Sample records for aero engine components

  1. Current Challenges for HTCMC Aero-Propulsion Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    2007-01-01

    In comparison to the best metallic materials, HTCMC aero-propulsion engine components offer the opportunity of reduced weight and higher temperature operation, with corresponding improvements in engine cooling requirements, emissions, thrust, and specific fuel consumption. Although much progress has been made in the development of advanced HTCMC constituent materials and processes, major challenges still remain for their implementation into these components. The objectives of this presentation are to briefly review (1) potential HTCMC aero-propulsion components and their generic material performance requirements, (2) recent progress at NASA and elsewhere concerning advanced constituents and processes for meeting these requirements, (3) key HTCMC component implementation challenges that are currently being encountered, and (4) on-going activities within the new NASA Fundamental Aeronautics Program that are addressing these challenges.

  2. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng

    2017-08-01

    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  3. Aero/structural tailoring of engine blades (AERO/STAEBL)

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1988-01-01

    This report describes the Aero/Structural Tailoring of Engine Blades (AERO/STAEBL) program, which is a computer code used to perform engine fan and compressor blade aero/structural numerical optimizations. These optimizations seek a blade design of minimum operating cost that satisfies realistic blade design constraints. This report documents the overall program (i.e., input, optimization procedures, approximate analyses) and also provides a detailed description of the validation test cases.

  4. Sensor fault diagnosis of aero-engine based on divided flight status.

    PubMed

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  5. Sensor fault diagnosis of aero-engine based on divided flight status

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  6. Method of making an aero-derivative gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, David J.

    A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. Amore » can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.« less

  7. 78 FR 22168 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... Airworthiness Directives; International Aero Engines AG Turbofan Engines AGENCY: Federal Aviation Administration... International Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain No. 4 bearing... turbofan engines, serial numbers V20001 through V20285, with No. 4 bearing internal scavenge tube, part...

  8. Vibration modelling and verifications for whole aero-engine

    NASA Astrophysics Data System (ADS)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  9. Metal Injection Molding for Superalloy Jet Engine Components

    DTIC Science & Technology

    2006-05-01

    single vanes. The vanes are subject to high vibration stresses and thus require reliable fatigue strength. Therefore the quality of the material must meet...Injection Molding for Superalloy Jet Engine Components 9 - 12 RTO-MP-AVT-139 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED MTU AeroEngines copyright...Sikorski Max Kraus Dr. Claus Müller MTU Aero Engines GmbH Munich, Germany 15.05. - 17.05.2006 MTU AeroEngines copyright ©2 AVT – 139 on “Cost Effective

  10. Novel Framework for Reduced Order Modeling of Aero-engine Components

    NASA Astrophysics Data System (ADS)

    Safi, Ali

    The present study focuses on the popular dynamic reduction methods used in design of complex assemblies (millions of Degrees of Freedom) where numerous iterations are involved to achieve the final design. Aerospace manufacturers such as Rolls Royce and Pratt & Whitney are actively seeking techniques that reduce computational time while maintaining accuracy of the models. This involves modal analysis of components with complex geometries to determine the dynamic behavior due to non-linearity and complicated loading conditions. In such a case the sub-structuring and dynamic reduction techniques prove to be an efficient tool to reduce design cycle time. The components whose designs are finalized can be dynamically reduced to mass and stiffness matrices at the boundary nodes in the assembly. These matrices conserve the dynamics of the component in the assembly, and thus avoid repeated calculations during the analysis runs for design modification of other components. This thesis presents a novel framework in terms of modeling and meshing of any complex structure, in this case an aero-engine casing. In this study the affect of meshing techniques on the run time are highlighted. The modal analysis is carried out using an extremely fine mesh to ensure all minor details in the structure are captured correctly in the Finite Element (FE) model. This is used as the reference model, to compare against the results of the reduced model. The study also shows the conditions/criteria under which dynamic reduction can be implemented effectively, proving the accuracy of Criag-Bampton (C.B.) method and limitations of Static Condensation. The study highlights the longer runtime needed to produce the reduced matrices of components compared to the overall runtime of the complete unreduced model. Although once the components are reduced, the assembly run is significantly. Hence the decision to use Component Mode Synthesis (CMS) is to be taken judiciously considering the number of

  11. 78 FR 1776 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain number (No.) 4 bearing... proposed AD. Discussion We received a report of a fire warning on an IAE V2525 turbofan engine shortly...

  12. 76 FR 77108 - Airworthiness Directives; International Aero Engines Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... Airworthiness Directives; International Aero Engines Turbofan Engines AGENCY: Federal Aviation Administration...-D5, V2530-A5, and V2533-A5 turbofan engines. This AD was prompted by three reports of high- pressure..., V2524-A5, V2525-D5, V2527-A5, V2527E-A5, V2527M-A5, V2528- D5, V2530-A5, and V2533-A5 turbofan engines...

  13. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    PubMed

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-10-23

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  14. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    PubMed Central

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668

  15. 76 FR 82202 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... International Aero Engines AG (IAE) V2500-A1, V2525-D5 and V2528-D5 turbofan engines, and certain serial numbers (S/Ns) of IAE V2522-A5, V2524-A5, V2527-A5, V2527E-A5, V2527M-A5, V2530-A5, and V2533-A5 turbofan...

  16. The spectral analysis of an aero-engine assembly incorporating a squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dede, M. M.

    1989-01-01

    Aero-engine structures have very low inherent damping and so artificial damping is often introduced by pumping oil into annular gaps between the casings and the outer races of some or all of the rolling-element bearings supporting the rotors. The thin oil films so formed are called squeeze film dampers and they can be beneficial in reducing rotor vibration due to unbalance and keeping to reasonable limits the forces transmitted to the engine casing. However, squeeze-film dampers are notoriously non-linear and as a result can introduce into the assembly such phenomena as subharmonic oscillations, jumps and combination frequencies. The purpose of the research is to investigate such phenomena both theoretically and experimentally on a test facility reproducing the essential features of a medium-size aero engine. The forerunner of this work was published. It was concerned with the examination of a squeeze-film damper in series with housing flexibility when supporting a rotor. The structure represented to a limited extent the essentials of the projected Rolls Royce RB401 engine. That research demonstrated the ability to calculate the oil-film forces arising from the squeeze film from known motions of the bearing components and showed that the dynamics of a shaft fitted with a squeeze film bearing can be predicted reasonably accurately. An aero-engine will normally have at least two shafts and so in addition to the excitation forces which are synchronous with the rotation of one shaft, there will also be forces at other frequencies from other shafts operating on the squeeze-film damper. Theoretical and experimental work to consider severe loading of squeeze-film dampers and to include these additional effects are examined.

  17. Processing of Advanced Ceramics Which Have Potential for Use in Gas Turbine Aero Engines

    DTIC Science & Technology

    1989-02-01

    reaons . Details on the availability of these publications may be obtained from: Graphics Section, National Research Council Canada, National...have been produced by hot isostatic pressing (HIP’ing) have good potential to be used as hot section components in gas turbine aero engines. This...Alumina, for example, maintains good corrosion resistance, good stiffness, and good strength at high temperatures, but exhibits very poor thermal shock

  18. Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Zhang, Hong; Gao, You

    2017-01-01

    Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.

  19. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies

    NASA Astrophysics Data System (ADS)

    Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming

    2017-05-01

    The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.

  20. Aero-Propulsion Technology (APT) Task V Low Noise ADP Engine Definition Study

    NASA Technical Reports Server (NTRS)

    Holcombe, V.

    2003-01-01

    A study was conducted to identify and evaluate noise reduction technologies for advanced ducted prop propulsion systems that would allow increased capacity operation and result in an economically competitive commercial transport. The study investigated the aero/acoustic/structural advancements in fan and nacelle technology required to match or exceed the fuel burned and economic benefits of a constrained diameter large Advanced Ducted Propeller (ADP) compared to an unconstrained ADP propulsion system with a noise goal of 5 to 10 EPNDB reduction relative to FAR 36 Stage 3 at each of the three measuring stations namely, takeoff (cutback), approach and sideline. A second generation ADP was selected to operate within the maximum nacelle diameter constrain of 160 deg to allow installation under the wing. The impact of fan and nacelle technologies of the second generation ADP on fuel burn and direct operating costs for a typical 3000 nm mission was evaluated through use of a large, twin engine commercial airplane simulation model. The major emphasis of this study focused on fan blade aero/acoustic and structural technology evaluations and advanced nacelle designs. Results of this study have identified the testing required to verify the interactive performance of these components, along with noise characteristics, by wind tunnel testing utilizing and advanced interaction rig.

  1. A Rapid Method to Achieve Aero-Engine Blade Form Detection

    PubMed Central

    Sun, Bin; Li, Bing

    2015-01-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces. PMID:26039420

  2. A rapid method to achieve aero-engine blade form detection.

    PubMed

    Sun, Bin; Li, Bing

    2015-06-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces.

  3. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.

  4. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  5. Cross-Correlations and Structures of Aero-Engine Gas Path System Based on DCCA Coefficient and Rooted Tree

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Fan, Jie; Gao, You

    2015-12-01

    Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.

  6. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  7. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.

  8. Ceramic Composite Development for Gas Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; VANrOODE, mARK

    2006-01-01

    The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.

  9. Improving Aerospace Engineering Students' Achievements by an Open Aero Control Experiment Apparatus

    ERIC Educational Resources Information Center

    Zeng, QingHua; Zhang, WeiHua; Huang, ZheZhi; Dong, RongHua

    2014-01-01

    This paper describes the development of an aero control experiment apparatus (ACEA) for use in aerospace control practical courses. The ACEA incorporates a systematic multihierarchy learning and teaching method, and was designed to improve aerospace engineering students' understanding of unmanned aerial vehicle (UAV) control systems. It offers a…

  10. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    NASA Astrophysics Data System (ADS)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  11. Modular Aero-Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2006-01-01

    The Modular Aero-Propulsion System Simulation (MAPSS) is a graphical simulation environment designed for the development of advanced control algorithms and rapid testing of these algorithms on a generic computational model of a turbofan engine and its control system. MAPSS is a nonlinear, non-real-time simulation comprising a Component Level Model (CLM) module and a Controller-and-Actuator Dynamics (CAD) module. The CLM module simulates the dynamics of engine components at a sampling rate of 2,500 Hz. The controller submodule of the CAD module simulates a digital controller, which has a typical update rate of 50 Hz. The sampling rate for the actuators in the CAD module is the same as that of the CLM. MAPSS provides a graphical user interface that affords easy access to engine-operation, engine-health, and control parameters; is used to enter such input model parameters as power lever angle (PLA), Mach number, and altitude; and can be used to change controller and engine parameters. Output variables are selectable by the user. Output data as well as any changes to constants and other parameters can be saved and reloaded into the GUI later.

  12. 75 FR 6860 - Airworthiness Directives; International Aero Engines AG (IAE) V2500-A1, V2522-A5, V2524-A5, V2525...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-12

    ... Airworthiness Directives; International Aero Engines AG (IAE) V2500-A1, V2522-A5, V2524-A5, V2525-D5, V2527-A5, V2527E-A5, V2527M-A5, V2528-D5, V2530-A5, and V2533-A5 Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for all International Aero Engines AG (IAE) V2500-A1, V2525-D5 and V2528-D5...

  13. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  14. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  15. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out

    NASA Astrophysics Data System (ADS)

    Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie

    2018-06-01

    Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.

  16. Aeronautical Mobile Airport Communications System (AeroMACS)

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Hall, Edward

    2011-01-01

    To help increase the capacity and efficiency of the nation s airports, a secure wideband wireless communications system is proposed for use on the airport surface. This paper provides an overview of the research and development process for the Aeronautical Mobile Airport Communications System (AeroMACS). AeroMACS is based on a specific commercial profile of the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard known as Wireless Worldwide Interoperability for Microwave Access or WiMAX (WiMax Forum). The paper includes background on the need for global interoperability in air/ground data communications, describes potential AeroMACS applications, addresses allocated frequency spectrum constraints, summarizes the international standardization process, and provides findings and recommendations from the world s first AeroMACS prototype implemented in Cleveland, Ohio, USA.

  17. AeroDyn V15.04: Design tool for wind and MHK turbines

    DOE Data Explorer

    Murray, Robynne; Hayman, Greg; Jonkman, Jason

    2017-04-28

    AeroDyn is a time-domain wind and MHK turbine aerodynamics module that can be coupled into the FAST version 8 multi-physics engineering tool to enable aero-elastic simulation of horizontal-axis wind turbines. AeroDyn V15.04 has been updated to include a cavitation check for MHK turbines, and can be driven as a standalone code to compute wind turbine aerodynamic response uncoupled from FAST. Note that while AeroDyn has been updated to v15.04, FAST v8.16 has not yet been updated and still uses AeroDyn v15.03.

  18. Proceedings of the Non-Linear Aero Prediction Requirements Workshop

    NASA Technical Reports Server (NTRS)

    Logan, Michael J. (Editor)

    1994-01-01

    The purpose of the Non-Linear Aero Prediction Requirements Workshop, held at NASA Langley Research Center on 8-9 Dec. 1993, was to identify and articulate requirements for non-linear aero prediction capabilities during conceptual/preliminary design. The attendees included engineers from industry, government, and academia in a variety of aerospace disciplines, such as advanced design, aerodynamic performance analysis, aero methods development, flight controls, and experimental and theoretical aerodynamics. Presentations by industry and government organizations were followed by panel discussions. This report contains copies of the presentations and the results of the panel discussions.

  19. An impulsive receptance technique for the time domain computation of the vibration of a whole aero-engine model with nonlinear bearings

    NASA Astrophysics Data System (ADS)

    Hai, Pham Minh; Bonello, Philip

    2008-12-01

    The direct study of the vibration of real engine structures with nonlinear bearings, particularly aero-engines, has been severely limited by the fact that current nonlinear computational techniques are not well-suited for complex large-order systems. This paper introduces a novel implicit "impulsive receptance method" (IRM) for the time domain analysis of such structures. The IRM's computational efficiency is largely immune to the number of modes used and dependent only on the number of nonlinear elements. This means that, apart from retaining numerical accuracy, a much more physically accurate solution is achievable within a short timeframe. Simulation tests on a realistically sized representative twin-spool aero-engine showed that the new method was around 40 times faster than a conventional implicit integration scheme. Preliminary results for a given rotor unbalance distribution revealed the varying degree of journal lift, orbit size and shape at the example engine's squeeze-film damper bearings, and the effect of end-sealing at these bearings.

  20. Improvement on Main/backup Controller Switching Device of the Nozzle Throat Area Control System for a Turbofan Aero Engine

    NASA Astrophysics Data System (ADS)

    Li, Jie; Duan, Minghu; Yan, Maode; Li, Gang; Li, Xiaohui

    2014-06-01

    A full authority digital electronic controller (FADEC) equipped with a full authority hydro-mechanical backup controller (FAHMBC) is adopted as the nozzle throat area control system (NTACS) of a turbofan aero engine. In order to ensure the switching reliability of the main/backup controller, the nozzle throat area control switching valve was improved from three-way convex desktop slide valve to six-way convex desktop slide valve. Simulation results show that, if malfunctions of FAEDC occur and abnormal signals are outputted from FADEC, NTACS will be seriously influenced by the main/backup controller switching in several working states, while NTACS will not be influenced by using the improved nozzle throat area control switching valve, thus the controller switching process will become safer and smoother and the working reliability of this turbofan aero engine is improved by the controller switching device improvement.

  1. Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.

  2. On the Development of an Efficient Parallel Hybrid Solver with Application to Acoustically Treated Aero-Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Nark, Douglas M.; Nguyen, Duc T.; Tungkahotara, Siroj

    2006-01-01

    A finite element solution to the convected Helmholtz equation in a nonuniform flow is used to model the noise field within 3-D acoustically treated aero-engine nacelles. Options to select linear or cubic Hermite polynomial basis functions and isoparametric elements are included. However, the key feature of the method is a domain decomposition procedure that is based upon the inter-mixing of an iterative and a direct solve strategy for solving the discrete finite element equations. This procedure is optimized to take full advantage of sparsity and exploit the increased memory and parallel processing capability of modern computer architectures. Example computations are presented for the Langley Flow Impedance Test facility and a rectangular mapping of a full scale, generic aero-engine nacelle. The accuracy and parallel performance of this new solver are tested on both model problems using a supercomputer that contains hundreds of central processing units. Results show that the method gives extremely accurate attenuation predictions, achieves super-linear speedup over hundreds of CPUs, and solves upward of 25 million complex equations in a quarter of an hour.

  3. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    PubMed

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  4. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  5. Nonlocal sparse model with adaptive structural clustering for feature extraction of aero-engine bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Li, Xiang; Yan, Ruqiang

    2016-04-01

    Fault information of aero-engine bearings presents two particular phenomena, i.e., waveform distortion and impulsive feature frequency band dispersion, which leads to a challenging problem for current techniques of bearing fault diagnosis. Moreover, although many progresses of sparse representation theory have been made in feature extraction of fault information, the theory also confronts inevitable performance degradation due to the fact that relatively weak fault information has not sufficiently prominent and sparse representations. Therefore, a novel nonlocal sparse model (coined NLSM) and its algorithm framework has been proposed in this paper, which goes beyond simple sparsity by introducing more intrinsic structures of feature information. This work adequately exploits the underlying prior information that feature information exhibits nonlocal self-similarity through clustering similar signal fragments and stacking them together into groups. Within this framework, the prior information is transformed into a regularization term and a sparse optimization problem, which could be solved through block coordinate descent method (BCD), is formulated. Additionally, the adaptive structural clustering sparse dictionary learning technique, which utilizes k-Nearest-Neighbor (kNN) clustering and principal component analysis (PCA) learning, is adopted to further enable sufficient sparsity of feature information. Moreover, the selection rule of regularization parameter and computational complexity are described in detail. The performance of the proposed framework is evaluated through numerical experiment and its superiority with respect to the state-of-the-art method in the field is demonstrated through the vibration signals of experimental rig of aircraft engine bearings.

  6. An engineer at AeroVironment's Design Development Center inspects a set of silicon solar cells for p

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An engineer at AeroVironment's Design Development Center in Simi Valley, California, closely inspects a set of silicon solar cells for potential defects. The cells, fabricated by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the Helios Prototype solar-powered aircraft to provide power to its 14 electric motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights in 2003 with the aid of a regenerative fuel cell-based energy storage system now in development.

  7. Switching LPV Control with Double-Layer LPV Model for Aero-Engines

    NASA Astrophysics Data System (ADS)

    Tang, Lili; Huang, Jinquan; Pan, Muxuan

    2017-11-01

    To cover the whole range of operating conditions of aero-engine, a double-layer LPV model is built so as to take into account of the variability due to the flight altitude, Mach number and the rotational speed. With this framework, the problem of designing LPV state-feedback robust controller that guarantees desired bounds on both H_∞ and H_2 performances is considered. Besides this, to reduce the conservativeness caused by a single LPV controller of the whole flight envelope and the common Lyapunov function method, a new method is proposed to design a family of LPV switching controllers. The switching LPV controllers can ensure that the closed-loop system remains stable in the sense of Lyapunov under arbitrary switching logic. Meanwhile, the switching LPV controllers can ensure the parameters change smoothly. The validity and performance of the theoretical results are demonstrated through a numerical example.

  8. Aero-Assisted Spacecraft Missions Using Hypersonic Waverider Aeroshells

    NASA Astrophysics Data System (ADS)

    Knittel, Jeremy

    This work examines the use of high-lift, low drag vehicles which perform orbital transfers within a planet's atmosphere to reduce propulsive requirements. For the foreseeable future, spacecraft mission design will include the objective of limiting the mass of fuel required. One means of accomplishing this is using aerodynamics as a supplemental force, with what is termed an aero-assist maneuver. Further, the use of a lifting body enables a mission designer to explore candidate trajectory types wholly unavailable to non-lifting analogs. Examples include missions to outer planets by way of an aero-gravity assist, aero-assisted plane change, aero-capture, and steady atmospheric periapsis probing missions. Engineering level models are created in order to simulate both atmospheric and extra-atmospheric space flight. Each mission is parameterized using discrete variables which control multiple areas of design. This work combines the areas of hypersonic aerodynamics, re-entry aerothermodynamics, spacecraft orbital mechanics, and vehicle shape optimization. In particular, emphasis is given to the parametric design of vehicles known as "waveriders" which are inversely designed from known shock flowfields. An entirely novel means of generating a class of waveriders known as "starbodies" is presented. A complete analysis is performed of asymmetric starbody forms and compared to a better understood parameterization, "osculating cone" waveriders. This analysis includes characterization of stability behavior, a critical discipline within hypersonic flight. It is shown that asymmetric starbodies have significant stability improvement with only a 10% reduction in the lift-to-drag ratio. By combining the optimization of both the shape of the vehicle and the trajectory it flies, much is learned about the benefit that can be expected from lifting aero-assist missions. While previous studies have conceptually proven the viability, this work provides thorough quantification of the

  9. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Carlson, Jan-Renee; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the de- scribed dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  10. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  11. Rotary-Wing Relevant Compressor Aero Research and Technology Development Activities at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Hathaway, Michael D.; Skoch, Gary J.; Snyder, Christopher A.

    2012-01-01

    Technical challenges of compressors for future rotorcraft engines are driven by engine-level and component-level requirements. Cycle analyses are used to highlight the engine-level challenges for 3000, 7500, and 12000 SHP-class engines, which include retention of performance and stability margin at low corrected flows, and matching compressor type, axial-flow or centrifugal, to the low corrected flows and high temperatures in the aft stages. At the component level: power-to-weight and efficiency requirements impel designs with lower inherent aerodynamic stability margin; and, optimum engine overall pressure ratios lead to small blade heights and the associated challenges of scale, particularly increased clearance-to-span ratios. The technical challenges associated with the aerodynamics of low corrected flows and stability management impel the compressor aero research and development efforts reviewed herein. These activities include development of simple models for clearance sensitivities to improve cycle calculations, full-annulus, unsteady Navier-Stokes simulations used to elucidate stall, its inception, and the physics of stall control by discrete tip-injection, development of an actuator-duct-based model for rapid simulation of nonaxisymmetric flow fields (e.g., due inlet circumferential distortion), advanced centrifugal compressor stage development and experimentation, and application of stall control in a T700 engine.

  12. AeroMACS System Characterization and Demonstrations

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Apaza, Rafael D.; Dimond, Robert P.

    2013-01-01

    This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past 3 years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.

  13. AeroMACS System Characterization and Demonstrations

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Apaza, Rafael D.; Dimond, Robert P.

    2013-01-01

    The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.

  14. AeroMACS system characterization and demonstrations

    NASA Astrophysics Data System (ADS)

    Kerczewski, R. J.; Apaza, R. D.; Dimond, R. P.

    This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.

  15. The Modular Aero-Propulsion System Simulation (MAPSS) Users' Guide

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Melcher, Kevin J.

    2004-01-01

    The Modular Aero-Propulsion System Simulation is a flexible turbofan engine simulation environment that provides the user a platform to develop advanced control algorithms. It is capable of testing the performance of control designs on a validated and verified generic engine model. In addition, it is able to generate state-space linear models of the engine model to aid in controller design. The engine model used in MAPSS is a generic high-pressure ratio, dual-spool, lowbypass, military-type, variable cycle turbofan engine with a digital controller. MAPSS is controlled by a graphical user interface (GUI) and this guide explains how to use it to take advantage of the capabilities of MAPSS.

  16. USAF bioenvironmental noise data handbook. Volume 172: Hush-noise suppressor (Aero Systems Engineering, Incorporated) far-field noise

    NASA Astrophysics Data System (ADS)

    Lee, R. A.; Rau, T. H.; Jones, C.

    1982-07-01

    The hush-house noise suppressor was made by Aero Systems Engineering of Texas, Inc. for acoustical suppression of various AF fighter/trainer aircraft during ground runup operations. This report provides measured and extrapolated data defining the bioacoustic environments produced by several aircraft/engines operating in the hush-house suppressor for various engine power configurations. Far-field data measured at 20 locations are normalized to standard meteorological conditions and extrapolated from 75-8000 meters to derive sets of equal-value contours for seven acoustic measures as function of angle and distance from the source. Refer to Volume 1 of this handbook, 'USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application,' AMRL-TR-75(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc. Data are presented for the following aircraft/engines operating in the hush-house noise suppressor: F-4, F-15, F-16, F-105, F-106, F-111F and T-38 aircraft and the TF41-A-1, J79-GE-15, F100-PW-100, J75-P19, J-75-P-17 and TF30-P-100 engines.

  17. Army Research Concerns in Engine Sealing

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1991-01-01

    The Army Propulsion Directorate is primarily concerned with small engine technology, where sealing performance is most critical. Tip leakage and secondary flow losses have a much greater performance impact on small engine aero-components than on large engines. A brief survey and critique of presently employed sealing concepts is presented. Some recent new research thrusts that show promise for substantial improvement are discussed. An especially promising approach for small engine applications is brush seals. Brush seal concepts are being considered for outer air seal and secondary airflow system seal locations.

  18. Near-field sound radiation of fan tones from an installed turbofan aero-engine.

    PubMed

    McAlpine, Alan; Gaffney, James; Kingan, Michael J

    2015-09-01

    The development of a distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is reported. The key objective is to examine a canonical problem: how to predict the pressure field due to a distributed source located near an infinite, rigid cylinder. This canonical problem is a simple representation of an installed turbofan, where the distributed source is based on the pressure pattern generated by a spinning duct mode, and the rigid cylinder represents an aircraft fuselage. The radiation of fan tones can be modelled in terms of spinning modes. In this analysis, based on duct modes, theoretical expressions for the near-field acoustic pressures on the cylinder, or at the same locations without the cylinder, have been formulated. Simulations of the near-field acoustic pressures are compared against measurements obtained from a fan rig test. Also, the installation effect is quantified by calculating the difference in the sound pressure levels with and without the adjacent cylindrical fuselage. Results are shown for the blade passing frequency fan tone radiated at a supersonic fan operating condition.

  19. 75 FR 43101 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ...) Code 79: Engine Oil. Reason (e) The mandatory continuing airworthiness information (MCAI) states: A... fuel heater caused a fuel leakage in the engine nacelle; investigation revealed that the damage to the fuel heater was due to chafing with an oil cooling system hose. PIAGGIO AERO INDUSTIRES (PAI) issued...

  20. Performance Analysis of AeroRP with Ground Station Advertisements

    DTIC Science & Technology

    2012-03-12

    results showed that AeroRP outperforms the traditional MANET routing protocols in terms of throughput and packet delivery ra - tio (PDR) [5, 6]. AeroRP...and waiting for the source to re- send the packet increases the end-to-end delay. The AeroNP corruption indicator and HEC -CRC (header error check...Dev ID | NP HEC CRC-16 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \\ \\ / AeroTP Payload

  1. AeroValve Experimental Test Data Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W.

    This report documents the collection of experimental test data and presents performance characteristics for the AeroValve brand prototype pneumatic bidirectional solenoid valves tested at the Oak Ridge National Laboratory (ORNL) in July/August 2014 as part of a validation of AeroValve energy efficiency claims. The test stand and control programs were provided by AeroValve. All raw data and processing are included in the report attachments.

  2. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.

    2012-01-01

    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  3. Resolution requirements for aero-optical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Ali; Wang Meng; Moin, Parviz

    2008-11-10

    Analytical criteria are developed to estimate the error of aero-optical computations due to inadequate spatial resolution of refractive index fields in high Reynolds number flow simulations. The unresolved turbulence structures are assumed to be locally isotropic and at low turbulent Mach number. Based on the Kolmogorov spectrum for the unresolved structures, the computational error of the optical path length is estimated and linked to the resulting error in the computed far-field optical irradiance. It is shown that in the high Reynolds number limit, for a given geometry and Mach number, the spatial resolution required to capture aero-optics within a pre-specifiedmore » error margin does not scale with Reynolds number. In typical aero-optical applications this resolution requirement is much lower than the resolution required for direct numerical simulation, and therefore, a typical large-eddy simulation can capture the aero-optical effects. The analysis is extended to complex turbulent flow simulations in which non-uniform grid spacings are used to better resolve the local turbulence structures. As a demonstration, the analysis is used to estimate the error of aero-optical computation for an optical beam passing through turbulent wake of flow over a cylinder.« less

  4. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, G.; Samset, B. H.; Schulz, M.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has amore » range from -0.58 to -0.02 Wm -2, with a mean of -0.27 Wm -2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm -2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.« less

  5. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    NASA Astrophysics Data System (ADS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-02-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  6. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    NASA Astrophysics Data System (ADS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Penner, J. E.; Rasch, P. J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.

    2012-08-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 15 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 15 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m-2, with a mean of -0.30 W m-2 for the 15 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.39 W m-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  7. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 2: Test Bed Performance Evaluation and Final AeroMACS Recommendations

    NASA Technical Reports Server (NTRS)

    Hall, Edward; Magner, James

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II (this document) describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  8. Component-specific modeling. [jet engine hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  9. High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

    NASA Astrophysics Data System (ADS)

    Albert, Benedikt; Völkl, Rainer; Glatzel, Uwe

    2014-09-01

    For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

  10. Analysis of Performance of Jet Engine from Characteristics of Components II : Interaction of Components as Determined from Engine Operation

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl

    1949-01-01

    In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.

  11. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    NASA Astrophysics Data System (ADS)

    Merrett, Craig G.

    -partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition

  12. Integrated approach for stress based lifing of aero gas turbine blades

    NASA Astrophysics Data System (ADS)

    Abu, Abdullahi Obonyegba

    In order to analyse the turbine blade life, the damage due to the combined thermal and mechanical loads should be adequately accounted for. This is more challenging when detailed component geometry is limited. Therefore, a compromise between the level of geometric detail and the complexity of the lifing method to be implemented would be necessary. This research focuses on how the life assessment of aero engine turbine blades can be done, considering the balance between available design inputs and adequate level of fidelity. Accordingly, the thesis contributes to developing a generic turbine blade lifing method that is based on the engine thermodynamic cycle; as well as integrating critical design/technological factors and operational parameters that influence the aero engine blade life. To this end, thermo-mechanical fatigue was identified as the critical damage phenomenon driving the life of the turbine blade.. The developed approach integrates software tools and numerical models created using the minimum design information typically available at the early design stages. Using finite element analysis of an idealised blade geometry, the approach captures relevant impacts of thermal gradients and thermal stresses that contribute to the thermo-mechanical fatigue damage on the gas turbine blade. The blade life is evaluated using the Neu/Sehitoglu thermo-mechanical fatigue model that considers damage accumulation due to fatigue, oxidation, and creep. The leading edge is examined as a critical part of the blade to estimate the damage severity for different design factors and operational parameters. The outputs of the research can be used to better understand how the environment and the operating conditions of the aircraft affect the blade life consumption and therefore what is the impact on the maintenance cost and the availability of the propulsion system. This research also finds that the environmental (oxidation) effect drives the blade life and the blade coolant

  13. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    NASA Technical Reports Server (NTRS)

    Hall, Edward; Isaacs, James; Henriksen, Steve; Zelkin, Natalie

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  14. PREFACE: 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.

  15. Lifing of Engine Components

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.

  16. Considerations for Improving the Capacity and Performance of AeroMACS

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Kamali, Behnam; Apaza, Rafael D.; Wilson, Jeffrey D.; Dimond, Robert P.

    2014-01-01

    The Aeronautical Mobile Airport Communications System (AeroMACS) has progressed from concept through prototype development, testing, and standards development and is now poised for the first operational deployments at nine US airports by the Federal Aviation Administration. These initial deployments will support fixed applications. Mobile applications providing connectivity to and from aircraft and ground-based vehicles on the airport surface will occur at some point in the future. Given that many fixed applications are possible for AeroMACS, it is necessary to now consider whether the existing capacity of AeroMACS will be reached even before the mobile applications are ready to be added, since AeroMACS is constrained by both available bandwidth and transmit power limitations. This paper describes some concepts that may be applied to improve the future capacity of AeroMACS, with a particular emphasis on gains that can be derived from the addition of IEEE 802.16j multihop relays to the AeroMACS standard, where a significant analysis effort has been undertaken.

  17. Simultaneous measurement of aero-optical distortion and turbulent structure in a heated boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; McKeon, Beverley; Smith, Adam; Gordeyev, Stanislav

    2014-11-01

    This study examines the relationship between turbulent structures and the aero-optical distortion of a laser beam passing through a turbulent boundary layer. Previous studies by Smith et al. (AIAA, 2014--2491) have found a bulk convection velocity of 0 . 8U∞ for aero-optical distortion in turbulent boundary layers, motivating a comparison of the distortion with the outer boundary layer. In this study, a turbulent boundary layer is developed over a flat plate with a moderately-heated section of length 25 δ . Density variation in the thermal boundary layer leads to aero-optical distortion, which is measured with a Malley probe (Smith et al., AIAA, 2013--3133). Simultaneously, 2D PIV measurements are recorded in a wall-normal, streamwise plane centered on the Malley probe location. Experiments are run at Reθ = 2100 and at a Mach number of 0.03, with the heated wall 10 to 20°C above the free stream temperature. Correlations and conditional averages are carried out between Malley probe distortion angles and flow features in the PIV vector fields. Aero-optical distortion in this study will be compared to distortion in higher Mach number flows studied by Gordeyev et al. (J. Fluid Mech., 2014), with the aim of extending conclusions into compressible flows. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  18. Aero Spacelines B377PG Pregnant Guppy on ramp in preparation for flight tests and pilot evaluation

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Aero Spacelines B377PG Pregnant Guppy was flown by Aero Spacelines pilots to Dryden for tests and evaluation by pilots Joe Vensel and Stan Butchart in October 1962. The outsized cargo aircraft incorporated the wings, engines, lower fuselage and tail from a Boeing 377 Stratocruiser with a huge upper fuselage more than 20 feet in diameter. The modified aircraft was built to transport outsized cargo for NASA's Apollo program, primarily to carry portions of the Saturn V rockets from the manufacturer to Cape Canaveral. Later versions of the aircraft, including the Super Guppy and the Super Guppy Turbine, are still in use.

  19. Overview of recent aero-optics flight tests

    NASA Technical Reports Server (NTRS)

    Otten, L. J., III

    1980-01-01

    A chronological overview of aero-optics test flights is presented highlighting the objectives and conclusions from the tests. Flight tests performed in coordination with the PRESS reentry observation missions and the ALL Cycle 2 laser propagation and tracking demonstrations are described addressing the identification and quantification of distortion phenomena. Finally, current aero-optics flight investigations of an atmospheric turbulence probe are briefly discussed.

  20. Laser drilling of thermal barrier coated jet-engine components

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical

  1. THE TREATMENT OF AERO-OTITIS MEDIA BY REDECOMPRESSION,

    DTIC Science & Technology

    The precipitating event preceding the appearance of aero- otitis media is the development of a relative vacuum within the middle ear. The aim of...obtaining normal pressure relationships between the middle ear and the environment. In 27 of a group of 33 men with severe aero- otitis media , this

  2. Future NASA Power Technologies for Space and Aero Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2015-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development. Finally, the presentation examines what type of non-traditional learning areas should be emphasized in student curriculum so that the engineering needs of the third decade of the 21st Century are met.

  3. Advances in SiC/SiC Composites for Aero-Propulsion

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2013-01-01

    In the last decade, considerable progress has been made in the development and application of ceramic matrix composites consisting of silicon carbide (SiC) based matrices reinforced by small-diameter continuous-length SiC-based fibers. For example, these SiC/SiC composites are now in the early stages of implementation into hot-section components of civil aero-propulsion gas turbine engines, where in comparison to current metallic components they offer multiple advantages due to their lighter weight and higher temperature structural capability. For current production-ready SiC/SiC, this temperature capability for long time structural applications is 1250 degC, which is better than 1100 degC for the best metallic superalloys. Foreseeing that even higher structural reliability and temperature capability would continue to increase the advantages of SiC/SiC composites, progress in recent years has also been made at NASA toward improving the properties of SiC/SiC composites by optimizing the various constituent materials and geometries within composite microstructures. The primary objective of this chapter is to detail this latter progress, both fundamentally and practically, with particular emphasis on recent advancements in the materials and processes for the fiber, fiber coating, fiber architecture, and matrix, and in the design methods for incorporating these constituents into SiC/SiC microstructures with improved thermo-structural performance.

  4. Vehicle Health Management Communications Requirements for AeroMACS

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Clements, Donna J.; Apaza, Rafael D.

    2012-01-01

    As the development of standards for the aeronautical mobile airport communications system (AeroMACS) progresses, the process of identifying and quantifying appropriate uses for the system is progressing. In addition to defining important elements of AeroMACS standards, indentifying the systems uses impacts AeroMACS bandwidth requirements. Although an initial 59 MHz spectrum allocation for AeroMACS was established in 2007, the allocation may be inadequate; studies have indicated that 100 MHz or more of spectrum may be required to support airport surface communications. Hence additional spectrum allocations have been proposed. Vehicle health management (VHM) systems, which can produce large volumes of vehicle health data, were not considered in the original bandwidth requirements analyses, and are therefore of interest in supporting proposals for additional AeroMACS spectrum. VHM systems are an emerging development in air vehicle safety, and preliminary estimates of the amount of data that will be produced and transmitted off an aircraft, both in flight and on the ground, have been prepared based on estimates of data produced by on-board vehicle health sensors and initial concepts of data processing approaches. This allowed an initial estimate of VHM data transmission requirements for the airport surface. More recently, vehicle-level systems designed to process and analyze VHM data and draw conclusions on the current state of vehicle health have been undergoing testing and evaluation. These systems make use of vehicle system data that is mostly different from VHM data considered previously for airport surface transmission, and produce processed system outputs that will be also need to be archived, thus generating additional data load for AeroMACS. This paper provides an analysis of airport surface data transmission requirements resulting from the vehicle level reasoning systems, within the context of overall VHM data requirements.

  5. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Astrophysics Data System (ADS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-09-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed 1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  6. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-01-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  7. The Physics of Boundary-Layer Aero-Optic Effects

    DTIC Science & Technology

    2012-09-01

    various models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed...models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed models were... Supersonic Facilities .................................................................................................... 8 3.3 2-D Wavefront Data

  8. Laser fringe anemometry for aero engine components

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.

    1986-01-01

    Advances in flow measurement techniques in turbomachinery continue to be paced by the need to obtain detailed data for use in validating numerical predictions of the flowfield and for use in the development of empirical models for those flow features which cannot be readily modelled numerically. The use of laser anemometry in turbomachinery research has grown over the last 14 years in response to these needs. Based on past applications and current developments, this paper reviews the key issues which are involved when considering the application of laser anemometry to the measurement of turbomachinery flowfields. Aspects of laser fringe anemometer optical design which are applicable to turbomachinery research are briefly reviewed. Application problems which are common to both laser fringe anemometry (LFA) and laser transit anemometry (LTA) such as seed particle injection, optical access to the flowfield, and measurement of rotor rotational position are covered. The efficiency of various data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Real-time data analysis techniques aimed at capturing flow physics in real time are discussed. Finally, data reduction and analysis techniques are discussed and illustrated using examples taken from several LFA turbomachinery applications.

  9. Improved components for engine fuel savings

    NASA Technical Reports Server (NTRS)

    Antl, R. J.; Mcaulay, J. E.

    1980-01-01

    NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.

  10. Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations

    NASA Technical Reports Server (NTRS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; hide

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m(sup-2), with a mean of -0.27 W m(sup-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 W m(sup-2). Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study.We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results

  11. Physics-Based Design Tools for Lightweight Ceramic Composite Turbine Components with Durable Microstructures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2011-01-01

    Under the Supersonics Project of the NASA Fundamental Aeronautics Program, modeling and experimental efforts are underway to develop generic physics-based tools to better implement lightweight ceramic matrix composites into supersonic engine components and to assure sufficient durability for these components in the engine environment. These activities, which have a crosscutting aspect for other areas of the Fundamental Aero program, are focusing primarily on improving the multi-directional design strength and rupture strength of high-performance SiC/SiC composites by advanced fiber architecture design. This presentation discusses progress in tool development with particular focus on the use of 2.5D-woven architectures and state-of-the-art constituents for a generic un-cooled SiC/SiC low-pressure turbine blade.

  12. 76 FR 71246 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... Airworthiness Directives; Piaggio Aero Industries S.p.A. Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for Piaggio Aero Industries S.p.A. Model P-180 airplanes. This AD results from mandatory.... For service information identified in this AD, contact Piaggio Aero Industries S.p.A. Airworthiness...

  13. SIERRA/Aero Theory Manual Version 4.46.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    2017-09-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, themore » governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.« less

  14. SIERRA/Aero Theory Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, themore » governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.« less

  15. Numerical prediction of the spatial and temporal characteristics of the aero-optical disturbance produced by a helicopter in hover

    NASA Astrophysics Data System (ADS)

    Kelly, Ryan T.

    Aero-optical disturbances produced from turbulent compressible flow-fields can seriously degrade the performance of an optical signal. At compressible flight speeds these disturbances stem from the density variations present in turbulent boundary layers and free shear layers; however helicopters typically operate at incompressible speeds, which nearly eliminates the aberrating effect of these flows. For helicopter platforms the sources of aberration originate from the high subsonic flow-field near the rotor blade tips in the form of rotor-tip vortices and from the high temperatures of the engine effluence. During hover the shed rotor-tip vortices and engine effluence convect with the rotor wake encircling the airframe and subsequently a helicopter mounted optical system. The aero-optical effects of the wake beneath a hovering helicopter were analyzed using a combination of Unsteady RANS (URANS) and Large-Eddy Simulations (LES). The spatial and temporal characteristics of the numerical optical wavefronts were compared to full-scale aero-optic experimental measurements. The results indicate that the turbulence of the rotor-tip vortices contributes to the higher order aberrations measured experimentally and that the thermal exhaust plumes effectively limit the optical field-of-regard to forward- and side-looking beam directions. This information along with the computed optical aberrations of the wake can be used to guide the development of adaptive-optic systems or other beam-control approaches.

  16. Physical Metallurgy of Rene 65, a Next-Generation Cast and Wrought Nickel Superalloy for use in Aero Engine Components

    NASA Astrophysics Data System (ADS)

    Wessman, Andrew Ezekiel

    is related to thermal history of the material, and the particle size distribution can be predicted using established models for precipitation in superalloys. • Rene 65 shows a predictable microstructural response to high temperature exposure, with gamma' coarsening that is predictable using the Lifshitz-Slyozov-Wagner theory. • Rene 65 tensile and creep capability are determined by the gamma' distribution, and the yield strength of the alloy can be predicted using a critical resolved shear stress approach. • This work has also provided a comprehensive overview of the structure of Rene 65 during various processing stages and following thermal exposures expected during use of the alloy in turbine engines. The processing-structure-property relationships for this advanced cast and wrought nickel based superalloy developed for use in turbine engine applications are described in detail, which will serve as a useful guide in the manufacture and use of components made from the alloy, and contribute to the overall body of knowledge in the field of metallurgy of nickel based superalloys.

  17. 14 CFR 33.53 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.53... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system and component tests. (a) For those systems and components that cannot be adequately substantiated in accordance...

  18. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    PubMed

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  19. Experimental investigation on aero-optics of supersonic turbulent boundary layers.

    PubMed

    Ding, Haolin; Yi, Shihe; Zhu, Yangzhu; He, Lin

    2017-09-20

    Nanoparticle-based planar laser scattering was used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layer and the optical path difference (OPD), which is quite crucial for aero-optics study. Results were obtained using ray tracing. The influences of different layers in the boundary layer, turbulence scales, and light incident angle on aero-optics were examined, and the underlying flow physics were analyzed. The inner layer plays a dominant role, followed by the outer layer. One hundred OPD rms of the outer layer at different times satisfy the normal distribution better than that of the inner layer. Aero-optics induced by the outer layer is sensitive to the filter scale. When induced by the inner layer, it is not sensitive to the filter scale. The vortices with scales less than the Kolmogorov scale (=46.0  μm) have little influence on the aero-optics and could be ignored; the validity of the smallest optically active scale (=88.1  μm) proposed by Mani is verified, and vortices with scales less than that are ignored, resulting in a 1.62% decay of aero-optics; the filter with a width of 16-grid spacing (=182.4  μm) decreases OPD rms by 7.04%. With the increase of the angle between the wall-normal direction and the light-incident direction, the aero-optics becomes more serious, and the difference between the distribution of the OPD rms and the normal distribution increases. The difficulty of aero-optics correction is increased. Light tilted toward downstream experiences more distortions than when tilted toward upstream at the same angle relative to the wall-normal direction.

  20. Energy Efficient Engine Low Pressure Subsystem Flow Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.

    1998-01-01

    The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.

  1. Direct and system effects of water ingestion into jet engine compresors

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Ehresman, C. M.; Haykin, T.

    1986-01-01

    Water ingestion into aircraft-installed jet engines can arise both during take-off and flight through rain storms, resulting in engine operation with nearly saturated air-water droplet mixture flow. Each of the components of the engine and the system as a whole are affected by water ingestion, aero-thermally and mechanically. The greatest effects arise probably in turbo-machinery. Experimental and model-based results (of relevance to 'immediate' aerothermal changes) in compressors have been obtained to show the effects of film formation on material surfaces, centrifugal redistribution of water droplets, and interphase heat and mass transfer. Changes in the compressor performance affect the operation of the other components including the control and hence the system. The effects on the engine as a whole are obtained through engine simulation with specified water ingestion. The interest is in thrust, specific fuel consumption, surge margin and rotational speeds. Finally two significant aspects of performance changes, scalability and controllability, are discussed in terms of characteristic scales and functional relations.

  2. Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Meyer, P. K.; Harbour, L.

    1986-01-01

    A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.

  3. Concepts for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Thomas, Randy; Saus, Joseph

    2007-01-01

    Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.

  4. Efficacy of predictive wavefront control for compensating aero-optical aberrations

    NASA Astrophysics Data System (ADS)

    Goorskey, David J.; Schmidt, Jason; Whiteley, Matthew R.

    2013-07-01

    Imaging and laser beam propagation from airborne platforms are degraded by dynamic aberrations due to air flow around the aircraft, aero-mechanical distortions and jitter, and free atmospheric turbulence. For certain applications, like dim-object imaging, free-space optical communications, and laser weapons, adaptive optics (AO) is necessary to compensate for the aberrations in real time. Aero-optical flow is a particularly interesting source of aberrations whose flowing structures can be exploited by adaptive and predictive AO controllers, thereby realizing significant performance gains. We analyze dynamic aero-optical wavefronts to determine the pointing angles at which predictive wavefront control is more effective than conventional, fixed-gain, linear-filter control. It was found that properties of the spatial decompositions and temporal statistics of the wavefronts are directly traceable to specific features in the air flow. Furthermore, the aero-optical wavefront aberrations at the side- and aft-looking angles were the most severe, but they also benefited the most from predictive AO.

  5. Interference Analysis Status and Plans for Aeronautical Mobile Airport Communications System (AeroMACS)

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.

    2010-01-01

    Interference issues related to the operation of an aeronautical mobile airport communications system (AeroMACS) in the C-Band (specifically 5091-5150 MHz) is being investigated. The issue of primary interest is co-channel interference from AeroMACS into mobile-satellite system (MSS) feeder uplinks. The effort is focusing on establishing practical limits on AeroMACS transmissions from airports so that the threshold of interference into MSS is not exceeded. The analyses are being performed with the software package Visualyse Professional, developed by Transfinite Systems Limited. Results with omni-directional antennas and plans to extend the models to represent AeroMACS more accurately will be presented. These models should enable realistic analyses of emerging AeroMACS designs to be developed from NASA Test Bed, RTCA 223, and European results.

  6. 48 CFR 1852.235-70 - Center for AeroSpace Information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Center for AeroSpace... SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 1852.235-70 Center for AeroSpace Information. As prescribed in 1835.070(a), insert the...

  7. 48 CFR 1852.235-70 - Center for AeroSpace Information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Center for AeroSpace... SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 1852.235-70 Center for AeroSpace Information. As prescribed in 1835.070(a), insert the...

  8. 48 CFR 1852.235-70 - Center for AeroSpace Information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Center for AeroSpace... SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 1852.235-70 Center for AeroSpace Information. As prescribed in 1835.070(a), insert the...

  9. Aero dopes and varnishes

    NASA Technical Reports Server (NTRS)

    Britton, H T S

    1927-01-01

    Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering.

  10. Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houchens, Brent C.; Blaylock, Myra L.

    The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, withmore » numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.« less

  11. AeroVironment's Jim Daley, Rik Meininger, Derek Lisoski and Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus.

    NASA Image and Video Library

    2004-09-17

    AeroVironment's test director Jim Daley, backup pilot Rik Meininger, stability and controls engineer Derek Lisoski and pilot Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus solar aircraft from the control station.

  12. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.

  13. NASA's Aero-Space Technology

    NASA Technical Reports Server (NTRS)

    Milstead, Phil

    2000-01-01

    This presentation reviews the three pillars and the associated goals of NASA's Aero-Space Technology Enterprise. The three pillars for success are: (1) Global Civil Aviation, (2) Revolutionary Technology Leaps, (3) Advanced Space Transportation. The associated goals of the first pillar are to reduce accidents, emissions, and cost, and to increase the aviation system capacity. The goals of the second pillar are to reduce transoceanic travel time, revolutionize general aviation aircraft, and improve development capacity. The goals associated with the third pillar are to reduce the launch cost for low earth orbit and to reduce travel time for planetary missions. In order to meet these goals NASA must provide next-generation design capability for new and or experimental craft which enable a balance between reducing components of the design cycle by up to 50% and or increasing the confidence in design by 50%. These next-generation design tools, concepts, and processes will revolutionize vehicle development. The presentation finally reviews the importance of modeling and simulation in achieving the goals.

  14. User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)

    NASA Technical Reports Server (NTRS)

    Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.

    2007-01-01

    This report is a Users Guide for the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.

  15. Making Ceramic Components For Advanced Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Franklin, J. E.; Ezis, A.

    1994-01-01

    Lightweight, oxidation-resistant silicon nitride components containing intricate internal cooling and hydraulic passages and capable of withstanding high operating temperatures made by ceramic-platelet technology. Used to fabricate silicon nitride test articles of two types: components of methane-cooled regenerator for air turbo ramjet engine and components of bipropellant injector for rocket engine. Procedures for development of more complex and intricate components established. Technology has commercial utility in automotive, aircraft, and environmental industries for manufacture of high-temperature components for use in regeneration of fuels, treatment of emissions, high-temperature combustion devices, and application in which other high-temperature and/or lightweight components needed. Potential use in fabrication of combustors and high-temperature acoustic panels for suppression of noise in future high-speed aircraft.

  16. Correlation tests of the engine performance parameter by using the detrended cross-correlation coefficient

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Gao, You; Jing, Liming

    2015-02-01

    The presence of cross-correlation in complex systems has long been noted and studied in a broad range of physical applications. We here focus on an aero-engine system as an example of a complex system. By applying the detrended cross-correlation (DCCA) coefficient method to aero-engine time series, we investigate the effects of the data length and the time scale on the detrended cross-correlation coefficients ρ DCCA ( T, s). We then show, for a twin-engine aircraft, that the engine fuel flow time series derived from the left engine and the right engine exhibit much stronger cross-correlations than the engine exhaust-gas temperature series derived from the left engine and the right engine do.

  17. Ceramic components for the AGT 100 engine

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.

    1983-01-01

    Historically, automotive gas turbines have not been able to meet requirements of the marketplace with respect to cost, performance, and reliability. However, the development of appropriate ceramic materials has overcome problems related to a need for expensive superalloy components and to limitations regarding the operating temperature. An automotive gas turbine utilizing ceramic components has been developed by a U.S. automobile manufacturer. A 100-horsepower, two-shaft, regenerative engine geometry was selected because it is compatible with manual, automatic, and continuously variable transmissions. Attention is given to the ceramic components, the ceramic gasifier turbine rotor development, the ceramic gasifier scroll, ceramic component testing, and the use of advanced nondestructive techniques for the evaluation of the engine components.

  18. Dependence of AeroMACS Interference on Airport Radiation Pattern Characteristics

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2012-01-01

    AeroMACS (Aeronautical Mobile Airport Communications System), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service (MSS) feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low earth orbit from AeroMACS transmitters at the 497 major airports in the contiguous United States was simulated with the Visualyse Professional software. The dependence of the interference power on the number of antenna beams per airport, gain patterns, and beam direction orientations was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power required to maintain the cumulative interference power under the established threshold.

  19. Dependence of AeroMACS Interference on Airport Radiation Pattern Characteristics

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2012-01-01

    AeroMACS (Aeronautical Mobile Airport Communications System), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091-5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service (MSS) feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low earth orbit from AeroMACS transmitters at the 497 major airports in the contiguous United States was simulated with the Visualyse Professional software. The dependence of the interference power on the number of antenna beams per airport, gain patterns, and beam direction orientations was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power required to maintain the cumulative interference power under the established threshold.

  20. A theoretical model of fuselage pressure levels due to fan tones radiated from the intake of an installed turbofan aero-engine.

    PubMed

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2018-06-01

    An existing theoretical model to predict the pressure levels on an aircraft's fuselage is improved by incorporating a more physically realistic method to predict fan tone radiation from the intake of an installed turbofan aero-engine. Such a model can be used as part of a method to assess cabin noise. Fan tone radiation from a turbofan intake is modelled using the exact solution for the radiated pressure from a spinning mode exiting a semi-infinite cylindrical duct immersed in a uniform flow. This approach for a spinning duct mode incorporates scattering/diffraction by the intake lip, enabling predictions of the radiated pressure valid in both the forward and aft directions. The aircraft's fuselage is represented by an infinitely long, rigid cylinder. There is uniform flow aligned with the cylinder, except close to the cylinder's surface where there is a constant-thickness boundary layer. In addition to single mode calculations it is shown how the model may be used to rapidly calculate a multi-mode incoherent radiation from the engine intake. Illustrative results are presented which demonstrate the relative importance of boundary-layer shielding both upstream and downstream of the source, as well as examples of the fuselage pressure levels due to a multi-mode tonal source at high Helmholtz number.

  1. Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations.

    PubMed

    Vogel, Curtis R; Tyler, Glenn A; Wittich, Donald J

    2014-07-01

    We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial-temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.

  2. Adiabatic diesel engine component development: Reference engine for on-highway applications

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  3. Effect of Individual Component Life Distribution on Engine Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Hendricks, Robert C.; Soditus, Sherry M.

    2003-01-01

    The effect of individual engine component life distributions on engine life prediction was determined. A Weibull-based life and reliability analysis of the NASA Energy Efficient Engine was conducted. The engine s life at a 95 and 99.9 percent probability of survival was determined based upon the engine manufacturer s original life calculations and assumed values of each of the component s cumulative life distributions as represented by a Weibull slope. The lives of the high-pressure turbine (HPT) disks and blades were also evaluated individually and as a system in a similar manner. Knowing the statistical cumulative distribution of each engine component with reasonable engineering certainty is a condition precedent to predicting the life and reliability of an entire engine. The life of a system at a given reliability will be less than the lowest-lived component in the system at the same reliability (probability of survival). Where Weibull slopes of all the engine components are equal, the Weibull slope had a minimal effect on engine L(sub 0.1) life prediction. However, at a probability of survival of 95 percent (L(sub 5) life), life decreased with increasing Weibull slope.

  4. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  5. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  6. Aero-Optical Investigation of a Pod Directed Energy System

    DTIC Science & Technology

    2010-02-28

    mounted in an enclosure and is now being used to record unsteady wavefront data. 31 Reference [1] Gordeyev , S., and Jumper , E.J., “Aero... Jumper , E. J., “Forcing of a Two-Dimensional, Weakly-Compressible Subsonic Free Shear Layer,” AIAA 2006-0561, Jan., 2006. [3] Gordeyev , S., Hayden, T...and Jumper , E., “Aero-Optical and Flow Measurements Over a Flat-Windowed Turret,” AIAA Journal, Vol. 45, No. 2, 2007, pp.347-357. [4] Gordeyev , S

  7. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  8. 76 FR 27872 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model P- 180 Airplanes AGENCY: Federal Aviation.... This emergency AD was sent previously to all known U.S. owners and operators of PIAGGIO AERO INDUSTRIES... loss of control of the aeroplane. Since these AD actions were taken, Piaggio Aero Industries, the type...

  9. Powder Injection Molding of Ceramic Engine Components for Transportation

    NASA Astrophysics Data System (ADS)

    Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar

    2012-03-01

    Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.

  10. Aero-Propulsive Model Design from a Commercial Aircraft in Climb and Cruise Regime using Performance Data =

    NASA Astrophysics Data System (ADS)

    Tudor, Magdalena

    IATA has estimated, in 2012, at about 2% of global carbon dioxide emissions, the environmental impact of the air transport, as a consequence caused by the rapidly growing of global movement demand of people and goods, and which was effectively taken into account in the development of the aviation industry. The historic achievements of scientific and technical progress in the field of commercial aviation were contributed to this estimate, and even today the research continues to make progress to help to reduce the emissions of greenhouse gases. Advances in commercial aircraft, and its engine design technology had the aim to improve flight performance. These improvements have enhanced the global flight planning of these types of aircrafts. Almost all of these advances rely on generated performance data as reference sources, the most of which are classified as "confidential" by the aircraft manufacturers. There are very few aero-propulsive models conceived for the climb regime in the literature, but none of them was designed without access to an engine database, and/or to performance data in climb and in cruise regimes with direct applicability for flight optimization. In this thesis, aero-propulsive models methodologies are proposed for climb and cruise regimes, using system identification and validation methods, through which airplane performance can be computed and stored in the most compact and easily accessible format for this kind of performance data. The acquiring of performance data in this format makes it possible to optimize flight profiles, used by on-board Flight Management Systems. The aero-propulsive models developed here were investigated on two aircrafts belonging to commercial class, and both of them had offered very good accuracy. One of their advantages is that they can be adapted to any other aircraft of the same class, even if there is no access to their corresponding engine flight data. In addition, these models could save airlines a considerable

  11. 78 FR 69600 - Airworthiness Directives; Piaggio Aero Industries S.p.A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... p.m., Monday through Friday, except Federal holidays. For service information identified in this.... To address this potential unsafe condition, Piaggio Aero Industries (PAI) issued Service [[Page 69601... Service Information Piaggio Aero Industries S.p.A. has issued Mandatory Service Bulletin No.: 80-0381, Rev...

  12. Identified state-space prediction model for aero-optical wavefronts

    NASA Astrophysics Data System (ADS)

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  13. Results of the AEROS satellite program: Summary

    NASA Technical Reports Server (NTRS)

    Lammerzahl, P.; Rawer, K.; Roemer, N.

    1980-01-01

    Published literature reporting aeronomic data collected on two AEROS missions is summarized. The extreme ultraviolet solar radiation and other significant parameters of the thermosphere/ionosphere were investigated. Kinetic pressure, the quantity of atomic nitrogen, and partial densities of helium, oxygen, nitrogen, argon, and atomic nitrogen were determined. The thermal electron population, superthermal energy distribution, plasma density, ion temperature, and composition according to ion types were measured. The chief energy supply in the thermosphere was calculated. Aeronomic calculations showing that variations in the parameters of the ionosphere cannot be correlated with fluctuations of extreme ultraviolet solar radiation were performed. The AEROS data were compared with data from S3-1, ISIS, and AE-C satellites. Models of the thermosphere and ionosphere were developed.

  14. 78 FR 49662 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for PIAGGIO AERO INDUSTRIES S.p.A. Model P-180 airplanes. The rescinded AD resulted... to develop on affected type design airplanes. DATES: This AD is effective September 19, 2013...

  15. Digital holographic interferometry for characterizing deformable mirrors in aero-optics

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme

    2016-08-01

    Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.

  16. 76 FR 54403 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Federal holidays. For service information identified in this proposed AD, contact Piaggio Aero Industries... Service Information Piaggio Aero Industries S.p.A. has issued Mandatory Service Bulletin No. 80-0304... Accomplishment Instructions of Piaggio Aero Industries S.p.A. Mandatory Service Bulletin No. 80-0304, dated July...

  17. Tracking and Control of Gas Turbine Engine Component Damage/Life

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  18. Component improvement of free-piston Stirling engine key technology for space power

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1988-01-01

    The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.

  19. 76 FR 77369 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... installed on the door handle for proper tightness and correct as necessary after applying a thread locker... thread locker following Part D of the Accomplishment Instructions in Piaggio Aero Industries S.p.A... necessary after applying a thread locker following Part D of the Accomplishment Instructions in Piaggio Aero...

  20. 78 FR 32363 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes AGENCY: Federal Aviation Administration (FAA... propose to rescind an airworthiness directive (AD) for PIAGGIO AERO INDUSTRIES S.p.A. Model P-180... or is not likely to develop on affected type design airplanes, and therefore the AD should be...

  1. Computational aero-acoustics for fan duct propagation and radiation. Current status and application to turbofan liner optimisation

    NASA Astrophysics Data System (ADS)

    Astley, R. J.; Sugimoto, R.; Mustafi, P.

    2011-08-01

    Novel techniques are presented to reduce noise from turbofan aircraft engines by optimising the acoustic treatment in engine ducts. The application of Computational Aero-Acoustics (CAA) to predict acoustic propagation and absorption in turbofan ducts is reviewed and a critical assessment of performance indicates that validated and accurate techniques are now available for realistic engine predictions. A procedure for integrating CAA methods with state of the art optimisation techniques is proposed in the remainder of the article. This is achieved by embedding advanced computational methods for noise prediction within automated and semi-automated optimisation schemes. Two different strategies are described and applied to realistic nacelle geometries and fan sources to demonstrate the feasibility of this approach for industry scale problems.

  2. 77 FR 67764 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for certain Piaggio Aero Industries S.p.A. Model P-180 airplanes. That AD currently requires...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service...

  3. 77 FR 56987 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... identified in this AD, contact Piaggio Aero Industries S.p.A--Airworthiness Office, Via Luigi Cibrario, 4..., contact Piaggio Aero Industries S.p.A-- Airworthiness Office, Via Luigi Cibrario, 4-16154 Genova-Italy... #0; #0;Rules and Regulations #0; Federal Register #0; #0; #0;This section of the FEDERAL REGISTER...

  4. 78 FR 69597 - Airworthiness Directives; Piaggio Aero Industries S.p.A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Industries S.p.A Airplanes AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT... (AD) for Piaggio Aero Industries S.p.A Model P-180 airplanes that would supersede an existing AD. This... proposed AD, contact Piaggio Aero Industries S.p.A-Airworthiness Office, Via Luigi Cibrario, 4-16154 Genova...

  5. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.

    2012-09-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host

  6. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.

    2013-03-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus

  7. Application of Multihop Relay for Performance Enhancement of AeroMACS Networks

    NASA Technical Reports Server (NTRS)

    Kamali, Behnam; Wilson, Jeffrey D.; Kerczewski, Robert J.

    2012-01-01

    A new transmission technology, based on IEEE 802.16-2009 (WiMAX), is currently being developed for airport surface communications. A C-band spectrum allocation at 5091-5150 MHz has been created by ITU to carry this application. The proposed technology, known as AeroMACS, will be used to support fixed and mobile ground to ground applications and services. This article proposes and demonstrates that IEEE 802.16j-amendment-based WiMAX is most feasible for AeroMACS applications. This amendment introduces multihop relay as an optional deployment that may be used to provide additional coverage and/or enhance the capacity of the network. Particular airport surface radio coverage situations for which IEEE 802.16-2009-WiMAX provides resolutions that are inefficient, costly, or excessively power consuming are discussed. In all these cases, it is argued that 16j technology offers a much better alternative. A major concern about deployment of AeroMACS is interference to co-allocated applications such as the Mobile Satellite Service (MSS) feeder link. Our initial simulation results suggest that no additional interference to MSS feeder link is caused by deployment of IEEE 802.16j-based AeroMACS.

  8. Application of Multihop Relay for Performance Enhancement of AeroMACS Networks

    NASA Technical Reports Server (NTRS)

    Kamali, Behnam; Wilson, Jeffrey D.; Kerczewski, Robert J.

    2012-01-01

    A new transmission technology, based on IEEE 802.16-2009 (WiMAX), is currently being developed for airport surface communications. A C-band spectrum allocation at 5091 to 5150 MHz has been created by International Telecommunications Union (ITU) to carry this application. The proposed technology, known as AeroMACS, will be used to support fixed and mobile ground to ground applications and services. This article proposes and demonstrates that IEEE 802.16j-amendment-based WiMAX is most feasible for AeroMACS applications. This amendment introduces multihop relay as an optional deployment that may be used to provide additional coverage and/or enhance the capacity of the network. Particular airport surface radio coverage situations for which IEEE 802.16-2009-WiMAX provides resolutions that are inefficient, costly, or excessively power consuming are discussed. In all these cases, it is argued that 16j technology offers a much better alternative. A major concern about deployment of AeroMACS is interference to co-allocated applications such as the Mobile Satellite Service (MSS) feeder link. Our initial simulation results suggest that no additional interference to MSS feeder link is caused by deployment of IEEE 802.16j-based AeroMACS.

  9. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2012 Test)

    NASA Technical Reports Server (NTRS)

    Pastor-Barsi, Christine M.; Arrington, E. Allen; VanZante, Judith Foss

    2012-01-01

    A major modification of the refrigeration plant and heat exchanger at the NASA Glenn Icing Research Tunnel (IRT) occurred in autumn of 2011. It is standard practice at NASA Glenn to perform a full aero-thermal calibration of the test section of a wind tunnel facility upon completion of major modifications. This paper will discuss the tools and techniques used to complete an aero-thermal calibration of the IRT and the results that were acquired. The goal of this test entry was to complete a flow quality survey and aero-thermal calibration measurements in the test section of the IRT. Test hardware that was used includes the 2D Resistive Temperature Detector (RTD) array, 9-ft pressure survey rake, hot wire survey rake, and the quick check survey rake. This test hardware provides a map of the velocity, Mach number, total and static pressure, total temperature, flow angle and turbulence intensity. The data acquired were then reduced to examine pressure, temperature, velocity, flow angle, and turbulence intensity. Reduced data has been evaluated to assess how the facility meets flow quality goals. No icing conditions were tested as part of the aero-thermal calibration. However, the effects of the spray bar air injections on the flow quality and aero-thermal calibration measurements were examined as part of this calibration.

  10. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.

  11. Improvement of the AeroClipper system for cyclones monitoring

    NASA Astrophysics Data System (ADS)

    Vargas, André; Philippe, Duvel Jean

    2016-07-01

    The AeroClipper developed by the French space agency (Centre National d'Études Spatiales, CNES) is a quasi-lagrangian device drifting with surface wind at about 20-30m above the ocean surface. It is a new and original device for real-time and continuous observation of air-sea surface parameters in open ocean remote regions. This device enables the sampling of the variability of surface parameters in particular under convective systems toward which it is attracted. The AeroClipper is therefore an ideal instrument to monitor Tropical Cyclones (TCs) in which they are likely to converge and provide original observations to evaluate and improve our current understanding and diagnostics of TCs as well as their representation in numerical models. In 2008, the AeroClipper demonstrates its capability to be captured by an Ocean Indian cyclone, as two models have converged, without damages, in the eye of Dora cyclone during the 2008 VASCO campaign. This paper will present the improvements of this balloon system for the international project 'the Year of Maritime Continent'.

  12. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  13. 77 FR 35888 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service.... Relevant Service Information PIAGGIO AERO INDUSTRIES S.p.A. has issued Service Bulletin No. 80- 0318, dated... Instructions of Piaggio Aero Industries S.p.A. Mandatory Service Bulletin No. 80-0318, revision 2, dated March...

  14. 76 FR 60396 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service... on other P.180 aeroplanes, and Piaggio Aero Industries (PAI) had issued Service Bulletin (SB) No. 80... information by examining the MCAI in the AD docket. Relevant Service Information Piaggio Aero Industries S.p.A...

  15. Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)

    2000-01-01

    NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.

  16. The aero optics effect on near space laser communication optical system

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Fu, Yuegang; Jiang, Huilin

    2013-08-01

    With the developing of the space laser communication link, the performance index including higher transfer speed, extending transfer distance, and environmental adaptability, all ask the system accuracy and indexes improving. Special the developing near space platform, its environmental is extremes, the near space drone and other airplane flight speed is very quickly from the subsonic to supersonic. The aero optics effect caused by high speed will generate a thin turbulent air layer. It affects the performance of laser communication optical system by laser light vibration, deviation and so on, further more affects the performance of laser communication system working performance, even can't communication. Therefore, for achieving optical system indexes, we need do more research in optical system near space aero optics environmental adaptability. In this paper, near space link environmental characteristic are researched. And on the base of the aero optics theory, computer simulating method is applied to analyze the relationship among the altitude, the flight speed and the image dispersion. The result shows that, the aero optics effect cannot be ignored when the terminal is in low altitude or is moving with supersonic speed. The effect must be taken into considered from overall design. The result will provide the basis of research design.

  17. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  18. 14 CFR 33.53 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.53 Section 33.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system and...

  19. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...

  20. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...

  1. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...

  2. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  3. On Proper Selection of Multihop Relays for Future Enhancement of AeroMACS Networks

    NASA Technical Reports Server (NTRS)

    Kamali, Behnam; Kerczewski, Robert J.; Apaza, Rafael D.

    2015-01-01

    As the Aeronautical Mobile Airport Communications System (AeroMACS) has evolved from a technology concept to a deployed communications network over major US airports, it is now time to contemplate whether the existing capacity of AeroMACS is sufficient to meet the demands set forth by all fixed and mobile applications over the airport surface given the AeroMACS constraints regarding bandwidth and transmit power. The underlying idea in this article is to present IEEE 802.16j-based WiMAX as a technology that can address future capacity enhancements and therefore is most feasible for AeroMACS applications. The principal argument in favor IEEE 802.16j technology is the flexible and cost effective extension of radio coverage that is afforded by relay fortified networks, with virtually no increase in the power requirements and virtually no rise in interference levels to co-allocated applications. The IEEE 802.16j-based multihop relay systems are briefly described. The focus is on key features of this technology, frame structure, and its architecture. Next, AeroMACS is described as a WiMAX-based wireless network. The two major relay modes supported by IEEE 802.16j amendment, i.e., transparent and non-transparent are described. The benefits of employing multihop relays are listed. Some key challenges related to incorporating relays into AeroMACS networks are discussed. The selection of relay type in a broadband wireless network affects a number of network parameters such as latency, signal overhead, PHY (Scalable Physical Layer) and MAC (Media Access Layer) layer protocols, consequently it can alter key network quantities of throughput and QoS (Quality of Service).

  4. Predicting Cavitation on Marine and Hydrokinetic Turbine Blades with AeroDyn V15.04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Robynne

    Cavitation is an important consideration in the design of marine and hydrokinetic (MHK) turbines. The National Renewable Energy Laboratory's AeroDyn performance code was originally developed for horizontal-axis wind turbines and did not have the capability to predict cavitation inception. Therefore, AeroDyn has been updated to include the ability to predict cavitation on MHK turbines based on user-specified vapor pressure and submerged depth. This report outlines a verification of the AeroDyn V15.04 performance code for MHK turbines through a comparison to publicly available performance data.

  5. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  6. [Flight nurses' comprehension about their role in the multiprofesional team of aero-medical transport].

    PubMed

    Scuissiato, Dayane Reinhardt; Boffi, Letícia Valois; da Rocha, Roseline da Rocha; Montezeli, Juliana Helena; Bordin, Michelle Taverna; Peres, Aida Maris

    2012-01-01

    This is a descriptive qualitative research which aimed at identifying the flight nurses' comprehension by about their role in the aero-medical multiprofesional team. A semi-structured interview was carried out with eight flight nurses from Curitiba-PR, from June to August 2009. The speeches were analyzed by the content analysis, from which three categories emerged. The first describes the responsibilities of the flight nurses as managers of the aero-medical mission, planning for before, during and after the transport, what includes the aircraft check-list and knowledge of the patient's case. The second category deals with aspects of these professionals as care providers to the aero-transferred patient. The third describes communication and team-work as fundamental requirements for flight nurses. It was concluded that the nurse in aero-medical team mixes management and caring in his/her professional practice by the use of specific competences.

  7. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2012 Tests)

    NASA Technical Reports Server (NTRS)

    Pastor-Barsi, Christine; Allen, Arrington E.

    2013-01-01

    A full aero-thermal calibration of the NASA Glenn Icing Research Tunnel (IRT) was completed in 2012 following the major modifications to the facility that included replacement of the refrigeration plant and heat exchanger. The calibration test provided data used to fully document the aero-thermal flow quality in the IRT test section and to construct calibration curves for the operation of the IRT.

  8. Energy Efficient Engine: Control system component performance report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Bennett, G. W.

    1984-01-01

    An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.

  9. Analysis and test of insulated components for rotary engine

    NASA Technical Reports Server (NTRS)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  10. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  11. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  12. Energy efficient engine fan component detailed design report

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Michael, C. J.

    1981-01-01

    The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.

  13. Research on Modelling of Aviation Piston Engine for the Hardware-in-the-loop Simulation

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Shu, Wenjun; Bian, Wenchao

    2016-11-01

    In order to build the aero piston engine model which is real-time and accurate enough to operating conditions of the real engine for hardware in the loop simulation, the mean value model is studied. Firstly, the air-inlet model, the fuel model and the power-output model are established separately. Then, these sub models are combined and verified in MATLAB/SIMULINK. The results show that the model could reflect the steady-state and dynamic performance of aero engine, the errors between the simulation results and the bench test data are within the acceptable range. The model could be applied to verify the logic performance and control strategy of controller in the hardware-in-the-loop (HIL) simulation.

  14. 76 FR 64795 - Airworthiness Directives; Sicma Aero Seat Passenger Seat Assemblies Installed on Various...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... Airworthiness Directives; Sicma Aero Seat Passenger Seat Assemblies Installed on Various Transport Category..., 91xx, 92xx, 93xx, 95xx, and 96xx series passenger seat assemblies, installed on various transport... seat assemblies identified in Annex 1, Issue 2, dated March 19, 2004, of Sicma Aero Seat Service...

  15. Sensitivity Analysis for Coupled Aero-structural Systems

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.

    1999-01-01

    A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.

  16. Acoustics and Thrust of Separate Flow Exhaust Nozzles With Mixing Devices Investigated for High Bypass Ratio Engines

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.

    2000-01-01

    Typical installed separate-flow exhaust nozzle system. The jet noise from modern turbofan engines is a major contributor to the overall noise from commercial aircraft. Many of these engines use separate nozzles for exhausting core and fan streams. As a part of NASA s Advanced Subsonic Technology (AST) program, the NASA Glenn Research Center at Lewis Field led an experimental investigation using model-scale nozzles in Glenn s Aero-Acoustic Propulsion Laboratory. The goal of the investigation was to develop technology for reducing the jet noise by 3 EPNdB. Teams of engineers from Glenn, the NASA Langley Research Center, Pratt & Whitney, United Technologies Research Corporation, the Boeing Company, GE Aircraft Engines, Allison Engine Company, and Aero Systems Engineering contributed to the planning and implementation of the test.

  17. Study on the variable cycle engine modeling techniques based on the component method

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan

    2016-01-01

    Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.

  18. Evaluation of aero Commander propeller acoustic data: Static operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1978-01-01

    Acoustic data are analyzed from a series of ground tests performed on an Aero Commander propeller-driven aircraft with an array of microphones flush-mounted on one side of the fuselage. The analyses were concerned with the propeller blade passage noise during static operation at several different engine speeds and included calculations of the magnitude and phase of the blade passage tones, the amplitude stability of the tones, and the spatial phase and coherence of the tones. The results indicate that the pressure field impinging on the fuselage represents primarily aerodynamic (near field) effects in the plane of the propeller at all frequencies. Forward and aft of the propeller plane aerodynamic effects still dominate the pressure field at frequencies below 200 Hz; but at higher frequencies, the pressure field is due to acoustic propagation from an equivalent center located about 0.15 to 0.30 blade diameters inboard from the propeller hub.

  19. A First Look at the DGEN380 Engine Acoustic Data from a Core-Noise Perspective

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2015-01-01

    This work is a first look at acoustic data acquired in the NASA Glenn Research Center Aero-Acoustic Propulsion Laboratory using the Price Induction DGEN380 small turbofan engine, with particular emphasis on broadband combustor (core) noise. Combustor noise is detected by using a two-signal source separation technique employing one engine-internal sensor and one semi-far-field microphone. Combustor noise is an important core-noise component and is likely to become a more prominent contributor to overall airport community noise due to turbofan design trends, expected aircraft configuration changes, and advances in fan-noise-mitigation techniques. This work was carried out under the NASA Fundamental Aeronautics Program, Fixed Wing Project, Quiet Performance Subproject

  20. Research instrumentation for hot section components of turbine engines

    NASA Technical Reports Server (NTRS)

    Englund, D. R.

    1986-01-01

    Programs to develop research instrumentation for use on hot section components of turbine engines are discussed. These programs can be separated into two categories: one category includes instruments which can measure the environment within the combustor and turbine components, the other includes instruments which measure the response of engine components to the imposed environment. Included in the first category are instruments to measure total heat flux and fluctuating gas temperature. High temperature strain measuring systems, thin film sensors (e.g., turbine blade thermocouples) and a system to view the interior of a combustor during engine operation are programs which comprise the second category. The paper will describe the state of development of these sensors and measuring systems and, in some cases, show examples of measurements made with this instrumentation. The discussion will cover work done at NASA Lewis and at various contractor facilities.

  1. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  2. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  3. Career Profiles- Aero-Mechanical Design- Operations Engineering Branch

    NASA Image and Video Library

    2015-10-26

    NASA Armstrong’s Aeromechanical Design Group provides mechanical design solutions ranging from research and development to ground support equipment. With an aerospace or mechanical engineering background, team members use the latest computer-aided design software to create one-of-kind parts, assemblies, and drawings, and aid in the design’s fabrication and integration. Reverse engineering and inspection of Armstrong’s fleet of aircraft is made possible by using state-of-the-art coordinate measuring machines and laser scanning equipment.

  4. Development of Engines for Unmanned Air Vehicles: Some Factors to be Considered

    DTIC Science & Technology

    2003-01-01

    discussions, Honeywell Engines & Systems , Phoenix, AZ, December 14, 2001 [8] Jane’s Aero- Engines , Issue 11, Bill Gunston, Ed., pp. 93–97 (PW300, PW500...Weight/Thrust Reduction Compared to Engine Development Cost—UCAVs................................................................. 24 11. System ... engines are not candidate propulsion systems . The majority of Department of Defense (DoD) efforts (Global Hawk, Air Force UCAV, and Navy UCAV) are

  5. Adaptive guidance for an aero-assisted boost vehicle

    NASA Astrophysics Data System (ADS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.

    An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.

  6. AERO: A Decision Support Tool for Wind Erosion Assessment in Rangelands and Croplands

    NASA Astrophysics Data System (ADS)

    Galloza, M.; Webb, N.; Herrick, J.

    2015-12-01

    Wind erosion is a key driver of global land degradation, with on- and off-site impacts on agricultural production, air quality, ecosystem services and climate. Measuring rates of wind erosion and dust emission across land use and land cover types is important for quantifying the impacts and identifying and testing practical management options. This process can be assisted by the application of predictive models, which can be a powerful tool for land management agencies. The Aeolian EROsion (AERO) model, a wind erosion and dust emission model interface provides access by non-expert land managers to a sophisticated wind erosion decision-support tool. AERO incorporates land surface processes and sediment transport equations from existing wind erosion models and was designed for application with available national long-term monitoring datasets (e.g. USDI BLM Assessment, Inventory and Monitoring, USDA NRCS Natural Resources Inventory) and monitoring protocols. Ongoing AERO model calibration and validation are supported by geographically diverse data on wind erosion rates and land surface conditions collected by the new National Wind Erosion Research Network. Here we present the new AERO interface, describe parameterization of the underpinning wind erosion model, and provide a summary of the model applications across agricultural lands and rangelands in the United States.

  7. Global Mobile Satellite Service Interference Analysis for the AeroMACS

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Apaza, Rafael D.; Hall, Ward; Phillips, Brent

    2013-01-01

    The AeroMACS (Aeronautical Mobile Airport Communications System), which is based on the IEEE 802.16-2009 mobile wireless standard, is envisioned as the wireless network which will cover all areas of airport surfaces for next generation air transportation. It is expected to be implemented in the 5091-5150 MHz frequency band which is also occupied by mobile satellite service uplinks. Thus the AeroMACS must be designed to avoid interference with this incumbent service. Simulations using Visualyse software were performed utilizing a global database of 6207 airports. Variations in base station and subscriber antenna distribution and gain pattern were examined. Based on these simulations, recommendations for global airport base station and subscriber antenna power transmission limitations are provided.

  8. Aero-optics overview. [laser applications

    NASA Technical Reports Server (NTRS)

    Gilbert, K. G.

    1980-01-01

    Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.

  9. User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS): Version 2

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.; Chan, William W.

    2012-01-01

    This report is a Users Guide for version 2 of the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS v.2 has some enhancements over the original, including three actuators rather than one, the addition of actuator and sensor dynamics, and an improved controller, while retaining or improving on the convenience and user-friendliness of the original. C-MAPSS v.2 provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.

  10. Methods of Si based ceramic components volatilization control in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  11. Implanted component faults and their effects on gas turbine engine performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, J.D.; Taylor, V.; Laflamme, J.C.G.

    Under the sponsorship of the Canadian Department of National Defence, the Engine Laboratory of the National Research Council of Canada (NRCC) has established a program for the evaluation of component deterioration on gas turbine engine performance. The effect is aimed at investigating the effects of typical in-service faults on the performance characteristics of each individual engine component. The objective of the program is the development of a generalized fault library, which will be used with fault identification techniques in the field, to reduce unscheduled maintenance. To evaluate the effects of implanted faults on the performance of a single spool engine,more » such as an Allison T56 turboprop engine, a series of faulted parts were installed. For this paper the following faults were analyzed: (a) first-stage turbine nozzle erosion damage; (b) first-stage turbine rotor blade untwist; (c) compressor seal wear; (d) first and second-stage compressor blade tip clearance increase. This paper describes the project objectives, the experimental installation, and the results of the fault implantation on engine performance. Discussed are performance variations on both engine and component characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.« less

  12. Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations

    NASA Astrophysics Data System (ADS)

    Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.

    2018-05-01

    Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.

  13. Engine Component Retirement for Cause. Volume 1. Executive Summary

    DTIC Science & Technology

    1987-08-01

    components of all future engines. A mejor factor in the success of this progrm in taking Retirement for Cause from a concept to reality was the high level of...engine was chosen as the demonstration/validation vehicle for the Retirement for Cause (RCF) program. It is an augmented turbofan engine in the...inspections using surface replication; aspect ratios were determined from post test fractography . The crack size observed from the testing was compared to

  14. A Neural Network Aero Design System for Advanced Turbo-Engines

    NASA Technical Reports Server (NTRS)

    Sanz, Jose M.

    1999-01-01

    An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a Neural Network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. Neural network systems have been attempted in the context of direct design methods. From properties ascribed to a set of blades the neural network is trained to infer the properties of an 'interpolated' blade shape. The problem is that, especially in transonic regimes where we deal with intrinsically non linear and ill posed problems, small perturbations of the blade shape can produce very large variations of the flow parameters. It is very unlikely that, under these circumstances, a neural network will be able to find the proper solution. The unique situation in the present method is that the neural network can be trained to extract the required input pressure distribution from a database of pressure distributions while the inverse method will still compute the exact blade shape that corresponds to this 'interpolated' input pressure distribution. In other words, the interpolation process is transferred to a smoother problem, namely, finding what pressure distribution would produce the required flow conditions and, once this is done, the inverse method will compute the exact solution for this problem. The use of neural network is, in this context, highly related to the use of proper optimization techniques. The optimization is used essentially as an automation procedure to force the input pressure distributions to achieve the required aero and structural design parameters. A multilayered feed forward network with back-propagation is used to train the system for pattern association and classification.

  15. Modular Engine Noise Component Prediction System (MCP) Program Users' Guide

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Herkes, William H.; Reed, David H.

    2004-01-01

    This is a user's manual for Modular Engine Noise Component Prediction System (MCP). This computer code allows the user to predict turbofan engine noise estimates. The program is based on an empirical procedure that has evolved over many years at The Boeing Company. The data used to develop the procedure include both full-scale engine data and small-scale model data, and include testing done by Boeing, by the engine manufacturers, and by NASA. In order to generate a noise estimate, the user specifies the appropriate engine properties (including both geometry and performance parameters), the microphone locations, the atmospheric conditions, and certain data processing options. The version of the program described here allows the user to predict three components: inlet-radiated fan noise, aft-radiated fan noise, and jet noise. MCP predicts one-third octave band noise levels over the frequency range of 50 to 10,000 Hertz. It also calculates overall sound pressure levels and certain subjective noise metrics (e.g., perceived noise levels).

  16. An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts

    NASA Technical Reports Server (NTRS)

    Rasmussen, M. L.; Emanuel, George

    1989-01-01

    The design of a unified aero-space plane based on waverider technology is analyzed. The overall aerodynamic design and performance of an aero-space plane are discussed in terms of the forebody, scramjet, and afterbody. Other subjects considered in the study are combustion/nozzle optimization, the idealized tip-to-tail waverider model, and the two-dimensional minimum length nozzle. Charts and graphs are provided to show the results of the preliminary investigations.

  17. Nonlinear feedback guidance law for aero-assisted orbit transfer maneuvers

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1992-01-01

    Aero-assisted orbit transfer vehicles have the potential for significantly reducing the fuel requirements in certain classes of orbit transfer operations. Development of a nonlinear feedback guidance law for performing aero-assisted maneuvers that accomplish simultaneous change of all the orbital elements with least vehicle acceleration magnitude is discussed. The analysis is based on a sixth order nonlinear point-mass vehicle model with lift, bank angle, thrust and drag modulation as the control variables. The guidance law uses detailed vehicle aerodynamic and the atmosphere models in the feedback loop. Higher-order gravitational harmonics, planetary atmosphere rotation and ambient winds are included in the formulation. Due to modest computational requirements, the guidance law is implementable on-board an orbit transfer vehicle. The guidance performance is illustrated for three sets of boundary conditions.

  18. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space.

    PubMed

    Guo, Guangming; Liu, Hong; Zhang, Bin

    2016-06-10

    The aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space were investigated by three suites of cases, in which the altitude, angle of attack, and Mach number were varied in a large range. The direct simulation Monte Carlo based on the Boltzmann equation was used for flow computations and the ray-tracing method was used to simulate beam transmission through the nonuniform flow field over the optical window. Both imaging displacement and phase deviation were proposed as evaluation parameters, and along with Strehl ratio they were used to quantitatively evaluate aero-optical effects. The results show that aero-optical effects are quite weak when the altitude is greater than 30 km, the imaging displacement is related to the incident angle of a beam, and it is minimal when the incident angle is approximately 15°. For reducing the aero-optical effects, the optimal location of an aperture should be in the middle of the optical window.

  19. Review of modern low emissions combustion technologies for aero gas turbine engines

    NASA Astrophysics Data System (ADS)

    Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu

    2017-10-01

    Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.

  20. Host Model Uncertainty in Aerosol Radiative Forcing Estimates - The AeroCom Prescribed Experiment

    NASA Astrophysics Data System (ADS)

    Stier, P.; Kinne, S.; Bellouin, N.; Myhre, G.; Takemura, T.; Yu, H.; Randles, C.; Chung, C. E.

    2012-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. However, even for the case of identical aerosol emissions, the simulated direct aerosol radiative forcings show significant diversity among the AeroCom models (Schulz et al., 2006). Our analysis of aerosol absorption in the AeroCom models indicates a larger diversity in the translation from given aerosol radiative properties (absorption optical depth) to actual atmospheric absorption than in the translation of a given atmospheric burden of black carbon to the radiative properties (absorption optical depth). The large diversity is caused by differences in the simulated cloud fields, radiative transfer, the relative vertical distribution of aerosols and clouds, and the effective surface albedo. This indicates that differences in host model (GCM or CTM hosting the aerosol module) parameterizations contribute significantly to the simulated diversity of aerosol radiative forcing. The magnitude of these host model effects in global aerosol model and satellites retrieved aerosol radiative forcing estimates cannot be estimated from the diagnostics of the "standard" AeroCom forcing experiments. To quantify the contribution of differences in the host models to the simulated aerosol radiative forcing and absorption we conduct the AeroCom Prescribed experiment, a simple aerosol model and satellite retrieval intercomparison with prescribed highly idealised aerosol fields. Quality checks, such as diagnostic output of the 3D aerosol fields as implemented in each model, ensure the comparability of the aerosol implementation in the participating models. The simulated forcing variability among the models and retrievals is a direct measure of the contribution of host model assumptions to the uncertainty in the assessment of the aerosol radiative effects. We will present the results from the AeroCom prescribed experiment with focus on the attribution to the simulated variability

  1. Additive Manufacturing Design Considerations for Liquid Engine Components

    NASA Technical Reports Server (NTRS)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  2. 75 FR 904 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    .... PIAGGIO AERO PIAGGIO P.180 Cover No. D2 Revised June 16, 2008. AVANTI Maintenance Manual, Report No. 9066..., Revision No. D2, revised June 16, 2008; or (for S/N 1105 and greater) pages 1 through 8, dated June 30... Dated. Service Bulletin (Mandatory) N. 80-0249. PIAGGIO AERO PIAGGIO P. 180 Cover No. D2 Revised June 16...

  3. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  4. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The objective of the Energy Efficient Engine Component Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines. Minimum goals have been set for a 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct operating cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight propulsion system) relative to the JT9D-7A reference engine. The Energy Efficienct Engine features a twin spool, direct drive, mixed flow exhaust configuration, utilizing an integrated engine nacelle structure. A short, stiff, high rotor and a single stage high pressure turbine are among the major enhancements in providing for both performance retention and major reductions in maintenance and direct operating costs. Improved clearance control in the high pressure compressor and turbines, and advanced single crystal materials in turbine blades and vanes are among the major features providing performance improvement. Highlights of work accomplished and programs modifications and deletions are presented.

  5. Damage detection of engine bladed-disks using multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Fang, X.; Tang, J.

    2006-03-01

    The timely detection of damage in aero-engine bladed-disks is an extremely important and challenging research topic. Bladed-disks have high modal density and, particularly, their vibration responses are subject to significant uncertainties due to manufacturing tolerance (blade-to-blade difference or mistuning), operating condition change and sensor noise. In this study, we present a new methodology for the on-line damage detection of engine bladed-disks using their vibratory responses during spin-up or spin-down operations which can be measured by blade-tip-timing sensing technique. We apply a principle component analysis (PCA)-based approach for data compression, feature extraction, and denoising. The non-model based damage detection is achieved by analyzing the change between response features of the healthy structure and of the damaged one. We facilitate such comparison by incorporating the Hotelling's statistic T2 analysis, which yields damage declaration with a given confidence level. The effectiveness of the method is demonstrated by case studies.

  6. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    NASA Technical Reports Server (NTRS)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates

  7. An AeroCom assessment of black carbon in Arctic snow and sea ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during whichmore » an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g -1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g -1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g -1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most

  8. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  9. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1999-01-01

    This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets.

  10. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  11. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2015-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  12. NASA Propulsion Engineering Research Center, Volume 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the second volume in the 1994 annual report for the NASA Propulsion Engineering Research Center's Sixth Annual Symposium. This conference covered: (1) Combustors and Nozzles; (2) Turbomachinery Aero- and Hydro-dynamics; (3) On-board Propulsion systems; (4) Advanced Propulsion Applications; (5) Vaporization and Combustion; (6) Heat Transfer and Fluid Mechanics; and (7) Atomization and Sprays.

  13. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  14. Handbook of data on selected engine components for solar thermal applications

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A data base on developed and commercially available power conversion system components for Rankine and Brayton cycle engines, which have potential application to solar thermal power-generating systems is presented. The status of the Stirling engine is discussed.

  15. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2004 and 2005 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pastor, Christine M.; Gonsalez, Jose C.; Curry, Monroe R., III

    2010-01-01

    A full aero-thermal calibration of the NASA Glenn Icing Research Tunnel was completed in 2004 following the replacement of the inlet guide vanes upstream of the tunnel drive system and improvement to the facility total temperature instrumentation. This calibration test provided data used to fully document the aero-thermal flow quality in the IRT test section and to construct calibration curves for the operation of the IRT. The 2004 test was also the first to use the 2-D RTD array, an improved total temperature calibration measurement platform.

  16. A comparison between different finite elements for elastic and aero-elastic analyses.

    PubMed

    Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani

    2017-11-01

    In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  17. On the precision of aero-thermal simulations for TMT

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos; Thompson, Hugh

    2016-08-01

    Environmental effects on the Image Quality (IQ) of the Thirty Meter Telescope (TMT) are estimated by aero-thermal numerical simulations. These simulations utilize Computational Fluid Dynamics (CFD) to estimate, among others, thermal (dome and mirror) seeing as well as wind jitter and blur. As the design matures, guidance obtained from these numerical experiments can influence significant cost-performance trade-offs and even component survivability. The stochastic nature of environmental conditions results in the generation of a large computational solution matrix in order to statistically predict Observatory Performance. Moreover, the relative contribution of selected key subcomponents to IQ increases the parameter space and thus computational cost, while dictating a reduced prediction error bar. The current study presents the strategy followed to minimize prediction time and computational resources, the subsequent physical and numerical limitations and finally the approach to mitigate the issues experienced. In particular, the paper describes a mesh-independence study, the effect of interpolation of CFD results on the TMT IQ metric, and an analysis of the sensitivity of IQ to certain important heat sources and geometric features.

  18. Airborne Aero-Optics Laboratory - Transonic (AAOL-T)

    DTIC Science & Technology

    2016-10-03

    122–151. [30] DeGraaff, D. B. and Eaton, J. K., “Reynolds-Number Scaling of the Flat - Plate Turbulent Boundary Layer ,” Journal of Fluid Mechanics, Vol...elevation angle of the turret is fixed at 120 o . The inflow turbulence data are generated by a separate flat - plate boundary layers simulation. The...aero-optical distortion magnitude for turbulent boundary layers . Subsonic Flow over a Cylindrical Turret with a Flat Window. The flow over a

  19. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  20. AeroVironment technician checks a Helios solar cell panel

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A technician at AeroVironment's Design Development Center in Simi Valley, California, checks a panel of silicon solar cells for conductivity and voltage. The bi-facial cells, fabricated by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the Helios Prototype solar-powered aircraft to provide power to its 14 electric motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights above 50,000 feet altitude with the aid of a regenerative fuel cell-based energy storage system now under development in 2003.

  1. Modeling and HIL Simulation of Flight Conditions Simulating Control System for the Altitude Test Facility

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Shen, Li; Zhang, Tianhong

    2016-12-01

    Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.

  2. Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, S. A.; Hayman, G.; Damiani, R.

    Blade element momentum methods, though conceptually simple, are highly useful for analyzing wind turbines aerodynamics and are widely used in many design and analysis applications. A new version of AeroDyn is being developed to take advantage of new robust solution methodologies, conform to a new modularization framework for National Renewable Energy Laboratory's FAST, utilize advanced skewed-wake analysis methods, fix limitations with previous implementations, and to enable modeling of highly flexible and nonstraight blades. This paper reviews blade element momentum theory and several of the options available for analyzing skewed inflow. AeroDyn implementation details are described for the benefit of usersmore » and developers. These new options are compared to solutions from the previous version of AeroDyn and to experimental data. Finally, recommendations are given on how one might select from the various available solution approaches.« less

  3. Advanced diesel engine component development program, tasks 4-14

    NASA Astrophysics Data System (ADS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  4. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  5. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  6. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  7. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  8. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  9. 48 CFR 1852.235-70 - Center for AeroSpace Information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... avail itself of the services provided by the NASA Center for AeroSpace Information (CASI) (http://www.sti.nasa.gov) for the conduct of research or research and development required under this contract. CASI provides a variety of services and products as a NASA repository and database of research...

  10. 48 CFR 1852.235-70 - Center for AeroSpace Information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... avail itself of the services provided by the NASA Center for AeroSpace Information (CASI) (http://www.sti.nasa.gov) for the conduct of research or research and development required under this contract. CASI provides a variety of services and products as a NASA repository and database of research...

  11. The use of programmable logic controllers (PLC) for rocket engine component testing

    NASA Technical Reports Server (NTRS)

    Nail, William; Scheuermann, Patrick; Witcher, Kern

    1991-01-01

    Application of PLCs to the rocket engine component testing at a new Stennis Space Center Component Test Facility is suggested as an alternative to dedicated specialized computers. The PLC systems are characterized by rugged design, intuitive software, fault tolerance, flexibility, multiple end device options, networking capability, and built-in diagnostics. A distributed PLC-based system is projected to be used for testing LH2/LOx turbopumps required for the ALS/NLS rocket engines.

  12. Spectral Behavior of Weakly Compressible Aero-Optical Distortions

    NASA Astrophysics Data System (ADS)

    Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric

    2016-11-01

    In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.

  13. Integrated Aero-Propulsion CFD Methodology for the Hyper-X Flight Experiment

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Engelund, Walter C.; Bittner, Robert D.; Dilley, Arthur D.; Jentink, Tom N.; Frendi, Abdelkader

    2000-01-01

    Computational fluid dynamics (CFD) tools have been used extensively in the analysis and development of the X-43A Hyper-X Research Vehicle (HXRV). A significant element of this analysis is the prediction of integrated vehicle aero-propulsive performance, which includes an integration of aerodynamic and propulsion flow fields. This paper describes analysis tools used and the methodology for obtaining pre-flight predictions of longitudinal performance increments. The use of higher-fidelity methods to examine flow-field characteristics and scramjet flowpath component performance is also discussed. Limited comparisons with available ground test data are shown to illustrate the approach used to calibrate methods and assess solution accuracy. Inviscid calculations to evaluate lateral-directional stability characteristics are discussed. The methodology behind 3D tip-to-tail calculations is described and the impact of 3D exhaust plume expansion in the afterbody region is illustrated. Finally, future technology development needs in the area of hypersonic propulsion-airframe integration analysis are discussed.

  14. Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond

    NASA Astrophysics Data System (ADS)

    Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko

    2013-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.

  15. Comparison of caffeine disposition following administration by oral solution (energy drink) and inspired powder (AeroShot) in human subjects.

    PubMed

    Laizure, S Casey; Meibohm, Bernd; Nelson, Kembral; Chen, Feng; Hu, Zhe-Yi; Parker, Robert B

    2017-12-01

    To determine the disposition and effects of caffeine after administration using a new dosage form (AeroShot) that delivers caffeine by inspiration of a fine powder into the oral cavity and compare it to an equivalent dose of an oral solution (energy drink) as the reference standard. Healthy human subjects (n = 17) inspired a 100 mg caffeine dose using the AeroShot device or consumed an energy drink on separate study days. Heart rate, blood pressure and subject assessments of effects were measured over an 8-h period. Plasma concentrations of caffeine and its major metabolites were determined by liquid chromatography-mass spectrometry. Pharmacokinetic, cardiovascular and perceived stimulant effects were compared between AeroShot and energy drink phases using a paired t test and standard bioequivalency analysis. Caffeine disposition was similar after caffeine administration by the AeroShot device and energy drink: peak plasma concentration 1790 and 1939 ng ml -1 , and area under the concentration-time curve (AUC) 15 579 and 17 569 ng ml -1 × h, respectively, but they were not bioequivalent: AeroShot AUC of 80.3% (confidence interval 71.2-104.7%) and peak plasma concentration of 86.3% (confidence interval 62.8-102.8%) compared to the energy drink. Female subjects did have a significantly larger AUC compared to males after consumption of the energy drink. The heart rate and blood pressure were not significantly affected by the 100 mg caffeine dose, and there were no consistently perceived stimulant effects by the subjects using visual analogue scales. Inspiration of caffeine as a fine powder using the AeroShot device produces a similar caffeine profile and effects compared to administration of an oral solution (energy drink). © 2017 The British Pharmacological Society.

  16. Fiber-optic system for checking the acoustical parameters of gas-turbine engine flow-through passages

    NASA Astrophysics Data System (ADS)

    Vinogradov, Vasiliy Y.; Morozov, Oleg G.; Nureev, Ilnur I.; Kuznetzov, Artem A.

    2015-03-01

    In this paper we consider the integrated approach to development of the aero-acoustical methods for diagnostics of aircraft gas-turbine engine flow-through passages by using as the base the passive fiber-optic and location technologies.

  17. Eddy Current Assessment of Engineered Components Containing Nanofibers

    NASA Astrophysics Data System (ADS)

    Ko, Ray T.; Hoppe, Wally; Pierce, Jenny

    2009-03-01

    The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.

  18. General aviation accidents : the United States Air Force Aero Club solution

    DOT National Transportation Integrated Search

    1998-08-01

    Aviation if an intrisically safe mode of travel. In 1994, the United States Air Force system of Aero Clubs put forth substantial effort to put a program in place (Fly Smart) to improve flying safety in it aircraft. This study compares the accident ra...

  19. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  20. Engine Icing Modeling and Simulation (Part 2): Performance Simulation of Engine Rollback Phenomena

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Veres, Joseph P.; Jorgenson, Philip C. E.

    2011-01-01

    Ice buildup in the compressor section of a commercial aircraft gas turbine engine can cause a number of engine failures. One of these failure modes is known as engine rollback: an uncommanded decrease in thrust accompanied by a decrease in fan speed and an increase in turbine temperature. This paper describes the development of a model which simulates the system level impact of engine icing using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). When an ice blockage is added to C-MAPSS40k, the control system responds in a manner similar to that of an actual engine, and, in cases with severe blockage, an engine rollback is observed. Using this capability to simulate engine rollback, a proof-of-concept detection scheme is developed and tested using only typical engine sensors. This paper concludes that the engine control system s limit protection is the proximate cause of iced engine rollback and that the controller can detect the buildup of ice particles in the compressor section. This work serves as a feasibility study for continued research into the detection and mitigation of engine rollback using the propulsion control system.

  1. Effect of soot on oil properties and wear of engine components

    NASA Astrophysics Data System (ADS)

    Green, D. A.; Lewis, R.

    2007-09-01

    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present.

  2. Experience with integrally-cast compressor and turbine components for a small, low-cost, expendable-type turbojet engine

    NASA Technical Reports Server (NTRS)

    Dengler, R. P.

    1975-01-01

    Experiences with integrally-cast compressor and turbine components during fabrication and testing of four engine assemblies of a small (29 cm (11 1/2 in.) maximum diameter) experimental turbojet engine design for an expendable application are discussed. Various operations such as metal removal, welding, and re-shaping of these components were performed in preparation of full-scale engine tests. Engines with these components were operated for a total of 157 hours at engine speeds as high as 38,000 rpm and at turbine inlet temperatures as high as 1256 K (1800 F).

  3. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  4. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  5. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  6. Overview of NASA Power Technologies for Space and Aero Applications

    NASA Technical Reports Server (NTRS)

    Beach, Raymond F.

    2014-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both the space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development.

  7. Performance-based seismic design of nonstructural building components: The next frontier of earthquake engineering

    NASA Astrophysics Data System (ADS)

    Filiatrault, Andre; Sullivan, Timothy

    2014-08-01

    With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major

  8. The Role of Free-Stream Turbulence on High Pressure Turbine Aero-Thermal Stage Interaction

    NASA Astrophysics Data System (ADS)

    Kopriva, James Earl

    Turbulence plays an important role on the aero-thermal performance of modern aircraft engine High Pressure Turbines (HPT). The role of the vane wake and passage turbulence on the downstream blade flow field is an important consideration for both performance and durability. Obtaining measurements to fully characterize the flow field can be challenging and costly in an experimental facility. Advances in computational Fluid Dynamic (CFD) modeling and High Performance Computing (HPC) are providing opportunity to close these measurement gaps. In order for CFD to be adopted, methods need to be both accurate and efficient. Meshing approaches must also be able to resolve complex HPT geometry while maintaining quality adequate for scale-resolved simulations. Therefore, the accuracy of executing scale-resolved simulations with a second-order code on a mesh of prisms and tetrahedrals in Fluent is considered. Before execution of the HPT computational study, a building block approach is taken to gain quantified predictive performance in the modeling approach as well as understanding limitations in lower computational cost modeling approaches. The predictive capability for Reynolds Averaged Navier Stokes (RANS), Hybrid Large Eddy Simulation (LES), and wall-resolved LES turbulence modeling approaches are first assessed for a cylinder in cross-flow at a Reynolds number of 2580. The flow condition and simple geometry facilitate a quick turn-around for modeling assessment before moving the HPT vane study at high Reynolds and Mach number conditions. Modeling approaches are then assessed relative to the experimental measurements of Arts and Rouvroit (1992) on a pitch-line HPT uncooled vane at high Mach and Reynolds numbers conditions with low (0-6%) free-stream turbulence. The current unstructured second-order LES approach agrees with experimental data and is found to be within the equivalent experimental uncertainty when compared to the structured high-ordered solver FDL3DI. The

  9. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  10. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  11. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  12. Statistical learning methods for aero-optic wavefront prediction and adaptive-optic latency compensation

    NASA Astrophysics Data System (ADS)

    Burns, W. Robert

    Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be

  13. Simulating Operation of a Large Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Frederick, Dean K.; DeCastro, Jonathan

    2008-01-01

    The Commercial Modular Aero- Propulsion System Simulation (C-MAPSS) is a computer program for simulating transient operation of a commercial turbofan engine that can generate as much as 90,000 lb (.0.4 MN) of thrust. It includes a power-management system that enables simulation of open- or closed-loop engine operation over a wide range of thrust levels throughout the full range of flight conditions. C-MAPSS provides the user with a set of tools for performing open- and closed-loop transient simulations and comparison of linear and non-linear models throughout its operating envelope, in an easy-to-use graphical environment.

  14. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  15. Development and testing of CMC components for automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1991-01-01

    Ceramic matrix composite (CMC) materials are currently being developed and evaluated for advanced gas turbine engine components because of their high specific strength and resistance to catastrophic failure. Components with 2D and 3D composite architectures have been successfully designed and fabricated. This is an overview of the test results for a backplate, combustor, and a rotor.

  16. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  17. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  18. Current Progress of a Finite Element Computational Fluid Dynamics Prediction of Flutter for the AeroStructures Test Wing

    NASA Technical Reports Server (NTRS)

    Arena, Andrew S., Jr.

    2002-01-01

    This progress report focuses on the use of the STructural Analysis RoutineS suite program, SOLIDS, input for the AeroStructures Test Wing. The AeroStructures Test Wing project as a whole is described. The use of the SOLIDS code to find the mode shapes of a structure is discussed. The frequencies, and the structural dynamics to which they relate are examined. The results of the CFD predictions are compared to experimental data from a Ground Vibration Test.

  19. Airborne Laser Laboratory departure from Kirtland Air Force Base and a brief history of aero-optics

    NASA Astrophysics Data System (ADS)

    Kyrazis, Demos T.

    2013-07-01

    We discuss aspects of the development of the Airborne Laser Laboratory. Our discussion is historical in nature and consists of the text from a speech given on the occasion of the Airborne Laser Laboratory leaving Kirtland Air Force Base (AFB) to fly to Wright-Patterson AFB to become an exhibit at the National Museum of the United States Air Force. The last part of the discussion concerns the inception of the study of aero-optics as an area of research and some of the milestones in the understanding of the causes and prediction of aero-optical effects.

  20. Impact of broad-specification fuels on future jet aircraft. [engine components and performance

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1978-01-01

    The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.

  1. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…

  2. NASA-universities relationships in aero/space engineering: A review of NASA's program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    NASA is concerned about the health of aerospace engineering departments at U.S. universities. The number of advanced degrees in aerospace engineering has declined. There is concern that universities' facilities, research equipment, and instrumentation may be aging or outmoded and therefore affect the quality of research and education. NASA requested that the National Research Council's Aeronautics and Space Engineering Board (ASEB) review NASA's support of universities and make recommendations to improve the program's effectiveness.

  3. Turbine engine component with cooling passages

    DOEpatents

    Arrell, Douglas J [Oviedo, FL; James, Allister W [Orlando, FL

    2012-01-17

    A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.

  4. High-speed engine/component performance assessment using exergy and thrust-based methods

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.

    1996-01-01

    This investigation summarizes a comparative study of two high-speed engine performance assessment techniques based on energy (available work) and thrust-potential (thrust availability). Simple flow-fields utilizing Rayleigh heat addition and one-dimensional flow with friction are used to demonstrate the fundamental inability of conventional energy techniques to predict engine component performance, aid in component design, or accurately assess flow losses. The use of the thrust-based method on these same examples demonstrates its ability to yield useful information in all these categories. Energy and thrust are related and discussed from the stand-point of their fundamental thermodynamic and fluid dynamic definitions in order to explain the differences in information obtained using the two methods. The conventional definition of energy is shown to include work which is inherently unavailable to an aerospace Brayton engine. An engine-based energy is then developed which accurately accounts for this inherently unavailable work; performance parameters based on this quantity are then shown to yield design and loss information equivalent to the thrust-based method.

  5. Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation

    NASA Astrophysics Data System (ADS)

    Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim

    2018-05-01

    A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.

  6. Stationary Engineers Apprenticeship. Related Training Modules. 10.1-10.5 Machine Components.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of five learning modules on machine components is one of 20 such packets developed for apprenticeship training for stationary engineers. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, statement…

  7. Emergency airway management in critically injured patients: a survey of U.S. aero-medical transport programs.

    PubMed

    James, Dorsha N; Voskresensky, Igor V; Jack, Meg; Cotton, Bryan A

    2009-06-01

    Pre-hospital airway management represents the intervention most likely to impact outcomes in critically injured patients. As such, airway management issues dominate quality improvement (QI) reviews of aero-medical programs. The purpose of this study was to evaluate current practice patterns of airway management in trauma among U.S. aero-medical service (AMS) programs. The Association of Air Medical Services (AAMS) Resource Guide from 2005 to 2006 was utilized to identify the e-mail addresses of all directors of U.S. aero-medical transport programs. Program directors from 182 U.S. aero-medical programs were asked to participate in an anonymous, web-based survey of emergency airway management protocols and practices. Non-responders to the initial request were contacted a second time by e-mail. 89 programs responded. 98.9% have rapid sequence intubation (RSI) protocols. 90% use succinylcholine, 70% use long-acting neuromuscular blockers (NMB) within their RSI protocol. 77% have protocols for mandatory in-flight sedation but only 13% have similar protocols for maintenance paralytics. 60% administer long-acting NMB immediately after RSI, 13% after confirmation of neurological activity. Given clinical scenarios, however, 97% administer long-acting NMB to patients with scene and in-flight Glasgow Coma Scale (GCS) of 3, even for brief transport times. The majority of AMS programs have well defined RSI and in-flight sedation protocols, while protocols for in-flight NMB are uncommon. Despite this, nearly all programs administer long-acting NMB following RSI, irrespective of GCS or flight time. Given the impact of in-flight NMB on initial assessment, early intervention, and injury severity scoring, a critical appraisal of current AMS airway management practices appears warranted.

  8. Optical Methods For Automatic Rating Of Engine Test Components

    NASA Astrophysics Data System (ADS)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  9. Engine Development Design Margins Briefing Charts

    NASA Technical Reports Server (NTRS)

    Bentz, Chuck

    2006-01-01

    New engines experience durability problems after entering service. The most prevalent and costly is the hot section, particularly the high-pressure turbine. The origin of durability problems can be traced back to: 1) the basic aero-mechanical design systems, assumptions, and design margins used by the engine designers, 2) the available materials systems, and 3) to a large extent, aggressive marketing in a highly competitive environment that pushes engine components beyond the demonstrated capability of the basic technology available for the hardware designs. Unfortunately the user must operate the engine in the service environment in order to learn the actual thrust loading and the time at max effort take-off conditions used in service are needed to determine the hot section life. Several hundred thousand hours of operational service will be required before the demonstrated reliability of a fleet of engines or the design deficiencies of the engine hot section parts can be determined. Also, it may take three to four engine shop visits for heavy maintenance on the gas path hardware to establish cost effective build standards. Spare parts drive the oerator's engine maintenance costs but spare parts also makes lots of money for the engine manufacturer during the service life of an engine. Unless competition prevails for follow-on engine buys, there is really no motivation for an OEM to spend internal money to improve parts durability and reduce earnings derived from a lucrative spare parts business. If the hot section life is below design goals or promised values, the OEM migh argue that the engine is being operated beyond its basic design intent. On the other hand, the airframer and the operator will continue to remind the OEM that his engine was selected based on a lot of promises to deliver spec thrust with little impact on engine service life if higher thrust is used intermittently. In the end, a standoff prevails and nothing gets fixed. This briefing will propose

  10. Aero-medical evacuation from the second Israel-Lebanon war: a descriptive study.

    PubMed

    Schwartz, Dagan; Resheff, Avram; Geftler, Alex; Weiss, Aviram; Birenbaum, Erez; Lavon, Ophir

    2009-05-01

    The second Lebanon war started as a limited operation and progressed to a large-scale campaign. Most of the fighting took place in mountainous villages and small towns inhabited with civilians. The Israeli Defense Forces (IDF) Airborne rescue and evacuation unit is charged with air evacuation of soldiers and civilians in times of peace, limited conflict, and war. We describe this unit's activities in the second Lebanon war, analyzing injury, treatment, and evacuation characteristics Data were collected from flight medical reports, debriefings of aero-medical team members (usually immediately upon return from mission), ground units medical reports and debriefings, and hospital records. 725 IDF soldiers were injured and 117 killed either in Lebanon or near the Israeli-Lebanese border during the war. A total of 338 (46%) were evacuated in 95 airlifts (averaging 4.5 evacuees per airlift) from the fighting zones or the border. Air evacuation used dedicated helicopters with advanced care capacities, and most victims were evacuated straight from the battlefield, as the fighting was ensuing. Many wounded first received advanced medical care upon the arrival of the aero-medical teams. In military operations within civilian populated areas with threats to ground transport, air evacuation can sometimes be the only readily available option. Providing timely ground advanced medical care proved difficult in many instances. Thus, for many, the rescue helicopter was the first point of access to such care. Aero-medical aircrafts and personnel faced threats from gunfire and missiles, causing both delays in evacuation and a high average number of evacuees per airlift. This article proposes ways of coping with situations in which similar rescue and evacuation problems are likely.

  11. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  12. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  13. Further Developments in Modeling Creep Effects Within Structural SiC/SiC Components

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James A.

    2008-01-01

    Anticipating the implementation of advanced SiC/SiC composites into turbine section components of future aero-propulsion engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly manipulate constituent materials and processes in order to minimize these effects. Focusing on SiC/SiC components experiencing through-thickness stress gradients (e.g., airfoil leading edge), prior NASA creep modeling studies showed that detrimental residual stress effects can develop globally within the component walls which can increase the risk of matrix cracking. These studies assumed that the SiC/SiC composites behaved as isotropic viscoelastic continuum materials with creep behavior that was linear and symmetric with stress and that the creep parameters could be obtained from creep data as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The present study expands on those prior efforts by including constituent behavior with non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.

  14. An investigation of enhanced capability thermal barrier coating systems for diesel engine components

    NASA Technical Reports Server (NTRS)

    Holtzman, R. L.; Layne, J. L.; Schechter, B.

    1984-01-01

    Material systems and processes for the development of effective and durable thermal barriers for heavy duty diesel engines were investigated. Seven coating systems were evaluated for thermal conductivity, erosion resistance, corrosion/oxidation resistance, and thermal shock resistance. An advanced coating system based on plasma sprayed particle yttria stabilized zirconia (PS/HYSZ) was judged superior in these tests. The measured thermal conductivity of the selected coating was 0.893 W/m C at 371 C. The PS/HYSZ coating system was applied to the piston crown, fire deck and valves of a single cylinder low heat rejection diesel engine. The coated engine components were tested for 24 hr at power levels from 0.83 MPa to 1.17 MPa brake mean effective pressure. The component coatings survived the engine tests with a minimum of distress. The measured fire deck temperatures decreased 86 C (155 F) on the intake side and 42 C (75 F) on the exhaust side with the coating applied.

  15. 78 FR 56589 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... friction in the MLG wheel lever sub-assembly. This condition, if not detected and corrected, could lead to...-off or landing runs. To address this potential unsafe condition, Piaggio Aero Industries (PAI) issued... loss of control during take-off or landing runs. (f) Actions and Compliance Unless already done, do the...

  16. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.

    2003-01-01

    The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.

  17. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  18. Structural Health Monitoring on Turbine Engines Using Microwave Blade Tip Clearance Sensors

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for use possible in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the experiments with the sub-scale turbine engine disks.

  19. Structural health monitoring on turbine engines using microwave blade tip clearance sensors

    NASA Astrophysics Data System (ADS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-04-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to the aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for possible use in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the same experiments with the sub-scale turbine engine disks.

  20. Design for robustness of unique, multi-component engineering systems

    NASA Astrophysics Data System (ADS)

    Shelton, Kenneth A.

    2007-12-01

    The purpose of this research is to advance the science of conceptual designing for robustness in unique, multi-component engineering systems. Robustness is herein defined as the ability of an engineering system to operate within a desired performance range even if the actual configuration has differences from specifications within specified tolerances. These differences are caused by three sources, namely manufacturing errors, system degradation (operational wear and tear), and parts availability. Unique, multi-component engineering systems are defined as systems produced in unique or very small production numbers. They typically have design and manufacturing costs on the order of billions of dollars, and have multiple, competing performance objectives. Design time for these systems must be minimized due to competition, high manpower costs, long manufacturing times, technology obsolescence, and limited available manpower expertise. Most importantly, design mistakes cannot be easily corrected after the systems are operational. For all these reasons, robustness of these systems is absolutely critical. This research examines the space satellite industry in particular. Although inherent robustness assurance is absolutely critical, it is difficult to achieve in practice. The current state of the art for robustness in the industry is to overdesign components and subsystems with redundancy and margin. The shortfall is that it is not known if the added margins were either necessary or sufficient given the risk management preferences of the designer or engineering system customer. To address this shortcoming, new assessment criteria to evaluate robustness in design concepts have been developed. The criteria are comprised of the "Value Distance", addressing manufacturing errors and system degradation, and "Component Distance", addressing parts availability. They are based on an evolutionary computation format that uses a string of alleles to describe the components in the

  1. 20th Annual Systems Engineering Conference, Thursday, Volume 4

    DTIC Science & Technology

    2017-10-26

    Daniel Dault, Air Force Research Lab 19809 Physics Based Modeling & Simulation For Shock and Vulnerability Assessments - Navy Enhanced Sierra...19811 Version 1.0 of the New INCOSE Competency Framework u Mr. Don Gelosh 19515 A Proposed Engineering Training Framework and Competency Methodology...nonlinearity ▪ QEV, Transient, Frequency Domain ▪ Inverse Methods Capability ▪ Coupled Physics ▪ Fluids: nemo, aero and sigma ▪ Thermal (unidirection): fuego

  2. Further two-dimensional code development for Stirling space engine components

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1990-01-01

    The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.

  3. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  4. Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Foley, W. H.; Sheridan, A. E.; Smith, C. W.

    1982-01-01

    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.

  5. Full scale technology demonstration of a modern counterrotating unducted fan engine concept: Component test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The UDF trademark (Unducted Fan) engine is a new aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio powerplant with exceptional fuel efficiency for subsonic aircraft application. This report covers the testing of pertinent components of this engine such as the fan blades, control and actuation system, turbine blades and spools, seals, and mixer frame.

  6. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  7. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  8. Energy efficient engine. Volume 1: Component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.

  9. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  10. Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. F.; Lariviere, B. W.

    1993-01-01

    An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.

  11. Aero-disaster in Port Harcourt, Nigeria: a case study.

    PubMed

    Seleye-Fubara, D; Etebu, E N; Amakiri, Cnt

    2011-01-01

    Aero-disaster in Nigeria is posing a serious problem to government, the public and relatives of victims, as many lives are lost in a single event. A case study based on an incident at an international airport in Nigeria on December 10, 2005. Detailed autopsy was performed on 97 fully identified bodies out of the 106 victims. Variables considered include ages, sex, pattern of injuries and death as well as problems associated with identification of bodies. A total of 97 (91.5%) out of the 106 deaths recorded were autopsied. Nine (8.5%) bodies were beyond identification, and hence autopsy could not be properly done on them. Fifty-nine (60.8%) were males and 38 (39.2%) were females, giving a ratio of 1.4:1. Sixty-one (62.9%) were children and adolescents below the age of 20 years. Severe burns 27 (27.8%), multiple injuries with burns 21 (21.6%), inhalation of fumes 20 (20.6%), multiple injuries only 16 (16.5%), severe head injury alone 11 (11.3%) and ruptured viscous 2 (2.1%) were the causes of death at autopsy in that order of frequency. Aero-disaster, though rare in Port Harcourt, is posing a serious problem in Nigeria in recent times. Various agencies should be established to adequately control mass disasters in Nigeria. Adequate maintenance of aircraft and strict observation and enforcement of aviation laws may drastically reduce the frequency of accidents and subsequent deaths.

  12. Miga Aero Actuator and 2D Machined Mechanical Binary Latch

    NASA Technical Reports Server (NTRS)

    Gummin, Mark A.

    2013-01-01

    Shape memory alloy (SMA) actuators provide the highest force-to-weight ratio of any known actuator. They can be designed for a wide variety of form factors from flat, thin packages, to form-matching packages for existing actuators. SMA actuators can be operated many thousands of times, so that ground testing is possible. Actuation speed can be accurately controlled from milliseconds to position and hold, and even electronic velocity-profile control is possible. SMA actuators provide a high degree of operational flexibility, and are truly smart actuators capable of being accurately controlled by onboard microprocessors across a wide range of voltages. The Miga Aero actuator is a SMA actuator designed specifically for spaceflight applications. Providing 13 mm of stroke with either 20- or 40-N output force in two different models, the Aero actuator is made from low-outgassing PEEK (polyether ether ketone) plastic, stainless steel, and nickel-titanium SMA wires. The modular actuator weighs less than 28 grams. The dorsal output attachment allows the Aero to be used in either PUSH or PULL modes by inverting the mounting orientation. The SPA1 actuator utilizes commercially available SMA actuator wire to provide 3/8-in. (approx. =.1 cm) of stroke at a force of over 28 lb (approx. = .125 N). The force is provided by a unique packaging of the single SMA wire that provides the output force of four SMA wires mechanically in parallel. The output load is shared by allowing the SMA wire to slip around the output attachment end to adjust or balance the load, preventing any individual wire segment from experiencing high loads during actuation. A built-in end limit switch prevents overheating of the SMA element following actuation when used in conjunction with the Miga Analog Driver [a simple MOSFET (metal oxide semiconductor field-effect transistor) switching circuit]. A simple 2D machined mechanical binary latch has been developed to complement the capabilities of SMA wire

  13. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  14. Modeling C-Band Co-Channel Interference From AeroMACS Omni-Directional Antennas to Mobile Satellite Service Feeder Uplinks

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2011-01-01

    A new C-band (5091 to 5150 MHz) airport communications system designated as Aeronautical Mobile Airport Communications System (AeroMACS) is being planned under the Federal Aviation Administration s NextGen program. An interference analysis software program, Visualyse Professional (Transfinite Systems Ltd), is being utilized to provide guidelines on limitations for AeroMACS transmitters to avoid interference with other systems. A scenario consisting of a single omni-directional transmitting antenna at each of the major contiguous United States airports is modeled and the steps required to build the model are reported. The results are shown to agree very well with a previous study.

  15. CMC Property Variability and Life Prediction Methods for Turbine Engine Component Application

    NASA Technical Reports Server (NTRS)

    Cheplak, Matthew L.

    2004-01-01

    The ever increasing need for lower density and higher temperature-capable materials for aircraft engines has led to the development of Ceramic Matrix Composites (CMCs). Today's aircraft engines operate with >3000"F gas temperatures at the entrance to the turbine section, but unless heavily cooled, metallic components cannot operate above approx.2000 F. CMCs attempt to push component capability to nearly 2700 F with much less cooling, which can help improve engine efficiency and performance in terms of better fuel efficiency, higher thrust, and reduced emissions. The NASA Glenn Research Center has been researching the benefits of the SiC/SiC CMC for engine applications. A CMC is made up of a matrix material, fibers, and an interphase, which is a protective coating over the fibers. There are several methods or architectures in which the orientation of the fibers can be manipulated to achieve a particular material property objective as well as a particular component geometric shape and size. The required shape manipulation can be a limiting factor in the design and performance of the component if there is a lack of bending capability of the fiber as making the fiber more flexible typically sacrifices strength and other fiber properties. Various analysis codes are available (pcGINA, CEMCAN) that can predict the effective Young's Moduli, thermal conductivities, coefficients of thermal expansion (CTE), and various other properties of a CMC. There are also various analysis codes (NASAlife) that can be used to predict the life of CMCs under expected engine service conditions. The objective of this summer study is to utilize and optimize these codes for examining the tradeoffs between CMC properties and the complex fiber architectures that will be needed for several different component designs. For example, for the pcGINA code, there are six variations of architecture available. Depending on which architecture is analyzed, the user is able to specify the fiber tow size, tow

  16. Accumulating Evidence and Research Organization (AERO) model: a new tool for representing, analyzing, and planning a translational research program.

    PubMed

    Hey, Spencer Phillips; Heilig, Charles M; Weijer, Charles

    2013-05-30

    Maximizing efficiency in drug development is important for drug developers, policymakers, and human subjects. Limited funds and the ethical imperative of risk minimization demand that researchers maximize the knowledge gained per patient-subject enrolled. Yet, despite a common perception that the current system of drug development is beset by inefficiencies, there remain few approaches for systematically representing, analyzing, and communicating the efficiency and coordination of the research enterprise. In this paper, we present the first steps toward developing such an approach: a graph-theoretic tool for representing the Accumulating Evidence and Research Organization (AERO) across a translational trajectory. This initial version of the AERO model focuses on elucidating two dimensions of robustness: (1) the consistency of results among studies with an identical or similar outcome metric; and (2) the concordance of results among studies with qualitatively different outcome metrics. The visual structure of the model is a directed acyclic graph, designed to capture these two dimensions of robustness and their relationship to three basic questions that underlie the planning of a translational research program: What is the accumulating state of total evidence? What has been the translational trajectory? What studies should be done next? We demonstrate the utility of the AERO model with an application to a case study involving the antibacterial agent, moxifloxacin, for the treatment of drug-susceptible tuberculosis. We then consider some possible elaborations for the AERO model and propose a number of ways in which the tool could be used to enhance the planning, reporting, and analysis of clinical trials. The AERO model provides an immediate visual representation of the number of studies done at any stage of research, depicting both the robustness of evidence and the relationship of each study to the larger translational trajectory. In so doing, it makes some of the

  17. Development of GUI Type On-Line Condition Monitoring Program for a Turboprop Engine Using Labview

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Kim, Keonwoo

    2011-12-01

    Recently, an aero gas turbine health monitoring system has been developed for precaution and maintenance action against faults or performance degradations of the advanced propulsion system which occurs in severe environments such as high altitude, foreign object damage particles, hot and heavy rain and snowy atmospheric conditions. However to establish this health monitoring system, the online condition monitoring program is firstly required, and the program must monitor the engine performance trend through comparison between measured engine performance data and base performance results calculated by base engine performance model. This work aims to develop a GUI type on-line condition monitoring program for the PT6A-67 turboprop engine of a high altitude and long endurance operation UAV using LabVIEW. The base engine performance of the on-line condition monitoring program is simulated using component maps inversely generated from the limited performance deck data provided by engine manufacturer. The base engine performance simulation program is evaluated because analysis results by this program agree well with the performance deck data. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between clean engine performance results calculated by the base performance simulation program and measured engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed online monitoring system. For user friendly purpose, all monitoring program are coded by LabVIEW, and monitoring examples are demonstrated using the proposed GUI type on-condition monitoring program.

  18. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  19. Simulating Global AeroMACS Airport Ground Station Antenna Power Transmission Limits to Avoid Interference With Mobile Satellite Service Feeder Uplinks

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2013-01-01

    The Aeronautical Mobile Airport Communications System (AeroMACS), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low Earth orbit from transmitters at global airports was simulated with the Visualyse Professional software. The dependence of the interference power on antenna distribution, gain patterns, duty cycle, and antenna tilt was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power from global airports required to maintain the cumulative interference power under the established threshold.

  20. An overview of the Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Vanco, M. R.; Wintucky, W. T.; Niedzwiecki, R. W.

    1986-01-01

    The objectives of the joint NASA/Army SECT Studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.

  1. The Use of Probabilistic Methods to Evaluate the Systems Impact of Component Design Improvements on Large Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Packard, Michael H.

    2002-01-01

    Probabilistic Structural Analysis (PSA) is now commonly used for predicting the distribution of time/cycles to failure of turbine blades and other engine components. These distributions are typically based on fatigue/fracture and creep failure modes of these components. Additionally, reliability analysis is used for taking test data related to particular failure modes and calculating failure rate distributions of electronic and electromechanical components. How can these individual failure time distributions of structural, electronic and electromechanical component failure modes be effectively combined into a top level model for overall system evaluation of component upgrades, changes in maintenance intervals, or line replaceable unit (LRU) redesign? This paper shows an example of how various probabilistic failure predictions for turbine engine components can be evaluated and combined to show their effect on overall engine performance. A generic model of a turbofan engine was modeled using various Probabilistic Risk Assessment (PRA) tools (Quantitative Risk Assessment Software (QRAS) etc.). Hypothetical PSA results for a number of structural components along with mitigation factors that would restrict the failure mode from propagating to a Loss of Mission (LOM) failure were used in the models. The output of this program includes an overall failure distribution for LOM of the system. The rank and contribution to the overall Mission Success (MS) is also given for each failure mode and each subsystem. This application methodology demonstrates the effectiveness of PRA for assessing the performance of large turbine engines. Additionally, the effects of system changes and upgrades, the application of different maintenance intervals, inclusion of new sensor detection of faults and other upgrades were evaluated in determining overall turbine engine reliability.

  2. Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.

    2007-01-01

    Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.

  3. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

  4. Small Engine Component Technology (SECT)

    NASA Technical Reports Server (NTRS)

    Early, M.; Dawson, R.; Zeiner, P.; Turk, M.; Benn, K.

    1986-01-01

    A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent. The study further shows that cruise missile range can be increased by as much as 200 percent (320 percent with slurry fuels) for a year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000.

  5. Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate

    NASA Astrophysics Data System (ADS)

    Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY

    2017-12-01

    The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.

  6. More Intelligent Gas Turbine Engines (Des turbomoteurs plus intelligents)

    DTIC Science & Technology

    2009-04-01

    Group 128. by Dennis Culley, NASA Glenn Research Center Sanjay Garg, NASA Glenn Research Center S.-J. Hiller, MTU Aero Engines GmbH Wolfgang Horn...in Swirled Gas Turbine Combustors”, AIAA-2005-116. [2.90] Seume, J.R., Vortmeyer, N., Krause , W., Hermann, J., Hantschk, C.-C., Zangl, P., Gleis, S...TR-AVT-128 8 - 1 Chapter 8 – SUMMARY AND RECOMMENDATIONS by Sanjay Garg (NASA Glenn Research Center), Wolfgang Horn and S.-J. Hiller (MTU

  7. Analysis of MMIC arrays for use in the ACTS Aero Experiment

    NASA Technical Reports Server (NTRS)

    Zimmerman, M.; Lee, R.; Rho, E.; Zaman, Z.

    1993-01-01

    The Aero Experiment is designed to demonstrate communication from an aircraft to an Earth terminal via the ACTS. This paper describes the link budget and antenna requirements for a 4.8 kbps full-duplex voice link at Ka-Band frequencies. Three arrays, one transmit array developed by TI and two receive arrays developed by GE and Boeing, were analyzed. The predicted performance characteristics of these arrays are presented and discussed in the paper.

  8. Evaluation of aero commander propeller acoustic data: Taxi operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1979-01-01

    The acoustic data from ground tests performed on an Aero Commander propeller driven aircraft are analyzed. An array of microphones flush mounted on the side of the fuselage were used to record data. The propeller blade passage noise during operations at several different taxi speeds is considered and calculations of the magnitude and phase of the blade passage tones, the amplitude stability of the tones, and the spatial phase and coherence of the tones are included. The measured results are compared to theoretical predictions for propeller noise and various evaluations which reveal important details of propeller noise characteristics are presented.

  9. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  10. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the lowboom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.

  11. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  12. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  13. Advanced rotary engine components utilizing fiber reinforced Mg castings

    NASA Technical Reports Server (NTRS)

    Goddard, D.; Whitman, W.; Pumphrey, R.; Lee, C.-M.

    1986-01-01

    Under a two-phase program sponsored by NASA, the technology for producing advanced rotary engine components utilizing graphite fiber-reinforced magnesium alloy casting is being developed. In Phase I, the successful casting of a simulated intermediate housing was demonstrated. In Phase II, the goal is to produce an operating rotor housing. The effort involves generation of a material property data base, optimization of parameters, and development of wear- and corrosion-resistant cast surfaces and surface coatings. Results to date are described.

  14. Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are

  15. Energy efficient engine: Low-pressure turbine subsonic cascade component development and integration program

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.

    1982-01-01

    A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.

  16. 76 FR 36980 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes AGENCY: Federal Aviation... Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket...-P ...

  17. Buzz-saw noise : propagation of shock waves in aero-engine inlet ducts

    NASA Astrophysics Data System (ADS)

    Fernando, Rasika; Marchiano, Régis; Coulouvrat, François; Druon, Yann

    2008-06-01

    For supersonic flows relative to turbo-engine fan blades, measured acoustic spectra near the inlet present tones at fan blade passing frequency (BPF), engine shaft rotation frequency, or Engine Order (EO), and their respective harmonics. The latter are responsible for the Buzz-saw noise and are thus referred to as "Buzz-saw" or "multiple pure" tones. This work first attempts to reformulate McAlpine and Fisher's frequency domain model (2001) for the propagation of a unidimensional sawtooth waveform spiralling inside a hard-walled cylindrical duct in the presence of a uniform flow. The non-dissipative Burgers equation is solved using a shock fitting method, and modal attenuation and dispersion are added using a split-step computational method. In practice, shocks do not only occur at blade tips but on a significant portion of the blade span. The plane wave hypothesis being no longer valid, a new three dimensional model is required. This model is based on the computation of the axially varying amplitudes of the modal solutions, in order to take into account the nonlinear modal interactions.

  18. Nonlinear Analysis of Squeeze Film Dampers Applied to Gas Turbine Helicopter Engines.

    DTIC Science & Technology

    1980-11-01

    calculate the stability (complex roots) of a multi-level gas turbine with aero- dynamic excitation. This program has been applied to the space shuttle...such phenomena as oil film whirl. This paper devlops an analysis technique incorporating modal analysis and fast Fourier transform tech- niques to...USING A SQUEEZE FILM BEARING By M. A. Simpson Research Engineer L. E. Barrett Reserach Assistant Professor Department of Mechanical and Aerospace

  19. Application of Additively Manufactured Components in Rocket Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Calvert, Marty, Jr.; Hanks, Andrew; Schmauch, Preston; Delessio, Steve

    2015-01-01

    The use of additive manufacturing technology has the potential to revolutionize the development of turbopump components in liquid rocket engines. When designing turbomachinery with the additive process there are several benefits and risks that are leveraged relative to a traditional development cycle. This topic explores the details and development of a 90,000 RPM Liquid Hydrogen Turbopump from which 90% of the parts were derived from the additive process. This turbopump was designed, developed and will be tested later this year at Marshall Space Flight Center.

  20. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  1. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2008-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  2. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2008-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.

  3. Numerical study on influence of single control surface on aero elastic behavior of forward-swept wing

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Su, Xinbing; Ma, Binlin; Zhang, Xiaofei

    2017-10-01

    In order to study the influence of elastic forward-swept wing (FSW) with single control surface, the computational fluid dynamics/computational structural dynamics (CFD/CSD) loose coupling static aero elastic numerical calculation method was adopted for numerical simulation. The effects of the elastic FSW with leading- or trailing-edge control surface on aero elastic characteristics were calculated and analysed under the condition of high subsonic speed. The result shows that, the deflection of every single control surface could change the aero elastic characteristics of elastic FSW greatly. Compared with the baseline model, when leading-edge control surface deflected up, under the condition of small angles of attack, the aerodynamic characteristics was poor, but the bending and torsional deformation decreased. Under the condition of moderate angles of attack, the aerodynamic characteristics was improved, but bending and torsional deformation increased; When leading-edge control surface deflected down, the aerodynamic characteristics was improved, the bending and torsional deformation decreased/increased under the condition of small/moderate angles of attack. Compared with the baseline model, when trailing-edge control surface deflected down, the aerodynamic characteristics was improved. The bending and torsional deformation increased under the condition of small angles of attack. The bending deformation increased under the condition of small angles of attack, but torsional deformation decreases under the condition of moderate angles of attack. So, for the elastic FSW, the deflection of trailing-edge control surface play a more important role on the improvement of aerodynamic and elastic deformation characteristics.

  4. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  5. Turbofan Engine Simulated in a Graphical Simulation Environment

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2004-01-01

    Recently, there has been an increase in the development of intelligent engine technology with advanced active component control. The computer engine models used in these control studies are component-level models (CLM), models that link individual component models of state space and nonlinear algebraic equations, written in a computer language such as Fortran. The difficulty faced in performing control studies on Fortran-based models is that Fortran is not supported with control design and analysis tools, so there is no means for implementing real-time control. It is desirable to have a simulation environment that is straightforward, has modular graphical components, and allows easy access to health, control, and engine parameters through a graphical user interface. Such a tool should also provide the ability to convert a control design into real-time code, helping to make it an extremely powerful tool in control and diagnostic system development. Simulation time management is shown: Mach number versus time, power level angle versus time, altitude versus time, ambient temperature change versus time, afterburner fuel flow versus time, controller and actuator dynamics, collect initial conditions, CAD output, and component-level model: CLM sensor, CAD input, and model output. The Controls and Dynamics Technologies Branch at the NASA Glenn Research Center has developed and demonstrated a flexible, generic turbofan engine simulation platform that can meet these objectives, known as the Modular Aero-Propulsion System Simulation (MAPSS). MAPSS is a Simulink-based implementation of a Fortran-based, modern high pressure ratio, dual-spool, low-bypass, military-type variable-cycle engine with a digital controller. Simulink (The Mathworks, Natick, MA) is a computer-aided control design and simulation package allows the graphical representation of dynamic systems in a block diagram form. MAPSS is a nonlinear, non-real-time system composed of controller and actuator dynamics

  6. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  7. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  8. Small engine components test facility compressor testing cell at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Brokopp, Richard A.; Gronski, Robert S.

    1992-01-01

    LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.

  9. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    NASA Technical Reports Server (NTRS)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  10. Mixing Process in Ejector Nozzles Studied at Lewis' Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center has been studying mixing processes in ejector nozzles for its High Speed Research (HSR) Program. This work is directed at finding ways to minimize the noise of a future supersonic airliner. Much of the noise such an airplane would generate would come from the nozzle, where a hot, high-speed jet exits the engine. Several different nozzle configurations were used to produce nozzle systems with different acoustical and aerodynamic characteristics. The acoustical properties were measured by an array of microphones in an anechoic chamber, and the aerodynamics were measured by traditional pressure and temperature instruments as well as by Laser Doppler Velocimetry (LDV), a technique for visualizing the airflow pattern without disturbing it. These measurements were put together and compared for different configurations to examine the relationships between mixing and noise generation. The mixer-ejector nozzle with the installed flow-visualization windows (foreground), the optical equipment and the supporting structure for the Laser Doppler Velocimetry flow visualization (midfield), and the sound-absorbing wedges used to create an anechoic environment for acoustic testing (background) is shown. The High Speed Research Program is a NASA-funded effort, in cooperation with the U.S. aerospace industry, to develop enabling technologies for a future supersonic airliner. One of the technological barriers being addressed is noise generated during near-airport operation. The mixer-ejector nozzle concept is being examined as a way to reduce jet noise while maintaining thrust. Ambient air is mixed with the high-velocity engine exhaust to reduce the jet velocity and hence the noise generated by the jet. The model was designed and built by Pratt & Whitney under NASA contract. The test, completed in June 1995, was conducted in Lewis' Aero-Acoustic Propulsion Laboratory.

  11. Traversing Microphone Track Installed in NASA Lewis' Aero-Acoustic Propulsion Laboratory Dome

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.; Perusek, Gail P.

    1999-01-01

    The Aero-Acoustic Propulsion Laboratory is an acoustically treated, 65-ft-tall dome located at the NASA Lewis Research Center. Inside this laboratory is the Nozzle Acoustic Test Rig (NATR), which is used in support of Advanced Subsonics Technology (AST) and High Speed Research (HSR) to test engine exhaust nozzles for thrust and acoustic performance under simulated takeoff conditions. Acoustic measurements had been gathered by a far-field array of microphones located along the dome wall and 10-ft above the floor. Recently, it became desirable to collect acoustic data for engine certifications (as specified by the Federal Aviation Administration (FAA)) that would simulate the noise of an aircraft taking off as heard from an offset ground location. Since nozzles for the High-Speed Civil Transport have straight sides that cause their noise signature to vary radially, an additional plane of acoustic measurement was required. Desired was an arched array of 24 microphones, equally spaced from the nozzle and each other, in a 25 off-vertical plane. The various research requirements made this a challenging task. The microphones needed to be aimed at the nozzle accurately and held firmly in place during testing, but it was also essential that they be easily and routinely lowered to the floor for calibration and servicing. Once serviced, the microphones would have to be returned to their previous location near the ceiling. In addition, there could be no structure could between the microphones and the nozzle, and any structure near the microphones would have to be designed to minimize noise reflections. After many concepts were considered, a single arched truss structure was selected that would be permanently affixed to the dome ceiling and to one end of the dome floor.

  12. On the lightweighting of automobile engine components : forming sheet metal connecting rod

    NASA Astrophysics Data System (ADS)

    Date, P. P.; Kasture, R. N.; Kore, A. S.

    2017-09-01

    Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.

  13. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume I, Text.

    DOT National Transportation Integrated Search

    1981-09-01

    This profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industr...

  14. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume II, Appendices.

    DOT National Transportation Integrated Search

    1981-09-01

    The profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industry...

  15. Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.

    2005-01-01

    High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.

  16. Performance of a Turboprop Engine with Heat Recovery in Off-Design Conditions

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto; Gamma, Fausto; Ingenito, Antonella; Agresta, Antonio

    2013-09-01

    The research for fuel consumption and pollution reduction in new generation aero engines has indicated intercooling and regeneration as very effective methods for this purpose. Hence, different countries have joined their efforts in common research programs, to develop new gas turbine engines able to reduce considerably the fuel consumption and the ambient impact by means of these two techniques. To study their effects on the engine performance and characteristics, a thermodynamic numerical program that simulates the behavior of a turboprop engine with intercooling and regeneration in different operating conditions has been developed. After the parametric study, and the definition of the design conditions, the off-design analysis is carried on, comparing the main characteristics of the intercooled-regenerated turboprop with those of a conventional engine. Then, once a particular mission profile was fixed, the engine performance, in particular the equivalent power, the fuel consumption and the heat exchanger weight were discussed.

  17. Fuel Consumption Reduction and Weight Estimate of an Intercooled-Recuperated Turboprop Engine

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto; Ingenito, Antonella; Gamma, Fausto

    2012-09-01

    The introduction of intercooling and regeneration in a gas turbine engine can lead to performance improvement and fuel consumption reduction. Moreover, as first consequence of the saved fuel, also the pollutant emission can be greatly reduced. Turboprop seems to be the most suitable gas turbine engine to be equipped with intercooler and heat recuperator thanks to the relatively small mass flow rate and the small propulsion power fraction due to the exhaust nozzle. However, the extra weight and drag due to the heat exchangers must be carefully considered. An intercooled-recuperated turboprop engine is studied by means of a thermodynamic numeric code that, computing the thermal cycle, simulates the engine behavior at different operating conditions. The main aero engine performances, as specific power and specific fuel consumption, are then evaluated from the cycle analysis. The saved fuel, the pollution reduction, and the engine weight are then estimated for an example case.

  18. Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1998-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  19. Spacecraft Systems Engineering, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Fortescue, Peter; Stark, John; Swinerd, Graham

    2003-03-01

    Following on from the hugely successful previous editions, the third edition of Spacecraft Systems Engineering incorporates the most recent technological advances in spacecraft and satellite engineering. With emphasis on recent developments in space activities, this new edition has been completely revised. Every chapter has been updated and rewritten by an expert engineer in the field, with emphasis on the bus rather than the payload. Encompassing the fundamentals of spacecraft engineering, the book begins with front-end system-level issues, such as environment, mission analysis and system engineering, and progresses to a detailed examination of subsystem elements which represent the core of spacecraft design - mechanical, electrical, propulsion, thermal, control etc. This quantitative treatment is supplemented by an appreciation of the interactions between the elements, which deeply influence the process of spacecraft systems design. In particular the revised text includes * A new chapter on small satellites engineering and applications which has been contributed by two internationally-recognised experts, with insights into small satellite systems engineering. * Additions to the mission analysis chapter, treating issues of aero-manouevring, constellation design and small body missions. In summary, this is an outstanding textbook for aerospace engineering and design students, and offers essential reading for spacecraft engineers, designers and research scientists. The comprehensive approach provides an invaluable resource to spacecraft manufacturers and agencies across the world.

  20. Evaluation of the aero-optical properties of the SOFIA cavity by means of computional fluid dynamics and a super fast diagnostic camera

    NASA Astrophysics Data System (ADS)

    Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.

  1. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Majjigi, Rudramuni K.

    1992-01-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  2. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  3. 77 FR 24360 - Airworthiness Directives; Sicma Aero Seat Passenger Seat Assemblies, Installed on, But Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... accordance with paragraphs 2/A through D2. of the Accomplishment Instructions of Sicma Aero Seat Service... flight, replace the affected spreader, in accordance with paragraphs 2/A through D2. of the... (modifying to ``Amendment B'' standard), in accordance with paragraphs 2/A through D2. of the Accomplishment...

  4. An engineering approach for the application of textile composites to a structural component

    NASA Technical Reports Server (NTRS)

    Baldwin, Jack W.; Gracias, Brian K.; Clark, Steven R.

    1993-01-01

    An engineering approach for the application of textile composites to a structural component is addressed. The main objective is to improve impact resistance of composite blades by using some form of 3-D reinforcement. Project goals, results, and conclusions are discussed.

  5. Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing

    NASA Technical Reports Server (NTRS)

    Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.

    1992-01-01

    The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.

  6. Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.

    1999-01-01

    This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will

  7. 76 FR 7694 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes AGENCY: Federal Aviation... Piaggio service bulletin number specified in the Alternative Methods of Compliance (AMOCs) section is..., except Federal holidays. The AD docket contains this AD, the regulatory evaluation, any comments received...

  8. Experience with Aero- and Fluid-Dynamic Testing for Engineering and CFD Validation

    NASA Technical Reports Server (NTRS)

    Ross, James C.

    2016-01-01

    Ever since computations have been used to simulate aerodynamics the need to ensure that the computations adequately represent real life has followed. Many experiments have been performed specifically for validation and as computational methods have improved, so have the validation experiments. Validation is also a moving target because computational methods improve requiring validation for the new aspect of flow physics that the computations aim to capture. Concurrently, new measurement techniques are being developed that can help capture more detailed flow features pressure sensitive paint (PSP) and particle image velocimetry (PIV) come to mind. This paper will present various wind-tunnel tests the author has been involved with and how they were used for validation of various kinds of CFD. A particular focus is the application of advanced measurement techniques to flow fields (and geometries) that had proven to be difficult to predict computationally. Many of these difficult flow problems arose from engineering and development problems that needed to be solved for a particular vehicle or research program. In some cases the experiments required to solve the engineering problems were refined to provide valuable CFD validation data in addition to the primary engineering data. All of these experiments have provided physical insight and validation data for a wide range of aerodynamic and acoustic phenomena for vehicles ranging from tractor-trailers to crewed spacecraft.

  9. Continuous fiber ceramic matrix composites for heat engine components

    NASA Technical Reports Server (NTRS)

    Tripp, David E.

    1988-01-01

    High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.

  10. Analysis of Performance of Jet Engine from Characteristics of Components I : Aerodynamic and Matching Characteristics of Turbine Component Determined with Cold Air

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1947-01-01

    The performance of the turbine component of an NACA research jet engine was investigated with cold air. The interaction and the matching of the turbine with the NACA eight-stage compressor were computed with the combination considered as a jet engine. The over-all performance of the engine was then determined. The internal aerodynamics were studied to the extent of investigating the performance of the first stator ring and its influence on the turbine performance. For this ring, the stream-filament method for computing velocity distribution permitted efficient sections to be designed, but the design condition of free-vortex flow with uniform axial velocities was not obtained.

  11. ACTS Aeronautical Terminal Experiment (AERO-X)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    During the summer of 1994, the performance of an experimental mobile satellite communication system was demonstrated. Using the Advanced Communications Technology Satellite (ACTS) and the ACTS Mobile Terminal (AMT), the system demonstrated an active Monolithic Microwave Integrated Circuit (MMIC) phased-array antenna system. The antenna system was installed onboard one of NASA Lewis Research Center's research aircraft, a Learjet Model 25. It proved the viability of in-flight satellite communications services via small, flush, mountable electronic phased-array antennas. The overall system setup for the ACTS Aeronautical Terminal Experiment (AERO-X) is illustrated. The Link Evaluation Terminal (LET) at Lewis in Cleveland, Ohio, interfaced with fixed-AMT equipment, providing a seamless connection with the Public Service Telephone Network. As the Learjet was flown over several major cities across the U.S., this demonstration system allowed passengers onboard to make telephone calls as if they were using a cellular system. ACTS was operated in its microwave switch matrix mode with a spot beam for the Learjet and another spot beam dedicated to the LET.

  12. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...

  13. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...

  14. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Larkin, T. R.

    1986-01-01

    The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.

  15. Energy efficient engine high-pressure turbine component rig performance test report

    NASA Technical Reports Server (NTRS)

    Leach, K. P.

    1983-01-01

    A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.

  16. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  17. NASA Glenn's Engine Components Research Lab, Cell 2B, Reactivated to Support the U.S. Army Research Laboratory T700 Engine Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Griffin, Thomas A.

    2004-01-01

    The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.

  18. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    PubMed

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  19. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    PubMed Central

    Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-01-01

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953

  20. 77 FR 7518 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... report that the top 3 inches of the aero/fire seals of the blocker doors on the thrust reverser torque... aero/fire seals of the blocker doors on the thrust reverser torque boxes on the engines, and replacing affected aero/fire seals with new, improved aero/fire seals. We are issuing this AD to prevent a fire in...

  1. Wind tunnel validation of AeroDyn within LIFES50+ project: imposed Surge and Pitch tests

    NASA Astrophysics Data System (ADS)

    Bayati, I.; Belloli, M.; Bernini, L.; Zasso, A.

    2016-09-01

    This paper presents the first set of results of the steady and unsteady wind tunnel tests, performed at Politecnico di Milano wind tunnel, on a 1/75 rigid scale model of the DTU 10 MW wind turbine, within the LIFES50+ project. The aim of these tests is the validation of the open source code AeroDyn developed at NREL. Numerical and experimental steady results are compared in terms of thrust and torque coefficients, showing good agreement, as well as for unsteady measurements gathered with a 2 degree-of-freedom test rig, capable of imposing the displacements at the base of the model, and providing the surge and pitch motion of the floating offshore wind turbine (FOWT) scale model. The measurements of the unsteady test configuration are compared with AeroDyn/Dynin module results, implementing the generalized dynamic wake (GDW) model. Numerical and experimental comparison showed similar behaviours in terms of non linear hysteresis, however some discrepancies are herein reported and need further data analysis and interpretations about the aerodynamic integral quantities, with a special attention to the physics of the unsteady phenomenon.

  2. Aerosciences, Aero-Propulsion and Flight Mechanics Technology Development for NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.

    2003-01-01

    The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.

  3. Relative Contributions of Regional and Sector Emissions to the Radiative Forcing of Aerosol-Radiation and Aerosol-Cloud Interactions Based on the AeroCOM Phase III/HTAP2 Experiment

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Chin, M.

    2014-12-01

    It is important to understand relative contributions of each regional and sector emission of aerosols and their precursor gases to the regional and global mean radiative forcing of aerosol-radiation and aerosol-cloud interactions. This is because it is useful for international cooperation on controls of air pollution and anthropogenic climate change along most suitable reduction path of their emissions from each region and sector. The Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the United Nations researches the intercontinental transport of air pollutants including aerosols with strong support of the Aerosol Comparisons between Observations and Models (AeroCOM). The ongoing AeroCOM Phase III/HTAP2 experiment assesses relative contributions of regional and sector sources of aerosols and their precursor gases to the air quality using global aerosol transport models with latest emission inventories. In this study, the extended analyses on the relative contributions of each regional and sector emission to the radiative forcing of aerosol-radiation and aerosol-cloud interactions are done from the AeroCOM Phase III/HTAP2 experiment. Simulated results from MIROC-SPRINTARS and other some global aerosol models participating in the the AeroCOM Phase III/HTAP2 experiment are assessed. Acknowledgements: This study is based on the AeroCOM Phase III/HTAP2 experiment and partly supported by the Environment Research and Technology Development Fund (S-12-3) of the Ministry of the Environment, Japan.

  4. 75 FR 22512 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Airworthiness Directives; Piaggio Aero Industries S.p.A. Model PIAGGIO P-180 Airplanes AGENCY: Federal Aviation... presence of potential ignition sources such as electrical equipment and connectors. As a consequence, this..., agree with their substance. But we might have found it necessary to use different words from those in...

  5. Fleet/TYCOM Level Survey of Armament Handling Problems - Task One of the Naval Aviation Armament Support Equipment Program Management Study

    DTIC Science & Technology

    1977-06-21

    7. AUTHOR(#) 6. CONTRACT OR GRANT NUMBER(#) PILA /UDERIAN 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK...mechanically complex (i.e. contains an internal combustion engine) and/or comes in direct support of the aircraft is managed and maintained by the AIMD. The...an internal combustion engine. Accordingly, only the Aero 33D/E Trailer, Aero 51B Trailer, 21A/C Bomb Skid, and Aero 47A Weapons Loader are maintained

  6. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  7. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  8. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  9. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    NASA Astrophysics Data System (ADS)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind

  10. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Astrophysics Data System (ADS)

    Kroeger, C. A.; Larson, H. J.

    1992-03-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  11. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Technical Reports Server (NTRS)

    Kroeger, C. A.; Larson, H. J.

    1992-01-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  12. 75 FR 63062 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes AGENCY: Federal Aviation..., PAI introduced a new Hose Assembly (P/N 80-337284- 001), which allows better clearances and removes... aeroplanes with the old P/N installed only and giving instructions for the replacement with the new Hose...

  13. 75 FR 7409 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes AGENCY: Federal Aviation Administration (FAA), Department of.... As a consequence, this new Airworthiness Directive (AD) requires a functional check of main and stand... AERO INDUSTRIES S.p.A. has issued Service Bulletin (Mandatory) N.: 80-0278, dated July 15, 2009. The...

  14. 76 FR 67243 - In the Matter of Accesspoint Corp., Aero Performance Products, Inc., Apex Resources Group, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Performance Products, Inc., Apex Resources Group, Inc., Aradyme Corp., Bancroft Uranium, Inc., Fightersoft Multimedia Corp., Fortress Financial Group, Inc., and Global Aircraft Solutions, Inc.; Order of Suspension of... securities of Aero Performance Products, Inc. because it has not filed any periodic reports since the period...

  15. AGARD/SMP Review Damage Tolerance for Engine Structures. 3. Component Behaviour and Life Management

    DTIC Science & Technology

    1990-06-01

    Life Management (Revue AGARD/SMP - ToIrance aux Dommages pour les Composants de Moteurs 3. Le Comportement des Composants et la Gestion %𔄀 de Leur Dur...Structures 3. Component Behaviour and Life Management . (Revue AGARD/SMP - ToI~rance aux Dommages pour les Compos ants de Moteurs 3. Le Comportement...engine parts. The present report includes the papers presented during Workshop Ill which was devoted to Component Behaviour and Life Management . It also

  16. Application of differential similarity to finding nondimensional groups important in tests of cooled engine components

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1977-01-01

    The method of differential similarity is applied to the partial differential equations and boundary conditions which govern the temperature, velocity, and pressure fields in the flowing gases and the solid stationary components in air-cooled engines. This procedure yields the nondimensional groups which must have the same value in both the test rig and the engine to produce similarity between the test results and the engine performance. These results guide the experimentalist in the design and selection of test equipment that properly scales quantities to actual engine conditions. They also provide a firm fundamental foundation for substantiation of previous similarity analyses which employed heuristic, physical reasoning arguments to arrive at the nondimensional groups.

  17. Modular Engine Noise Component Prediction System (MCP) Technical Description and Assessment Document

    NASA Technical Reports Server (NTRS)

    Herkes, William H.; Reed, David H.

    2005-01-01

    This report describes an empirical prediction procedure for turbofan engine noise. The procedure generates predicted noise levels for several noise components, including inlet- and aft-radiated fan noise, and jet-mixing noise. This report discusses the noise source mechanisms, the development of the prediction procedures, and the assessment of the accuracy of these predictions. Finally, some recommendations for future work are presented.

  18. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1999-01-01

    A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behaviour level where primitive variables with their respective scatters are used to describe the behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster, products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.

  19. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1998-01-01

    A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behavior level where primitive variables with their respective scatters are used to describe that behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.

  20. Hypersonic research engine/aerothermodynamic integration model: Experimental results. Volume 3: Mach 7 component integration and performance

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine Project was undertaken to design, develop, and construct a hypersonic research ramjet engine for high performance and to flight test the developed concept on the X-15-2A airplane over the speed range from Mach 3 to 8. Computer program results are presented here for the Mach 7 component integration and performance tests.

  1. Ceramic applications in turbine engines. [for improved component performance and reduced fuel usage

    NASA Technical Reports Server (NTRS)

    Hudson, M. S.; Janovicz, M. A.; Rockwood, F. A.

    1980-01-01

    Ceramic material characterization and testing of ceramic nozzle vanes, turbine tip shrouds, and regenerators disks at 36 C above the baseline engine TIT and the design, analysis, fabrication and development activities are described. The design of ceramic components for the next generation engine to be operated at 2070 F was completed. Coupons simulating the critical 2070 F rotor blade was hot spin tested for failure with sufficient margin to quality sintered silicon nitride and sintered silicon carbide, validating both the attachment design and finite element strength. Progress made in increasing strength, minimizing variability, and developing nondestructive evaluation techniques is reported.

  2. CONSIDERATIONS ON ANATOMY AND PHYSIOLOGY OF LYMPH VESSELS OF UPPER AERO DIGESTIVE ORGANS AND CERVICAL SATELLITE LYMPH NODE GROUP.

    PubMed

    Ciupilan, Corina; Stan, C I

    2016-01-01

    The almost constant local regional development of the cancers of upper aero digestive organs requires the same special attention to cervical lymph node metastases, as well as to the primary neoplastic burning point. The surgical therapy alone or associated has a mutilating, damaging character, resulting in loss of an organ and function, most of the times with social implications, involving physical distortions with aesthetic consequences, which make the reintegration of the individual into society questionable. The problem of cervical lymph node metastases is vast and complex, reason why we approached several anatomical and physiological aspects of lymph vessels of the aero digestive organs. Among the available elements during treatment, the headquarters of the tumour, its histologic degree, and its infiltrative nature, each of them significantly influences the possibility of developing metastases.

  3. Phase of Photothermal Emission Analysis as a Diagnostic Tool for Thermal Barrier Coatings on Serviceable Engine Components

    NASA Astrophysics Data System (ADS)

    Kakuda, Tyler

    Power generation and aircraft companies are continuously improving the efficiency of gas turbines to meet economic and environmental goals. The trend towards higher efficiency has been achieved in part by raising the operating temperature of engines. At elevated temperatures, engine components are subject to many forms of degradation including oxidation, creep deformation and thermal cycle fatigue. To minimize these harmful effects, ceramic thermal barrier coatings (TBCs) are routinely used to insulate metal components from excessive heat loads. Efforts to make realistic performance assessments of current and candidate coating materials has led to a diverse battery of creative measurement techniques. While it is unrealistic to envision a single measurement that would provide all conceivable information about the TBC, it is arguable that the capability for the single most important measurement is still lacking. A quantitative and nondestructive measurement of the thermal protection offered by a coating is not currently among the measurements one can employ on a serviceable engine part (or even many experimental specimens). In this contribution, phase of photothermal emission analysis (PopTea) is presented as a viable thermal property measurement for serviceable engine components. As it will be shown, PopTea has the versatility to make measurements on gas turbine parts in situ, with the goal of monitoring TBCs over the lifetime of the engine. The main challenges toward this goal are dealing with changes that occur to the TBC during service. Several of the main degradations seen on engine equipment include: aging, surface contamination and infiltration of foreign deposits. Measuring coatings under these conditions, is the impetus of this work. Furthermore, it is demonstrated that PopTea can be used on real engine equipment with measurements made on an actual turbine blade.

  4. Extension of similarity test procedures to cooled engine components with insulating ceramic coatings

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.

    1980-01-01

    Material thermal conductivity was analyzed for its effect on the thermal performance of air cooled gas turbine components, both with and without a ceramic thermal-barrier material, tested at reduced temperatures and pressures. The analysis shows that neglecting the material thermal conductivity can contribute significant errors when metal-wall-temperature test data taken on a turbine vane are extrapolated to engine conditions. This error in metal temperature for an uncoated vane is of opposite sign from that for a ceramic-coated vane. A correction technique is developed for both ceramic-coated and uncoated components.

  5. 76 FR 72235 - Abviva, Inc., ACTIS Global Ventures, Inc., aeroTelesis, Inc., Amwest Insurance Group, Inc., and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Abviva, Inc., ACTIS Global Ventures, Inc., aeroTelesis, Inc., Amwest Insurance Group, Inc., and Auto Underwriters of America, Inc.; Order of... concerning the securities of Auto Underwriters of America, Inc. because it has not filed any periodic reports...

  6. Results of Aero/Acoustic Tests and Analytical Studies of a Two-Dimensional Eight-Lobe Mixer-Ejector Exhaust Nozzle at Takeoff Conditions

    NASA Technical Reports Server (NTRS)

    Harrington, Douglas (Technical Monitor); Schweiger, P.; Stern, A.; Gamble, E.; Barber, T.; Chiappetta, L.; LaBarre, R.; Salikuddin, M.; Shin, H.; Majjigi, R.

    2005-01-01

    Hot flow aero-acoustic tests were conducted with Pratt & Whitney's High-Speed Civil Transport (HSCT) Mixer-Ejector Exhaust Nozzles by General Electric Aircraft Engines (GEAE) in the GEAE Anechoic Freejet Noise Facility (Cell 41) located in Evendale, Ohio. The tests evaluated the impact of various geometric and design parameters on the noise generated by a two-dimensional (2-D) shrouded, 8-lobed, mixer-ejector exhaust nozzle. The shrouded mixer-ejector provides noise suppression by mixing relatively low energy ambient air with the hot, high-speed primary exhaust jet. Additional attenuation was obtained by lining the shroud internal walls with acoustic panels, which absorb acoustic energy generated during the mixing process. Two mixer designs were investigated, the high mixing "vortical" and aligned flow "axial", along with variations in the shroud internal mixing area ratios and shroud length. The shrouds were tested as hardwall or lined with acoustic panels packed with a bulk absorber. A total of 21 model configurations at 1:11.47 scale were tested. The models were tested over a range of primary nozzle pressure ratios and primary exhaust temperatures representative of typical HSCT aero thermodynamic cycles. Static as well as flight simulated data were acquired during testing. A round convergent unshrouded nozzle was tested to provide an acoustic baseline for comparison to the test configurations. Comparisons were made to previous test results obtained with this hardware at NASA Glenn's 9- by 15-foot low-speed wind tunnel (LSWT). Laser velocimetry was used to investigate external as well as ejector internal velocity profiles for comparison to computational predictions. Ejector interior wall static pressure data were also obtained. A significant reduction in exhaust system noise was demonstrated with the 2-D shrouded nozzle designs.

  7. The construction of life prediction models for the design of Stirling engine heater components

    NASA Technical Reports Server (NTRS)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  8. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    DOE PAGES

    Sand, Maria; Samset, Bjorn H.; Balkanski, Yves; ...

    2017-10-13

    Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document themore » geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m -2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of

  9. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    NASA Astrophysics Data System (ADS)

    Sand, Maria; Samset, Bjørn H.; Balkanski, Yves; Bauer, Susanne; Bellouin, Nicolas; Berntsen, Terje K.; Bian, Huisheng; Chin, Mian; Diehl, Thomas; Easter, Richard; Ghan, Steven J.; Iversen, Trond; Kirkevåg, Alf; Lamarque, Jean-François; Lin, Guangxing; Liu, Xiaohong; Luo, Gan; Myhre, Gunnar; van Noije, Twan; Penner, Joyce E.; Schulz, Michael; Seland, Øyvind; Skeie, Ragnhild B.; Stier, Philip; Takemura, Toshihiko; Tsigaridis, Kostas; Yu, Fangqun; Zhang, Kai; Zhang, Hua

    2017-10-01

    Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes.The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m-2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of the Aero

  10. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, Maria; Samset, Bjorn H.; Balkanski, Yves

    Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document themore » geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m -2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of

  11. The Application of Hardware in the Loop Testing for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  12. Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 1: Mach 6 component integration

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine (HRE) Project was initiated for the purpose of advancing the technology of airbreathing propulsion for hypersonic flight. A large component (inlet, combustor, and nozzle) and structures development program was encompassed by the project. The tests of a full-scale (18 in. diameter cowl and 87 in. long) HRE concept, designated the Aerothermodynamic Integration Model (AIM), at Mach numbers of 5, 6, and 7. Computer program results for Mach 6 component integration tests are presented.

  13. Advanced Constituents and Processes for Ceramic Composite Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in hot-section engine components will depend strongly on optimizing the processes and properties of the CMC microstructural constituents so that they can synergistically provide the total CMC system with improved temperature capability and with the key properties required by the components for long-term structural service. This presentation provides the results of recent activities at NASA aimed at developing advanced silicon carbide (Sic) fiber-reinforced hybrid Sic matrix composite systems that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 2400 and 2600 F, temperatures well above current metal capability. These SiC/SiC composite systems are lightweight (-30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive engine environments. It is shown that the improved temperature capability of the SiC/SiC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays high thermal stability, creep resistance, rupture resistance, and thermal conductivity, and possesses an in-situ grown BN surface layer for added environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics. Further capability is then derived by using chemical vapor infiltration (CVI) to form the initial portion of the hybrid Sic matrix. Because of its high creep resistance and thermal conductivity, the CVI Sic matrix is a required base constituent for all the high temperature SiC/SiC systems. By subsequently thermo- mechanical-treating the CMC preform, which consists of the S ylramic-iBN fibers and CVI Sic matrix, process-related defects in the matrix are removed, further improving matrix and CMC creep resistance and conductivity.

  14. Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y.; Pihl, Josh A.; Toops, Todd J.

    A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst.more » Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.« less

  15. Emissions of Volatile Particulate Components from Turboshaft Engines running JP-8 and Fischer-Tropsch Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2009-01-01

    Rotating-wing aircraft or helicopters are heavily used by the US military and also a wide range of commercial applications around the world, but emissions data for this class of engines are limited. In this study, we focus on emissions from T700-GE-700 and T700-GE-701C engines; T700 engine was run with military JP-8 and T701C run with both JP-8 and Fischer-Tropsch (FT) fuels. Each engine was run at three engine power settings from the idle to maximum power in sequence. Exhaust particles measured at the engine exhaust plane (EEP) have a peak mobility diameter less than 50nm in all engine power settings.more » At a 4-m downstream location, sulfate/sulfur measurements indicate all particulate sulfur exists practically as sulfate, and the particulate sulfur and sulfate contents increased as the engine power increased. The conversion of sulfur to sulfate was found not to be dependent on engine power setting. Analysis also showed that conversion of sulfur to sulfate was not by the adsorption of sulfur dioxide gas on the soot particles and then subsequently oxidized to form sulfate, but by gas-phase conversion of SO2 via OH or O then subsequently forming H2SO4 and condensing on soot particles. Without the sulfur and aromatic components, use of the FT fuel led to significant reduction of soot emissions as compared to that of the JP-8 fuel producing less number of particles than that of the JP-8 fuel; however, the FT fuel produced much higher number concentrations of particles smaller than 7nm than that of JP-8 in all engine power settings. This indicates non-aromatics components in the FT fuel could have contributed to the enhancement of emissions of particles smaller than 7nm. These small particles are volatile, not observed at the EEP, and may be important in playing a role for the formation of secondary particles in the atmosphere or serving as a site for effective cloud nuclei condensation to occur.« less

  16. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan L.; Culley, Dennis E.; Chapman, Jeffryes W.

    2017-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  17. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan; Culley, Dennis; Chapman, Jeffryes

    2016-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  18. High-temperature test facility at the NASA Lewis engine components research laboratory

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1990-01-01

    The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

  19. Comparison of phenotypic methods and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for the identification of aero-tolerant Actinomyces spp. isolated from soft-tissue infections.

    PubMed

    Ng, L S Y; Sim, J H C; Eng, L C; Menon, S; Tan, T Y

    2012-08-01

    Aero-tolerant Actinomyces spp. are an under-recognised cause of cutaneous infections, in part because identification using conventional phenotypic methods is difficult and may be inaccurate. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is a promising new technique for bacterial identification, but with limited data on the identification of aero-tolerant Actinomyces spp. This study evaluated the accuracy of a phenotypic biochemical kit, MALDI-TOF MS and genotypic identification methods for the identification of this problematic group of organisms. Thirty aero-tolerant Actinomyces spp. were isolated from soft-tissue infections over a 2-year period. Species identification was performed by 16 s rRNA sequencing and genotypic results were compared with results obtained by API Coryne and MALDI-TOF MS. There was poor agreement between API Coryne and genotypic identification, with only 33% of isolates correctly identified to the species level. MALDI-TOF MS correctly identified 97% of isolates to the species level, with 33% of identifications achieved with high confidence scores. MALDI-TOF MS is a promising new tool for the identification of aero-tolerant Actinomyces spp., but improvement of the database is required in order to increase the confidence level of identification.

  20. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  1. Design, manufacturing and characterization of aero-elastically scaled wind turbine blades for testing active and passive load alleviation techniques within a ABL wind tunnel

    NASA Astrophysics Data System (ADS)

    Campagnolo, Filippo; Bottasso, Carlo L.; Bettini, Paolo

    2014-06-01

    In the research described in this paper, a scaled wind turbine model featuring individual pitch control (IPC) capabilities, and equipped with aero-elastically scaled blades featuring passive load reduction capabilities (bend-twist coupling, BTC), was constructed to investigate, by means of wind tunnel testing, the load alleviation potential of BTC and its synergy with active load reduction techniques. The paper mainly focus on the design of the aero-elastic blades and their dynamic and static structural characterization. The experimental results highlight that manufactured blades show desired bend-twist coupling behavior and are a first milestone toward their testing in the wind tunnel.

  2. [Component and System Level of the FASTRAC Engine

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary activities of Lee & Associates during the period 7/20/99 to 12/31/99 as specified in the referenced Purchase Order has been in direct support of the Advanced Space Technology Program OfFice's Core Propulsion Project. An independent review to assess the program readiness to conduct component and system level testing of the FASTRAC Engine and to proceed into Fabrication has been provided. This was accomplished through the identification of program weaknesses and potential failure areas and where applicable recommended solutions were suggested to the Program Office that would mitigate technical and program risk. The approach taken to satisfy the objectives has been for the contractor to provide a team of experts with relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. The team participated in Test Planning, Test Readiness Reviews for system testing at Stennis Space Center, Anomaly Resolution Reviews, an Operations Audit, and data analysis. This approach worked well in satisfying the objectives and providing the Project Office with valuable information in real time and through monthly reports. During the month of December 1999 the primary effort involved the participation in anomaly resolution and the detailed review of the data from the final H3 and H4 test series performed on the FASTRAC engine in the b-2 Horizontal Test Facility at Stennis. The more significant findings and recommendations from this review are presented in this report.

  3. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Matthew A; McCormick, Robert L; Baumgardner, Marc E.

    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durabilitymore » issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.« less

  4. Virtual modelling of components of a production system as the tool of lean engineering

    NASA Astrophysics Data System (ADS)

    Monica, Z.

    2015-11-01

    Between the most effective techniques of manufacturing management is considered the Lean Engineering. The term “lean engineering” was created by Japanese manufacturers. The high efficiency of this method resulted in a meaningful growth in concern in the philosophy of Lean among European companies, and consequently the use of its European markets. Lean philosophy is an approach to manufacturing to minimize the use of all resources, including time. These are resources that are used in the company for a variety of activities. This implies, first identify and then eliminate activities which does not generate added value in the field of design, manufacturing, supply chain management, and customer relations. The producers of these principles not only employ teams multi-professional employees at all levels of the organization, but also use a more automated machines to produce large quantities of products with a high degree of diversity. Lean Engineering is to use a number of principles and practical guidelines that allow you to reduce costs by eliminating absolute extravagance, and also simplification of all manufacturing processes and maintenance. Nowadays it could be applied the powerful engineering programs to realize the concept of Lean Engineering. They could be described using the term CAD/CAM/CAE. They consist of completely different packages for both the design of elements, as well process design. Their common feature is generally considered with their application area. They are used for computer programs assisting the design, development and manufacturing phases of a manufacturing process. The idea of the presented work is to use the Siemens NX software for aiding the process of Lean Engineering system creating. The investigated system is a robotized workcell. In the NX system are created the components of the designed workcell such as machine tools, as industrial robot, as conveyors and buffers. The system let to functionally link these components to

  5. Extraction of fault component from abnormal sound in diesel engines using acoustic signals

    NASA Astrophysics Data System (ADS)

    Dayong, Ning; Changle, Sun; Yongjun, Gong; Zengmeng, Zhang; Jiaoyi, Hou

    2016-06-01

    In this paper a method for extracting fault components from abnormal acoustic signals and automatically diagnosing diesel engine faults is presented. The method named dislocation superimposed method (DSM) is based on the improved random decrement technique (IRDT), differential function (DF) and correlation analysis (CA). The aim of DSM is to linearly superpose multiple segments of abnormal acoustic signals because of the waveform similarity of faulty components. The method uses sample points at the beginning of time when abnormal sound appears as the starting position for each segment. In this study, the abnormal sound belonged to shocking faulty type; thus, the starting position searching method based on gradient variance was adopted. The coefficient of similar degree between two same sized signals is presented. By comparing with a similar degree, the extracted fault component could be judged automatically. The results show that this method is capable of accurately extracting the fault component from abnormal acoustic signals induced by faulty shocking type and the extracted component can be used to identify the fault type.

  6. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  7. Reliability analysis of component of affination centrifugal 1 machine by using reliability engineering

    NASA Astrophysics Data System (ADS)

    Sembiring, N.; Ginting, E.; Darnello, T.

    2017-12-01

    Problems that appear in a company that produces refined sugar, the production floor has not reached the level of critical machine availability because it often suffered damage (breakdown). This results in a sudden loss of production time and production opportunities. This problem can be solved by Reliability Engineering method where the statistical approach to historical damage data is performed to see the pattern of the distribution. The method can provide a value of reliability, rate of damage, and availability level, of an machine during the maintenance time interval schedule. The result of distribution test to time inter-damage data (MTTF) flexible hose component is lognormal distribution while component of teflon cone lifthing is weibull distribution. While from distribution test to mean time of improvement (MTTR) flexible hose component is exponential distribution while component of teflon cone lifthing is weibull distribution. The actual results of the flexible hose component on the replacement schedule per 720 hours obtained reliability of 0.2451 and availability 0.9960. While on the critical components of teflon cone lifthing actual on the replacement schedule per 1944 hours obtained reliability of 0.4083 and availability 0.9927.

  8. Parametric Dependencies in Aero-Elastic, Articulated, Flapping Flight

    NASA Astrophysics Data System (ADS)

    Willis, D. J.; Persson, P.; Peraire, J.; Breuer, K. S.

    2006-11-01

    Aero-elastic coupling and wing articulation both play a vital role in the generation of lift and propulsion in birds, bats and fish. We present results from a computational study that employs several tools of varying fidelity to explore the role of flexible structures on the performance and efficiency of bird and bat flight mechanics. The tools (both 2-D and 3-D) include a Wake only ``Betz'' analysis following the work of Hall, Pigott and Hall (J. Aircaft, 1998), a potential flow model coupled to a free-vortex wake (Willis, Peraire & White, AIAA 2005-0854), and lastly, a discontinuous Galerkin solver (Persson & Peraire, AIAA 2006-0113) for the full Navier-Stokes equations. Structural models include springs, beams and membranes to represent compliant biological structures. The results demonstrate the changes in efficiency that can be achieved by different parametric variations in the flight behavior, including the effects of increasing kinematic degrees of freedom (e.g. articulated wings) and the effect of compliance in wing and skeletal structures.

  9. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  10. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  11. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  12. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Technical Reports Server (NTRS)

    Culver, E. M.; Mccolgan, C. J.

    1993-01-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  13. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Astrophysics Data System (ADS)

    Culver, E. M.; McColgan, C. J.

    1993-04-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  14. A Parametric Study of Actuator Requirements for Active Turbine Tip Clearance Control of a Modern High Bypass Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan L.; Chapman, Jeffryes W.; Guo, Ten-Huei

    2017-01-01

    The efficiency of aircraft gas turbine engines is sensitive to the distance between the tips of its turbine blades and its shroud, which serves as its containment structure. Maintaining tighter clearance between these components has been shown to increase turbine efficiency, increase fuel efficiency, and reduce the turbine inlet temperature, and this correlates to a longer time-on-wing for the engine. Therefore, there is a desire to maintain a tight clearance in the turbine, which requires fast response active clearance control. Fast response active tip clearance control will require an actuator to modify the physical or effective tip clearance in the turbine. This paper evaluates the requirements of a generic active turbine tip clearance actuator for a modern commercial aircraft engine using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software that has previously been integrated with a dynamic tip clearance model. A parametric study was performed in an attempt to evaluate requirements for control actuators in terms of bandwidth, rate limits, saturation limits, and deadband. Constraints on the weight of the actuation system and some considerations as to the force which the actuator must be capable of exerting and maintaining are also investigated. From the results, the relevant range of the evaluated actuator parameters can be extracted. Some additional discussion is provided on the challenges posed by the tip clearance control problem and the implications for future small core aircraft engines.

  15. Effective L/D: A Theoretical Approach to the Measurement of Aero-Structural Efficiency in Aircraft Design

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2015-01-01

    There are many trade-offs in aircraft design that ultimately impact the overall performance and characteristics of the final design. One well recognized and well understood trade-off is that of wing weight and aerodynamic efficiency. Higher aerodynamic efficiency can be obtained by increasing wing span, usually at the expense of higher wing weight. The proper balance of these two competing factors depends on the objectives of the design. For example, aerodynamic efficiency is preeminent for sailplanes and long slender wings result. Although the wing weight-drag trade is universally recognized, aerodynamic efficiency and structural efficiency are not usually considered in combination. This paper discusses the concept of "aero-structural efficiency," which combines weight and drag characteristics. A metric to quantify aero-structural efficiency, termed effective L/D, is then derived and tested with various scenarios. Effective L/D is found to be a practical and robust means to simultaneously characterize aerodynamic and structural efficiency in the context of aircraft design. The primary value of the effective L/D metric is as a means to better communicate the combined system level impacts of drag and structural weight.

  16. Novel Thin Film Sensor Technology for Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2007-01-01

    Degradation and damage that develops over time in hot section components can lead to catastrophic failure of the turbine section of aircraft engines. A range of thin film sensor technology has been demonstrated enabling on-component measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Conductive ceramics are beginning to be investigated as new materials for use as thin film sensors in the hot section, leveraging expertise in thin films and high temperature materials. The current challenges are to develop new sensor and insulation materials capable of withstanding the extreme hot section environment, and to develop techniques for applying sensors onto complex high temperature structures for aging studies of hot propulsion materials. The technology research and development ongoing at NASA Glenn Research Center for applications to future aircraft, launch vehicles, space vehicles, and ground systems is outlined.

  17. The component-based architecture of the HELIOS medical software engineering environment.

    PubMed

    Degoulet, P; Jean, F C; Engelmann, U; Meinzer, H P; Baud, R; Sandblad, B; Wigertz, O; Le Meur, R; Jagermann, C

    1994-12-01

    The constitution of highly integrated health information networks and the growth of multimedia technologies raise new challenges for the development of medical applications. We describe in this paper the general architecture of the HELIOS medical software engineering environment devoted to the development and maintenance of multimedia distributed medical applications. HELIOS is made of a set of software components, federated by a communication channel called the HELIOS Unification Bus. The HELIOS kernel includes three main components, the Analysis-Design and Environment, the Object Information System and the Interface Manager. HELIOS services consist in a collection of toolkits providing the necessary facilities to medical application developers. They include Image Related services, a Natural Language Processor, a Decision Support System and Connection services. The project gives special attention to both object-oriented approaches and software re-usability that are considered crucial steps towards the development of more reliable, coherent and integrated applications.

  18. 76 FR 62649 - Airworthiness Directives; The Boeing Company Model 737-600, -700, -700C, -800, -900, and -900ER...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    .../fire seals of the blocker doors on the thrust reverser torque boxes on the engines, and replacing affected aero/fire seals with new, improved aero/fire seals. That second supplemental NPRM was prompted by a report that the top 3 inches of the aero/fire seals of the blocker doors on the thrust reverser...

  19. Study and program plan for improved heavy duty gas turbine engine ceramic component development

    NASA Technical Reports Server (NTRS)

    Helms, H. E.

    1977-01-01

    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  20. Geant4 calculations for space radiation shielding material Al2O3

    NASA Astrophysics Data System (ADS)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  1. Hydrogen-Fuel Engine Component Tests Near Completion

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Gaseous hydrogen is burned off at the E1 Test Stand the night of Oct. 7 during a cold-flow test of the fuel turbopump of the Integrated Powerhead Demonstrator (IPD) at NASA Stennis Space Center (SSC). The gaseous hydrogen spins the pump's turbine during the test, which was conducted to verify the pump's performance. Engineers plan one more test before sending the pump to The Boeing Co. for inspection. It will then be returned to SSC for engine system assembly. The IPD is the first reusable hydrogen-fueled advanced engine in development since the Space Shuttle Main Engine.

  2. Hydrogen-Fuel Engine Component Tests Near Completion

    NASA Image and Video Library

    2003-11-05

    Gaseous hydrogen is burned off at the E1 Test Stand the night of Oct. 7 during a cold-flow test of the fuel turbopump of the Integrated Powerhead Demonstrator (IPD) at NASA Stennis Space Center (SSC). The gaseous hydrogen spins the pump's turbine during the test, which was conducted to verify the pump's performance. Engineers plan one more test before sending the pump to The Boeing Co. for inspection. It will then be returned to SSC for engine system assembly. The IPD is the first reusable hydrogen-fueled advanced engine in development since the Space Shuttle Main Engine.

  3. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  4. Turbine Design and Analysis for the J-2X Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Tran, Ken; Dorney, Daniel J.; Schmauch, Preston

    2008-01-01

    Pratt and Whitney Rocketdyne and NASA Marshall Space Flight Center are developing the advanced upper stage J-2X engine based on the legacy design of the J-2/J-2S family of engines which powered the Apollo missions. The cryogenic propellant turbopumps have been denoted as Mark72-F and Mark72-0 for the fuel and oxidizer side, respectively. Special attention is focused on preserving the essential flight-proven design features while adapting the design to the new turbopump configuration. Advanced 3-D CFD analysis has been employed to verify turbine aero performance at current flow regime boundary conditions and to mitigate risks associated with stresses. A limited amount of redesign and overall configuration modifications allow for a robust design with performance level matching or exceeding requirement.

  5. Aero-Optical Wavefront Propagation and Refractive Fluid Interfaces in Large-Reynolds-Number Compressible Turbulent Flows

    DTIC Science & Technology

    2005-12-31

    are utilized with the eikonal equation of geometrical optics to propagate computationally the optical wavefronts in the near field. As long as the...aero-optical interactions. In terms of the refractive index field n and the optical path length (OPL), the eikonal equation is: |∇ (OPL)| = n , (9) (e.g...ray n(`, t) d` . (10) The OPL integral corresponds to inverting the eikonal equation 9. The physical distance along the beam propagation path for

  6. Dosimetric impact of the AeroForm tissue expander in postmastectomy radiation therapy: an ex vivo analysis.

    PubMed

    Moni, Janaki; Saleeby, Jonathan; Bannon, Elizabeth; Lo, Yuan-Chyuan; Fitzgerald, Thomas J

    2015-01-01

    To evaluate the effect of the AeroForm (AirXpanders Inc, Palo Alto, CA) tissue expander on the dose distribution in a phantom from a simulated postmastectomy radiation treatment for breast cancer. Experiments were conducted to determine the effect on the dose distribution with the metallic reservoir irradiated independently and with the entire AeroForm tissue expander placed on a RANDO phantom (The Phantom Laboratory, Salem, NY). The metallic reservoir was irradiated on a block of solid water with film at various depths ranging from 0 to 8.2 cm from the surface. The intact 400 cc AeroForm was inflated to full capacity and irradiated while positioned on a RANDO phantom, with 12 optically stimulated luminescent dosimeters (OSLDs) placed at clinically relevant expander-tissue interface points. Film dosimetry with the reservoir perpendicular to film reveals 40% transmission at a depth of 0.7 cm, which increases to 60% at a depth of 8.2 cm. In the parallel position, the results vary depending on which area under the reservoir is examined, indicating that the reservoir is not a uniformly dense object. Testing of the intact expander on the phantom revealed that the average percent difference (measured vs expected dose) was 2.7%, σ = 6.2% with heterogeneity correction and 3.7%, σ = 2.4% without heterogeneity correction. The only position where the OSLD readings were consistently higher than the calculated dose by >5% was at position 1, just deep to the canister at the expander-phantom interface. At this position, the readings varied from 5.2% to 14.5%, regardless of heterogeneity correction. Film dosimetry demonstrated beam attenuation in the shadow of the metallic reservoir in the expander. This decrease in dose was not reproduced on the intact expander on the phantom designed to replicate a clinical setup. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  7. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  8. Aerosol single-scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacagnina, Carlo; Hasekamp, Otto P.; Bian, Huisheng

    2015-09-27

    The aerosol Single Scattering Albedo (SSA) over the global oceans is evaluated based on polarimetric measurements by the PARASOL satellite. The retrieved values for SSA and Aerosol Optical Depth (AOD) agree well with the ground-based measurements of the AErosol RObotic NETwork (AERONET). The global coverage provided by the PARASOL observations represents a unique opportunity to evaluate SSA and AOD simulated by atmospheric transport model runs, as performed in the AeroCom framework. The SSA estimate provided by the AeroCom models is generally higher than the SSA retrieved from both PARASOL and AERONET. On the other hand, the mean simulated AOD ismore » about right or slightly underestimated compared with observations. An overestimate of the SSA by the models would suggest that these simulate an overly strong aerosol radiative cooling at top-of-atmosphere (TOA) and underestimate it at surface. This implies that aerosols have a potential stronger impact within the atmosphere than currently simulated.« less

  9. Expanded R&D by Jet-engine-steering Revolution

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2017-11-01

    Since 1987 [1,2,3,4,5] the global jet engine community is facing the historical fact that jet engine steering is gradually replacing canards and the common, often dangerous and obsolete, aerodynamic-only flight control - a fact that (i) has already affected the defense-industrial complex in the US, Russia, China, Japan, S-Korea and India, (ii) has integrated the traditional jet-engine components R&D with advanced aero-electro-physics, stealth technology, thrust vectoring aerodynamics and material science. Moreover, this military revolution is historically due to expand into the civil transport jets domain, [6,7,8,9]. The historical aim of the JES-Revolution remains the same: Replace the common, stall-spin sensitive canards [6] and Aerodynamic-Only-Obsolete-Flight Control ("AOOF Control"). Invented about 100 years ago for propeller-driven air vehicles, it has already been partially replaced for failure to function in WVR-combat post-stall domain, and for the following reasons: In comparison with complete Tail-Less, Canard-Less, Stealth-JES (Figure 5 and References [1,2,3,4,5,6]), the common AOOF Control increases drag, weight, fuel consumption, complexity, cost, and reduces flight safety, stealth, [Low Detectability] and provides zero post-stall, WVR air combat capability while its CANARDS KILL LD & REDUCE JES. Examples of stealth fighter aircraft that have already replaced canards and AOOF-Control where JES provides at least 64 to 0 KILL-RATIO advantage over AOOF-Controlled conventional fighter aircraft: The U.S. JES F-22 and, apparently, the Russian JES-Su-T-50 & 35S, China 2016-J-31, Indian HAL AMCA & FGFA, Japanese JES IHHI ATD-X, S-Korean JES KF-X. Cf. X-44 in Figure 5. Consequently, the jet engine is no longer defined as providing only brute force forward. Instead, it successfully competes with and wins over the wrong, dominating AOOF-Control, at least as a backup flight control whose sole factual domain is currently a well-established, primary flight

  10. SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine

    NASA Astrophysics Data System (ADS)

    Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C.; Burton, M.; Cunningham, M. R.; Dale, J. E.; Ginsburg, A.; Immer, K.; Jones, P. A.; Kendrew, S.; Mills, E. A. C.; Molinari, S.; Moore, T. J. T.; Ott, J.; Pillai, T.; Rathborne, J.; Schilke, P.; Schmiedeke, A.; Testi, L.; Walker, D.; Walsh, A.; Zhang, Q.

    2016-01-01

    The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.

  11. Low lift-to-drag aero-assisted orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Savage, R. T.

    1984-01-01

    The results of systems analysis conducted on low life drag ratio (L/D) aero-assisted orbit transfer vehicle (AOTV's) are presented. The objectives for this class of vehicle and formulate technology development plans and funding levels to bring the required technologies to readiness levels, as well as develop a credible decision data base encompassing the entire range of low L/D concepts for use in future NASA Aeroassist Orbit Transfer Vehicles studies. Each candidate low L/D concept, the aerobrake, the lifting brake, and the aeromaneuvering concept could be made to work with technologies achievable by the early 1990's. All concepts require flexible structure with flexible thermal protection system (TPS) to be successfully integrated into the shuttle orbiter for launch, all required improvements in guidance and control to fly the dispersed atmospheres at high altitude, and all concepts had potential to evolve from ground-based to space-based operations.

  12. An Engine Research Program Focused on Low Pressure Turbine Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wyzykowski, John; Chiapetta, Santo; Adamczyk, John

    2002-01-01

    A comprehensive test program was performed in the Propulsion Systems Laboratory at the NASA Glenn Research Center, Cleveland Ohio using a highly instrumented Pratt and Whitney Canada PW 545 turbofan engine. A key objective of this program was the development of a high-altitude database on small, high-bypass ratio engine performance and operability. In particular, the program documents the impact of altitude (Reynolds Number) on the aero-performance of the low-pressure turbine (fan turbine). A second objective was to assess the ability of a state-of-the-art CFD code to predict the effect of Reynolds number on the efficiency of the low-pressure turbine. CFD simulation performed prior and after the engine tests will be presented and discussed. Key findings are the ability of a state-of-the art CFD code to accurately predict the impact of Reynolds Number on the efficiency and flow capacity of the low-pressure turbine. In addition the CFD simulations showed the turbulent intensity exiting the low-pressure turbine to be high (9%). The level is consistent with measurements taken within an engine.

  13. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  14. Exo-Skeletal Engine: Novel Engine Concept

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Blankson, Isaiah M.

    2004-01-01

    The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.

  15. Low Velocity Impact Behavior of Glass Filled Fiber-Reinforced Thermoplastic Engine Components

    PubMed Central

    Mouti, Zakaria; Westwood, Keith; Kayvantash, Kambiz; Njuguna, James

    2010-01-01

    This paper concerns automotive parts located underneath the engine and in particular the engine oil pan. Classically made of stamped steel or cast aluminum, new developments have allowed the manufacture oil pans with polyamide 66 reinforced by 35% weight of short glass fiber. However, polyamides have some limitations and the most significant is their response to localized impact loading. The nature of the impact considered here is of a typical stone collected from the road and projected into the oil pan.  Low velocity impact investigations were carried out using a gas gun and drop weight tower.  The study shows that the design of the oil pan has a significant contribution in the shock absorption. In addition to the material properties, the geometry and the ribbing both cleverly combined, increase the impact resistance of the component significantly. Areas of oil pan design improvement have been identified and conclusions drawn.

  16. AeroVironment Technician Marshall MacCready carefully lays a panel of solar cells into place on a wi

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Technician Marshall MacCready carefully lays a panel of solar cells into place on a wing section of the Helios Prototype flying wing at AeroVironment's Design Development Center in Simi Valley, California. More than 1,800 panels containing some 64,000 bi-facial cells, fabricated by SunPower, Inc., of Sunnyvale, California, have been installed on the solar-powered aircraft to provide electricity to its 14 motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights above 50,000 feet altitude 2003 with the aid of a regenerative fuel cell-based energy storage system now being developed.

  17. Numerical method of carbon-based material ablation effects on aero-heating for half-sphere

    NASA Astrophysics Data System (ADS)

    Wang, Jiang-Feng; Li, Jia-Wei; Zhao, Fa-Ming; Fan, Xiao-Feng

    2018-05-01

    A numerical method of aerodynamic heating with material thermal ablation effects for hypersonic half-sphere is presented. A surface material ablation model is provided to analyze the ablation effects on aero-thermal properties and structural heat conduction for thermal protection system (TPS) of hypersonic vehicles. To demonstrate its capability, applications for thermal analysis of hypersonic vehicles using carbonaceous ceramic ablators are performed and discussed. The numerical results show the high efficiency and validation of the method developed in thermal characteristics analysis of hypersonic aerodynamic heating.

  18. Human Factors Validation of the AeroForm Tissue Expander System for Breast Reconstruction.

    PubMed

    Kelley, Kathy; Kim, Jennie

    The tissue expansion process using traditional saline expanders is lengthy and uncomfortable. A new technology has been developed, providing a needle-free option implanted after a mastectomy, and is activated by a handheld remote control releasing small amounts (10 cc) of carbon dioxide from an internal reservoir. The expander is gradually filled with CO2 resulting in mechanical stretching of the overlying tissue. The AeroForm System has been evaluated in a series of clinical trials including a randomized, controlled U.S. study comparing the AeroForm System with saline expanders. Results demonstrated patients can safely and reliably dose and complete their expansions in half the time compared to saline expanders. A human factors validation study was conducted in 8 patients to evaluate whether patients could correctly use the device to complete their expansion at home. The sessions were recorded and data on performance, behavioral, and subjective measures were collected and analyzed and submitted to the FDA as part of the U.S. marketing approval. All 8 participants were successful in using the controller to deliver a simulated dose. Participants found the device easy to use and the training material provided adequate to understand use of the controller. For women who choose 2-stage breast reconstruction, a new safe and effective option is available for tissue expansion, offering a convenient and empowering alternative. The human factors validation study conducted confirmed the simplicity of the device and further validated that the device can be used safely and effectively for breast tissue expansion.

  19. Building community partnerships to implement the new Science and Engineering component of the NGSS

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership

  20. Dynamic performance of an aero-assist spacecraft - AFE

    NASA Technical Reports Server (NTRS)

    Chang, Ho-Pen; French, Raymond A.

    1992-01-01

    Dynamic performance of the Aero-assist Flight Experiment (AFE) spacecraft was investigated using a high-fidelity 6-DOF simulation model. Baseline guidance logic, control logic, and a strapdown navigation system to be used on the AFE spacecraft are also modeled in the 6-DOF simulation. During the AFE mission, uncertainties in the environment and the spacecraft are described by an error space which includes both correlated and uncorrelated error sources. The principal error sources modeled in this study include navigation errors, initial state vector errors, atmospheric variations, aerodynamic uncertainties, center-of-gravity off-sets, and weight uncertainties. The impact of the perturbations on the spacecraft performance is investigated using Monte Carlo repetitive statistical techniques. During the Solid Rocket Motor (SRM) deorbit phase, a target flight path angle of -4.76 deg at entry interface (EI) offers very high probability of avoiding SRM casing skip-out from the atmosphere. Generally speaking, the baseline designs of the guidance, navigation, and control systems satisfy most of the science and mission requirements.

  1. Aeronautical Satellite-Assisted Process for Information Exchange Through Network Technologies (Aero-SAPIENT) Conducted

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    2002-01-01

    Broadband satellite communications for aeronautics marries communication and network technologies to address NASA's goals in information technology base research and development, thereby serving the safety and capacity needs of the National Airspace System. This marriage of technology increases the interactivity between airborne vehicles and ground systems. It improves decision-making and efficiency, reduces operation costs, and improves the safety and capacity of the National Airspace System. To this end, a collaborative project called the Aeronautical Satellite Assisted Process for Information Exchange through Network Technologies, or Aero-SAPIENT, was conducted out of Tinker AFB, Oklahoma, during November and December 2000.

  2. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  3. Development of engineering components having dual functionality

    NASA Astrophysics Data System (ADS)

    Thompson, L. D.; Waldbusser, R.; Pratt, E.

    2000-05-01

    This paper describes the engineering research and development of a smart aircraft bolt designed for high-tension wing attachment applications on USAF C-130 cargo planes. The bolt is a load-carrying structural component as well as serving as a damage sensor. The bolt material choice is TRIP (Transformation Induced Plasticity) steel; high-strength, metastable austenitic steel that gradually and irreversibly transforms to martensite during deformation. The martensite is ferromagnetic whereas the parent austenite phase is paramagnetic, having no significant ferromagnetic response. The ferromagnetic signature of the bolt can be correlated to the peak deformation strain and further correlated with the peak damage state. Stress-assisted phase transformations occur within the elastic regime while strain-induced transformations occur in the post-yield regime. Both transformation variants produce easily detected signals that can be readily monitored. A review of the nature of TRIP steel materials, their properties and behavior, and the smart bolt design approach is presented with examples of the quantitative output obtained during simulated laboratory testing. A brief discussion of the detection electronics and interrogation system is provided to familiarize the audience with the technical issues encompassing this technology. Preliminary results from field testing and service experience are reviewed.

  4. The Development of Engineering Tomography for Monolithic and Composite Materials and Components

    NASA Technical Reports Server (NTRS)

    Hemann, John

    1997-01-01

    The research accomplishments under this grant were very extensive in the areas of the development of engineering tomography for monolithic and composite materials and components. Computed tomography was used on graphite composite pins and bushings to find porosity, cracks, and delaminations. It supported the following two programs: Reusable Launch Vehicle (RLV) and Southern Research institute (SRI). Did research using CT and radiography on Nickel based Superalloy dogbones and found density variations and gas shrinkage porosity. Did extensive radiography and CT of PMC composite flywheels and found delamination and non-uniform fiber distribution. This grant supported the Attitude Control Energy Storage Experiment (ACESE) program. Found broken fibers and cracks of outer stainless steel fibers using both radiographic and CT techniques on Pratt and Whitney fuel lines; Supported the Pratt & Whitney and Aging Aircraft engines program. Grant research helped identify and corroborate thickness variations and density differences in a silicon nitride "ROTH" tube using computed tomography.

  5. A unique high heat flux facility for testing hypersonic engine components

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.

  6. 75 FR 77904 - In the Matter of Certain Turbomachinery Blades, Engines and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-751] In the Matter of Certain Turbomachinery Blades, Engines and Components Thereof; Notice of Investigation AGENCY: U.S. International Trade... that a complaint was filed with the U.S. International Trade Commission on November 5, 2010, under...

  7. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  8. Ka-band MMIC array system for ACTS aeronautical terminal experiment (Aero-X)

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A.; Zakrajsek, Robert J.; Lee, Richard Q.; Andro, Monty; Turtle, John P.

    1995-01-01

    During the summer of 1994, the Advanced Communication Technology Satellite (ACTS) Aeronautical Terminal Experiment (Aero-X) was successfully completed by the NASA Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). 4.8 and 9.6 Kbps duplex voice links were established between the LeRC Learjet and the ACTS Link Evaluation Terminal (LET) in Cleveland, Ohio, via the ACTS. The antenna system used in this demonstration was developed by LeRC and featured LeRC and US Air Force experimental arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The antenna system consisted of three arrays mounted inside the LeRC Learjet, pointing out through the windows. An open loop tracking controller developed by LeRC used information from the aircraft position and attitude sensors to automatically steer the arrays toward ACTS during flight JPL ACTS Mobile Terminal (AMT) system hardware was used as transceivers both on the aircraft and at the LET. The single 32 element MMIC transmit array developed by NASA/LeRC and Texas Instruments has an EIRP of 23.4 dBW at boresight. The two 20 GHz MMIC receive arrays were developed in a cooperative effort with the USAF Rome Laboratory/Electronic System Center, taking advantage of existing USAF array development contracts with Boeing and Martin Marietta. The Boeing array has 23 elements and a G/T of 16/6 db/degK at boresight. The Martin Marietta array has 16 elements and a G/T of 16.1 db/degK at boresight. The three proof-of-concept arrays, the array control system and their integration and operation in the Learjet for Aero-X are described.

  9. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  10. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  11. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  12. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  13. NASP X-30 Propulsion technology status

    NASA Technical Reports Server (NTRS)

    Powell, William E.

    1992-01-01

    The performance goals of the NASP program require an aero-propulsion system with a high effective specific impulse. In order to achieve these goals, the high potential performance of air-breathing engines must be achieved over a very wide Mach number operating range. This, in turn, demands high component performance and involves many important technical issues which must be resolved. Scramjet Propulsion Technology is divided into five major areas: (1) inlets, (2) combustors, (3) nozzles, (4) component integration, and (5) test facilities. A status report covering the five areas is presented.

  14. Teachers Learning to Prepare Future Engineers: A Systemic Analysis Through Five Components of Development and Transfer

    ERIC Educational Resources Information Center

    Hardré, Patricia L.; Ling, Chen; Shehab, Randa L.; Nanny, Mark A.; Refai, Hazem; Nollert, Matthias U.; Ramseyer, Christopher; Wollega, Ebisa D.; Huang, Su-Min; Herron, Jason

    2018-01-01

    This study used a systemic perspective to examine a five-component experiential process of perceptual and developmental growth, and transfer-to-teaching. Nineteen secondary math and science teachers participated in a year-long, engineering immersion and support experience, with university faculty mentors. Teachers identified critical shifts in…

  15. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  16. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of the technology to improve energy efficiency of propulsion systems for subsonic commercial aircrafts was examined. Goals established include: (1) fuel consumption, reduction in flight propulsion system; (2) direct operation cost; (3) noise, with provision for engine growth corresponding to future engine application; and (4) emissions, EPA new engine standards.

  17. Status of the Boeing Dish Engine Critical Component Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, H.W.; Diver, R.B.; Nelving, H.

    1999-01-08

    The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnell Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time, generating time, and system availability. The system performance based uponmore » the present test data is compared to test data from the 1984/88 McDonnell Douglas/United Stirling AB/Southem California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.« less

  18. Status of the Boeing Dish Engine Critical Component project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, K.W.; Nelving, H.; Braun, H.W.

    1999-07-01

    The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnel Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time. Generating time, and system availability. The system performance based uponmore » the present test data is compared to test data from the 1984/88 McDonnel Douglas/United Stirling AB/Southern California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.« less

  19. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  20. Effect of chevron nozzle penetration on aero-acoustic characteristics of jet at M = 0.8

    NASA Astrophysics Data System (ADS)

    Nikam, S. R.; Sharma, S. D.

    2017-12-01

    Aero-acoustic characteristics of a high-speed jet with chevron nozzles are experimentally investigated at a Mach number of 0.8. The main focus is to examine the effects of the extent of chevron penetration and its position in the mixing layer. Chevron nozzles with three different levels of penetration employed at three different longitudinal locations from the nozzle lip are tested, and the results are compared with those of a plain baseline nozzle. The chevrons are found to produce a lobed shear layer through the notched region, thereby increasing the surface area of the jet, particularly in the close vicinity of the nozzle, which increases the mixing and reduces the potential core length. This effect becomes more prominent with increasing penetration closer to the nozzle lip in the thinner mixing layer. Near field and far field noise measurements show distinctly different acoustic features due to chevrons. The chevrons are found to effectively shift the dominant noise source upstream closer to the nozzle. Present investigation proposes a simpler method for locating the dominant noise source from the peak of the centerline velocity decay rate. The overall noise levels registered along the jet edge immediately downstream of the chevrons are higher, but further downstream they are reduced in comparison with the plain baseline nozzle. Also, the chevrons beam the noise towards higher polar angles at higher frequencies. At shallow polar angles with respect to the jet axis in the far field, chevrons suppress the noise at low frequencies with increasing penetration, but for higher polar angles, while they continue to suppress the low frequency noise, at higher frequencies the trend is found to reverse. The noise measured in the near field close to the jet edge is composed of two components: acoustic and hydrodynamic. Of these two components, the chevrons are found to reduce the hydrodynamic component in comparison with the acoustic one.

  1. A study of the cleft region using synoptic ionospheric plasma data obtained by the polar orbiting satellites Aeros-B and Isis-2

    NASA Technical Reports Server (NTRS)

    Kist, R.; Klumpar, D.

    1980-01-01

    The concentrations of O(+) and NO(+) in the dayside high-latitude cleft region of the ionosphere are investigated based on synoptic particle and plasma measurements obtained by the polar orbiting Aeros-B and Isis-2 satellites. At a time when the orbital planes of the satellites are almost at right angles to each other, three maxima in ion temperature are observed, with two of them accompanied by an increased electron temperature and electron density irregularities, and the density of the molecular ions NO(+) and O2(+) is found to increase at the expense of O(+) density. Results are discussed in terms of a theory relating perpendicular electric fields to oxygen atom reaction rates. Systematic analysis of the Aeros data base reveals 14 additional instances of O(+) to NO(+) conversion, with a large variety of forms and structures reflecting the complex structure and dynamics of the high-latitude dayside ionosphere.

  2. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    ERIC Educational Resources Information Center

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  3. Fiber optical sensors for aircraft applications

    NASA Astrophysics Data System (ADS)

    Pechstedt, Ralf D.

    2014-09-01

    In this paper selected fiber optical point sensors that are of potential interest for deployment in aircraft are discussed. The operating principles together with recent measurement results are described. Examples include a high-temperature combined pressure and temperature sensor for engine health, hydraulics and landing gear monitoring, an ultra-high sensitive pressure sensor for oil, pneumatic and fluid aero systems applications and a combined acceleration and temperature sensor for condition monitoring of rotating components.

  4. Toward Reusable Graphics Components in Ada

    DTIC Science & Technology

    1993-03-01

    Then alternatives for obtaining well- engineered reusable software components were examined. Finally, the alternatives were analyzed, and the most...reusable software components. Chapter 4 describes detailed design and implementation strategies in building a well- engineered reusable set of components in...study. 2.2 The Object-Oriented Paradigm 2.2.1 The Need for Object-Oriented Techniques. Among software engineers the software crisis is a well known

  5. The technical communication practices of Russian and U.S. aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  6. Extending the Capabilities of Closed-loop Distributed Engine Control Simulations Using LAN Communication

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.

    2014-01-01

    Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.

  7. Development of manufacturing processes: improved technology for ceramic engine components. Monthly report, August 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Taylor, A.J.; Weber, G.W.

    Progress is described in a research program to develop advanced tooling concepts, processing techniques, and related technology for the economical high-volume manufacture of ceramic engine components. Because of the success of the initial fabrication effort for hot pressing fully dense ceramic turbine blades to shape and/or contour, the effort has been extended to include the fabrication of more complex shapes and the evaluation of alternative pressure-assisted, high-temperature, consolidation methods.

  8. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.

    In this paper, we report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradationmore » pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. Finally, in the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.« less

  9. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment.

    PubMed

    Bhatt, Indu; Tripathi, Bhumi Nath

    2011-01-01

    Nanoparticles are the materials with at least two dimensions between 1 and 100 nm. Mostly these nanoparticles are natural products but their tremendous commercial use has boosted the artificial synthesis of these particles (engineered nanoparticles). Accelerated production and use of these engineered nanoparticles may cause their release in the environment and facilitate the frequent interactions with biotic and abiotic components of the ecosystems. Despite remarkable commercial benefits, their presence in the nature may cause hazardous biological effects. Therefore, detail understanding of their sources, release interaction with environment, and possible risk assessment would provide a basis for safer use of engineered nanoparticles with minimal or no hazardous impact on environment. Keeping all these points in mind the present review provides updated information on various aspects, e.g. sources, different types, synthesis, interaction with environment, possible strategies for risk management of engineered nanoparticles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Durability testing of medium speed diesel engine components designed for operating on coal/water slurry fuel

    NASA Astrophysics Data System (ADS)

    McDowell, R. E.; Giammarise, A. W.; Johnson, R. N.

    1994-01-01

    Over 200 operating cylinder hours were run on critical wearing engine parts. The main components tested included cylinder liners, piston rings, and fuel injector nozzles for coal/water slurry fueled operation. The liners had no visible indication of scoring nor major wear steps found on their tungsten carbide coating. While the tungsten carbide coating on the rings showed good wear resistance, some visual evidence suggests adhesive wear mode was present. Tungsten carbide coated rings running against tungsten carbide coated liners in GE 7FDL engines exhibit wear rates which suggest an approximate 500 to 750 hour life. Injector nozzle orifice materials evaluated were diamond compacts, chemical vapor deposited diamond tubes, and thermally stabilized diamond. Based upon a total of 500 cylinder hours of engine operation (including single-cylinder combustion tests), diamond compact was determined to be the preferred orifice material.

  11. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  12. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2014-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  13. An overview of aeroelasticity studies for the National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.; Noll, Thomas E.; Whitlow, Woodrow, Jr.; Huttsell, Lawrence J.

    1993-01-01

    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by the NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  14. Pressure and temperature fields associated with aero-optics tests. [transonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Raman, K. R.

    1980-01-01

    The experimental investigation carried out in a 6 x 6 ft wind tunnel on four model configurations in the aero-optics series of tests are described. The data obtained on the random pressures (static and total pressures) and total temperatures are presented. In addition, the data for static pressure fluctuations on the Coelostat turret model are presented. The measurements indicate that the random pressures and temperature are negligible compared to their own mean (or steady state) values for the four models considered, thus allowing considerable simplification in the calculations to obtain the statistical properties of the density field. In the case of the Coelostat model tests these simplifications cannot be assumed a priori and require further investigation.

  15. Fractional Order Modeling of Atmospheric Turbulence - A More Accurate Modeling Methodology for Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2014-01-01

    The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.

  16. Performance and component frontal areas of a hypothetical two-spool turbojet engine for three modes of operation

    NASA Technical Reports Server (NTRS)

    Dugan, James F , Jr

    1955-01-01

    Engine performance is better for constant outer-spool mechanical-speed operation than for constant inner-spool mechanical-speed operation over most of the flight range considered. Combustor and afterburner frontal areas are about the same for the two modes. Engine performance for a mode characterized by a constant outer-spool equivalent speed over part of the flight range and a constant outer-spool mechanical speed over the rest of the flight range is better that that for constant outer-spool mechanical speed operation. The former mode requires larger outer-spool centrifugal stresses and larger component frontal areas.

  17. On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model

    NASA Astrophysics Data System (ADS)

    Bayati, I.; Belloli, M.; Bernini, L.; Mikkelsen, R.; Zasso, A.

    2016-09-01

    This paper illustrates the aero-elastic optimal design, the realization and the verification of the wind tunnel scale model blades for the DTU 10 MW wind turbine model, within LIFES50+ project. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient, with respect to the full scale reference. From the Selig low Reynolds database airfoils, the SD7032 was chosen for this purpose and a proper constant section wing was tested at DTU red wind tunnel, providing force and distributed pressure coefficients for the design, in the Reynolds range 30-250 E3 and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD definition of the external geometry. Then the wind tunnel tests at Politecnico di Milano confirmed successful design and manufacturing approaches.

  18. Technologies for Future Precision Strike Missile Systems (les Technologies des futurs systemes de missiles pour frappe de precision)

    DTIC Science & Technology

    2001-07-01

    hardware - in - loop (HWL) simulation is also developed...Firings / Engine Tests Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model...Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model Model

  19. SSME component assembly and life management expert system

    NASA Technical Reports Server (NTRS)

    Ali, M.; Dietz, W. E.; Ferber, H. J.

    1989-01-01

    The space shuttle utilizes several rocket engine systems, all of which must function with a high degree of reliability for successful mission completion. The space shuttle main engine (SSME) is by far the most complex of the rocket engine systems and is designed to be reusable. The reusability of spacecraft systems introduces many problems related to testing, reliability, and logistics. Components must be assembled from parts inventories in a manner which will most effectively utilize the available parts. Assembly must be scheduled to efficiently utilize available assembly benches while still maintaining flight schedules. Assembled components must be assigned to as many contiguous flights as possible, to minimize component changes. Each component must undergo a rigorous testing program prior to flight. In addition, testing and assembly of flight engines and components must be done in conjunction with the assembly and testing of developmental engines and components. The development, testing, manufacture, and flight assignments of the engine fleet involves the satisfaction of many logistical and operational requirements, subject to many constraints. The purpose of the SSME Component Assembly and Life Management Expert System (CALMES) is to assist the engine assembly and scheduling process, and to insure that these activities utilize available resources as efficiently as possible.

  20. Sound Generation in the Presence of Moving Surfaces with Application to Internally Generated Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Envia, E.

    2002-01-01

    In many cases of technological interest solid boundaries play a direct role in the aerodynamic sound generation process and their presence often results in a large increase in the acoustic radiation. A generalized treatment of the emission of sound from moving boundaries is presented. The approach is similar to that of Ffowcs Williams and Hawkings (1969) but the effect of the surrounding mean flow is explicitly accounted for. The results are used to develop a rational framework for the prediction of internally generated aero-engine noise. The final formulas suggest some new noise sources that may be of practical significance.

  1. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Jorris, Timothy R.

    2007-12-01

    To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no

  2. Engineering Education for a New Era

    NASA Astrophysics Data System (ADS)

    Ohgaki, Shinichiro

    Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.

  3. Multi-component nanofibrous scaffolds with tunable properties for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Jose, Moncy V.

    Bone is a highly complex tissue which is an integral part of vertebrates and hence any damage has a major negative effect on the quality of life. Tissue engineering is regarded as an ideal route to resolve the issues related to the scarcity of tissue and organ for transplantation. Apart from cell line and growth factors, the choice of materials and fabrication technique for scaffold are equally important. The goal of this work was to develop a multi-component nanofibrous scaffold based on a synthetic polymer (poly(lactic-co-glycolide) (PLGA)), a biopolymer (collagen) and a biomineral (nano-hydroxyapatite (nano-HA)) by electrospinning technique, which mimics the nanoscopic, chemical, and anisotropic features of bone. Preliminary studies involved fabrication of nanocomposite scaffolds based on PLGA and nano-HA. Morphological and mechanical characterizations revealed that at low concentrations, nano-HA acted as reinforcements, whereas at higher concentrations the presence of aggregation was detrimental to the scaffold. Hydrolytic degradation studies revealed the scaffold had a little mass loss and the mechanical property was maintained for a period of 6 weeks. This study was followed by evaluation of a blend system based on PLGA and collagen. Collagen addition provides hydrophilicity and the necessary cell binding sites in PLGA. The structural characterization revealed that the blend had limited interactions between the two components. The mechanical characterization revealed that with increasing collagen concentration, there was a decline in mechanical properties. However, crosslinking of the blend system, with carbodiimide (EDC) resulted in improving the mechanical properties of the scaffolds. A multi-component system was developed by adding different concentrations of nano-HA to a fixed PLGA/collagen blend composition (80/20). Morphological and mechanical characterizations revealed properties similar to the PLGA/HA system. Cyto-compatibility studies revealed

  4. KC-135 aero-optical turbulent boundary layer/shear layer experiment revisited

    NASA Technical Reports Server (NTRS)

    Craig, J.; Allen, C.

    1987-01-01

    The aero-optical effects associated with propagating a laser beam through both an aircraft turbulent boundary layer and artificially generated shear layers are examined. The data present comparisons from observed optical performance with those inferred from aerodynamic measurements of unsteady density and correlation lengths within the same random flow fields. Using optical instrumentation with tens of microsecond temporal resolution through a finite aperture, optical performance degradation was determined and contrasted with the infinite aperture time averaged aerodynamic measurement. In addition, the optical data were artificially clipped to compare to theoretical scaling calculations. Optical instrumentation consisted of a custom Q switched Nd:Yag double pulsed laser, and a holographic camera which recorded the random flow field in a double pass, double pulse mode. Aerodynamic parameters were measured using hot film anemometer probes and a five hole pressure probe. Each technique is described with its associated theoretical basis for comparison. The effects of finite aperture and spatial and temporal frequencies of the random flow are considered.

  5. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  6. Development of an Aero-Optics Software Library and Integration into Structured Overset and Unstructured Computational Fluid Dynamics (CFD) Flow Solvers

    DTIC Science & Technology

    2011-04-01

    some similarities to the far- field (i.e. atmospheric ) propagation, but due to the interactions between turbulence length scales, beam wavelengths...equivalently, phase differences, have been used to characterize the beam distortion caused by the unsteady turbulent flow field. A Partially-Averaged Navier...A., Wang, M., and Moin, P., “Computational Study of Aero-Optical Distortion by Turbulent Wake,” AIAA Paper 2005-4655. [11] Mani, A., Wang, M., and

  7. Isotopic Tracing of Fuel Components in Particulate Emissions from Diesel Engines using Accelerator Mass Spectrometry (AMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchholz, B A; Mueller, C J; Garbak, J.

    2001-08-02

    Accelerator mass spectrometry (AMS) is an isotope-ratio measurement technique developed in the late 1970s for tracing long-lived radioisotopes (e.g., {sup 14}C half life = 5760 y). The technique counts individual nuclei rather than waiting for their radioactive decay, allowing measurement of more than 100 low-level {sup 14}C samples per day (Vogel et al, 1995). The LLNL AMS system is shown in Fig.1. The contemporary quantity of {sup 14}C in living things ({sup 14}C/C = 1.2 x 10{sup -12} or 110 fmol {sup 14}C/ g C) is highly elevated compared to the quantity of {sup 14}C in petroleum-derived products. This isotopicmore » elevation is sufficient to trace the fate of bio-derived fuel components in the emissions of an engine without the use of radioactive materials. If synthesis of a fuel component from biologically-derived source material is not feasible, another approach is to purchase {sup 14}C-labeled material (e.g., dibutyl maleate (DBM)) and dilute it with petroleum-derived material to yield a contemporary level of {sup 14}C. In each case, the virtual absence of {sup 14}C in petroleum based fuels gives a very low {sup 14}C background that makes this approach to tracing fuel components practical. Regulatory pressure to significantly reduce the particulate emissions from diesel engines is driving research into understanding mechanisms of soot formation. If mechanisms are understood, then combustion modeling can be used to evaluate possible changes in fuel formulation and suggest possible fuel components that can improve combustion and reduce PM emissions. The combustion paradigm assumes that large molecules break down into small components and then build up again during soot formation. AMS allows us to label specific fuel components, including oxygenates, trace the carbon atoms, and test this combustion modeling paradigm. Volatile and non-volatile organic fractions (VOF, NVOF) in the PM can be further separated. The VOF of the PM can be oxidized with catalysts in

  8. Development and fabrication of structural components for a scramjet engine

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1990-01-01

    A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.

  9. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    NASA Technical Reports Server (NTRS)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter

    2015-01-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  10. Enhancement and Extension of Porosity Model in the FDNS-500 Code to Provide Enhanced Simulations of Rocket Engine Components

    NASA Technical Reports Server (NTRS)

    Cheng, Gary

    2003-01-01

    In the past, the design of rocket engines has primarily relied on the cold flow/hot fire test, and the empirical correlations developed based on the database from previous designs. However, it is very costly to fabricate and test various hardware designs during the design cycle, whereas the empirical model becomes unreliable in designing the advanced rocket engine where its operating conditions exceed the range of the database. The main goal of the 2nd Generation Reusable Launching Vehicle (GEN-II RLV) is to reduce the cost per payload and to extend the life of the hardware, which poses a great challenge to the rocket engine design. Hence, understanding the flow characteristics in each engine components is thus critical to the engine design. In the last few decades, the methodology of computational fluid dynamics (CFD) has been advanced to be a mature tool of analyzing various engine components. Therefore, it is important for the CFD design tool to be able to properly simulate the hot flow environment near the liquid injector, and thus to accurately predict the heat load to the injector faceplate. However, to date it is still not feasible to conduct CFD simulations of the detailed flowfield with very complicated geometries such as fluid flow and heat transfer in an injector assembly and through a porous plate, which requires gigantic computer memories and power to resolve the detailed geometry. The rigimesh (a sintered metal material), utilized to reduce the heat load to the faceplate, is one of the design concepts for the injector faceplate of the GEN-II RLV. In addition, the injector assembly is designed to distribute propellants into the combustion chamber of the liquid rocket engine. A porosity mode thus becomes a necessity for the CFD code in order to efficiently simulate the flow and heat transfer in these porous media, and maintain good accuracy in describing the flow fields. Currently, the FDNS (Finite Difference Navier-Stakes) code is one of the CFD codes

  11. Real-time diagnostics of a jet engine exhaust using an intra-pulse quantum cascade laser spectrometer

    NASA Astrophysics Data System (ADS)

    Duxbury, Geoffrey; Hay, Kenneth G.; Langford, Nigel; Johnson, Mark P.; Black, John D.

    2011-09-01

    It has been demonstrated that an intra-pulse scanned quantum cascade laser spectrometer may be used to obtain real-time diagnostics of the amounts of carbon monoxide, carbon dioxide, and water, in the exhaust of an aero gas turbine (turbojet) engine operated in a sea level test cell. Measurements have been made of the rapid changes in composition following ignition, the composition under steady state operating conditions, and the composition changes across the exhaust plume. The minimum detection limit for CO in a double pass through a typical gas turbine plume of 50 cm in diameter, with 0.4 seconds integration time, is approximately 2 ppm.

  12. Cyber-Informed Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert S.; Benjamin, Jacob; Wright, Virginia L.

    A continuing challenge for engineers who utilize digital systems is to understand the impact of cyber-attacks across the entire product and program lifecycle. This is a challenge due to the evolving nature of cyber threats that may impact the design, development, deployment, and operational phases of all systems. Cyber Informed Engineering is the process by which engineers are made aware of both how to use their engineering knowledge to positively impact the cyber security in the processes by which they architect and design components and the services and security of the components themselves.

  13. Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines

    NASA Astrophysics Data System (ADS)

    Korakianitis, T.; Beier, K. J.

    1994-04-01

    Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.

  14. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  15. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.

    1988-01-01

    The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.

  16. Introduction to tissue engineering and application for cartilage engineering.

    PubMed

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  17. A new method for the estimation of high temperature radiant heat emittance by means of aero-acoustic levitation

    NASA Astrophysics Data System (ADS)

    Greffrath, Fabian; Prieler, Robert; Telle, Rainer

    2014-11-01

    A new method for the experimental estimation of radiant heat emittance at high temperatures has been developed which involves aero-acoustic levitation of samples, laser heating and contactless temperature measurement. Radiant heat emittance values are determined from the time dependent development of the sample temperature which requires analysis of both the radiant and convective heat transfer towards the surroundings by means of fluid dynamics calculations. First results for the emittance of a corundum sample obtained with this method are presented in this article and found in good agreement with literature values.

  18. Static and Wind Tunnel Aero-Performance Tests of NASA AST Separate Flow Nozzle Noise Reduction Configurations

    NASA Technical Reports Server (NTRS)

    Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.

  19. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    NASA Astrophysics Data System (ADS)

    Pust, Ladislav; Pesek, Ludek

    This paper employs a new analytical approach to model the influence of aerodynamic excitation on the dynamics of a bladed cascade at the flutter state. The flutter is an aero-elastic phenomenon that is linked to the interaction of the flow and the traveling deformation wave in the cascade when only the damping of the cascade changes. As a case study the dynamic properties of the five-blade-bunch excited by the running harmonic external forces and aerodynamic self-excited forces are investigated. This blade-bunch is linked in the shroud by means of the viscous-elastic damping elements. The external running excitation depends on the ratio of stator and rotor blade numbers and corresponds to the real type of excitation in the steam turbine. The aerodynamic self-excited forces are modeled by two types of Van der Pol nonlinear models. The influence of the interaction of both types of self-excitation with the external running excitation is investigated on the response curves.

  20. Simplifying and upscaling water resources systems models that combine natural and engineered components

    NASA Astrophysics Data System (ADS)

    McIntyre, N.; Keir, G.

    2014-12-01

    Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.