), medium (720 mg L(-1)) and low (72 mg L(-1)) glyphosate-containing herbicides concentrations respectively. The concentrations of nutrients released also indicate a potential for eutrophication if these effluents were to infiltrate into aquifers or be released into surface waters. The effect of glyphosate-containing herbicides application on the bacterial and fungal communities was slightly different; fungi exhibited a "top-down" trend as doses of 7200 mg L(-1) glyphosate-containing herbicides yielded the highest fungal growth whilst those with a concentration of 720 mg L(-1) glyphosate-containing herbicides applied yielded the highest bacterial growth. In the case of protists, doses of glyphosate-containing herbicides above 72 mg L(-1) were fatal, but they survived at the lower concentration, especially the ciliates Colpoda cucullus and Colpoda steinii thus indicating potential for their use as biomarkers of herbicide-polluted environments. Data also showed that at the lowest concentration of glyphosate-containing herbicides (72 mg L(-1)), biodegradation processes may not be affected as all trophic levels required for optimum biodegradation of contaminants were present. PMID:24462083

  15. RHIZOSPHERE ECOLOGY AND GLYPHOSATE-RESISTANT SOYBEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of glyphosate-resistant (GR) soybean with the ecology of plant-associated microbial populations has been the subject of environmental assessments in response to the public concern regarding the ecological compatibility of transgenic crops. Changes in the dynamics of soil and rhizosph...

  16. 78 FR 60707 - Glyphosate; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... with glyphosate follows. In the Federal Register of May 1, 2013 (78 FR 25396) (FRL-9384-3), EPA issued... April 20, 2011 (76 FR 22067) (FRL-8869- 7), EPA issued a document pursuant to FFDCA section 408(d)(3... Register of May 1, 2013 (78 FR 25396), EPA concludes that there is a reasonable certainty that no harm...

  17. 75 FR 17768 - Glyphosate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ....8 of the Commission's rules, as amended, 67 FR 68036 (November 8, 2002). Even where electronic...(C) of the Commission's Handbook on Electronic Filing Procedures, 67 FR 68168, 68173 (November 8... COMMISSION Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Institution...

  18. Bermudagrass (Cynodon spp) dose-response relationships with clethodim, glufosinate and glyphosate.

    PubMed

    Webster, Theodore M; Hanna, Wayne W; Mullinix, Benjamin G

    2004-12-01

    Greenhouse studies were conducted to evaluate the sensitivity of three commercial cultivars, eight experimental cultivars and common bermudagrass to clethodim, glufosinate and glyphosate. Each herbicide was applied at eight doses. Data were regressed on herbicide dose using a log-logistic curve (R2 = 0.56-0.95 for clethodim, R2 = 0.60-0.94 for glufosinate, and R2 = 0.70-0.96 for glyphosate). The herbicide rate that elicited a 50% plant response (I50) in the bermudagrass cultivars ranged from 0.04 to 0.19 kg ha(-1) clethodim, 0.19 to 1.33 kg ha(-1) glufosinate and 0.34 to 1.14 kg ha(-1) glyphosate. Relative to other cultivars, common bermudagrass was intermediate in its response to clethodim and among the most tolerant cultivars to glufosinate and glyphosate. TifSport was relatively tolerant to clethodim and glufosinate compared with other cultivars, but relatively sensitive to glyphosate. One cultivar, 94-437, was consistently among the most sensitive cultivars to each of the herbicides. While there were differential herbicide tolerances among the tested bermudagrass cultivars, there did not appear to be any naturally occurring herbicide resistance that could be commercially utilized. However, research indicated that breeding efforts should target herbicide resistance that is at least four times the registered use rate. Also, TifSport and Tifway have been identified as suitable representatives of triploid hybrid bermudagrass cultivars to be used to evaluate the success of turfgrass renovation programs. PMID:15578605

  19. Integrated pulsed amperometric detection of glufosinate, bialaphos and glyphosate at gold electrodes in anion-exchange chromatography.

    PubMed

    Sato, K; Jin, J Y; Takeuchi, T; Miwa, T; Suenami, K; Takekoshi, Y; Kanno, S

    2001-06-15

    A rapid and practical method for direct detection of the herbicides (glufosinate, bialaphos and glyphosate) in anion-exchange chromatography has been developed with integrated pulsed amperometric detection (IPAD). The electrochemical behavior of these herbicides showed catalytic currents based on the oxidation of amines in their structures. Waveform in IPAD was similar to that for amino acids, which exhibited adsorption/desorption catalytic features at gold electrode surface in alkaline solution. Under optimized conditions, detection limits (signal-to-noise ratio of 3) for glufosinate, bialaphos and glyphosate were 20, 65 and 50 ng ml(-1), respectively, with correlation coefficients of 0.995, 0.997 and 0.996 over concentration ranges of 0.1-45, 0.3-32 and 0.1-50 microg ml(-1), respectively. The relative standard deviations (n=5) were 1.7-3.0%. The present method was successfully applied to the determination of glyphosate in urine and serum. PMID:11442037

  20. Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq.

    PubMed

    Zelaya, I A; Owen, M D K; Vangessel, M J

    2004-12-01

    N-(phosphonomethyl)glycine (glyphosate) resistance was previously reported in a horseweed [Conyza (=Erigeron) canadensis (L.) Cronq.] population from Houston, DE (P (0) (R) ). Recurrent selection was performed on P (0) (R) , since the population was composed of susceptible (5%) and resistant (95%) phenotypes. After two cycles of selection at 2.0 kg ae glyphosate ha(-1), similar glyphosate rates that reduced plant growth by 50%, glyphosate rates that inflicted 50% mortality in the population, and accumulations of half of the maximum detectable shikimic acid concentration were observed between the parental P (0) (R) and the first (RS(1)) and second (RS(2)) recurrent generations. In addition, RS(1) and RS(2) did not segregate for resistance to glyphosate. This suggested that the RS(2) population comprised a near-homozygous, glyphosate-resistant line. Whole-plant rate responses estimated a fourfold resistance increase to glyphosate between RS(2) and either a pristine Ames, IA (P (0) (P) ) or a susceptible C. canadensis population from Georgetown, DE (P (0) (S) ). The genetics of glyphosate resistance in C. canadensis was investigated by performing reciprocal crosses between RS(2) and either the P (0) (P) or P (0) (S) populations. Evaluations of the first (F(1)) and second (F(2)) filial generations suggested that glyphosate resistance was governed by an incompletely dominant, single-locus gene (R allele) located in the nuclear genome. The proposed genetic model was confirmed by back-crosses of the F(1) to plants that arose from achenes of the original RS(2), P (0) (P) , or P (0) (S) parents. The autogamous nature of C. canadensis, the simple inheritance model of glyphosate resistance, and the fact that heterozygous genotypes (F(1)) survived glyphosate rates well above those recommended by the manufacturer, predicted a rapid increase in frequency of the R allele under continuous glyphosate selection. The impact of genetics on C. canadensis resistance management is

  1. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement.

    PubMed

    Myers, John Peterson; Antoniou, Michael N; Blumberg, Bruce; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vandenberg, Laura N; Vom Saal, Frederick S; Welshons, Wade V; Benbrook, Charles M

    2016-01-01

    The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air

  2. INFLUENCE OF EARLY-SEASEON NITROGEN AND WEED MANAGEMENT ON IRRIGATED AND NONIRRIGATED GLYPHOSATE-RESISTANT AND SUSCEPTIBLE SOYBEAN.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted from 1999 through 2001 on Sharkey clay at Stoneville, MS (lat. 33 26'N). The objective was to determine the effect of 35 kg N ha-1 applied early in the growing season to conventional (CONV) and glyphosate-resistant (GR) soybean cultivars grown under two weed management ...

  3. Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation.

    PubMed

    Dousset, S; Chauvin, C; Durlet, P; Thévenot, M

    2004-10-01

    Field studies monitoring pesticide pollution in the Morvan region (France) have revealed surface water contamination by some herbicides. The purpose of this study was to investigate in greater detail the transport of two herbicides, used in Christmas tree production in the Morvan, under controlled laboratory conditions. Thus, the leaching of hexazinone (3-cyclohexyl-6-dimethyl-amino-1-methyl-1,3,5-triazine-2,4 (1H,3H) dione) and glyphosate (N-(phosphono-methyl-glycine)) through structured soil columns was studied using one loamy sand and two sandy loams from sites currently under Christmas tree cultivation in the Morvan. The three soils were cultivated sandy brunisol [Sound reference base for soils, D. Baize, M.C. Girard (Coord.), INRA, Versailles, 1998, 322 p] or, according to the FAO [FAO, World reference base for soil resources, ISSS-ISRIC-FAO, FAO, Rome, Italy, 1998], the La Garenne was an arenosol and the two other soils were cambisols. The clay contents of the soils ranged from 86 to 156 g kg(-1) and the organic carbon ranged from 98 to 347 g kg(-1). After 160 mm of simulated rainfall applied over 12 days, 2-11% of the applied hexazinone was recovered in the leachate. The recovery was much higher than that of glyphosate, which was less than 0.01%. The greater mobility of hexazinone might be related to its much lower adsorption coefficient, K(oc), 19-300 l kg(-1), compared with 8.5-10231 l kg(-1) for glyphosate (literature values). Another factor that may explain the higher amounts of hexazinone recovered in the leachates of the three soil columns is its greater persistence (19.7-91 days) relative to that of glyphosate (7.9-14.4 days). The mobility of both herbicides was greater in the soils with higher gravel contents, coarser textures, and lower organic carbon contents. Moreover, glyphosate migration seems negatively correlated not only to soil organic carbon, but also to aluminium and iron contents of soils. This soil column study suggests that at the

  4. Phosphate fertilizer impacts on glyphosate sorption by soil.

    PubMed

    Munira, Sirajum; Farenhorst, Annemieke; Flaten, Don; Grant, Cynthia

    2016-06-01

    This research examined the impact of field-aged phosphate and cadmium (Cd) concentrations, and fresh phosphate co-applications, on glyphosate sorption by soil. Soil samples were collected in 2013 from research plots that had received, from 2002 to 2009, annual applications of mono ammonium phosphate (MAP) at 20, 40 and 80 kg P ha(-1) and from products containing 0.4, 70 or 210 mg Cd kg(-1) as an impurity. A series of batch equilibrium experiments were carried out to quantify the glyphosate sorption distribution constant, Kd. Extractable Cd concentrations in soil had no significant effect on glyphosate sorption. Glyphosate Kd values significantly decreased with increasing Olsen-P concentrations in soil, regardless of the pH conditions studied. Experiments repeated with a commercially available glyphosate formulation showed statistically similar results as the experiments performed with analytical-grade glyphosate. Co-applications of MAP with glyphosate also reduced the available sorption sites to retain glyphosate, but less so when soils already contain large amounts of phosphate. Glyphosate Kd values in soils ranged from 173 to 939 L kg(-1) under very strong to strongly acidic condition but the Kd was always <100 L kg(-1) under moderately acidic to slightly alkaline conditions. The highest Olsen-P concentrations in soil reduced Kd values by 25-44% relative to control soils suggesting that, under moderately acidic to slightly alkaline conditions, glyphosate may become mobile by water in soils with high phosphate levels. Otherwise, glyphosate residues in agricultural soils are more likely to be transported off-site by wind and water-eroded sediments than by leaching or runoff. PMID:27035384

  5. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    PubMed

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  6. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    PubMed Central

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  7. A comparison of multicopter and fixed-wing unmanned aerial systems (UAS) applied to mapping debris flows in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Sotier, Bernadette; Lechner, Veronika

    2016-04-01

    The use of unmanned aerial systems (UAS) for documenting natural hazard events (e.g. debris flows) is becoming increasingly popular, as UAS allow on-demand, flexible and cost-efficient data acquisition. In this paper, we present the results of a comparison of multicopter and fixed-wing UAS. They were employed in the summer of 2015 to map two small alpine catchments located in Western Austria, where debris flows had occurred recently: The first event took place in the Seigesbach (Tyrol), the second occurred in the Plojergraben (Salzburg). For the Seigesbach mission, a fixed-wing UAS (Multiplex Mentor), equipped with a Sony NEX5 (50 mm prime lens, 14 MP sensor resolution) was employed to acquire approximately 4,000 images. In the Plojergraben an AustroDrones X18 octocopter was used, carrying a Sony ILCE-7R (35 mm prime lens, 36 MP sensor resolution) to record 1,700 images. Both sites had a size of approximately 2km². 20 ground control points (GCP) were distributed within both catchments, and their location was measured (Trimble GeoXT, expected accuracy 0.15 m). Using standard structure-from-motion photogrammetry software (AgiSoft PhotoScan Pro, v. 1.1.6), orthophotos (5 cm ground sampling distance - GSD) and digital surface models (DSM) (20 cm GSD) were calculated. Volume differences caused by the debris flow (i.e. deposition heights and erosion depths) computed by subtracting post-event from pre-event DSMs. Even though the terrain conditions in the two catchments were comparable, the challenges during the field campaign and the evaluation of the aerial images were very different. The main difference between the two campaigns was the number of flights required to cover the catchment: only four were needed by the fixed-wing UAS, while the multicopter required eleven in the Plojergraben. The fixed-wing UAS is specially designed for missions in hardly accessible regions, requiring only two people to carry the whole equipment, while in this case a car was needed for the

  8. Using vegetative index and modified derivative for early detection of soybean plant injury from glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a non-selective, systemic herbicide highly toxic to sensitive plant species, and its use has seen a significant increase due to the increased adoption of genetically modified glyphosate-resistant crops since the mid-1990s. Glyphosate application for weed control in glyphosate-resistant...

  9. Interaction of Glyphosate and Diquat in Ready-To-Use Weed Control Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-based, ready-to-use weed control products frequently contain diquat (typically 0.04 by weight relative to glyphosate) under the supposition that the diquat, “makes glyphosate work faster“. However, in light of the known modes of actions of glyphosate and diquat, we hypothesize that diqua...

  10. Differentiating glyphosate-resistant and glyphosate-sensitive Italian ryegrass using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Huang, Yanbo; Nandula, Vijay K.; Reddy, Krishna N.

    2014-05-01

    Glyphosate based herbicide programs are most preferred in current row crop weed control practices. With the increased use of glyphosate, weeds, including Italian ryegrass (Lolium multiflorum), have developed resistance to glyphosate. The identification of glyphosate resistant weeds in crop fields is critical because they must be controlled before they reduce the crop yield. Conventionally, the method for the identification with whole plant or leaf segment/disc shikimate assays is tedious and labor-intensive. In this research, we investigated the use of high spatial resolution hyperspectral imagery to extract spectral curves derived from the whole plant of Italian ryegrass to determine if the plant is glyphosate resistant (GR) or glyphosate sensitive (GS), which provides a way for rapid, non-contact measurement for differentiation between GR and GS weeds for effective site-specific weed management. The data set consists of 226 greenhouse grown plants (119 GR, 107 GS), which were imaged at three and four weeks after emergence. In image preprocessing, the spectral curves are normalized to remove lighting artifacts caused by height variation in the plants. In image analysis, a subset of hyperspectral bands is chosen using a forward selection algorithm to optimize the area under the receiver operating characteristic (ROC) between GR and GS plants. Then, the dimensionality of selected bands is reduced using linear discriminant analysis (LDA). Finally, the maximum likelihood classification was conducted for plant sample differentiation. The results show that the overall classification accuracy is between 75% and 80% depending on the age of the plants. Further refinement of the described methodology is needed to correlate better with plant age.

  11. Aerial radiation surveys

    SciTech Connect

    Jobst, J.

    1980-01-01

    A recent aerial radiation survey of the surroundings of the Vitro mill in Salt Lake City shows that uranium mill tailings have been removed to many locations outside their original boundary. To date, 52 remote sites have been discovered within a 100 square kilometer aerial survey perimeter surrounding the mill; 9 of these were discovered with the recent aerial survey map. Five additional sites, also discovered by aerial survey, contained uranium ore, milling equipment, or radioactive slag. Because of the success of this survey, plans are being made to extend the aerial survey program to other parts of the Salt Lake valley where diversions of Vitro tailings are also known to exist.

  12. Characterization of glyphosate resistance in cloned Amaranthus palmeri plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth from Georgia (GA) possesses multiple copies of the target site, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of this herbicide. Cloned plants of glyphosate-resistant Palmer amaranth biotypes from Mississippi (MS) were compared with GA populations using le...

  13. Heterodera glycines Population Development on Soybean Treated with Glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode (Heterodera glycines) is a major yield limiting pest in all major soybean producing countries. In the last decade genetically modified soybean tolerant to glyphosate has become widely planted and postemergence application of glyphosate has increased exponentially. Genetically m...

  14. Risks and Benefits of Glyphosate-Resistant Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is the most important herbicide since 2,4-D, and biotechnology has magnified its importance. It has a unique target site in the shikimate pathway, 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS). Since transgenic, glyphosate-resistant crops (GRCs) were introduced over ten years ago...

  15. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. Greenhouse studies were conducted to determine the glyphosate I50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected legum...

  16. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  17. Glyphosate-resistant palmer amaranth: a threat to conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage reduces the physical movement of soil to the minimum required for crop establishment and production. Adoption of conservation tillage increased dramatically with the advent of transgenic, glyphosate-resistant crops that permitted in-season, over-the-top use of glyphosate, a broa...

  18. Soil Depth and Tillage Effects on Glyphosate Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of glyphosate-resistant crops facilitated the widespread adoption of no-tillage (NT) cropping systems. The experimental objectives were to determine glyphosate sorption, mineralization, and persistence at two depths [0- to 2- cm (A) and 2- to 10-cm (B)] in a silt loam managed under long ter...

  19. Evaluation of Glyphosate for Managing Giant Reed (Arundo donax)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant reed is an invasive plant of riparian habitats throughout California and the United States. Two herbicides approved for controlling giant reed in California are glyphosate and imazapyr. Sources indicate that 1.5% to 5% glyphosate solutions are effective at controlling giant reed. Imazapyr has ...

  20. Effects of Transgenic Glyphosate-Resistant Crops on Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate (N-[phosphonomethyl] glycine) is a highly effective, non-selective herbicide. Herbicide-resistant crop (HRC) has been the most successful trait used in transgenic crops throughout the world. Transgenic glyphosate-resistant crops (GRCs) have been commercialized and grown extensively in the...

  1. Transcriptome response to glyphosate in sensitive and resistant soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of soybeans planted in the United States are resistant to glyphosate due to introduction of a gene encoding for a glyphosate-insensitive 5-enolypyruvylshikimate-3-phosphate synthase (EPSPS). Gene expression profiling was conducted using cDNA microarrays to address questions related to p...

  2. Study of glyphosate transport through suspended particulate matter

    NASA Astrophysics Data System (ADS)

    Amiot, Audrey; Landry, David; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Sourice, Stéphane; Ballouche, Aziz

    2014-05-01

    The results have been produced in a project aiming to improve the water quality of the Layon localy supported by stakeholders involved in the implementation of the Water Framework Directive as the SAGE-Layon Aubance. The study site is a small vineyard catchment (2.2 ha) of the Loire Valley. The slopes of the study site are between 8 and 40% resulting in strong erosive episodes during rainy event. The main objective is to understand the transfer of pesticide residues to stream. Preliminary results have shown glyphosate can be found with high concentrations during runoff. However this study was realized only in the dissolved phase. The objective is now to understand the glyphosate transport driven by SPM. The methodology developed has been (i) characterization and production of the erodible water fraction from soils aggregates; (ii) achievement of the adsorption of glyphosate on these erodible materials to compare this results with adsorption on soil sieved to 2 mm, (iii) achievement of the desorption of glyphosate on these erodible materials. Measurements have been performed on soil samples distinguishing weed or grassed soils. Soils are sieved to 2 mm or between 2 and 5 mm (to produce the erodible water fraction). Both fractions are then used to glyphosate sorption and desorption. The erodible fraction was produce with a wet sieving machine (eijkelkampt Method Kemper and Rosenau, 1986), using sieve porosity of 250 microns. The fraction obtained at 250 microns is considered to be the erodible water fraction and is used to study the adsorption and desorption of glyphosate. Kinetics has been first carried out then the isotherm to obtain the value of Kd. A ratio soil/solution of 1/5 was used. Successive desorption's method was chosen with a stirring time of 20 min, centrifugation at 6000 g and the supernatant in each desorption of 20 min is analyzed. This step is repeated 25 times. The main results of the study are: (i) adsorption of glyphosate is rapid and almost

  3. Impairment of carbon metabolism induced by the herbicide glyphosate.

    PubMed

    Orcaray, Luis; Zulet, Amaia; Zabalza, Ana; Royuela, Mercedes

    2012-01-01

    The herbicide glyphosate reduces plant growth and causes plant death by inhibiting the biosynthesis of aromatic amino acids. The objective of this work was to determine whether glyphosate-treated plants show a carbon metabolism pattern comparable to that of plants treated with herbicides that inhibit branched-chain amino acid biosynthesis. Glyphosate-treated plants showed impaired carbon metabolism with an accumulation of carbohydrates in the leaves and roots. The growth inhibition detected after glyphosate treatment suggested impaired metabolism that impedes the utilization of available carbohydrates or energy at the expected rate. These effects were common to both types of amino acid biosynthesis inhibitors. Under aerobic conditions, ethanolic fermentative metabolism was enhanced in the roots of glyphosate-treated plants. This fermentative response was not related to changes in the respiratory rate or to a limitation of the energy charge. This response, which was similar for both types of herbicides, might be considered a general response to stress conditions. PMID:21944839

  4. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    PubMed Central

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  5. Studies on synthesis esterified zirconium glyphosates and their hydrophobic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqing; Li, Minglei; Ji, Xuemei; Xu, Qinghong

    2010-03-01

    A series of new organic-modified zirconium glyphosate compounds were synthesized based on the reactions between esterified glyphosates and ZrOCl 2. FT-IR spectra, solid-state 31P MAS NMR and elementary analysis proved the formation of these new compounds. Powder X-ray diffraction (PXRD) patterns and transmission electron microscope (TEM) images proved these compounds had lamellar structures. Scanning electronic microscope (SEM) images showed that solvents used in synthesis had great influence on the morphologies of products. Water contact angle measurements showed that the hydrophobic property of the products was a function of the number of carbon in esterified glyphosates, increased from 0° of zirconium glyphosate to 133° of dodecyl zirconium glyphosate. The present study offered a new route to synthesize organic-modified α-Zr(HPO 4) 2·H 2O (α-ZrP) materials with various morphology and controllable hydrophobic property.

  6. Competitive effects of glyphosate-resistant and glyphosate-susceptible Conyza candensis on young grapevines (Vitis Vinifera L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conyza canadensis L. Cronq. is a common pest in vineyards of the San Joaquin Valley (SJV) of California, USA. Interest in controlling this weed has increased with the recent discovery of a glyphosate-resistant (GR) biotype which is more vigorous than a glyphosate-susceptible (GS) biotype. However, t...

  7. Glyphosate and fungicide effects on Cercospora leaf spot in four glyphosate-resistant sugar beet (Beta vulgaris) varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate has been shown to reduce foliar diseases in soybean and wheat. In fact, currently there is a patent application for a synergistic combination of glyphosate and a fungicide for disease management. Cercospora leaf spot (Cercospora beticola) is one of the most significant foliar disease prob...

  8. Effect of Glyphosate-boron Application on Seed Composition and Nitrogen Metabolism in Glyphosate-resistant Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information is limited on the effect of combined foliar application of glyphosate (Gly) and boron (B) on seed composition and nitrogen metabolism in glyphosate resistant soybean (Glycine max(L.)Merr.). Therefore, the objective of this two-year field study was to evaluate the effects of single foliar...

  9. Impact of glyphosate resistant corn, glyphosate applications, and tillage on soil nutrient ratios, exoenzyme activities, and nutrient acquisition ratios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report results of the last two years of a 7-year (2008-2014) field experiment designed to test the null hypothesis that applications of glyphosate on glyphosate resistant corn (Zea mays L.) as a routine weed control practice under both conventional and reduced tillage practices would have no effe...

  10. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    PubMed

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria. PMID:26901800

  11. Low doses of glyphosate change the response of soybean to later glyphosate exposures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stimulatory effect of low doses of toxic substances is known as hormesis. Many herbicides that cause severe injury to plants at recommended rates, promote growth or have other stimulatory effects at very low doses. The objective of this study was to evaluate glyphosate-induced hormesis in soyb...

  12. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  13. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS.

    PubMed

    Steinborn, Angelika; Alder, Lutz; Michalski, Britta; Zomer, Paul; Bendig, Paul; Martinez, Sandra Aleson; Mol, Hans G J; Class, Thomas J; Pinheiro, Nathalie Costa

    2016-02-17

    This study describes the validation and application of two independent analytical methods for the determination of glyphosate in breast milk. They are based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively. For LC-MS/MS, sample preparation involved an ultrafiltration followed by chromatography on an anion exchange column. The analysis by GC-MS/MS involved an extraction step, cleanup on a cation exchange column, and derivatization with heptafluorobutanol and trifluoroacetic acid anhydride. Both methods were newly developed for breast milk and are able to quantify glyphosate residues at concentrations as low as 1 ng/mL. The methods were applied to quantify glyphosate levels in 114 breast milk samples, which had been collected from August to September of 2015 in Germany. The mothers participated at their own request and thus do not form a representative sample. In none of the investigated samples were glyphosate residues above the limit of detection found. PMID:26808680

  14. Impact of glyphosate resistant corn and glyphosate applications under conventional and reduced tillage practices on exoenzyme activities and microbial community structure of bulk and rhizosphere soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Conservation tillage practices across the country have been implementing genetically engineered glyphosate resistant corn crops along with applications of the herbicide glyphosate. We tested the hypothesis that six years of glyphosate applications to both resistant and non-resistant corn ...

  15. Glyphosate-resistant and glyphosate-susceptible Palmer amaranth (Amaranthus palmeri S Wats.): hyperspectral reflectance properties of plants and potential for classification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Palmer amaranth (Amaranthus palmeri S. Wats.) is a troublesome agronomic weed in the southern United States, and several populations have evolved resistance to glyphosate. This paper reports spectral signatures of glyphosate-resistant (GR) and glyphosate-sensitive (GS) plants, and explor...

  16. EPSPS amplification in glyphosate-resistant spiny amaranth (Amaranthus spinosus): a case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer amaranth (Amaranthus palmeri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amaranthus spinosus, a common weed of pastures, is a close relative of Amaranthus palmeri, a problematic agricultural weed with widespread glyphosate resistance. These two species have been known to hybridize, allowing for transfer of glyphosate resistance. Glyphosate-resistant A. spinosus was rec...

  17. Adsorption of glyphosate and aminomethylphosphonic acid in soils

    NASA Astrophysics Data System (ADS)

    Rampazzo, N.; Rampazzo Todorovic, G.; Mentler, A.; Blum, W. E. H.

    2013-03-01

    The results showed that glyphosate is initially adsorbed mostly in the upper 2 cm. It is than transported and adsorbed after few days in deeper soil horizons with concomitant increasing content of its metabolite aminomethylphosphonic acid. Moreover, Fe-oxides seem to be a key parameter for glyphosate and aminomethylphosphonic adsorption in soils. This study confirmed previous studies: the analysis showed lower contents of dithionite-soluble and Fe-oxides for the Chernozem, with consequently lower adsorption of glyphosate and aminomethylphosphonic as compared with the Cambisol and the Stagnosol.

  18. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1975-01-01

    The National Cartographic Information Center of the U.S. Geological Survey maintains records of aerial photographic coverage of the United States and its Territories, based on reports from other Federal agencies as well as State governmental agencies and commercial companies. From these records, the Center furnishes data to prospective purchasers on available photography and the agency holding the aerial film.

  19. Comparative losses of glyphosate and selected residual herbicides in surface runoff from conservation-tilled watersheds planted with corn or soybean.

    PubMed

    Shipitalo, Martin J; Owens, Lloyd B

    2011-01-01

    Residual herbicides regularly used in conjunction with conservation tillage to produce corn ( L.) and soybean [ (L.) Merr] are often detected in surface water at concentrations that exceed their U.S. maximum contaminant levels (MCL) and ecological standards. These risks might be reduced by planting glyphosate-tolerant varieties of these crops and totally or partially replacing the residual herbicides alachlor, atrazine, linuron, and metribuzin with glyphosate, a contact herbicide that has a short half-life and is strongly sorbed to soil. Therefore, we applied both herbicide types at typical rates and times to two chisel-plowed and two no-till watersheds in a 2-yr corn/soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat-red clover ( L.- L.) rotation and monitored herbicide losses in surface runoff for three crop years. Average dissolved glyphosate loss for all tillage practices, as a percentage of the amount applied, was significantly less ( ≤ 0.05) than the losses of atrazine (21.4x), alachlor (3.5x), and linuron (8.7x) in corn-crop years. Annual, flow-weighted, concentration of atrazine was as high as 41.3 μg L, much greater than its 3 μg L MCL. Likewise, annual, flow-weighted alachlor concentration (MCL = 2 μg L) was as high as 11.2 and 4.9 μg L in corn- and soybean-crop years, respectively. In only one runoff event during the 18 watershed-years it was applied did glyphosate concentration exceed its 700 μg L MCL and the highest, annual, flow-weighted concentration was 3.9 μg L. Planting glyphosate-tolerant corn and soybean and using glyphosate in lieu of some residual herbicides should reduce the impact of the production of these crops on surface water quality. PMID:21712598

  20. Evolved glyphosate-resistant weeds around the world: lessons to be learnt.

    PubMed

    Powles, Stephen B

    2008-04-01

    Glyphosate is the world's most important herbicide, with many uses that deliver effective and sustained control of a wide spectrum of unwanted (weedy) plant species. Until recently there were relatively few reports of weedy plant species evolving resistance to glyphosate. Since 1996, the advent and subsequent high adoption of transgenic glyphosate-resistant crops in the Americas has meant unprecedented and often exclusive use of glyphosate for weed control over very large areas. Consequently, in regions of the USA where transgenic glyphosate-resistant crops dominate, there are now evolved glyphosate-resistant populations of the economically damaging weed species Ambrosia artemissifolia L., Ambrosia trifida L., Amaranthus palmeri S Watson, Amaranthus rudis JD Sauer, Amaranthus tuberculatus (Moq) JD Sauer and various Conyza and Lolium spp. Likewise, in areas of transgenic glyphosate-resistant crops in Argentina and Brazil, there are now evolved glyphosate-resistant populations of Sorghum halepense (L.) Pers and Euphorbia heterophylla L. respectively. As transgenic glyphosate-resistant crops will remain very popular with producers, it is anticipated that glyphosate-resistant biotypes of other prominent weed species will evolve over the next few years. Therefore, evolved glyphosate-resistant weeds are a major risk for the continued success of glyphosate and transgenic glyphosate-resistant crops. However, glyphosate-resistant weeds are not yet a problem in many parts of the world, and lessons can be learnt and actions taken to achieve glyphosate sustainability. A major lesson is that maintenance of diversity in weed management systems is crucial for glyphosate to be sustainable. Glyphosate is essential for present and future world food production, and action to secure its sustainability for future generations is a global imperative. PMID:18273881

  1. Modeling biodegradation and kinetics of glyphosate by artificial neural network.

    PubMed

    Nourouzi, Mohsen M; Chuah, Teong G; Choong, Thomas S Y; Rabiei, F

    2012-01-01

    An artificial neural network (ANN) model was developed to simulate the biodegradation of herbicide glyphosate [2-(Phosphonomethylamino) acetic acid] in a solution with varying parameters pH, inoculum size and initial glyphosate concentration. The predictive ability of ANN model was also compared with Monod model. The result showed that ANN model was able to accurately predict the experimental results. A low ratio of self-inhibition and half saturation constants of Haldane equations (< 8) exhibited the inhibitory effect of glyphosate on bacteria growth. The value of K(i)/K(s) increased when the mixed inoculum size was increased from 10(4) to 10(6) bacteria/mL. It was found that the percentage of glyphosate degradation reached a maximum value of 99% at an optimum pH 6-7 while for pH values higher than 9 or lower than 4, no degradation was observed. PMID:22424071

  2. Glyphosate-resistant weeds of South American cropping systems: an overview.

    PubMed

    Vila-Aiub, Martin M; Vidal, Ribas A; Balbi, Maria C; Gundel, Pedro E; Trucco, Frederico; Ghersa, Claudio M

    2008-04-01

    Herbicide resistance is an evolutionary event resulting from intense herbicide selection over genetically diverse weed populations. In South America, orchard, cereal and legume cropping systems show a strong dependence on glyphosate to control weeds. The goal of this report is to review the current knowledge on cases of evolved glyphosate-resistant weeds in South American agriculture. The first reports of glyphosate resistance include populations of highly diverse taxa (Lolium multiflorum Lam., Conyza bonariensis L., C. canadensis L.). In all instances, resistance evolution followed intense glyphosate use in fruit fields of Chile and Brazil. In fruit orchards from Colombia, Parthenium hysterophorus L. has shown the ability to withstand high glyphosate rates. The recent appearance of glyphosate-resistant Sorghum halepense L. and Euphorbia heterophylla L. in glyphosate-resistant soybean fields of Argentina and Brazil, respectively, is of major concern. The evolution of glyphosate resistance has clearly taken place in those agroecosystems where glyphosate exerts a strong and continuous selection pressure on weeds. The massive adoption of no-till practices together with the utilization of glyphosate-resistant soybean crops are factors encouraging increase in glyphosate use. This phenomenon has been more evident in Argentina and Brazil. The exclusive reliance on glyphosate as the main tool for weed management results in agroecosystems biologically more prone to glyphosate resistance evolution. PMID:18161884

  3. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    PubMed Central

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  4. Aerial righting reflexes in flightless animals.

    PubMed

    Jusufi, Ardian; Zeng, Yu; Full, Robert J; Dudley, Robert

    2011-12-01

    Animals that fall upside down typically engage in an aerial righting response so as to reorient dorsoventrally. This behavior can be preparatory to gliding or other controlled aerial behaviors and is ultimately necessary for a successful landing. Aerial righting reflexes have been described historically in various mammals such as cats, guinea pigs, rabbits, rats, and primates. The mechanisms whereby such righting can be accomplished depend on the size of the animal and on anatomical features associated with motion of the limbs and body. Here we apply a comparative approach to the study of aerial righting to explore the diverse strategies used for reorientation in midair. We discuss data for two species of lizards, the gecko Hemidactylus platyurus and the anole Anolis carolinensis, as well as for the first instar of the stick insect Extatosoma tiaratum, to illustrate size-dependence of this phenomenon and its relevance to subsequent aerial performance in parachuting and gliding animals. Geckos can use rotation of their large tails to reorient their bodies via conservation of angular momentum. Lizards with tails well exceeding snout-vent length, and correspondingly large tail inertia to body inertia ratios, are more effective at creating midair reorientation maneuvers. Moreover, experiments with stick insects, weighing an order of magnitude less than the lizards, suggest that aerodynamic torques acting on the limbs and body may play a dominant role in the righting process for small invertebrates. Both inertial and aerodynamic effects, therefore, can play a role in the control of aerial righting. We propose that aerial righting reflexes are widespread among arboreal vertebrates and arthropods and that they represent an important initial adaptation in the evolution of controlled aerial behavior. PMID:21930662

  5. WEED CONTROL AND COTTON (GOSSYPIUM HIRSUTUM) INJURY WITH COMBINATIONS OF GLYPHOSATE AND TRIFLOXYSULFURON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and field studies were conducted to evaluate potential interactions between glyphosate and trifloxysulfuron on barnyardgrass, browntop millet, hemp sesbania, pitted morningglory, prickly sida, sicklepod, and velvetleaf control as well as cotton injury. Glyphosate was tested at 560 and 112...

  6. Loss of glyphosate efficacy: a changing weed spectrum in Georgia cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of glyphosate resistance into crops through genetic modification has revolutionized crop protection. Glyphosate, the proverbial silver bullet, is a broad spectrum herbicide with favorable environmental characteristics and effective broad-spectrum weed control that has greatly improved ...

  7. Predicting aerially applied particle deposition by computer

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.; Morris, D. J.

    1981-01-01

    This paper is a status report on a NASA effort to develop a computer code capable of simulating the deposition of materials in the wake of fixed or rotary wing aircraft operating under realistic atmospheric conditions. The deposition code 'Ag Disp' is novel in that the mean particle trajectory, as well as the variance from the mean resulting from fluid fluctuations are simultaneously predicted. Sample calculations are undertaken to demonstrate the versatility of this code.

  8. Impact of seven years of glyphosate resistant corn and glyphosate applications under conventional and reduced tillage on bulk and rhizosphere soil exoenzyme activities and corn root endophytic microbial community structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Conservation tillage practices across the country have been implementing genetically engineered glyphosate resistant corn crops along with applications of the herbicide glyphosate. We tested the hypothesis that seven years of glyphosate applications to both glyphosate resistant and non-r...

  9. Changes in constructed Brassica communities treated with glyphosate drift.

    PubMed

    Watrud, Lidia S; King, George; Londo, Jason P; Colasanti, Ricardo; Smith, Bonnie M; Waschmann, Ronald S; Lee, E Henry

    2011-03-01

    We constructed a mixed-species community designed to simulate roadside and field edge plant communities and exposed it to glyphosate drift in order to test three hypotheses: (1) higher fitness in transgenic Brassica carrying the CP4 EPSPS transgene that confers resistance to glyphosate will result in significant changes in the plant community relative to control communities; (2) given repeated years of glyphosate drift selective pressure, the increased fitness of the transgenic Brassica with CP4 EPSPS will contribute to an increase in the proportion of transgenic progeny produced in plant communities; and (3) the increased fitness of Brassica carrying the CP4 EPSPS transgene will contribute to decreased levels of mycorrhizal infection and biomass in a host species (Trifolium incarnatum). Due to regulatory constraints that prevented the use of outdoor plots for our studies, in 2005 we established multispecies communities in five large cylindrical outdoor sunlit mesocosms (plastic greenhouses) designed for pollen confinement. Three of the community members were sexually compatible Brassica spp.: transgenic glyphosate-resistant canola (B. napus) cultivar (cv.) RaideRR, glyphosate-sensitive non-transgenic B. napus cv. Sponsor, and a weedy B. rapa (GRIN Accession 21735). Additional plant community members were the broadly distributed annual weeds Digitaria sanguinalis, Panicum capillare, and Lapsana communis. Once annually in 2006 and 2007, two mesocosms were sprayed with glyphosate at 10% of the field application rate to simulate glyphosate drift as a selective pressure. After two years, changes were observed in community composition, plant density, and biomass in both control and treatment mesocosms. In control mesocosms, the weed D. sanguinalis (crabgrass) began to dominate. In glyphosate drift-treated mesocosms, Brassica remained the dominant genus and the incidence of the CP4 EPSPS transgene increased in the community. Shoot biomass and mycorrhizal infection in

  10. Glyphosate Effect on Shikimate, Nitrate Reductase Activity, Yield, and Seed Composition in Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr field study investigated the effects of glyphosate drift rate on plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition in non-glyphosate-resistant (non-GR) corn (Zea mays L.) and the effects of glyphosate at label rates on nitrate reducta...

  11. INFLUENCE OF GLYPHOSATE ON RHIZOCTONIA AND FUSARIUM ROOT ROT IN SUGAR BEET.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study tests the effect of glyphosate application on disease severity of glyphosate resistant sugar beet and examines whether the increase in disease in fungal- or plant-mediated. In greenhouse studies of glyphosate resistant sugar beet, increased disease severity was observed following glyphosa...

  12. Mechanism Of Resistance Of Evolved Glyphosate-Resistant Palmer Amaranth (Amaranthus Palmeri L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolved glyphosate resistance in weedy species represents a challenge for the continued success and utility of glyphosate-resistant crops. The first case of evolved glyphosate resistance in Palmer amaranth was a population from the U.S. state of Georgia, which was previously reported to have amplif...

  13. Weed escapes and delayed weed emergence in glyphosate-resistant soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2001 and 2002, field experiments were conducted in soybean crops at four Minnesota locations with the aim of studying the effects of different glyphosate treatments (one-pass glyphosate, two-pass glyphosate) on weed control and weed community composition by focusing on the identity and abunda...

  14. Early detection of crop injury from herbicide glyphosate by leaf biochemical parameter inversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early detection of crop injury from glyphosate is of significant importance in crop management. In this paper, we attempt to detect glyphosate-induced crop injury by PROSPECT (leaf optical PROperty SPECTra model) inversion through leaf hyperspectral reflectance measurements for non-Glyphosate-Resist...

  15. Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) Spreads in the Southern United States (U.S.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate (N-phosphonomethyl glycine) is an exceptionally broad-spectrum herbicide that was first registered for use in 1974. Glyphosate is used mainly in conjunction with transgenic, glyphosate-resistant soybean, canola (Brassica napus), cotton (Gossypium hirsutum), and corn (Zea mays) cultivars, ...

  16. Glyphosate resistance in giant ragweed (Ambrosia trifida L.) from Mississippi is partly due to reduced translocation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A giant ragweed population from a glyphosate-resistant (GR) soybean field in Mississippi was suspected to be resistant to glyphosate. Greenhouse and laboratory studies were conducted to confirm and quantify the magnitude of glyphosate resistance in the giant ragweed population and to elucidate the p...

  17. Effects of Glyphosate Application on Seed Iron and Root Ferric (III) Reductase in Soybean Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research demonstrated that nitrate assimilation and nitrogen fixation were significantly reduced by glyphosate (Gly) drift in glyphosate-susceptible (GS) soybean, but soybean had the ability to recover from the physiological stress caused by glyphosate drift. The objective of this study was...

  18. Varying tolerance to glyphosate in a population of Palmer amaranth with low epsps copy number

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Palmer amaranth population (seeds collected in the year 2000; Washington Co., MS) suspected to be susceptible to glyphosate was examined as a population and as individual plants and found to exhibit varying tolerance or resistance to glyphosate. Whole plant spraying of glyphosate (0.84 kg ha-1) t...

  19. An Overview of Glyphosate Mode of Action: Why Is It Such A Great Herbicide?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AN OVERVIEW OF GLYPHOSATE MODE OF ACTION: WHY IS IT SUCH A GREAT HERBICIDE? Dale Shaner, Plant Physiologist, USDA-ARS, Fort Collins, CO 80526. Glyphosate dominates world herbicide usage due to its broad spectrum, ease of use and environmental attributes. The introduction of glyphosate resistant ...

  20. Effect of drift control adjuvants on glyphosate spray drift and weed control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate drift on to off-target sensitive soybean may cause injury and reduce the yield. To solve this problem field experiment was conducted to determine the effect of drift control adjuvants (DCA) on downwind glyphosate drift and weed control in non-glyphosate-resistant soybean. The results show...

  1. Seed Germination Differences Between Glyphosate-Resistant and -Susceptible Italian Ryegrass Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Italian ryegrass tolerant to glyphosate is becoming a major weed problem in glyphosate-resistant crops. The effects of temperature, light, pH, salt and osmotic stress, shikimic acid, and planting depth on germination of glyphosate-tolerant (T) and susceptible (S) Italian ryegrass populations were st...

  2. Analysis of glyphosate and aminomethylphosphonic acid in leaves from Coffea arabica using high performance liquid chromatography with quadrupole mass spectrometry detection.

    PubMed

    Schrübbers, Lars C; Masís-Mora, Mario; Rojas, Elizabeth Carazo; Valverde, Bernal E; Christensen, Jan H; Cedergreen, Nina

    2016-01-01

    Glyphosate is a commonly applied herbicide in coffee plantations. Because of its non-selective mode of action it can damage the crop exposed through spray drift. Therefore, it is of interest to study glyphosate fate in coffee plants. The aim of this study was to develop an analytical method for accurate and precise quantification of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) at trace levels in coffee leaves using liquid chromatography with single-quadrupole mass spectrometry detection. The method is based on a two-step solid phase extraction (SPE) with an intermediate derivatization reaction using 9-fluorenylmethylchloroformate (FMOC). An isotope dilution method was used to account for matrix effects and to enhance the confidence in analyte identification. The limit of quantification (LOQ) for glyphosate and AMPA in coffee leaves was 41 and 111 μg kg(-1) dry weight, respectively. For the method optimization a design of experiments (DOE) approach was used. The sample clean-up procedure can be simplified for the analysis of less challenging matrices, for laboratories having a tandem mass spectrometry detector and for cases in which quantification limits above 0.1 mg kg(-1) are acceptable, which is often the case for glyphosate. The method is robust, possesses high identification confidence, while being suitable for most commercial and academic laboratories. All leaf samples from five coffee fields analyzed (n=21) contained glyphosate, while AMPA was absent. The simplified clean-up procedure was successfully validated for coffee leaves, rice, black beans and river water. PMID:26695310

  3. ESPS gene amplification endows resistance to glyphosate in Italian ryegrass (Lolium perene ssp multiflorum) from Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to glyphosate in weed species is a major challenge for the sustainability of glyphosate use in crop and non-crop systems, and especially in glyphosate-resistant crops. A glyphosate-resistant Italian ryegrass population has been identified in Arkansas. This research was conducted to elucid...

  4. Skin decontamination of glyphosate from human skin in vitro.

    PubMed

    Zhai, H; Chan, H P; Hui, X; Maibach, H I

    2008-06-01

    This study compared three model decontaminant solutions (tap water, isotonic saline, and hypertonic saline) for their ability to remove a model herbicide (glyphosate) from an in vitro human skin model. Human cadaver skin was dosed (approximately 375microg) of [14C]-glyphosate on 3cm2 per skin. After each exposure time (1, 3, and 30min post-dosing, respectively), the surface skin was washed three times (4ml per time) with each solution. After washing, the skin was stripped twice with tape discs. Lastly, the wash solutions, strippings, receptor fluid, and remainder of skin were liquid scintillation analyzer counted to determine the amount of glyphosate. There were no statistical differences among these groups at any time points. The total mass balance recovery at three time exposure points was between 94.8% and 102.4%. The wash off rates (glyphosate in wash solutions) at three different exposure times is 79-101.2%. Thus the three tested decontaminants possess similar effectiveness in removing glyphosate from skin. This in vitro model is not only economic and rapid, but also provides quantitative data that may aid screening for optimal decontaminants. PMID:18407393

  5. Aerial Photography Summary Record System

    USGS Publications Warehouse

    U.S. Geological Survey

    1998-01-01

    The Aerial Photography Summary Record System (APSRS) describes aerial photography projects that meet specified criteria over a given geographic area of the United States and its territories. Aerial photographs are an important tool in cartography and a number of other professions. Land use planners, real estate developers, lawyers, environmental specialists, and many other professionals rely on detailed and timely aerial photographs. Until 1975, there was no systematic approach to locate an aerial photograph, or series of photographs, quickly and easily. In that year, the U.S. Geological Survey (USGS) inaugurated the APSRS, which has become a standard reference for users of aerial photographs.

  6. [Capillary electrophoresis analysis for glyphosate, glufosinate and aminomethylphosphonic acid with laser-induced fluorescence detection].

    PubMed

    Cao, Liwei; Liang, Siliu; Tan, Xiaofang; Meng, Jianxin

    2012-12-01

    A sensitive analytical method was developed for the simultaneous determination of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). 5-(4,6-Dichlorotriazinyl) amino fluorescein (DTAF) was successfully applied to label the herbicides. The optimal derivatization reaction was carried out in boric acid buffer of pH 9.5 at 30 degrees C for 40 min. The baseline separation of the three derivatives could be accomplished using 30 mmol/L boric acid, 15 mmol/L Brij-35 (pH 9.5) as the running buffer. The detection limits (S/N = 3) for the glyphosate, glufosinate and aminomethylphosphonic acid were 3.21, 6.14, 1.99 ng/kg, respectively. Finally, the method was successfully applied to the analysis of environmental samples, and the three compounds were measured without any interference from real samples. The recoveries of the compounds in these samples were 91.3% - 106.0%. The method has the advantages of easiness and sensitivity, and can meet the requirement of the determination of the herbicide and metabolite residues in the environmental samples. PMID:23593890

  7. Acute eosinophilic pneumonia associated with glyphosate-surfactant exposure.

    PubMed

    De Raadt, Wanda M; Wijnen, Petal A; Bast, Aalt; Bekers, Otto; Drent, Marjolein

    2015-01-01

    We report a case of a female patient who developed acute eosinophilic pneumonia (AEP) after recent onset of smoking and exposure to glyphosate-surfactant.The additional exposure associated with the recent start of smoking may have contributed to the development and/or severity of AEP.A clinical relapse after re-challenge four years later both with smoking and glyphosate-surfactant made the association highly likely.Respiratory distress is a factor of poor outcome and mortality after ingestion of glyphosate-surfactant.This case highlights the importance of a thorough exposure history e.g., possible occupational and environmental exposures together with drug-intake.Genotyping should be considered in cases of severe unexplained pulmonary damage. PMID:26278698

  8. Glyphosate loss by runoff and its relationship with phosphorus fertilization.

    PubMed

    Sasal, María Carolina; Demonte, Luisina; Cislaghi, Andrea; Gabioud, Emmanuel A; Oszust, José D; Wilson, Marcelo G; Michlig, Nicolás; Beldoménico, Horacio R; Repetti, María Rosa

    2015-05-13

    The aim of this study was to evaluate the relationship between glyphosate and phosphate fertilizer application and their contribution to surface water runoff contamination. The study was performed in Aquic Argiudoll soil (Tezanos Pinto series). Four treatments were assessed on three dates of rainfall simulation after fertilizer and herbicide application. The soluble phosphorus in runoff water was determined by a colorimetric method. For the determination of glyphosate and aminomethylphosphonic acid (AMPA), a method based on fluorenylmethyloxycarbonyl (FMOC) group derivatization, solid phase extraction (SPE) purification, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was employed. The application of phosphorus fertilizer resulted in an increased loss of glyphosate by runoff after 1 day of application. These results suggest the need for further study to understand the interactions and to determine appropriate application timing with the goal of reducing the pollution risk by runoff. PMID:25775388

  9. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Collavo, Alberto; Sattin, Maurizio; Ostrander, Elizabeth L; Hall, Erin L; Sammons, R Douglas; Preston, Christopher

    2012-02-01

    Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well. PMID:22224711

  10. Co-biosorption of copper and glyphosate by Ulva lactuca.

    PubMed

    Trinelli, María Alcira; Areco, María Mar; Afonso, María dos Santos

    2013-05-01

    This study investigated the adsorption of glyphosate (PMG) onto the green algae Ulva lactuca. PMG was not adsorbed by U. lactuca but PMG was adsorbed when the process was mediated by Cu(II) with molar ratios Cu(II):PMG≥1.5:1. U. lactuca was characterized by water adsorption surface area, FTIR, SEM and EDS. The Langmuir and Freundlich models were applied. Results showed that the biosorption processes for copper and PMG in the presence of copper were described described by the Langmuir model (qmax=0.85±0.09 mmol g(-1), KL=0.55±0.14 l mmol(-1) and qmax=3.65±0.46 mmol g(-1), KL=0.103±0.03 l mmol(-1), respectively). Copper adsorption was greater in the presence of PMG than in the absence of the pesticide and the adsorption can only be represented by the Freundlich model (KF=0.08±0.01, 1/n=1.86±0.07). In all cases studied, the maximum metal uptake (qmax) increased with increasing pH. Surface complexes with a stoichiometry ranging from ≡Cu-PMG-Cu to ≡Cu-PMG-Cu3 are suggested as reaction products of the process. Due to the increasing amounts of PMG applied in Argentina, natural reservoirs present considerable amounts of this herbicide. The value of this work resides in using U. lactuca, a marine seaweed commonly found along coastlines all over the world, as a biosorbent for PMG. PMID:23376752

  11. Effect of formulated glyphosate and adjuvant tank mixes on atomization from aerial application flat fan nozzles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if the present USDA ARS Spray Nozzle models based on water plus non-ionic surfactant spray solutions could be used to estimate spray droplet size data for different spray formulations through use of experimentally determined correction factors or if full spray fo...

  12. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  13. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  14. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  15. Glyphosate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus) to nontransgenic B. napus and B. rapa.

    PubMed

    Londo, Jason P; Bollman, Michael A; Sagers, Cynthia L; Lee, E Henry; Watrud, Lidia S

    2011-08-01

    • Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. • We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. • Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. • The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow. PMID:21443650

  16. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  17. Aerial of the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Even in this aerial view at KSC, the Vehicle Assembly Building is imposing. In front of it is the Launch Control Center. In the background is the Rotation/Processing Facility, next to the Banana Creek. In the foreground is the Saturn Causeway that leads to Launch Pads 39A and 39B.

  18. Aerial Perspective Artistry

    ERIC Educational Resources Information Center

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  19. The effect of two glyphosate formulations on a small, diurnal lizard (Oligosoma polychroma).

    PubMed

    Carpenter, Joanna K; Monks, Joanne M; Nelson, Nicola

    2016-04-01

    Formulations of glyphosate-based herbicides continue to dominate the global herbicide market, while there continue to be concerns regarding the impact of this herbicide on non-target organisms. Research also indicates that the additives within certain glyphosate formulations, such as surfactants, are actually more toxic than the glyphosate active ingredient alone. Concerns arise in particular when glyphosate formulations are proposed for vegetation control in areas inhabited by rare or threatened species. Although the effect of glyphosate on birds and mammals is well studied, reptiles remain neglected in ecotoxicological studies. We investigated whether dermal exposure to two different commercial glyphosate formulations affected performance measures in the New Zealand common skink (Oligosoma polychroma). Fifty-eight skinks were each placed in a box of straw to simulate field conditions and sprayed once with Agpro Glyphosate 360, Yates Roundup Weedkiller (both at the label-specified concentrations of 144 mg glyphosate per 1 L water), or water (control). Agpro Glyphosate 360 contained ethoxylated tallow amine at a concentration of <200 g/L, while the surfactant within Yates Roundup Weedkiller was unknown. Following treatment skinks were kept in captivity and sampled for selected temperature and mass over a four-week period. Neither glyphosate formulation had a significant impact on mass. However, skinks treated with Yates Roundup Weedkiller selected significantly higher temperatures across 3 weeks following exposure. This heat-seeking behaviour could be a fever response to increase metabolism and thereby counteract physiological stress. PMID:26841966

  20. Combining glyphosate with burning or mowing improves control of Yellow Bluestem (Bothriochloa ischaemum)

    USGS Publications Warehouse

    Robertson, S.; Hickman, Karen R.; Harmoney, Keith R.; Leslie,, David M., Jr.

    2013-01-01

    The invasive yellow bluestem (Bothriochloa ischaemum [L.] Keng) threatens native biodiversity, and its control is of interest to land managers involved in restoration of invaded grasslands. We used single, double, and triple applications of glyphosate (2.125 kg ai.ha-1.application-1) over the course of one growing season in combinations at different timings (early, middle, late season) with and without a mechanical treatment of mowing or burning to determine the most effective control method. One year after treatment, burning and mowing prior to a mid-season single or double early, middle, and/or late season herbicide application resulted in a similar level of control of yellow bluestem relative to a triple herbicide application, all of which had greater control relative to herbicide treatment alone. Reproductive tiller density and visual obstruction increased 2 yr after treatment with two herbicide treatments applied either early and middle season or early and late season, but it was prevented with burning and mowing prior to herbicide application. With the exception of three herbicide applications, combining burning or mowing with herbicide applications provided more effective control of yellow bluestem than any individual herbicide applications. Burning or mowing likely improves glyphosate effectiveness by altering the invasive grass structure so that plants are clear of standing dead and have shorter, active regrowth to enhance herbicide effectiveness. During restoration projects requiring control of invasive yellow bluestem, an effective management option is a combination of mechanical and chemical control.

  1. Analysis of glyphosate and glufosinate by capillary electrophoresis-mass spectrometry utilising a sheathless microelectrospray interface.

    PubMed

    Goodwin, Lee; Startin, James R; Keely, Brendan J; Goodall, David M

    2003-07-01

    The potential of capillary electrophoresis combined with mass spectrometry for the simultaneous determination of two herbicides (glyphosate and glufosinate) and their metabolites (aminomethylphosphonic acid and methylphosphinicopropionic acid) as the native species is demonstrated utilising a simple microelectrospray interface. The interface uses the voltage applied to the CE capillary to drive separation and generate the electrospray, avoiding sample dilution associated with the use of a sheath liquid interface. The chemistry of the internal walls of the capillary has a marked influence on peak shape, and appropriate choice is essential to successful operation of the interface. A linear polyacrylamide coated capillary, which has no electroosmotic flow, gave best reproducibility, with precision of migration time and peak area in the range 1-2 and 7-12% RSD, respectively, for the four analytes. Limits of detection, low-pg on-column, are substantially better than for previous methods and calibration curves over the range 1-100 microM have R2 values greater than 0.97. The observed concentration limit of detection for glyphosate in water is 1 microM and for a water-acetone extract of wheat is 2.5 microM, allowing the underivatised herbicide to be detected at 10% of the maximum residue limit in wheat. PMID:12929967

  2. Weed species shifts in glyphosate-resistant crops.

    PubMed

    Owen, Micheal D K

    2008-04-01

    The adoption of glyphosate-based crop production systems has been one of the most important revolutions in the history of agriculture. Changes in weed communities owing to species that do not respond to current glyphosate-based management tactics are rapidly increasing. Clearly, glyphosate-resistant crops (GRCs) do not influence weeds any more than non-transgenic crops. For most crops, the trait itself is essentially benign in the environment. Rather, the weed control tactics imposed by growers create the ecological selection pressure that ultimately changes the weed communities. This is seen in the adoption of conservation tillage and weed management programs that focus on one herbicide mode of action and have hastened several important weed population shifts. Tillage (disturbance) is one of the primary factors that affect changes in weed communities. The intense selection pressure from herbicide use will result in the evolution of herbicide-resistant weed biotypes or shifts in the relative prominence of one weed species in the weed community. Changes in weed communities are inevitable and an intrinsic consequence of growing crops over time. The glyphosate-based weed management tactics used in GRCs impose the selection pressure that supports weed population shifts. Examples of weed population shifts in GRCs include common waterhemp [Amaranthus tuberculatus (Moq ex DC) JD Sauer], horseweed (Conyza canadensis L), giant ragweed (Ambrosia trifida L) and other relatively new weed problems. Growers have handled these weed population shifts with varying success depending on the crop. PMID:18232055

  3. Weed Community and Glyphosate Management in Soybean Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A concern to some conservationists is the loss of biodiversity of weedy plant species in the face of wide-spread adoption by farmers of transgenic crops that are resistant to broad-spectrum herbicides such as glyphosate. We studied weed biodiversity in both Argentina and the USA, the two countries w...

  4. Glyphosate Resistant Palmer Amaranth - A Threat To Conservation Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth is now present in throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity til...

  5. Glyphosate resistant weeds - a threat to conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant weeds are now present throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity tillage systems....

  6. Interactions between glyphosate, Fusarium infection of waterhemp, and soil microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and laboratory experiments were conducted on waterhemp (Amaranthus rudis Sauer) and soil collected from 144 soybean fields in Missouri that contained late-season waterhemp escapes. The objectives of these experiments were to: 1) determine the frequency and distribution of glyphosate res...

  7. In vivo ³¹P-nuclear magnetic resonance studies of glyphosate uptake, vacuolar sequestration, and tonoplast pump activity in glyphosate-resistant horseweed.

    PubMed

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Sammons, R Douglas

    2014-11-01

    Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. (31)P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. (31)P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells. PMID:25185124

  8. In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed1[W

    PubMed Central

    Ge, Xia; d’Avignon, D. André; Ackerman, Joseph J.H.; Sammons, R. Douglas

    2014-01-01

    Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. 31P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. 31P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells. PMID:25185124

  9. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002

    USGS Publications Warehouse

    Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples

  10. Civility in scientific publishing: The glyphosate paper

    PubMed Central

    Blaylock, Russell Lane

    2015-01-01

    In recent years, we have witnessed a decline in civility in the public arena when various socially sensitive issues are being presented. Those of us engaged in the publishing of scientific papers and in our comments on these papers, need to be cognizant of the social graces, courteous demeanor, and chivalry. Debates are essential to our learning and in being able to ferret out the essentials of various scientific issues that are of value. Because of the amount of time and effort connected with analyzing the complex problems and the years invested in such endeavors, we often resort to the behavior, that is, contentious and at times even quite insulting to our opponents during our defense. This is the part of human nature but as civilized human beings, we must strive to maintain the courtesy and a calm demeanor during such discussions and debates. I have yielded to such temptations myself but am striving to repent of my sins. The medical and scientific history should have taught us that in defending our ideas we learn and sometimes come to the realization that our paradigm or hypothesis is wrong, either in part or whole. Such debates allow us to fine tune our ideas and correct our errors in thinking, which are easily, consciously, or subconsciously sublimated by our enthusiasm. The glyphosate papers presented ideas that, while well supported by the scientific studies and logical conclusions, also contained some possible errors in its suppositions. Dr. Miguel Faria challenged some of these concepts and was met with some degree of derision by one of the authors. This editorial comment is in response to these issues. PMID:26543672

  11. Impact of agricultural practices on runoff and glyphosate peaks in a small vineyard catchment

    NASA Astrophysics Data System (ADS)

    Amiot, Audrey; La Jeunesse, Isabelle; Jadas-Hécart, Alain; Landry, David; Sourice, Stéphane; Communal, Pierre-Yves; Ballouche, Aziz

    2013-04-01

    The Layon River, a tributary of the Loire River, does frequently not comply with water quality standards because of pesticides. Vineyard is generally denounced. The aim of this project is to explain the transfer of pesticides during runoff events and its interaction with erosion. Pesticides and suspended particulate matter (SPM) concentrations are monitored at the outlet of the vineyards catchment each 2 minutes during floods to follow peaks. The results of three different hydrological years (2009, 2011, 2012) are exposed. The 2.2ha catchment is composed of two main vineyards plots managed by two independent farmers. Mean slopes are of 8% and can reach 40% in terraces. A gauging station has been installed at the end of the slope with a calibrated Venturi channel. The measurement station is composed of (a) an approach channel of 10 meters long for the establishment of a stable water surface, (b) a trapezoidal long-throated flume to assess the flow rate with the water level measured with (c) a bubbler sensor, (d) an automatic rain gauge, (e) an automatic sampler, (f) a modem and (g) a logosens OTT® data logger. 2009 was an average year, 2011 was particularly dry and 2012 particularly wet. Quantities of glyphosate applied were respectively 1087, 645 and 720g. Maximum discharges in the gauging station were 5, 12 and 25L.s-1. Minimum and maximum concentrations of glyphosate in runoff waters were 1-449.1 µg.L-1 in 2009, 0.62-13.6 µg.L-1 in 2011 and 0.1-3.7 µg.L-1 in 2012. Minimum and maximum concentrations of SPM were 14-1261mg.L-1 in 2009, 108- 6454 mg.L-1 in 2011 and 9-1541 mg.L-1 in 2012. While flows, quantities of glyphosate applied and peaks of concentrations observed in 2011 are more important in 2009, SPM generated in the runoff waters are lower than 2011 and 2012, even though 2012 has particularly been a wet year. Also, maximum runoff coefficients are 7% in 2009 and 2011 and 57% in 2012. In fact, this latest explains differences between years better than

  12. AERIAL RADIOLOGICAL SURVEYS

    SciTech Connect

    Proctor, A.E.

    1997-06-09

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

  13. Aerial image retargeting (AIR): achieving litho-friendly designs

    NASA Astrophysics Data System (ADS)

    Yehia Hamouda, Ayman; Word, James; Anis, Mohab; Karim, Karim S.

    2011-04-01

    In this work, we present a new technique to detect non-Litho-Friendly design areas based on their Aerial Image signature. The aerial image is calculated for the litho target (pre-OPC). This is followed by the fixing (retargeting) the design to achieve a litho friendly OPC target. This technique is applied and tested on 28 nm metal layer and shows a big improvement in the process window performance. For an optimized Aerial-Image-Retargeting (AIR) recipe is very computationally efficient and its runtime doesn't consume more than 1% of the OPC flow runtime.

  14. Lack of interaction between glyphosate and fungicide treatments on Rhizoctonia crown and root rot in glyphosate-resistant sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted in 2008 and 2009 in the Saginaw Valley region of Michigan to determine if there were potential interactions between applications of glyphosate and the fungicide azoxystrobin and to determine the effectiveness of foliar and in-furrow azoxystrobin applications when Rhi...

  15. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  16. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  17. Differential effects of glyphosate and roundup on human placental cells and aromatase.

    PubMed

    Richard, Sophie; Moslemi, Safa; Sipahutar, Herbert; Benachour, Nora; Seralini, Gilles-Eric

    2005-06-01

    Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricultural use, and this effect increases with concentration and time or in the presence of Roundup adjuvants. Surprisingly, Roundup is always more toxic than its active ingredient. We tested the effects of glyphosate and Roundup at lower nontoxic concentrations on aromatase, the enzyme responsible for estrogen synthesis. The glyphosate-based herbicide disrupts aromatase activity and mRNA levels and interacts with the active site of the purified enzyme, but the effects of glyphosate are facilitated by the Roundup formulation in microsomes or in cell culture. We conclude that endocrine and toxic effects of Roundup, not just glyphosate, can be observed in mammals. We suggest that the presence of Roundup adjuvants enhances glyphosate bioavailability and/or bioaccumulation. PMID:15929894

  18. Neutralization of the antimicrobial effect of glyphosate by humic acid in vitro.

    PubMed

    Shehata, Awad A; Kühnert, Manfred; Haufe, Svent; Krüger, Monika

    2014-06-01

    In the present study, the neutralization ability of the antimicrobial effect of glyphosate by different humic acids was investigated. The minimal inhibitory concentrations of glyphosate for different bacteria such as Bacillus badius, Bifidobacterium adolescentis, Escherichia coli, E. coli 1917 strain Nissle, Enterococcus faecalis, Enterococcus faecium, Salmonella enteritidis and Salmonella typhimurium were determined in the presence or absence of different concentrations of humic acid (0.25, 0.5 and 1.0 mg mL(-1)). Our findings indicated that humic acids inhibited the antimicrobial effect of glyphosate on different bacteria. This information can help overcome the negative impact of glyphosate residues in feed and water. PMID:24268342

  19. Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase

    PubMed Central

    Richard, Sophie; Moslemi, Safa; Sipahutar, Herbert; Benachour, Nora; Seralini, Gilles-Eric

    2005-01-01

    Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricultural use, and this effect increases with concentration and time or in the presence of Roundup adjuvants. Surprisingly, Roundup is always more toxic than its active ingredient. We tested the effects of glyphosate and Roundup at lower nontoxic concentrations on aromatase, the enzyme responsible for estrogen synthesis. The glyphosate-based herbicide disrupts aromatase activity and mRNA levels and interacts with the active site of the purified enzyme, but the effects of glyphosate are facilitated by the Roundup formulation in microsomes or in cell culture. We conclude that endocrine and toxic effects of Roundup, not just glyphosate, can be observed in mammals. We suggest that the presence of Roundup adjuvants enhances glyphosate bioavailability and/or bioaccumulation. PMID:15929894

  20. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. PMID:27155486

  1. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  2. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  3. Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non-target-site glyphosate resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic informat...

  4. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  5. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  6. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  7. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  8. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a...

  9. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    PubMed

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-01-01

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P < 0.01) after 72 h. In the presence of Bs-15, the 5 functional diversity indices (Shannon index, Shannon uniformity, Simpson index, McIntosh index, and McIntosh uniformity) were greater (P < 0.01) compared with the control soil. These results indicate that Bs-15 could be used to alleviate contamination from glyphosate-containing herbicides, increasing the microbial functional diversity in glyphosate-contaminated soils and thus enhancing the bioremediation of glyphosate-contaminated soils. PMID:26600533

  10. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance.

    PubMed

    Samsel, Anthony; Seneff, Stephanie

    2013-12-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup(®), is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent

  11. Consequences of phosphate application on glyphosate uptake by roots: Impacts for environmental management practices.

    PubMed

    Gomes, Marcelo Pedrosa; Maccario, Sophie; Lucotte, Marc; Labrecque, Michel; Juneau, Philippe

    2015-12-15

    Phosphate (PO4(3-)) fertilization is a common practice in agricultural fields also targets for glyphosate application. Due to their chemical similarities, PO4(3-) and glyphosate compete for soil adsorbing sites, with PO4(3-) fertilization increasing glyphosate bioavailability in the soil solution. After PO4(3-) fertilization, its concentration will be elevated in the soil solution and both PO4(3-) and glyphosate will be readily available for runoff into aquatic ecosystems. In this context, man-made riparian buffer strips (RBS) at the interface of agricultural lands and waterways can be used as a green technology to mitigate water contamination. The plants used in RBS form a barrier to agricultural wastes that can limit runoff, and the ability of these plants to take up these compounds through their roots plays an important role in RBS efficacy. However, the implications of PO4(3-) for glyphosate uptake by roots are not yet clearly demonstrated. Here, we addressed this problem by hydroponically cultivating willow plants in nutrient solutions amended with glyphosate and different concentrations of PO4(3-), assuring full availability of both chemicals to the roots. Using a phosphate carrier inhibitor (phosphonophormic acid-PFA), we found that part of the glyphosate uptake is mediated by PO4(3-) transporters. We observed, however, that PO4(3-) increased glyphosate uptake by roots, an effect that was related to increased root cell membrane stability. Our results indicate that PO4(3-) has an important role in glyphosate physiological effects. Under agricultural conditions, PO4(3-) fertilization can amplify glyphosate efficiency by increasing its uptake by the roots of undesired plants. On the other hand, since simultaneous phosphate and glyphosate runoffs are common, non-target species found near agricultural fields can be affected. PMID:26282745

  12. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance

    PubMed Central

    Samsel, Anthony

    2013-01-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup®, is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of “ripening” sugar cane with glyphosate may explain the recent

  13. Selection and characterization of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus)

    SciTech Connect

    Boerboom, C.M.

    1989-01-01

    If birdsfoot trefoil (Lotus corniculatus L.) was tolerant to glyphosate (N-(phosphonomethyl)glycine), Canada thistle (Cirsium arvense (L.) Scop.) and other dicot weeds could be selectively controlled in certified seed production fields. Glyphosate tolerance in birdsfoot trefoil was identified in plants from the cultivar Leo, plants regenerated from tolerant callus, and selfed progeny of plants regenerated from callus. Plants from the three sources were evaluated in field studies for tolerance to glyphosate at rates up to 1.6 kg ae/ha. Plants of Leo selected for tolerance exhibited a twofold range in the rate required to reduce shoot weight 50% (I{sub 50}s from 0.6 to 1.2 kg/ha glyphosate). Plants regenerated from tolerant callus had tolerance up to 66% greater than plants regenerated from unselected callus. Transgressive segregation for glyphosate tolerance was observed in the selfed progeny of two regenerated plants that both had I{sub 50}s of 0.7 kg/ha glyphosate. The selfed progeny ranged from highly tolerant (I{sub 50} of 1.5 kg/ha) to susceptible (I{sub 50} of 0.5 kg/ha). Spray retention, {sup 14}C-glyphosate absorption and translocation did not account for the differential tolerance of nine plants that were evaluated from the three sources. The specific activity of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase ranged from 1.3 to 3.5 nmol/min{sm bullet}mg among the nine plants and was positively correlated with glyphosate tolerance. Leo birdsfoot trefoil was found to have significant variation in glyphosate tolerance which made it possible to initiate a recurrent selection program to select for glyphosate tolerance in birdsfoot trefoil. Two cycles of selection for glyphosate tolerance were practiced in three birdsfoot trefoil populations, Leo, Norcen, and MU-81.

  14. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A tall waterhemp population in a glyphosate-resistant soybean field, Washington County, Missisippi, was suspected to be resistant to glyphosate. Glyphosate dose response experiments resulted in GR50 (glyphosate dose required to cause a 50% reduction in growth of treated plants) values of 1.28 and 0....

  15. Infrared film for aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  16. AERIAL PHOTOGRAPHY AND LEGAL APPLICATIONS

    EPA Science Inventory

    Aerial photographic interpretation is the process of examining objects on aerial photographs and determining their significance. t is often defined as both art and science because the process, and the quality of the derived information, is often a qualitative nature and much depe...

  17. Ecotoxicological assessment of soil microbial community tolerance to glyphosate.

    PubMed

    Allegrini, Marco; Zabaloy, María Celina; Gómez, Elena del V

    2015-11-15

    Glyphosate is the most used herbicide worldwide. While contrasting results have been observed related with its impact on soil microbial communities, more studies are necessary to elucidate the potential effects of the herbicide. Differences in tolerance detected by Pollution Induced Community Tolerance (PICT) approach could reflect these effects. The objective of the present study was to assess the tolerance to glyphosate (the active ingredient and a commercial formulation) of contrasting soils with (H) and without (NH) history of exposure. The hypothesis of a higher tolerance in H soils due to a sustained selection pressure on community structure was tested through the PICT approach. Results indicated that tolerance to glyphosate is not consistent with previous history of exposure to the herbicide either for the active ingredient or for a commercial formulation. Soils of H and NH sites were also characterized in order to determine to what extent they differ in their functional diversity and structure of microbial communities. Denaturant Gradient Gel Electrophoresis (DGGE) and Quantitative Real Time PCR (Q-PCR) indicated high similarity of Eubacteria profiles as well as no significant differences in abundance, respectively, between H and NH sites. Community level physiological profiling (CLPP) indicated some differences in respiration of specific sources but functional diversity was very similar as reflected by catabolic evenness (E). These results support PICT assay, which ideally requires soils with differences in their exposure to the contaminant but minor differences in other characteristics. This is, to our knowledge, the first report of PICT approach with glyphosate examining tolerance at soil microbial community level. PMID:26150308

  18. Relevance of urban glyphosate use for surface water quality.

    PubMed

    Hanke, Irene; Wittmer, Irene; Bischofberger, Simone; Stamm, Christian; Singer, Heinz

    2010-09-01

    Relative contributions of agricultural and urban uses to the glyphosate contamination of surface waters were studied in a small catchment (25 km(2)) in Switzerland. Monitoring in four sub-catchments with differing land use allowed comparing load and input dynamics from different sources. Agricultural as well as urban use was surveyed in all sub-catchments allowing for a detailed interpretation of the monitoring results. Water samples from the river system and from the urban drainage system (combined sewer overflow, storm sewer and outflow of wastewater treatment plant) were investigated. The concentrations at peak discharge during storm events were elevated throughout the year with maximum concentrations of 4.15 μg L(-1). Glyphosate concentrations mostly exceeded those of other commonly used herbicides such as atrazine or mecoprop. Fast runoff from hard surfaces led to a fast increase of the glyphosate concentration shortly after the beginning of rainfall not coinciding with the concentration peak normally observed from agricultural fields. The comparison of the agricultural application and the seasonal concentration and load pattern in the main creek from March to November revealed that the occurrence of glyphosate cannot be explained by agricultural use only. Extrapolations from agricultural loss rates and from concentrations found in the urban drainage system showed that more than half of the load during selected rain events originates from urban areas. The inputs from the effluent of the wastewater treatment plant, the overflow of the combined sewer system and of the separate sewer system summed up to 60% of the total load. PMID:20696461

  19. Transfer of glyphosate resistance: evidence of hybridization in Conyza (Asteraceae).

    PubMed

    Zelaya, Ian A; Owen, Micheal D K; Vangessel, Mark J

    2007-04-01

    Transfer of herbicide resistance genes between crops and weeds is relatively well documented; however, far less information exists for weed-to-weed interactions. The hybridization between the weedy diploids Conyza canadensis (2n = 18) and C. ramosissima (2n = 18) was investigated by monitoring transmission of the allele conferring resistance to N-phosphonomethyl glycine (glyphosate). In a multivariate quantitative trait analysis, we described the phylogenic relationship of the plants, whereas we tested seed viability to assess potential postzygotic reproductive barriers (PZRB) thus affecting the potential establishment of hybrid populations in the wild. When inflorescences were allowed to interact freely, approximately 3% of C. ramosissima or C. canadensis ova were fertilized by pollen of the opposing species and produced viable seeds; >95% of the ova were fertilized under no-pollen competition conditions (emasculation). The interspecific Conyza hybrid ( ) demonstrated an intermediate phenotype between the parents but superior resistance to glyphosate compared to the resistant C. canadensis parent. Inheritance of glyphosate resistance in the selfed ( ) followed the partially dominant nuclear, single-gene model; backcrosses confirmed successful introgression of the resistance allele to either parent. Negligible PZRB were observed in the hybrid progenies, confirming fertility of the C. canadensis × C. ramosissima nothotaxa. The implications of introgressive hybridization for herbicide resistance management and taxonomy of Conyza are discussed. PMID:21636434

  20. Clostridium tertium Bacteremia in a Patient with Glyphosate Ingestion

    PubMed Central

    You, Myung-Jo; Shin, Gee-Wook; Lee, Chang-Seop

    2015-01-01

    Patient: Female, 44 Final Diagnosis: Clostridium tertium bacteremia Symptoms: Fever Medication: Ertapenem • Metronidazole Clinical Procedure: — Specialty: Infectious Disease Objective: Unknown etiology Background: Clostridium tertium is distributed in the soil and in animal and human gastrointestinal tracts. C. tertium has been isolated from patients with blood diseases, immune disorders, and abdominal surgeries. Glyphosate is toxic, causing cause eye and skin irritation, gastrointestinal pain, and vomiting. Ingestion of herbicides modifies the gastrointestinal environment, which stresses the living organisms. However, there has been little attention to cases of bacteremia in patients recovering from suicide attempt by ingesting herbicide. Case Report: Clostridium tertium was identified in a 44-year-old female who attempted suicide by glyphosate (a herbicide) ingestion. The 16S rRNA sequences from all colonies were 99% identical with that of C. tertium (AB618789) found on a BLAST search of the NCBI database. The bacterium was cultured on TSA under aerobic and anaerobic conditions. Antimicrobial susceptibility tests performed under both aerobic and anaerobic conditions showed that the bacterium was susceptible to penicillin, a combination of β-lactamase inhibitor and piperacillin or amoxicillin, and first- and second- generation cephalosporins. However, it was resistant to third- and fourth-generation cephalosporins. Conclusions: Glyphosate herbicide might be a predisposing factor responsible for the pathogenesis of C. tertium. The results highlight the need for careful diagnosis and selection of antibiotics in the treatment of this organism. PMID:25577783

  1. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos.

    PubMed

    Schaumburg, Laura G; Siroski, Pablo A; Poletta, Gisela L; Mudry, Marta D

    2016-06-01

    Environmental contaminants produce multiple adverse consequences at individual, population and ecosystem levels. High volumes of agrochemicals applied to great variety of crops, together with agricultural expansion, generate great concerns due to the impact for the environment and large risk implicated for wildlife. The lack of data on these threats is striking. The tegu lizard (Salvator merianae) is one of the species that live in environments under contaminant effects. Several characteristics allow proposing this species as a potential sentinel organism for the monitoring of pesticides in their habitat. The present study is the first report about genotoxicity in tegu lizard neonates after embryonic exposure to Roundup® (glyphosate 66.2%). The micronucleus test (MN), nuclear abnormalities (NAs) assay and comet assay (CA) were used as biomarkers of genotoxic effects induced in erythrocytes by topical exposure of the eggs to the glyphosate commercial formulation Roundup® (RU), in laboratory controlled conditions. A total of 96 eggs were distributed in six groups exposed to RU (50, 100, 200, 400, 800, 1600μg/egg), one positive control (PC; 200μg cyclophosphamide/egg) and one negative control (NC; distilled water). No teratogenic effects were observed in any of the exposed or control neonates. A significant increase in DNA damage was observed in all concentrations higher than 100μg/egg with respect to NC (p<0.05). However, no statistical differences were found in the frequencies of MN and NAs in any group exposed to RU compared to the NC. No statistically significant differences were found in the size of the lizards at birth or after six months post-exposure (p>0.05). Our results provide new information about the undesirable effects of the glyphosate-based herbicide formulations RU on this lizard species that inhabits areas permanently exposed to several pesticide formulations. We consider of utmost necessity a strict regulation of the agrochemical application

  2. Early detection of crop injury from glyphosate on soybean and cotton using plant leaf hyperspectral data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we describe early detection of crop injury from glyphosate using traditionally used spectral indices and newly extracted features from leaf hyperspectral reflectance data in non-glyphosate-resistant (non-GR) soybean and non-GR cotton. Spectral bands used in the new features are select...

  3. Shikimic Acid Monitoring by HPLC with Diode Array Detector in Citrus sinensis Orchard with Glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the effect of weed control with glyphosate on shikimic acid levels in citrus, “Pêra” cultivar. The experimental plots were set in Santo Antônio de Posse county, Sao Paulo State, Brazil with the following treatments: glyphosate at 1,440 g.ha-1 a.e. between citrus ...

  4. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis) weeds and plant community composition.

    PubMed

    Ahrens, Collin W; Auer, Carol A

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530

  5. Glyphosate-Resistant Crop Production Systems: Impact on Weed Species Shifts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1996, transgenic GR canola and GR soybean containing a bacterial gene that imparts resistance to glyphosate were commercialized in the US. Later, GR cotton (1997) and GR corn (1998) were commercialized for planting in the US. GRCs enabled in-crop postemergence application of glyphosate. The effec...

  6. Glyphosate-resistant hairy fleabane (Conyza bonariensis) Documented in the Central Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years poor control of hairy fleabane (Conyza bonariensis) with glyphosate has been reported by growers and pest consultants in some areas of the Central Valley. Since glyphosate-resistance in a related species horseweed (Conyza canadensis) was recently documented in similar locations, we ...

  7. Differential Response to Glyphosate in Italian Ryegrass (Lolium multiflorum) Populations from Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two Italian ryegrass populations from Mississippi, Tribbett and Fratesi, were suspected to be tolerant to glyphosate. A third population from Mississippi, Elizabeth, known to be susceptible to glyphosate, was included for comparison. Plants, 10- to 15-cm-tall (3 to 6 leaves, 2 to 3 tillers), were tr...

  8. An Interlaboratory Comparative Study on the Quantitative Determination of Glyphosate at Low Levels in Wheat Flour.

    PubMed

    Simonetti, Emanuela; Cartaud, Gérald; Quinn, Robert M; Marotti, Ilaria; Dinelli, Giovanni

    2015-01-01

    In recent years, the use of glyphosate has dramatically increased worldwide, and there is growing concern about contamination of organic products caused by its heavy use on neighboring fields. Glyphosate is found as a residue not only in soil, plants, and groundwater but also in humans and animals. Considering the controversy on glyphosate maximum residue level in foodstuff and the difficulties in its analytical determination, the main purpose of the present paper was to investigate the competence and accuracy of 13 accredited European laboratories in determining glyphosate in wheat flour at a level close to their reporting limit of 10 μg/kg. According to the results of this performance assessment, the laboratories were not able to quantify glyphosate at trace levels. Therefore, their specified reporting limits of 10 μg/kg were not supported by their results, and a reporting limit of around 50 μg/kg of glyphosate in flour seems to be more appropriate to guarantee reliable and robust results. The widespread use of glyphosate and its harmfulness to humans make its detection at trace levels a primary goal for analytical laboratories. This is achievable through the improvement of QA and/or the optimization of the method of analysis used for glyphosate detection. PMID:26651590

  9. Effects of Glyphosate-resistant Crop Cultivation on Soil and Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic glyphosate-resistant crops (GRCs) have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. GRCs have generally become dominant in those countries where they can be grown. Potential effects of glyphosate on soil and water are minimal, com...

  10. Pollen-mediated dispersal of glyphosate-resistance in Palmer amaranth under field conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to being a strong competitor with cotton and other row crops, Palmer amaranth has developed resistance to numerous important agricultural herbicides, including glyphosate. The objective of this study was to determine if the glyphosate-resistance trait can be transferred via pollen moveme...

  11. Annual Glyphosate Treatments Alter Growth of Unaffected Bentgrass (Agrostis) Weeds and Plant Community Composition

    PubMed Central

    Ahrens, Collin W.; Auer, Carol A.

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530

  12. Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio).

    PubMed

    Uren Webster, Tamsyn M; Laing, Lauren V; Florance, Hannah; Santos, Eduarda M

    2014-01-21

    Roundup and its active ingredient glyphosate are among the most widely used herbicides worldwide and may contaminate surface waters. Research suggests both Roundup and glyphosate induce oxidative stress in fish and may also cause reproductive toxicity in mammalian systems. We aimed to investigate the reproductive effects of Roundup and glyphosate in fish and the potential associated mechanisms of toxicity. To do this, we conducted a 21-day exposure of breeding zebrafish (Danio rerio) to 0.01, 0.5, and 10 mg/L (glyphosate acid equivalent) Roundup and 10 mg/L glyphosate. 10 mg/L glyphosate reduced egg production but not fertilization rate in breeding colonies. Both 10 mg/L Roundup and glyphosate increased early stage embryo mortalities and premature hatching. However, exposure during embryogenesis alone did not increase embryo mortality, suggesting that this effect was caused primarily by exposure during gametogenesis. Transcript profiling of the gonads revealed 10 mg/L Roundup and glyphosate induced changes in the expression of cyp19a1 and esr1 in the ovary and hsd3b2, cat, and sod1 in the testis. Our results demonstrate that these chemicals cause reproductive toxicity in zebrafish, although only at high concentrations unlikely to occur in the environment, and likely mechanisms of toxicity include disruption of the steroidogenic biosynthesis pathway and oxidative stress. PMID:24364672

  13. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inheritance of glyphosate resistance in two Amaranthus palmeri populations (R1 and R2) was examined in reciprocal crosses (RC) and second reciprocal crosses (2RC) between glyphosate-resistant (R) and -susceptible (S) parents of this dioecious species. R populations and Female-R × Male-S crosses...

  14. Interaction of Glyphosate and Pelargonic acid in Ready-To-Use Weed Control Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-based, ready-to-use weed control products often contain pelargonic acid (PA) in addition to glyphosate. However it remains unclear what benefit (if any) this combination provides. Greenhouse experiments using longstalked phyllanthus, large crabgrass, prostrate spurge and yellow nutsedge...

  15. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From an environmental perspective, conservation management (CM) practices such as reduced tillage help improve soil conditions. Literature concerning effects of CM on the environment is building, and many of those studies include glyphosate resistant crops (GRC) or glyphosate as a management compon...

  16. Weed control and yield comparisons of glyphosate- and glufosinate-resistant corn grown in rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 6-yr field study was conducted from 2004 to 2009 at Stoneville, MS to examine the effects of rotating glyphosate-resistant and glufosinate-resistant corn (Zea mays L.) under reduced tillage conditions on weed control, soil weed seedbank, and yield. The four rotation systems were glyphosate-resista...

  17. Glyphosate-resistant horseweed (conyza canadensis) control with dicamba in Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread horseweed resistance to glyphosate has resulted in the use of dicamba as an alternative treatment. Horseweed populations in Cherokee and DeKalb counties in northern Alabama were not well controlled following glyphosate and dicamba treatments. This research evaluates horseweed populations ...

  18. Bioassay and characterization of several palmer amaranth biotypes with varying tolerances to glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide distribution of Palmer amaranth in the southern U.S. became a serious weed control problem prior to the extensive use of glyphosate-resistant crops. Currently glyphosate-resistant populations of Palmer amaranth occur in many areas of this geographic region creating an even more serious thr...

  19. Evaluation of Glyphosate-Resistant Soybean Cultivars for Resistance to Bacterial Pustule

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas axonopodis pv. glycines causes bacterial pustule of soybean, which is a common disease in many soybean-growing areas of the world and is controlled by a single recessive gene that was commonly found in many conventional glyphosate-sensitive soybean cultivars. Since glyphosate-resistant c...

  20. Review of Potential Environmental Impacts of Transgenic Glyphosate-Resistant Soybean in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to that ca...

  1. Investigating the Mechanism of Glyphosate Resistance in Rigid Ryegrass (Lolium rigidum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a broad-spectrum herbicide that has been used extensively for more than 20 yr. The first glyphosate-resistant weed biotype appeared in 1996; it involved a rigid ryegrass population from Australia that exhibited an LD50 value approximately 10-fold higher than that of sensitive biotypes....

  2. INFLUENCE OF SOIL MOISTURE ON ROOT COLONIZATION OF GLYPHOSATE-TREATED SOYBEAN BY FUSARIUM SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of glyphosate-resistant (GR) cropping systems may impact rhizosphere microbial associations and crop productivity. We previously reported that glyphosate accumulation in the rhizosphere may stimulate colonization of soybean [Glycine max (L.) Merr.] roots by soilborne Fusarium. Fi...

  3. Reduced translocation is associated with tolerance of common lambsquarters (Chenopodium album) to glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common lambsquarters tolerance to glyphosate is problematic because of the species’ widespread distribution, competitive ability with many crop species, the widespread use of glyphosate in agriculture, and the weed’s potential to develop decreased sensitivity to multiple herbicide sites of action. ...

  4. Response of Pennsylvania native plant species to dicamba and/or glyphosate

    EPA Science Inventory

    Weeds may become resistant to intensive and extensive use of specific herbicides associated with the growth of herbicide tolerant crops, e.g., the use of glyphosate for weed control with glyphosate tolerant soybeans. To counter this resistance, crops modified to contain genes for...

  5. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  6. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Gregoire, Caroline; Capel, Paul D.; Coupe, Richard H.; Kalkhoff, Stephen J.

    2011-01-01

    CONCLUSIONS: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil.

  7. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently claims have been made that the use of glyphosate and transgenic crop traits increases the risk of plant diseases. Transgenic traits used widely for years in dent corn are now available in commercial sweet corn cultivars, specifically, the combination of glyphosate resistance (GR) and Lepid...

  8. 7 CFR 1755.507 - Aerial cable services.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 60 percent of the breaking strength of the strand under maximum loading shall be used. Taut spans.... A duct sealer having RUS acceptance or RUS technical acceptance shall be applied to both ends of the hole after the cable is pulled in. (13) Section 1755.505(g) and (h) shall also apply to aerial...

  9. Determination of glyphosate and its metabolite in emergency room in Korea.

    PubMed

    Han, Joseph; Moon, Hantae; Hong, Youngki; Yang, Songhee; Jeong, Won-Joon; Lee, Kwang-Sik; Chung, Heesun

    2016-08-01

    The number of glyphosate intoxication cases has been increased after the regulation of paraquat. Unfortunately, there are no reports on the potential concentration of glyphosate for those acute intoxicated patients admitted to emergency rooms and the correlation between the concentration of glyphosate and clinical symptoms in Korea up to our knowledge. As a nonselective herbicide, analysis of glyphosate requires derivatization because of its amphoteric and strongly polar nature. In order to develop a method to determine the concentration of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA) in blood samples without derivatization, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was utilized with a hydrophilic interaction chromatography (HILIC) column. The validation of this method showed that the limits of detection (LODs) and limits of quantitation (LOQs) for glyphosate and AMPA were 50 and 100ng/mL, respectively. In addition, matrix effect, recovery rate, and accuracy and precision in intra and inter-day were evaluated during the validation study of this method. Blood samples acquired from five glyphosate intoxicated patients were analyzed to investigate the correlation between the concentration of glyphosate and clinical symptoms. These patients were previously admitted to the emergency room at a University Hospital in Korea after glyphosate was self-administered in suicide attempts or by accident. As results of blood sample study, the concentration of glyphosate and AMPA were found in the range of 1.0-171.1 and 0.2-2.6μg/mL, respectively. The concentration ratio of glyphosate to AMPA was 55-71. According to the clinical reports for those patients, they were in the age between 47 and 82 years old and administered about 50-400mL. The blood samples were collected within 2-5h after administration of glyphosate. Among the intoxicated patients, the most common clinical symptom was metabolic acidosis, identified in four patients

  10. Glyphosate impacts on polyphenolic composition in grapevine (Vitis vinifera L.) berries and wine.

    PubMed

    Donnini, Silvia; Tessarin, Paola; Ribera-Fonseca, Alejandra; Di Foggia, Michele; Parpinello, Giuseppina Paola; Rombolà, Adamo Domenico

    2016-12-15

    Glyphosate is the most widespread herbicide for weed management, being extensively used in viticulture. In this study we tested, under field conditions, the effects of glyphosate applications on the quality of berry and wine, from cv. Ancellotta (Vitis vinifera L.), with particular regard to anthocyanin concentration and composition. Ripening and growth were monitored by analyzing berry technological parameters and weight. Additionally, microvinifications were performed, in order to analyze the concentration of anthocyanins, other flavonoids and phenolic acids in wine. Our findings indicated that, at harvest, both pH and anthocyanin concentration were significantly lower and titratable acidity higher in berries collected from vines of plots under glyphosate-treatment compared with those of non-treated parcels. Data suggest that treatment with glyphosate did not change the concentration of anthocyanins, other flavonoids and phenolic acids in the wine. Our results indicate that treatment with glyphosate may affect fruit metabolism and nutritional value in non-target plants. PMID:27451151

  11. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study.

    PubMed

    Cassigneul, A; Benoit, P; Bergheaud, V; Dumeny, V; Etiévant, V; Goubard, Y; Maylin, A; Justes, E; Alletto, L

    2016-03-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of (14)C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. (14)C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH4OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends (14)C-glyphosate degradation half-life from 7 to 28 days depending on the CC. (14)C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity. PMID:26760277

  12. Effect of suppressor current intensity on the determination of glyphosate and aminomethylphosphonic acid by suppressed conductivity ion chromatography.

    PubMed

    Dimitrakopoulos, Ioannis K; Thomaidis, Nikolaos S; Megoulas, Nikolaos C; Koupparis, Michael A

    2010-05-28

    This paper presents the application of ion chromatography with electrolytic eluent generation and mobile phase suppression for the direct conductimetric detection of glyphosate and its degradation product aminomethylphosphonic acid (AMPA). The compounds were separated on a Dionex AS18 anion exchange column with a 12-40 mM KOH step gradient from 9 to 9.5 min. The effect of the suppressor current intensity on the electrostatic interaction of these amphoteric compounds with the suppressor cation exchange membranes was evaluated. A suppressor current gradient technique was proposed for the limitation of peak broadening and baseline noise, in order to improve method sensitivity and detectability. It was observed that residual sample carbonates co-eluted with AMPA when a large injection loop was installed for the low level determination of both compounds in natural waters. For this reason, glyphosate was isocratically eluted using 33 mM KOH in order to decrease analysis time within 10 min and a column clean up step using 100 mM KOH was used to ensure retention time reproducibility. The developed method was applied to the analysis of drinking and natural water and it was further successfully applied to orange samples with slight modifications. Instrumental LOD for glyphosate was 0.24 microg/L, while method LOD was 0.54 microg/L for spring waters and 0.01 mg/kg for oranges using a 1000 microL direct loop injection of the sample. Intra-day and inter-day precision (as %RSD) for water samples was 4.6% and 12% at a spiking level of 2 microg/L, and the recovery ranged from 64% to 88% depending on sample conductivity. For orange samples, the inter-day precision was 1.4% at a spiking level of 4.4 mg/kg, while overall recovery was 103%. The developed method is direct, fast, sensitive and relatively inexpensive, and could be used as an ideal fast screening tool for the monitoring of glyphosate residues in water and fruit samples. PMID:20399436

  13. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    PubMed Central

    Fernández-Moreno, Pablo T.; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E.; Rojano-Delgado, Antonia M.; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha−1 for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  14. Physiological, morphological and biochemical studies of glyphosate tolerance in Mexican Cologania (Cologania broussonetii (Balb.) DC.).

    PubMed

    Alcántara de la Cruz, Ricardo; Barro, Francisco; Domínguez-Valenzuela, José Alfredo; De Prado, Rafael

    2016-01-01

    In recent years, glyphosate-tolerant legumes have been used as cover crops for weed management in tropical areas of Mexico. Mexican cologania (Cologania broussonetii (Balb.) DC.) is an innate glyphosate-tolerant legume with a potential as a cover crop in temperate areas of the country. In this work, glyphosate tolerance was characterized in two Mexican cologania (a treated (T) and an untreated (UT)) populations as being representatives of the species, compared in turn to a glyphosate-susceptible hairy fleabane (S) (Conyza bonariensis (L.) Cronq.) population. Experiments revealed that T and UT Mexican cologania populations had a higher tolerance index (TI), and a lower shikimic acid accumulation and foliar retention than the hairy fleabane S population. Absorption and translocation, leaf morphology and metabolism studies were only carried out in the Mexican cologania T population and the hairy fleabane S population. The latter absorbed 37% more (14)C-glyphosate compared to the Mexican cologania T at 96 h after treatment (HAT). Mexican cologania T translocated less herbicide from the treated leaf to the remainder of the plant than hairy fleabane S. The Mexican cologania T presented a greater epicuticular wax coverage percentage than the hairy fleabane S. This morphological characteristic contributed to the low glyphosate absorption observed in the Mexican cologania. In addition, the Mexican cologania T metabolized glyphosate mainly into AMPA, formaldehyde and sarcosine. These results indicate that the high glyphosate tolerance observed in Mexican cologania is mainly due to the poor penetration and translocation of glyphosate into the active site, and the high glyphosate degradation into non-toxic substances. PMID:26646239

  15. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia.

    PubMed

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure. PMID:26580558

  16. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia

    PubMed Central

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure. PMID:26580558

  17. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    PubMed

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum. PMID:27570531

  18. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    SciTech Connect

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.

  19. AERIAL MEASURING SYSTEM IN JAPAN

    SciTech Connect

    Lyons, Craig; Colton, David

    2012-01-01

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  20. Aerial Terrain Mapping Using Unmanned Aerial Vehicle Approach

    NASA Astrophysics Data System (ADS)

    Tahar, K. N.

    2012-08-01

    This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS) onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root mean square

  1. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  2. Aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.

    1978-01-01

    Thermal infrared scanning from an aircraft is a convenient and commercially available means for determining relative rates of energy loss from building roofs. The need to conserve energy as fuel costs makes the mass survey capability of aerial thermography an attractive adjunct to community energy awareness programs. Background information on principles of aerial thermography is presented. Thermal infrared scanning systems, flight and environmental requirements for data acquisition, preparation of thermographs for display, major users and suppliers of thermography, and suggested specifications for obtaining aerial scanning services were reviewed.

  3. Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff.

    PubMed

    Shipitalo, Martin J; Malone, Robert W; Owens, Lloyd B

    2008-01-01

    Residual herbicides used in the production of soybean [Glycine max (L.) Merr] and corn (Zea mays L.) are often detected in surface runoff at concentrations exceeding their maximum contaminant levels (MCL) or health advisory levels (HAL). With the advent of transgenic, glyphosate-tolerant soybean and glufosinate-tolerant corn this concern might be reduced by replacing some of the residual herbicides with short half-life, strongly sorbed, contact herbicides. We applied both herbicide types to two chiseled and two no-till watersheds in a 2-yr corn-soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat (Triticum aestivum L.)-red clover (Trifolium pratense L.) rotation and monitored herbicide losses in runoff water for four crop years. In soybean years, average glyphosate loss (0.07%) was approximately 1/7 that of metribuzin (0.48%) and about one-half that of alachlor (0.12%), residual herbicides it can replace. Maximum, annual, flow-weighted concentration of glyphosate (9.2 microg L(-1)) was well below its 700 microg L(-1) MCL and metribuzin (9.5 microg L(-1)) was well below its 200 microg L(-1) HAL, whereas alachlor (44.5 microg L(-1)) was well above its 2 microg L(-1) MCL. In corn years, average glufosinate loss (0.10%) was similar to losses of alachlor (0.07%) and linuron (0.15%), but about one-fourth that of atrazine (0.37%). Maximum, annual, flow-weighted concentration of glufosinate (no MCL) was 3.5 microg L(-1), whereas atrazine (31.5 microg L(-1)) and alachlor (9.8 microg L(-1)) substantially exceeded their MCLs of 3 and 2 microg L(-1), respectively. Regardless of tillage system, flow-weighted atrazine and alachlor concentrations exceeded their MCLs in at least one crop year. Replacing these herbicides with glyphosate and glufosinate can reduce the occurrence of dissolved herbicide concentrations in runoff exceeding drinking water standards. PMID:18268303

  4. Decontamination of aqueous glyphosate, (aminomethyl)phosphonic acid, and glufosinate solutions by electro-fenton-like process with Mn2+ as the catalyst.

    PubMed

    Balci, Beytul; Oturan, Mehmet A; Oturan, Nihal; Sirés, Ignasi

    2009-06-10

    The ability of the modified electro-Fenton-like (EF-like) process to degrade aqueous solutions of glyphosate, which is the most widely used herbicide in the world, has been assessed with Mn(2+) and other metal ions as catalysts to overcome the problems posed by some stable metal ion complexes of phosphonate herbicides. Bulk electrolyses with a carbon-felt cathode and Pt anode were performed in an undivided cell under galvanostatic conditions to study the effect of the applied current as well as Mn(2+) and glyphosate concentrations. The herbicide was completely destroyed in all cases following a pseudofirst-order kinetics, and the second-order rate constant for its reaction with (*)OH was determined. The decay trends obtained by high-performance liquid chromatography-fluorometric detection (HPLC-FL) and ion chromatography analysis were similar. AMPA [(aminomethyl)phosphonic acid] was the major reaction intermediate and showed slower pseudofirst-order destruction kinetics. The high mineralization degree obtained for glyphosate solutions confirmed the great performance of the EF-like process with Mn(2+), which promotes the C-N cleavage by (*)OH attack as the first oxidation step and the C-P cleavage in a further step. High-level decontamination achieved for AMPA and glufosinate solutions corroborated the benefits of this oxidation process. PMID:19438208

  5. Development and prospect of unmanned aerial vehicles for agricultural production management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  6. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  7. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  8. Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy.

    PubMed

    Liu, Bijun; Dong, Lan; Yu, Qianhong; Li, Xingliang; Wu, Fengchang; Tan, Zhaoyi; Luo, Shunzhong

    2016-03-10

    Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject ( J. Phys. Chem. A 2015, , 119 , 5241 - 5249 ). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. PMID:26862689

  9. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa.

    PubMed

    Wu, Liang; Qiu, Zhihao; Zhou, Ya; Du, Yuping; Liu, Chaonan; Ye, Jing; Hu, Xiaojun

    2016-09-01

    Glyphosate has been used extensively for weed control in agriculture in many countries. However, glyphosate can be transported into the aquatic environment and might cause adverse effects on aquatic life. This study investigated the physiological characteristics of cyanobacteria Microcystis aeruginosa (M. aeruginosa) after exposure to glyphosate, and the results showed that changes in cell density production, chlorophyll a and protein content are consistent. In M. aeruginosa, oxidative stress caused by glyphosate indicated that 48h of exposure increased the concentration of malondialdehyde (MDA) and enhanced the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). To further investigate the toxicity of glyphosate on M. aeruginosa, the viability of treated cells was monitored and the toxin release was determined. The results indicated that glyphosate induced apoptosis of and triggered toxin release in M. aeruginosa. These results are helpful for understanding the toxic effects of glyphosate on cyanobacteria, which is important for environmental assessment and protection. These results are also useful for guidance on the application of this type of herbicide in agricultural settings. PMID:27472782

  10. The current status and environmental impacts of glyphosate-resistant crops: a review.

    PubMed

    Cerdeira, Antonio L; Duke, Stephen O

    2006-01-01

    Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is permitted. Effects of glyphosate on contamination of soil, water, and air are minimal, compared to some of the herbicides that they replace. No risks have been found with food or feed safety or nutritional value in products from currently available GRCs. Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit. Weed species in GRC fields have shifted to those that can more successfully withstand glyphosate and to those that avoid the time of its application. Three weed species have evolved resistance to glyphosate in GRCs. Glyphosate-resistant crops have greater potential to become problems as volunteer crops than do conventional crops. Glyphosate resistance transgenes have been found in fields of canola that are supposed to be non-transgenic. Under some circumstances, the largest risk of GRCs may be transgene flow (introgression) from GRCs to related species that might become problems in natural ecosystems. Glyphosate resistance transgenes themselves are highly unlikely to be a risk in wild plant populations, but when linked to transgenes that may impart fitness benefits outside of agriculture (e.g., insect resistance), natural ecosystems could be affected. The development and use of failsafe introgression barriers in crops with such linked genes is needed. PMID:16899736

  11. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos.

    PubMed

    Akcha, F; Spagnol, C; Rouxel, J

    2012-01-15

    We investigated the effects of genotoxicant exposure in gametes and embryos to find a possible link between genotoxicity and reproduction/developmental impairment, and explore the impact of chemical genotoxicity on population dynamics. Our study focused on the genotoxic effects of two herbicides on oyster gametes and embryos: glyphosate (both as an active substance and in the Roundup formulation) and diuron. France is Europe's leading consumer of agrochemical substances and as such, contamination of France's coastal waters by pesticides is a major concern. Glyphosate and diuron are among the most frequently detected herbicides in oyster production areas; as oyster is a specie with external reproduction, its gametes and embryos are in direct contact with the surrounding waters and are hence particularly exposed to these potentially dangerous substances. In the course of this study, differences in genotoxic and embryotoxic responses were observed in the various experiments, possibly due to differences in pollutant sensitivity between the tested genitor lots. Glyphosate and Roundup had no effect on oyster development at the concentrations tested, whereas diuron significantly affected embryo-larval development from the lowest tested concentration of 0.05 μg L⁻¹, i.e. an environmentally realistic concentration. Diuron may therefore have a significant impact on oyster recruitment rates in the natural environment. Our spermiotoxicity study revealed none of the tested herbicides to be cytotoxic for oyster spermatozoa. However, the alkaline comet assay showed diuron to have a significant genotoxic effect on oyster spermatozoa at concentrations of 0.05 μg L⁻¹ upwards. Conversely, no effects due to diuron exposure were observed on sperm mitochondrial function or acrosomal membrane integrity. Although our initial results showed no negative effect on sperm function, the possible impact on fertilization rate and the consequences of the transmission of damaged DNA for

  12. Differential susceptibility to glyphosate among the Conyza weed species in Spain.

    PubMed

    González-Torralva, Fidel; Cruz-Hipolito, Hugo; Bastida, Fernando; Mülleder, Norbert; Smeda, Reid J; De Prado, Rafael

    2010-04-14

    Greenhouse and laboratory experiments were conducted to investigate differences in glyphosate susceptibility among three species of the genus Conyza introduced as weeds in Spain: tall fleabane (Conyza sumatrensis), hairy fleabane (Conyza bonariensis), and horseweed (Conyza canadensis). Plant material was obtained from seeds collected in weed populations growing in olive groves and citrus orchards in southern Spain, with no previous history of glyphosate application. Dose-response curves displayed ED(50) values of 2.9, 15.7, and 34.9 g ai ha(-1), respectively, for C. sumatrensis, C. bonariensis, and C. canadensis plants at the rosette stage (6-8 leaves). Significant differences were found among the three species in the glyphosate retention on leaves as well as the leaf contact angle. The species order according to glyphosate retention was C. sumatrensis > C. bonariensis > C. canadensis, while the mean contact angles of glyphosate droplets were 59.2, 65.5, and 72.9 degrees , respectively. There were no significant differences among species in the absorption of [(14)C]glyphosate (ranged from 37.4% for C. canadensis to 52.4% for C. sumatrensis), but the order among species was the same as glyphosate retention. The amount of radioactivity translocated from treated leaves was lower in C. canadensis as compared to the other two species (C. sumatrensis > C. bonariensis > C. canadensis). Combined, all of the studied parameters identified differential susceptibility to glyphosate among the Conyza species. Each species accumulated shikimate in leaf tissues following application of glyphosate at 200 g ai ha(-1). However, C. canadensis exhibited lower shikimate levels than the other two species at 168 h after herbicide application. For hairy fleabane, a greenhouse study explored its susceptibility to glyphosate at three developmental stages: rosette, bolting (stem height, 10-15 cm), and flowering. The ED(50) was lower at the rosette stage (15.7 g ai ha(-1)) as compared to

  13. Long-term sub-lethal effects of low concentration commercial herbicide (glyphosate/pelargonic acid) formulation in Bryophyllum pinnatum.

    PubMed

    Pokhrel, Lok R; Karsai, Istvan

    2015-12-15

    Potential long-term (~7months) sub-lethal impacts of soil-applied low levels of Roundup herbicide formulation were investigated in a greenhouse environment using the vegetative clones of succulent non-crop plant model, Bryophyllum pinnatum (Lam.) Oken. An eleven day LC50 (concentration that killed 50% of the plants) was found to be 6.25% (~1.25mg glyphosate/mL and 1.25mg pelargonic acid/mL combined), and complete mortality occurred at 12.5%, of the field application rate (i.e., ~20mg glyphosate/mL and 20mg pelargonic acid/mL as active ingredients). While sub-lethal Roundup (1-5%) exposures led to hormesis-characterized by a significant increase in biomass and vegetative reproduction, higher concentrations (≥6.25%) were toxic. A significant interaction between Roundup concentrations and leaf biomass was found to influence the F1 plantlets' biomass. Biomass asymmetry generally increased with increasing Roundup concentrations, indicating that plants were more stressed at higher Roundup treatments but within the low-dose regime (≤5% of the as-supplied formulation). While leaf apex region demonstrated higher reproduction with lower biomass increase, leaf basal area showed lower reproduction with greater biomass increase, in plantlets. The results suggest long-term exposures to drifted low levels of Roundup in soil may promote biomass and reproduction in B. pinnatum. PMID:26311583

  14. Rapid and direct determination of glyphosate, glufosinate, and aminophosphonic acid by online preconcentration CE with contactless conductivity detection.

    PubMed

    See, Hong Heng; Hauser, Peter C; Ibrahim, Wan Aini Wan; Sanagi, Mohd Marsin

    2010-01-01

    Rapid and direct online preconcentration followed by CE with capacitively coupled contactless conductivity detection (CE-C(4)D) is evaluated as a new approach for the determination of glyphosate, glufosinate (GLUF), and aminophosphonic acid (AMPA) in drinking water. Two online preconcentration techniques, namely large volume sample stacking without polarity switching and field-enhanced sample injection, coupled with CE-C(4)D were successfully developed and optimized. Under optimized conditions, LODs in the range of 0.01-0.1 microM (1.7-11.1 microg/L) and sensitivity enhancements of 48- to 53-fold were achieved with the large volume sample stacking-CE-C(4)D method. By performing the field-enhanced sample injection-CE-C(4)D procedure, excellent LODs down to 0.0005-0.02 microM (0.1-2.2 microg/L) as well as sensitivity enhancements of up to 245- to 1002-fold were obtained. Both techniques showed satisfactory reproducibility with RSDs of peak height of better than 10%. The newly established approaches were successfully applied to the analysis of glyphosate, glufosinate, and aminophosphonic acid in spiked tap drinking water. PMID:20119968

  15. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  16. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  17. A review of the meteorological parameters which affect aerial application

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1979-01-01

    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.

  18. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  19. Towards aerial natural gas leak detection system based on TDLAS

    NASA Astrophysics Data System (ADS)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong

    2014-11-01

    Pipeline leakage is a complex scenario for sensing system due to the traditional high cost, low efficient and labor intensive detection scheme. TDLAS has been widely accepted as industrial trace gas detection method and, thanks to its high accuracy and reasonable size, it has the potential to meet pipeline gas leakage detection requirements if it combines with the aerial platform. Based on literature study, this paper discussed the possibility of applying aerial TDLAS principle in pipeline gas leak detection and the key technical foundation of implementing it. Such system is able to result in a high efficiency and accuracy measurement which will provide sufficient data in time for the pipeline leakage detection.

  20. 3D Buildings Extraction from Aerial Images

    NASA Astrophysics Data System (ADS)

    Melnikova, O.; Prandi, F.

    2011-09-01

    This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset of quadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images. This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geometrical constraints in contrast to traditional correlation. The correlation is applied only in some highly restricted areas in order to find coordinates more precisely, in such a way significantly reducing processing time of the algorithm. The algorithm has been tested on a set of Milan's aerial images and shows highly accurate results.

  1. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  2. Characterization of the Amaranthus palmeri Physiological Response to Glyphosate in Susceptible and Resistant Populations.

    PubMed

    Fernández-Escalada, Manuel; Gil-Monreal, Miriam; Zabalza, Ana; Royuela, Mercedes

    2016-01-13

    The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway. The physiologies of an Amaranthus palmeri population exhibiting resistance to glyphosate by EPSPS gene amplification (NC-R) and a susceptible population (NC-S) were compared. The EPSPS copy number of NC-R plants was 47.5-fold the copy number of NC-S plants. Although the amounts of EPSPS protein and activity were higher in NC-R plants than in NC-S plants, the AAA concentrations were similar. The increases in total free amino acid and in AAA contents induced by glyphosate were more evident in NC-S plants. In both populations, the EPSPS protein increased after glyphosate exposure, suggesting regulation of gene expression. EPSPS activity seems tightly controlled in vivo. Carbohydrate accumulation and a slight induction of ethanol fermentation were detected in both populations. PMID:26652930

  3. Response of selected horseweed (Conyza canadensis (L.) Cronq.) populations to glyphosate.

    PubMed

    Main, Christopher L; Mueller, Thomas C; Hayes, Robert M; Wilkerson, John B

    2004-02-25

    Horseweed (Conyza canadensis (L.) Cronq.) seed was collected in Illinois, Indiana, Kentucky, Mississippi, Missouri, and Ohio to determine susceptibility of different horseweed biotypes to glyphosate. Horseweed resistant to glyphosate was found in Mississippi, Ohio, and western Tennessee. In a separate experiment examining Tennessee biotypes, a dose response curve demonstrated that four times as much glyphosate was needed to achieve a 50% fresh weight reduction (GR(50)) in resistant biotypes when compared to a susceptible biotype. Resistant biotypes from Tennessee displayed a GR(50) of 1.6 kg/ha as compared to a GR(50) of 0.4 kg/ha in a susceptible horseweed population. Although growth was reduced, the resistant plants did not completely die and could potentially produce seed. Variation in glyphosate resistance was found among the populations tested. PMID:14969545

  4. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  5. How-To-Do-It: Glyphosate: Herbicidal Effects, Mode of Action and Degradation in Soil.

    ERIC Educational Resources Information Center

    Kafarski, Pawel; And Others

    1988-01-01

    Describes the usefulness of glyphosate for a demonstration of its herbicidal properties. Includes a list of the materials, preparation of solutions, procedures, data collection and analysis for three activities involving this chemical. (CW)

  6. Glyphosate and AMPA in U.S. streams, groundwater, precipitation and soils

    USGS Publications Warehouse

    Battaglin, William A.; Meyer, Michael T.; Kuivila, Kathryn M.; Dietze, Julie E.

    2014-01-01

    Herbicides containing glyphosate are used in more than 130 countries on more than 100 crops. In the United States (U.S.), agricultural use of glyphosate [N-(phosphonomethyl)glycine] has increased from less than 10,000 metric tons per year (active ingredient) in 1993 to more than 70,000 metric tons per year in 2006. In 2006, glyphosate accounted for about 20 percent of all herbicide use (by weight of active ingredient). Glyphosate formulations such as Roundup® are used in homes and in agriculture. Part of the reason for the popularity of glyphosate is the perception that it is an “environmentally benign” herbicide that has low toxicity and little mobility or persistence in the environment. The U.S. Geological Survey developed an analytical method using liquid chromatography/tandem mass spectrometry that can detect small amounts of glyphosate and its primary degradation product aminomethylphosphonic acid (AMPA) in water and sediment. Results from more than 2,000 samples collected from locations distributed across the U.S. indicate that glyphosate is more mobile and occurs more widely in the environment than was previously thought. Glyphosate and AMPA were detected (reporting limits between 0.1 and 0.02 micrograms per liter) in samples collected from surface water, groundwater, rainfall, soil water, and soil, at concentrations from less than 0.1 to more than 100 micrograms per liter. Glyphosate was detected more frequently in rain (86%), ditches and drains (71%), and soil (63%); and less frequently in groundwater (3%) and large rivers (18%). AMPA was detected more frequently in rain (86%), soil (82%), and large rivers (78%); and less frequently in groundwater (8%) and wetlands or vernal pools (37%). Most observed concentrations of glyphosate were well below levels of concern for humans or wildlife, and none exceeded the U.S. Environmental Protection Agency’s Maximum Contaminant Level of 700 micrograms per liter. However, the ecosystem effects of chronic low

  7. Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry.

    PubMed

    Ibáñez, María; Pozo, Oscar J; Sancho, Juan V; López, Francisco J; Hernández, Félix

    2005-07-22

    This paper describes a method for the sensitive and selective determination of glyphosate, glufosinate and aminomethylphosphonic acid (AMPA) residues in water and soil samples. The method involves a derivatization step with 9-fluorenylmethylchloroformate (FMOC) in borate buffer and detection based on liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). In the case of water samples a volume of 10 mL was derivatized and then 4.3 mL of the derivatized mixture was directly injected in an on-line solid phase extraction (SPE)-LC-MS/MS system using an OASIS HLB cartridge column and a Discovery chromatographic column. Soil samples were firstly extracted with potassium hydroxide. After that, the aqueous extract was 10-fold diluted with water and 2 mL were derivatized. Then, 50 microL of the derivatized 10-fold diluted extract were injected into the LC-MS/MS system without pre-concentration into the SPE cartridge. The method has been validated in both ground and surface water by recovery studies with samples spiked at 50 and 500 ng/L, and also in soil samples, spiked at 0.05 and 0.5 mg/kg. In water samples, the mean recovery values ranged from 89 to 106% for glyphosate (RSD <9%), from 97 to 116% for AMPA (RSD < 10%), and from 72 to 88% in the case of glufosinate (RSD < 12%). Regarding soil samples, the mean recovery values ranged from 90 to 92% for glyphosate (RSD <7%), from 88 to 89% for AMPA (RSD <5%) and from 83 to 86% for glufosinate (RSD <6%). Limits of quantification for all the three compounds were 50 ng/L and 0.05 mg/kg in water and soil, respectively, with limits of detection as low as 5 ng/L, in water, and 5 microg/kg, in soil. The use of labelled glyphosate as internal standard allowed improving the recovery and precision for glyphosate and AMPA, while it was not efficient for glufosinate, that was quantified by external standards calibration. The method developed has been applied to the determination of these compounds in real

  8. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  9. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions. PMID:27140906

  10. Agricultural impacts of glyphosate-resistant soybean cultivation in South America.

    PubMed

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B

    2011-06-01

    In the 2009/2010 growing season, Brazil was the second largest world soybean producer, followed by Argentina. Glyphosate-resistant soybeans (GRS) are being cultivated in most of the soybean area in South America. Overall, the GRS system is beneficial to the environment when compared to conventional soybean. GRS resulted in a significant shift toward no-tillage practices in Brazil and Argentina, but weed resistance may reduce this trend. Probably the highest agricultural risk in adopting GRS in Brazil and South America is related to weed resistance due to use of glyphosate. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. Five weed species, in order of importance, Conyza bonariensis (L.) Cronquist, Conyza canadensis (L.) Cronquist, Lolium multiflorum Lam., Digitaria insularis (L.) Mez ex Ekman, and Euphorbia heterophylla L., have evolved resistance to glyphosate in GRS in Brazil. Conyza spp. are the most difficult to control. A glyphosate-resistant biotype of Sorghum halepense L. has evolved in GRS in Argentina and one of D. insularis in Paraguay. The following actions are proposed to minimize weed resistance problem: (a) rotation of GRS with conventional soybeans in order to rotate herbicide modes of action; (b) avoidance of lower than recommended glyphosate rates; (c) keeping soil covered with a crop or legume at intercrop intervals; (d) keeping machinery free of weed seeds; and (d) use of a preplant nonselective herbicide plus residuals to eliminate early weed interference with the crop and to minimize escapes from later applications of glyphosate due to natural resistance of older weeds and/or incomplete glyphosate coverage. PMID:20839871

  11. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7.

    PubMed

    Kryuchkova, Yelena V; Burygin, Gennady L; Gogoleva, Natalia E; Gogolev, Yuri V; Chernyshova, Marina P; Makarov, Oleg E; Fedorov, Evgenii E; Turkovskaya, Olga V

    2014-01-20

    Plant-growth-promoting rhizobacteria exert beneficial effects on plants through their capacity for nitrogen fixation, phytohormone production, phosphate solubilization, and improvement of the water and mineral status of plants. We suggested that these bacteria may also have the potential to express degradative activity toward glyphosate, a commonly used organophosphorus herbicide. In this study, 10 strains resistant to a 10 mM concentration of glyphosate were isolated from the rhizoplane of various plants. Five of these strains--Alcaligenes sp. K1, Comamonas sp. K4, Azomonas sp. K5, Pseudomonas sp. K3, and Enterobacter cloacae K7--possessed a number of associative traits, including fixation of atmospheric nitrogen, solubilization of phosphates, and synthesis of the phytohormone indole-3-acetic acid. One strain, E. cloacae K7, could utilize glyphosate as a source of P. Gas-liquid chromatography showed that E. cloacae growth correlated with a decline in herbicide content in the culture medium (40% of the initial 5mM content), with no glyphosate accumulating inside the cells. Thin-layer chromatography analysis of the intermediate metabolites of glyphosate degradation found that E. cloacae K7 had a C-P lyase activity and degraded glyphosate to give sarcosine, which was then oxidized to glycine. In addition, strain K7 colonized the roots of common sunflower (Helianthus annuus L.) and sugar sorghum (Sorghum saccharatum Pers.), promoting the growth and development of sunflower seedlings. Our findings extend current knowledge of glyphosate-degrading rhizosphere bacteria and may be useful for developing a biotechnology for the cleanup and restoration of glyphosate-polluted soils. PMID:23545355

  12. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    PubMed

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190

  13. Transformation and segregation of GFP fluorescence and glyphosate resistance in horseweed (Conyza canadensis) hybrids.

    PubMed

    Halfhill, Matthew D; Good, Laura L; Basu, Chhandak; Burris, Jason; Main, Christopher L; Mueller, Thomas C; Stewart, C Neal

    2007-03-01

    The goal of this research was to generate a breeding population of horseweed segregating for glyphosate resistance. In order to generate a marker to select between hybrids of glyphosate resistant (GR) and glyphosate susceptible (GS) horseweed, a GR horseweed accession from western Tennessee was transformed with a green fluorescent protein (GFP) transgene. The GFP marker allowed for the simple and accurate determination of GR hybrid plants by visual observation. GR plants were shown to be transgenic via the green fluorescence under UV light, and resistant to glyphosate when sprayed with the field-use-rate 0.84 kg acid equivalent ha(-1) of glyphosate (i.e. Roundup) herbicide. An in vitro screen for glyphosate resistance in seedlings was developed, and a 5 microM glyphosate concentration was found to reduce dry weight in GS seedlings but not in GR seedlings. The GR plants containing GFP were then hand-crossed with GS plants from eastern Tennessee under greenhouse conditions, with GS plants acting as the pollen acceptor. Resulting seed was collected and germinated for GFP fluorescence screening. Seedlings that exhibited the transgenic GFP phenotype were selected as F(1) hybrids between GR and GS horseweed. Thirty GSxGR hybrids were produced on the basis of a green-fluorescent GFP phenotype of GR plants. GSxGFP/GR F(1) hybrids produced F(2) seeds, and F(2) plants were shown to segregate for GFP fluorescence and glyphosate resistance independently. Both traits segregated at a Mendelian 3:1 ratio, indicating a single gene is responsible for each phenotype. PMID:17024451

  14. Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids

    PubMed Central

    Londo, Jason P.; Bautista, Nonnatus S.; Sagers, Cynthia L.; Lee, E. Henry; Watrud, Lidia S.

    2010-01-01

    Background and Aims With the advent of transgenic crops, genetically modified, herbicide-resistant Brassica napus has become a model system for examining the risks and potential ecological consequences of escape of transgenes from cultivation into wild compatible species. Escaped transgenic feral B. napus and hybrids with compatible weedy species have been identified outside of agriculture and without the apparent selection for herbicide resistance. However, herbicide (glyphosate) exposure can extend beyond crop field boundaries, and a drift-level of herbicide could function as a selective agent contributing to increased persistence of transgenes in the environment. Methods The effects of a drift level (0·1 × the field application rate) of glyphosate herbicide and varied levels of plant competition were examined on plant fitness-associated traits and gene flow in a simulated field plot, common garden experiment. Plants included transgenic, glyphosate-resistant B. napus, its weedy ancestor B. rapa, and hybrid and advanced generations derived from them. Key Results The results of this experiment demonstrate reductions in reproductive fitness for non-transgenic genotypes and a contrasting increase in plant fitness for transgenic genotypes as a result of glyphosate-drift treatments. Results also suggest that a drift level of glyphosate spray may influence the movement of transgenes among transgenic crops and weeds and alter the processes of hybridization and introgression in non-agronomic habitats by impacting flowering phenology and pollen availability within the community. Conclusions The results of this study demonstrate the potential for persistence of glyphosate resistance transgenes in weedy plant communities due to the effect of glyphosate spray drift on plant fitness. Additionally, glyphosate drift has the potential to change the gene-flow dynamics between compatible transgenic crops and weeds, simultaneously reducing direct introgression into weedy species

  15. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity.

    PubMed

    Mesnage, R; Bernay, B; Séralini, G-E

    2013-11-16

    Pesticides are always used in formulations as mixtures of an active principle with adjuvants. Glyphosate, the active ingredient of the major pesticide in the world, is an herbicide supposed to be specific on plant metabolism. Its adjuvants are generally considered as inert diluents. Since side effects for all these compounds have been claimed, we studied potential active principles for toxicity on human cells for 9 glyphosate-based formulations. For this we detailed their compositions and toxicities, and as controls we used a major adjuvant (the polyethoxylated tallowamine POE-15), glyphosate alone, and a total formulation without glyphosate. This was performed after 24h exposures on hepatic (HepG2), embryonic (HEK293) and placental (JEG3) cell lines. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. The compositions in adjuvants were analyzed by mass spectrometry. Here we demonstrate that all formulations are more toxic than glyphosate, and we separated experimentally three groups of formulations differentially toxic according to their concentrations in ethoxylated adjuvants. Among them, POE-15 clearly appears to be the most toxic principle against human cells, even if others are not excluded. It begins to be active with negative dose-dependent effects on cellular respiration and membrane integrity between 1 and 3ppm, at environmental/occupational doses. We demonstrate in addition that POE-15 induces necrosis when its first micellization process occurs, by contrast to glyphosate which is known to promote endocrine disrupting effects after entering cells. Altogether, these results challenge the establishment of guidance values such as the acceptable daily intake of glyphosate, when these are mostly based on a long term in vivo test of glyphosate alone. Since pesticides are always used with adjuvants that could change their toxicity, the necessity to assess their whole formulations as mixtures becomes obvious. This challenges

  16. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  17. AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA

    NASA Technical Reports Server (NTRS)

    1977-01-01

    AERIAL OF VEHICLE ASSEMBLY BUILDING & SURROUNDING AREA KSC-377C-0082.41 116-KSC-377C-82.41, P-15877, ARCHIVE-04151 Aerial view - Shuttle construction progress - VAB and Orbiter Processing Facilities - direction northwest.

  18. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

    PubMed

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B; Spadotto, Claudio A

    2007-01-01

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems. PMID:17562462

  19. The influence of glyphosate on the microbiota and production of botulinum neurotoxin during ruminal fermentation.

    PubMed

    Ackermann, Wagis; Coenen, Manfred; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-03-01

    The aim of the present study is to investigate the impact of glyphosate on the microbiota and on the botulinum neurotoxin (BoNT) expression during in vitro ruminal fermentation. This study was conducted using two DAISY(II)-incubators with four ventilated incubation vessels filled with rumen fluid of a 4-year-old non-lactating Holstein-Friesian cow. Two hundred milliliter rumen fluid and 800 ml buffer solution were used with six filter bags containing 500 mg concentrated feed or crude fiber-enriched diet. Final concentrations of 0, 1, 10, and 100 µg/ml of glyphosate in the diluted rumen fluids were added and incubated under CO2-aerated conditions for 48 h. The protozoal population was analyzed microscopically and the ruminal flora was characterized using the fluorescence in situ hybridization technique. Clostridium botulinum and BoNT were quantified using most probable number and ELISA, respectively. Results showed that glyphosate had an inhibitory effect on select groups of the ruminal microbiota, but increased the population of pathogenic species. The BoNT was produced during incubation when inoculum was treated with high doses of glyphosate. In conclusion, glyphosate causes dysbiosis which favors the production of BoNT in the rumen. The global regulations restrictions for the use of glyphosate should be re-evaluated. PMID:25407376

  20. Pathological and toxicological findings in glyphosate-surfactant herbicide fatality: a case report.

    PubMed

    Sribanditmongkol, Pongruk; Jutavijittum, Prapan; Pongraveevongsa, Pattaravadee; Wunnapuk, Klintean; Durongkadech, Piya

    2012-09-01

    Glyphosate herbicide is promoted by the manufacturer as having no risks to human health, with acute toxicity being very low in normal use. In Thailand, however, poisoning from glyphosate agricultural herbicides has been increasing. A case of rapid lethal intoxication from glyphosate-surfactant herbicide involved a 37-year-old woman, who deliberately ingested approximately 500 mL of concentrated Roundup formulation (41% glyphosate as the isopropylamine salt and 15% polyoxyethylene amine; Mosanto Company). The postmortem examination revealed that the stomach contained 550 mL of yellow fluid. The gastric mucosa of anterior fundus revealed hemorrhage and the small intestines had marked dilatation and thin walls. We used the high-performance liquid chromatography method for determination of serum and gastric content levels of glyphosate. The glyphosate levels of serum and gastric content were 3.05 and 59.72 mg/mL, respectively. Toxic effects of polyoxyethylene amine and Roundup were caused by their ability to erode tissues including mucous membranes and linings of the gastrointestinal and respiratory tracts. A mild degree of pulmonary congestion and edema was observed in both lungs. We proposed that the characteristic picture of microvesicular steatosis of the hepatocytes, seen predominantly in centrilobular zones of the liver, resembled drug-induced hepatic toxicity or secondary hypoxic stress. PMID:22835958

  1. Study on the photocatalytic degradation of glyphosate by TiO(2) photocatalyst.

    PubMed

    Chen, Shifu; Liu, Yunzhang

    2007-03-01

    In this paper, the photocatalytic degradation of glyphosate selected as the deputy of organic pollutant in aqueous solution with TiO(2) powder as a photocatalyst has been studied. The effects of various parameters, such as the amount of the photocatalyst, illumination time, initial pH value, electron acceptors, metal ions, and anions on the photocatalytic degradation of glyphosate were investigated. From the studies, the best condition for the effect of the parameters on the photocatalytic degradation of glyphosate was obtained. The results show that the optimum amount of the photocatalyst used is 6.0 g l(-1) for the photocatalytic reactions. The photodegradation efficiency of glyphosate increases with the increase of the illumination time. With the addition of Fe(3+), Cu(2+), H(2)O(2), K(2)S(2)O(8) or KBrO(3), the photocatalytic degradation of glyphosate is accelerated. However, with the addition of Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Co(2+) and Ni(2+), or with the addition of trace amounts of Cl(-), Br(-), SO(4)(2-), there are no obvious effects on the reactions. Acidic or alkaline mediums are favorable for the photocatalytic degradation of glyphosate. The possible roles of the additives on the reactions and the possible mechanisms of effect were discussed. PMID:17156814

  2. Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal.

    PubMed

    Mayakaduwa, S S; Kumarathilaka, Prasanna; Herath, Indika; Ahmad, Mahtab; Al-Wabel, Mohammed; Ok, Yong Sik; Usman, Adel; Abduljabbar, Adel; Vithanage, Meththika

    2016-02-01

    We investigated the removal of aqueous glyphosate using woody (dendro) biochar obtained as a waste by product from bioenergy industry. Equilibrium isotherms and kinetics data were obtained by adsorption experiments. Glyphosate adsorption was strongly pH dependent occurring maximum in the pH range of 5-6. The protonated amino moiety of the glyphosate molecule at this pH may interact with π electron rich biochar surface via π-π electron donor-acceptor interactions. Isotherm data were best fitted to the Freundlich and Temkin models indicating multilayer sorption of glyphosate. The maximum adsorption capacity of dendro biochar for glyphosate was determined by the isotherm modeling to be as 44 mg/g. Adsorption seemed to be quite fast, reaching the equilibrium <1 h. Pseudo-second order model was found to be the most effective in describing kinetics whereas the rate limiting step possibly be chemical adsorption involving valence forces through sharing or exchanging electrons between the adsorbent and sorbate. The FTIR spectral analysis indicated the involvement of functional groups such as phenolic, amine, carboxylic and phosphate in adsorption. Hence, a heterogeneous chemisorption process between adsorbate molecules and functional groups on biochar surface can be suggested as the mechanisms involved in glyphosate removal. PMID:26340852

  3. Clastogenic Effects of Glyphosate in Bone Marrow Cells of Swiss Albino Mice

    PubMed Central

    Prasad, Sahdeo; Srivastava, Smita; Singh, Madhulika; Shukla, Yogeshwer

    2009-01-01

    Glyphosate (N-(phosphonomethyl) glycine, C3H8NO5P), a herbicide, used to control unwanted annual and perennial plants all over the world. Nevertheless, occupational and environmental exposure to pesticides can pose a threat to nontarget species including human beings. Therefore, in the present study, genotoxic effects of the herbicide glyphosate were analyzed by measuring chromosomal aberrations (CAs) and micronuclei (MN) in bone marrow cells of Swiss albino mice. A single dose of glyphosate was given intraperitoneally (i.p) to the animals at a concentration of 25 and 50 mg/kg b.wt. Animals of positive control group were injected i.p. benzo(a)pyrene (100 mg/kg b.wt., once only), whereas, animals of control (vehicle) group were injected i.p. dimethyl sulfoxide (0.2 mL). Animals from all the groups were sacrificed at sampling times of 24, 48, and 72 hours and their bone marrow was analyzed for cytogenetic and chromosomal damage. Glyphosate treatment significantly increases CAs and MN induction at both treatments and time compared with the vehicle control (P < .05). The cytotoxic effects of glyphosate were also evident, as observed by significant decrease in mitotic index (MI). The present results indicate that glyphosate is clastogenic and cytotoxic to mouse bone marrow. PMID:20107585

  4. The Site of the Inhibition of the Shikimate Pathway by Glyphosate

    PubMed Central

    Holländer, Heike; Amrhein, Nikolaus

    1980-01-01

    The nonselective herbicide glyphosate (n-[phosphonomethyl]glycine) inhibited the light-induced accumulation of phenylpropanoid substances (chlorogenic acid, procyanidin, rutin, anthocyanin) in etiolated buckwheat hypocotyls 90% at 1 millimolar. Structurally related compounds, such as n,n-bis[phosphonomethyl]glycine, aminomethylphosphonate, methylglycine, and iminodiacetate, had little or no inhibiting effects. Of all amino acids tested, only l-phenylalanine reversed the inhibition, and partial reversal of anthocyanin synthesis was achieved with chorismate, phenylpyruvate, trans-cinnamate, p-coumarate, and naringenin. Phenylalanine concentrations were reduced in glyphosate-treated hypocotyls, and glyphosate effectively reduced the high level of phenylalanine that was caused by the phenylalanine ammonia-lyase inhibitor l-α-aminooxy-β-phenylpropionate. Glyphosate had no significant effect on the time course of phenylalanine ammonia-lyase activity in hypocotyls incubated either in the dark or in the light. Under appropriate feeding conditions, glyphosate inhibited the incorporation of [14C]shikimate into all three aromatic amino acids, and radioactive shikimate accumulated in the tissue. The results lead to the conclusion that glyphosate interferes with the shikimate pathway at or prior to the formation of chorismate. PMID:16661534

  5. A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants

    PubMed Central

    Zhang, Shengxue; Yang, Xuewen; Chen, Rongrong; Zhang, Yuwen; Lu, Wei; Liu, Yan; Wang, Jianhua; Lin, Min; Wang, Guoying

    2012-01-01

    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops. PMID:22715408

  6. The herbicide glyphosate impacts rhizosphere soil exoenzyme activities and microbial community structure associated with glyphosate–tolerant and non-tolerant corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Conservation tillage practices across the country have been implementing genetically engineered herbicide resistant crops along with applications of the herbicide glyphosate. We tested the hypothesis that five years of glyphosate applications to both resistant and non-resistant corn ...

  7. Research on Virtual Simulation of the Aerial Passenger Device Based on Three-Dimensional Visualization and Virtual Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jingchong; Wang, Dahu; Liu, Haiyang

    Analyzing the key design for Aerial Passenger Device, 3DMAX is applied for creating models which is the key technology and corresponding safety protection device. Combined with Quest3D engine for setting, such as roadway and safety devices are displayed in virtual. Finally Aerial Passenger Device is in the virtual scene. Then simulation results examine the Aerial Passenger Device's rationality and safety reducing the cycle of system optimization and technology improvement.

  8. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    NASA Astrophysics Data System (ADS)

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  9. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lift, except in case of emergency. (x) Climbers shall not be worn while performing work from an aerial... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  10. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  11. Adsorption of glyphosate on variable-charge, volcanic ash-derived soils.

    PubMed

    Cáceres-Jensen, L; Gan, J; Báez, M; Fuentes, R; Escudey, M

    2009-01-01

    Glyphosate (N-phosphonometylglycine) is widely used due to its broad spectrum of activity and nonselective mode of action. In Chile it is the most used herbicide, but its adsorption behavior in the abundant and widespread variable charge soils is not well understood. In this study, three volcanic ash-derived soils were selected, including Andisols (Nueva Braunau and Diguillin) and Ultisols (Collipulli), to evaluate the adsorption kinetics, equilibrium isotherms, and the effect of pH in glyphosate adsorption. The influence of glyphosate on soil phosphorus retention was also studied. Glyphosate was rapidly and strongly adsorbed on the selected soils, and adsorption isotherms were well described by the Freundlich relationship with strong nonlinearity (n(fads) < 0.5). The n(fads) values were consistently higher than n(fdes) values, suggesting strong hysteresis. Adsorption (K(ads)) increased strongly when pH decreased. The presence of glyphosate (3200 mug mL(-1)) changed the adsorption behavior of phosphate at its maximum adsorption capacity. Andisol soils without the addition of glyphosate had similar mean K(ads) values for Nueva Braunau (5.68) and Diguillin (7.38). Collipulli had a mean K(ads) value of 31.58. During the successive desorption steps, glyphosate at the highest level increased K(ads) values for phosphate in the Andisol soils but had little effect in the Ultisol soil. This different behavior was probably due to the irreversible occupation of some adsorption sites by glyphosate in the Ultisol soil attributed to the dominant Kaolinite mineral. Results from this study suggest that in the two types of volcanic soils, different mechanisms are involved in glyphosate and phosphate adsorption and that long-term use of glyphosate may impose different effects on the retention and availability of phosphorus. Volcanic ash-derived soils have a particular environmental behavior in relation to the retention of organic contaminants, representing an environmental substrate

  12. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  13. Long-term fate of glyphosate associated with repeated rodeo applications to control smooth cordgrass (Spartina alterniflora) in Willapa Bay, Washington.

    PubMed

    Kilbride, K M; Paveglio, F L

    2001-02-01

    Cordgrasses (Spartina sp.) are exotic, invasive species that threaten to degrade the intertidal zones of estuaries along the West Coast of North America. Integrated pest management (IPM) strategies primarily focus on the use of aerial and ground applications of Rodeo in conjunction with mowing, but IPM treatments over multiple years usually are necessary to control Spartina. Although information exists regarding the short-term fate and effects to marine biota of a single Rodeo application to control Spartina, little information is available regarding the fate and biotic effects associated with repeated Rodeo applications necessary for control. Consequently, we conducted a 3-year study to assess the short- and long-term fate and potential effects to marine biota associated with repeated applications of Rodeo to control smooth cordgrass in a southwestern Washington estuary. At each of three intertidal locations in Willapa Bay, we established plots on exposed mudflats and along the edge of a Spartina meadow that were hand sprayed with Rodeo (5% solution) and LI-700 (2% solution) during July 1997 and 1998. Glyphosate concentrations in sediment from mudflat plots declined 88% to 96% from 1 day posttreatment in 1997 to 1 year after the second Rodeo applications in 1999. In contrast, glyphosate concentrations in Spartina plots increased 231% to 591% from 1997 to 1999 because Spartina rhizomes likely did not readily metabolize or exude it. Comparison of concentrations from mudflat and Spartina plots with toxicity test values for marine biota indicates that under worst-case conditions short- and long-term detrimental effects to aquatic biota from repeated application of Rodeo for Spartina control would be highly unlikely. PMID:11243319

  14. Studies on adsorption of formaldehyde in zirconium phosphate-glyphosates

    NASA Astrophysics Data System (ADS)

    Zhang, Yuejuan; Yi, Jianjun; Xu, Qinghong

    2011-01-01

    In our previous work [22], a kind of layered compound of zirconium phosphate-glyphosate (ZrGP) was synthesized. Its large surface area (445 m 2/g) indicates this compound has possible application in adsorptions. In this paper, adsorption to formaldehyde in ZrGP and mechanisms of the adsorption were studied carefully. Balance time of adsorption (about 6 h) and largest adsorbed amount (7.8%) were found when adsorption temperature was at 40 °C and pH value of adsorption environment was about 3.0. H-bonds were found existing between molecules of formaldehyde and ZrGP, and formaldehyde molecules could exist in ZrGP stably.

  15. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  16. The fate of glyphosate in water hyacinth and its physiological and biochemical influences on growth of algae

    SciTech Connect

    Tsai, Baolong.

    1989-01-01

    Absorption, translocation, distribution, exudation, and guttation of {sup 14}C-glyphosate in water hyacinth (Eichhornia crassipes) were studied. Glyphosphate entered the plant by foliage and solution treatment. Plants were harvested and separated into the following parts: treated leaf blade, treated leaf petiole, young leaf blade, young leaf petiole, old leak blade, old leaf petiole, and root. Each part was extracted with methanol. Treated leaves, which exist only in foliage treatment, were washed with water and chloroform to remove the glyphosate residues. All {sup 14}C counting was made by liquid scintillation spectrometry. Autoradiography was used to locate {sup 14}C-glyphosate after foliage treatment. Results indicated that glyphosate can be absorbed from the leaf surface and translocated rapidly through phloem tissues into the whole plant body. The roots of water hyacinth absorbed glyphosate without vertical transport. Guttation of glyphosate occurred in treated leaf tips. Exudation of glyphosate from roots of water hyacinth occurred within 8 hr after foliage treatment. Chlorella vulgaris, Chlamydomonas reihardii, Anabaena cylindrica, and Chroococcus turgidus were used to explore the physiological and biochemical effects of glyphosate on algae. Spectrophotometric assays were performed for algal growth, chlorophyll, carotenoids, phycobiliprotein, carbohydrate, and protein. TLC procedures and an image analyzer were used to detect the metabolites of glyphosate inside algal cells. The common visible symptom of glyphosate toxicity in all algal cells were bleaching effect and reduction of contents of carbohydrate, protein, and pigments. The results highly suggested that glyphosate injured the algal cells by destruction of photosynthetic pigments and resulted in lowering the contents of carbohydrate and protein in algal cells.

  17. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  18. No observable effect of a glyphosate-based herbicide on two top predators of temporal water bodies.

    PubMed

    Ujszegi, János; Gál, Zoltán; Mikó, Zsanett; Hettyey, Attila

    2015-02-01

    It has been implied that the application of pesticides is involved in the world-wide decline of biodiversity, but little is known about the influence of these chemicals on key predators of temporary wetlands. The direct impacts were examined of a frequently applied glyphosate-based herbicide on larval Aeshna cyanea (Müller, 1764; Odonata, Insecta) and adult male Lissotriton vulgaris (Linnaeus, 1758; Caudata, Amphibia), 2 top predators of Central European ephemeral ponds. The effects of herbicide exposure were measured on survival, behavior, body mass change, and predatory activity in an outdoor mesocosm experiment lasting for 17 d. No significant effects of exposure were observed in either predator species. The results suggest that the herbicide has no immediate effect on the predators studied at environmentally relevant concentrations and that these predators can also fulfill their top-down regulatory role in contaminated ecosystems. PMID:25378294

  19. Leaching of Glyphosate and Aminomethylphosphonic Acid through Silty Clay Soil Columns under Outdoor Conditions.

    PubMed

    Napoli, Marco; Cecchi, Stefano; Zanchi, Camillo A; Orlandini, Simone

    2015-09-01

    Glyphosate [-(phosphono-methyl)-glycine] is the main herbicide used in the Chianti vineyards. Considering the pollution risk of the water table and that the vineyard tile drain may deliver this pollutant into nearby streams, the objective of the present study was to estimate the leaching losses of glyphosate under natural rainfall conditions in a silty clay soil in the Chianti area. The leaching of glyphosate and its metabolite (aminomethylphosphonic acid [AMPA]) through soils was studied in 1-m-deep soil columns under outdoor conditions over a 3-yr period. Glyphosate was detected in the leachates for up to 26 d after treatments at concentrations ranging between 0.5 and 13.5 μg L. The final peak (0.28 μg L) appeared in the leachates approximately 319 d after the first annual treatment. Aminomethylphosphonic acid first appeared (21.3 μg L) in the soil leachate 6.8 d after the first annual treatment. Aminomethylphosphonic acid detection frequency and measured concentration in the leachates were more than that observed for the glyphosate. Aminomethylphosphonic acid was detected in 20% of the soil leachates at concentrations ranging from 1 to 24.9 μg L. No extractable glyphosate was detected in the soil profile. However, the AMPA content in the lowest layer ranged from 13.4 to 21.1 mg kg, and on the surface layer, it ranged from 86.7 to 94 mg kg. Overall, these results indicate that both glyphosate and AMPA leaching through a 1-m soil column may be potential groundwater contaminants. PMID:26436283

  20. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    PubMed Central

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  1. Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents

    PubMed Central

    Bataller, Román; Campos, Inmaculada; Laguarda-Miro, Nicolas; Alcañiz, Miguel; Soto, Juan; Martínez-Máñez, Ramón; Gil, Luís; García-Breijo, Eduardo; Ibáñez-Civera, Javier

    2012-01-01

    A new electronic tongue to monitor the presence of glyphosate (a non-selective systemic herbicide) has been developed. It is based on pulse voltammetry and consists in an array of three working electrodes (Pt, Co and Cu) encapsulated on a methacrylate cylinder. The electrochemical response of the sensing array was characteristic of the presence of glyphosate in buffered water (phosphate buffer 0.1 mol·dm−3, pH 6.7). Rotating disc electrode (RDE) studies were carried out with Pt, Co and Cu electrodes in water at room temperature and at pH 6.7 using 0.1 mol·dm−3 of phosphate as a buffer. In the presence of glyphosate, the corrosion current of the Cu and Co electrodes increased significantly, probably due to the formation of Cu2+ or Co2+ complexes. The pulse array waveform for the voltammetric tongue was designed by taking into account some of the redox processes observed in the electrochemical studies. The PCA statistical analysis required four dimensions to explain 95% of variance. Moreover, a two-dimensional representation of the two principal components differentiated the water mixtures containing glyphosate. Furthermore, the PLS statistical analyses allowed the creation of a model to correlate the electrochemical response of the electrodes with glyphosate concentrations, even in the presence of potential interferents such as humic acids and Ca2+. The system offers a PLS prediction model for glyphosate detection with values of 098, −2.3 × 10−5 and 0.94 for the slope, the intercept and the regression coefficient, respectively, which is in agreement with the good fit between the predicted and measured concentrations. The results suggest the feasibility of this system to help develop electronic tongues for glyphosate detection. PMID:23250277

  2. Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate

    USGS Publications Warehouse

    Lee, E.A.; Zimmerman, L.R.; Bhullar, B.S.; Thurman, E.M.

    2002-01-01

    A novel, sensitive, linker-assisted enzyme-linked immunosorbent assay (L'ELISA) was compared to on-line solidphase extraction (SPE) with high-performance liquid chromatography/mass spectrometry (HPLC/MS) for the analysis of glyphosate in surface water and groundwater samples. The L'ELISA used succinic anhydride to derivatize glyphosate, which mimics the epitotic attachment of glyphosate to horseradish peroxidase hapten. Thus, L'ELISA recognized the derivatized glyphosate more effectively (detection limit of 0.1 ??g/L) and with increased sensitivity (10-100 times) over conventional ELISA and showed the potential for other applications. The precision and accuracy of L'ELISA then was compared with on-line SPE/HPLC/MS, which detected glyphosate and its degradate derivatized with 9-fluorenylmethyl chloroformate using negative-ion electrospray (detection limit 0.1 ??g/L, relative standard deviation ??15%). Derivatization efficiency and matrix effects were minimized by adding an isotope-labeled glyphosate (2-13C15N). The accuracy of L'ELISA gave a false positive rate of 18% between 0.1 and 1.0 ??g/L and a false positive rate of only 1% above 1.0 ??g/L. The relative standard deviation was ??20%. The correlation of L'ELISA and HPLC/MS for 66 surface water and groundwater samples was 0.97 with a slope of 1.28, with many detections of glyphosate and its degradate in surface water but not in groundwater.

  3. Interactions of Tillage and Cover Crop on Water, Sediment, and Pre-emergence Herbicide Loss in Glyphosate-Resistant Cotton: Implications for the Control of Glyphosate-Resistant Weed Biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and pre-emergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently...

  4. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  5. Concerted action of target-site mutations and high EPSPS activity in glyphosate-resistant junglerice (Echinochloa colona) from California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is the most widely used non-selective herbicide and Echinochloa colona is an annual weed affecting field crops and orchards in California. A population carrying a glyphosate-resistance-endowing mutation in the EPSPS gene was found in the Northern Sacramento Valley. We used selfed lines ...

  6. Effects of glyphosate on Macrophomina phaseolina in vitro and its effects on disease severity of soybean in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory and field studies were conducted to assess the effects of glyphosate on Macrophomina phaseolina culture growth in vitro and the disease severity of charcoal rot in soybean at Stoneville, MS and Jackson, TN. Glyphosate inhibited M. phaseolina growth in a linear dose dependent manner when ...

  7. Sub-lethal glyphosate exposure alters flowering phenology and causes transient male-sterility in Brassica spp

    PubMed Central

    2014-01-01

    Background Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistance transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. Results from our previous studies suggest that sub-lethal levels of the herbicide glyphosate can alter the pattern of gene flow between glyphosate resistant Canola®, Brassica napus, and glyphosate sensitive varieties of B. napus and B. rapa. The objectives of this study were to examine the phenological and developmental changes that occur in Brassica crop and weed species following sub-lethal doses of the herbicides glyphosate and glufosinate. We examined several vegetative and reproductive traits of potted plants under greenhouse conditions, treated with sub-lethal herbicide sprays. Results Our results indicate that exposure of Brassica spp. to a sub-lethal dose of glyphosate results in altering flowering phenology and reproductive function. Flowering of all sensitive species was significantly delayed and reproductive function, specifically male fertility, was suppressed. Higher dosage levels typically contributed to an increase in the magnitude of phenotypic changes. Conclusions These results demonstrate that Brassica spp. plants that are exposed to sub-lethal doses of glyphosate could be subject to very different pollination patterns and an altered pattern of gene flow that would result from changes in the overlap of flowering phenology between species. Implications include the potential for increased glyphosate resistance evolution and spread in weedy communities exposed to sub-lethal glyphosate. PMID:24655547

  8. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, Chlorophyll Fluorescence (ChlF) was used to detect the onset of soybean plant injury from glyphosate, the most widely used herbicide. Thirty-six pots of non-glyphosate-resistant soybean (cultivar FM955LL) were randomly divided into three groups and treated with different doses of glyp...

  9. Distribution of Glyphosate-Resistant Horseweed (Conyza Canadensis) and Relationship to Cropping Systems in the Central Valley of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horseweed is an increasing problem in perennial crops and non-crop areas of the Central Valley of California. Similar to the situation in glyphosate-tolerant crops in other regions, glyphosate-based weed management strategies in perennial crops and non-crop areas have resulted in selection of a gly...

  10. An estimation of pollen flight time and dispersal distance for glyphosate-resistant Palmer amaranth (Amaranthus palmeri)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmer amaranth is a common and competitive weed of cotton in the southeastern United States. The recent discovery of glyphosate-resistant biotypes is of particular concern as 98% of the cotton acreage is devoted to the production of glyphosate-tolerant varieties. Herbicide resistance can be acquire...

  11. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings

    EPA Science Inventory

    Weed species are becoming resistant to intensive and extensive use of specific herbicides associated with the production of herbicide resistant crops, e.g., the use of glyphosate for weed management with glyphosate resistant soybeans. To counter this resistance, crops engineered ...

  12. Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5-enolpyruvylshikimate-3-phosphate Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD50 value approxima...

  13. Effect of vineyard row orientation on growth and phenology of glyphosate-resistant and glyphosate-susceptible horseweed (Conyza canadensis L. Cronq.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horseweeds (Conyza canadensis L. Cronq.) have become increasingly common and difficult to control in San Joaquin Valley (SJV) vineyards, due in part, to the evolution of a glyphosate resistant (GR) biotype. The development of weed suppressive vineyard designs in which the trellis design, spacing, an...

  14. Weed Management and Crop Response with Glyphosate, S-metolachlor, Trifloxysulfuron, Prometryn, and MSMA in Glyphosate-Resistant Cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in five states at six locations from 2002 through 2003 to evaluate weed control and cotton response to EPOST, POST, and LAYBY systems utilizing glyphosate-TM (trimethylsulfonium salt), s-metolachlor, trifloxysulfuron, prometryn, and MSMA. Early-season cotton injury and ...

  15. Aerial Magnetic Sensing with AN Uav Helicopter

    NASA Astrophysics Data System (ADS)

    Eck, C.; Imbach, B.

    2011-09-01

    This paper concentrates on aerial magnetic sensing with an autonomous Scout B1-100 UAV helicopter. A high-resolution 3-axis mag- netic sensor has been mounted on the helicopter in order to generate a detailed magnetic map and to identify various ferrous objects in the soil. The development is based on advanced mission planning for the UAV as well as test flights under challenging weather conditions such as wind gusts and snow fall. Finally, this paper summarizes a real-world application after the collapse of a daylight coal mining where various persons have been killed and multiple infrastructure objects have been buried. The task of magnetic scanning was applied in order to find buried vehicles where miners have been expected based on eyewitnesses during the collapse. However, while several ferrous objects have been located, the van could not be identified in the extensive area of the landslide.

  16. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  17. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  18. Trends in quantitative aerial thermography

    SciTech Connect

    Schott, J.R.; Wilkinson, E.P.

    1983-06-01

    Recent improvements in aerial thermographic techniques, particularly in achievable spatial resolution and noise equivalent temperature variation, have enabled the use of thermography in a more objective fashion. Interpretation of the information contained in thermograms has also been improved through the use of certain techniques accounting for roof material type (emissivity), background effects, and atmospheric variables. With current methods, roof surface temperature from aerial imagery can be measured to within 1.8/sup 0/F (1.0/sup 0/C) of the actual temperature. These advances in thermogram analysis have opened the door for potential direct measurement of rooftop heat-loss levels from thermogram data. Ultimately, it is felt that this type of information would make it feasible to direct intensive energy-conservation efforts toward a smaller population, where the need and cost benefits will be the greatest.

  19. Aerial Photographs and Satellite Images

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Photographs and other images of the Earth taken from the air and from space show a great deal about the planet's landforms, vegetation, and resources. Aerial and satellite images, known as remotely sensed images, permit accurate mapping of land cover and make landscape features understandable on regional, continental, and even global scales. Transient phenomena, such as seasonal vegetation vigor and contaminant discharges, can be studied by comparing images acquired at different times. The U.S. Geological Survey (USGS), which began using aerial photographs for mapping in the 1930's, archives photographs from its mapping projects and from those of some other Federal agencies. In addition, many images from such space programs as Landsat, begun in 1972, are held by the USGS. Most satellite scenes can be obtained only in digital form for use in computer-based image processing and geographic information systems, but in some cases are also available as photographic products.

  20. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  1. Telemetry of Aerial Radiological Measurements

    SciTech Connect

    H. W. Clark, Jr.

    2002-10-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration.

  2. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    PubMed Central

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  3. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.

    PubMed

    Hove-Jensen, Bjarne; Zechel, David L; Jochimsen, Bjarne

    2014-03-01

    After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  4. Glyphosate degradation by immobilized bacteria: field studies with industrial wastewater effluent.

    PubMed Central

    Hallas, L E; Adams, W J; Heitkamp, M A

    1992-01-01

    Immobilized bacteria have been shown in the laboratory to effectively remove glyphosate from wastewater effluent discharged from an activated sludge treatment system. Bacterial consortia in lab columns maintained a 99% glyphosate-degrading activity (GDA) at a hydraulic residence time of less than 20 min. In this study, a pilot plant (capacity, 45 liters/min) was used for a field demonstration. Initially, activated sludge was enriched for microbes with GDA during a 3-week biocarrier activation period. Wastewater effluent was then spiked with glyphosate and NH4Cl and recycled through the pilot plant column during start-up. Microbes with GDA were enhanced by maintaining the pH at less than 8 and adding yeast extract (less than 10 mg/liter). Once the consortia were stabilized, the column capacity for glyphosate removal was determined in a 60-day continuous-flow study. Waste containing 50 mg of glyphosate per liter was pumped at increasing flow rates until a steady state was reached. A microbial GDA of greater than 90% was achieved at a 10-min hydraulic residence time (144 hydraulic turnovers per day). Additional studies showed that microbes with GDA were recoverable within (i) 5 days of an acid shock and (ii) 3 days after a 21-day dormancy (low-flow, low-maintenance) mode. These results suggest that full-scale use of immobilized bacteria can be a cost-effective and dependable technique for the biotreatment of industrial wastewater. PMID:1599241

  5. Predator foraging altitudes reveal the structure of aerial insect communities.

    PubMed

    Helms, Jackson A; Godfrey, Aaron P; Ames, Tayna; Bridge, Eli S

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  6. FlyAR: augmented reality supported micro aerial vehicle navigation.

    PubMed

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding. PMID:24650983

  7. Genotoxicity Study of Polysaccharide Fraction from Astragalus membranaceus's Aerial Parts

    PubMed Central

    Park, Yeong-Chul; Kim, Min Hee; Kim, Jung Woo; Kim, Jong-Bong; Lee, Jae Geun; Yu, Chang Yeon; Kim, Seung-Hyun; Chung, Ill Min; Kim, Jae Kwang; Choi, Ri Na

    2014-01-01

    Radix Astragali, the root of Astragalus (A.) membranaceus, has been applied in a variety of diseases for a long time in Asian countries such as Korea and China. In addition, the aerial parts such as leaves and stems of A. membranaceus have received a great deal of attention. Recently, the polysaccharide fraction showing a potent immunomoduating activity was isolated from the aerial parts of A. membranaceus. Thus, the aerial parts of A. membranaceus would be worthy enough for a food material and a dietary supplement. However, they should be safe even though valuable. In our previous study, it was estimated that NOAEL for female rats are 5000 mg/kg/day of the crude polysaccharide fraction from A. membranaceus-aboveground parts. As a series of safety evaluation, genotoxicity test for the crude polysaccharide fraction was carried out in this study. In conclusion, the three genotoxicity assays provided strong overall support that the crude polysaccharide fraction lacks mutagenic and/or clastogenic potential under the GLP-based test conditions. This indicates the aerial parts of A. membranaceus would be safe enough for a food material and a dietary supplement. PMID:25071923

  8. Unmanned Aerial Vehicle Use for Wood Chips Pile Volume Estimation

    NASA Astrophysics Data System (ADS)

    Mokroš, M.; Tabačák, M.; Lieskovský, M.; Fabrika, M.

    2016-06-01

    The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000). We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993). We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  9. Predator foraging altitudes reveal the structure of aerial insect communities

    PubMed Central

    Helms, Jackson A.; Godfrey, Aaron P.; Ames, Tayna; Bridge, Eli S.

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  10. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    PubMed

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. PMID:26701683

  11. Compositional analysis of grain and forage from MON 87427, an inducible male sterile and tissue selective glyphosate-tolerant maize product for hybrid seed production.

    PubMed

    Venkatesh, Tyamagondlu V; Breeze, Matthew L; Liu, Kang; Harrigan, George G; Culler, Angela H

    2014-02-26

    Conventional maize hybrid seed production has historically relied upon detasseling using either manual methods or semiautomated processes to ensure the purity of the hybrid cross. Monsanto Co. has developed biotechnology-derived MON 87427 maize with tissue-selective glyphosate tolerance to facilitate the production of hybrid maize seed. MON 87427 utilizes a specific promoter and intron combination to drive expression of CP4 EPSPS protein in vegetative and female reproductive tissues, conferring tolerance to glyphosate. This specific combination of regulatory elements also results in limited or no production of CP4 EPSPS protein in two key male reproductive tissues: pollen microspores, which develop into pollen grains, and tapetum cells that supply nutrients to the pollen. Thus, MON 87427 induces a male sterile phenotype after appropriately timed glyphosate applications. To confer additional benefits of herbicide tolerance and/or insect resistance, MON 87427 was combined with MON 89034 and NK603 by conventional breeding to develop MON 87427 × MON 89034 × NK603. The work described here is an assessment of the nutrient, antinutrient, and secondary metabolite levels in grain and forage tissues of MON 87427 and MON 87427 × MON 89034 × NK603. Results demonstrated that MON 87427 is compositionally equivalent to a near-isogenic conventional comparator. Results from this analysis established that the compositional equivalence observed for the single-event product MON 87427 is extendable to the combined-trait product, MON 87427 × MON 89034 × NK603. With increasing global demand for food production, the development of more efficient seed production strategies is important to sustainable agriculture. The study reported here demonstrated that biotechnology can be applied to simplify hybrid maize seed production without affecting crop composition. PMID:24397242

  12. A real time in situ ATR-FTIR spectroscopic study of glyphosate desorption from goethite as induced by phosphate adsorption: effect of surface coverage.

    PubMed

    Waiman, Carolina V; Avena, Marcelo J; Regazzoni, Alberto E; Zanini, Graciela P

    2013-03-15

    The desorption of glyphosate from goethite as induced by the adsorption of phosphate was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in combination with adsorption isotherms. Desorption of glyphosate was very low in the absence of phosphate. Addition of phosphate promoted glyphosate desorption. At low initial surface coverages, added phosphate adsorbed on free surface sites, mainly, displacing a small amount of glyphosate. At high initial surface coverages, on the contrary, phosphate adsorption resulted in a significant glyphosate desorption. In the latter conditions, the ratio desorbed glyphosate to adsorbed phosphate was 0.60. The desorption process can be explained by assuming that phosphate adsorbs first forming a monodentate mononuclear complex, which rapidly evolves into a bidentate binuclear complex that displaces glyphosate. PMID:23374437

  13. Preliminary statistical studies concerning the Campos RJ sugar cane area, using LANDSAT imagery and aerial photographs

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Costa, S. R. X.; Paiao, L. B. F.; Mendonca, F. J.; Shimabukuro, Y. E.; Duarte, V.

    1983-01-01

    The two phase sampling technique was applied to estimate the area cultivated with sugar cane in an approximately 984 sq km pilot region of Campos. Correlation between existing aerial photography and LANDSAT data was used. The two phase sampling technique corresponded to 99.6% of the results obtained by aerial photography, taken as ground truth. This estimate has a standard deviation of 225 ha, which constitutes a coefficient of variation of 0.6%.

  14. Observing snow cover using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  15. Real-time quantification of wild-type contaminants in glyphosate tolerant soybean

    PubMed Central

    Battistini, Elena; Noli, Enrico

    2009-01-01

    Background Trait purity is a key factor for the successful utilization of biotech varieties and is currently assessed by analysis of individual seeds or plants. Here we propose a novel PCR-based approach to test trait purity that can be applied to bulk samples. To this aim the insertion site of a transgene is characterized and the corresponding sequence of the wild-type (wt) allele is used as diagnostic target for amplification. As a demonstration, we developed a real-time quantitative PCR method to test purity of glyphosate tolerant (Roundup Ready®, RR) soybean. Results The soybean wt sequence at the RR locus was characterized and found to be highly conserved among conventional genotypes, thus allowing the detection of possibly any soybean non-trait contaminant. On the other hand, no amplification product was obtained from RR soybean varieties, indicating that the wt sequence is single copy and represents a suitable marker of conventional soybean presence. In addition, results obtained from the analysis of wt-spiked RR samples demonstrate that it is possible to use the real-time PCR assay to quantify the non-trait contamination with an acceptable degree of accuracy. Conclusion In principle this approach could be successfully applied to any transgenic event, provided that the wild-type sequence is conserved and single copy. The main advantages of the assay here described derive from its applicability to bulk samples, which would allow to increase the number of single seeds or plants forming the analytical sample, thus improving accuracy and throughput while containing costs. For these reasons this application of quantitative PCR could represent a useful tool in agricultural biotechnology. PMID:19267904

  16. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems.

    PubMed

    Pizarro, H; Vera, M S; Vinocur, A; Pérez, G; Ferraro, M; Menéndez Helman, R J; Dos Santos Afonso, M

    2016-03-01

    Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4 ± 0.1 mg l(-1) of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a = 2.04 μg l(-1); turbidity = 2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a = 50.3 μg l(-1); turbidity = 16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body. PMID:26552793

  17. The adsorption of glyphosate and phosphate to goethite: a molecular-scale atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Dideriksen, K.; Stipp, S. L. S.

    2003-09-01

    The adsorption of glyphosate and phosphate to the goethite {010} surface (Pbnm notation) was studied using an atomic force microscope (AFM). The microscope was capable of producing molecular scale images of surfaces exposed to glyphosate, phosphate and nitric acid. In 0.08 mol/L HNO 3 solution with pH of 1, the goethite {010} surface displayed the periodicities of the surface unit cell. The presence of a secondary periodicity in the 2D-Fourier transform suggests that the surface relaxes or reconstructs slightly, either after cleavage or as a result of exposure to air or acid solution. Images obtained in 0.01 mol/L glyphosate solution with pH of 2.5 displayed a well-defined √2 × √2 superstructure and a somewhat diffuse √2 × 2√2 superstructure that alternated in orientation within single imaging areas. The √2 × √2 superstructure indicates that glyphosate functional groups adsorb in a 1:2 ratio with the singly coordinated hydroxyl groups and suggests that all functional groups coordinate similarly. The √2 × 2√2 superstructure is interpreted to originate from different behaviour of the tip during imaging of the adsorbed phosphonic and carboxylic groups, indicating that both groups coordinate to the surface and that the glyphosate molecule bridges the rows of singly coordinated hydroxyl groups. In 0.01 mol/L phosphate solution with pH of 2.6, the imaged pattern was identical to that obtained in HNO 3. The similarity suggests that phosphate adsorbs in 1:1 ratio with the singly coordinated hydroxyl groups and that phosphate thus coordinates monodentately. The relative maximum adsorption density of phosphate and glyphosate on the {010} surface expected from the AFM data was in agreement with that determined with X-ray photoelectron spectroscopy (XPS).

  18. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  19. Analysis of Moms Across America report suggesting bioaccumulation of glyphosate in U.S. mother's breast milk: Implausibility based on inconsistency with available body of glyphosate animal toxicokinetic, human biomonitoring, and physico-chemical data.

    PubMed

    Bus, James S

    2015-12-01

    The non-peer-reviewed biomonitoring report published online by Moms Across America (MAA; Honeycutt and Rowlands, 2014) does not support the conclusion that glyphosate concentrations detected in a limited number of urine samples from women, men and children, or breast milk from nursing mothers, pose a health risk to the public, including nursing children. Systemically absorbed doses of glyphosate estimated from the MAA urine biomonitoring data and from other published biomonitoring studies indicate that daily glyphosate doses are substantially below health protective reference standards (ADIs; RfDs) established by regulatory agencies. The MAA report also suggested that detection of relatively high glyphosate concentrations in breast milk in 3 of 10 sampled women raised a concern for bioaccumulation in breast milk. However, the breast milk concentrations reported by MAA are highly implausible when considered in context to low daily systemic doses of glyphosate estimated from human urine biomonitoring data, and also are inconsistent with animal toxicokinetic data demonstrating no evidence of retention in tissues or milk after single- or multiple-dose glyphosate treatment. In addition, toxicokinetic studies in lactating goats have shown that glyphosate does not partition into milk at concentrations greater than blood, and that only a very small percentage of the total administered dose (<0.03%) is ultimately excreted into milk. The toxicokinetic studies also indicate that human glyphosate exposures estimated from urine biomonitoring fall thousands-of-fold short of external doses capable of producing blood concentrations sufficient to result in the breast milk concentrations described in the MAA report. Finally, in contrast to highly lipophilic compounds with bioaccumulation potential in breast milk, the physico-chemical properties of glyphosate indicate that it is highly hydrophilic (ionized) at physiological pH and unlikely to preferentially distribute into breast

  20. EPSPS Gene Amplification in Glyphosate-Resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) Populations from Arkansas (United States).

    PubMed

    Salas, Reiofeli A; Scott, Robert C; Dayan, Franck E; Burgos, Nilda R

    2015-07-01

    Glyphosate-resistant Italian ryegrass was detected in Arkansas (United States) in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations were studied to assess the severity of the problem and identify alternative management approaches. Dose-response bioassays, glyphosate absorption and translocation experiments, herbicide target (EPSPS) gene sequence analysis, and gene amplification assays were conducted. The dose causing 50% growth reduction (GR50) was 7-19 times higher for the resistant population than for the susceptible standard. Uptake and translocation of (14)C-glyphosate were similar in resistant and susceptible plants, and no mutation in the EPSPS gene known to be associated with resistance to glyphosate was detected. Resistant plants contained from 11- to >100-fold more copies of the EPSPS gene than the susceptible plants, whereas the susceptible plants had only one copy of EPSPS. Plants surviving the recommended dose of glyphosate contained at least 10 copies. The EPSPS copy number was positively related to glyphosate resistance level (r = 80). Therefore, resistance to glyphosate in these populations is due to multiplication of the target site. Resistance mechanisms could be location-specific. Suppressing the mechanism for gene amplification may overcome resistance. PMID:25760654

  1. Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico.

    PubMed

    Ruiz-Toledo, Jovani; Castro, Ricardo; Rivero-Pérez, Norma; Bello-Mendoza, Ricardo; Sánchez, Daniel

    2014-09-01

    Glyphosate is an agrochemical widely used to control weeds. However, glyphosate spreads to water bodies by spray-drift, run-off and leaching, potentially causing detrimental effects on non-target biota. There is no information on the occurrence of this herbicide in water bodies near crop fields in Mexico, although it is the most commonly used pesticide in this country. To fill this gap, we quantified glyphosate in water bodies from twenty-three locations, including natural protected areas and agricultural areas in southern Mexico, during the dry and the rainy seasons. We expected (1) higher concentrations during the dry season due to reduced dilution by precipitation and, (2) absence of glyphosate in the protected areas. In agreement with our expectation, concentration of glyphosate was higher during the dry season (up to 36.7 μg/L). Nonetheless, glyphosate was detected in all samples-including natural protected areas. These results emphasize the need for an evaluation of the impact of glyphosate on native species as well as regulate its use. PMID:25011503

  2. A Novel Naturally Occurring Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. Confers High Glyphosate Tolerance to Rice

    PubMed Central

    Yi, Shu-yuan; Cui, Ying; Zhao, Yan; Liu, Zi-duo; Lin, Yong-jun; Zhou, Fei

    2016-01-01

    As glyphosate is a broad spectrum herbicide extensively used in agriculture worldwide, identification of new aroA genes with high level of glyphosate tolerance is essential for the development and breeding of transgenic glyphosate-tolerant crops. In this study, an aroA gene was cloned from a Janibacter sp. strain isolated from marine sediment (designated as aroAJ. sp). The purified aroAJ. sp enzyme has a Km value of 30 μM for PEP and 83 μM for S3P, and a significantly higher Ki value for glyphosate (373 μM) than aroAE. coli. AroAJ. sp is characterized as a novel and naturally occurring class I aroA enzyme with glyphosate tolerance. Furthermore, we show that aroAJ. sp can be used as an effective selectable marker in both japonica and indica rice cultivar. Transgenic rice lines were tested by herbicide bioassay and it was confirmed that they could tolerate up to 3360 g/ha glyphosate, a dosage four-fold that of the recommended agricultural application level. To our knowledge, it is the first report of a naturally occurring novel class I aroA gene which can be efficiently utilized to study and develop transgenic glyphosate-tolerant crops, and can facilitate a more economical and simplified weed control system. PMID:26754957

  3. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  4. Synthesis of the unmanned aerial vehicle remote control augmentation system

    NASA Astrophysics Data System (ADS)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  5. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  6. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a) General requirements. (1) Unless otherwise provided...

  7. A Classroom Simulation of Aerial Photography.

    ERIC Educational Resources Information Center

    Baker, Simon

    1981-01-01

    Explains how a simulation of aerial photography can help students in a college level beginning course on interpretation of aerial photography understand the interrelationships of the airplane, the camera, and the earth's surface. Procedures, objectives, equipment, and scale are discussed. (DB)

  8. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  9. Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry

    USGS Publications Warehouse

    Tush, Daniel; Loftin, Keith A.; Meyer, Michael T.

    2013-01-01

    Little is known about the occurrence, fate, and effects of the ancillary additives in pesticide formulations. Polyoxyethylene tallow amine (POEA) is a non-ionic surfactant used in many glyphosate formulations, a widely applied herbicide both in agricultural and urban environments. POEA has not been previously well characterized, but has been shown to be toxic to various aquatic organisms. Characterization of technical mixtures using ultra-high performance liquid chromatography (UHPLC) and mass spectrometry shows POEA is a complex combination of homologs of different aliphatic moieties and ranges of ethoxylate units. Tandem mass spectrometry experiments indicate that POEA homologs generate no product ions readily suitable for quantitative analysis due to poor sensitivity. A comparison of multiple high performance liquid chromatography (HPLC) and UHPLC analytical columns indicates that the stationary phase is more important in column selection than other parameters for the separation of POEA. Analysis of several agricultural and household glyphosate formulations confirms that POEA is a common ingredient but ethoxylate distributions among formulations vary.

  10. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    PubMed

    Tush, Daniel; Meyer, Michael T

    2016-06-01

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season. PMID:27163278

  11. Orientation-selective building detection in aerial images

    NASA Astrophysics Data System (ADS)

    Manno-Kovacs, Andrea; Sziranyi, Tamas

    2015-10-01

    This paper introduces a novel aerial building detection method based on region orientation as a new feature, which is used in various steps throughout the presented framework. As building objects are expected to be connected with each other on a regional level, exploiting the main orientation obtained from the local gradient analysis provides further information for detection purposes. The orientation information is applied for an improved edge map design, which is integrated with classical features like shadow and color. Moreover, an orthogonality check is introduced for finding building candidates, and their final shapes defined by the Chan-Vese active contour algorithm are refined based on the orientation information, resulting in smooth and accurate building outlines. The proposed framework is evaluated on multiple data sets, including aerial and high resolution optical satellite images, and compared to six state-of-the-art methods in both object and pixel level evaluation, proving the algorithm's efficiency.

  12. Adaptive planning of emergency aerial photogrammetric mission

    NASA Astrophysics Data System (ADS)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  13. The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails.

    PubMed

    Omran, Nahla Elsayed; Salama, Wesam Mohamed

    2016-04-01

    Atrazine (AZ) and glyphosate (GL) are herbicides that are widely applied to cereal crops in Egypt. The present study was designed to investigate the response of the snailBiomphalaria alexandrina(Mollusca: Gastropoda) as a bioindicator for endocrine disrupters in terms of steroid levels (testosterone (T) and 17β-estradiol (E)), alteration of microsomal CYP4501B1-like immunoreactivity, total protein (TP) level, and gonadal structure after exposure to sublethal concentrations of AZ or GL for 3 weeks. In order to study the ability of the snails' recuperation, the exposed snails were subjected to a recovery period for 2 weeks. The results showed that the level of T, E, and TP contents were significantly decreased (p≤ 0.05) in both AZ- and GL-exposed groups compared with control (unexposed) group. The level of microsomal CYP4501B1-like immunoreactivity increased significantly (p≤ 0.05) in GL- and AZ-exposed snails and reach nearly a 50% increase in AZ-exposed group. Histological investigation of the ovotestis showed that AZ and GL caused degenerative changes including azoospermia and oocytes deformation. Interestingly, all the recovered groups did not return back to their normal state. It can be concluded that both herbicides are endocrine disrupters and cause cellular toxicity indicated by the decrease of protein content and the increase in CYP4501B1-like immunoreactivity. This toxicity is irreversible and the snail is not able to recover its normal state. The fluctuation of CYP4501B1 suggests that this vertebrate-like enzyme may be functional also in the snail and may be used as a biomarker for insecticide toxicity. PMID:24215068

  14. GLYPHOSATE OVER-THE-TOP APPLICATION INFLUENCES BOLL DEVELOPMENT OF ROUNDUP READY COTTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton yield can be affected by several parameters including number of plants and bolls per unit area, seed per boll, and fibers per seed. Any factor that reduces these parameters could potentially reduce lint yield. To determine if glyphosate over-the-top applications affect fruiting on Roundup Rea...

  15. Weed Control and Yield Comparisons of Twin- and Single-row Glyphosate Resistant Cotton Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr field study was conducted during 2007 and 2008 at Stoneville, MS, to determine the effect of twin-row (two rows 38 cm apart on 102-cm beds) and single-row (on 102-cm beds) pattern and glyphosate POST applications with and without fluometuron + S-metolachlor PRE on cotton canopy closure, weed ...

  16. Uptake and toxicity of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr.

    PubMed

    Vannini, Andrea; Guarnieri, Massimo; Bačkor, Martin; Bilová, Ivana; Loppi, Stefano

    2015-12-01

    This study investigated if treatment of the lichen Xanthoria parietina (L.) Th. Fr. with glyphosate caused uptake of this herbicide as well as physiological alterations. Samples were treated with Glifene SL®, a common commercial glyphosate-based herbicide, at the lowest recommended doses (3.6g/L) as well as with doses slightly higher than the highest suggested (36 g/L). The results clearly showed glyphosate uptake in X. parietina proportionally to the dose provided. Adverse physiological effects were evident on the photosynthetic apparatus (photosynthetic efficiency, chlorophyll a content, chlorophyll degradation) as well as on the fungal respiration rates and cell membrane integrity (ergosterol content, dehydrogenase activity) already after 24h from treatment, also at the low application dose. It is concluded that lichens are suitable organisms for monitoring unwanted biological effects from the application of glyphosate-based herbicides, as well as for detecting the accumulation of this compound in the biota, thus screening for its environmental fate. PMID:26247898

  17. The role of absorption and translocation as a mechanism of resistance to glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The continuous use of glyphosate has resulted in the selection of resistant biotypes in 13 different species. Three different mechanisms of resistance have been proposed for these biotypes: 1) Decreased translocation to meristems; 2) Mutation of target site (EPSPS) and 3) Increased expression of EP...

  18. Interactions of tillage and cover crop on runoff water quality from glyphosate-resistant cotton systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation management systems need to be optimized for glyphosate [N-(phosphonomethyl)glycine]-resistant cotton (Gossypium hirsutum L.) (GRC) in the lower Mississippi River alluvial basin to balance production goals with environmental concerns. A rainfall simulation study was conducted in experim...

  19. Influence of application timing on the impact of glyphosate on giant reed (Arundo donax L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outdoor experiments were conducted at Davis, California and near Fresno, California. Plants received an application of 1.5% glyphosate solution in either September, 2006, October, 2006, November, 2006, April, 2007, June, 2007 or August, 2007. Leaf greenness, number of living and dead stems, and the ...

  20. Movement of glyphosate-resistant Palmer amaranth pollen in-field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmer amaranth (Amaranthus palmeri) is one of the most troublesome weeds of Southern row crops. The objective of this study was to determine if the glyphosate resistance trait could be transferred via pollen in Palmer amaranth. In 2006, a GR Palmer amaranth pollen source population was planted in t...

  1. The Role of Translocation as a Mechanism of Resistance to Glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The continuous use of glyphosate has resulted in the selection of resistant biotypes in 13 different weed species. Three different mechanisms of resistance have been proposed for these biotypes: 1) Decreased translocation to meristems; 2) Mutation of target site 5-enol-pyruvylshikimate-3-phosphate ...

  2. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri.

    PubMed

    Ribeiro, Daniela N; Pan, Zhiqiang; Duke, Stephen O; Nandula, Vijay K; Baldwin, Brian S; Shaw, David R; Dayan, Franck E

    2014-01-01

    The inheritance of glyphosate resistance in two Amaranthus palmeri populations (R1 and R2) was examined in reciprocal crosses (RC) and second reciprocal crosses (2RC) between glyphosate-resistant (R) and -susceptible (S) parents of this dioecious species. R populations and Female-R × Male-S crosses contain higher 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copy numbers than the S population. EPSPS expression, EPSPS enzyme activity, EPSPS protein quantity, and level of resistance to glyphosate correlated positively with genomic EPSPS relative copy number. Transfer of resistance was more influenced by the female than the male parent in spite of the fact that the multiple copies of EPSPS are amplified in the nuclear genome. This led us to hypothesize that this perplexing pattern of inheritance may result from apomictic seed production in A. palmeri. We confirmed that reproductively isolated R and S female plants produced seeds, indicating that A. palmeri can produce seeds both sexually and apomictically (facultative apomixis). This apomictic trait accounts for the low copy number inheritance in the Female-S × Male-R offsprings. Apomixis may also enhance the stability of the glyphosate resistance trait in the R populations in the absence of reproductive partners. PMID:24142112

  3. Interaction of the bioherbicide Myrothecium verrucarria and glyphosate for kudzu control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spore and mycelial formulations of the bioherbicidal fungus Myrothecium verrucaria (MV) were tested alone and in combination with glyphosate for control of kudzu (Pueraria lobata) under greenhouse and field conditions in naturally-infested sites at Lexington and Eden, MS. Control of kudzu increased...

  4. Effects of Glyphosate Ripener Timing and Rate on Cane and Sugar Yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Louisiana sugarcane industry is dependent on the use of glyphosate ripener applications to increase sucrose levels. Initially these applications began in late-August and were limited to the second-ratoon crop harvested at the start of the growing season. Currently, applications have been exten...

  5. Bioherbicidal effects of Myrothecium verrucaria on Glyphosate-resistant and -susceptible Palmer amaranth biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioherbicidal effects of the fungus Myrothecium verrucaria (MV) on glyphosate-resistant and -susceptible Palmer amaranth were examined on whole plants and in leaf bioassays of young and mature plants. Leaf bioassays using mycelia from the fermentation product of MV indicated that excised leaves of ...

  6. Agricultural impacts of glyphosate-resistant soybean cultivation in South America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the 2009/2010 growing season, Brazil was the second largest world soybean producer, followed by Argentina. Glyphosate-resistant soybeans (GRS) are being cultivated in most of soybean area in South America. Overall, the GRS system is beneficial to the environment when compared to conventional soyb...

  7. Assessment of soybean injury from glyphosate using airborne multispectral remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Glyphosate drift onto off-target sensitive crops can reduce growth and yield, and is of great concern to growers and pesticide applicators. Detection of herbicide injury using biological responses is tedious, so more convenient and rapid detection methods are needed. The objective of thi...

  8. Introduction. Glyphosate Interactions with Physiology, Nutrition, and Diseases of Plants: Threat to Sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most significant inputs necessary for successful conventional crop production is synthetic chemical herbicides to control a wide variety of weed infestations. Glyphosate, the active ingredient in the herbicide, “Roundup”, became very popular after introduction in the 1970’s for non-select...

  9. Multiple resistance of horseweed to glyphosate and paraquat and its control with paraquat and metribuzin combinations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse and field studies were conducted in 2007 and 2008 to investigate possible multiple-resistance of horseweed to paraquat and glyphosate, and to evaluate the effect of the addition of metribuzin to paraquat on control of paraquat-resistant horseweed. Results indicated that the GR50 (herbicid...

  10. Glyphosate-Resistant Crops and Weeds: Now and in the Future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant crops (GRCs) represent more than 80% of the 120 million ha of transgenic crops grown annually world-wide. This single trait has been enthusiastically adopted in soybean, maize, cotton, canola, and sugarbeet in large part because of the economic advantage of the technology, in a...

  11. Leaf anatomy and morphometry in three eucalypt clones treated with glyphosate.

    PubMed

    Tuffi Santos, L D; Sant'Anna-Santos, B F; Meira, R M S A; Ferreira, F A; Tiburcio, R A S; Machado, A F L

    2009-02-01

    This work aimed to evaluate the effects of simulated drift of glyphosate on the morphoanatomy of three eucalypt clones and to correlate the intoxication symptoms on a microscopic scale with those observed in this visual analysis. The effects of glyphosate drift were proportional to the five doses tested, with Eucalyptus urophylla being more tolerant to the herbicide than E. grandis and urograndis hybrid. The symptoms of intoxication which were similar for the different clones at 7 and 15 days after application were characterized by leaf wilting, chlorosis and curling and, at the highest rates, by necrosis, leaf senescence and death. Anatomically glyphosate doses higher than 86.4 g.ha-1 caused cellular plasmolysis, hypertrophy and hyperplasia, formation of the cicatrization tissue and dead cells on the adaxial epidermis. The spongy parenchyma had a decrease, and the palisade parenchyma and leaf blade thickness had an increase. The increased thickness in leaf blade and palisade parenchyma may be related to the plant response to glyphosate action, as a form of recovering the photosynthetically active area reduced by necroses and leaf senescence caused by the herbicide. PMID:19347155

  12. Combined glyphosate-ripener and residue blanket stresses reduce ratoon yields in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Failure to remove the blanket of residue generated during green-cane harvesting and certain glyphosate ripener application regimes have independently been shown to reduce yields of the subsequent ratoon crop of Louisiana’s leading variety LCP 85-384. The objectives of this experiment were to determ...

  13. Ab initio computational studies on molecular conformation of N-methyl-glyphosate

    NASA Astrophysics Data System (ADS)

    Kaliannan, P.; Naseer Ali, M. Mohamed; Venuvanalingam, P.

    Conformational analysis of N-methyl-glyphosate has been carried out using an ab initio molecular orbital (MO) method at the HF/3-21G* levels of theory and the results are compared with the results of a previously studied compound, namely glyphosate. The potential energy surface of the molecule obtained by varying the central torsion angles (Φ, Ψ) was investigated in detail. Fourteen conformers with 5 kcal mol-1 energy cut-off have been selected from the potential energy surface for geometry optimization to locate the true minimum on the conformational space. The minimum has been found to be at (-62°, 110°) for the central torsion angles. This conformation is stabilized by hydrogen bond interactions (O-H···O and C-H···O) and the interactions due to protons nearer to each other. This cationic field leads to the formation of a hydrophobic patch in this structure, as well as in the structures closer to the global minimum. This patch may destabilize the favourable interaction of N-methyl-glyphosate with the surrounding amino acid residues in the binding cavity as they form the cationic field throughout the glyphosate binding region.

  14. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil.

    PubMed

    Koskinen, William C; Marek, LeEtta J; Hall, Kathleen E

    2016-03-01

    There is a need for simple, fast, efficient and sensitive methods of analysis for glyphosate and its degradate aminomethylphosphonic acid (AMPA) in diverse matrices such as water, plant materials and soil to facilitate environmental research needed to address the continuing concerns related to increasing glyphosate use. A variety of water-based solutions have been used to extract the chemicals from different matrices. Many methods require extensive sample preparation, including derivatization and clean-up, prior to analysis by a variety of detection techniques. This review summarizes methods used during the past 15 years for analysis of glyphosate and AMPA in water, plant materials and soil. The simplest methods use aqueous extraction of glyphosate and AMPA from plant materials and soil, no derivatization, solid-phase extraction (SPE) columns for clean-up, guard columns for separation and confirmation of the analytes by mass spectrometry and quantitation using isotope-labeled internal standards. They have levels of detection (LODs) below the regulatory limits in North America. These methods are discussed in more detail in the review. © 2015 Society of Chemical Industry. PMID:26454260

  15. [Simultaneous analysis of glyphosate and glufosinate in vegetables and fruits by GC-FPD].

    PubMed

    Watanabe, Sadao

    2004-02-01

    A rapid analytical method for residues of the herbicide, glyphosate [N-(phosphonomethyl)glycine], glufosinate [DL-homoalanine-4-yl(methyl)phosphinic acid] and glufosinate metabolite (MPPA: 3-methylphosphinicopropionic acid) in vegetables and fruits was developed by improving the bulletin method of glufosinate. 50 mL of solution extracted with water (corresponding to 2 g of the sample) was loaded on a column packed with 5 mL of anion exchange resin and then the trapped glyphosate, glufosinate and MPPA were eluted with 60 mL of 50% acetic acid. After derivatization with trimethyl orthoacetate, the derivatives were purified and separated on a Florisil cartridge column. The determination of the derivatives was performed with GC-FPD. The detection limits for glyphosate, glufosinate and MPPA were 0.01 microgram/g, 0.01 microgram/g and 0.005 microgram/g, respectively. The recoveries from fortified samples were 83.5-89.8% for glyphosate, 77.9-92.2% for glufosinate and 75.0-87.2% for MPPA. PMID:15168560

  16. Response of Pennsylvania native plant species, corn and soybean to tank mixes of dicamba and glyphosate

    EPA Science Inventory

    Crops such as soybean are being genetically modified to be tolerant to multiple herbicides, such as dicamba and glyphosate, in order to allow treatment with several herbicides to control the development of herbicide resistance in weeds. However, with increased use of multiple-he...

  17. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    PubMed

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-01-01

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance. PMID:27525929

  18. The effect of glyphosate on import into a sink leaf of sugar beet

    SciTech Connect

    Shieh, Wenjang; Geiger, D.R. )

    1990-05-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying {sup 14}CO{sub 2} to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying {sup 14}C were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves.

  19. Field application of glyphosate induces molecular changes affecting vegetative growth processes in leafy spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recommended rates of glyphosate for non-cultivated areas destroy the aboveground shoots of the perennial plant leafy spurge. However, such applications cause little or no damage to underground adventitious buds (UABs), and thus the plant readily regenerates vegetatively. High concentrations of glyph...

  20. A practical interpretation and use of the USDA aerial fixed-wing nozzle models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper selection and operation of spray nozzles associated with aerial applications is critical to insuring efficacy while mitigating off-target movement. Labels for most agrochemical products applied in the U.S. specifically define the droplet size or spray classification that can be used to apply...

  1. Soil microbial activity is affected by Roundup WeatherMax and pesticides applied to cotton (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adoption of glyphosate-based weed control systems has led to increased use of the herbicide with continued use of additional pesticides. Combinations of pesticides may affect soil microbial activity differently than pesticides applied alone. Research was conducted to evaluate the influence of glypho...

  2. Effects of sublethal doses of glyphosate on honeybee navigation.

    PubMed

    Balbuena, María Sol; Tison, Léa; Hahn, Marie-Luise; Greggers, Uwe; Menzel, Randolf; Farina, Walter M

    2015-09-01

    Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l(-1): corresponding to 0.125, 0.250 and 0.500 μg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l(-1) GLY spent more time performing homeward flights than control bees or bees treated with lower concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release from the same site increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to levels of GLY commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success. PMID:26333931

  3. COCOA: tracking in aerial imagery

    NASA Astrophysics Data System (ADS)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  4. Horseweed with reduced susceptibility to glyphosate found in the czech republic.

    PubMed

    Chodová, Daniela; Salava, Jaroslav; Martincová, Olga; Cvikrová, Milena

    2009-08-12

    The physiological and molecular basis of apparent resistance to glyphosate in horseweed (Conyza canadensis L. Cronq.) plants that had survived being sprayed with the herbicide at Prague-Bubny railway station in the Czech Republic was investigated. For the sake of comparison, plants expected to be susceptible were collected in areas where no herbicides had been used. Plants of both sets were treated, at the rosette stage (10-25 leaves, diameter of 3-5 cm), with herbicide at the rate recommended for use in the Czech Republic to control horseweed (960 g of glyphosate-IPA/ha; Roundup Klasik, Monsanto, 480 g of glyphosate-IPA ae L(-1)). Phytotoxic symptoms of the treated plants varied substantially, both between and within these sets of plants. Leaves of susceptible (S) plants wilted and turned yellow, and the plants subsequently died; leaves of plants with reduced susceptibility (RS) remained green, or new leaves were created in the center of their rosettes a few weeks after glyphosate application. There were no significant differences in the accumulation of shikimate between S and RS plants 3 days after treatment (DAT). However, the time course of changes in shikimic acid contents differed between the two biotypes; from 3 to 10 DAT, they decreased more than 4-fold in RS plants, while in S plants, they increased (3-fold, on average) from 3 to 7 DAT. A conserved region of the epsps gene, in which mutations are known to confer resistance in several plant species, was amplified from samples of both S and RS plants and sequenced, but no changes in the encoded amino acid sequence were found, indicating that mutations at another epsps site were responsible for the observed resistance, or that the mechanism may be at least partially non-target-based. Our results suggest that the reduced susceptibility to glyphosate may be due to impaired herbicide translocation, as previously found in studies of horseweed in the United States. PMID:19722578

  5. Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium.

    PubMed

    Laitinen, Pirkko; Siimes, Katri; Rämö, Sari; Jauhiainen, Lauri; Eronen, Liisa; Oinonen, Seija; Hartikainen, Helinä

    2008-01-01

    The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P < 0.1 for glyphosate and P < 0.01 for glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable. PMID:18453404

  6. Chemical control of ambrosia Artemisiifolia on non-crop areas: are there alternatives to glyphosate?

    PubMed

    Lombard, A; Gauvrit, C; Chauvel, B

    2005-01-01

    We compared glyphosate, glufosinate and metsulfuron-methyl to control Ambrosia artemisiifolia under non-crop conditions. A laboratory study showed that A. artemisiifolia is an easy-to-wet species and that glufosinate and glyphosate are quickly absorbed by its leaves (nearly 100% in 24 h). Metsulfuron-methyl absorption was slower (about 50% in 24 h) but was strongly promoted by terpenic alcohol and esterified rapeseed oil. In the greenhouse, all three herbicides were efficacious against A. artemisiifolia, with ED50s of <23, 23 and 0.8 g ha(-1) for glufosinate, glyphosate and metsulfuron-methyl, respectively. These results were confirmed on a non-crop area for glufosinate and glyphosate, which at half the registered dose reached high efficacies at both the 4 to 6-node and flowering stages of A. artemisiifolia. By contrast, metsulfuron-methyl showed no efficacy. However, after treatment at the 4- to 6-node stage, new emergence of A. artemisiifolia led to the presence of vigorous plants that bore numerous flowers and produced high levels of pollen. After treatment at the flowering stage, flower production by A. artemisiifolia was not significantly affected, but achene weight was decreased by 60 to 70% and seed viability was only 8 to 13% for the treated plants, as compared to 85% for the control. No significant difference was observed between the two herbicides and between the doses. It is concluded that glufosinate can be an alternative to glyphosate for the chemical control of A. artemisiifolia on non-crop areas. However, with both herbicides, it is difficult to attain the two objectives of reducing seed production and pollen production by means of only one treatment. PMID:16637214

  7. Glyphosate and AMPA contents in sediments produced by wind erosion of agricultural soils in Argentina

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Aimar, Silvia; De Gerónimo, Eduardo; Buschiazzo, Daniel; Mendez, Mariano; Costa, José Luis

    2014-05-01

    Wind erosion of soils is an important event in arid and semiarid regions of Argentina. The magnitude of wind erosion occurring under different management practices is relatively well known in this region but less information is available on the quality of the eroded material. Considering that the intensification of agriculture may increase the concentrations of substances in the eroded material, producing potential negative effects on the environment, we analyzed the amount of glyphosate and AMPA in sediments produced by wind erosion of agricultural soils of Argentina. Wind eroded materials were collected by means of BSNE samplers in two loess sites of the semiarid region of Argentina: Chaco and La Pampa. Samples were collected from 1 ha square fields at 13.5, 50 and 150 cm height. Results showed that at higher heights the concentrations of glyphosate and AMPA were mostly higher. The glyphosate concentration was more variable and higher in Chaco (0.66 to 313 µg kg-1) than in La Pampa (4.17 to 114 µg kg-1). These results may be due to the higher use of herbicides in Chaco, where the predominant crops are soybeans and corn, produced under no-tillage. Under these conditions the use of glyphosate for weeds control is a common practice. Conversely, AMPA concentrations were higher in La Pampa (13.1 to 101.3 µg kg-1) than in Chaco (1.3 to 83 µg kg-1). These preliminary results show high concentrations of glyphosate and AMPA in wind eroded materials of agricultural soils of Argentina. More research is needed to confirm these high concentrations in other conditions in order to detect the temporal and spatial distribution patterns of the herbicide.

  8. The DOE ARM Aerial Facility

    SciTech Connect

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  9. Unmanned aerial survey of elephants.

    PubMed

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km(2) with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  10. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  11. Concentrations of Glyphosate, Its Degradation Product, Aminomethylphosphonic Acid, and Glufosinate in Ground- and Surface-Water, Rainfall, and Soil Samples Collected in the United States, 2001-06

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Gilliom, Robert J.; Meyer, Michael T.

    2007-01-01

    The U.S. Geological Survey conducted a number of studies from 2001 through 2006 to investigate and document the occurrence, fate, and transport of glyphosate, its degradation product, aminomethylphosphonic acid (AMPA), and glufosinate in 2,135 ground- and surface-water samples, 14 rainfall samples, and 193 soil samples. Analytical methods were developed to detect and measure glyphosate, AMPA, and glufosinate in water, rainfall, and soil. Results show that AMPA was detected more frequently and occurred at similar or higher concentrations than the parent compound, glyphosate, whereas glufosinate was seldom found in the environment. Glyphosate and AMPA were detected more frequently in surface water than in ground water. Trace levels of glyphosate and AMPA may persist in the soil from year to year. The methods and data described in this report are useful to researchers and regulators interested in the occurrence, fate, and transport of glyphosate and AMPA in the environment.

  12. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F., Jr.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  13. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater?

    PubMed

    Struger, J; Van Stempvoort, D R; Brown, S J

    2015-09-01

    Correlation analysis suggests that occurrences of AMPA in streams of southern Ontario are linked mainly to glyphosate in both urban and rural settings, rather than to wastewater sources, as some previous studies have suggested. For this analysis the artificial sweetener acesulfame was analyzed as a wastewater indicator in surface water samples collected from urban and rural settings in southern Ontario, Canada. This interpretation is supported by the concurrence of seasonal fluctuations of glyphosate and AMPA concentrations. Herbicide applications in larger urban centres and along major transportation corridors appear to be important sources of glyphosate and AMPA in surface water, in addition to uses of this herbicide in rural and mixed use areas. Fluctuations in concentrations of acesulfame and glyphosate residues were found to be related to hydrologic events. PMID:26187493

  14. Morpho-physiological characterization of glyphosate-resistant and -susceptible horseweed (Conyza canadensis) biotypes of US Midsouth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth chamber and greenhouse experiments were conducted to compare selected biological and physiological parameters of glyphosate-resistant (GR) and -susceptible (GS) horseweed biotypes from Mississippi with a broader goal of fitness characterization in these biotypes. Vegetative growth parameters ...

  15. Aerial videotape mapping of coastal geomorphic changes

    USGS Publications Warehouse

    Debusschere, Karolien; Penland, Shea; Westphal, Karen A.; Reimer, P. Douglas; McBride, Randolph A.

    1991-01-01

    An aerial geomorphic mapping system was developed to examine the spatial and temporal variability in the coastal geomorphology of Louisiana. Between 1984 and 1990 eleven sequential annual and post-hurricane aerial videotape surveys were flown covering periods of prolonged fair weather, hurricane impacts and subsequent post-storm recoveries. A coastal geomorphic classification system was developed to map the spatial and temporal geomorphic changes between these surveys. The classification system is based on 10 years of shoreline monitoring, analysis of aerial photography for 1940-1989, and numerous field surveys. The classification system divides shorelines into two broad classes: natural and altered. Each class consists of several genetically linked categories of shorelines. Each category is further subdivided into morphologic types on the basis of landform relief, elevation, habitat type, vegetation density and type, and sediment characteristics. The classification is used with imagery from the low-altitude, high-resolution aerial videotape surveys to describe and quantify the longshore and cross-shore geomorphic, sedimentologic, and vegetative character of Louisiana's shoreline systems. The mapping system makes it possible to delineate and map detailed geomorphic habitat changes at a resolution higher than that of conventional vertical aerial photography. Morphologic units are mapped parallel to the regional shoreline from the aerial videotape imagery onto the base maps at a scale of 1:24,000. The base maps were constructed from vertical aerial photography concurrent with the data of the video imagery.

  16. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Guo, Yiqing; Huang, Yanbo; Reddy, Krishna N.; Zhao, Yanhua; Molin, William T.

    2015-01-01

    In this study, chlorophyll fluorescence (ChlF) was used to detect the onset of soybean plant injury from treatment of glyphosate, the most widely used herbicide. Thirty-six pots of nonglyphosate-resistant soybean were randomly divided into three groups and treated with different doses of glyphosate solutions. The three treatment groups were control (CTRL) group (with no glyphosate treatment), 0.25X group (treated with 0.217 kg.ae/ha solution of glyphosate), and 0.5X group (treated with 0.433 kg.ae/ha solution of glyphosate). Three kinds of fluorescence measurements, steady-state fluorescence spectra, Kautsky effect parameters, and ChlF-related spectral indices were extracted and generated from the measurements in the glyphosate treatment experiment. The mean values of these fluorescence measurements for each of the CTRL group, the 0.25X group, and the 0.5X group were calculated. Glyphosate-induced leaf injury was then analyzed by examining the separability of these mean values at 6, 24, 48, and 72 hours after the treatment (HAT). Results indicate that the peak position of far-red ChlF shows an obvious blue shift for glyphosate-treated soybean, and peak values of steady-state fluorescence spectra for the three groups can be significantly distinguished from each other at 48 HAT and later. Four Kautsky effect parameters, Fv, Fv/Fm, Area, and PI, are parameters sensitive to glyphosate treatment, showing some differences between the CTRL group and treated groups at 24 HAT, and significant differences among the three groups at and beyond 48 HAT. Moreover, ChlF-related spectral indices, R6832/(R675.R690) and R690/R655, are also shown to be useful in detection of the glyphosate injury, though they are less effective than the steady-state fluorescence spectra and the Kautsky effect parameters. Based on the presented results, it can be concluded that glyphosate-induced soybean injury can be detected in a timely manner by the ChlF measurements, and this method has the

  17. Interactive effects of temperature and glyphosate on the behavior of blue ridge two-lined salamanders (Eurycea wilderae).

    PubMed

    Gandhi, Jaina S; Cecala, Kristen K

    2016-09-01

    The objective of the present study was to evaluate the potential interactive effects of stream temperatures and environmentally relevant glyphosate-based herbicide concentrations on movement and antipredator behaviors of larval Eurycea wilderae (Blue Ridge two-lined salamander). Larval salamanders were exposed to 1 of 4 environmentally relevant glyphosate concentrations (0.00 µg acid equivalent [a.e.]/L, 0.73 µg a.e./L, 1.46 µg a.e./L, and 2.92 µg a.e./L) at either ambient (12 °C) or elevated (23 °C) water temperature. Behaviors observed included the exploration of a novel habitat, use of refuge, habitat selection relative to a potential predator, and burst movement distance. In the absence of glyphosate, temperature consistently affected movement and refuge-use behavior, with individuals moving longer distances more frequently and using refuge less at warm temperatures; however, when glyphosate was added, the authors observed inconsistent effects of temperature that may have resulted from differential toxicity at various temperatures. Larval salamanders made shorter, more frequent movements and demonstrated reduced burst distance at higher glyphosate concentrations. The authors also found that lower glyphosate concentrations sometimes had stronger effects than higher concentrations (i.e., nonmonotonic dose responses), suggesting that standard safety tests conducted only at higher glyphosate concentrations might overlook important sublethal effects on salamander behavior. These data demonstrate that sublethal effects of glyphosate-based herbicides on natural behaviors of amphibians can occur with short-term exposure to environmentally relevant concentrations. Environ Toxicol Chem 2016;35:2297-2303. © 2016 SETAC. PMID:26872413

  18. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  19. Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process.

    PubMed

    Vidal, Eduardo; Negro, Antonio; Cassano, Alberto; Zalazar, Cristina

    2015-02-01

    A simplified mathematical model to describe the oxidative degradation of glyphosate employing hydrogen peroxide and UV radiation was developed based on a sequence of predominant reactions. The kinetics obtained include all the required significant variables. Consequently, not only were concentration dependencies examined but also the influence of a detailed spatial description of the radiation field was included as part of the modeling. The kinetic parameters were obtained by comparing the simulation concentrations obtained with the model with the experimental values gathered in the laboratory reactor, employing a multiparameter non-linear regression analysis. In addition, the potential of the H2O2/UV process for treating water polluted with a commercial formulation, which was the glyphosate monoisopropylamine salt plus some additives, was studied. The glyphosate and TOC (total organic carbon) conversions reached were close to 80% and 70% respectively at 12 h (0.66 h actual exposure to radiation). It has been shown that a simple reaction scheme for the degradation of glyphosate acid and glyphosate isopropylamine salt from a commercial formulation can represent with good accuracy the performance of both reacting systems. In addition, the degradation procedure allowed a clear reduction of the toxicity of the glyphosate in the formulation over Vibrio fischeri at the end of the experiments. For this reason, reaching complete mineralization might not be necessary. PMID:25412963

  20. Glyphosate sub-lethal toxicity to non-target organisms occurring in Jatropha curcas plantations in Brazil.

    PubMed

    de Saraiva, Althiéris Souza; Sarmento, Renato Almeida; Pedro-Neto, Marçal; Teodoro, Adenir Vieira; Erasmo, Eduardo Andrea Lemus; Belchior, Diana Cléssia Vieira; de Azevedo, Emiliano Brandão

    2016-10-01

    Weed management in physic nut plantations has generally been performed by spraying the herbicide glyphosate. However, the effects of glyphosate on non-target organisms present in the crop system are unknown. Here, we evaluated the toxicity of glyphosate (Roundup Transorb(®)) against the pest species Polyphagotarsonemus latus (Acari: Tarsonemidae) and Tetranychus bastosi (Acari: Tetranychidae) which can be exposed by drift. These mites are considered pests of the physic nut; however, they can also feed and reside on weeds associated with the crop, serving as food sources for predatory mites. When subjected to residue (by ingestion of sap of treated plants), and direct contact to glyphosate, P. latus reproduction was affected but T. bastosi was affected only by the residual effect. Although the herbicide caused a reduction in the number of eggs laid by the females of both pest mites, it is suggested that sublethal effects of glyphosate stimulates oviposition of P. latus and T. bastosi: both species displayed higher reproductive rates when exposed to 0.36 kg ha(-1) of the herbicide. We conclude that glyphosate negatively affects the arthropod herbivores studied and we discuss possible implications on their biological control in Jatropha curcas plantations. PMID:27502112

  1. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.

    PubMed

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew; Joost, Stéphane

    2016-03-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission's Joint Research Center (JRC) have noted that aerial imagery will inevitably present a big data challenge. The purpose of this article is to get ahead of this future challenge by proposing a hybrid crowdsourcing and real-time machine learning solution to rapidly process large volumes of aerial data for disaster response in a time-sensitive manner. Crowdsourcing can be used to annotate features of interest in aerial images (such as damaged shelters and roads blocked by debris). These human-annotated features can then be used to train a supervised machine learning system to learn to recognize such features in new unseen images. In this article, we describe how this hybrid solution for image analysis can be implemented as a module (i.e., Aerial Clicker) to extend an existing platform called Artificial Intelligence for Disaster Response (AIDR), which has already been deployed to classify microblog messages during disasters using its Text Clicker module and in response to Cyclone Pam, a category 5 cyclone that devastated Vanuatu in March 2015. The hybrid solution we present can be applied to both aerial and satellite imagery and has applications beyond disaster response such as wildlife protection, human rights, and archeological exploration. As a proof of concept, we recently piloted this solution using very high-resolution aerial photographs of a wildlife reserve in Namibia to support rangers with their wildlife conservation efforts (SAVMAP project, http://lasig.epfl.ch/savmap ). The

  2. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  3. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  4. Officials: Aerial Spraying Working Against Miami Mosquitoes

    MedlinePlus

    ... Officials: Aerial Spraying Working Against Miami Mosquitoes The insects are to blame for first cases of Zika ... mosquitoes in a part of Miami where the insects have been linked to 16 cases of Zika ...

  5. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  6. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  7. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  8. Implementation strategy of wafer-plane and aerial-plane inspection for advanced mask manufacture

    NASA Astrophysics Data System (ADS)

    Kim, Won-Sun; Chung, Dong-Hoon; Jeon, Chan-Uk; Cho, HanKu; Huang, William; Miller, John; Inderhees, Gregg; Pinto, Becky; Hur, Jiuk; Park, Kihun; Han, Jay

    2009-04-01

    Inspection of aggressive Optical Proximity Correction (OPC) designs, improvement of usable sensitivity, and reduction of cost of ownership are the three major challenges for today's mask inspection methodologies. In this paper we will discuss using aerial-plane inspection and wafer-plane inspection as novel approaches to address these challenges for advanced reticles. Wafer-plane inspection (WPI) and aerial-plane inspection (API) are two lithographic inspection modes. This suite of new inspection modes is based on high resolution reflected and transmitted light images in the reticle plane. These images together with scanner parameters are used to generate the aerial plane image using either vector or scalar models. Then information about the resist is applied to complete construction of the wafer plane image. API reports defects based on intensity differences between test and reference images at the aerial plane, whereas WPI applies a resist model to the aerial image to enhance discrimination between printable and non-printable defects at the wafer plane. The combination of WPI and API along with the industry standard Reticle Plane Inspection (RPI) is designed to handle complex OPC features, improve usable sensitivity and reduce the cost of ownership. This paper will explore the application of aerial-plane and wafer-plane die-to-die inspections on advanced reticles. Inspection sensitivity, inspectability, and comparison with Aerial Imaging Measurement System (AIMSTM[1]) or wafer-print-line will be analyzed. Most importantly, the implementation strategy of a combination of WPI and API along with RPI leading-edge mask manufacturing will be discussed.

  9. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2

    PubMed Central

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K.; Chauhan, Bhagirath S.; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant’s functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be

  10. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    PubMed

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of

  11. Observing river stages using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Witek, Matylda; Spallek, Waldemar

    2016-08-01

    We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal five orthophotomaps produced from the UAV-taken visible light images of nine sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on five dates. The logarithms of the fractions are later calculated, producing five samples, each consisted of nine elements. In order to detect statistically significant increments of water surface areas between two orthophotomaps, we apply the asymptotic and bootstrapped versions of the Student's t test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (south-western (SW) Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012-2014). We have found that it is possible to detect transitions between water surface areas associated with all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to mean, intermediate and high stages; (2) from mean stages to intermediate and high stages; and (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows as well as monitoring water levels of rivers in ungauged basins.

  12. Endurance bounds of aerial systems

    NASA Astrophysics Data System (ADS)

    Harrington, Aaron M.; Kroninger, Christopher M.

    2014-06-01

    Within the past few years micro aerial vehicles (MAVs) have received much more attention and are starting to proliferate into military as well as civilian roles. However, one of the major drawbacks for this technology currently, has been their poor endurance, usually below 10 minutes. This is a direct result of the inefficiencies inherent in their design. Often times, designers do not consider the various components in the vehicle design and match their performance to the desired mission for the vehicle. These vehicles lack a prescribed set of design guidelines or empirically derived design equations which often limits their design to selection of commercial off-the-shelf components without proper consideration of their affect on vehicle performance. In the current study, the design space for different vehicle configurations has been examined including insect flapping, avian flapping, rotary wing, and fixed wing, and their performance bounds are established. The propulsion system typical of a rotary wing vehicle is analyzed to establish current baselines for efficiency of vehicles at this scale. The power draw from communications is analyzed to determine its impact on vehicle performance. Finally, a representative fixed wing MAV is examined and the effects of adaptive structures as a means for increasing vehicle endurance and range are examined. This paper seeks to establish the performance bounds for micro air vehicles and establish a path forward for future designs so that efficiency may be maximized.

  13. Acquisition and registration of aerial video imagery of urban traffic

    SciTech Connect

    Loveland, Rohan C

    2008-01-01

    The amount of information available about urban traffic from aerial video imagery is extremely high. Here we discuss the collection of such video imagery from a helicopter platform with a low-cost sensor, and the post-processing used to correct radial distortion in the data and register it. The radial distortion correction is accomplished using a Harris model. The registration is implemented in a two-step process, using a globally applied polyprojective correction model followed by a fine scale local displacement field adjustment. The resulting cleaned-up data is sufficiently well-registered to allow subsequent straight-forward vehicle tracking.

  14. Uas for Archaeology - New Perspectives on Aerial Documentation

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Balsi, M.; Esposito, S.; Melis, M. G.; Milanese, M.; Zappino, L.

    2013-08-01

    In this work some Unmanned Aerial Systems applications are discussed and applied to archaeological sites survey and 3D model reconstructions. Interesting results are shown for three important and different aged sites on north Sardinia (Italy). An easy and simplified procedure has proposed permitting the adoption of multi-rotor aircrafts for daily archaeological survey during excavation and documentation, involving state of art in UAS design, flight control systems, high definition sensor cameras and innovative photogrammetric software tools. Very high quality 3D models results are shown and discussed and how they have been simplified the archaeologist work and decisions.

  15. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  16. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  17. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    PubMed Central

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  18. Effects of glyphosate and the glyphosate based herbicides Roundup Original(®) and Roundup Transorb(®) on respiratory morphophysiology of bullfrog tadpoles.

    PubMed

    Rissoli, Rafael Zanelli; Abdalla, Fabio Camargo; Costa, Monica Jones; Rantin, Francisco Tadeu; McKenzie, David John; Kalinin, Ana Lucia

    2016-08-01

    Glyphosate-based herbicides are widely used in agriculture and are commonly found in water bodies. Roundup Original(®) (RO) contains an isopropylamine glyphosate (GLY) salt containing the surfactant POEA, while Roundup Transorb R(®) (RTR) contains a potassium salt of GLY with unknown surfactants. Both contain different compositions of so-called "inert" ingredients, more toxic than glyphosate. Amphibian tadpoles often experience variations in O2 availability in their aquatic habitats; an ability to tolerate hypoxia can condition their survival and fitness. We evaluated the impacts of sublethal concentrations of GLY (1 mg L(-1)), RO (1 mg L(-1) GLY a.e) and RTR (1 mg L(-1) GLY a.e) on metabolic rate (V·O2 - mLO2 Kg1 h(-1)) of bullfrog tadpoles during normoxia and graded hypoxia, and related this to morphology of their skin, their major site of gas exchange. In control (CT) V·O2 remained unaltered from normoxia until 40 mmHg, indicating a critical O2 tension between 40 and 20 mmHg. GLY significantly reduced V·O2, possibly due to epidermal hypertrophy, which increased O2 diffusion distance to O2 uptake. In contrast, RTR increased V·O2 during hypoxia, indicating an influence of "inert" compounds and surfactants. V·O2 of RO did not differ from CT, suggesting that any increase in V·O2 caused by exposure was antagonized by epidermal hypertrophy. Indeed, all herbicides caused marked alterations in skin morphology, with cell and epithelium wall presenting hyperplasia or hypertrophy and chromatid rupture. In summary, GLY, RO and RTR exert different effects in bullfrog tadpoles, in particular the surfactants and inert compounds appear to influence oxygen uptake. PMID:27160633

  19. Aerial photo SBVC1962". Photo no. 360. Low oblique aerial view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial photo -SBVC-1962". Photo no. 360. Low oblique aerial view of the campus, looking southeast. Stamped on the rear: "Ron Wilhite, Sun-Telegram photo, file, 10/22/62/ - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  20. Intellectual property rights related to the genetically modified glyphosate tolerant soybeans in Brazil.

    PubMed

    Rodrigues, Roberta L; Lage, Celso L S; Vasconcellos, Alexandre G

    2011-06-01

    The present work analyzes the different modalities of protection of the intellectual creations in the biotechnology agricultural field. Regarding the Brazilian legislations related to the theme (the Industrial Property Law - no. 9. 279/96 and the Plant Variety Protection Law - no. 9. 456/97), and based in the international treaties signed by Brazil, the present work points to the inclusions of each of them, as well as to their interfaces using as reference the case study of glyphosate tolerant genetically modified soybean. For this case study, Monsanto's pipelines patents were searched and used to analyze the limits of patent protection in respect to others related to the Intellectual Property (IP) laws. Thus, it was possible to elucidate the complex scenario of the Intellectual Property of the glyphosate tolerant soybeans, since for the farmer it is hard to correlate the royalties payment with the IP enterprise's rights. PMID:21670890