Science.gov

Sample records for aeroacoustic code trac

  1. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor

  2. Independent code assessment at BNL in FY 1982. [TRAC-PF1; RELAP5/MOD1; TRAC-BD1

    SciTech Connect

    Saha, P.; Rohatgi, U.S.; Jo, J.H.; Neymotin, L.; Slovik, G.; Yuelys-Miksis, C.

    1982-01-01

    Independent assessment of the advanced codes such as TRAC and RELAP5 has continued at BNL through the Fiscal Year 1982. The simulation tests can be grouped into the following five categories: critical flow, counter-current flow limiting (CCFL) or flooding, level swell, steam generator thermal performance, and natural circulation. TRAC-PF1 (Version 7.0) and RELAP5/MOD1 (Cycle 14) codes were assessed by simulating all of the above experiments, whereas the TRAC-BD1 (Version 12.0) code was applied only to the CCFL tests. Results and conclusions of the BNL code assessment activity of FY 1982 are summarized below.

  3. TRAC (Transient Reactor Analysis Code) model of reactor vent paths

    SciTech Connect

    Pevey, R.E.; Reece, J.W.

    1987-12-18

    The Safety Methods group of Scientific Computations Division (SCD) is currently calculating assembly power limits based on reactor response to a double-ended guillotine pipe break loss of coolant accident (LOCA). SCD has implemented a two-level approach in which the Transient Reactor Analysis Code (TRAC) is used to calculate the system pressure response to the LOCA, and these pressures serve as the boundary conditions for a detailed assembly calculation using FLOWTRAN. As part of the TRAC calculation, a detailed TRAC model of the reactor vent paths has been developed that involves the hardware in the top portion of the reactor tank through which air flows as the moderator tank drains following the LOCA initiation. The hardware included in this model are the top shield (with its many penetrations), the gas space above the top shield, the vacuum breakers, the U tube, the helium blanket gas system, and the gas ports. This detailed model is necessary for an accurate calculation of the tank pressures in the first few seconds of the LOCA because the initial tank depressurization is relieved through these vent paths. The tank pressures for about 5 seconds into the transient are sensitive to water flow from the gas space through the top shield, the associated expansion pressure drop of the blanket gas, and the clearing of the vacuum breakers and gas ports. This model was added to a previously developed TRAC model of the rest of the system and the resulting full system model was used to calculate the pressure response during the first few seconds of the LOCA. 8 refs., 8 figs.

  4. Methodology, status, and plans for development and assessment of the TRAC code

    SciTech Connect

    Boyack, B.E.; Nelson, R.A.; Jolly-Woodruff, S.

    1996-12-31

    The Transient Reactor Analysis Code (TRAC) is a state-of-the-art, best-estimate, transient system analysis computer code for analyzing geometrically complex multidimensional thermal hydraulic systems, primarily nuclear reactor power plants. TRAC is used by government and industry organizations for design and safety analysis, phenomenological studies, operational transient analysis, evaluating emergency operating procedures, simulator support and operator training, and for assessment of data involving basic experiments, separate effects tests, and plant operations. TRAC will calculate one- and three-dimensional (rectilinear and cylindrical coordinates) fluid flow involving gas, liquid, and mixture states. Although TRAC has many capabilities, it also has limitations. Some limitations arise from its implementation, dating from the 1970s. Rapid advances in hardware and software engineering highlight TRAC`s inefficiencies; however, other limitations relate to the level of scientific knowledge regarding two-phase flow physics. These limitations will continue until such time as the fundamental understanding of two-phase flows is extended. Presently, several development activities are either in progress or soon to begin that will fundamentally improve TRAC. Foremost among these are reimplementation of the current TRAC data structures in Fortran 90 and the integrated development of closure packages for large-break loss-of-coolant accident applications.

  5. Benchmark Solutions for Computational Aeroacoustics (CAA) Code Validation

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2004-01-01

    NASA has conducted a series of Computational Aeroacoustics (CAA) Workshops on Benchmark Problems to develop a set of realistic CAA problems that can be used for code validation. In the Third (1999) and Fourth (2003) Workshops, the single airfoil gust response problem, with real geometry effects, was included as one of the benchmark problems. Respondents were asked to calculate the airfoil RMS pressure and far-field acoustic intensity for different airfoil geometries and a wide range of gust frequencies. This paper presents the validated that have been obtained to the benchmark problem, and in addition, compares them with classical flat plate results. It is seen that airfoil geometry has a strong effect on the airfoil unsteady pressure, and a significant effect on the far-field acoustic intensity. Those parts of the benchmark problem that have not yet been adequately solved are identified and presented as a challenge to the CAA research community.

  6. Independent assessment of TRAC-PF1 (Version 7. 0), RELAP5/MOD1 (Cycle 14), and TRAC-BD1 (Version 12. 0) codes using separate-effects experiments

    SciTech Connect

    Saha, P; Jo, J H; Neymotin, L; Rohatgi, U S; Slovik, G C; Yuelys-Miksis, C

    1985-08-01

    This report presents the results of independent code assessment conducted at BNL. The TRAC-PF1 (Version 7.0) and RELAP5/MOD1 (Cycle 14) codes were assessed using the critical flow tests, level swell test, countercurrent flow limitation (CCFL) tests, post-CHF test, steam generator thermal performance tests, and natural circulation tests. TRAC-BD1 (Version 12.0) was applied only to the CCFL and post-CHF tests. The TRAC-PWR series of codes, i.e., TRAC-P1A, TRAC-PD2, and TRAC-PF1, have been gradually improved. However, TRAC-PF1 appears to need improvement in almost all categories of tests/phenomena attempted to BNL. Of the two codes, TRAC-PF1 and RELAP5/MOD1, the latter needs more improvement particularly in the areas of: CCFL, Level swell, CHF correlation and post-CHF heat transfer, and Numerical stability. For the CCFL and post-CHF tests, TRAC-BD1 provides the best overall results. However, the TRAC-BD1 interfacial shear package for the countercurrent annular flow regime needs further improvement for better prediction of CCFL phenomenon. 47 refs., 87 figs., 15 tabs.

  7. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's manual for UAAP turboprop aeroacoustic code

    NASA Technical Reports Server (NTRS)

    Menthe, R. W.; Mccolgan, C. J.; Ladden, R. M.

    1991-01-01

    The Unified AeroAcoustic Program (UAAP) code calculates the airloads on a single rotation prop-fan, or propeller, and couples these airloads with an acoustic radiation theory, to provide estimates of near-field or far-field noise levels. The steady airloads can also be used to calculate the nonuniform velocity components in the propeller wake. The airloads are calculated using a three dimensional compressible panel method which considers the effects of thin, cambered, multiple blades which may be highly swept. These airloads may be either steady or unsteady. The acoustic model uses the blade thickness distribution and the steady or unsteady aerodynamic loads to calculate the acoustic radiation. The users manual for the UAAP code is divided into five sections: general code description; input description; output description; system description; and error codes. The user must have access to IMSL10 libraries (MATH and SFUN) for numerous calls made for Bessel functions and matrix inversion. For plotted output users must modify the dummy calls to plotting routines included in the code to system-specific calls appropriate to the user's installation.

  8. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's manual for UAAP turboprop aeroacoustic code

    NASA Astrophysics Data System (ADS)

    Menthe, R. W.; McColgan, C. J.; Ladden, R. M.

    1991-05-01

    The Unified AeroAcoustic Program (UAAP) code calculates the airloads on a single rotation prop-fan, or propeller, and couples these airloads with an acoustic radiation theory, to provide estimates of near-field or far-field noise levels. The steady airloads can also be used to calculate the nonuniform velocity components in the propeller wake. The airloads are calculated using a three dimensional compressible panel method which considers the effects of thin, cambered, multiple blades which may be highly swept. These airloads may be either steady or unsteady. The acoustic model uses the blade thickness distribution and the steady or unsteady aerodynamic loads to calculate the acoustic radiation. The users manual for the UAAP code is divided into five sections: general code description; input description; output description; system description; and error codes. The user must have access to IMSL10 libraries (MATH and SFUN) for numerous calls made for Bessel functions and matrix inversion. For plotted output users must modify the dummy calls to plotting routines included in the code to system-specific calls appropriate to the user's installation.

  9. Benchmark Problems Used to Assess Computational Aeroacoustics Codes

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Envia, Edmane

    2005-01-01

    The field of computational aeroacoustics (CAA) encompasses numerical techniques for calculating all aspects of sound generation and propagation in air directly from fundamental governing equations. Aeroacoustic problems typically involve flow-generated noise, with and without the presence of a solid surface, and the propagation of the sound to a receiver far away from the noise source. It is a challenge to obtain accurate numerical solutions to these problems. The NASA Glenn Research Center has been at the forefront in developing and promoting the development of CAA techniques and methodologies for computing the noise generated by aircraft propulsion systems. To assess the technological advancement of CAA, Glenn, in cooperation with the Ohio Aerospace Institute and the AeroAcoustics Research Consortium, organized and hosted the Fourth CAA Workshop on Benchmark Problems. Participants from industry and academia from both the United States and abroad joined to present and discuss solutions to benchmark problems. These demonstrated technical progress ranging from the basic challenges to accurate CAA calculations to the solution of CAA problems of increasing complexity and difficulty. The results are documented in the proceedings of the workshop. Problems were solved in five categories. In three of the five categories, exact solutions were available for comparison with CAA results. A fourth category of problems representing sound generation from either a single airfoil or a blade row interacting with a gust (i.e., problems relevant to fan noise) had approximate analytical or completely numerical solutions. The fifth category of problems involved sound generation in a viscous flow. In this case, the CAA results were compared with experimental data.

  10. Application programming interface document for the modernized Transient Reactor Analysis Code (TRAC-M)

    SciTech Connect

    Mahaffy, J.; Boyack, B.E.; Steinke, R.G.

    1998-05-01

    The objective of this document is to ease the task of adding new system components to the Transient Reactor Analysis Code (TRAC) or altering old ones. Sufficient information is provided to permit replacement or modification of physical models and correlations. Within TRAC, information is passed at two levels. At the upper level, information is passed by system-wide and component-specific data modules at and above the level of component subroutines. At the lower level, information is passed through a combination of module-based data structures and argument lists. This document describes the basic mechanics involved in the flow of information within the code. The discussion of interfaces in the body of this document has been kept to a general level to highlight key considerations. The appendices cover instructions for obtaining a detailed list of variables used to communicate in each subprogram, definitions and locations of key variables, and proposed improvements to intercomponent interfaces that are not available in the first level of code modernization.

  11. Independent assessment of TRAC and RELAP5 codes through separate effects tests

    SciTech Connect

    Saha, P.; Rohatgi, U.S.; Jo, J.H.; Neymotin, L.; Slovik, G.; Yuelys-Miksis, C.; Pu, J.

    1983-01-01

    Independent assessment of TRAC-PF1 (Version 7.0), TRAC-BD1 (Version 12.0) and RELAP5/MOD1 (Cycle 14) that was initiated at BNL in FY 1982, has been completed in FY 1983. As in the previous years, emphasis at Brookhaven has been in simulating various separate-effects tests with these advanced codes and identifying the areas where further thermal-hydraulic modeling improvements are needed. The following six catetories of tests were simulated with the above codes: (1) critical flow tests (Moby-Dick nitrogen-water, BNL flashing flow, Marviken Test 24); (2) Counter-Current Flow Limiting (CCFL) tests (University of Houston, Dartmouth College single and parallel tube test); (3) level swell tests (G.E. large vessel test); (4) steam generator tests (B and W 19-tube model S.G. tests, FLECHT-SEASET U-tube S.G. tests); (5) natural circulation tests (FRIGG loop tests); and (6) post-CHF tests (Oak Ridge steady-state test).

  12. Verification of a Viscous Computational Aeroacoustics Code Using External Verification Analysis

    NASA Technical Reports Server (NTRS)

    Ingraham, Daniel; Hixon, Ray

    2015-01-01

    The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.

  13. Verification of a Viscous Computational Aeroacoustics Code using External Verification Analysis

    NASA Technical Reports Server (NTRS)

    Ingraham, Daniel; Hixon, Ray

    2015-01-01

    The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.

  14. Reduced gravity boiling and condensing experiments simulated with the COBRA/TRAC computer code

    NASA Technical Reports Server (NTRS)

    Cuta, Judith M.; Krotiuk, William

    1988-01-01

    A series of reduced-gravity two-phase flow experiments has been conducted with a boiler/condenser apparatus in the NASA KC-135 aircraft in order to obtain basic thermal-hydraulic data applicable to analytical design tools. Several test points from the KC-135 tests were selected for simulation by means of the COBRA/TRAC two-fluid, three-field thermal-hydraulic computer code; the points were chosen for a 25-90 percent void-fraction range. The possible causes for the lack of agreement noted between simulations and experiments are explored, with attention to the physical characteristics of two-phase flow in one-G and near-zero-G conditions.

  15. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    SciTech Connect

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  16. A three-dimensional transient neutronics routine for the TRAC-PF1 reactor thermal hydraulic computer code

    SciTech Connect

    Bandini, B.R. Los Alamos National Lab., NM

    1990-05-01

    No present light water reactor accident analysis code employs both high state of the art neutronics and thermal-hydraulics computational algorithms. Adding a modern three-dimensional neutron kinetics model to the present TRAC-PFI/MOD2 code would create a fully up to date pressurized water reactor accident evaluation code. After reviewing several options, it was decided that the Nodal Expansion Method would best provide the basis for this multidimensional transient neutronic analysis capability. Steady-state and transient versions of the Nodal Expansion Method were coded in both three-dimensional Cartesian and cylindrical geometries. In stand-alone form this method of solving the few group neutron diffusion equations was shown to yield efficient and accurate results for a variety of steady-state and transient benchmark problems. The Nodal Expansion Method was then incorporated into TRAC-PFl/MOD2. The combined NEM/TRAC code results agreed well with the EPRI-ARROTTA core-only transient analysis code when modelling a severe PWR control rod ejection accident.

  17. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    SciTech Connect

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C.

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  18. Independent assessment of TRAC-PD2 and RELAP5/MOD1 codes at BNL in FY 1981. [PWR

    SciTech Connect

    Saha, P; Jo, J H; Neymotin, L; Rohatgi, U S; Slovik, G

    1982-12-01

    This report documents the independent assessment calculations performed with the TRAC-PD2 and RELAP/MOD1 codes at Brookhaven National Laboratory (BNL) during Fiscal Year 1981. A large variety of separate-effects experiments dealing with (1) steady-state and transient critical flow, (2) level swell, (3) flooding and entrainment, (4) steady-state flow boiling, (5) integral economizer once-through steam generator (IEOTSG) performance, (6) bottom reflood, and (7) two-dimensional phase separation of two-phase mixtures were simulated with TRAC-PD2. In addition, the early part of an overcooling transient which occurred at the Rancho Seco nuclear power plant on March 20, 1978 was also computed with an updated version of TRAC-PD2. Three separate-effects tests dealing with (1) transient critical flow, (2) steady-state flow boiling, and (3) IEOTSG performance were also simulated with RELAP5/MOD1 code. Comparisons between the code predictions and the test data are presented.

  19. Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1996-01-01

    This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.

  20. International Code Assessment and Applications Program: Summary of code assessment studies concerning RELAP5/MOD2, RELAP5/MOD3, and TRAC-B. International Agreement Report

    SciTech Connect

    Schultz, R.R.

    1993-12-01

    Members of the International Code Assessment Program (ICAP) have assessed the US Nuclear Regulatory Commission (USNRC) advanced thermal-hydraulic codes over the past few years in a concerted effort to identify deficiencies, to define user guidelines, and to determine the state of each code. The results of sixty-two code assessment reviews, conducted at INEL, are summarized. Code deficiencies are discussed and user recommended nodalizations investigated during the course of conducting the assessment studies and reviews are listed. All the work that is summarized was done using the RELAP5/MOD2, RELAP5/MOD3, and TRAC-B codes.

  1. Automated Development of Accurate Algorithms and Efficient Codes for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Dyson, Rodger W.

    1999-01-01

    The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that

  2. TRAC code assessment using data from SCTF Core-III, a large-scale 2D/3D facility

    SciTech Connect

    Boyack, B.E.; Shire, P.R.; Harmony, S.C.; Rhee, G.

    1988-01-01

    Nine tests from the SCTF Core-III configuration have been analyzed using TRAC-PF1/MOD1. The objectives of these assessment activities were to obtain a better understanding of the phenomena occurring during the refill and reflood phases of a large-break loss-of-coolant accident, to determine the accuracy to which key parameters are calculated, and to identify deficiencies in key code correlations and models that provide closure for the differential equations defining thermal-hydraulic phenomena in pressurized water reactors. Overall, the agreement between calculated and measured values of peak cladding temperature is reasonable. In addition, TRAC adequately predicts many of the trends observed in both the integral effect and separate effect tests conducted in SCTF Core-III. The importance of assessment activities that consider potential contributors to discrepancies between the measured and calculated results arising from three sources are described as those related to (1) knowledge about the facility configuration and operation, (2) facility modeling for code input, and (3) deficiencies in code correlations and models. An example is provided. 8 refs., 7 figs., 2 tabs.

  3. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    SciTech Connect

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-10-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

  4. Assessment of TRAC-PF1 and RELAP5/MOD1 codes with GE large-vessel blowdown test

    NASA Astrophysics Data System (ADS)

    Jo, J. H.

    1983-06-01

    The large vessel blowdown Test No. 5801-15 was simulated with the TRAC-PF1 (Version 7.0) and RELAP5/MOD1 (Cycle 14) codes. The test facility consisted of a pressure vessel, 49 in. in diameter by 14 ft long, a 2.5 in. diameter converging-diverging nozzle and a blowdown line connected to the center of the upper part of the vessel (elevation from the bottom of the vessel 10.5 ft). The vessel was filled with saturated water up to 5.5 ft at 1060 psia. The test was initiated by rupturing a disc attached at the end of the nozzle. Blowdown phenomena such as critical blowdown flow and the level swell during blowdown from a partially water filled vessel was studied. Understanding of these phenomena is essential for the analysis of Loss-of-Coolant and steam generator steam line break accidents.

  5. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  6. TRAC-BD1/MOD1 user's guideline

    SciTech Connect

    Hanson, R G

    1985-11-01

    Code assessment studies and specific code applications have provided insight into the effective use of the TRAC-BWR series of codes. This document reports the experience gained from the studies and serves to assist the user in the effective application of the TRAC-BD1/MOD1 computer code. This document stresses the user's perspective relative to approprite use of the TRAC-BD1/MOD1 code and is considered an adjunct to other documentation provided with the code.

  7. An evaluation of TRAC-PF1/MOD1 computer code performance during posttest simulations of Semiscale MOD-2C feedwater line break transients

    SciTech Connect

    Hall, D.G.: Watkins, J.C.

    1987-01-01

    This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In addition to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use.

  8. Aeroacoustic flowmeter

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor)

    1990-01-01

    The flowmeter is based on a measurement of phase difference between two points on the circumference of a pipe separated axially by an integral multiple of sound wavelength. Plane sound waves are generated aeroacoustically by a non-protruding ring cavity energized either directly by the flow or by a subsidiary flow of the same medium. The frequency of the aeroacoustic source varies with temperature and therefore the temperature can be obtained. In the case of steam flow, temperature can be measured independently and therefore from the measured frequency (or speed of sound), the quality of wet steam can be measured. The flowmeter is linear in velocity and no calibrations are required.

  9. Benchmark Data for Evaluation of Aeroacoustic Propagation Codes With Grazing Flow

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.

    2005-01-01

    Increased understanding of the effects of acoustic treatment on the propagation of sound through commercial aircraft engine nacelles is a requirement for more efficient liner design. To this end, one of NASA s goals is to further the development of duct propagation and impedance reduction codes. A number of these codes have been developed over the last three decades. These codes are typically divided into two categories: (1) codes that use the measured complex acoustic pressure field to reduce the acoustic impedance of treatment that is positioned along the wall of the duct, and (2) codes that use the acoustic impedance of the treatment as input and compute the sound field throughout the duct. Clearly, the value of these codes is dependent upon the quality of the data used for their validation. Over the past two decades, data acquired in the NASA Langley Research Center Grazing Incidence Tube have been used by a number of researchers for comparison with their propagation codes. Many of these comparisons have been based upon Grazing Incidence Tube tests that were conducted to study specific liner technology components, and were incomplete for general propagation code validation. Thus, the objective of the current investigation is to provide a quality data set that can be used as a benchmark for evaluation of duct propagation and impedance reduction codes. In order to achieve this objective, two parallel efforts have been undertaken. The first of these is the development of an enhanced impedance eduction code that uses data acquired in the Grazing Incidence Tube. This enhancement is intended to place the benchmark data on as firm a foundation as possible. The second key effort is the acquisition of a comprehensive set of data selected to allow propagation code evaluations over a range of test conditions.

  10. Development of Computational Aeroacoustics Code for Jet Noise and Flow Prediction

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Hixon, Duane R.

    2002-07-01

    Accurate prediction of jet fan and exhaust plume flow and noise generation and propagation is very important in developing advanced aircraft engines that will pass current and future noise regulations. In jet fan flows as well as exhaust plumes, two major sources of noise are present: large-scale, coherent instabilities and small-scale turbulent eddies. In previous work for the NASA Glenn Research Center, three strategies have been explored in an effort to computationally predict the noise radiation from supersonic jet exhaust plumes. In order from the least expensive computationally to the most expensive computationally, these are: 1) Linearized Euler equations (LEE). 2) Very Large Eddy Simulations (VLES). 3) Large Eddy Simulations (LES). The first method solves the linearized Euler equations (LEE). These equations are obtained by linearizing about a given mean flow and the neglecting viscous effects. In this way, the noise from large-scale instabilities can be found for a given mean flow. The linearized Euler equations are computationally inexpensive, and have produced good noise results for supersonic jets where the large-scale instability noise dominates, as well as for the tone noise from a jet engine blade row. However, these linear equations do not predict the absolute magnitude of the noise; instead, only the relative magnitude is predicted. Also, the predicted disturbances do not modify the mean flow, removing a physical mechanism by which the amplitude of the disturbance may be controlled. Recent research for isolated airfoils' indicates that this may not affect the solution greatly at low frequencies. The second method addresses some of the concerns raised by the LEE method. In this approach, called Very Large Eddy Simulation (VLES), the unsteady Reynolds averaged Navier-Stokes equations are solved directly using a high-accuracy computational aeroacoustics numerical scheme. With the addition of a two-equation turbulence model and the use of a relatively

  11. Development of Computational Aeroacoustics Code for Jet Noise and Flow Prediction

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Hixon, Duane R.

    2002-01-01

    Accurate prediction of jet fan and exhaust plume flow and noise generation and propagation is very important in developing advanced aircraft engines that will pass current and future noise regulations. In jet fan flows as well as exhaust plumes, two major sources of noise are present: large-scale, coherent instabilities and small-scale turbulent eddies. In previous work for the NASA Glenn Research Center, three strategies have been explored in an effort to computationally predict the noise radiation from supersonic jet exhaust plumes. In order from the least expensive computationally to the most expensive computationally, these are: 1) Linearized Euler equations (LEE). 2) Very Large Eddy Simulations (VLES). 3) Large Eddy Simulations (LES). The first method solves the linearized Euler equations (LEE). These equations are obtained by linearizing about a given mean flow and the neglecting viscous effects. In this way, the noise from large-scale instabilities can be found for a given mean flow. The linearized Euler equations are computationally inexpensive, and have produced good noise results for supersonic jets where the large-scale instability noise dominates, as well as for the tone noise from a jet engine blade row. However, these linear equations do not predict the absolute magnitude of the noise; instead, only the relative magnitude is predicted. Also, the predicted disturbances do not modify the mean flow, removing a physical mechanism by which the amplitude of the disturbance may be controlled. Recent research for isolated airfoils' indicates that this may not affect the solution greatly at low frequencies. The second method addresses some of the concerns raised by the LEE method. In this approach, called Very Large Eddy Simulation (VLES), the unsteady Reynolds averaged Navier-Stokes equations are solved directly using a high-accuracy computational aeroacoustics numerical scheme. With the addition of a two-equation turbulence model and the use of a relatively

  12. Three-Dimensional Nacelle Aeroacoustics Code With Application to Impedance Education

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    2000-01-01

    A three-dimensional nacelle acoustics code that accounts for uniform mean flow and variable surface impedance liners is developed. The code is linked to a commercial version of the NASA-developed General Purpose Solver (for solution of linear systems of equations) in order to obtain the capability to study high frequency waves that may require millions of grid points for resolution. Detailed, single-processor statistics for the performance of the solver in rigid and soft-wall ducts are presented. Over the range of frequencies of current interest in nacelle liner research, noise attenuation levels predicted from the code were in excellent agreement with those predicted from mode theory. The equation solver is memory efficient, requiring only a small fraction of the memory available on modern computers. As an application, the code is combined with an optimization algorithm and used to reduce the impedance spectrum of a ceramic liner. The primary problem with using the code to perform optimization studies at frequencies above I1kHz is the excessive CPU time (a major portion of which is matrix assembly). The research recommends that research be directed toward development of a rapid sparse assembler and exploitation of the multiprocessor capability of the solver to further reduce CPU time.

  13. TRAC development and assessment status

    SciTech Connect

    Vigil, J.C.; Knight, T.D.

    1981-01-01

    TRAC is being developed at the Los Alamos National Laboratory to provide an advanced systems code for light-water reactor accident analysis. The released TRAC versions (P1, P1A, and PD2) were intended primarily as benchmark codes for large-break loss-of-coolant accidents but PD2 has been applied successfully to TMI-type transients and other small-break transients. A fast-running version, PFl, is currently under development to address more efficiently and accurately these types of transients. All of the released versions have been subjected to testing against separate-effects, system-effects, and integral experiments covering a wide range of scales. Assessment results indicate that PD2 does a credible job overall; needed improvements are being addressed in PFl and in modifications to PD2.

  14. Aeroacoustic Duster

    NASA Technical Reports Server (NTRS)

    Marshall, Jeffrey S. (Inventor); Chen, Di (Inventor); Vachon, Nicholas Mario (Inventor); Hitt, Darren (Inventor); Wu, Junru (Inventor)

    2014-01-01

    The aero-acoustic duster invention disclosed herein provides for high particle removal rate from surfaces with low energy expenditure relative to competing vacuum-based devices. The device removes particulate matter from a surface using a two-step process: 1. Acoustic radiation is used to break the adhesive bonds between dust and the surface, forcing particles into a mode where they continuously bounce up and down on the surface; and, 2. A bounded vortex is generated over the surface, with suction in the vortex center and jets for blowing air along the periphery. The jets are tilted in the tangential direction to induce vortex motion within the suction region. The vortex is said to be bounded because streamlines originating in the downward jets are entrained back into the central vortex.

  15. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that result in having dreams come true. This paper primarily addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. It also addresses the latter problem in discussing what are relevant measures critical for aeroacoustics that should be used in validating LES codes. These new diagnostic techniques deliver measurements and flow statistics of increasing sophistication and capability, but what of their accuracy? And what are the measures to be used in validation? This paper argues that the issue of accuracy be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it is argued that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound.

  16. TRAC-P validation test matrix. Revision 1.0

    SciTech Connect

    Hughes, E.D.; Boyack, B.E.

    1997-09-05

    This document briefly describes the elements of the Nuclear Regulatory Commission`s (NRC`s) software quality assurance program leading to software (code) qualification and identifies a test matrix for qualifying Transient Reactor Analysis Code (TRAC)-Pressurized Water Reactor Version (-P), or TRAC-P, to the NRC`s software quality assurance requirements. Code qualification is the outcome of several software life-cycle activities, specifically, (1) Requirements Definition, (2) Design, (3) Implementation, and (4) Qualification Testing. The major objective of this document is to define the TRAC-P Qualification Testing effort.

  17. TRAC-PF1 choked-flow model

    SciTech Connect

    Sahota, M.S.; Lime, J.F.

    1983-01-01

    The two-phase, two-component choked-flow model implemented in the latest version of the Transient Reactor analysis Code (TRAC-PF1) was developed from first principles using the characteristic analysis approach. The subcooled choked-flow model in TRAC-PF1 is a modified form of the Burnell model. This paper discusses these choked-flow models and their implementation in TRAC-PF1. comparisons using the TRAC-PF1 choked-flow models are made with the Burnell model for subcooled flow and with the homogeneous-equilibrium model (HEM) for two-phae flow. These comparisons agree well under homogeneous conditions. Generally good agreements have been obtained between the TRAC-PF1 results from models using the choking criteria and those using a fine mesh (natural choking). Code-data comparisons between the separate-effects tests of the Marviken facility and the Edwards' blowdown experiment also are favorable. 10 figures.

  18. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Mendoza, J.

    1995-01-01

    This report documents the results of an experimental investigation on the response of a cavity to external flowfields. The primary objective of this research was to acquire benchmark of data on the effects of cavity length, width, depth, upstream boundary layer, and flow temperature on cavity noise. These data were to be used for validation of computational aeroacoustic (CAA) codes on cavity noise. To achieve this objective, a systematic set of acoustic and flow measurements were made for subsonic turbulent flows approaching a cavity. These measurements were conducted in the research facilities of the Georgia Tech research institute. Two cavity models were designed, one for heated flow and another for unheated flow studies. Both models were designed such that the cavity length (L) could easily be varied while holding fixed the depth (D) and width (W) dimensions of the cavity. Depth and width blocks were manufactured so that these dimensions could be varied as well. A wall jet issuing from a rectangular nozzle was used to simulate flows over the cavity.

  19. Aeroacoustic Codes for Rotor Harmonic and BVI Noise. CAMRAD.Mod1/HIRES: Methodology and Users' Manual

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1998-01-01

    This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.

  20. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  1. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  2. Tilt Rotor Aircraft Aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.

    1996-01-01

    A fleet of civil tilt rotor transports offers a means of reducing airport congestion and point-to-point travel time. The speed, range, and fuel economy of these aircraft, along with their efficient use of vertiport area, make them good candidates for short-to-medium range civil transport. However, to be successfully integrated into the civilian community, the tilt rotor must be perceived as a quiet, safe, and economical mode of transportation that does not harm the environment. In particular, noise impact has been identified as a possible barrier to the civil tilt rotor. Along with rotor conversion-mode flight, and blade-vortex interaction noise during descent, hover mode is a noise problem for tilt rotor operations. In the present research, tilt rotor hover aeroacoustics have been studied analytically, experimentally, and computationally. Various papers on the subject were published as noted in the list of publications. More recently, experimental measurements were made on a 1/12.5 scale model of the XV-15 in hover and analyses of this data and extrapolations to full scale were also carried out. A dimensional analysis showed that the model was a good aeroacoustic approximation to the full-scale aircraft, and scale factors were derived to extrapolate the model measurements to the full-scale XV-15. The experimental measurements included helium bubble flow visualization, silk tuft flow visualization, 2-component hot wire anemometry, 7-hole pressure probe measurements, vorticity measurements, and outdoor far field acoustic measurements. The hot wire measurements were used to estimate the turbulence statistics of the flow field into the rotors, such as length scales, velocity scales, dissipation, and turbulence intermittency. Several different configurations of the model were tested: (1) standard configurations (single isolated rotor, two rotors without the aircraft, standard tilt rotor configuration); (2) flow control devices (the 'plate', the 'diagonal fences'); (3

  3. Software design implementation document for TRAC-M data structures

    SciTech Connect

    Jolly-Woodruff, S.; Mahaffy, J.; Giguere, P.; Dearing, J.; Boyack, B.

    1997-07-01

    The Transient Reactor Analysis Code (TRAC)-M system-wide and component data structures are to be reimplemented by using the new features of Fortran 90 (F90). There will be no changes to the conceptual design, data flow, or computational flow with respect to the current TRAC-P, except that readability, maintainability, and extensibility will be improved. However, the task described here is a basic step that does not meet all future needs of the code, especially regarding extensibility. TRAC-M will be fully functional and will produce null computational changes with respect to TRAC-P, Version 5.4.25; computational efficiency will not be degraded significantly. The existing component and functional modularity and possibilities for coarse-grained parallelism will be retained.

  4. TRAC L reactor model: Geometry review and benchmarking

    SciTech Connect

    Griggs, D.P.; Cozzuol, J.M.

    1990-08-01

    The analysis of the Design Basis Loss of Coolant Acident (LOCA) for Savannah River Site (SRS) reactors involves the best estimate reactor system thermal-hydraulics code TRAC-PFI/MOD1. Power levels for the L-3.1 and P-10.2 subcycles were determined based, in part, on TRAC analyses of the first few seconds of a plenum inlet break LOCA. The TRAC code is currently being used to analyze reactor system response for the Double Ended Guillotine Break (DEGB) LOCA, the Expansion Joint Bellows Break LOCA, the Loss of Pumping Accident (LOPA), and the Pump Shaft Break event. Currently, the DEGB LOCA analysis is performed with TRAC only for the flow instability (FI) phase of the accident. This analysis provides input to the determination of operating power limits for the K-14.1 subcycle.

  5. Peach Bottom Transients Analysis with TRAC/BF1-VALKIN

    SciTech Connect

    Verdu, G.; Miro, R.; Sanchez, A.M.; Rosello, O.; Ginestar, D.; Vidal, V.

    2004-10-15

    The TRAC/BF1-VALKIN code is a new time domain analysis code for studying transients in a boiling water reactor. This code uses the best-estimate code TRAC/BF1 to give an account of the heat transfer and thermal-hydraulic processes and a three-dimensional neutronics module. This module has two options: the MODKIN option that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the reactor core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. To check the performance of the TRAC/BF1-VALKIN code, the Peach Bottom turbine trip transient has been simulated, because this transient is a dynamically complex event where neutron kinetics is coupled with thermal hydraulics in the reactor primary system, and reactor variables change very rapidly.

  6. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that are produced. This paper addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. This paper argues that the issue of accuracy of the experimental measurements be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it argues that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound, such as two-point space-time velocity correlations. A brief review of data sources available is presented along with examples illustrating cross-facility and internal quality checks required of the data before it should be accepted for validation of LES.

  7. TRAC performance estimates

    NASA Technical Reports Server (NTRS)

    Everett, L.

    1992-01-01

    This report documents the performance characteristics of a Targeting Reflective Alignment Concept (TRAC) sensor. The performance will be documented for both short and long ranges. For long ranges, the sensor is used without the flat mirror attached to the target. To better understand the capabilities of the TRAC based sensors, an engineering model is required. The model can be used to better design the system for a particular application. This is necessary because there are many interrelated design variables in application. These include lense parameters, camera, and target configuration. The report presents first an analytical development of the performance, and second an experimental verification of the equations. In the analytical presentation it is assumed that the best vision resolution is a single pixel element. The experimental results suggest however that the resolution is better than 1 pixel. Hence the analytical results should be considered worst case conditions. The report also discusses advantages and limitations of the TRAC sensor in light of the performance estimates. Finally the report discusses potential improvements.

  8. Constitutive relations in TRAC-P1A

    SciTech Connect

    Rohatgi, U.S.; Saha, P.

    1980-08-01

    The purpose of this document is to describe the basic thermal-hydraulic models and correlations that are in the TRAC-P1A code, as released in March 1979. It is divided into two parts, A and B. Part A describes the models in the three-dimensional vessel module of TRAC, whereas Part B focuses on the loop components that are treated by one-dimensional formulations. The report follows the format of the questions prepared by the Analysis Development Branch of USNRC and the questionnaire has been attached to this document for completeness. Concerted efforts have been made in understanding the present models in TRAC-P1A by going through the FORTRAN listing of the code. Some discrepancies between the code and the TRAC-P1A manual have been found. These are pointed out in this document. Efforts have also been made to check the TRAC references for the range of applicability of the models and correlations used in the code. 26 refs., 5 figs., 1 tab.

  9. Benchmark problems in computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Porter-Locklear, Freda

    1994-01-01

    A recent directive at NASA Langley is aimed at numerically predicting principal noise sources. During my summer stay, I worked with high-order ENO code, developed by Dr. Harold Atkins, for solving the unsteady compressible Navier-Stokes equations, as it applies to computational aeroacoustics (CAA). A CAA workshop, composed of six categories of benchmark problems, has been organized to test various numerical properties of code. My task was to determine the robustness of Atkins' code for these test problems. In one category, we tested the nonlinear wave propagation of the code for the one-dimensional Euler equations, with initial pressure, density, and velocity conditions. Using freestream boundary conditions, our results were plausible. In another category, we solved the linearized two-dimensional Euler equations to test the effectiveness of radiation boundary conditions. Here we utilized MAPLE to compute eigenvalues and eigenvectors of the Jacobian given variable and flux vectors. We experienced a minor problem with inflow and outflow boundary conditions. Next, we solved the quasi one dimensional unsteady flow equations with an incoming acoustic wave of amplitude 10(exp -6). The small amplitude sound wave was incident on a convergent-divergent nozzle. After finding a steady-state solution and then marching forward, our solution indicated that after 30 periods the acoustic wave had dissipated (a period is time required for sound wave to traverse one end of nozzle to other end).

  10. Aeroacoustics Research Program in JIAFS

    NASA Technical Reports Server (NTRS)

    Myers, Michael K.

    2000-01-01

    This paper presents a final report on Aeroacoustics Research Program in JIAFS (Joint Institute For Advancement of Flight Sciences). The objectives of the program were to conduct research at the NASA Langley Research Center and to provide a comprehensive education program at the Center leading to advanced degrees in aeroacoustics.

  11. Self calibrating autoTRAC

    NASA Technical Reports Server (NTRS)

    Everett, Louis J.

    1994-01-01

    The work reported here demonstrates how to automatically compute the position and attitude of a targeting reflective alignment concept (TRAC) camera relative to the robot end effector. In the robotics literature this is known as the sensor registration problem. The registration problem is important to solve if TRAC images need to be related to robot position. Previously, when TRAC operated on the end of a robot arm, the camera had to be precisely located at the correct orientation and position. If this location is in error, then the robot may not be able to grapple an object even though the TRAC sensor indicates it should. In addition, if the camera is significantly far from the alignment it is expected to be at, TRAC may give incorrect feedback for the control of the robot. A simple example is if the robot operator thinks the camera is right side up but the camera is actually upside down, the camera feedback will tell the operator to move in an incorrect direction. The automatic calibration algorithm requires the operator to translate and rotate the robot arbitrary amounts along (about) two coordinate directions. After the motion, the algorithm determines the transformation matrix from the robot end effector to the camera image plane. This report discusses the TRAC sensor registration problem.

  12. A description of the test problems in the TRAC-P standard test matrix

    SciTech Connect

    Steinke, R.G.

    1996-03-01

    This report describes 15 different test problems in the TRAC-P (Transient Reactor Analysis Code) standard test matrix of 42 test-problem calculations. Their TRACIN input-data files are listed in Appendix A. The description of each test problem includes the nature of what the test problem models and evaluates, the principal models of TRAC-P that the test problem serves to verify or validate, and the TRAC-P features and options that are being involved in its calculation. The test-problem calculations will determine the effect that changes made to a TRAC-P version have on the results. This will help the developers assess the acceptance of those changes to TRAC-P.

  13. Aeroacoustic and Performance Simulations of a Test Scale Open Rotor

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.

    2013-01-01

    This paper explores a comparison between experimental data and numerical simulations of the historical baseline F31/A31 open rotor geometry. The experimental data were obtained at the NASA Glenn Research Center s Aeroacoustic facility and include performance and noise information for a variety of flow speeds (matching take-off and cruise). The numerical simulations provide both performance and aeroacoustic results using the NUMECA s Fine-Turbo analysis code. A non-linear harmonic method is used to capture the rotor/rotor interaction.

  14. Some benchmark problems for computational aeroacoustics

    NASA Astrophysics Data System (ADS)

    Chapman, C. J.

    2004-02-01

    This paper presents analytical results for high-speed leading-edge noise which may be useful for benchmark testing of computational aeroacoustics codes. The source of the noise is a convected gust striking the leading edge of a wing or fan blade at arbitrary subsonic Mach number; the streamwise shape of the gust is top-hat, Gaussian, or sinusoidal, and the cross-stream shape is top-hat, Gaussian, or uniform. Detailed results are given for all nine combinations of shapes; six combinations give three-dimensional sound fields, and three give two-dimensional fields. The gust shapes depend on numerical parameters, such as frequency, rise time, and width, which may be varied arbitrarily in relation to aeroacoustic code parameters, such as time-step, grid size, and artificial viscosity. Hence it is possible to determine values of code parameters suitable for accurate calculation of a given acoustic feature, e.g., the impulsive sound field produced by a gust with sharp edges, or a full three-dimensional acoustic directivity pattern, or a complicated multi-lobed directivity. Another possibility is to check how accurately a code can determine the far acoustic field from nearfield data; a parameter here would be the distance from the leading edge at which the data are taken.

  15. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  16. Aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1990-01-01

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  17. Aeroacoustics of advanced propellers

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  18. COBRA/TRAC analysis of the PKL reflood test K9. [PWR

    SciTech Connect

    Wilkins, C.A.; Thurgood, M.J.

    1982-08-01

    Experiments at the Primaerkreislaeufe (PKL) test facility in Erlangen, Germany, simulated the refill and reflood procedure after a loss-of-coolant accident (LOCA) in the primary coolant system of a 1300-MW pressurized water reactor (PWR). COBRA/TRAC, a thermal-hydraulics analysis code developed at the Pacific Northwest Laboratory, was used to model experiment K9 of the PKL test series (completed December 1979). The COBRA/TRAC code, which utilizes COBRA-TF as the vessel module and TRAC-P1A for the remaining components, was designed to analyze LOCAs in PWRs. PKL-K9 was characterized by a double-ended guillotine break in the cold leg with emergency core cooling water injected into the cold legs. COBRA/TRAC was able to successfully predict lower-core temperature profiles and quench times, upper-core temperature profiles until the quench, upper plenum and break pressures, and correct trends in collapsed water levels.

  19. Rocket motor aeroacoustics

    NASA Astrophysics Data System (ADS)

    Hegde, U. G.; Strahle, W. C.

    1983-10-01

    Vibration problems in solid propellant rocket motors are investigated. A class of interior flows modelled to simulate flow conditions inside rocket motor cavities is considered. Turbulence generated pressure fluctuations are shown to consist of two components - acoustic and hydrodynamics. The Bernoulli enthalpy theory of aeroacoustics is employed to extract acoustic pressure spectra from experimentally obtained turbulence data and acoustic impedance values at flow boundaries. The effects of turbulence intensities, sidewall acoustic impedance, axial mass blowing distribution, length to diameter ratio of the cavity and different mass flux on the acoustic pressure level are investigated. Typical pressure levels, under rocket motor conditions, are calculated using the A/B model of propellant response. Estimates of the hydrodynamic component of the pressure fluctuation are provided for the case of fully developed turbulent pipe flow terminated by a choked nozzle.

  20. Computational Aeroacoustics: An Overview

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    2003-01-01

    An overview of recent advances in computational aeroacoustics (CAA) is presented. CAA algorithms must not be dispersive and dissipative. It should propagate waves supported by the Euler equations with the correct group velocities. Computation domains are inevitably finite in size. To avoid the reflection of acoustic and other outgoing waves at the boundaries of the computation domain, it is required that special boundary conditions be imposed at the boundary region. These boundary conditions either absorb all the outgoing waves without reflection or allow the waves to exit smoothly. High-order schemes, invariably, supports spurious short waves. These spurious waves tend to pollute the numerical solution. They must be selectively damped or filtered out. All these issues and relevant computation methods are briefly reviewed. Jet screech tones are known to have caused structural fatigue in military combat aircrafts. Numerical simulation of the jet screech phenomenon is presented as an example of a successful application of CAA.

  1. Aeroacoustics of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2014-01-01

    While for airplanes the subject of aeroacoustics is associated with community noise, for space vehicles it is associated with vibro-acoustics and structural dynamics. Surface pressure fluctuations encountered during launch and travel through lower part of the atmosphere create intense vibro-acoustics environment for the payload, electronics, navigational equipment, and a large number of subsystems. All of these components have to be designed and tested for flight-certification. This presentation will cover all three major sources encountered in manned and unmanned space vehicles: launch acoustics, ascent acoustics and abort acoustics. Launch pads employ elaborate acoustic suppression systems to mitigate the ignition pressure waves and rocket plume generated noise during the early part of the liftoff. Recently we have used large microphone arrays to identify the noise sources during liftoff and found that the standard model by Eldred and Jones (NASA SP-8072) to be grossly inadequate. As the vehicle speeds up and reaches transonic speed in relatively denser part of the atmosphere, various shock waves and flow separation events create unsteady pressure fluctuations that can lead to high vibration environment, and occasional coupling with the structural modes, which may lead to buffet. Examples of wind tunnel tests and computational simulations to optimize the outer mold line to quantify and reduce the surface pressure fluctuations will be presented. Finally, a manned space vehicle needs to be designed for crew safety during malfunctioning of the primary rocket vehicle. This brings the subject of acoustic environment during abort. For NASAs Multi-Purpose Crew Vehicle (MPCV), abort will be performed by lighting rocket motors atop the crew module. The severe aeroacoustics environments during various abort scenarios were measured for the first time by using hot helium to simulate rocket plumes in the Ames unitary plan wind tunnels. Various considerations used for the

  2. Uncertainties in TRAC plenum pressures for the FI phase of a DEGB LOCA

    SciTech Connect

    Griggs, D.P.

    1991-05-01

    The TRAC-PF1/MOD1 code (TRAC) is used to perform best-estimate analyses of certain postulated Design Basis Accidents (DBAs) in SRS production reactors. Currently, the most limiting DBA in terms of reactor power level is an instantaneous double-ended guillotine break (DEGB) loss of coolant accident (LOCA). For this accident, TRAC is used to analyze only the first 5 seconds following the DEGB, which encompasses the Flow Instability (FI) phase of the DBA. The TRAC analysis provides time-dependent plenum and tank bottom pressures for use as boundary conditions in the FLOWTRAN code. The quantification of uncertainty is an important element of determining safe operating power levels for SRS reactors. A detailed methodology for the determination of uncertainty for the FI phase of a DEGB LOCA has been developed. This report presents estimates of the uncertainty in the time-dependent plenum pressures for the DEGB LOCA calculated by TRAC. The plenum pressure uncertainty was estimated by means of comparing TRAC results with steady-state data measured in L Reactor, and confirmed by comparisons with transient LOCA results calculated by an independent group with the RELAP5 code. An overview of the limits methodology is given and discusses the L Reactor data. The methodology for estimating the plenum pressure uncertainty is presented along with the results.

  3. TRAC large-break loss-of-coolant accident analysis for the AP600 design

    SciTech Connect

    Lime, J.F.; Boyack, B.E.

    1994-02-01

    This report discusses a TRAC model of the Westinghouse AP600 advanced reactor design which has been developed for analyzing large-break loss-of-coolant accident (LBLOCA) transients. A preliminary LBLOCA calculation of a 80% cold-leg break has been performed with TRAC-PF1/MOD2. The 80% break size was calculated by Westinghouse to be the most severe large-break size. The LBLOCA transient was calculated to 92 s. Peak clad temperatures (PCT) were well below the Appendix K limit of 1478 K (2200{degrees}F). Transient event times and PCT for the TRAC calculation were in reasonable agreement with those calculated by Westinghouse using their WCOBRA/TRAC code.

  4. A brief review of the reflood closure package optimization efforts performed within TRAC 5.4.25R10

    SciTech Connect

    Pimentel, D.A.; Nelson, R.A.

    1997-10-01

    This report summarizes the implementation of tools within Version 5.4.25R10 of the Transient Reactor Analysis Code (TRAC); this implementation allows the semiautomated optimization of the reflood constitutive package. The tools included a software package external to TRAC that used a line search method to minimize a generic function value given the function`s partial derivative vector with respect to a set of closure coefficients used within TRAC`s reflood model. Within TRAC, the generic function was a normalized penalty function dependent on time averaged calculated values of vapor temperature, vapor void fraction, wall to a fluid heat transfer rate (or wall temperature), and the respective steady state data. The penalty function was implemented only for a one dimensional vessel configuration because the available reflood data were taken primarily from postcritical heat flux tube experiments.

  5. Computational aeroacoustic simulations of leading-edge slat flow

    NASA Astrophysics Data System (ADS)

    Takeda, K.; Zhang, X.; Nelson, P. A.

    2004-02-01

    High-lift devices on modern airliners are a major contributor to overall airframe noise. In this paper the aeroacoustics of leading-edge slat devices in a high-lift configuration are investigated computationally. A hierarchical methodology is used to enable the rapid evaluation of different slat configurations. The overall goal is to gain a deeper understanding of the noise generation and amplification mechanisms in and around the slat, and the effects of slat system geometry. In order to perform parametric studies of the aeroacoustics, a simplified 2-D model of the slat is used. The flow and aeroacoustics are computed using a compressible, unsteady, Reynolds-Averaged Navier-Stokes code. A robust buffer zone boundary condition is used to prevent the reflection of outgoing acoustic waves from contaminating the long-time solution. A Ffowcs Williams-Hawkings solver is used to compute the far field acoustic field from the unsteady flow solution and determine the directivity. The spanwise correlation length used is derived from experimental data of this high-lift configuration. The effect of spanwise correlation length on the acoustic far field is examined. The aeroacoustics of the slat system are largely governed by the geometry, especially in terms of slat overlap. We perform a study of the effects of trailing edge thickness, horizontal and vertical overlap settings for the slat on near field wave propagation and far field directivity. The implications for low-noise leading edge slat design are discussed.

  6. An assessment of TRAC-PD2 refill calculations based on Creare countercurrent flow tests

    SciTech Connect

    Bott, T.F.

    1982-04-01

    An important step in computer code development is the assessment of code capabilities through comparison of calculated results with experimental data A number of Creare countercurrent flow tests were simulated with the Transient Reactor Analysis Code (TRAC)-PD2 code to assess the emergency core coolant (ECC) lower plenum penetration and refill predictive capabilities. The tests examined in this study indicate a prediction of complete bypass and delivery at countercurrent steam flows where these phenomena occurred experimentally. Steam flows leading to partial delivery experimentally did not always lead to partial delivery in the calculations, however. A number of parameters can potentially effect TRAC refill calculations. Sensitivity studies indicate the TRAC results are most sensitive to droplet Weber number variations that affect interfacial shear and heat transfer rates. The condensation model also affects calculations with subcooled ECC liquid.

  7. Containment response to a main steam-line break using CONTAIN, RIS, and TRAC/BF1

    SciTech Connect

    Smith, K.; Baratta, A. ); Talens, H. )

    1991-01-01

    This paper summarizes containment analyses performed using the CONTAIN, RIS, and TRAC/BF1 computer codes. Although each of these codes is a containment response code, they differ in their approaches to modeling the various phenomena that occur in the containment. The work was initiated to evaluate the ability of these codes to predict containment response during a main steam-line break (MSLB). This project expands on previous analysis performed by KEMA using the RIS and TRAC/BF1 codes to include CONTAIN results. In the course of this project, all three codes demonstrated their usefulness. Although all three codes predicted satisfactory results, the RIS and CONTAIN codes seem best suited for this type of transient. The TRAC/BF1 code should be used for transients where the interactions between the primary and containment system are though to be large.

  8. KSC VAB Aeroacoustic Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Oliveira, Justin M.; Yedo, Sabrina; Campbell, Michael D.; Atkinson, Joseph P.

    2010-01-01

    NASA Kennedy Space Center (KSC) carried out an analysis of the effects of aeroacoustics produced by stationary solid rocket motors in processing areas at KSC. In the current paper, attention is directed toward the acoustic effects of a motor burning within the Vehicle Assembly Building (VAB). The analysis was carried out with support from ASRC Aerospace who modeled transmission effects into surrounding facilities. Calculations were done using semi-analytical models for both aeroacoustics and transmission. From the results it was concluded that acoustic hazards in proximity to the source of ignition and plume can be severe; acoustic hazards in the far-field are significantly lower.

  9. The Use of Kirchhoff's Method in Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Lyrintzis, Anastasios S.

    1995-01-01

    Supersonic jet aeroacoustics will be studied using computational techniques. In the study, a Kirchhoff method is used to predict flow generated noise in the mid- and far-fields. This type of method shows promise because it is based on surface integrals and not the volume integrals found in traditional acoustic prediction methods. The Kirchhoff method is dependent on accurate prediction of flow variables in the near-field. Here, computational fluid dynamics (CFD) programs are used for these predictions. Specifically, an existing large eddy simulation (LES) code will be modified for aeroacoustic applications. Issues involved in the implementation of the Kirchhoff method as well as the coupling with the CFD code will be discussed. Important physical noise parameters will be identified and investigated in the study.

  10. Development of Improved Surface Integral Methods for Jet Aeroacoustic Predictions

    NASA Technical Reports Server (NTRS)

    Pilon, Anthony R.; Lyrintzis, Anastasios S.

    1997-01-01

    The accurate prediction of aerodynamically generated noise has become an important goal over the past decade. Aeroacoustics must now be an integral part of the aircraft design process. The direct calculation of aerodynamically generated noise with CFD-like algorithms is plausible. However, large computer time and memory requirements often make these predictions impractical. It is therefore necessary to separate the aeroacoustics problem into two parts, one in which aerodynamic sound sources are determined, and another in which the propagating sound is calculated. This idea is applied in acoustic analogy methods. However, in the acoustic analogy, the determination of far-field sound requires the solution of a volume integral. This volume integration again leads to impractical computer requirements. An alternative to the volume integrations can be found in the Kirchhoff method. In this method, Green's theorem for the linear wave equation is used to determine sound propagation based on quantities on a surface surrounding the source region. The change from volume to surface integrals represents a tremendous savings in the computer resources required for an accurate prediction. This work is concerned with the development of enhancements of the Kirchhoff method for use in a wide variety of aeroacoustics problems. This enhanced method, the modified Kirchhoff method, is shown to be a Green's function solution of Lighthill's equation. It is also shown rigorously to be identical to the methods of Ffowcs Williams and Hawkings. This allows for development of versatile computer codes which can easily alternate between the different Kirchhoff and Ffowcs Williams-Hawkings formulations, using the most appropriate method for the problem at hand. The modified Kirchhoff method is developed primarily for use in jet aeroacoustics predictions. Applications of the method are shown for two dimensional and three dimensional jet flows. Additionally, the enhancements are generalized so that

  11. Aeroacoustics of hot jets

    NASA Astrophysics Data System (ADS)

    Viswanathan, K.

    2004-10-01

    A systematic study has been undertaken to quantify the effect of jet temperature on the noise radiated by subsonic jets. Nozzles of different diameters were tested to uncover the effects of Reynolds number. All the tests were carried out at Boeing's Low Speed Aeroacoustic Facility, with simultaneous measurement of thrust and noise. It is concluded that the change in spectral shape at high jet temperatures, normally attributed to the contribution from dipoles, is due to Reynolds number effects and not dipoles. This effect has not been identified before. A critical value of the Reynolds number that would need to be maintained to avoid the effects associated with low Reynolds number has been estimated to be {˜}400 000. It is well-known that large-scale structures are the dominant generators of noise in the peak radiation direction for high-speed jets. Experimental evidence is presented that shows the spectral shape at angles close to the jet axis from unheated low subsonic jets to be the same as from heated supersonic jets. A possible mechanism for the observed trend is proposed. When a subsonic jet is heated with the Mach number held constant, there is a broadening of the angular sector in which peak radiation occurs. Furthermore, there is a broadening of the spectral peak. Similar trends have been observed at supersonic Mach numbers. The spectral shapes in the forward quadrant and in the near-normal angles from unheated and heated subsonic jets also conform to the universal shape obtained from supersonic jet data. Just as for unheated jets, the peak frequency at angles close to the jet axis is independent of jet velocity as long as the acoustic Mach number is less than unity. The extensive database generated in the current test programme is intended to provide test cases with high-quality data that could be used for the evaluation of theoretical/semi-theoretical jet noise prediction methodologies.

  12. Aeroacoustic sensitivity analysis and optimal aeroacoustic design of turbomachinery blades

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.

    1994-01-01

    During the first year of the project, we have developed a theoretical analysis - and wrote a computer code based on this analysis - to compute the sensitivity of unsteady aerodynamic loads acting on airfoils in cascades due to small changes in airfoil geometry. The steady and unsteady flow though a cascade of airfoils is computed using the full potential equation. Once the nominal solutions have been computed, one computes the sensitivity. The analysis takes advantage of the fact that LU decomposition is used to compute the nominal steady and unsteady flow fields. If the LU factors are saved, then the computer time required to compute the sensitivity of both the steady and unsteady flows to changes in airfoil geometry is quite small. The results to date are quite encouraging, and may be summarized as follows: (1) The sensitivity procedure has been validated by comparing the results obtained by 'finite difference' techniques, that is, computing the flow using the nominal flow solver for two slightly different airfoils and differencing the results. The 'analytic' solution computed using the method developed under this grant and the finite difference results are found to be in almost perfect agreement. (2) The present sensitivity analysis is computationally much more efficient than finite difference techniques. We found that using a 129 by 33 node computational grid, the present sensitivity analysis can compute the steady flow sensitivity about ten times more efficiently that the finite difference approach. For the unsteady flow problem, the present sensitivity analysis is about two and one-half times as fast as the finite difference approach. We expect that the relative efficiencies will be even larger for the finer grids which will be used to compute high frequency aeroacoustic solutions. Computational results show that the sensitivity analysis is valid for small to moderate sized design perturbations. (3) We found that the sensitivity analysis provided important

  13. Application of traditional CFD methods to nonlinear computational aeroacoustics problems

    NASA Technical Reports Server (NTRS)

    Chyczewski, Thomas S.; Long, Lyle N.

    1995-01-01

    This paper describes an implementation of a high order finite difference technique and its application to the category 2 problems of the ICASE/LaRC Workshop on Computational Aeroacoustics (CAA). Essentially, a popular Computational Fluid Dynamics (CFD) approach (central differencing, Runge-Kutta time integration and artificial dissipation) is modified to handle aeroacoustic problems. The changes include increasing the order of the spatial differencing to sixth order and modifying the artificial dissipation so that it does not significantly contaminate the wave solution. All of the results were obtained from the CM5 located at the Numerical Aerodynamic Simulation Laboratory. lt was coded in CMFortran (very similar to HPF), using programming techniques developed for communication intensive large stencils, and ran very efficiently.

  14. Aeroacoustic qualification of HERMES shingles

    NASA Astrophysics Data System (ADS)

    Petiau, C.; Paret, A.

    1994-09-01

    General problems of aeroacoustic analysis are presented, taking as an example shingle studies of the HERMES space shuttle. Analysis of shingle behavior meets this problem in a particularly difficult way (very hard environment, specific difficulties due to design of shingles). Available analysis tools include: (1) calculation means, which are mainly those of aeroelasticity, and (2) ground test means (wind tunnel, progressive wave tubes, shaker,...). None of these means can alone satisfy the needs of structural dimensioning and qualification; in particular the calculation of turbulent sources is not possible today, and they are very difficult to simulate with ground testing of actual structural parts. In spite of these difficulties, and referring to the preliminary tests and calculations of HERMES shingles, a rational strategy is proposed for aeroacoustic dimensioning and qualification of structural parts. This leads to a succession of tests, the conditions of which are determined by calculations, calculation models being themselves validated by comparison with test results.

  15. Estimation of the uncertainty in TRAC/PF1-MOD1 predictions of production reactor plenum pressures

    SciTech Connect

    Griggs, D.P. )

    1992-01-01

    The TRAC-PF1/MOD1 code (TRAC) is used to perform best-estimate analyses of certain postulated design-basis accidents (DBAs) in Savannah River Site (SRS) production reactors. One of the DBAs analyzed is an instantaneous double-ended guillotine break loss-of-coolant accident (LOCA). The TRAC analysis provides time-dependent plenum and tank bottom pressures for use as boundary conditions in a detailed analysis of a single fuel assembly. The quantification of uncertainty is an important element in determining safe operating power levels for SRS reactors. This motivates the estimation of the uncertainty in using spatial interpolations of the relatively coarse cell-average plenum pressure predictions obtained with TRAC to predict detailed reactor plenum pressure distributions. This result supports the adequacy of the {plus minus}5% plenum pressure uncertainty estimated for LOCA analyses.

  16. TRAC-PF1/MOD1 post-test calculations of the OECD LOFT Experiment LP-SB-3

    SciTech Connect

    Allen, E J; Neill, A P

    1990-04-01

    Analysis of the small, cold leg break, OECD LOFT Experiment LP-SB-3 using the best-estimate computer code TRAC-PF1/MOD1 is presented. Descriptions of the LOFT facility and the LP-SB-3 experiment are given and development of the TRAC-PF1/MOD1 input model is detailed. The calculations performed in achieving the steady state conditions, from which the experiment was initiated, and the specification of experimental boundary conditions are outlined. Results of the TRAC-PF1/MOD1 calculation are found to be generally consistent with those reported, by members of the OECD LOFT Program Review Group, in the LP-SB-3 Comparison Report.'' Overall trends with respect to pressure histories, minimum primary system mass inventory and accumulator behaviour are reasonably well reproduced by TRAC-PF1/MOD1. 17 refs., 26 figs., 3 tabs.

  17. Multidimensional TMI-1 Main-Steam-Line-Break Analysis Methodology Using TRAC-PF/NEM

    SciTech Connect

    Ivanov, Kostadin N.; Beam, Tara M.; Baratta, Anthony J.; Irani, Ardesar; Trikouros, Nicholas G

    2001-02-15

    A comparison of a point-kinetics calculation and a full three-dimensional thermal-hydraulic/kinetics calculation using TRAC-PF1/NEM is presented. The coupled TRAC-PF1/NEM methodology uses version 5.4 of the TRAC-PF1/MOD2 code, developed by the Los Alamos National Laboratory, and a special kinetics module, developed at The Pennsylvania State University and based on the nodal expansion method. Cross sections are obtained from two-dimensional tables generated using CASMO-3.The results of the analysis show that the point-kinetics calculation is conservative and predicts a return to power. The three-dimensional analysis shows no return to power despite an extended overfeeding of the affected generator with feedwater. The difference is believed to be caused by the inability of the standard point-kinetics method to properly account for the moderator density feedback, local effects, and flux redistribution, which occur during the transient.

  18. Comparison of Theory and Experiment on Aeroacoustic Loads and Deflections

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Bourgine, A.; Bonomi, B.

    1999-01-01

    The correlation of acoustic pressure loads induced by a turbulent wake on a nearby structural panel is considered: this problem is relevant to the acoustic fatigue of aircraft, rocket and satellite structures. Both the correlation of acoustic pressure loads and the panel deflections, were measured in an 8-m diameter transonic wind tunnel. Using the measured correlation of acoustic pressures, as an input to a finite-element aeroelastic code, the panel response was reproduced. The latter was also satisfactorily reproduced, using again the aeroelastic code, with input given by a theoretical formula for the correlation of acoustic pressures; the derivation of this formula, and the semi-empirical parameters which appear in it, are included in this paper. The comparison of acoustic responses in aeroacoustic wind tunnels (AWT) and progressive wave tubes (PWT) shows that much work needs to be done to bridge that gap; this is important since the PWT is the standard test means, whereas the AWT is more representative of real flight conditions but also more demanding in resources. Since this may be the first instance of successful modelling of acoustic fatigue, it may be appropriate to list briefly the essential ``positive'' features and associated physical phenomena: (i) a standard aeroelastic structural code can predict acoustic fatigue, provided that the correlation of pressure loads be adequately specified; (ii) the correlation of pressure loads is determined by the interference of acoustic waves, which depends on the exact evaluation of multiple scattering integrals, involving the statistics of random phase shifts; (iii) for the relatively low frequencies (one to a few hundred Hz) of aeroacoustic fatigue, the main cause of random phase effects is scattering by irregular wakes, which are thin on wavelength scale, and appear as partially reflecting rough interfaces. It may also be appropriate to mention some of the ``negative'' features, to which may be attached illusory

  19. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    SciTech Connect

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  20. Modeling the aeroacoustics of axial fans from CFD calculations

    NASA Astrophysics Data System (ADS)

    Salesky, Alexandre; Hennemand, Vincent; Kouidri, Smaine; Berthelot, Yves

    2002-11-01

    The main source of aeroacoustic noise in axial fans is the distribution of the fluctuating, unsteady, aerodynamic forces on the blades. Numerical simulations were carried out with the CFD code (NUMECA), first with steady flow conditions to validate the aerolic performances (pressure drop as a function of flow rate) of the simulated six-bladed axial fans. Simulations were then made with unsteady flows to compute the fluctuating force distributions on the blades. The turbulence was modeled either with the Baldwin-Lomax model or with the K-epsilon model (extended wall function). The numerical results were satisfactory both in terms of numerical convergence and in terms of the physical characteristic of the forces acting on the blades. The numerical results were then coupled into an in-house aeroacoustics code that computes the farfield radiated noise spectrum and directivity, based on the Ffowcs-Williams Hawkings formulation, or alternatively, on the simpler Lowson model. Results compared favorably with data obtained under nonanechoic conditions, based upon ISO 5801 and ISO 5136 standards.

  1. Hazardous chemical tracking system (HAZ-TRAC)

    SciTech Connect

    Bramlette, J D; Ewart, S M; Jones, C E

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA).

  2. Study of the TRAC Airfoil Table Computational System

    NASA Technical Reports Server (NTRS)

    Hu, Hong

    1999-01-01

    The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.

  3. Assessment of TRAC-BD1/MOD1 using FIST data

    SciTech Connect

    Jo, J.H.; Connell, H.R.

    1985-01-01

    This report is concerned with the assessment of the TRAC-BD1/MOD1 Code, developed at Idaho National Engineering Laboratory. The assessment was conducted using data from the FIST (Full Integral Simulation Test) facility, which is a BWR safety test facility which was built to investigate small break LOCA and operational transients in BWR's and to complement earlier large break LOCA test results from TLTA (Two-Loop Test Apparatus). 21 figs.

  4. Assessment of TRAC-PF1/MOD1 version 14. 3 using separate effects critical flow and blowdown experiments

    SciTech Connect

    Spindler, B.; Pellissier, M. )

    1990-01-01

    Independent assessment of the TRAC code was conducted at the Centre d'Etudes Nucleaires de Grenoble of the Commissariate a l'Energie Atomique (France) in the frame of the ICAP. This report presents the results of the assessment of TRAC-PF1/MOD1 version 14.3 using critical flow steady state tests (MOBY-DICK, SUPER-MOBY-DICK), and blowdown tests (CANON, SUPER-CANON, VERTICAL-CANON, MARVIKEN, OMEGA-TUBE, OMEGA-BUNDLE). This document, Volume 1, presents the text and tables from this assessment.

  5. TRAC-PF1 MOD1 post test calculations of the OECD LOFT Experiment LP-SB-1

    SciTech Connect

    Allen, E J

    1990-04-01

    Analysis of the small, hot leg break, OECD LOFT Experiment LP-SB-1. using the best-estimate'' computer code TRAC-PF1/MOD1 is presented. Descriptions of the LOFT facility and the LP-SB-1 experiment are given and development of the TRAC-PF1/MOD1 input model is detailed. The calculations performed in achieving the steady state conditions, from which the experiment was initiated, and the specification of experimental boundary conditions are outlined. 24 refs., 66 figs., 12 tabs.

  6. Assessment of TRAC-PF1/MOD1 Version 14. 3 using separate effects critical flow and blowdown experiments

    SciTech Connect

    Spindler, B.; Pellissier, M. )

    1990-01-01

    Independent assessment of the TRAC code was conducted at the Centre d'Etudes Nucleaires de Grenoble of the Commissariate a l'Energie Atomique (France) in the frame of the ICAP. This report presents the results of the assessment of TRAC-PF1/MOD1 version 14.3 using critical flow steady state tests (MOBY-DICK, SUPER-MOBY-DICK), and blowdown tests (CANON, SUPER-CANON, VERTICAL-CANON, MARVIKEN, OMEGA-TUBE, OMEGA-BUNDLE). This document, Volume 2, presents the experimental data and figures from the assessment.

  7. Lightweight Ceramics for Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Kwan, H. W.; Spamer, G. T.; Yu, J.; Yasukawa, B.

    1997-01-01

    The use of a HTP (High Temperature Performance) ceramic foam for aeroacoustic applications is investigated. HTP ceramic foam is a composition of silica and alumina fibers developed by LMMS. This foam is a lightweight high-temperature fibrous bulk material with small pore size, ultra high porosity, and good strength. It can be used as a broadband noise absorber at both room and high temperature (up to 1800 F). The investigation included an acoustic assessment as well as material development, and environmental and structural evaluations. The results show that the HTP ceramic foam provides good broadband noise absorbing capability and adequate strength when incorporating the HTP ceramic foam system into a honeycomb sandwich structure. On the other hand, the material is sensitive to Skydrol and requires further improvements. Good progress has been made in the impedance model development. A relationship between HTP foam density, flow resistance, and tortuosity will be established in the near future. Additional effort is needed to investigate the coupling effects between face sheet and HTP foam material.

  8. Mean Flow Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.

    2003-01-01

    In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.

  9. Aeroacoustics analysis and community noise overview

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Soderman, Paul T.

    1992-01-01

    The goals of the High Speed Research Program are focused on three major environmental issues: atmospheric effect, airport community noise, and sonic booms. The issues are basic concerns that require better understanding before further HSRP endeavors can be addresses. This paper discusses airport community noise and aeroacoustic analysis.

  10. Evaluation of Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.

    1995-01-01

    The performance of three boundary conditions for aeroacoustics were investigated, namely, (1) Giles-1990; (2) Tam and Webb-1993, and (3) Thompson-1987. For each boundary condition, various implementations were tested to study the sensitivity of their performance to the implementation procedure. Details of all implementations are given. Results are shown for the acoustic field of a monopole in a uniform freestream.

  11. TRAC analysis of design basis events for the accelerator production of tritium target/blanket

    SciTech Connect

    Lin, J.C.; Elson, J.

    1997-08-01

    A two-loop primary cooling system with a residual heat removal system was designed to mitigate the heat generated in the tungsten neutron source rods inside the rungs of the ladders and the shell of the rungs. The Transient Reactor Analysis Code (TRAC) was used to analyze the thermal-hydraulic behavior of the primary cooling system during a pump coastdown transient; a cold-leg, large-break loss-of-coolant accident (LBLOCA); a hot-leg LBLOCA; and a target downcomer LBLOCA. The TRAC analysis results showed that the heat generated in the tungsten neutron source rods can be mitigated by the primary cooling system for the pump coastdown transient and all the LBLOCAs except the target downcomer LBLOCA. For the target downcomer LBLOCA, a cavity flood system is required to fill the cavity with water at a level above the large fixed headers.

  12. 77 FR 32648 - Proposed Collection; Comment Request; CareerTrac

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... information collection was previously published in the Federal Register on May 12, 2009 (74 FR 22172). No... HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request; CareerTrac SUMMARY... Collection Title: CareerTrac. Type of Information Collection Request: Revision (OMB NO.: 0925-0568...

  13. Report on the final panel discussion on computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Lighthill, James

    1992-01-01

    Some important conclusions about future prospects for aeroacoustics in general, and for computational aeroacoustics in particular, that were reached in the course of the Final Panel Discussion of the Workshop on Computational Aeroacoustics held from 6 to 9 April 1992 by ICASE and NASA Langley Research Center are summarized by the panel chairman. Aeroacoustics must now be involved in interactions with computational fluid dynamics (as applied not only to deterministic flows but also to the statistical characteristics of turbulence), while additionally incorporating rigorous comparisons with experiment. The new Computational Aeroacoustics will press forward in two parallel ways. In one of them, CFD will be used to determine aeroacoustic source strengths, the associated radiation being derived by the Acoustic Analogy approach in one of its forms. In the other, a direct Computational Aeroacoustics will apply CFD techniques over a region extending beyond the flow field so as to include at least the beginnings of the acoustic far field. There are some particularly important areas of study, including rotor noise, boundary-layer noise, and the noise of supersonic jets, where it is strongly recommended that use of both methods is continued. On the other hand, important problems of the diffraction of radiation from aeroacoustic sources around complicated aircraft shapes will require the use of comprehensively Computational Aeroacoustics, while Acoustic Analogy methods seem better suited to estimating subsonic jet noise. The study of model problems to allow comparisons with experiment will be valuable in both lines of attack.

  14. An Investigation of High-Order Shock-Capturing Methods for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Baysal, Oktay

    1997-01-01

    This project is motivated by the desire to develop numerical methods that will be useful in the study of compressible flows that exhibit aeroacoustic phenomena. Solutions to linear problems have been investigated through the development of a computer code based on the recent dispersion-relation-preserving (DRP) methodology. In regard to nonlinear problems, the class of essentially nonoscillatory (ENO) schemes have been considered as the primary candidates for solving aeroacoustic problems in which discontinuities are involved. Discontinuities in the solution itself (e.g. shocks) as well as in the geometry on which the problem is defined have been studied. Two-dimensional nonlinear problems were considered in order to determine if the one-dimensional results obtained in the first phase of this project were extendable to more realistic problems. Conclusions have been drawn in regard to the ability to numerically predict solutions of nonlinear problems with shocks to high-order accuracy.

  15. Computational Aero-acoustics As a Tool For Turbo-machinery Noise Reduction

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2003-01-01

    This talk will provide an overview of the field of computational aero-acoustics and its use in fan noise prediction. After a brief history of computational fluid dynamics, some of the recent developments in computational aero-acoustics will be explored. Computational issues concerning sound wave production, propagation, and reflection in practical turbo-machinery applications will be discussed including: (a) High order/High Resolution Numerical Techniques. (b) High Resolution Boundary Conditions. [c] MIMD Parallel Computing. [d] Form of Governing Equations Useful for Simulations. In addition, the basic design of our Broadband Analysis Stator Simulator (BASS) code and its application to a 2 D rotor wake-stator interaction will be shown. An example of the noise produced by the wakes from a rotor impinging upon a stator cascade will be shown.

  16. Investigation of computational aeroacoustic tools for noise predictions of wind turbine aerofoils

    NASA Astrophysics Data System (ADS)

    Humpf, A.; Ferrer, E.; Munduate, X.

    2007-07-01

    In this work trailing edge noise levels of a research aerofoil have been computed and compared to aeroacoustic measurements using two different approaches. On the other hand, aerodynamic and aeroacoustic calculations were performed with the full Navier-Stokes CFD code Fluent [Fluent Inc 2005 Fluent 6.2 Users Guide, Lebanon, NH, USA] on the basis of a steady RANS simulation. Aerodynamic characteristics were computed by the aid of various turbulence models. By the combined usage of implemented broadband noise source models, it was tried to isolate and determine the trailing edge noise level. Throughout this work two methods of different computational cost have been tested and quantitative and qualitative results obtained. On the one hand, the semi-empirical noise prediction tool NAFNoise [Moriarty P 2005 NAFNoise User's Guide. Golden, Colorado, July. http://wind.nrel.gov/designcodes/ simulators/NAFNoise] was used to directly predict trailing edge noise by taking into consideration the nature of the experiments.

  17. Full Scale Rotor Aeroacoustic Predictions and the Link to Model Scale Rotor Data

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2004-01-01

    The NASA Aeroacoustic Prediction System (NAPS) is used to establish a link between model-scale and full-scale rotor predictions and is partially validated against measured wind tunnel and flight aeroacoustic data. The prediction approach of NAPS couples a comprehensive rotorcraft analysis with acoustic source noise and propagation codes. The comprehensive analysis selected for this study is CAMRAD-II, which provides the performance/trim/wake solution for a given rotor or flight condition. The post-trim capabilities of CAMRAD-II are used to compute high-resolution sectional airloads for the acoustic tone noise analysis, WOPMOD. The tone noise is propagated to observers on the ground with the propagation code, RNM (Rotor Noise Model). Aeroacoustic predictions are made with NAPS for an isolated rotor and compared to results of the second Harmonic Aeroacoustic Rotor Test (HART-II) program, which tested a 40% dynamically and Mach-scaled BO-105 main rotor at the DNW. The NAPS is validated with comparisons for three rotor conditions: a baseline condition and two Higher Harmonic Control (HHC) conditions. To establish a link between model and full-scale rotor predictions, a full-scale BO-105 main rotor input deck for NAPS is created from the 40% scale rotor input deck. The full-scale isolated rotor predictions are then compared to the model predictions. The comparisons include aerodynamic loading, acoustic levels, and acoustic pressure time histories for each of the three conditions. With this link established, full-scale predictions are made for a range of descent flight conditions and compared with measured trends from the recent Rotorcraft Operational Noise Abatement Procedures (RONAP) flight test conducted by DLR and ONERA. Additionally, the effectiveness of two HHC conditions from the HART-II program is demonstrated for the full-scale rotor in flight.

  18. Aeroacoustic measurements in a human airway model

    NASA Astrophysics Data System (ADS)

    McPhail, Michael; Campo, Elizabeth; Krane, Michael

    2012-11-01

    Flow and acoustic measurements are presented for a vocal tract-like geometry with a rigid constriction as a prelude to a study of a compliant constriction that models the vocal folds. Optical flow measurements were taken at the inlet of the constriction and downstream in the jet region. Pressure and acoustic measures were taken on either side of the constriction. Volume flow, two-dimensional flow fields, and radiated sound will be presented for a range of driving pressures. Measurements are used to assess the resistance of the constriction and the measures of the aeroacoustic source. The measurements serve as a validation case for computational aeroacoustic simulations. Acknowledge support from NIH and PSU-ARL E&F program.

  19. Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.

  20. Comparing Volcano Infrasound and Aeroacoustics Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Ogden, D. E.; Matoza, R. S.; Fee, D.

    2012-12-01

    The production of acoustic noise by fluid flows has been studied experimentally within engineering aeroacoustics for over 50 years. These works aim to correlate flow properties and dynamics with the produced acoustic spectra (i.e., patterns of frequencies and amplitude). These correlations are used to design flow fields in man-made jet engines and other machines to reduce the production of harmful acoustic signals and resulting hearing loss. Many of the flow fields in these man-made systems are analogous to those in volcanic eruptions. We postulate that the acoustic signals generated by these flows are also analogous and the aeroacoustics experimental results provide a starting point for modeling the noise generated by volcanic flow fields. Application of empirical results from these experiments to volcanic flow fields is non-trivial. Volcanic eruptions involve complexities not present in man-made experiments including but not limited to multiphase flow, buoyancy forces, and non-uniform atmosphere. This work explores methods by which some of the empirical results from aeroacoustics experiments can be modified for application to volcanic eruptions. Results are compared with observations of volcano infrasound. Preliminary comparison to numerical simulations of volcano infrasound may also be presented.

  1. Terrain-Responsive Atmospheric Code

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore » 25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  2. An integrated decision support system for TRAC: A proposal

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    1991-01-01

    Optimal allocation and usage of resources is a key to effective management. Resources of concern to TRAC are: Manpower (PSY), Money (Travel, contracts), Computing, Data, Models, etc. Management activities of TRAC include: Planning, Programming, Tasking, Monitoring, Updating, and Coordinating. Existing systems are insufficient, not completely automated, manpower intensive, and has the potential for data inconsistency exists. A system is proposed which suggests a means to integrate all project management activities of TRAC through the development of a sophisticated software and by utilizing the existing computing systems and network resources. The systems integration proposal is examined in detail.

  3. Parallelization of an Object-Oriented Unstructured Aeroacoustics Solver

    NASA Technical Reports Server (NTRS)

    Baggag, Abdelkader; Atkins, Harold; Oezturan, Can; Keyes, David

    1999-01-01

    A computational aeroacoustics code based on the discontinuous Galerkin method is ported to several parallel platforms using MPI. The discontinuous Galerkin method is a compact high-order method that retains its accuracy and robustness on non-smooth unstructured meshes. In its semi-discrete form, the discontinuous Galerkin method can be combined with explicit time marching methods making it well suited to time accurate computations. The compact nature of the discontinuous Galerkin method also makes it well suited for distributed memory parallel platforms. The original serial code was written using an object-oriented approach and was previously optimized for cache-based machines. The port to parallel platforms was achieved simply by treating partition boundaries as a type of boundary condition. Code modifications were minimal because boundary conditions were abstractions in the original program. Scalability results are presented for the SCI Origin, IBM SP2, and clusters of SGI and Sun workstations. Slightly superlinear speedup is achieved on a fixed-size problem on the Origin, due to cache effects.

  4. System calculations related to the accident at Three-Mile Island using TRAC

    SciTech Connect

    Ireland, J.R.

    1980-01-01

    The Three Mile Island nuclear plant (Unit 2) was modeled using the Transient Reactor Analysis Code (TRAC-P1A) and a base case calculation, which simulated the initial part of the accident that occurred on March 28, 1979, was performed. In addition to the base case calculation, several parametric calculations were performed in which a single hypothetical change was made in the system conditions, such as assuming the high pressure injection (HPI) system operated as designed rather than as in the accident. Some of the important system parameter comparisons for the base case as well as some of the parametric case results are presented.

  5. Computational AeroAcoustics for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Ed; Hixon, Ray; Dyson, Rodger; Huff, Dennis (Technical Monitor)

    2002-01-01

    An overview of the current state-of-the-art in computational aeroacoustics as applied to fan noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three dimensional inviscid formulations in both frequency and time domains are summarized. In particular, the application of a frequency domain method, called LINFLUX, to the computation of rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the gradients of the mean flow near the surface and that the correct computation of these gradients for highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing development of a finite difference time marching code that is based on a sixth order compact scheme is also reviewed. Preliminary results from the nonlinear computation of a gust-airfoil interaction model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing effort in the area of arbitrarily high order methods are reviewed and technical challenges associated with implementing correct high order boundary conditions are discussed and possible strategies for addressing these challenges ore outlined.

  6. Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.

    2006-01-01

    Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.

  7. Updated TRAC analysis of an 80% double-ended cold-leg break for the AP600 design

    SciTech Connect

    Lime, J.F.; Boyack, B.E.

    1995-07-01

    An updated TRAC 80% large-break loss-of-coolant accident (LBLOCA) has been calculated for the Westinghouse AP600 advanced reactor design, The updated calculation incorporates major code error corrections, model corrections, and plant design changes. The 80% break size was calculated by Westinghouse to be the most severe large-break size for the AP600 design. The LBLOCA transient was calculated to 144 s. Peak cladding temperatures (PCTS) were well below the Appendix K limit of 1,478 K (2,200 F), but very near the cladding oxidation temperature of 1,200 K (1,700 F). Transient event times and PCT for the TRAC calculation were in reasonable agreement with those calculated by Westinghouse using their {und W}COBRA/TRAC code. However, there were significant differences in the detailed phenomena calculated by the two codes, particularly during the blowdown phase. The reasons for these differences are still being investigated. Additional break sizes and break locations need to be analyzed to confirm the most severe break postulated by Westinghouse.

  8. TRAC-PF1/MOD1 pretest predictions of MIST experiments

    SciTech Connect

    Boyack, B.E.; Steiner, J.L.; Siebe, D.A.

    1986-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 to provide integral system test data on specific issues and phenomena relevant to post small-break loss-of-coolant accidents (SBLOCAs) in Babcock and Wilcox plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. During Fiscal Year 1986, Los Alamos performed five MIST pretest analyses. The five experiments were chosen on the basis of their potential either to approach the facility limits or to challenge the predictive capability of the TRAC-PF1/MOD1 code. Three SBLOCA tests were examined which included nominal test conditions, throttled auxiliary feedwater and asymmetric steam-generator cooldown, and reduced high-pressure-injection (HPI) capacity, respectively. Also analyzed were two ''feed-and-bleed'' cooling tests with reduced HPI and delayed HPI initiation. Results of the tests showed that the MIST facility limits would not be approached in the five tests considered. Early comparisons with preliminary test data indicate that the TRAC-PF1/MOD1 code is correctly calculating the dominant phenomena occurring in the MIST facility during the tests. Posttest analyses are planned to provide a quantitative assessment of the code's ability to predict MIST transients.

  9. The role of unsteady aerodynamics in aeroacoustics

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul

    1988-01-01

    The role of acoustics and unsteady aerodynamics research in understanding the fundamental physics of time-dependent fluid phenomena is reviewed. The key issues are illustrated by considering the sound radiation of turbulent jets and the aeroacoustics of rotating bodies such as helicopter rotors. The importance of computational methods as a link between aerodynamics and acoustics is also discussed. It is noted that where acoustic analogy techniques are sufficiently accurate, unsteady aerodynamics can be used for acoustic prediction. In supersonic problems where acoustics and aerodynamics are coupled, an integrated nonlinear analysis can provide an accurate problem solution.

  10. Aeroacoustics of unvoiced human speech sound production

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel; Krane, Michael

    2007-11-01

    Measurements of airflow and sound were performed in an idealized model of the human vocal tract in order to determine the aeroacoustic sources which give rise to unvoiced consonant speech sounds. The turbulent jet formed at a narrow constriction interacts with another constriction further downstream. The unsteady aerodynamic forces on these constrictions produce broadband sound, which is modulated by the acoustic response of the vocal tract. Sound source characteristics are determined by estimating the force on the constrictions, and how the temporal behavior of these forces correlates to the spatial and temporal structure of the jet. (Supported by NIH grant 5R01 DC00564245.)

  11. Theoretical Aeroacoustics: Compiled Mathematical Derivations of Fereidoun 'Feri' Farassat

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2016-01-01

    Dr. Fereidoun 'Feri' Farassat was a theoretical aero-acoustician at the National Aeronautics and Space Administration (NASA) Langley Research Center. This book contains technical derivations, notes, and classes that Dr. Farassat produced during his professional career. The layout of the book has been carefully crafted so that foundational ideas through advanced theories, which altered the technical discipline of aeroacoustics, build upon one another. The book can be used to understand the theories of acoustics and learn one contemporary aeroacoustic prediction approach made popular by Dr. Farassat. Most importantly, this book gives the general reader insight into how one of NASA's best aeroacoustics theoreticians thought, constructed, and solved problems throughout his career.

  12. Aeroacoustics of T-junction merging flow.

    PubMed

    Lam, G C Y; Leung, R C K; Tang, S K

    2013-02-01

    This paper reports a numerical study of the aeroacoustics of merging flow at T-junction. The primary focus is to elucidate the acoustic generation by the flow unsteadiness. The study is conducted by performing direct aeroacoustic simulation approach, which solves the unsteady compressible Navier-Stokes equations and the perfect gas equation of state simultaneously using the conservation element and solution element method. For practical flows, the Reynolds number based on duct width is usually quite high (>10(5)). In order to properly account for the effects of flow turbulence, a large eddy simulation methodology together with a wall modeling derived from the classical logarithm wall law is adopted. The numerical simulations are performed in two dimensions and the acoustic generation physics at different ratios of side-branch to main duct flow velocities VR (=0.5,0.67,1.0,2.0) are studied. Both the levels of unsteady interactions of merging flow structures and the efficiency of acoustic generation are observed to increase with VR. Based on Curle's analogy, the major acoustic source is found to be the fluctuating wall pressure induced by the flow unsteadiness occurred in the downstream branch. A scaling between the wall fluctuating force and the efficiency of the acoustic generation is also derived. PMID:23363089

  13. A second golden age of aeroacoustics?

    PubMed

    Lele, Sanjiva K; Nichols, Joseph W

    2014-08-13

    In 1992, Sir James Lighthill foresaw the dawn of a second golden age in aeroacoustics enabled by computer simulations (Hardin JC, Hussaini MY (eds) 1993 Computational aeroacoustics, New York, NY: Springer (doi:10.1007/978-1-4613-8342-0)). This review traces the progress in large-scale computations to resolve the noise-source processes and the methods devised to predict the far-field radiated sound using this information. Keeping focus on aviation-related noise sources a brief account of the progress in simulations of jet noise, fan noise and airframe noise is given highlighting the key technical issues and challenges. The complex geometry of nozzle elements and airframe components as well as the high Reynolds number of target applications require careful assessment of the discretization algorithms on unstructured grids and modelling compromises. High-fidelity simulations with 200-500 million points are not uncommon today and are used to improve scientific understanding of the noise generation process in specific situations. We attempt to discern where the future might take us, especially if exascale computing becomes a reality in 10 years. A pressing question in this context concerns the role of modelling in the coming era. While the sheer scale of the data generated by large-scale simulations will require new methods for data analysis and data visualization, it is our view that suitable theoretical formulations and reduced models will be even more important in future. PMID:25024417

  14. Large-Eddy Simulation of Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Sochacki, James S.

    1999-01-01

    This report summarizes work accomplished under a one-year NASA grant from NASA Langley Research Center (LaRC). The effort culminates three years of NASA-supported research under three consecutive one-year grants. The period of support was April 6, 1998, through April 5, 1999. By request, the grant period was extended at no-cost until October 6, 1999. Its predecessors have been directed toward adapting the numerical tool of large-eddy simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of subgrid-scale (SGS) models that incorporate time-domain filters.

  15. Summary of HEAT 1 Aeroacoustics Installation Effects

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Zuniga, Fanny A.; Soderman, Paul T.

    1999-01-01

    A critical part of the NASA High-Speed Research (HSR) program is the demonstration of satisfactory suppression of the jet noise present at low airspeeds. One scheme for reducing jet exhaust noise generated by a future High-Speed Civil Transport (HSCT) is the use of a mixer/ ejector system which would entrain large quantities of ambient air into the exhaust flow from the powerplant in order to cool and slow the jet exhaust before it leaves the tailpipe. Of the variety of factors which can affect the noise suppression characteristics of the mixer/ejector system, the influence of the wing flow field and high-lift devices is not well understood. The effectiveness of the noise suppression device must be evaluated in the presence of the wing/high-lift system before definitive assessments can be made concerning HSCT noise. Of nearly equal importance is the evaluation of the performance of the high-lift system(s) in the presence of realistic propulsion units which feature high ambient flow entrainment rates and jet thrust coefficients. These noise suppressors must provide the required acoustic attenuation while not overly degrading the thrust efficiency of the propulsion system or the lift enhancement of the high-lift devices on the wing. The overall objective of the NASA High-lift Engine Aeroacoustics Technology program is to demonstrate satisfactory interaction between the jet noise suppressor and the high-lift system at airspeeds and angles of attack consistent with takeoff, climb, approach, and landing. In support of this program, an isolated aeroacoustic test of a 13.5%-scale, candidate mixer/ejector nozzle was performed in the Ames' Research Center 40- by 80-Foot Wind Tunnel. The purpose of the test was to measure the baseline aeroacoustic performance characteristics of this nozzle in isolation from the aerodynamic flowfield induced by an HSCT airframe. The test documented the acoustic signature of the nozzles with treated and hardwall ejector surfaces and with

  16. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    SciTech Connect

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  17. Energy considerations in computational aeroacoustics

    NASA Astrophysics Data System (ADS)

    Brentner, Kenneth S.

    A finite-volume multistage time-stepping Euler code is used to investigate the use of CFD algorithms for the direct calculation of acoustics. The 2D compressible inviscid flow about an accelerating or decelerating circular cylinder is used as a model problem. The time evolution of the energy transfer from the cylinder to the fluid, as the cylinder is moved from rest to some nonnegligible velocity, is clearly seen. By examining the temporal and spatial characteristics of the numerical solution, a distinction can be made between the propagating acoustic energy, the convecting energy associated with the entropy change in the fluid, and the energy contained in the local aerodynamic field. Systematic variation of the cylinder acceleration shows that the radiated acoustic energy depends strongly upon the rate of acceleration or deceleration. The computational grid has a large effect on the ratio of acoustic energy to nonphysical entropy associated energy, while the role of the explicit artificial viscosity seems to be of second order. The entropy term was nearly negligible in all cases the cylinder was started slowly.

  18. Energy considerations in computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1993-01-01

    A finite-volume multistage time-stepping Euler code is used to investigate the use of CFD algorithms for the direct calculation of acoustics. The 2D compressible inviscid flow about an accelerating or decelerating circular cylinder is used as a model problem. The time evolution of the energy transfer from the cylinder to the fluid, as the cylinder is moved from rest to some nonnegligible velocity, is clearly seen. By examining the temporal and spatial characteristics of the numerical solution, a distinction can be made between the propagating acoustic energy, the convecting energy associated with the entropy change in the fluid, and the energy contained in the local aerodynamic field. Systematic variation of the cylinder acceleration shows that the radiated acoustic energy depends strongly upon the rate of acceleration or deceleration. The computational grid has a large effect on the ratio of acoustic energy to nonphysical entropy associated energy, while the role of the explicit artificial viscosity seems to be of second order. The entropy term was nearly negligible in all cases the cylinder was started slowly.

  19. 76 FR 32227 - Core Industries, Inc., DBA Star Trac and/or Unisen, Inc., DBA STAR TRAC and/or Trac Strength...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ..., 2011 (75 FR 13230). The notice was amended on April 1, 2011 to include the Murrieta, California... on April 14, 2011 (76 FR 21033-21034). At the request of the company, the Department reviewed the... Employment and Training Administration Core Industries, Inc., DBA Star Trac and/or Unisen, Inc., DBA...

  20. Aeroacoustics of a porous plug supersonic jet noise suppressor

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Matambo, T. J.; Das, I. S.

    1983-01-01

    The aeroacoustics of a porous plug supersonic jet noise suppressor was investigated. The needed modifications of the existing multistream coaxial jet rig; the compressed air facility and pressure controls; the design, the fabrication, and the installation of the plenum chamber for the plug nozzle, and the design and the machining of the first contoured plug nozzle were completed. The optical and the aeroacoustic data of the contoured plug nozzles and of the conical convergent nozzle alone were discussed.

  1. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  2. Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.

    1995-01-01

    Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.

  3. Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Elmiligui, Alaa A.; Hunter, Craig A.; Thomas, Russell H.; Pao, S. Paul; Mengle, Vinod G.

    2006-01-01

    A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic

  4. 78 FR 28285 - Notice of Meeting of the Transit Rail Advisory Committee for Safety (TRACS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Transit Administrator on matters relating to the safety of public transportation systems. DATES: The TRACS... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION... public meeting of the Transit Rail Advisory Committee for Safety (TRACS). TRACS is a Federal...

  5. Highlights of Aeroacoustics Research in the U.S. 1998

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; McLaughlin, Dennis K.

    1999-01-01

    Highlights of aeroacoustics research in the United States of America during 1998 are reported in a summary compiled from information provided by members of the Aeroacoustics Technical Committee of the American Institute of Aeronautics and Astronautics (AIAA) and other leading research groups in industry, national laboratories, and academia. The past few years have seen significant progress in aeroacoustics. Research has steadily progressed toward enhanced safety, noise benefits, and lower costs. Since industrial progress is generally not published in the archival literature, it is particularly important to highlight these accomplishments. This year we chose to report on five topics of great interest to the aerospace industry including a synopsis of fundamental research at universities and national laboratories. The topics chosen are: (1) Advanced Subsonic Technology (AST), (2) High Speed Research (HSR), (3) Rotorcraft, (4) Weapons bay aeroacoustics control and (5) Academic research including Computational AeroAcoustics (CAA). Although the information presented in this review is not all encompassing we hope that the topics covered will provide some insights into aeroacoustics activity in the U.S.

  6. Multimodel methods for optimal control of aeroacoustics.

    SciTech Connect

    Chen, Guoquan; Collis, Samuel Scott

    2005-01-01

    A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has been developed based on a near-field compressible Navier-Stokes solver coupled with a far-field linearized Euler solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the near-field. This computational framework has been successfully applied to study optimal boundary-control of blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-problem presented here, the noise propagated toward the ground is reduced by 12dB.

  7. Investigating Aeroacoustic Sources in a Subsonic Jet

    NASA Astrophysics Data System (ADS)

    Wachtor, Adam J.; Jordan, Peter; George, William K.

    2007-11-01

    George, W"anstr"om, and Jordan (2007) suggested an alternative approach to identifying aeroacoustic sources. Through this method, contributions to the pressure field are effectively separated into three separate terms. One term is unique in that it present only in compressible flows. This compressible term has been argued to be the only term that can radiate acoustically. An investigation into this approach is presented in the specific case of a subsonic jet. Particular attention is paid to the compressible term and its interaction with the mechanism that is responsible for the hydrodynamic pressure in an incompressible flow. We extend our thanks to Jonathan B. Freund for access to data from his DNS jet simulation.

  8. Aeroacoustic interaction in a corrugated duct

    NASA Astrophysics Data System (ADS)

    Kop'ev, V. F.; Mironov, M. A.; Solntseva, V. S.

    2008-03-01

    The sound generation by an air flow in a corrugated tube is studied experimentally for different values of the corrugation pitch and different tube lengths. The Strouhal numbers of sound generated in different tubes with different flow velocities lie within 0.4-0.6. As the flow velocity increases, the Strouhal number decreases. The effect of sound absorption by an air flow in a corrugated duct is described: in a corrugated tube with a flow, at frequencies below the generation frequency, the absorption of sound produced by an external source is observed. A semiempirical model of aeroacoustic interaction in a corrugated tube is proposed. The model provides a qualitative agreement with the experiment.

  9. Vortex particle methods in aeroacoustic calculations

    NASA Astrophysics Data System (ADS)

    Huberson, Serge; Rivoalen, Elie; Voutsinas, Spyros

    2008-11-01

    The connection between vortex particle methods and aeroacoustics is considered within the framework of Lighthill's acoustic analogy which allows to decouple the flow from noise propagation. For the flow, techniques such as tree-algorithms and the particle-mesh method are brought together with the aim to achieve the best possible performance in view of analyzing complex problems. The flow results are then input to the acoustic wave equation which is solved in integral form. It will involve monopole, dipole and quadrupole terms which can be successively integrated. The significance of such an approach is first demonstrated in two problems, both related to vortex-solid interactions. The first is a generic one and considers the interaction of a vortex filament interacting with a sphere while the second considers helicopter noise as an example of a complex engineering set-up.

  10. Uncertainties in modelling and scaling of critical flows and pump model in TRAC-PF1/MOD1

    SciTech Connect

    Rohatgi, U.S.; Yu, Wen-Shi

    1987-01-01

    The USNRC has established a Code Scalability, Applicability and Uncertainty (CSAU) evaluation methodology to quantify the uncertainty in the prediction of safety parameters by the best estimate codes. These codes can then be applied to evaluate the Emergency Core Cooling System (ECCS). The TRAC-PF1/MOD1 version was selected as the first code to undergo the CSAU analysis for LBLOCA applications. It was established through this methodology that break flow and pump models are among the top ranked models in the code affecting the peak clad temperature (PCT) prediction for LBLOCA. The break flow model bias or discrepancy and the uncertainty were determined by modelling the test section near the break for 12 Marviken tests. It was observed that the TRAC-PF1/MOD1 code consistently underpredicts the break flow rate and that the prediction improved with increasing pipe length (larger L/D). This is true for both subcooled and two-phase critical flows. A pump model was developed from Westinghouse (1/3 scale) data. The data represent the largest available test pump relevant to Westinghouse PWRs. It was then shown through the analysis of CE and CREARE pump data that larger pumps degrade less and also that pumps degrade less at higher pressures. Since the model developed here is based on the 1/3 scale pump and on low pressure data, it is conservative and will overpredict the degradation when applied to PWRs.

  11. Posttest TRAC-PD2/MOD1 predictions for FLECHT SEASET test 31504. [PWR

    SciTech Connect

    Booker, C.P.

    1982-01-01

    TRAC-PD2/MOD1 is a publicly released version of TRAC that is used primarily to analyze large-break loss-of-coolant accidents in pressurized-water reactors (PWRs). TRAC-PD2 can calculate, among other things, reflood phenomena. TRAC posttest predictions are compared with test 31504 reflood data from the Full-Length Emergency Core Heat Transfer (FLECHT) System Effects and Separate Effects Tests (SEASET) facility. A false top-down quench is predicted near the top of the core and the subcooling is underpredicted at the bottom of the core. However, the overall TRAC predictions are good, especially near the center of the core.

  12. TRAC analyses of severe overcooling transients for the Oconee-1 PWR

    SciTech Connect

    Ireland, J R

    1985-05-01

    This report describes the results of several Transient Reactor Analysis Code (TRAC)-PF1 calculations of overcooling transients in a Babcock and Wilcox lowered-loop, pressurized water reactor (Oconee-1). The purpose of this study is to provide detailed input on thermal-hydraulic data to Oak Ridge National Laboratory for pressurized thermal-shock analyses. The transient calculations performed were plant specific in that details of the primary system, the secondary system, and the plant-integrated control system of Oconee-1 were included in the TRAC input model. The results of the calculations indicate that the turbine-bypass valve failure transient was the most severe in terms of resulting in relatively cold liquid temperatures in the downcomer region of the vessel. The power-operated relief valve loss-of-coolant accident transient was the least severe in terms of downcomer liquid temperatures because of vent-valve fluid mixing and near-saturated conditions in the primary system. It is recommended that future calculations consider a wider range of operator actions to cover the spectra of overcooling transient sequences more completely. 6 refs., 287 figs., 32 tabs.

  13. InfoTrac at Indiana University: A Second Look.

    ERIC Educational Resources Information Center

    Beltran, Ann Bristow

    1987-01-01

    Briefly evaluates the use of the InfoTrac system by students at the Indiana University library for computer-assisted searching. The evaluation covers the reliability of the equipment and software; improvements in the system; user needs and satisfaction; and emerging competitive systems. (CLB)

  14. TRAC, a collaborative computer tool for tracer-test interpretation

    NASA Astrophysics Data System (ADS)

    Gutierrez, A.; Klinka, T.; Thiéry, D.; Buscarlet, E.; Binet, S.; Jozja, N.; Défarge, C.; Leclerc, B.; Fécamp, C.; Ahumada, Y.; Elsass, J.

    2013-05-01

    Artificial tracer tests are widely used by consulting engineers for demonstrating water circulation, proving the existence of leakage, or estimating groundwater velocity. However, the interpretation of such tests is often very basic, with the result that decision makers and professionals commonly face unreliable results through hasty and empirical interpretation. There is thus an increasing need for a reliable interpretation tool, compatible with the latest operating systems and available in several languages. BRGM, the French Geological Survey, has developed a project together with hydrogeologists from various other organizations to build software assembling several analytical solutions in order to comply with various field contexts. This computer program, called TRAC, is very light and simple, allowing the user to add his own analytical solution if the formula is not yet included. It aims at collaborative improvement by sharing the tool and the solutions. TRAC can be used for interpreting data recovered from a tracer test as well as for simulating the transport of a tracer in the saturated zone (for the time being). Calibration of a site operation is based on considering the hydrodynamic and hydrodispersive features of groundwater flow as well as the amount, nature and injection mode of the artificial tracer. The software is available in French, English and Spanish, and the latest version can be downloaded from the web site http://trac.brgm.fr">http://trac.brgm.fr.

  15. Numerical methods for problems in computational aeroacoustics

    NASA Astrophysics Data System (ADS)

    Mead, Jodi Lorraine

    1998-12-01

    A goal of computational aeroacoustics is the accurate calculation of noise from a jet in the far field. This work concerns the numerical aspects of accurately calculating acoustic waves over large distances and long time. More specifically, the stability, efficiency, accuracy, dispersion and dissipation in spatial discretizations, time stepping schemes, and absorbing boundaries for the direct solution of wave propagation problems are determined. Efficient finite difference methods developed by Tam and Webb, which minimize dispersion and dissipation, are commonly used for the spatial and temporal discretization. Alternatively, high order pseudospectral methods can be made more efficient by using the grid transformation introduced by Kosloff and Tal-Ezer. Work in this dissertation confirms that the grid transformation introduced by Kosloff and Tal-Ezer is not spectrally accurate because, in the limit, the grid transformation forces zero derivatives at the boundaries. If a small number of grid points are used, it is shown that approximations with the Chebyshev pseudospectral method with the Kosloff and Tal-Ezer grid transformation are as accurate as with the Chebyshev pseudospectral method. This result is based on the analysis of the phase and amplitude errors of these methods, and their use for the solution of a benchmark problem in computational aeroacoustics. For the grid transformed Chebyshev method with a small number of grid points it is, however, more appropriate to compare its accuracy with that of high- order finite difference methods. This comparison, for an order of accuracy 10-3 for a benchmark problem in computational aeroacoustics, is performed for the grid transformed Chebyshev method and the fourth order finite difference method of Tam. Solutions with the finite difference method are as accurate. and the finite difference method is more efficient than, the Chebyshev pseudospectral method with the grid transformation. The efficiency of the Chebyshev

  16. Aeroacoustic source spectrum for fricative consonant speech sounds

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel; Krane, Michael

    2008-11-01

    The aeroacoustic source spectrum is experimentally determined for flow within an open-ended duct. The source region comprises a jet, formed at a constriction within the duct, which then interacts with an obstacle placed further downstream. The physical model dimensions are commensurate with a life-size vocal tract to enable study of the physics of human speech sound production. Two methods are used to estimate the aeroacoustic source spectrum. The first estimate results from inverse-filtering radiated sound measured outside the duct. The transfer function between the source and microphone locations is constructed from two-microphone-method measurements of the acoustic field inside the duct. The second estimate uses measurements of the jet flow near the obstacle as input to aeroacoustic theory. Comparison of the two estimates is presented.

  17. The Kirchhoff Formulas for Moving Surfaces in Aeroacoustics - The Subsonic and Supersonic Cases

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1996-01-01

    One of the active areas of computational aeroacoustics is the application of the Kirchhoff formulas to the problems of the rotating machinery noise predictions. The original Kirchhoff formula was derived for a stationary surface. In 1988, Farassat and Myers derived a Kirchhoff Formula obtained originally by Morgans using modem mathematics. These authors gave a formula particularly useful for applications in aeroacoustics. This formula is for a surface moving at subsonic speed. Later in 1995 these authors derived the Kirchhoff formula for a super-sonically moving surface. This technical memorandum presents the viewgraphs of a day long workshop by the author on the derivation of the Kirchhoff formulas. All necessary background mathematics such as differential geometry and multidimensional generalized function theory are discussed in these viewgraphs. Abstraction is kept at minimum level here. These viewgraphs are also suitable for understanding the derivation and obtaining the solutions of the Ffowcs Williams-Hawkings equation. In the first part of this memorandum, some introductory remarks are made on generalized functions, the derivation of the Kirchhoff formulas and the development and validation of Kirchhoff codes. Separate lists of references by Lyrintzis, Long, Strawn and their co-workers are given in this memorandum. This publication is aimed at graduate students, physicists and engineers who are in need of the understanding and applications of the Kirchhoff formulas in acoustics and electromagnetics.

  18. CAA broadband noise prediction for aeroacoustic design

    NASA Astrophysics Data System (ADS)

    Ewert, R.; Dierke, J.; Siebert, J.; Neifeld, A.; Appel, C.; Siefert, M.; Kornow, O.

    2011-08-01

    The current status of a computational aeroacoustics (CAA) approach to simulate broadband noise is reviewed. The method rests on the use of steady Reynolds averaged Navier-Stokes (RANS) simulation to describe the time-averaged motion of turbulent flow. By means of synthetic turbulence the steady one-point statistics (e.g. turbulence kinetic energy) and turbulent length- and time-scales of RANS are translated into fluctuations having statistics that very accurately reproduce the initial RANS target-setting. The synthetic fluctuations are used to prescribe sound sources which drive linear perturbation equations. The whole approach represents a methodology to solve statistical noise theory with state-of-the-art CAA tools in the time-domain. A brief overview of the synthetic turbulence model and its numerical discretization in terms of the random particle-mesh (RPM) and fast random particle-mesh (FRPM) method is given. Results are presented for trailing-edge noise, slat noise, and jet noise. Some problems related to the formulation of vortex sound sources are discussed.

  19. Aeroacoustical Study of the Tgv Pantograph Recess

    NASA Astrophysics Data System (ADS)

    NOGER, C.; PATRAT, J. C.; PEUBE, J.; PEUBE, J. L.

    2000-03-01

    The general focus of this aerodynamic noise research, induced by turbulent incompressible flow, is to improve our knowledge of acoustic production mechanisms in the TGV pantograph recess in order to be able to reduce the radiated noise. This work is performed under contract with SNCF as a part of the German-French Cooperation DEUFRAKO K2, and is supported by French Ministries for Transport and Research. Previous studies on TGV noise source locations (DEUFRAKO K) have identified the pantograph recess as one of the important aerodynamic noise sources, for speeds higher than 300 km/h, due to flow separation. The pantograph recess is a very complex rectangular cavity, located both on the power car and the first coach roofs of the TGV, and has not been studied before due to the complex shapes. Its aeroacoustic features are investigated experimentally in a low-subsonic wind tunnel, on a realistic 1/7th scale mock-up both with and without pantographs. Flow velocities, estimated with hot-wire anemometry, and parietal visualizations show the flow to reattach on the recess bottom wall and to separate again at the downstream face. Wall pressure fluctuations and “acoustic” measurements using 14 and 12 in microphones respectively are also measured to qualify the flow: no aerodynamic or acoustic oscillations are observed. The study indicates that the pantograph recess has a different behaviour compared to the usual cavity grazing flows.

  20. Characterizing phonatory aeroacoustic sources using Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    McPhail, Michael; Krane, Michael

    2014-11-01

    Voice disorders that lead to changes in vocal fold geometry, or posturing, are known to substantially affect phonatory airflow topology. How these topology changes affect aeroacoustic sound sources is not well understood, however. This talk presents modelling aeroacoustic sources with Lagrangian Coherent Structures (LCS). Here we use the motion of dynamically distinct fluid regions, identified by the LCS, to predict sound. This approach provides a means to connect phonatory airflow topology changes to resulting changes in sound production. Simple validation cases of this approach will be shown. The application of LCS analysis to phonatory flows will be also presented.

  1. A decade of aeroacoustic research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Schmitz, Frederic H.; Mosher, M.; Kitaplioglu, Cahit; Cross, J.; Chang, I.

    1988-01-01

    The rotorcraft aeroacoustic research accomplishments of the past decade at Ames Research Center are reviewed. These include an extensive sequence of flight, ground, and wind tunnel tests that have utilized the facilities to guide and pioneer theoretical research. Many of these experiments were of benchmark quality. The experiments were used to isolate the inadequacies of linear theory in high-speed impulsive noise research, have led to the development of theoretical approaches, and have guided the emerging discipline of computational fluid dynamics to rotorcraft aeroacoustic problems.

  2. AP600 large-break loss-of-collant-accident developmental assessment plan for TRAC-PF1/MOD2

    SciTech Connect

    Knight, T.D.

    1996-07-01

    The Westinghouse AP600 reactor is an advanced pressurized water reactor with passive safety systems to protect the plant against possible accidents and transients. The design has been submitted to the U.S. NRC for design certification. The NRC has selected the Transient Reactor Analysis Code (TRAC)-PF1/MOD2 for performing large break loss-of coolant-accident (LBLOCA) analysis to support the certification effort. This document defines the tests to be used in the current phase of developmental assessment related to AP600 LBLOCA.

  3. Assessment of Hybrid RANS/LES Turbulence Models for Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockhard, David P.

    2010-01-01

    Predicting the noise from aircraft with exposed landing gear remains a challenging problem for the aeroacoustics community. Although computational fluid dynamics (CFD) has shown promise as a technique that could produce high-fidelity flow solutions, generating grids that can resolve the pertinent physics around complex configurations can be very challenging. Structured grids are often impractical for such configurations. Unstructured grids offer a path forward for simulating complex configurations. However, few unstructured grid codes have been thoroughly tested for unsteady flow problems in the manner needed for aeroacoustic prediction. A widely used unstructured grid code, FUN3D, is examined for resolving the near field in unsteady flow problems. Although the ultimate goal is to compute the flow around complex geometries such as the landing gear, simpler problems that include some of the relevant physics, and are easily amenable to the structured grid approaches are used for testing the unstructured grid approach. The test cases chosen for this study correspond to the experimental work on single and tandem cylinders conducted in the Basic Aerodynamic Research Tunnel (BART) and the Quiet Flow Facility (QFF) at NASA Langley Research Center. These configurations offer an excellent opportunity to assess the performance of hybrid RANS/LES turbulence models that transition from RANS in unresolved regions near solid bodies to LES in the outer flow field. Several of these models have been implemented and tested in both structured and unstructured grid codes to evaluate their dependence on the solver and mesh type. Comparison of FUN3D solutions with experimental data and numerical solutions from a structured grid flow solver are found to be encouraging.

  4. Aeroacoustics of Turbulent High-Speed Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1996-01-01

    Aeroacoustic noise generation in a supersonic round jet is studied to understand in particular the effect of turbulence structure on the noise without numerically compromising the turbulence itself. This means that direct numerical simulations (DNS's) are needed. In order to use DNS at high enough Reynolds numbers to get sufficient turbulence structure we have decided to solve the temporal jet problem, using periodicity in the direction of the jet axis. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. Therefore in order to answer some questions about the turbulence we will partially compromise the overall structure of the jet. The first section of chapter 1 describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. In the second section we present preliminary work done using a TVD numerical scheme on a CM5. This work is only two-dimensional (plane) but shows very interesting results, including weak shock waves. However this is a nonviscous computation and the method resolves the shocks by adding extra numerical dissipation where the gradients are large. One wonders whether the extra dissipation would influence small turbulent structures like small intense vortices. The second chapter is an extensive discussion of preliminary numerical work using the spectral method to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which are solved in O(N) steps. A very accurate highly resolved DNS of a turbulent jet flow is expected.

  5. TRAC PF1/MOD1 calculations and data comparisons for mist feed and bleed and steam generator tube rupture experiments

    SciTech Connect

    Siebe, D.A.; Boyack, B.E.; Steiner, J.L.

    1988-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 for the purpose of providing integral system test data on specific issues/phenomena relevant to post-small-break loss-of-coolant accidents, loss of feedwater and other transients in Babcock and Wilcox (BandW) plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. MIST is a 2 /times/ 4 (two hot legs and steam generators (SGs), four cold legs and reactor coolant pumps) representation of lowered-loop reactor system of the BandW design. It is a full-height, full-pressure facility with 1/817 power and volume scaling. Two other integral experimental facilities are included in the IST program: test loops at the University of Maryland, College Park, and at SRI International (SRI-2). The objective of the IST tests is to generate high-quality experimental data to be used for assessing thermal-hydraulic safety computer codes. Efforts are under way at Los Alamos to assess TRAC-PF1/MOD1 against data from each of the IST facilities. Calculations and data comparisons for TRAC-PF1/MOD1 assessment are presented for two transients run in the MIST facility. These are MIST Test 330302, a feed and bleed test with delayed high-pressure injection; and Test 3404AA, an SG tube-rupture test with the affected SG isolated. Only MIST assessment results are presented in this paper. The TRAC-PF1/MOD1 calculations completed to date for MIST tests are in reasonable agreement with the data from these tests. Reasonable agreement is defined as meaning that major trends are predicted correctly, although TRAC values are frequently outside the range of data uncertainty. We believe that correct conclusions will be reached if the code is used in similar applications despite minor code/model deficiencies. 7 refs., 5 figs., 2 tabs.

  6. Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W. (Editor); Hardin, J. C. (Editor)

    1997-01-01

    The proceedings of the Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems held at Florida State University are the subject of this report. For this workshop, problems arising in typical industrial applications of CAA were chosen. Comparisons between numerical solutions and exact solutions are presented where possible.

  7. On least-order flow decompositions for aerodynamics and aeroacoustics

    NASA Astrophysics Data System (ADS)

    Schlegel, Michael; Noack, Bernd R.; Jordan, Peter

    2012-11-01

    A generalisation of proper orthogonal decomposition (POD) for optimal flow resolution of linearly related observables is presented, as proposed in the identically named publication of Schlegel, Noack, Jordan, Dillmann, Groeschel, Schroeder, Wei, Freund, Lehmann and Tadmor (Journal of Fluid Mechanics 2012, vol. 697, pp. 367-398). This Galerkin expansion, termed ``observable inferred decomposition'' (OID), addresses a need in aerodynamic and aeroacoustic applications by identifying the modes contributing most to these observables. Thus, OID constitutes a building block for physical understanding, least-biased conditional sampling, state estimation and control design. From a continuum of OID versions, two variants are tailored for purposes of observer and control design, respectively. Three aerodynamic and aeroacoustic observables are studied: (1) lift and drag fluctuation of a two-dimensional cylinder wake flow, (2) aeroacoustic density fluctuations measured by a sensor array and emitted from a two-dimensional compressible mixing layer, and (3) aeroacoustic pressure monitored by a sensor array and emitted from a three-dimensional compressible jet. The most ``drag-related,'' ``lift-related'' and ``loud'' structures are distilled and interpreted in terms of known physical processes. This work was partially funded by the DFG under grants SCHL 586/2-1 and ANR, Chair of Excellence, TUCOROM.

  8. Highly Accurate Schemes for Wave Propagation Systems: Application in Aeroacoustics

    NASA Astrophysics Data System (ADS)

    Bartoli, Nathalie; Mazet, Pierre-Alain; Mouysset, Vincent; Rogier, François

    2010-09-01

    The Discontinuous Galerkin (DG) method is considered for computational aeroacoustic. A software has been developed to make it possible to test a large variety of configurations (non-conform grid, variable polynomial order). To deal with instationary phenomena involved by some shear flows, a compromise between time computation and accuracy is deduced from some numerical experiments.

  9. Aeromechanics and Aeroacoustics Predictions of the Boeing-SMART Rotor Using Coupled-CFD/CSD Analyses

    NASA Technical Reports Server (NTRS)

    Bain, Jeremy; Sim, Ben W.; Sankar, Lakshmi; Brentner, Ken

    2010-01-01

    This paper will highlight helicopter aeromechanics and aeroacoustics prediction capabilities developed by Georgia Institute of Technology, the Pennsylvania State University, and Northern Arizona University under the Helicopter Quieting Program (HQP) sponsored by the Tactical Technology Office of the Defense Advanced Research Projects Agency (DARPA). First initiated in 2004, the goal of the HQP was to develop high fidelity, state-of-the-art computational tools for designing advanced helicopter rotors with reduced acoustic perceptibility and enhanced performance. A critical step towards achieving this objective is the development of rotorcraft prediction codes capable of assessing a wide range of helicopter configurations and operations for future rotorcraft designs. This includes novel next-generation rotor systems that incorporate innovative passive and/or active elements to meet future challenging military performance and survivability goals.

  10. Development of unsteady aerodynamic analyses for turbomachinery aeroelastic and aeroacoustic applications

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Barnett, Mark; Hall, Kenneth C.; Ayer, Timothy C.

    1991-01-01

    Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of turbomachinery blading. Emphasis is being placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, flow driven by small-amplitude unsteady excitations in which viscous effects are concentrated in thin layers are being considered. The resulting analyses should apply in many practical situations, lead to a better understanding of the relevent physics, and they will be efficient computationally, and therefore, appropriate for aeroelastic and aeroacoustic design applications. Under the present phase (Task 3), the effort was focused on providing inviscid and viscid prediction capabilities for subsonic unsteady cascade flows.

  11. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  12. Flap-edge aeroacoustic measurements and predictions

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas F.; Humphreys, William M.

    2003-03-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a small aperture directional array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by computational fluid dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that the prediction models capture much of the physics. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. The complexity of the directivity results demonstrate the strong role of edge source geometry and frequency in

  13. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  14. 75 FR 51523 - Notice of Meeting of the Transit Rail Advisory Committee for Safety (TRACS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... Transit Administrator on matters relating to the safety of public transportation systems. DATES: The TRACS... pertaining to the safety of public transportation systems. TRACS is composed of 21 members representing a... Department of Transportation Richard W. Clark, California Public Utilities Commission Diane Davidson,...

  15. 77 FR 55265 - Notice of Meeting of the Transit Rail Advisory Committee for Safety (TRACS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... Administrator on matters relating to the safety of public transportation systems. DATES: The TRACS meeting will... relating to the safety of public transportation systems. TRACS is composed of 24 members representing a... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF...

  16. Technical Requirements Analysis and Control Systems (TRACS) Initial Operating Capability (IOC) documentation

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.

    1991-01-01

    The Technical Requirements Analysis and Control Systems (TRACS) software package is described. TRACS offers supplemental tools for the analysis, control, and interchange of project requirements. This package provides the fundamental capability to analyze and control requirements, serves a focal point for project requirements, and integrates a system that supports efficient and consistent operations. TRACS uses relational data base technology (ORACLE) in a stand alone or in a distributed environment that can be used to coordinate the activities required to support a project through its entire life cycle. TRACS uses a set of keyword and mouse driven screens (HyperCard) which imposes adherence through a controlled user interface. The user interface provides an interactive capability to interrogate the data base and to display or print project requirement information. TRACS has a limited report capability, but can be extended with PostScript conventions.

  17. Clinical accuracy of ExacTrac intracranial frameless stereotactic system

    SciTech Connect

    Ackerly, T.; Lancaster, C. M.; Geso, M.; Roxby, K. J.

    2011-09-15

    Purpose: In this paper, the authors assess the accuracy of the Brainlab ExacTrac system for frameless intracranial stereotactic treatments in clinical practice. Methods: They recorded couch angle and image fusion results (comprising lateral, longitudinal, and vertical shifts, and rotation corrections about these axes) for 109 stereotactic radiosurgery and 166 stereotactic radiotherapy patient treatments. Frameless stereotactic treatments involve iterative 6D image fusion corrections applied until the results conform to customizable pass criteria, theirs being 0.7 mm and 0.5 deg. for each axis. The planning CT slice thickness was 1.25 mm. It has been reported in the literature that the CT slices' thickness impacts the accuracy of localization to bony anatomy. The principle of invariance with respect to patient orientation was used to determine spatial accuracy. Results: The data for radiosurgery comprised 927 image pairs, of which 532 passed (pass ratio of 57.4%). The data for radiotherapy comprised 15983 image pairs, of which 10 050 passed (pass ratio of 62.9%). For stereotactic radiotherapy, the combined uncertainty of ExacTrac calibration, image fusion, and intrafraction motion was (95% confidence interval) 0.290-0.302 and 0.306-0.319 mm in the longitudinal and lateral axes, respectively. The combined uncertainty of image fusion and intrafraction motion in the anterior-posterior coordinates was 0.174-0.182 mm. For stereotactic radiosurgery, the equivalent ranges are 0.323-0.393, 0.337-0.409, and 0.231-0.281 mm. The overall spatial accuracy was 1.24 mm for stereotactic radiotherapy (SRT) and 1.35 mm for stereotactic radiosurgery (SRS). Conclusions: The ExacTrac intracranial frameless stereotactic system spatial accuracy is adequate for clinical practice, and with the same pass criteria, SRT is more accurate than SRS. They now use frameless stereotaxy exclusively at their center.

  18. Towards aeroacoustic sound generation by flow through porous media.

    PubMed

    Hasert, Manuel; Bernsdorf, Joerg; Roller, Sabine

    2011-06-28

    In this work, we present single-step aeroacoustic calculations using the Lattice Boltzmann method (LBM). Our application case consists of the prediction of an acoustic field radiating from the outlet of a porous media silencer. It has been proved that the LBM is able to simulate acoustic wave generation and propagation. Our particular aim is to validate the LBM for aeroacoustics in porous media. As a validation case, we consider a spinning vortex pair emitting sound waves as the vortices rotate around a common centre. Non-reflective boundary conditions based on characteristics have been adopted from Navier-Stokes methods and are validated using the time evolution of a Gaussian pulse. We show preliminary results of the flow through the porous medium. PMID:21576161

  19. Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.

  20. Technology Investigations With the Tilt Rotor Aeroacoustic Model (TRAM)

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Yamauchi, Gloria K.; Booth, Earl; Johnson, Jeff L.; Derby, Michael R.; Sullivan, Ken; Ralston, Scott; Shockey, Gerald; Dawson, Seth; Warmbrodt, William (Technical Monitor)

    1998-01-01

    This paper introduces the Tilt Rotor Aeroacoustic Model (TRAM) project. The TRAM project is a key infrastructure investment for NASA tiltrotor research. The TRAM project consists of the development and testing of two modular, hardware-compatible, test stands: an isolated rotor configuration and a fullspan model (dual rotors with a complete airframe representation). These two test stands are inclusively called the Tilt Rotor Aeroacoustic Model (TRAM). The baseline proprotors and airframe of the TRAM test stands are nominally 1/4-scale representative of the V-22 Osprey aircraft. The research objectives of the project, the TRAM hardware design features and capabilities, illustrative examples of the type and quality of data that can be acquired with the TRAM, and the current status of the overall project will be discussed in this paper.

  1. Fluid-dynamic and aeroacoustic investigations of shrouded jets

    NASA Astrophysics Data System (ADS)

    Veerasamy, V.

    1980-08-01

    The fluid dynamic and aeroacoustic characteristics of a high subsonic jet discharging from a shrouded nozzle were investigated theoretically and experimentally to explore the possibility of jet noise reduction and thrust augmentation for STOL/VTOL aircraft. The preliminary design calculations of an adiabatic shrouded nozzle were performed by solving iteratively the one dimensional fluid dynamic equations governing the compressible flow. A two dimensional flow model, consisting of second order partial differential equations of a parabolic type, was used to find the effect of shroud length on the ejector performance. This model consists of the conservation laws with thin shear layer assumptions incorporating the Prandtl's mixing length hypothesis for turbulence closure. A numerical integration method was used to solve the governing fluid dynamic equations of motion. The aeroacoustic characteristics of the shrouded jet were analyzed based on the Lighthill's V(8) law.

  2. Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D. (Editor)

    2000-01-01

    The proceedings of the Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems cosponsored by the Ohio Aerospace Institute and the NASA Glenn Research Center are the subject of this report. Fan noise was the chosen theme for this workshop with representative problems encompassing four of the six benchmark problem categories. The other two categories were related to jet noise and cavity noise. For the first time in this series of workshops, the computational results for the cavity noise problem were compared to experimental data. All the other problems had exact solutions, which are included in this report. The Workshop included a panel discussion by representatives of industry. The participants gave their views on the status of applying computational aeroacoustics to solve practical industry related problems and what issues need to be addressed to make CAA a robust design tool.

  3. Constrained Aeroacoustic Shape Optimization Using the Surrogate Management Framework

    NASA Technical Reports Server (NTRS)

    Marsden, Alison L.; Wang, Meng; Dennis, John E., Jr.

    2003-01-01

    Reduction of noise generated by turbulent flow past the trailing-edge of a lifting surface is a challenge in many aeronautical and naval applications. Numerical predictions of trailing-edge noise necessitate the use of advanced simulation techniques such as large-eddy simulation (LES) in order to capture a wide range of turbulence scales which are the source of broadband noise. Aeroacoustic calculations of the flow over a model airfoil trailing edge using LES and aeroacoustic theory have been presented in Wang and Moin and were shown to agree favorably with experiments. The goal of the present work is to apply shape optimization to the trailing edge flow previously studied, in order to control aerodynamic noise.

  4. Aeroacoustics of a porous plug jet noise suppressor

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.

    1981-01-01

    The aeroacoustics of a porous plug jet noise suppressor was investigated. The predicted flow features of isentropic plug nozzles for different pressure ratios or exit flow Mach numbers, throat areas, ratios of the plug to annular nozzle radii, mass flow rates and the available run times possible with the existing compressed air supply system, are compiled. The dimensions and the coordinates of the contour of typical isentropic external expansion plugs with different exit flow Mach numbers are listed. Design details of the experimental facility and the plug nozzle selected for experimental aeroacoustic studies are reported. The analytical flow prediction by method of characteristics of a conical porous plug nozzles is initiated. The role of the shape, size, and porosity of the plug surface in achieving over a perforated conical plug a nearly isentropic shockfree supersonic flow field which is closely similar to the flow field of a contoured isentropic plug nozzle is examined.

  5. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  6. Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.

    SciTech Connect

    Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica; Simley, Eric

    2010-06-01

    The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

  7. Arrays of Miniature Microphones for Aeroacoustic Testing

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Sealey, Bradley S.; Bartram, Scott M.; Zuckewar, Allan J.; Comeaux, Toby; Adams, James K.

    2007-01-01

    A phased-array system comprised of custom-made and commercially available microelectromechanical system (MEMS) silicon microphones and custom ancillary hardware has been developed for use in aeroacoustic testing in hard-walled and acoustically treated wind tunnels. Recent advances in the areas of multi-channel signal processing and beam forming have driven the construction of phased arrays containing ever-greater numbers of microphones. Traditional obstacles to this trend have been posed by (1) the high costs of conventional condenser microphones, associated cabling, and support electronics and (2) the difficulty of mounting conventional microphones in the precise locations required for high-density arrays. The present development overcomes these obstacles. One of the hallmarks of the new system is a series of fabricated platforms on which multiple microphones can be mounted. These mounting platforms, consisting of flexible polyimide circuit-board material (see left side of figure), include all the necessary microphone power and signal interconnects. A single bus line connects all microphones to a common power supply, while the signal lines terminate in one or more data buses on the sides of the circuit board. To minimize cross talk between array channels, ground lines are interposed as shields between all the data bus signal lines. The MEMS microphones are electrically connected to the boards via solder pads that are built into the printed wiring. These flexible circuit boards share many characteristics with their traditional rigid counterparts, but can be manufactured much thinner, as small as 0.1 millimeter, and much lighter with boards weighing as much as 75 percent less than traditional rigid ones. For a typical hard-walled wind-tunnel installation, the flexible printed-circuit board is bonded to the tunnel wall and covered with a face sheet that contains precise cutouts for the microphones. Once the face sheet is mounted, a smooth surface is established over

  8. Aeroacoustic computation of gust-blade interaction

    NASA Technical Reports Server (NTRS)

    Martin, James E.

    1994-01-01

    To better understand and address the challenges faced in computing the acoustics of flow fields, test problems must be considered. In the present study, the sound radiated by the interaction of a flat plate with an oncoming gust containing a two component, mean velocity is computed. The gust has a uniform mean flow in x with Mach number M(infinity) equal to 0.5. The gust's mean velocity in y is of smaller amplitude and is given by: v = 0.1 sin(pi/8(x/M(sub infinity) - t)). This problem has been posed for an upcoming ICASE/LaRC workshop on benchmark problems in computational aeroacoustics. A plate with a length of 30 units in x is used. The plate is assumed to be infinitesimally thin and is centered at the origin. All variables are made dimensionless using the scales specified. Acoustic quantities are obtained by numerically integrating the linearized Euler equations. Integration is performed on the computational domain -100.0 less than or equal to x less than or equal to 100.0, -100.0 less than or equal to y less than or equal to 100.0, using unit length grid spacing in x and in y. An integration scheme is sought which will provide accurate solution to the small quantities of interest at a minimal computational expense. Results indicate that with the given discretization a scheme of minimal fourth order accuracy might be adequate to approximate the waves within the given flow. Thus, a variation of the MacCormack scheme with fourth order accuracy in space and second order accuracy in time was chosen. A scheme with sixth order accuracy in space has also been implemented and results compared with those of the fourth order accurate scheme. To ensure no mass flux, zero normal velocity is assigned at the plate. This condition will induce a discontinuity in the pressure across the plate location. Values for the perturbation pressure p' along the surface of the plate are obtained using a one-sided, third order Taylor expansion, such that p'(sub y) = O. In accordance with

  9. Aeroacoustic production of low-frequency unvoiced speech sounds.

    PubMed

    Krane, Michael H

    2005-07-01

    A theoretical approach to describing unvoiced speech sound production is outlined using the essentials of aerodynamics and aeroacoustics. The focus is on the character and role of nonacoustic air motion in the vocal tract. An idealized picture of speech sound production is presented showing that speech sound production involves the dynamics of a jet flow, characterized by vorticity. A formal expression is developed for the sound production by unsteady airflow in terms of jet vorticity and vocal-tract shape, and a scaling law for the aeroacoustic source power is derived. The generic features of internal jet flows such as those exhibited in speech sound production are discussed, particularly in terms of the vorticity field, and the relevant scales of motion are identified. An approximate description of a jet as a train of vortex rings, useful for sound-field prediction, is described using the scales both of motion and of vocal-tract geometry. It is shown that the aeroacoustic source may be expressed as the convolution of (1) the acoustic source time series due to a single vortex ring with (2) a function describing the arrival of vortex rings in the source region. It is shown that, in general, the characteristics of the aeroacoustic source are determined not only by the strength, spatial distribution, and convection speed of the jet vorticity field, but also the shape of the vocal tract through which the jet flow passes. For turbulent jets, such as those which occur in unvoiced sound production, however, vocal-tract shape is the dominant factor in determining the spectral content of the source. PMID:16119362

  10. Aeroacoustics of duct junction flows merging at different angles

    NASA Astrophysics Data System (ADS)

    Lam, G. C. Y.; Leung, R. C. K.; Tang, S. K.

    2014-09-01

    This paper reports an exploratory study of the aeroacoustics of a merging flow at a duct junction with the same width in all branches and different merging angles. The focus is put on the acoustic generation due to the flow unsteadiness. The study is carried out by the direct aeroacoustic simulation (DAS) approach, which solves the unsteady compressible Navier-Stokes equations and the perfect gas equation of state simultaneously using the conservation element and solution element (CE/SE) method. The Mach number based on the maximum inlet velocity of side branch is 0.1 and the Reynolds number of the flow based on duct width and this velocity is 2.3×105. The numerical simulations are performed in two dimensions and the aeroacoustics at different merging angles (30°, 45°, 60° and 90°) are studied. Both the levels of unsteady interactions of merging flow structures and the efficiency of the acoustic generation are observed to increase with the merging angles, where the increase in acoustic efficiency can be up to three orders of magnitude. The major acoustic source is found to be the fluctuating wall pressure induced by the flow unsteadiness in the downstream branch. A scaling law between the wall fluctuating force and the acoustic efficiency is also derived.

  11. Aeroacoustic near-field measurements with microscale resolution

    NASA Astrophysics Data System (ADS)

    Haufe, D.; Pietzonka, S.; Schulz, A.; Bake, F.; Enghardt, L.; Czarske, J. W.; Fischer, A.

    2014-10-01

    In order to analyse aeroacoustic phenomena at near-fields, e.g. the sound-flow interaction at aircraft engine liners, measurements of the flow velocity and the acoustic particle velocity (APV) with microscale resolution are required. To this end, the APV measurement with a high spatial resolution of 10 µm was conducted by means of a laser Doppler velocity profile sensor. For validation of the APV measurements using the profile sensor in a superposed flow, a good agreement with indirect microphone measurements as a reference was achieved, up to a maximum Mach number of 0.25. Aeroacoustic measurements at a minimum distance of 350 µm to the perforation of a bias flow liner were performed using the profile sensor. As a result, acoustically induced velocity oscillations near the rim of the orifice were detected with microscale resolution. The phase-resolved oscillation field indicates vortex shedding from the perforation, which is initiated by the sound-flow interaction. Thus, it is demonstrated that the profile sensor is a valuable tool for analysing aeroacoustic phenomena at near-fields, down to the Kolmogorov scale.

  12. Aeroacoustics of Propulsion Airframe Integration: Overview of NASA's Research

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.

    2003-01-01

    The integration of propulsion and airframe is fundamental to the design of an aircraft system. Many considerations influence the integration, such as structural, aerodynamic, and maintenance factors. In regard to the acoustics of an aircraft, the integration can have significant effects on the net radiated noise. Whether an engine is mounted above a wing or below can have a significant effect on noise that reaches communities below because of shielding or reflection of engine noise. This is an obvious example of the acoustic effects of propulsion airframe installation. Another example could be the effect of the pylon on the development of the exhaust plume and on the resulting jet noise. In addition, for effective system noise reduction the impact that installation has on noise reduction devices developed on isolated components must be understood. In the future, a focus on the aerodynamic and acoustic interaction effects of installation, propulsion airframe aeroacoustics, will become more important as noise reduction targets become more difficult to achieve. In addition to continued fundamental component reduction efforts, a system level approach that includes propulsion airframe aeroacoustics will be required in order to achieve the 20 dB of perceived noise reduction envisioned by the long-range NASA goals. This emphasis on the aeroacoustics of propulsion airframe integration is a new part of NASA s noise research. The following paper will review current efforts and highlight technical challenges and approaches.

  13. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity where more and more complex flow problems can be tackled with this approach. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by a contra-rotating open rotor. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the methodologies of how to apply the immersed boundary method to this moving boundary problem, we will provide a detailed validation of the aeroacoustic analysis approach employing the Launch Ascent and Vehicle Aerodynamics (LAVA) solver. Two free-stream Mach numbers with M=0.2 and M=0.78 are considered in this analysis that are based on the nominally take-off and cruise flow conditions. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. Spectral analysis is used to determine the dominant wave propagation pattern in the acoustic near-field.

  14. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity so that they are being frequently employed for specific real world applications within NASA. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by highly complex geometries. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the peculiarities of applying the immersed boundary method to this moving boundary problem, we will provide a detailed aeroacoustic analysis of the noise generation mechanisms encountered in the open rotor flow. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. The noise generation mechanisms are analyzed employing spectral analysis, proper orthogonal decomposition and the causality method.

  15. Aeroacoustics research in Europe: The CEAS-ASC report on 2013 highlights

    NASA Astrophysics Data System (ADS)

    Bennett, G. J.; Kennedy, J.; Meskell, C.; Carley, M.; Jordan, P.; Rice, H.

    2015-03-01

    The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and promotes the interests of the scientific and industrial aeroacoustics community on an European scale and European aeronautics activities internationally. In this context, "aeroacoustics" encompasses all aerospace acoustics and related areas. Each year the committee highlights some of the research and development projects in Europe. This paper is a report on highlights of aeroacoustics research in Europe in 2013, compiled from information provided to the ASC of the CEAS. During 2013, a number of research programmes involving aeroacoustics were funded by the European Commission. Some of the highlights from these programmes are summarised in this paper, as well as highlights from other programmes funded by national programmes or by industry. Furthermore, a concise summary of the CEAS-ASC workshop "Atmospheric and Ground Effects on Aircraft Noise" held in Seville, Spain in September 2013 is included in this report. Enquiries concerning all contributions should be addressed to the authors who are given at the end of each subsection. This issue of the "highlights" paper is dedicated to the memory of Prof. John A. Fitzpatrick, Professor of Mechanical Engineering, Trinity College Dublin, and a valued member of the Aeroacoustics Specialists Committee. John passed away in September 2012 and is fondly missed across the globe by the friends he made in the Aeroacoustics Community. This paper is edited by PhD graduates and colleagues of John's who conduct research in aeroacoustics, inspired by his thirst for knowledge.

  16. Open Rotor Aeroacoustic Installation Effects for Conventional and Unconventional Airframes

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H.

    2013-01-01

    As extensive experimental campaign was performed to study the aeroacoustic installation effects of an open rotor with respect to both a conventional tube and wing type airframe and an unconventional hybrid wing body airframe. The open rotor rig had two counter rotating rows of blades each with eight blades of a design originally flight tested in the 1980s. The aeroacoustic installation effects measured in an aeroacoustic wind tunnel included those from flow effects due to inflow distortion or wake interaction and acoustic propagation effects such as shielding and reflection. The objective of the test campaign was to quantify the installation effects for a wide range of parameters and configurations derived from the two airframe types. For the conventional airframe, the open rotor was positioned in increments in front of and then over the main wing and then in positions representative of tail mounted aircraft with a conventional tail, a T-tail and a U-tail. The interaction of the wake of the open rotor as well as acoustic scattering results in an increase of about 10 dB when the rotor is positioned in front of the main wing. When positioned over the main wing a substantial amount of noise reduction is obtained and this is also observed for tail-mounted installations with a large U-tail. For the hybrid wing body airframe, the open rotor was positioned over the airframe along the centerline as well as off-center representing a twin engine location. A primary result was the documentation of the noise reduction from shielding as a function of the location of the open rotor upstream of the trailing edge of the hybrid wing body. The effects from vertical surfaces and elevon deflection were also measured. Acoustic lining was specially designed and inserted flush with the elevon and airframe surface, the result was an additional reduction in open rotor noise propagating to the far field microphones. Even with the older blade design used, the experiment provided

  17. Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA)

    NASA Technical Reports Server (NTRS)

    Lichtwardt, Jonathan; Paciano, Eric; Jameson, Tina; Fong, Robert; Marshall, David

    2012-01-01

    With the very recent advent of NASA's Environmentally Responsible Aviation Project (ERA), which is dedicated to designing aircraft that will reduce the impact of aviation on the environment, there is a need for research and development of methodologies to minimize fuel burn, emissions, and reduce community noise produced by regional airliners. ERA tackles airframe technology, propulsion technology, and vehicle systems integration to meet performance objectives in the time frame for the aircraft to be at a Technology Readiness Level (TRL) of 4-6 by the year of 2020 (deemed N+2). The proceeding project that investigated similar goals to ERA was NASA's Subsonic Fixed Wing (SFW). SFW focused on conducting research to improve prediction methods and technologies that will produce lower noise, lower emissions, and higher performing subsonic aircraft for the Next Generation Air Transportation System. The work provided in this investigation was a NASA Research Announcement (NRA) contract #NNL07AA55C funded by Subsonic Fixed Wing. The project started in 2007 with a specific goal of conducting a large-scale wind tunnel test along with the development of new and improved predictive codes for the advanced powered-lift concepts. Many of the predictive codes were incorporated to refine the wind tunnel model outer mold line design. The large scale wind tunnel test goal was to investigate powered lift technologies and provide an experimental database to validate current and future modeling techniques. Powered-lift concepts investigated were Circulation Control (CC) wing in conjunction with over-the-wing mounted engines to entrain the exhaust to further increase the lift generated by CC technologies alone. The NRA was a five-year effort; during the first year the objective was to select and refine CESTOL concepts and then to complete a preliminary design of a large-scale wind tunnel model for the large scale test. During the second, third, and fourth years the large-scale wind

  18. Three-dimensional CFD simulation and aeroacoustics analysis of wind turbines

    NASA Astrophysics Data System (ADS)

    Khalili, Fardin

    Wind turbines release aerodynamic noise that is one of the most barriers in wind energy development and public acceptance. Aeroacoustics is the noise generated by the interaction of blades, specifically the tip and trailing edge, with inflow turbulence structures and subsequent boundary layer separation and vortex shedding in the wake region. The objective of this study is to analyze the effects of different aerodynamic conditions on the performance and the aeroacoustic issue of wind turbines. Aerodynamic and aeroacoustic operation of a wind turbine is analyzed using a three-dimensional CFD and aeroacoustics model and using a commercial CFD Software, STAR-CCM+. Blades are modeled based on NREL S825 airfoil shape due to its high maximum lift and low profile drag. Wind turbine aerodynamic performance as well as broadband aeroacoustic noise with a focus on the trailing end, tip, inflow turbulence and boundary layer separation is investigated over a range of operating conditions.

  19. Boron injection/dilution capabilities in TRACB/NEM coupled code

    SciTech Connect

    Jambrina, A.; Barrachina, T.; Miro, R.; Verdu, G.

    2012-07-01

    The coupled code TRAC-BF1/NEM is a thermal-hydraulic-neutronic code which allows transient simulations considering neutronic 3D and thermal-hydraulic process in multiple channels with one-dimensional geometry. TRAC-BF1 and NEM can be executed either in stand-alone mode, i.e. without coupling, as well as coupled. In stand-alone calculations NEM code is used without coupling and the thermal-hydraulic conditions (fuel temperature, moderator density and boron concentration) and xenon concentration for each node are taken from the SIMULATE3 output files. The NEM's source code has been modified to be able to read these conditions from external files when it is executed without being coupled. The coupling between TRAC-BF1 and NEM follows an integration scheme in which the thermal-hydraulic solution of TRAC-BF1 is sent to NEM to incorporate the feedback effects through the cross sections. TRAC-BF1 solves heat conduction equations inside of the heat structures using the 3D power distribution from NEM. The coupling is carried out through the communication protocol functions of PVM (Parallel Virtual Machine). The present article presents a study which constitutes an advance in the simulation of injection, transport and mix of boron in the reactor, increasing the capabilities of TRAC-BF1/NEM coupled code. This article shows the modifications introduced in the TRAC-BF1/NEM's source code to allow a more realistic simulation of boron injection transients. The qualification of these improvements in both codes is performed simulating a steady state of a generic BWR at nominal power. The results have been compared with SIMULATE3 which is used as a reference to obtain the cross sections through the SIMTAB methodology. (authors)

  20. Aeroacoustic Analysis of Turbofan Noise Generation

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.; Envia, Edmane

    1996-01-01

    This report provides an updated version of analytical documentation for the V072 Rotor Wake/Stator Interaction Code. It presents the theoretical derivation of the equations used in the code and, where necessary, it documents the enhancements and changes made to the original code since its first release. V072 is a package of FORTRAN computer programs which calculate the in-duct acoustic modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated by the stator vanes interacting with the mean wakes of the rotor blades. In this updated version, only the tonal noise produced at the blade passing frequency and its harmonics, is described. The broadband noise component analysis, which was part of the original report, is not included here. The code provides outputs of modal pressure and power amplitudes generated by the rotor-wake/stator interaction. The rotor/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. The amplitude of each propagating mode is computed and summed to obtain the harmonics of sound power flux within the duct for both upstream and downstream propagating modes.

  1. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  2. Simulation of FIST tests using TRAC-BD1/MOD1

    SciTech Connect

    Jo, J.H.; Connell, H.

    1986-01-01

    Several FIST tests were simulated using the TRAC-BD1/MOD1 code at Brookhaven National Laboratory. The FIST (Full Integral Simulation Test) program is a joint project of the NRC, Electric Power Research Institute and General Electric. It was built to investigate small break LOCA and operational transients in BWRs and to complement earlier large break LOCA test results from TLTA (Two-Loop Test Apparatus). The facility is a BWR integral test facility with a full BWR height but volume scaled to 1/624 to the BWR/6 vessel. It has all the prototypical components of a BWR/6 but contains a single electrically heated full-size BWR fuel bundle. The flow areas and fluid volumes in all regions are closely scaled to 1/624. However, because of scaling difficulty, the test facility has a cylindrical external downcomer connected to the main vessel. The FIST tests consist of two phases (Phase I and Phase II) and the Phase I consists of ten tests. Among these, four tests were selected to be simulated in this study. They were: a BWR/4 MSIV closure ATWS (Test 4PMC1), a BWR/6 small break LOCA without HPCS (6SB2C), a BWR/6 large break LOCA (6DBAlB), and a BWR/6 main steam line break test (6MSB1).

  3. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    SciTech Connect

    Sutherland, W A; Alamgir, M; Findlay, J A; Hwang, W S

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation.

  4. Posttest analysis of MIST Test 3109AA using TRAC-PF1/MOD1

    SciTech Connect

    Steiner, J.L.; Siebe, D.A.; Boyack, B.E. )

    1992-09-01

    This document discusses a posttest calculation and analysis of Multi-loop Integral System Test (MIST) 3109AA as the nominal test for the MIST program. It is a test of a small-break loss-of-coolant accident (SBLOCA) with a scaled 10-cm[sup 2] break in the B1 cold leg. The test exhibited the major post-SBLOCA phenomena, as expected, including depressurization to saturation, intermittent and interrupted loop flow, boiler-condenser mode cooling, refill, and postrefill cooldown. Full high-pressure injection and auxiliary feedwater were available, reactor coolant pumps were not available, and reactor-vessel vent valves and guard heaters were automatically controlled. Constant level control in the steam-generator secondaries was used after steam-generator secondary refill and symmetric steam-generator pressure control was used. We performed the calculation using TRAC-PF1/MODI. Agreement between test data and the calculation was generally reasonable. All major trends and phenomena were correctly predicted. It is believed that the correct conclusions about trends and phenomena will be reached if the code is used in similar applications.

  5. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  6. Towards Numerical Simulations of Trailing-Edge Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1996-01-01

    The aeroacoustics of flow-hydrofoil interactions exhibits distinct characteristics depending on the physical length scales involved. In the small-foil (relative to acoustic wavelength) limit characteristic of the noise generated by large-scale vortex shedding at low flow Mach number, the noise calculation is facilitated by the use of the Lighthill analogy in conjunction with a free-space Green's function, in the sense of Curle's formulation. A methodology for computing the vortex-shedding noise using the Curle formulation, including both surface-induced dipole sources and volume quadrupole sources, has been developed.

  7. Exhaust System Experiments at NASA's AeroAcoustic Propulsion Lab

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    This presentation gives an overview of the planned testing in the AeroAcoustic Propulsion Lab (AAPL) in the coming 15 months. It was stressed in the presentation that these are plans that are subject to change due to changes in funding and/or programmatic direction. The first chart shows a simplified schedule of test entries with funding sponsor and dates for each. In subsequent charts are pages devoted to the Objectives and Issues with each test entry, along with a graphic intended to represent the test activity. The chart for each test entry also indicates sponsorship of the activity, and a contact person.!

  8. Workshop report for the AIAA 5th Aeroacoustics Conference

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1980-01-01

    Summaries of current understandings, technological tools and remaining controversies in the field of aeroacoustics are presented, with attention also given to developments in means of noise suppression to comply with proposed and projected regulations. Topics include jet noise mechanisms and their suppression; turbomachinery noise, including noise sources, noise prediction by the modal approach and experimental methods; duct acoustics, with discussion of sound attenuation and propagation, the application of finite element methods, and the radiation of sound from inlets; helicopter rotor, airplane propeller and V/STOL noise; aircraft interior noise; and general acoustics, atmospheric propagation and the sonic boom.

  9. Program in acoustics. [aeroacoustics, aircraft noise, and noise suppression

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Relevant research projects conducted by faculty and graduate students in the general area of aeroacoustics to further the understanding of noise generation by aircraft and to aid in the development of practical methods for noise suppression are listed. Special activities summarized relate to the nonlinear acoustic wave theory and its application to several cases including that of the acoustic source located at the throat of a near-sonic duct, a computer program developed to compute the nonlinear wave theory, and a parabolic approximation for propagation of sounding in moving stratified media.

  10. Assessment of TRAC-PF1/MOD1 against an inadvertent steam line isolation valve closure in the Ringhals 2 power plant

    SciTech Connect

    Pelayo, F. ); Sjoberg, A. )

    1992-03-01

    A TRAC-PF1/MOD1 simulation has been conducted to assess the capability of the code to predict a steam line isolation valve closure transient. Extensive use of results from Ringhals 2 data acquisition system was made to drive the initial conditions and some of the necessary boundary conditions. The results of the simulation revealed the importance of proper modeling of steam generator internals as well as the modeling of pressurizer walls and spray nozzles in order to reasonably predict the condensation phenomena.

  11. Aerodynamic and aeroacoustic for wind turbine

    SciTech Connect

    Mohamed, Maizi; Rabah, Dizene

    2015-03-10

    This paper describes a hybrid approach forpredicting noise radiated from the rotating Wind Turbine (HAWT) blades, where the sources are extracted from an unsteady Reynolds-Averaged-Navier Stocks (URANS) simulation, ANSYS CFX 11.0, was used to calculate The near-field flow parameters around the blade surface that are necessary for FW-H codes. Comparisons with NREL Phase II experimental results are presented with respect to the pressure distributions for validating a capacity of the solver to calculate the near-field flow on and around the wind turbine blades, The results show that numerical data have a good agreement with experimental. The acoustic pressure, presented as a sum of thickness and loading noise components, is analyzed by means of a discrete fast Fourier transformation for the presentation of the time acoustic time histories in the frequency domain. The results convincingly show that dipole source noise is the dominant noise source for this wind turbine.

  12. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system

    NASA Astrophysics Data System (ADS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  13. Further Development and Implementation of Implicit Time Marching in the CAA Code

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir V.

    2003-01-01

    The fellowship research project continued last-year work on implementing implicit time marching concepts in the Broadband Aeroacoustic System Simulator (BASS) code. This code is being developed at NASA Glenn for analysis of unsteady flow and sources of noise in propulsion systems, including jet noise and fan noise.

  14. Computational aeroacoustics of turbulent high-speed jets

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.

    2014-11-01

    Despite significant scientific investigation, jet noise remains a large component of the overall noise generated by supersonic aircraft. Experiments show that alterations to nozzle geometry, such as the addition of chevrons to the nozzle lip, can significantly reduce jet noise. In this talk, we assess unstructured large eddy simulation as a tool for predicting and understanding the aeroacoustic effects of complex geometry upon supersonic jets. Body-fitted, adaptive meshes are used to simulate the flow inside, around and through complicated nozzles, and results are validated against experimental measurements. High-fidelity simulations utilizing as many as one million processors simultaneously will be discussed, allowing for a detailed description of interactions between turbulence, shocks, and acoustics. This includes observations of the phenomenon of ``crackle'' noise in heated supersonic jets. We will briefly discuss challenges met and overcome along this frontier of com putational science, and describe how information extracted from the high-fidelity simulations can be used to construct accurate reduced-order models useful for aeroacoustic design. Computational resources were provided by the Argonne Leadership Computing Facility at Argonne National Laboratory and the ERDC and AFRL supercomputing centers.

  15. Three-dimensional beamforming of dipolar aeroacoustic sources

    NASA Astrophysics Data System (ADS)

    Porteous, Ric; Prime, Zebb; Doolan, Con. J.; Moreau, Danielle. J.; Valeau, Vincent

    2015-10-01

    This paper outlines and compares four beamforming algorithms for accurately localising acoustic dipole sources in a three-dimensional domain, such as noise sources produced by flow-body interaction. These algorithms include conventional cross-spectral beamforming, conventional beamforming with deconvolution via CLEAN-SC, 'multiplicative' cross-spectral beamforming and multiplicative beamforming with CLEAN-SC. The latter two algorithms are novel to the field of aeroacoustics and rely on the mutual cancellation of spatially incoherent sources between orthogonally aligned microphone arrays to improve the quality of the source map. The algorithms were used on both synthetic and experimental data. By comparing the performance of each algorithm in terms of source localisation accuracy, source strength estimation and resolution, it was found that conventional beamforming with CLEAN-SC is the preferred method for beamforming aeroacoustic sources in three dimensions, albeit at a higher computational cost than the other three. The results also showed that multiplicative beamforming methods give source maps that are more interpretable than conventional cross-spectral beamforming methods at no extra computational expense.

  16. Some aspects of the aeroacoustics of high-speed jets

    NASA Technical Reports Server (NTRS)

    Lighthill, James

    1993-01-01

    Some of the background to contemporary jet aeroacoustics is addressed. Then scaling laws for noise generation by low-Mach-number airflows and by turbulence convected at 'not so low' Mach number is reviewed. These laws take into account the influence of Doppler effects associated with the convection of aeroacoustic sources. Next, a uniformly valid Doppler-effect approximation exhibits the transition, with increasing Mach number of convection, from compact-source radiation at low Mach numbers to a statistical assemblage of conical shock waves radiated by eddies convected at supersonic speed. In jets, for example, supersonic eddy convection is typically found for jet exit speeds exceeding twice the atmospheric speed of sound. The Lecture continues by describing a new dynamical theory of the nonlinear propagation of such statistically random assemblages of conical shock waves. It is shown, both by a general theoretical analysis and by an illustrative computational study, how their propagation is dominated by a characteristic 'bunching' process. That process associated with a tendency for shock waves that have already formed unions with other shock waves to acquire an increased proneness to form further unions - acts so as to enhance the high-frequency part of the spectrum of noise emission from jets at these high exit speeds.

  17. Covariance-based approaches to aeroacoustic noise source analysis.

    PubMed

    Du, Lin; Xu, Luzhou; Li, Jian; Guo, Bin; Stoica, Petre; Bahr, Chris; Cattafesta, Louis N

    2010-11-01

    In this paper, several covariance-based approaches are proposed for aeroacoustic noise source analysis under the assumptions of a single dominant source and all observers contaminated solely by uncorrelated noise. The Cramér-Rao Bounds (CRB) of the unbiased source power estimates are also derived. The proposed methods are evaluated using both simulated data as well as data acquired from an airfoil trailing edge noise experiment in an open-jet aeroacoustic facility. The numerical examples show that the covariance-based algorithms significantly outperform an existing least-squares approach and provide accurate power estimates even under low signal-to-noise ratio (SNR) conditions. Furthermore, the mean-squared-errors (MSEs) of the so-obtained estimates are close to the corresponding CRB especially for a large number of data samples. The experimental results show that the power estimates of the proposed approaches are consistent with one another as long as the core analysis assumptions are obeyed. PMID:21110583

  18. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  19. An Overview of Computational Aeroacoustic Modeling at NASA Langley

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2001-01-01

    The use of computational techniques in the area of acoustics is known as computational aeroacoustics and has shown great promise in recent years. Although an ultimate goal is to use computational simulations as a virtual wind tunnel, the problem is so complex that blind applications of traditional algorithms are typically unable to produce acceptable results. The phenomena of interest are inherently unsteady and cover a wide range of frequencies and amplitudes. Nonetheless, with appropriate simplifications and special care to resolve specific phenomena, currently available methods can be used to solve important acoustic problems. These simulations can be used to complement experiments, and often give much more detailed information than can be obtained in a wind tunnel. The use of acoustic analogy methods to inexpensively determine far-field acoustics from near-field unsteadiness has greatly reduced the computational requirements. A few examples of current applications of computational aeroacoustics at NASA Langley are given. There remains a large class of problems that require more accurate and efficient methods. Research to develop more advanced methods that are able to handle the geometric complexity of realistic problems using block-structured and unstructured grids are highlighted.

  20. ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA)

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C. (Editor); Ristorcelli, J. Ray (Editor); Tam, Christopher K. W. (Editor)

    1995-01-01

    The proceedings of the Benchmark Problems in Computational Aeroacoustics Workshop held at NASA Langley Research Center are the subject of this report. The purpose of the Workshop was to assess the utility of a number of numerical schemes in the context of the unusual requirements of aeroacoustical calculations. The schemes were assessed from the viewpoint of dispersion and dissipation -- issues important to long time integration and long distance propagation in aeroacoustics. Also investigated were the effect of implementation of different boundary conditions. The Workshop included a forum in which practical engineering problems related to computational aeroacoustics were discussed. This discussion took the form of a dialogue between an industrial panel and the workshop participants and was an effort to suggest the direction of evolution of this field in the context of current engineering needs.

  1. Aeroacoustic response of coaxial wall-mounted Helmholtz resonators in a low-speed wind tunnel.

    PubMed

    Slaton, William V; Nishikawa, Asami

    2015-01-01

    The aeroacoustic response of coaxial wall-mounted Helmholtz resonators with different neck geometries in a low-speed wind tunnel has been investigated. Experimental test results of this system reveal a strong aeroacoustic response over a Strouhal number range of 0.25 to 0.1 for both increasing and decreasing the flow rate in the wind tunnel. Aeroacoustic response in the low-amplitude range O(10(-3)) < Vac/Vflow < O(10(-1)) has been successfully modeled by describing-function analysis. This analysis, coupled with a turbulent flow velocity distribution model, gives reasonable values for the location in the flow of the undulating stream velocity that drives vortex shedding at the resonator mouth. Having an estimate for the stream velocity that drives the flow-excited resonance is crucial when employing the describing-function analysis to predict aeroacoustic response of resonators. PMID:25618056

  2. FicTrac: a visual method for tracking spherical motion and generating fictive animal paths.

    PubMed

    Moore, Richard J D; Taylor, Gavin J; Paulk, Angelique C; Pearson, Thomas; van Swinderen, Bruno; Srinivasan, Mandyam V

    2014-03-30

    Studying how animals interface with a virtual reality can further our understanding of how attention, learning and memory, sensory processing, and navigation are handled by the brain, at both the neurophysiological and behavioural levels. To this end, we have developed a novel vision-based tracking system, FicTrac (Fictive path Tracking software), for estimating the path an animal makes whilst rotating an air-supported sphere using only input from a standard camera and computer vision techniques. We have found that the accuracy and robustness of FicTrac outperforms a low-cost implementation of a standard optical mouse-based approach for generating fictive paths. FicTrac is simple to implement for a wide variety of experimental configurations and, importantly, is fast to execute, enabling real-time sensory feedback for behaving animals. We have used FicTrac to record the behaviour of tethered honeybees, Apis mellifera, whilst presenting visual stimuli in both open-loop and closed-loop experimental paradigms. We found that FicTrac could accurately register the fictive paths of bees as they walked towards bright green vertical bars presented on an LED arena. Using FicTrac, we have demonstrated closed-loop visual fixation in both the honeybee and the fruit fly, Drosophila melanogaster, establishing the flexibility of this system. FicTrac provides the experimenter with a simple yet adaptable system that can be combined with electrophysiological recording techniques to study the neural mechanisms of behaviour in a variety of organisms, including walking vertebrates. PMID:24491637

  3. Model validation protocol for determining the performance of the terrain-responsive atmospheric code against the Rocky Flats Plant Winter Validation Study

    SciTech Connect

    Hodgin, C.R.; Smith, M.L.

    1992-04-23

    The objective for this Model Validation Protocol is to establish a plan for quantifying the performance (accuracy and precision) of the Terrain-Responsive Atmospheric Code (TRAC) model. The performance will be determined by comparing model predictions against tracer characteristics observed in the free atmosphere. The Protocol will also be applied to other reference'' dispersion models. The performance of the TRAC model will be compared to the performance of these reference models in order to establish TRAC's acceptance for use in applications at the Rocky Flats Plant.

  4. Powering a Commercial Datalogger by Energy Harvesting from Generated Aeroacoustic Noise

    NASA Astrophysics Data System (ADS)

    Monthéard, R.; Airiau, C.; Bafleur, M.; Boitier, V.; Dilhac, J.-M.; Dollat, X.; Nolhier, N.; Piot, E.

    2014-11-01

    This paper reports the experimental demonstration of a wireless sensor node only powered by an aeroacoustic energy harvesting device, meant to be installed on an aircraft outside skin. New results related to the physical characterization of the energy conversion process are presented. Optimized interface electronics has been designed, which allows demonstrating aeroacoustic power generation by supplying a commercial wireless datalogger in conditions representative of an actual flight.

  5. A Superior Kirchhoff Method for Aeroacoustic Noise Prediction: The Ffowcs Williams-Hawkings Equation

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1997-01-01

    The prediction of aeroacoustic noise is important; all new aircraft must meet noise certification requirements. Local noise standards can be even more stringent. The NASA noise reduction goal is to reduce perceived noise levels by a factor of two in 10 years. The objective of this viewgraph presentation is to demonstrate the superiority of the FW-H approach over the Kirchoff method for aeroacoustics, both analytically and numerically.

  6. Development of Experimental and Computational Aeroacoustic Tools for Advanced Liner Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Nark, Douglas N.; Parrott, Tony L.; Gerhold, Carl H.; Brown, Martha C.

    2006-01-01

    Acoustic liners in aircraft engine nacelles suppress radiated noise. Therefore, as air travel increases, increasingly sophisticated tools are needed to maximize noise suppression. During the last 30 years, NASA has invested significant effort in development of experimental and computational acoustic liner evaluation tools. The Curved Duct Test Rig is a 152-mm by 381- mm curved duct that supports liner evaluation at Mach numbers up to 0.3 and source SPLs up to 140 dB, in the presence of user-selected modes. The Grazing Flow Impedance Tube is a 51- mm by 63-mm duct currently being fabricated to operate at Mach numbers up to 0.6 with source SPLs up to at least 140 dB, and will replace the existing 51-mm by 51-mm duct. Together, these test rigs allow evaluation of advanced acoustic liners over a range of conditions representative of those observed in aircraft engine nacelles. Data acquired with these test ducts are processed using three aeroacoustic propagation codes. Two are based on finite element solutions to convected Helmholtz and linearized Euler equations. The third is based on a parabolic approximation to the convected Helmholtz equation. The current status of these computational tools and their associated usage with the Langley test rigs is provided.

  7. Aeroacoustics research in Europe: The CEAS-ASC report on 2014 highlights

    NASA Astrophysics Data System (ADS)

    Detandt, Yves

    2015-11-01

    The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and promotes the interests of the scientific and industrial aeroacoustics community on an European scale and European aeronautics activities internationally. Each year the committee highlights some of the research and development projects in Europe. This paper is the 2014 issue of this collection of Aeroacoustic Highlights, compiled from informations submitted to the CEAS-ASC. The contributions are classified in different topics; the first categories being related to specific aeroacoustic challenges (airframe noise, fan and jet noise, helicopter noise, aircraft interior noise) and two last sections are respectively devoted to recent improvements and emerging techniques and to general advances in aeroacoustics. For each section, the present paper focus on accomplished projects, providing the state of the art in each research category in 2014. A number of research programmes involving aeroacoustics were funded by the European Commission. Some of the highlights from these programmes are summarised in this paper, as well as highlights funded by national programmes or by industry.

  8. Aeroacoustic Measurements of a Wing-Flap Configuration

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Brooks, Thomas F.; Humphreys, William M.; Hunter, William H.; Gerhold, Carl H.

    1997-01-01

    Aeroacoustic measurements are being conducted to investigate the mechanisms of sound generation in high-lift wing configurations, and initial results are presented. The model is approximately 6 percent of a full scale configuration, and consists of a main element NACA 63(sub 2) - 215 wing section and a 30 percent chord half-span flap. Flow speeds up to Mach 0.17 are tested at Reynolds number up to approximately 1.7 million. Results are presented for a main element at a 16 degree angle of attack, and flap deflection angles of 29 and 39 degrees. The measurement systems developed for this test include two directional arrays used to localize and characterize the noise sources, and an array of unsteady surface pressure transducers used to characterize wave number spectra and correlate with acoustic measurements. Sound source localization maps show that locally dominant noise sources exist on the flap-side edge. The spectral distribution of the noise sources along the flap-side edge shows a decrease in frequency of the locally dominant noise source with increasing distance downstream of the flap leading edge. Spectra are presented which show general spectral characteristics of Strouhal dependent flow-surface interaction noise. However, the appearance of multiple broadband tonal features at high frequency indicates the presence of aeroacoustic phenomenon following different scaling characteristics. The scaling of the high frequency aeroacoustic phenomenon is found to be different for the two flap deflection angles tested. Unsteady surface pressure measurements in the vicinity of the flap edge show high coherence levels between adjacent sensors on the flap-side edge and on the flap edge upper surface in a region which corresponds closely to where the flap-side edge vortex begins to spill over to the flap upper surface. The frequency ranges where these high levels of coherence occur on the flap surface are consistent with the frequency ranges in which dominant features

  9. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    SciTech Connect

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  10. On applications of high-frequency asymptotics in aeroacoustics.

    PubMed

    Peake, N

    2004-03-15

    The aim of this paper is to survey a range of applications of high-frequency asymptotic methods in aeroacoustics. Specifically, we are concerned with problems associated with noise generation, propagation and scattering as found in large modern aeroengines. With regard to noise generation, we consider the interaction between high-frequency vortical waves and thin aerofoils, with particular emphasis being placed on the way in which the vortical waves act on the non-uniform mean flow around the aerofoil. A ray-theoretic description of the resulting sound as it propagates along the engine intake is then presented, followed by consideration of the diffraction of these rays by the (possibly asymmetric) intake lip to produce sound in the far field. A range of more detailed possible extensions is also presented. PMID:15306513

  11. Development of a micromachined piezoelectric microphone for aeroacoustics applications.

    PubMed

    Horowitz, Stephen; Nishida, Toshikazu; Cattafesta, Louis; Sheplak, Mark

    2007-12-01

    This paper describes the design, fabrication, and characterization of a bulk-micromachined piezoelectric microphone for aeroacoustic applications. Microphone design was accomplished through a combination of piezoelectric composite plate theory and lumped element modeling. The device consists of a 1.80-mm-diam, 3-microm-thick, silicon diaphragm with a 267-nm-thick ring of piezoelectric material placed near the boundary of the diaphragm to maximize sensitivity. The microphone was fabricated by combining a sol-gel lead zirconate-titanate deposition process on a silicon-on-insulator wafer with deep-reactive ion etching for the diaphragm release. Experimental characterization indicates a sensitivity of 1.66 microVPa, dynamic range greater than six orders of magnitude (35.7-169 dB, re 20 microPa), a capacitance of 10.8 nF, and a resonant frequency of 59.0 kHz. PMID:18247752

  12. An Aeroacoustic Study of a Leading Edge Slat Configuration

    NASA Technical Reports Server (NTRS)

    Mendoza, J. M.; Brooks, T. F.; Humphreys, W. M., Jr.

    2002-01-01

    Aeroacoustic evaluations of high-lift devices have been carried out in the Quiet Flow Facility of the NASA Langley Research Center. The present paper describes detailed flow and acoustic measurements that have been made in order to better understand the noise generated from airflow over a wing leading edge slat configuration, and to possibly predict and reduce this noise source. The acoustic database is obtained by a moveable Small Aperture Directional Array of microphones designed to electronically steer to different portions of models under study. The slat is shown to be a uniform distributed noise source. The data was processed such that spectra and directivity were determined with respect to a one-foot span of slat. The spectra are normalized in various fashions to demonstrate slat noise character. In order to equate portions of the spectra to different slat noise components, trailing edge noise predictions using measured slat boundary layer parameters as inputs are compared to the measured slat noise spectra.

  13. Computational aeroacoustics and numerical simulation of supersonic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Long, Lyle N.

    1996-01-01

    The research project has been a computational study of computational aeroacoustics algorithms and numerical simulations of the flow and noise of supersonic jets. During this study a new method for the implementation of solid wall boundary conditions for complex geometries in three dimensions has been developed. In addition, a detailed study of the simulation of the flow in and noise from supersonic circular and rectangular jets has been conducted. Extensive comparisons have been made with experimental measurements. A summary of the results of the research program are attached as the main body of this report in the form of two publications. Also, the report lists the names of the students who were supported by this grant, their degrees, and the titles of their dissertations. In addition, a list of presentations and publications made by the Principal Investigators and the research students is also included.

  14. A general introduction to aeroacoustics and atmospheric sound

    NASA Technical Reports Server (NTRS)

    Lighthill, James

    1992-01-01

    A single unifying principle (based upon the nonlinear 'momentum-flux' effects produced when different components of a motion transport different components of its momentum) is used to give a broad scientific background to several aspects of the interaction between airflows and atmospheric sound. First, it treats the generation of sound by airflows of many different types. These include, for example, jet-like flows involving convected turbulent motions (with the resulting aeroacoustic radiation sensitively dependent on the Mach number of convection) and they include, as an extreme case, the supersonic 'boom' (shock waves generated by a supersonically convected flow pattern). Next, an analysis is given of sound propagation through nonuniformly moving airflows, and the exchange is quantified of energy between flow and sound; while, finally, problems are examined of how sound waves 'on their own' may generate the airflows known as acoustic streaming.

  15. A general introduction to aeroacoustics and atmospheric sound

    NASA Astrophysics Data System (ADS)

    Lighthill, James

    A single unifying principle (based upon the nonlinear 'momentum-flux' effects produced when different components of a motion transport different components of its momentum) is used to give a broad scientific background to several aspects of the interaction between airflows and atmospheric sound. First, it treats the generation of sound by airflows of many different types. These include, for example, jet-like flows involving convected turbulent motions (with the resulting aeroacoustic radiation sensitively dependent on the Mach number of convection) and they include, as an extreme case, the supersonic 'boom' (shock waves generated by a supersonically convected flow pattern). Next, an analysis is given of sound propagation through nonuniformly moving airflows, and the exchange is quantified of energy between flow and sound; while, finally, problems are examined of how sound waves 'on their own' may generate the airflows known as acoustic streaming.

  16. A general introduction to aeroacoustics and atmospheric sound

    NASA Astrophysics Data System (ADS)

    Lighthill, James

    1992-10-01

    A single unifying principle (based upon the nonlinear 'momentum-flux' effects produced when different components of a motion transport different components of its momentum) is used to give a broad scientific background to several aspects of the interaction between airflows and atmospheric sound. First, it treats the generation of sound by airflows of many different types. These include, for example, jet-like flows involving convected turbulent motions (with the resulting aeroacoustic radiation sensitively dependent on the Mach number of convection) and they include, as an extreme case, the supersonic 'boom' (shock waves generated by a supersonically convected flow pattern). Next, an analysis is given of sound propagation through nonuniformly moving airflows, and the exchange is quantified of energy between flow and sound; while, finally, problems are examined of how sound waves 'on their own' may generate the airflows known as acoustic streaming.

  17. Fluid Dynamics Prize Otto Laporte Lecture:Turbulence and Aeroacoustics

    NASA Astrophysics Data System (ADS)

    Comte-Bellot, Genevieve

    2014-11-01

    Some significant advances obtained over the years for two closely related fields, Turbulence and Aeroacoustics, are presented. Particular focus is placed on experimental results and on physical mechanisms. For example, for a 2D channel flow, skewness factors of velocity fluctuations are discussed. The study of isotropic turbulence generated by grids in the «Velvet wind tunnel» of Stanley Corrsin, constitutes a masterpiece. Of particular note are the Eulerian memory times, analysed for all wavenumbers. Concerning hot-wire anemometry, the potential of the new constant voltage technique is presented. Some results obtained with Particule Image Velocimetry are also reported. Two flow control examples are illustrated: lift generation for a circular cylinder, and noise reduction for a high speed jet. Finally, the propagation of acoustic waves through turbulence is considered. Experimental data are here completed by numerical simulations showing the possible occurrence of caustics.

  18. Application of a new finite difference algorithm for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Acoustic problems have become extremely important in recent years because of research efforts such as the High Speed Civil Transport program. Computational aeroacoustics (CAA) requires a faithful representation of wave propagation over long distances, and needs algorithms that are accurate and boundary conditions that are unobtrusive. This paper applies a new finite difference method and boundary algorithm to the Linearized Euler Equations (LEE). The results demonstrate the ability of a new fourth order propagation algorithm to accurately simulate the genuinely multidimensional wave dynamics of acoustic propagation in two space dimensions with the LEE. The results also show the ability of a new outflow boundary condition and fourth order algorithm to pass the evolving solution from the computational domain with no perceptible degradation of the solution remaining within the domain.

  19. Aeroacoustic Measurements of a Wing/Slat Model

    NASA Astrophysics Data System (ADS)

    Mendoza, Jeff M.; Brooks, Thomas F.; Humphreys, William M.

    2002-01-01

    Aeroacoustic evaluations of high-lift devices have been carried out in the Quiet Flow Facility of the NASA Langley Research Center. The present paper deals with detailed flow and acoustic measurements that have been made to understand, and to possibly predict and reduce, the noise from a wing leading edge slat configuration. The acoustic database is obtained by a moveable Small Aperture Directional Array (SADA) of microphones designed to electronically steer to different portions of models under study. The slat is shown to be a uniform distributed noise source. The data was processed such that spectra and directivity were determined with respect to a one-foot span of slat. The spectra are normalized in various fashions to demonstrate slat noise character. In order to equate portions of the spectra to different slat noise components, trailing edge noise predictions using measured slat boundary layer parameters as inputs are compared to the measured slat noise spectra.

  20. Multi-model Simulation for Optimal Control of Aeroacoustics.

    SciTech Connect

    Collis, Samuel Scott; Chen, Guoquan

    2005-05-01

    Flow-generated noise, especially rotorcraft noise has been a serious concern for bothcommercial and military applications. A particular important noise source for rotor-craft is Blade-Vortex-Interaction (BVI)noise, a high amplitude, impulsive sound thatoften dominates other rotorcraft noise sources. Usually BVI noise is caused by theunsteady flow changes around various rotor blades due to interactions with vorticespreviously shed by the blades. A promising approach for reducing the BVI noise isto use on-blade controls, such as suction/blowing, micro-flaps/jets, and smart struc-tures. Because the design and implementation of such experiments to evaluate suchsystems are very expensive, efficient computational tools coupled with optimal con-trol systems are required to explore the relevant physics and evaluate the feasibilityof using various micro-fluidic devices before committing to hardware.In this thesis the research is to formulate and implement efficient computationaltools for the development and study of optimal control and design strategies for com-plex flow and acoustic systems with emphasis on rotorcraft applications, especiallyBVI noise control problem. The main purpose of aeroacoustic computations is todetermine the sound intensity and directivity far away from the noise source. How-ever, the computational cost of using a high-fidelity flow-physics model across thefull domain is usually prohibitive and itmight also be less accurate because of thenumerical diffusion and other problems. Taking advantage of the multi-physics andmulti-scale structure of this aeroacoustic problem, we develop a multi-model, multi-domain (near-field/far-field) method based on a discontinuous Galerkin discretiza-tion. In this approach the coupling of multi-domains and multi-models is achievedby weakly enforcing continuity of normal fluxes across a coupling surface. For ourinterested aeroacoustics control problem, the adjoint equations that determine thesensitivity of the cost

  1. 77 FR 53913 - River Bend Industries, LLC, Including On-Site Leased Workers From FirstStaff, Trac Staffing, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... (75 FR 51846). At the request of the State of Arkansas, the Department reviewed the certification for... FirstStaff, Trac Staffing, and Worksource, Inc., Fort Smith, Arkansas; Amended Certification Regarding... Industries, LLC including on-site leased workers from FirstStaff, Trac Staffing, Worksource, Inc., Fort...

  2. High Order Difference Method for Low Mach Number Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    A high order finite difference method with improved accuracy and stability properties for computational aeroacoustics (CAA) at low Mach numbers is proposed. The Euler equations are split into a conservative and a symmetric non- conservative portion to allow the derivation of a generalized energy estimate. Since the symmetrization is based on entropy variables, that splitting of the flux derivatives is referred to as entropy splitting. Its discretization by high order central differences was found to need less numerical dissipation than conventional conservative schemes. Owing to the large disparity of acoustic and stagnation quantities in low Mach number aeroacoustics, the split Euler equations are formulated in perturbation form. The unknowns are the small changes of the conservative variables with respect to their large stagnation values. All nonlinearities and the conservation form of the conservative portion of the split flux derivatives can be retained, while cancellation errors are avoided with its discretization opposed to the conventional conservative form. The finite difference method is third-order accurate at the boundary and the conventional central sixth-order accurate stencil in the interior. The difference operator satisfies the summation by parts property analogous to the integration by parts in the continuous energy estimate. Thus, strict stability of the difference method follows automatically. Spurious high frequency oscillations are suppressed by a characteristic-based filter similar to but without limiter. The time derivative is approximated by a 4-stage low-storage second-order explicit Runge-Kutta method. The method has been applied to simulate vortex sound at low Mach numbers. We consider the Kirchhoff vortex, which is an elliptical patch of constant vorticity rotating with constant angular frequency in irrotational flow. The acoustic pressure generated by the Kirchhoff vortex is governed by the 2D Helmholtz equation, which can be solved

  3. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  4. COBRA/TRAC analysis of the PKL reflood test K9

    SciTech Connect

    Wilkins, C.A.

    1982-03-01

    Experiments simulating the refill and reflood procedure after a loss-of-coolant accident (LOCA) in a 1300 MW PWR primary coolant system were performed at the KWU test facility in Erlangen, Germany. COBRA/TRAC was used to model experiment K9 of the PKL series (completed December 1979). PKL-K9 was characterized by a double-ended guillotine break in the cold leg with emergency core cooling water injected into the cold legs. COBRA/TRAC was able to successfully predict lower core temperature profiles and quench times, upper core temperature profiles until quench, upper plenum and break pressures and correct trends in collapsed water levels.

  5. Aeroacoustics research in Europe: The CEAS-ASC report on 2010 highlights

    NASA Astrophysics Data System (ADS)

    Balázs Nagy, Attila

    2011-10-01

    The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and promotes the interests of the scientific and industrial aeroacoustics community on an European scale and European aeronautics activities internationally. In this context, "aeroacoustics" encompasses all aerospace acoustics and related areas. Each year the committee highlights some of the research and development projects in Europe. This paper is a report on highlights of aeroacoustics research in Europe in 2010, compiled from information provided to the ASC of the CEAS. At the end of 2010, project X-NOISE EV of the Seventh Framework Programme of the European Commission has been launched as a continuation of the X-Noise series, with objectives of reducing aircraft noise and reaching the goal set by the ACARE 2020 Vision. Some contributions submitted to the editor summarizes selected findings from European projects launched before or concluded in 2010, while other articles cover issues supported by national associations or by industries. Furthermore, a concise summary of the workshop on "Aeroacoustics of High-Speed Aircraft Propellers and Open Rotors" held in Warsaw in October is included in this report. Enquiries concerning all contributions should be addressed to the authors who are given at the end of each subsection.

  6. Sound Radiation from Ducted Fans Using Computational Aeroacoustics on Parallel Computers.

    NASA Astrophysics Data System (ADS)

    Ozyoruk, Yusuf

    1995-01-01

    As a component of a more advanced, new generation fan noise prediction technology, a computational aeroacoustics algorithm has been developed using an entirely new approach. Unlike previous approaches, the current method accounts for the nonuniform background flow and aerodynamic-acoustic coupling issues by solving the 3-D, time-dependent, full nonlinear Euler equations (although the developed computer program is a Navier-Stokes solver). The equations are solved on a 3-D body fitted curvilinear coordinate system using temporally and spatially 4th-order accurate finite difference, Runge -Kutta time integration. The time-accurate flow field is determined only in a relatively small physical domain using nonreflecting boundary conditions on its outer boundaries. A moving surface Kirchhoff method using the formulation of Farassat and Myers has been developed and coupled to the flow solver for far-field noise predictions. The acoustic field is obtained by subtracting the mean field from the total field. To establish the mean flow field, steady state solutions are required and Jameson's full approximation storage multigrid method has been extended to make use of the current high resolution algorithm for obtaining such solutions fast. Formulations in cylindrical coordinates together with cell-centered finite differencing are used to effectively treat the grid singularity along the centerline. Well designed grids aid this treatment. A 3-D grid generator has been developed using the conformal mappings of Ives and Menor to provide the hybrid radiation code with capabilities for very rapid and good quality mesh generation. The hybrid radiation code has been written in CM-Fortran, which is essentially High Performance Fortran. Some novel optimization procedures have been developed and implemented in the code, which runs efficiently on the CM-200 and CM-5 parallel computers. The code has been tested solving a large variety of problems, ranging from an oscillating piston problem

  7. InfoTrac's SearchBank Databases: Business Information and More.

    ERIC Educational Resources Information Center

    Mehta, Usha; Goodman, Beth

    1997-01-01

    Describes the InfoTrac SearchBank based on experiences at the University of Nevada, Reno, libraries where the service is available through the online catalog. Highlights include remote access through the Internet; indexing and abstracting; full-text access to 460 journal titles; a powerful search engine; and business-oriented databases.…

  8. 78 FR 37877 - Request for Transit Rail Advisory Committee for Safety (TRACS) Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... regulations for enhancing safety across all modes of public transportation as FTA implements new statutory authority for public transportation safety oversight. FOR FURTHER INFORMATION CONTACT: Bridget Zamperini... authority has been expanded to include all modes of public transportation. Therefore, TRACS membership...

  9. 77 FR 5876 - Notice of Meeting of the Transit Rail Advisory Committee for Safety (TRACS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Transit Administrator on matters relating to the safety of public transportation systems. DATES: The TRACS... Secretary and the Federal Transit Administrator on matters pertaining to the safety of public transportation... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF...

  10. 76 FR 16854 - Notice of Meeting of the Transit Rail Advisory Committee for Safety (TRACS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Administrator on matters relating to the safety of public transportation systems. DATES: The TRACS meeting will... of the Federal Transit Administration on matters relating to the safety of public transportation... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF...

  11. 78 FR 67212 - Notice of Meeting of the Transit Rail Advisory Committee for Safety (TRACS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Secretary and the Federal Transit Administrator on matters relating to the safety of public transportation... (FTA) on matters relating to the safety of public transportation systems. TRACS is currently composed... National Public Transportation Safety Plan (4) Review of the Draft Letter Report on Public...

  12. 78 FR 24313 - Proposed Collection; Comment Request for Tip Reporting Alternative Commitment Agreement (TRAC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... Agreement (TRAC) For Use in Industries Other Than the Food and Beverage Industry and The Cosmetology and... Beverage Industry and The Cosmetology and Barber Industry. DATES: Written comments should be received on or... Other than the Food and Beverage Industry and The Cosmetology and Barber Industry. OMB Number:...

  13. 75 FR 11225 - Proposed Collection; Comment Request for Tip Reporting Alternative Commitment Agreement (TRAC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Agreement (TRAC) for Use in Industries Other Than the Food and Beverage Industry and the Cosmetology and... Beverage Industry and the Cosmetology and Barber Industry. DATES: Written comments should be received on or... Other Than the Food and Beverage Industry and the Cosmetology and Barber Industry. OMB Number:...

  14. Info Trac: An Evaluation of System Use and Potential in Research Libraries.

    ERIC Educational Resources Information Center

    Kleiner, Jane P.

    1987-01-01

    This description of Info Trac, a laser disc periodical reference system, reviews professional reactions to the system and several user studies. Criticisms are discussed to define the role of such systems in research libraries, and data are presented in five tables. (17 references) (MES)

  15. Spent fuel pool analysis using TRACE code

    SciTech Connect

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S.

    2012-07-01

    The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

  16. The aeroacoustic behavior of a cylindrical surface with a small cavity

    NASA Astrophysics Data System (ADS)

    Homeyer, Tim; Kirrkamm, Nils; Peinke, Joachim; Schultz-von Glahn, Manfred; Mellert, Volker; Gülker, Gerd

    2014-04-01

    The aeroacoustic effects of the flow around a cylinder with a small rectangular cavity in its surface are investigated in an acoustic wind tunnel. In different positions, the overflown cavity produces loud tonal whistling noise. In large part, the noise can be explained with the Rossiter model. At a certain position of the cavity, a different aeroacoustic phenomenon occurs, which is in focus of this investigation. Tonal frequencies appear in a narrow band region, which do not scale with different cavities. A sudden onset and a sudden stop of the acoustic radiation are accompanied with a transition of the circulating flow. A strong hysteresis is observable. The separating boundary layer plays a major role in the characterization of the flow in the vicinity of the cavity. Acoustical and various flow measurements at velocities up to 47 m/s as well as a CFD simulation are presented. Consistent results reveal Kelvin-Helmholtz instabilities as the reason for the aeroacoustic phenomenon.

  17. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Technical Reports Server (NTRS)

    Culver, E. M.; Mccolgan, C. J.

    1993-01-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  18. High-Lift Engine Aeroacoustics Technology (HEAT) Test Program Overview

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Smith, Brian E.

    1999-01-01

    The NASA High-Speed Research program developed the High-Lift Engine Aeroacoustics Technology (HEAT) program to demonstrate satisfactory interaction between the jet noise suppressor and high-lift system of a High-Speed Civil Transport (HSCT) configuration at takeoff, climb, approach and landing conditions. One scheme for reducing jet exhaust noise generated by an HSCT is the use of a mixer-ejector system which would entrain large quantities of ambient air into the nozzle exhaust flow through secondary inlets in order to cool and slow the jet exhaust before it exits the nozzle. The effectiveness of such a noise suppression device must be evaluated in the presence of an HSCT wing high-lift system before definitive assessments can be made concerning its acoustic performance. In addition, these noise suppressors must provide the required acoustic attenuation while not degrading the thrust efficiency of the propulsion system or the aerodynamic performance of the high-lift devices on the wing. Therefore, the main objective of the HEAT program is to demonstrate these technologies and understand their interactions on a large-scale HSCT model. The HEAT program is a collaborative effort between NASA-Ames, Boeing Commercial Airplane Group, Douglas Aircraft Corp., Lockheed-Georgia, General Electric and NASA - Lewis. The suppressor nozzles used in the tests were Generation 1 2-D mixer-ejector nozzles made by General Electric. The model used was a 13.5%-scale semi-span model of a Boeing Reference H configuration.

  19. Measurements of the Aeroacoustic Sound Source in Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark

    2004-01-01

    We have succeeded in measuring a substantial portion of the two-point space-time velocity correlation in hot, high speed turbulent jets. This measurement, crucial in aeroacoustic theory and the prediction of jet noise, has been sought for a long time, but has not been made due to the limitations of anemometry. Particle Image Velocimetry has reached a stage of maturity where sufficient measurement density in both time and space allow the computation of space-time correlations. This paper documents these measurements along with lower-order statistics to document the adherence of the jet rig and instrumentation to conventional measures of the turbulence of jets. These measures have been made for a simple round convergent nozzle at acoustic Mach numbers of 0.5, 0.9, both cold and at a static temperature ratio of 2.7, allowing some estimation of the changes in turbulence that take place with changes in jet temperature. Since the dataset described in this paper is very extensive, attention will be focused on validation of the rig and of the measurement systems, and on some of the interesting observations made from studying the statistics, especially as they relate to jet noise. Of note is the effort to study the acoustically relevant part of the space-time correlation by addressing that part of the turbulence kinetic energy that has sonic phase speed.

  20. Automated Approach to Very High-Order Aeroacoustic Computations. Revision

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Goodrich, John W.

    2001-01-01

    Computational aeroacoustics requires efficient, high-resolution simulation tools. For smooth problems, this is best accomplished with very high-order in space and time methods on small stencils. However, the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewski recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that am located near wall boundaries. These procedures are used to develop automatically and to implement very high-order methods (> 15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

  1. Measurements of phonatory aeroacoustic source strengths in a physical model

    NASA Astrophysics Data System (ADS)

    Krane, Michael; McPhail, Michael

    2014-11-01

    Aeroacoustic sources due to flow-induced vibration of a compliant constriction in a duct were characterized experimentally. The principal goal of this study is to estimate the character and level of the various sources of sound in human voice production. Measurements were performed in a model of the human airway, constructed to human dimensions, but with an idealized geometry. The airway duct models the passage from the trachea to the mouth, as a constant-area (7.64 cm2) square cross-section, interrupted only by the model vocal folds. These were fabricated in two layers of soft silicone rubber. Time-resolved measurements included subglottal and supraglottal absolute pressure, sound pressure at the model vocal tract ``mouth,'' and high-speed video of the model vocal folds. These were sampled synchronously at 22 kHz. Steady-state measurements included subglottal pressure and volume flow rate. Measurements were conducted over a subglottal pressures range of 2.25--2.80 kPa. Source strengths were estimated by theoretical expressions, using the measured pressures and glottal area as inputs. Results show that the dipole source typically associated with vocal fold drag is the dominant source. Furthermore, for the vibration pattern observed in these experiments, glottal jet turbulence dominates the dipole source above approximately 1 kHz.

  2. A Very High Order, Adaptable MESA Implementation for Aeroacoustic Computations

    NASA Technical Reports Server (NTRS)

    Dydson, Roger W.; Goodrich, John W.

    2000-01-01

    Since computational efficiency and wave resolution scale with accuracy, the ideal would be infinitely high accuracy for problems with widely varying wavelength scales. Currently, many of the computational aeroacoustics methods are limited to 4th order accurate Runge-Kutta methods in time which limits their resolution and efficiency. However, a new procedure for implementing the Modified Expansion Solution Approximation (MESA) schemes, based upon Hermitian divided differences, is presented which extends the effective accuracy of the MESA schemes to 57th order in space and time when using 128 bit floating point precision. This new approach has the advantages of reducing round-off error, being easy to program. and is more computationally efficient when compared to previous approaches. Its accuracy is limited only by the floating point hardware. The advantages of this new approach are demonstrated by solving the linearized Euler equations in an open bi-periodic domain. A 500th order MESA scheme can now be created in seconds, making these schemes ideally suited for the next generation of high performance 256-bit (double quadruple) or higher precision computers. This ease of creation makes it possible to adapt the algorithm to the mesh in time instead of its converse: this is ideal for resolving varying wavelength scales which occur in noise generation simulations. And finally, the sources of round-off error which effect the very high order methods are examined and remedies provided that effectively increase the accuracy of the MESA schemes while using current computer technology.

  3. Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1994-01-01

    Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  4. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  5. General flow field analysis methods for helicopter rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C. Gordon; Bliss, Donald B.

    1991-01-01

    Previous work in the analysis of rotor flow fields for aeroacoustic applications involved the preliminary development of an efficient and accurate Lagrangian simulation of the unsteady vorticity field in the vicinity of helicopter main rotor that could analyze a limited class of rotor/wake interactions. The capabilities of this analysis have subsequently been considerably enhanced to allow it to serve as the foundation for a general analysis of the rotor/wake interaction noise. This paper presents the details of these enhancements, which focus on the expansion of the reconstruction approach developed previously to handle arbitrary vortex wake interactions within three-dimensional regions located near or within the rotor disk. Also, the development of nearfield velocity corrections appropriate for the analysis of such interactions is described, as is a preliminary study of methods for using the new high-resolution flow field analysis for noise predictions. The results show that by employing this novel flow field reconstruction technique it is possible to employ full-span free wake analyses with temporal and spatial resolution suitable for acoustic applications while reducing the computation time required by one to two orders of magnitude relative to traditional methods.

  6. Aeroacoustic Evaluation of Flap and Landing Gear Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.; Ravetta, Patricio A.

    2014-01-01

    Aeroacoustic measurements for a semi-span, 18% scale, high-fidelity Gulfstream aircraft model are presented. The model was used as a test bed to conduct detailed studies of flap and main landing gear noise sources and to determine the effectiveness of numerous noise mitigation concepts. Using a traversing microphone array in the flyover direction, an extensive set of acoustic data was obtained in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the information was acquired with the model in a landing configuration with the flap deflected 39 deg and the main landing gear alternately installed and removed. Data were obtained at Mach numbers of 0.16, 0.20, and 0.24 over directivity angles between 56 deg and 116 deg, with 90 deg representing the overhead direction. Measured acoustic spectra showed that several of the tested flap noise reduction concepts decrease the sound pressure levels by 2 - 4 dB over the entire frequency range at all directivity angles. Slightly lower levels of noise reduction from the main landing gear were obtained through the simultaneous application of various gear devices. Measured aerodynamic forces indicated that the tested gear/flap noise abatement technologies have a negligible impact on the aerodynamic performance of the aircraft model.

  7. NASA Hybrid Wing Aircraft Aeroacoustic Test Documentation Report

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Bahr, Christopher J.; Hoad, Danny; Becker, Lawrence; Humphreys, William M.; Burley, Casey L.; Stead, Dan; Pope, Dennis S.; Spalt, Taylor B.; Kuchta, Dennis H.; Plassman, Gerald E.; Moen, Jaye A.

    2016-01-01

    This report summarizes results of the Hybrid Wing Body (HWB) N2A-EXTE model aeroacoustic test. The N2A-EXTE model was tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 Tunnel) from September 12, 2012 until January 28, 2013 and was designated as test T598. This document contains the following main sections: Section 1 - Introduction, Section 2 - Main Personnel, Section 3 - Test Equipment, Section 4 - Data Acquisition Systems, Section 5 - Instrumentation and Calibration, Section 6 - Test Matrix, Section 7 - Data Processing, and Section 8 - Summary. Due to the amount of material to be documented, this HWB test documentation report does not cover analysis of acquired data, which is to be presented separately by the principal investigators. Also, no attempt was made to include preliminary risk reduction tests (such as Broadband Engine Noise Simulator and Compact Jet Engine Simulator characterization tests, shielding measurement technique studies, and speaker calibration method studies), which were performed in support of this HWB test. Separate reports containing these preliminary tests are referenced where applicable.

  8. Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.

    1998-01-01

    An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.

  9. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  10. Aerodynamic and Aeroacoustic Wind Tunnel Testing of the Orion Spacecraft

    NASA Technical Reports Server (NTRS)

    Ross, James C.

    2011-01-01

    The Orion aerodynamic testing team has completed more than 40 tests as part of developing the aerodynamic and loads databases for the vehicle. These databases are key to achieving good mechanical design for the vehicle and to ensure controllable flight during all potential atmospheric phases of a mission, including launch aborts. A wide variety of wind tunnels have been used by the team to document not only the aerodynamics but the aeroacoustic environment that the Orion might experience both during nominal ascents and launch aborts. During potential abort scenarios the effects of the various rocket motor plumes on the vehicle must be accurately understood. The Abort Motor (AM) is a high-thrust, short duration motor that rapidly separates Orion from its launch vehicle. The Attitude Control Motor (ACM), located in the nose of the Orion Launch Abort Vehicle, is used for control during a potential abort. The 8 plumes from the ACM interact in a nonlinear manner with the four AM plumes which required a carefully controlled test to define the interactions and their effect on the control authority provided by the ACM. Techniques for measuring dynamic stability and for simulating rocket plume aerodynamics and acoustics were improved or developed in the course of building the aerodynamic and loads databases for Orion.

  11. Direct measurement of aeroacoustic source spectrum due to a jet/wall interaction

    NASA Astrophysics Data System (ADS)

    Lani, Shane; Krane, Michael

    2009-11-01

    The aeroacoustic source spectrum due to a turbulent jet passing over an obstruction is found experimentally. The model consists of a constriction and planar obstacle in a duct with dimensions commensurate with the those of a human vocal tract. An unsteady jet formed at a constriction interacts with a planar obstruction downstream with the jet normal to the planar surface. The aeroacoustic source spectrum is found both by measuring the unsteady force imparted on the planar obstruction as well as measuring radiated sound outside the duct. A comparison of the force spectrum to the inverse-filtered radiated sound measurements will be presented.

  12. Reduced gravity boiling and condensing experiments simulated with the COBRA/TRAC computer code

    SciTech Connect

    Cuta, J.M.; Krotiuk, W.J.

    1988-02-01

    It is being recognized that there does not currently exist an adequate understanding of flow and heat transfer behavior in reduced- and zero-gravity. There is not a sufficient experimental fluid-thermal data base to develop design correlations for two-phase pressure losses, heat transfer coefficients, and critical heat flux limits in systems proposed for advanced power sources, propulsion, and other thermal management systems in space. Pacific Northwest Laboratory (PNL), is the lead laboratory for thermal hydraulics in the Department of Energy's Multimegawatt Space Power Program, and has the responsibility of developing microgravity thermal-hydraulic analysis capabilities for application to space nuclear power systems. In support of this program, PNL has performed a series of reduced-gravity two-phase flow experiments in the NASA KC-135 aircraft. The objective of the experiment was to supply basic thermal-hydraulic information that could be used in development of analytical design tools. 6 refs., 23 figs., 4 tabs.

  13. Aeroacoustic characterization of scaled canonical nose landing gear configurations

    NASA Astrophysics Data System (ADS)

    Zawodny, Nikolas S.

    Aircraft noise is a critical issue in the commercial airline industry. Airframe noise is a subcomponent of aircraft noise and is generally dominant over jet engine noise during approach conditions, which can lead to high community impact. Landing gears have been identified as major components of airframe noise during landing configurations for commercial aircraft. They are perhaps the least understood contributors to airframe noise due to complex flow patterns associated with intricate gear component geometries. Nose landing gear in particular have received much attention in recent years, exhibiting acoustic signatures on the order of the main landing gear assembly of an aircraft, while simultaneously being more amenable to scaled wind tunnel testing. In order to characterize the acoustic signature of a complex geometry such as a nose landing gear, it is important to isolate, study, and understand the acoustic contributions of individual component geometries. The purpose of this dissertation is to develop a correlation between the complex flow field nature and far-field acoustic signature of a nose landing gear sub-system. The model under investigation is a 1/2-scale shock-strut cylinder coupled with an adjustable torque link apparatus. This geometry was chosen due to its fundamental importance and implementation across a wide span of commercial aircraft. The fluid dynamic (surface pressure and stereoscopic particle image velocimety) and aeroacoustic (far-field microphone and phased array) experiments were performed in the University of Florida Aeroacoustic Flow Facility. The experimental data compare favorably with the results of a numerical simulation using PowerFLOW, a lattice-Boltzmann solver developed by the Exa Corporation. The far-field acoustic results of this dissertation have shown non-uniform scaling behavior as a function of frequency for the different model configurations tested. For frequencies that appropriately satisfied the condition of acoustic

  14. Fast Scattering Code (FSC) User's Manual: Version 2

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dun, M. H.; Pope, D. Stuart

    2006-01-01

    The Fast Scattering Code (version 2.0) is a computer program for predicting the three-dimensional scattered acoustic field produced by the interaction of known, time-harmonic, incident sound with aerostructures in the presence of potential background flow. The FSC has been developed for use as an aeroacoustic analysis tool for assessing global effects on noise radiation and scattering caused by changes in configuration (geometry, component placement) and operating conditions (background flow, excitation frequency).

  15. Parallel applications of the USNRC consolidated code

    NASA Astrophysics Data System (ADS)

    Gan, Jun; Downar, Thomas J.; Mahaffy, John H.; Uhle, Jennifer L.

    2001-07-01

    The United States Nuclear Regulatory Commission has developed the thermal-hydraulic analysis code TRAC-M to consolidate the capabilities of its suite of reactor safety analysis codes. One of the requirements for the new consolidated code is that it supports parallel computations to extend code functionality and to improve execution speed. A flexible request driven Exterior Communication Interface (ECI) was developed at Penn State University for use with the consolidated code and has enabled distributed parallel computing. This paper reports the application of TRAC-M and the ECI at Purdue University to a series of practical nuclear reactor problems. The performance of the consolidated code is studied on a shared memory machine, DEC Alpha 8400, in which a Large Break Loss of Coolant Accident (LBLOCA) analysis is applied for the safety analysis of the new generation reactor, AP600. The problem demonstrates the importance of balancing the computational for practical applications. Other computational platforms are also examined, to include the implementation of Linux and Windows OS on multiprocessor PCs. In general, the parallel performance on UNIX and Linux platforms is found to be the most stable and efficient.

  16. The use of staggered scheme and an absorbing buffer zone for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.

    1995-01-01

    Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop were studied using second and fourth order staggered spatial discretizations in conjunction with fourth order Runge-Kutta time integration. In addition, an absorbing buffer zone was used at the outflow boundaries. Promising results were obtained and provide a basis for application of these techniques to a wider variety of problems.

  17. Application of NASA General-Purpose Solver to Large-Scale Computations in Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Storaasli, Olaf O.

    2004-01-01

    Of several iterative and direct equation solvers evaluated previously for computations in aeroacoustics, the most promising was the NASA-developed General-Purpose Solver (winner of NASA's 1999 software of the year award). This paper presents detailed, single-processor statistics of the performance of this solver, which has been tailored and optimized for large-scale aeroacoustic computations. The statistics, compiled using an SGI ORIGIN 2000 computer with 12 Gb available memory (RAM) and eight available processors, are the central processing unit time, RAM requirements, and solution error. The equation solver is capable of solving 10 thousand complex unknowns in as little as 0.01 sec using 0.02 Gb RAM, and 8.4 million complex unknowns in slightly less than 3 hours using all 12 Gb. This latter solution is the largest aeroacoustics problem solved to date with this technique. The study was unable to detect any noticeable error in the solution, since noise levels predicted from these solution vectors are in excellent agreement with the noise levels computed from the exact solution. The equation solver provides a means for obtaining numerical solutions to aeroacoustics problems in three dimensions.

  18. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  19. FloTrac/Vigileo system monitoring in acute-care surgery: current and future trends.

    PubMed

    Tsai, Yung-Fong; Liu, Fu-Chao; Yu, Huang-Ping

    2013-11-01

    As acute critical-care surgery evolves, it is imperative to introduce reliable devices that can intraoperatively assess a patient's cardiovascular functions. Owing to the fact that traditional methods are usually invasive, non- or less-invasive innovations have attracted the attention of clinicians in recent decades. The FloTrac system monitors cardiovascular performance by analyzing peripheral arterial waveforms and a preset database, and it decreases the invasiveness by using a pulmonary arterial catheter. The reliability of cardiac output measurements was confirmed in many critically ill subjects in cardiac surgeries and intensive care units. Moreover, the FloTrac system is easy to set up, and interpreting the information is simple. The FloTrac system also provides a useful preload predictor, that is, stroke volume variation (SVV), for fluid management, which has been proven to enhance surgical safety in the treatment of critically ill patients. Goal-directed therapy guided by SVV and other hemodynamic variables was advocated for peri-operative fluid optimization. Although the evolution of each updated algorithm of the FloTrac system has demonstrated improved accuracy and limited shortcomings, the latest third-generation algorithm is still not equal to the gold standard reference. The accuracy of the latest third-generation algorithm is controversial in septic conditions, and its use is still unacceptable in liver transplantation. Due to vasoactive challenges, especially in the administration of norepinephrine, a conclusion could not be reached. Clinicians should recognize the appropriate uses and limitations when using the algorithm during acute critical surgeries. PMID:24147549

  20. An overview of the OmniTRACS: The first operational mobile Ku-band satellite communications

    NASA Technical Reports Server (NTRS)

    Salmasi, Allen

    1988-01-01

    The service features of the OmniTRACS system developed by Omninet Communications Services of Los Angeles, California are described. This system is the first operational mobile Ku-band satellite communications system that provides two-way messaging and position determination and reporting services to mobile users on a nationwide basis. The system uses existing Ku-band satellites under a secondary international allocation for mobile satellite services.

  1. TRAC-MIP: Tropical Rain bands with an Annual cycle and Continent - Model Intercomparison Project.

    NASA Astrophysics Data System (ADS)

    Biasutti, Michela; Voigt, Aiko; Scheff, Jack; Zeppetello, Lucas Randall

    2016-04-01

    Understanding and modeling tropical rainfall has proven to be one of the most stubborn challenges in climate science. Tropical rainfall biases such as a double inter-tropical convergence zone (ITCZ) in the East Pacific have now persisted more than two decades despite the general improvements of climate models, and projections for the ITCZ and the monsoon systems remain uncertain in magnitude and sign. Progress in these areas can be fostered by a set of idealized experiments that target the dynamics of tropical rain band, as long as these simple experiments are properly integrated within a full hierarchy of model simulations. To this aim, we have designed the "Tropical Rain belts with an Annual cycle and Continent - Model Intercomparison Project." TRAC-MIP involves five experiments using idealized aquaplanet and land setups to explore the dynamics of tropical rainfall. By using interactive sea-surface temperatures and seasonally-varying insolation TRAC-MIP fills the gap between idealized aquaplanet simulations with prescribed SSTs and the fully-coupled realistic model simulations of CMIP5. TRAC-MIP includes the participation of 13 state-of-the art comprehensive climate models, and it also includes a simplified model that neglects cloud and water-vapor radiative feedbacks, thus allowing a more direct connection between the results from the TRAC-MIP comprehensive models and the theoretical studies of tropical rain belt dynamics. We will present preliminary results from the ensemble, aiming to examine the mechanisms controlling tropical precipitation in the context of forced variability. First and foremost, we are interested in the largest forced variation: the annual cycle. Second, we are interested in the response to key forcings of the future (greenhouse gases) and of the Holocene (insolation). We will draw out the similarities and the distinctions between oceanic and continental rain bands, study the ways in which the two interact with each other, and investigate

  2. COBRA/RELAP5; A merged version of the COBRA-TF and RELAP5/MOD3 codes

    SciTech Connect

    Lee, S.Y.; Jeong, J.J.; Kim, S.H. ); Chang, S.H.

    1992-08-01

    This paper reports that the best-estimate thermal-hydraulic codes RELAP5/MOD3 and COBRA-TF were adopted to the Apollo DN 10000 workstation and subsequently merged. This was done to combine the excellent features of the two codes and thus product a code with much enhanced capability. The resulting code was named COBRA/RELAP5. This code has features in common with COBRA/TRAC or TRAC-PF1; three-dimensional reactor vessel and one-dimensional loop modeling capability. The merging of the two codes is focused on the hydrodynamic model and numerical solution schemes. In COBRA/RELAP5, the system pressure matrices of the two codes are merged and solved simultaneously. The merged COBRA/RELAP5 calculations are done in process-level parallel mode on the Apollo DN10000 computer with two central processing units.

  3. TRAC-PF1 post-test predictions for the Semiscale Natural-Circulation Tests S-NC-2 and S-NC-6. [PWR

    SciTech Connect

    Booker, C.P.

    1983-01-01

    The TRAC prediction are compared to the data for the Semiscale natural-circular Tests S-NC-2B and S-NC-6. S-NC-2B is a baseline test covering single- and two-phase natural circulation as well as reflux; here TRAC compares quite well with the experiment results for mass flow. For Test S-NC-6, which is a reflux test with various amounts of nitrogen injected into the system, the TRAC prediction of the reflux rate is close to the experiment value with no nitrogen in the system. Ultimately, the maximum reflux rate predicted by TRAC is about 20% higher than the data.

  4. An Assessment of Ares I-X Aeroacoustic Measurements with Comparisons to Pre-Flight Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Reed, Darren K.

    2011-01-01

    During the recent successful launch of the Ares I-X Flight Test Vehicle, aeroacoustic data was gathered at fifty-seven locations along the vehicle as part of the Developmental Flight Instrumentation. Several of the Ares I-X aeroacoustic measurements were placed to duplicate measurement locations prescribed in pre-flight, sub-scale wind tunnel tests. For these duplicated measurement locations, comparisons have been made between aeroacoustic data gathered during the ascent phase of the Ares I-X flight test and wind tunnel test data. These comparisons have been made at closely matching flight conditions (Mach number and vehicle attitude) in order to preserve a one-to-one relationship between the flight and wind tunnel data. These comparisons and the current wind tunnel to flight scaling methodology are presented and discussed. The implications of using wind tunnel test data scaled under the current methodology to predict conceptual launch vehicle aeroacoustic environments are also discussed.

  5. An Assessment of NASA Glenn's Aeroacoustic Experimental and Predictive Capabilities for Installed Cooling Fans. Part 1; Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Koch, L. Danielle; Wernet, Mark P.; Podboy, Gary G.

    2006-01-01

    Driven by the need for low production costs, electronics cooling fans have evolved differently than the bladed components of gas turbine engines which incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Drawing upon NASA Glenn's experience in the measurement and prediction of gas turbine engine aeroacoustic performance, tests have been conducted to determine if these tools and techniques can be extended for application to the aerodynamics and acoustics of electronics cooling fans. An automated fan plenum installed in NASA Glenn's Acoustical Testing Laboratory was used to map the overall aerodynamic and acoustic performance of a spaceflight qualified 80 mm diameter axial cooling fan. In order to more accurately identify noise sources, diagnose performance limiting aerodynamic deficiencies, and validate noise prediction codes, additional aerodynamic measurements were recorded for two operating points: free delivery and a mild stall condition. Non-uniformities in the fan s inlet and exhaust regions captured by Particle Image Velocimetry measurements, and rotor blade wakes characterized by hot wire anemometry measurements provide some assessment of the fan aerodynamic performance. The data can be used to identify fan installation/design changes which could enlarge the stable operating region for the fan and improve its aerodynamic performance and reduce noise emissions.

  6. Laser doppler velocimeter system for subsonic jet mixer nozzle testing at the NASA Lewis Aeroacoustic Propulsion Lab

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Saiyed, Naseem H.; Krupar, Martin J.

    1995-01-01

    A laser Doppler velocimeter (LDV) system developed for the Aeroacoustic Propulsion Laboratory (APL) at the NASA Lewis Research Center is described. This system was developed to acquire detailed flow field data which could be used to quantify the effectiveness of internal exhaust gas mixers (IEGM's) and to verify and calibrate computational codes. The LDV was used as an orthogonal, three component system to measure the flow field downstream of the exit of a series of IEGM's and a reference axisymmetric splitter configuration. The LDV system was also used as a one component system to measure the internal axial flow within the nozzle tailpipe downstream of the mixers. These IEGM's were designed for low-bypass ratio turbofan engines. The data were obtained at a simulated low flight speed, high-power operating condition. The optical, seeding, and data acquisition systems of the LDV are described in detail. Sample flow field measurements are provided to illustrate the capabilities of the system at the time of this test, which represented the first use of LDV at the APL. A discussion of planned improvements to the LDV is also included.

  7. Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D. (Editor)

    2004-01-01

    This publication contains the proceedings of the Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. In this workshop, as in previous workshops, the problems were devised to gauge the technological advancement of computational techniques to calculate all aspects of sound generation and propagation in air directly from the fundamental governing equations. A variety of benchmark problems have been previously solved ranging from simple geometries with idealized acoustic conditions to test the accuracy and effectiveness of computational algorithms and numerical boundary conditions; to sound radiation from a duct; to gust interaction with a cascade of airfoils; to the sound generated by a separating, turbulent viscous flow. By solving these and similar problems, workshop participants have shown the technical progress from the basic challenges to accurate CAA calculations to the solution of CAA problems of increasing complexity and difficulty. The fourth CAA workshop emphasized the application of CAA methods to the solution of realistic problems. The workshop was held at the Ohio Aerospace Institute in Cleveland, Ohio, on October 20 to 22, 2003. At that time, workshop participants presented their solutions to problems in one or more of five categories. Their solutions are presented in this proceedings along with the comparisons of their solutions to the benchmark solutions or experimental data. The five categories for the benchmark problems were as follows: Category 1:Basic Methods. The numerical computation of sound is affected by, among other issues, the choice of grid used and by the boundary conditions. Category 2:Complex Geometry. The ability to compute the sound in the presence of complex geometric surfaces is important in practical applications of CAA. Category 3:Sound Generation by Interacting With a Gust. The practical application of CAA for computing noise generated by turbomachinery involves the modeling of the noise source mechanism as a

  8. Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades

    NASA Technical Reports Server (NTRS)

    Lorence, Christopher B.; Hall, Kenneth C.

    1995-01-01

    A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide

  9. Aeroacoustic Testing of Wind Turbine Airfoils: February 20, 2004 - February 19, 2008

    SciTech Connect

    Devenport, W.; Burdisso, R. A.; Camargo, H.; Crede, E.; Remillieux, M.; Rasnick, M.; Van Seeters, P.

    2010-05-01

    The U.S. Department of Energy (DOE), working through its National Renewable Energy Laboratory (NREL), is engaged in a comprehensive research effort to improve the understanding of wind turbine aeroacoustics. The motivation for this effort is the desire to exploit the large expanse of low wind speed sites that tend to be close to U.S. load centers. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center (NWTC) is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. NWTC researchers are working hand in hand with engineers in industry to ensure that research findings are available to support ongoing design decisions.

  10. On the effective accuracy of spectral-like optimized finite-difference schemes for computational aeroacoustics

    NASA Astrophysics Data System (ADS)

    Cunha, G.; Redonnet, S.

    2014-04-01

    The present article aims at highlighting the strengths and weaknesses of the so-called spectral-like optimized (explicit central) finite-difference schemes, when the latter are used for numerically approximating spatial derivatives in aeroacoustics evolution problems. With that view, we first remind how differential operators can be approximated using explicit central finite-difference schemes. The possible spectral-like optimization of the latter is then discussed, the advantages and drawbacks of such an optimization being theoretically studied, before they are numerically quantified. For doing so, two popular spectral-like optimized schemes are assessed via a direct comparison against their standard counterparts, such a comparative exercise being conducted for several academic test cases. At the end, general conclusions are drawn, which allows us discussing the way spectral-like optimized schemes shall be preferred (or not) to standard ones, when it comes to simulate real-life aeroacoustics problems.

  11. The aero-acoustic Galbrun equation in the time domain with perfectly matched layer boundary conditions.

    PubMed

    Feng, Xue; Ben Tahar, Mabrouk; Baccouche, Ryan

    2016-01-01

    This paper presents a solution for aero-acoustic problems using the Galbrun equation in the time domain with a non-uniform steady mean flow in a two-dimensional coordinate system and the perfectly matched layer technique as the boundary conditions corresponding to an unbounded domain. This approach is based on an Eulerian-Lagrangian description corresponding to a wave equation written only in terms of the Lagrangian perturbation of the displacement. It is an alternative to the Linearized Euler Equations for solving aero-acoustic problems. The Galbrun equation is solved using a mixed pressure-displacement Finite Element Method. A complex Laplace transform scheme is used to study the time dependent variables. Several numerical examples are presented to validate and illustrate the efficiency of the proposed approach. PMID:26827028

  12. Inhomogeneous Radiation Boundary Conditions Simulating Incoming Acoustic Waves for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Fang, Jun; Kurbatskii, Konstantin A.

    1996-01-01

    A set of nonhomogeneous radiation and outflow conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as nondispersive ans nondissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is necessary The proposed nonhomogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes.

  13. Calculation of the Aerodynamic Behavior of the Tilt Rotor Aeroacoustic Model (TRAM) in the DNW

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 1/4-scale V- 22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance and airloads for helicopter mode operation, as well as calculated induced and profile power. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  14. Computational Aeroacoustics by the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Jorgenson, Phil C. E. (Technical Monitor)

    2000-01-01

    The Space-Time Conservation Element and Solution Element Method, or CE/SE Method for short, is a newly developed numerical method for conservation laws. Despite its second order accuracy, it possesses low dispersion errors and low dissipation. The method is robust enough to cover a wide spectrum of compressible flows: from weak linear acoustic waves to strong discontinuous waves (shocks). An outstanding feature of the CE/SE scheme is its novel, simple but effective non-reflecting boundary condition (NRBC), which is particularly valuable for CAA (computational aeroacoustics). In this seminar, the 1-D and 2-D unstructured version of the CE/SE schemes are first briefly described. Secondly, some discussions on the NRBC are given. Then, various examples for linear, nonlinear aeroacoustics are presented.

  15. Aeroacoustic diffraction and dissipation by a short propeller cowl in subsonic flight

    NASA Technical Reports Server (NTRS)

    Martinez, Rudolph

    1993-01-01

    This report develops and applies an aeroacoustic diffraction theory for a duct, or cowl, placed around modelled sources of propeller noise. The regime of flight speed is high subsonic. The modelled cowl's inner wall contains a liner with axially variable properties. Its exterior is rigid. The analysis replaces both sides with an unsteady lifting surface coupled to a dynamic thickness problem. The resulting pair of aeroacoustic governing equations for a lined 'ring wing' is valid both for a passive and for an active liner. Their numerical solution yields the effective dipole and monopole distributions of the shrouding system and thereby determines the cowl-diffracted component of the total radiated field. The sample calculations here include a preliminary parametric search for that liner layout which maximizes the cowl's shielding effectiveness. The main conclusion of the study is that a short cowl, passively lined, should provide moderate reductions in propeller noise.

  16. Predicting vibratory stresses from aero-acoustic loads

    NASA Astrophysics Data System (ADS)

    Shaw, Matthew D.

    Sonic fatigue has been a concern of jet aircraft engineers for many years. As engines become more powerful, structures become more lightly damped and complex, and materials become lighter, stiffer, and more complicated, the need to understand and predict structural response to aeroacoustic loads becomes more important. Despite decades of research, vibration in panels caused by random pressure loads, such as those found in a supersonic jet, is still difficult to predict. The work in this research improves on current prediction methods in several ways, in particular for the structural response due to wall pressures induced by supersonic turbulent flows. First, solutions are calculated using time-domain input pressure loads that include shock cells and their interaction with turbulent flow. The solutions include both mean (static) and oscillatory components. Second, the time series of stresses are required for many fatigue assessment counting algorithms. To do this, a method is developed to compute time-dependent solutions in the frequency domain. The method is first applied to a single-degree-of-freedom system. The equations of motion are derived and solved in both the frequency domain and the time domain. The pressure input is a random (broadband) signal representative of jet flow. The method is then applied to a simply-supported beam vibrating in flexure using a line of pressure inputs computed with computational fluid dynamics (CFD). A modal summation approach is used to compute structural response. The coupling between the pressure field and the structure, through the joint acceptance, is reviewed and discussed for its application to more complicated structures. Results from the new method and from a direct time domain method are compared for method verification. Because the match is good and the new frequency domain method is faster computationally, it is chosen for use in a more complicated structure. The vibration of a two-dimensional panel loaded by jet

  17. An acoustic intensity-based method and its aeroacoustic applications

    NASA Astrophysics Data System (ADS)

    Yu, Chao

    of elliptic equations. Hence the AIBM is more stable and the reconstructed acoustic pressure is less dependent on the locations of the input acoustic data. The solution of the modified Helmholtz equation in the frequency domain is approximated by finite linear combination of basis functions. The coefficients associated with the basis functions are obtained by matching the assumed general solution to the given input data over an open control surface. The details on the optimization method, the instability issue and the numerical implementation of the AIBM have been discussed in the dissertation. To verify the AIBM model, several acoustic radiation examples are solved, e.g. multiple sources radiation. The analytical acoustic pressure and its normal derivative on a partial spherical control surface are used as the input for the AIBM. The reconstructed acoustic field is obtained then compared with the analytical acoustic field. Excellent agreement is achieved and demonstrated. Some affecting factors on the AIBM, e.g. input locations and the signal-to-noise ratio, are also investigated. In addition, the potential of AIBM in broad-band noise prediction is examined in vortex/trailing edge interaction problem. Furthermore, a series of real world model problems are chosen to demonstrate the capability and potential of AIBM in CAA applications. Two important aircraft noises: turbofan noise and airframe noise, are studied in detail. Both the permeable surface FW-H equation method and the AIBM are used to evaluate the radiated field. The prediction results obtained from the AIBM and the FW-H integral method are compared with the solution from the CFD/CAA method. The accuracy and efficiency of both the AIBM and the FW-H integral method are analyzed. In summary, the "open surface" AIBM makes up the drawbacks of traditional "closed surface" approaches. It provides an effective alternative for the far-field acoustic prediction of practical aeroacoustic problems.

  18. One-Step Direct Aeroacoustic Simulation Using Space-Time Conservation Element and Solution Element Method

    NASA Astrophysics Data System (ADS)

    Ho, C. Y.; Leung, R. C. K.; Zhou, K.; Lam, G. C. Y.; Jiang, Z.

    2011-09-01

    One-step direct aeroacoustic simulation (DAS) has received attention from aerospace and mechanical high-pressure fluid-moving system manufacturers for quite some time. They aim to simulate the unsteady flow and acoustic field in the duct simultaneously in order to investigate the aeroacoustic generation mechanisms. Because of the large length and energy scale disparities between the acoustic far field and the aerodynamic near field, highly accurate and high-resolution simulation scheme is required. This involves the use of high order compact finite difference and time advancement schemes in simulation. However, in this situation, large buffer zones are always needed to suppress the spurious numerical waves emanating from computational boundaries. This further increases the computational resources to yield accurate results. On the other hand, for such problem as supersonic jet noise, the numerical scheme should be able to resolve both strong shock waves and weak acoustic waves simultaneously. Usually numerical aeroa-coustic scheme that is good for low Mach number flow is not able to give satisfactory simulation results for shock wave. Therefore, the aeroacoustic research community has been looking for a more efficient one-step DAS scheme that has the comparable accuracy to the finite-difference approach with smaller buffer regions, yet is able to give accurate solutions from subsonic to supersonic flows. The conservation element and solution element (CE/SE) scheme is one of the possible schemes satisfying the above requirements. This paper aims to report the development of a CE/SE scheme for one-step DAS and illustrate its robustness and effectiveness with two selected benchmark problems.

  19. Numerical analysis of aeroacoustic-structural interaction of a flexible panel in uniform duct flow.

    PubMed

    Fan, Harris K H; Leung, Randolph C K; Lam, Garret C Y

    2015-06-01

    Accurate prediction of the acoustics of fluid-structure interaction is important in devising quieting designs for engineering systems equipped with extensive flow duct networks where the thin duct wall panels are in contact with the flowing fluid. The flow unsteadiness generates acoustic waves that propagate back to the source region to modify the flow process generating them. Meanwhile the unsteady flow pressure excites the thin panels to vibrate, which in turn modifies the flow processes. Evidently a strong coupling between the fluid aeroacoustics and the panel structural dynamics exists. Such coupled physical processes have to be thoroughly understood; otherwise, effective quieting design is never achieved. This paper reports an analysis, using a time-domain numerical methodology the authors have recently developed, of the nonlinear aeroacoustic-structural interaction experienced by a flexible panel in a duct carrying a uniform mean flow. With no mean flow, the numerical results agree well with existing theories and reveal the physics of duct transmission loss. Four regimes of aeroacoustic-structural interaction are identified when the duct flow velocity increases from low subsonic to low supersonic values. Insight in the underlying physics of duct transmission loss at different velocities are highlighted and discussed. PMID:26093403

  20. A Large Hemi-Anechoic Enclosure for Community-Compatible Aeroacoustic Testing of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1993-01-01

    A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.

  1. An Experimental Investigation of the Aeroacoustics of a Two-Dimensional Bifurcated Supersonic Inlet

    NASA Astrophysics Data System (ADS)

    LI, S.-M.; HANUSKA, C. A.; NG, W. F.

    2001-11-01

    An experiment was conducted on a two-dimensional bifurcated, supersonic inlet to investigate the aeroacoustics at take-off and landing conditions. A 104·1 mm (4·1 in) diameter turbofan simulator was coupled to the inlet to generate the noise typical of a turbofan engine. Aerodynamic and acoustic data were obtained in an anechoic chamber under ground-static conditions (i.e., no forward flight effect). Results showed that varying the distance between the trailing edge of the bifurcated ramp of the inlet and the fan face had negligible effect on the total noise level. Thus, one can have a large freedom to design the bifurcated ramp mechanically and aerodynamically, with minimum impact on the aeroacoustics. However, the effect of inlet guide vanes' (IGV) axial spacing to the fan face has a first order effect on the aeroacoustics for the bifurcated 2-D inlet. As much as 5 dB reduction in the overall sound pressure level and as much as 15 dB reduction in the blade passing frequency tone were observed when the IGV was moved from 0·8 chord of rotor blade upstream of the fan face to 2·0 chord of the blade upstream. The wake profile similarity of the IGV was also found in the flow environment of the 2-D bifurcated inlet, i.e., the IGV wakes followed the usual Gauss' function.

  2. A hybrid approach to the computational aeroacoustics of human voice production.

    PubMed

    Šidlof, P; Zörner, S; Hüppe, A

    2015-06-01

    The aeroacoustic mechanisms in human voice production are complex coupled processes that are still not fully understood. In this article, a hybrid numerical approach to analyzing sound generation in human voice production is presented. First, the fluid flow problem is solved using a parallel finite-volume computational fluid dynamics (CFD) solver on a fine computational mesh covering the larynx. The CFD simulations are run for four geometrical configurations: both with and without false vocal folds, and with fixed convergent or convergent-divergent motion of the medial vocal fold surface. Then the aeroacoustic sources and propagation of sound waves are calculated using Lighthill's analogy or acoustic perturbation equations on a coarse mesh covering the larynx, vocal tract, and radiation region near the mouth. Aeroacoustic sound sources are investigated in the time and frequency domains to determine their precise origin and correlation with the flow field. The problem of acoustic wave propagation from the larynx and vocal tract into the free field is solved using the finite-element method. Two different vocal-tract shapes are considered and modeled according to MRI vocal-tract data of the vowels /i/ and /u/. The spectra of the radiated sound evaluated from acoustic simulations show good agreement with formant frequencies known from human subjects. PMID:25288479

  3. TRAC loss-of-coolant accident analyses of the Savannah River production reactors

    SciTech Connect

    Lime, J.F.; Motley, F.E. )

    1990-06-01

    TRAC loss-of-coolant accident (LOCA) analyses were performed as part of the independent safety review of the US Department of Energy's Savannah River (SR) production reactors. The double-ended guillotine break in a coolant loop is a design-basis LOCA for the SR reactors. Three break locations were analyzed to determine the worst break location: (1) at the pump-suction flange; (2) at the pump discharge flange; or (3) at the plenum inlet. The plenum-inlet break was shown to be the most severe in terms of minimum flow delivered to each fuel assembly in the reactor core.

  4. Introducing structured caregiver training in stroke care: findings from the TRACS process evaluation study

    PubMed Central

    Clarke, David J; Hawkins, R; Sadler, E; Harding, G; McKevitt, C; Godfrey, M; Dickerson, J; Farrin, A J; Kalra, L; Smithard, D; Forster, A

    2014-01-01

    Objective To evaluate the process of implementation of the modified London Stroke Carers Training Course (LSCTC) in the Training Caregivers After Stroke (TRACS) cluster randomised trial and contribute to the interpretation of the TRACS trial results. The LSCTC was a structured competency-based training programme designed to help develop the knowledge and skills (eg, patient handling or transfer skills) essential for the day-to-day management of disabled survivors of stroke. The LSCTC comprised 14 components, 6 were mandatory (and delivered to all) and 8 non-mandatory, to be delivered based on individual assessment of caregiver need. Design Process evaluation using non-participant observation, documentary analysis and semistructured interviews. Participants Patients with stroke (n=38), caregivers (n=38), stroke unit staff (n=53). Settings 10 of the 36 stroke units participating in the TRACS trial in four English regions (Yorkshire, North West, South East and South West, Peninsula). Results Preparatory cascade training on delivery of the LSCTC did not reach all staff and did not lead to multidisciplinary team (MDT) wide understanding of, engagement with or commitment to the LSCTC. Although senior therapists in most intervention units observed developed ownership of the LSCTC, MDT working led to separation rather than integration of delivery of LSCTC elements. Organisational features of stroke units and professionals’ patient-focused practices limited the involvement of caregivers. Caregivers were often invited to observe therapy or care being provided by professionals but had few opportunities to make sense of, or to develop knowledge and stroke-specific skills provided by the LSCTC. Where provided, caregiver training came very late in the inpatient stay. Assessment and development of caregiver competence was not commonly observed. Conclusions Contextual factors including service improvement pressures and staff perceptions of the necessity for and work required in

  5. Target localization accuracy in a respiratory phantom using BrainLAB ExacTrac and 4DCT imaging.

    PubMed

    Matney, Jason E; Parker, Brent C; Neck, Daniel W; Henkelmann, Greg; Rosen, Isaac I

    2011-01-01

    This study evaluated the accuracy of measuring the motion of an internal target using four-dimensional computed tomography (4DCT) scanning and the BrainLAB ExacTrac X-ray imaging system. Displacements of a metal coil implanted in a commercial respiratory phantom were measured in each system and compared to the known motion. A commercial respiratory motion phantom containing a metal coil as a surrogate target was used. Phantom longitudinal motions were sinusoidal with a 4.0 second period and amplitudes ranging from 5-25 mm. We acquired 4DCT and ExacTrac images of the coil at specified respiratory phases and recorded the coordinates of the coil ends. Coil displacement relative to the 0% phase (full-inhale) position were computed for the ExacTrac and 4DCT imaging systems. Coil displacements were compared to known displacements based on the phantom's sinusoidal motion. Coil length distortion due to 4DCT phase binning was compared to the known physical length of the coil (31 mm). The maximum localization error for both coil endpoints for all motion settings was 3.5 mm for the 4DCT and 0.8 mm for the ExacTrac gating system. Coil length errors measured on the 4DCT were less than 0.8 mm at end inhale/exhale phases, but up to 8.3 mm at mid-inhalation phases at the largest motion amplitude (25 mm). Due to the fast image acquisition time (100 ms), no coil distortion was observable in the ExacTrac system. 4DCT showed problems imaging the coil during mid-respiratory phases of higher velocity (phases 20%-30% and 70%-80%) due to distortion caused by residual motion within the 4DCT phase bin. The ExacTrac imaging system was able to accurately localize the coil in the respiratory phantom over all phases of respiration. For our clinic, where end-respiration phases from 4DCT may be used for treatment planning calculations, the ExacTrac system is used to measure internal target motion. With the ExacTrac system, planning target size and motion uncertainties are minimized, potentially

  6. TOOKUIL: A case study in user interface development for safety code application

    SciTech Connect

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.; Peebles, R.C.; Smith, R.J.

    1996-11-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.

  7. TOOKUIL: A case study in user interface development for safety code application

    SciTech Connect

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.

    1997-07-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.

  8. Hemodynamic Monitoring During Heated Intraoperative Intraperitoneal Chemotherapy Using the FloTrac/Vigileo System

    PubMed Central

    Mavroudis, Christos; Alevizos, Leonidas; Stamou, Konstantinos M.; Vogiatzaki, Theodosia; Eleftheriadis, Savvas; Korakianitis, Odysseas; Tentes, Antonios A.; Iatrou, Christos

    2015-01-01

    Cytoreductive surgery with HIPEC has provided a chance for long-term survival in selected patients. However, perioperative management remains a challenge for the anesthesiology team. The aim of this study was to evaluate the changes in hemodynamic parameters during hyperthermic intraperitoneal chemotherapy (HIPEC) using the FloTrac/Vigileo system. Forty-one consecutive patients undergoing cytoreductive surgery and HIPEC were enrolled. Heart rate (HR), esophageal temperature, and cardiac output (CO) steadily increased until the end of HIPEC. In the first half of HIPEC, systolic blood pressure (SBP) and central venous pressure (CVP) increased whereas systemic vascular resistance (SVR) decreased; SVR stabilized in the second half. Diastolic blood pressure (DBP), mean arterial pressure (MAP), and stroke volume (SV) showed no significant variation. Male gender was related to increased CVP, CO, and SV, and decreased SVR; age >55 years was related to increased SBP, and peritoneal cancer index (PCI) was correlated with HR, DBP, and SV. PCI >14 was associated with increased HR and decreased DBP and MAP. American Society of Anesthesiologists score >1 was related to decreased CO and SV. Patients undergoing HIPEC develop a hyperdynamic circulatory state because of the increased temperature, characterized by a steady decrease in SVR and continuous increase in HR and CO. FloTrac/Vigileo system may provide an easy-to-handle, noninvasive monitoring tool. PMID:25590363

  9. EYE-TRAC: monitoring attention and utility for mTBI

    NASA Astrophysics Data System (ADS)

    Maruta, Jun; Tong, Jianliang; Lee, Stephanie W.; Iqbal, Zarah; Schonberger, Alison; Ghajar, Jamshid

    2012-06-01

    Attention is a core function in cognition and also the most prevalent cognitive deficit in mild traumatic brain injury (mTBI). Predictive timing is an essential element of attention functioning because sensory processing and execution of goal-oriented behavior are facilitated by temporally accurate prediction. It is hypothesized that impaired synchronization between prediction and external events accounts for the attention deficit in mTBI. Other cognitive and somatic or affective symptoms associated with mTBI may be explained as secondary consequences of impaired predictive timing. Eye-Tracking Rapid Attention Computation (EYE-TRAC) is the quantification of predictive timing with indices of dynamic visuo-motor synchronization (DVS) between the gaze and the target during continuous predictive visual tracking. Such quantification allows for cognitive performance monitoring in comparison to the overall population as well as within individuals over time. We report preliminary results of normative data and data collected from subjects with a history of mTBI within 2 weeks of injury and post-concussive symptoms at the time of recruitment. A substantial proportion of mTBI subjects demonstrated DVS scores worse than 95% of normal subjects. In addition, longitudinal monitoring of acute mTBI subjects showed that initially abnormal DVS scores were followed by improvement toward the normal range. In summary, EYE-TRAC provides fast and objective indices of DVS that allow comparison of attention performance to a normative standard and monitoring of within-individual changes.

  10. 76 FR 21033 - Core Industries, Inc., DBA Star Trac, Including On-Site Leased Workers From Aerotek, Helpmates...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... published in the Federal Register on March 10, 2011 (75 FR 13230). At the request of the company, the... Employment and Training Administration Core Industries, Inc., DBA Star Trac, Including On-Site Leased Workers From Aerotek, Helpmates, Mattson, and Empire Staffing, Irvine, CA and Core Industries, Inc., DBA...

  11. Financial Health of the Higher Education Sector: Financial Results and TRAC Outcomes 2013-14. Issues Paper 2015/07

    ERIC Educational Resources Information Center

    Higher Education Funding Council for England, 2015

    2015-01-01

    This report provides an overview of the financial health of the Higher Education Funding Council for England (HEFCE)-funded higher education sector in England. The analysis covers financial results for the academic year 2013-14, as submitted to HEFCE in December 2014, as well as the outcomes from the sector's Transparent Approach to Costing (TRAC)…

  12. Undergraduate Full Text Databases: "Bell and Howell Medical Complete" and "InfoTrac Health Reference Center - Academic."

    ERIC Educational Resources Information Center

    Salisbury, Lutishoor; Davidson, Bryan; Bailey, Alberta

    2000-01-01

    Compares/contrasts InfoTrac and ProQuest primarily as full-text resources to supplement retrieval of references contained in the Cumulative Index to Nursing and Allied Health Literature (CINAHL) database. These databases are analyzed by examining their scope in terms of the number and types of serials covered within specific areas using "Ulrich's"…

  13. 76 FR 23644 - Solicitation of Nominations for Members of the Transit Rail Advisory Committee for Safety (TRACS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ..., FTA issued an initial notice (75 FR 5172) soliciting nominations to serve on TRACS. From that... knowledge base with professionals who have done academic research in the safety field. DATES: Applications... agencies. The FTA Administrator is now seeking to increase the representation from members of the...

  14. Towards a Numerical Description of Volcano Aeroacoustic Source Processes using Lattice Boltzmann Strategies

    NASA Astrophysics Data System (ADS)

    Brogi, F.; Malaspinas, O.; Bonadonna, C.; Chopard, B.; Ripepe, M.

    2015-12-01

    Low frequency (< 20Hz) acoustic measurements have a great potential for the real time characterization of volcanic plume source parameters. Using the classical source theory, acoustic data can be related to the exit velocity of the volcanic jet and to mass eruption rate, based on the geometric constrain of the vent and the mixture density. However, the application of the classical acoustic source models to volcanic explosive eruptions has shown to be challenging and a better knowledge of the link between the acoustic radiation and actual volcanic fluid dynamics processes is required. New insights into this subject could be given by the study of realistic aeroacoustic numerical simulations of a volcanic jet. Lattice Boltzmann strategies (LBS) provide the opportunity to develop an accurate, computationally fast, 3D physical model for a volcanic jet. In the field of aeroacoustic applications, dedicated LBS has been proven to have the low dissipative properties needed for capturing the weak acoustic pressure fluctuations. However, due to the big disparity in magnitude between the flow and the acoustic disturbances, even weak spurious noise sources in simulations can ruin the accuracy of the acoustic predictions. Reflected waves from artificial boundaries defined around the flow region can have significant influence on the flow field and overwhelm the acoustic field of interest. In addition, for highly multiscale turbulent flows, such as volcanic plumes, the number of grid points needed to represent the smallest scales might become intractable and the most complicated physics happen only in small portions of the computational domain. The implementation of the grid refinement, in our model allow us to insert local finer grids only where is actually needed and to increase the size of the computational domain for running more realistic simulations. 3D LBS model simulations for turbulent jet aeroacoustics have been accurately validated. Both mean flow and acoustic results

  15. Aero-acoustic performance characteristics of duct burning turbofan exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.; Gutierrez, O.

    1976-01-01

    A recent experimental investigation has identified the aero/acoustic characteristics of exhaust nozzles for duct heating turbofan engines over a range of simulated flow conditions. Jet noise and performance levels are summarized for a series of coannular nozzles representing both acoustically suppressed and unsuppressed designs operating in a static environment. The basic coannular nozzles were found to provide inherent noise suppression. Multi-element suppressor nozzles provided additional noise suppression, but with appreciable thrust loss. The impact of these results on the advanced supersonic transport studies is also presented, indicating potentially large reductions in take-off gross weight or community noise footprints.

  16. Large-Scale Simulations and Detailed Flow Field Measurements for Turbomachinery Aeroacoustics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    The presentation is a review of recent work in highly loaded compressors, turbine aeroacoustics and cooling fan noise. The specific topics are: the importance of correct numerical modeling to capture blade row interactions in the Ultra Efficient Engine Technology Proof-of-Concept Compressor, the attenuation of a detonation pressure wave by an aircraft axial turbine stage, current work on noise sources and acoustic attenuation in turbines, and technology development work on cooling fans for spaceflight applications. The topic areas were related to each other by certain themes such as the advantage of an experimentalist s viewpoint when analyzing numerical simulations and the need to improve analysis methods for very large numerical datasets.

  17. Multiple line arrays for the characterization of aeroacoustic sources using a time-reversal method.

    PubMed

    Mimani, A; Doolan, C J; Medwell, P R

    2013-10-01

    This letter investigates the use of multiple line arrays (LAs) in a Time-Reversal Mirror for localizing and characterizing multipole aeroacoustic sources in a uniform subsonic mean flow using a numerical Time-Reversal (TR) method. Regardless of the original source characteristics, accuracy of predicting the source location can be significantly improved using at least two LAs. Furthermore, it is impossible to determine the source characteristics using a single LA, rather a minimum of two are required to establish either the monopole or dipole source nature, while four LAs (fully surrounding the source) are required for characterizing a lateral quadrupole source. PMID:24116538

  18. Flow aeroacoustic damping using coupled mechanical-electrical impedance in lined pipeline

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Huang, Yi-Yong; Chen, Xiao-Qian; Bai, Yu-Zhu; Tan, Xiao-Dong

    2015-05-01

    We report a new noise-damping concept which utilizes a coupled mechanical-electrical acoustic impedance to attenuate an aeroacoustic wave propagating in a moving gas confined by a cylindrical pipeline. An electrical damper is incorporated to the mechanical impedance, either through the piezoelectric, electrostatic, or electro-magnetic principles. Our numerical study shows the advantage of the proposed methodology on wave attenuation. With the development of the micro-electro-mechanical system and material engineering, the proposed configuration may be promising for noise reduction. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404405, 91216201, 51205403, and 11302253).

  19. Analysis of SRB reentry acoustic environments. [aeroacoustic spectra determined from wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Coffin, T.; Dandridge, R. E.; Haddock, U. W.

    1979-01-01

    Space shuttle solid rocket booster reentry aeroacoustic environments were estimated. Particular emphasis was given to the aft skirt/exit plane region for the Mach number regime 0.6 = or greater than M infinity = or less than 3.5. The analysis is based on the evaluation of wind tunnel model results in conjunction with Monte Carlo simulation of trajectory parameters. The experimental approach is described as well as the evaluation process utilized. Predicted environments are presented in terms of one-third octave band spectra representing space averaged values for critical regions on the solid rocket booster.

  20. Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 1: Noise Sources

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1991-01-01

    Methodology recommended to evaluate aeroacoustic related problems is provided, and approaches to their solutions are suggested without extensive tables, nomographs, and derivations. Orientation is toward flight vehicles and emphasis is on underlying physical concepts. Theoretical, experimental, and applied aspects are covered, including the main formulations and comparisons of theory and experiment. The topics covered include: propeller and propfan noise, rotor noise, turbomachinery noise, jet noise classical theory and experiments, noise from turbulent shear flows, jet noise generated by large-scale coherent motion, airframe noise, propulsive lift noise, combustion and core noise, and sonic booms.

  1. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  2. Quantifying reactor safety margins: Application of CSAU (Code Scalability, Applicability and Uncertainty) methodology to LBLOCA: Part 3, Assessment and ranging of parameters for the uncertainty analysis of LBLOCA codes

    SciTech Connect

    Wulff, W.; Boyack, B.E.; Duffey, R.B.; Griffith, P.; Katsma, K.R.; Lellouche, G.S.; Levy, S.; Rohatgi, U.S.; Wilson, G.E.; Zuber, N.

    1988-01-01

    Comparisons of results from TRAC-PF1/MOD1 code calculations with measurements from Separate Effects Tests, and published experimental data for modeling parameters have been used to determine the uncertainty ranges of code input and modeling parameters which dominate the uncertainty in predicting the Peak Clad Temperature for a postulated Large Break Loss of Coolant Accident (LBLOCA) in a four-loop Westinghouse Pressurized Water Reactor. The uncertainty ranges are used for a detailed statistical analysis to calculate the probability distribution function for the TRAC code-predicted Peak Clad Temperature, as is described in an attendant paper. Measurements from Separate Effects Tests and Integral Effects Tests have been compared with results from corresponding TRAC-PF1/MOD1 code calculations to determine globally the total uncertainty in predicting the Peak Clad Temperature for LBLOCAs. This determination is in support of the detailed statistical analysis mentioned above. The analyses presented here account for uncertainties in input parameters, in modeling and scaling, in computing and in measurements. The analyses are an important part of the work needed to implement the Code Scalability, Applicability and Uncertainty (CSAU) methodology. CSAU is needed to determine the suitability of a computer code for reactor safety analyses and the uncertainty in computer predictions. The results presented here are used to estimate the safety margin of a particular nuclear reactor power plant for a postulated accident. 25 refs., 10 figs., 11 tabs.

  3. [Safe:Trac course series of the German Society for Trauma Surgery on patient safety].

    PubMed

    Burghofer, K; Lackner, C K

    2009-08-01

    Based on crew resource management of the airline industry the German Society for Trauma Surgery (Deutsche Gesellschaft für Unfallchirurgie, DGU) was the first scientific community in Germany to develop and implement a training course for patient safety. The S:training courses contain four course formats which focus on the prehospital life support (S:PLS), the operating room (S:OR), the trauma room (S:TR) and the intensive care unit (S:ICU). In the training the importance of the human factor for the management of acute major trauma is developed by means of presentations, training videos, practical training, discussions and realistic case scenarios associated with the special working environment of the participants. A specially developed course manual acts as a work and reference book and course booking is possible at http://www.safe-trac.de. PMID:19644664

  4. TRAC-PF1/MOD1 post-test calculations of the OECD (Organisation for Economic Co-operation and Development) LOFT experiment LP-SB-2

    SciTech Connect

    Pelayo, F. )

    1990-12-01

    An analysis of the OECD-LOFT-LP-SB-2 experiment making use of TRAC-PF1/MOD1 is described in the report. LP-SB2 experiment studies the effect of a delayed pump trip in a small break LOCA scenario with a 3 inches equivalent diameter break in the hot leg of a commercial PWR operating at full power. The experiment was performed on 14 July 1983 in the LOFT facility at the Idaho National Engineering Laboratory under the auspices of the Organization for Economic Co-operation and Development (OECD). This analysis presents an evaluation of the code capability in reproducing the complex phenomena which determined the LP-SB-2 transient evolution. the analysis comprises the results obtained from two different runs. The first run is described in detail analysing the main variables over two time spans: short and longer term. Several conclusions are drawn and then a second run testing some of these conclusions is shown. All of the calculations were preformed at the United Kingdom Atomic Energy Establishment at Winfrith under the auspices of an agreement between the UKAEA (United Kingdom Atomic Energy Authority) and the Consejo de Seguridad Nuclear Espanol (CSN). 16 refs., 64 figs., 6 tabs.

  5. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  6. An experimental application of aeroacoustic time-reversal to the Aeolian tone.

    PubMed

    Mimani, A; Prime, Z; Moreau, D J; Doolan, C J

    2016-02-01

    This paper presents an experimental application of the aeroacoustic time-reversal (TR) source localization technique for studying flow-induced noise problems and compares the TR results with those obtained using conventional beamforming (CB). Experiments were conducted in an anechoic wind tunnel for the benchmark test-case of a full-span circular cylinder located in subsonic cross-flow wherein the far-field acoustic pressure was sampled using two line arrays (LAs) of microphones located above and below the cylinder. The source map obtained using the signals recorded at the two LAs without modeling the reflective surfaces of the contraction-outlet and cylinder during TR simulations revealed the lift-dipole nature of aeroacoustic source generated at the Aeolian tone; however, it indicates an error of 3/20 of Aeolian tone wavelength in the predicted location. Modeling the reflective contraction-outlet during TR was shown to improve the focal-resolution of the source and reduce side-lobe levels, especially in the low-frequency range. The experimental TR results were shown to be comparable to (a) the simulation results of an idealized dipole at the cylinder location in wind-tunnel flow and (b) that obtained by monopole and dipole CB, thereby demonstrating the suitability of TR method as a diagnostic tool to analyze flow-induced noise generation mechanism. PMID:26936557

  7. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    NASA Technical Reports Server (NTRS)

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.

  8. Comparison of measured aeroacoustic source spectra to predictions using a jet model

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel; Krane, Michael

    2009-11-01

    Sound radiated from a turbulent jet-wall interaction in a duct is measured for several jet-wall interaction geometries, for which the acoustic response of the duct was identical at low frequencies. This sound production mechanism is identical to that of unvoiced speech sounds. Traditionally in these cases, the speech science community has stressed the acoustic filter's role in determining the radiated sound, and has neglected the importance of the aeroacoustic source. When the local source region aerodynamics, such as the mean jet path relative to the wall and the jet speed are varied, but the acoustic filter held constant, distinct differences due to the aeroacoustic source are observable in the radiated sound. The source spectra are determined and qualitatively compared to an analytical model, and the distinct differences in the source spectra are described theoretically, whereas the classical approach would not have been able to theoretically describe these results. It is concluded that the turbulent jet's path makes a crucial contribution to the `shape' of the source spectrum and that unvoiced speech sound production depends as much on the local details of the source region aerodynamics and geometry as it does on the acoustic filter.

  9. Multidimensional Generalized Functions in Aeroacoustics and Fluid Mechanics. Part 1; Basic Concepts and Operations

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun; Myers, Michael K.

    2011-01-01

    This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.

  10. Nonlinear Aeroacoustics Computations by the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2003-01-01

    The Space-Time Conservation Element and Solution Element Method, or CE/SE Method for short, is a recently developed numerical method for conservation laws. Despite its second order accuracy in space and time, it possesses low dispersion errors and low dissipation. The method is robust enough to cover a wide range of compressible flows: from weak linear acoustic waves to strong discontinuous waves (shocks). An outstanding feature of the CE/SE scheme is its truly multi-dimensional, simple but effective non-reflecting boundary condition (NRBC), which is particularly valuable for computational aeroacoustics (CAA). In nature, the method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its careful treatment of the surface fluxes and geometry, it is different from the existing schemes. Currently, the CE/SE scheme has been developed to a matured stage that a 3-D unstructured CE/SE Navier-Stokes solver is already available. However, in the present review paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen and sketched in section 2. Then applications of the 2-D and 3-D CE/SE schemes to linear, and in particular, nonlinear aeroacoustics are depicted in sections 3, 4, and 5 to demonstrate its robustness and capability.

  11. Working With the Wave Equation in Aeroacoustics: The Pleasures of Generalized Functions

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.; Dunn, mark H.

    2007-01-01

    The theme of this paper is the applications of generalized function (GF) theory to the wave equation in aeroacoustics. We start with a tutorial on GFs with particular emphasis on viewing functions as continuous linear functionals. We next define operations on GFs. The operation of interest to us in this paper is generalized differentiation. We give many applications of generalized differentiation, particularly for the wave equation. We discuss the use of GFs in finding Green s function and some subtleties that only GF theory can clarify without ambiguities. We show how the knowledge of the Green s function of an operator L in a given domain D can allow us to solve a whole range of problems with operator L for domains situated within D by the imbedding method. We will show how we can use the imbedding method to find the Kirchhoff formulas for stationary and moving surfaces with ease and elegance without the use of the four-dimensional Green s theorem, which is commonly done. Other subjects covered are why the derivatives in conservation laws should be viewed as generalized derivatives and what are the consequences of doing this. In particular we show how we can imbed a problem in a larger domain for the identical differential equation for which the Green s function is known. The primary purpose of this paper is to convince the readers that GF theory is absolutely essential in aeroacoustics because of its powerful operational properties. Furthermore, learning the subject and using it can be fun.

  12. Pacific Tracker 2 - expert system (PacTrac2-ES) behavioural assessment and intervention tool for the Pacific Kids DASH for Health (PacDASH) study.

    PubMed

    Novotny, Rachel; Nigg, Claudio; McGlone, Katalina; Renda, Gloria; Jung, Noah; Matsunaga, Masako; Karanja, Njeri

    2013-10-01

    The Pacific Tracker (PacTrac) is a computer program designed to analyse food intakes of individuals from the Pacific Region. PacTrac's original output included servings of daily intake of food groups according to the United States Food Guide Pyramid, nutrient intake recommendations, and a comparison to other national nutrition recommendations. PacTrac was made available for public use through the Hawaii Foods website (hawaiifoods.hawaii.edu). PacTrac2 is an updated and expanded version of PacTrac that uses the United States MyPyramid/MyPlate food groups in household units of daily intake, rather than servings. In addition, the PacTrac2 includes a physical activity analysis tool which quantifies minutes of physical activities and their intensities based on energy estimates from the compendium of physical activity and research on children. An Expert System (ES) - a computerised decision tree to guide behaviour change - was developed using information on self-efficacy and stage of readiness to change, and the fruit and vegetable intake and physical activity information from PacTrac2. The ES produces reports for the child, the parent/guardian, and the child's physician with child-specific strategies, targeted behavioural information, and feedback tailored to the child. PacTrac2-ES was designed for the Pacific Kids DASH for Health (PacDASH) intervention study, conducted in the Kaiser Permanente health care system in Hawaii. The intervention is based on the child's self-efficacy and stage of readiness to change intake of fruits and vegetables and physical activity, with a goal of maintaining body weight to prevent obesity. The intervention is complemented with stage-based mailers addressing the environment for physical activity and fruit and vegetable intake and newsletters that address related behaviours (sedentary activity and a DASH eating approach). This project is the first to expand the PacTrac to contain children's foods and physical activities from the Pacific

  13. Aerodynamic, aeroacoustic, and aeroelastic investigations of airfoil-vortex interaction using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Ilie, Marcel

    In helicopters, vortices (generated at the tip of the rotor blades) interact with the next advancing blades during certain flight and manoeuvring conditions, generating undesirable levels of acoustic noise and vibration. These Blade-Vortex Interactions (BVIs), which may cause the most disturbing acoustic noise, normally occur in descent or high-speed forward flight. Acoustic noise characterization (and potential reduction) is one the areas generating intensive research interest to the rotorcraft industry. Since experimental investigations of BVI are extremely costly, some insights into the BVI or AVI (2-D Airfoil-Vortex Interaction) can be gained using Computational Fluid Dynamics (CFD) numerical simulations. Numerical simulation of BVI or AVI has been of interest to CFD for many years. There are still difficulties concerning an accurate numerical prediction of BVI. One of the main issues is the inherent dissipation of CFD turbulence models, which severely affects the preservation of the vortex characteristics. Moreover this is not an issue only for aerodynamic and aeroacoustic analysis but also for aeroelastic investigations as well, especially when the strong (two-way) aeroelastic coupling is of interest. The present investigation concentrates mainly on AVI simulations. The simulations are performed for Mach number, Ma = 0.3, resulting in a Reynolds number, Re = 1.3 x 106, which is based on the chord, c, of the airfoil (NACA0012). Extensive literature search has indicated that the present work represents the first comprehensive investigation of AVI using the LES numerical approach, in the rotorcraft research community. The major factor affecting the aerodynamic coefficients and aeroacoustic field as a result of airfoil-vortex interaction is observed to be the unsteady pressure generated at the location of the interaction. The present numerical results show that the aerodynamic coefficients (lift, moment, and drag) and aeroacoustic field are strongly dependent on

  14. Development and validation of a 3D Lattice Boltzmann model for volcano aeroacoustics

    NASA Astrophysics Data System (ADS)

    Brogi, Federico; Bonadonna, Costanza; Ripepe, Maurizio; Chopard, Bastien; Malaspinas, Orestis; Latt, Jonas; Falcone, Jean-Luc

    2015-04-01

    Infrasound measurements have a great potential for the real time characterization of volcanic plume source parameters [Ripepe et al., 2013]. Nonetheless many shortcomings have been highlighted in the understanding of the infrasound monitoring. In particular, the application of the classical acoustic source models to volcanic explosive eruptions has shown to be challenging and a better knowledge of the link between the acoustic radiation and actual volcanic fluid dynamics processes is required. New insights into this subject could be given by the study of realistic aeroacoustic numerical simulations of a volcanic jet. Our work mainly focuses on developing and validating such numerical model to determine when and if classical model source theory can be applied to explain volcanic infrasound data. Lattice Boltzmann strategies (LB) provide the opportunity to develop an accurate, computationally fast, 3D physical model for a volcanic jet and wave propagation. In the field of aeroacoustic applications, dedicated LB schemes has been proven to have the low dispersion and dissipative properties needed for capturing the weak acoustic pressure fluctuations. However, when dealing with simulations of realistic flows, artificial boundaries are defined around the flow region. The reflected waves from these boundaries can have significant influence on the flow field and overwhelm the acoustic field of interest. A special absorbing boundary layer has been implemented in our model to suppress the reflected waves [Xu et al., 2013]. In addition, for highly multi-scale turbulent flows, such as volcanic plumes, the number of grid points needed to represent the smallest scales might become intractable and the most complicated physics happen only in small portions of the computational domain. The implementation of the grid refinement, in our model allow us to insert local finer grids only where is actually needed [Lagrava et al., 2012] and to increase the size of the computational domain

  15. Investigation of computational and spectral analysis methods for aeroacoustic wave propagation

    NASA Technical Reports Server (NTRS)

    Vanel, Florence O.

    1995-01-01

    Most computational fluid dynamics (CFD) schemes are not adequately accurate for solving aeroacoustics problems, which have wave amplitudes several orders of magnitude smaller yet with frequencies larger than the flow field variations generating the sound. Hence, a computational aeroacoustics (CAA) algorithm should have minimal dispersion and dissipation features. A dispersion relation preserving (DRP) scheme is, therefore, applied to solve the linearized Euler equations in order to simulate the propagation of three types of waves, namely: acoustic, vorticity, and entropy waves. The scheme is derived using an optimization procedure to ensure that the numerical derivatives preserve the wave number and angular frequency of the partial differential equations being discretized. Consequently, simulated waves propagate with the correct wave speeds and exhibit their appropriate properties. A set of radiation and outflow boundary conditions, compatible with the DRP scheme and derived from the asymptotic solutions of the governing equations, are also implemented. Numerical simulations are performed to test the effectiveness of the DRP scheme and its boundary conditions. The computed solutions are shown to agree favorably with the exact solutions. The major restriction appears to be that the dispersion relations can be preserved only for waves with wave lengths longer than four or five spacings. The boundary conditions are found to be transparent to the outgoing disturbances. However, when the disturbance source is placed closer to a boundary, small acoustic reflections start appearing. CAA generates enormous amounts of temporal data which needs to be reduced to understand the physical problem being simulated. Spectral analysis is one approach that helps us in extracting information which often can not be easily interpreted in the time domain. Thus, three different methods for the spectral analysis of numerically generated aeroacoustic data are studied. First, the

  16. Cloning, E. coli overexpression, purification and binding properties of TraA and TraC, two proteins involved in the pheromone-dependent conjugation process in enterococci.

    PubMed

    Alfieri, Beatrice; Folloni, Silvia; Elviri, Lisa; Gobbo, Marina; Berni, Rodolfo; Folli, Claudia

    2008-08-01

    The bacteriocin encoding plasmid pPD1 from Enterococcus faecalis is involved in a mating response to the sex pheromone cPD1 produced by recipient bacterial cells devoid of pPD1. Previous studies showed that cPD1 is internalized into donor cells in a process in which TraC plays the role of cell surface pheromone receptor. Inside the recipient cells, the pheromone binds to the plasmid-encoded cytoplasmic protein TraA, able to recognize specific DNA sequences and to modulate the conjugation process. To avoid self-induction of the conjugation process, donor cells produce the inhibitor iPD1, which competes with cPD1. This study was designed to produce recombinant TraA and TraC in a functionally active state and to evaluate their main functional properties. We have isolated the sequences encoding TraA and TraC from the plasmid pPD1 and cloned them in suitable expression vectors. The two recombinant proteins were successfully obtained in a soluble form using Escherichia coli as expression host and a T7 inducible expression system. TraC and TraA were purified to homogeneity by three or two chromatographic steps, respectively, leading to a final yield up to 4mg/l of cell culture for TraC and up to 10mg/l of cell culture for TraA. The ability of TraA and TraC to bind the specific pheromone and inhibitor peptides has been assessed by means of ESI-mass spectrometry. Moreover, the ability of recombinant TraA to bind DNA has been demonstrated by means of electrophoretic mobility shift assay. Overall these results are consistent with the heterologously expressed TraC and TraA being functionally active. PMID:18468916

  17. Results of a tracer study for the validation study: The Terrain-Responsive Atmospheric Code (TRAC): Volume 2

    SciTech Connect

    Not Available

    1988-09-01

    This report describes a tracer study conducted by North American Weather Consultants (NAWC) at the Rocky Flats Plant in Colorado. The purpose of the study was to provide data for the evaluation of a dispersion model. This tracer study was timed to sample the upslope, downslope and transition conditions prevalent in the Rocky Flats area during the summer period. The field studies were conducted from 17 July, 1987 through 8 August, 1987. A total of twelve days of plume tracking were conducted, four during upslope conditions, six during stable downslope conditions, and two during transition conditions. The tracer gas, sulfur hexafluoride (SF/sub 6/) was released on the Rocky Flats plant site and the plume was tracked using an aircraft with a continuous SF/sub 6/ analyzer on-board. Grab samples were also obtained from various sites on the ground during the aerial tracking period. Volume 2 contains data sheets only.

  18. Efficient numerical simulation of aeroacoustics for low Mach number flows interacting with structures

    NASA Astrophysics Data System (ADS)

    Kornhaas, Michael; Schäfer, Michael; Sternel, Dörte C.

    2015-06-01

    An integrated hybrid approach for the numerical simulation of aeroacoustics at low Mach numbers is presented. The method is based on a viscous/acoustic splitting. The turbulent incompressible background flow is computed with large eddy simulation, based on the incompressible Navier-Stokes equations, whereas the acoustics are computed from linearized Euler equations with a high-resolution scheme. The focus is on the numerical efficiency of the approach. To accelerate the computations, hierarchical grids and a frozen fluid approach for the acoustics are employed and investigated. For validation and the investigation of the numerical efficiency and accuracy the sound emission of a plate in the turbulent wake of a circular cylinder is employed as a test case.

  19. Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror

    NASA Astrophysics Data System (ADS)

    Frank, Hannes M.; Munz, Claus-Dieter

    2016-06-01

    The flow around a side-view mirror and its noise generation are investigated using large eddy simulation and direct acoustic simulation. To this end, we use the high order discontinuous Galerkin spectral element method on non-conforming curved elements. Tonal noise is observed, which originates at the trailing edge downstream of laminar separation, coinciding with experimental results. In order to determine the nature of the tonal noise generation mechanism, we perform a linear stability analysis and employ a global perturbation approach in combination with dynamic mode decomposition. The perturbation analysis based on the whole flow field demonstrates the existence of a global instability involving convective disturbance growth, acoustic scattering at the trailing edge and acoustic receptivity at a rounded edge slightly upstream of separation. The results clearly show the tonal noise to be caused by the so-called acoustic feedback loop known from airfoil aeroacoustics. This phenomenon has been simulated here for the first time for a complex geometry.

  20. Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)

    1997-01-01

    A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.

  1. Experimental aeroacoustic study of a landing gear in the unsteady flow induced by a propeller

    NASA Astrophysics Data System (ADS)

    Chekiri, Rafik

    An aeroacoustic study of a two-strut, two-wheel, nacelle-mounted landing gear was conducted to investigate the effects of an upstream propeller on the radiated noise. The development of a 1:10.8 scale model based on a Bombardier Q400 aircraft, consisting of a propeller, motor, nacelle, and landing gear assembly is discussed. Comparisons are made between cases with and without an actuated upstream propeller. Far-field microphone measurements out of the airstream are presented to characterize the acoustic effects of each model component. The main strut and wheels of the model were equipped with surface-mounted microphones to measure unsteady pressures. It is shown that the noise signature of the landing gear cannot be observed over the tunnel background noise in the far-field. Unsteady surface pressures on the main strut show dominant peaks related to vortex shedding from the drag strut for both steady and unsteady upstream conditions.

  2. David crighton, 1942-2000: a commentary on his career and his influence on aeroacoustic theory

    NASA Astrophysics Data System (ADS)

    Ffowcs Williams, John E.

    David Crighton, a greatly admired figure in fluid mechanics, Head of the Department of Applied Mathematics and Theoretical Physics at Cambridge, and Master of Jesus College, Cambridge, died at the peak of his career. He had made important contributions to the theory of waves generated by unsteady flow. Crighton's work was always characterized by the application of rigorous mathematical approximations to fluid mechanical idealizations of practically relevant problems. At the time of his death, he was certainly the most influential British applied mathematical figure, and his former collaborators and students form a strong school that continues his special style of mathematical application. Rigorous analysis of well-posed aeroacoustical problems was transformed by David Crighton.

  3. Enhanced focal-resolution of dipole sources using aeroacoustic time-reversal in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Mimani, A.; Moreau, D. J.; Prime, Z.; Doolan, C. J.

    2016-05-01

    This paper presents the first application of the Point-Time-Reversal-Sponge-Layer (PTRSL) damping technique to enhance the focal-resolution of experimental flow-induced dipole sources obtained using the Time-Reversal (TR) source localization method. Experiments were conducted in an Anechoic Wind Tunnel for the case of a full-span cylinder located in a low Mach number cross-flow. The far-field acoustic pressure sampled using two line arrays of microphones located above and below the cylinder exhibited a dominant Aeolian tone. The aeroacoustic TR simulations were implemented using the time-reversed signals whereby the source map revealed the lift-dipole nature at the Aeolian tone frequency. A PTRSL (centred at the predicted dipole location) was shown to reduce the size of dipole focal spots to 7/20th of a wavelength as compared to one wavelength without its use, thereby dramatically enhancing the focal-resolution of the TR technique.

  4. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.

  5. Aeroacoustic research programs at the Army Aviation Research and Technology Activity

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Schmitz, Fredric H.; Morse, H. Andrew

    1988-01-01

    The Army rotorcraft aeroacoustic programs are reviewed, highlighting the theoretical and experimental progress made by Army researchers in the physical understanding of helicopter impulsive noise. The two impulsive noise sources addressed over this past decade are high-speed impulsive noise and blade-vortex interaction noise, both of which have had and will continue to have an increasing influence on Army rotorcraft design and operations. The advancements discussed are in the areas of in-flight data acquisition techniques, small-scale-model tests in wind tunnels, holographic interferometry/tomographic techniques, and the expanding capabilities of computational fluid dynamics in rotorcraft acoustic problems. Current theoretical prediction methods are compared with experimental data, and parameters that govern model scaling are established. The very successful cooperative efforts between the Army, NASA, and industry are also addressed

  6. Aeroacoustic sound radiated from a flow past an oscillating and a fixed cylinder in tandem

    NASA Astrophysics Data System (ADS)

    Hattori, Yuji; Komatsu, Ryu

    2013-11-01

    The aeroacoustic sound generated in a two-dimensional flow past two circular cylinders in tandem is studied. The upstream cylinder is forced to oscillate transversely, while the downstream cylinder is fixed. This flow is a simplified model of the sound generation due to the interaction of rotating wings and a strut. The sound is captured by direct numerical simulation of the compressible Navier-Stokes equations using the volume penalization method. The amplitude of the sound increases in general with the amplitude and the frequency of the oscillation of the upstream cylinder. However, large reduction of the sound occurs for particular choices of parameter values as the forces acting on the two cylinders are in anti-phase.

  7. Experimental study of the aeroacoustic-aeroelastic behavior of model vocal folds

    NASA Astrophysics Data System (ADS)

    Campo, Elizabeth; Camarena, Ernesto; Krane, Michael

    2010-11-01

    The effect of vocal fold body stiffness and bilateral asymmetry was studied using a life-size physical model of the human airway using interchangeable silicone rubber models of the human vocal folds. The two layer vocal fold models are comprised of an inner body layer and an outside cover layer. The following measures were used to assess the effect of body stiffness and asymmetry: radiated sound power, phonation threshold pressure and aeroacoustic source strengths. Results obtained from the human airway model compared favorably with behavior observed in human subjects. Furthermore, the results reveal that the asymmetric cases required a higher subglottal pressure to initiate phonation and radiated less intense sound, in comparison to the symmetrical configuration.

  8. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.

  9. Aeroacoustic power generated by multiple compact axisymmetric cavities: Effect of hydrodynamic interference on the sound production

    NASA Astrophysics Data System (ADS)

    Nakiboǧlu, G.; Hirschberg, A.

    2012-06-01

    Aeroacoustic sound generation due to self-sustained oscillations by a series of compact axisymmetric cavities exposed to a grazing flow is studied both experimentally and numerically. The driving feedback is produced by the velocity fluctuations resulting from a coupling of vortex sheddings at the upstream cavity edges with acoustic standing waves in the coaxial pipe. When the cavities are separated sufficiently from each other, the whistling behavior of the complete system can be determined from the individual contribution of each cavity. When the cavities are placed close to each other there is a strong hydrodynamic interference between the cavities which affects both the peak amplitude attained during whistling and the corresponding Strouhal number. This hydrodynamic interference is captured successfully by the proposed numerical method.

  10. TRAC-PF1/MOD1 calculations and data comparisons for MIST (Multi-Loop Integral System Test) small-break loss-of-coolant accidents with scaled 10 cm/sup 2/ and 50 cm/sup 2/ breaks

    SciTech Connect

    Steiner, J.L.; Siebe, D.A.; Boyack, B.E.

    1987-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 for the purpose of providing integral system test data on specific issues/phenomena relevant to post-small-break loss-of-coolant accidents (SBLOCAs), loss of feedwater and other transients in Babcock and Wilcox (B and W) plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. MIST is a 2 x 4 (2 hot legs and steam generators, 4 cold legs and reactor-coolant pumps) representation of lowered-loop reactor systems of the B and W design. It is a full-height, full-pressure facility with 1/817 power and volume scaling. Two other experimental facilities are included in the IST program: test loops at the University of Maryland, College Park, and at Stanford Research Institute. The objective of the IST tests is to generate high-quality experimental data to be used for assessing thermal-hydraulic safety computer codes. Efforts are underway at Los Alamos to assess TRAC-PF1/MOD1 against data from each of the IST facilities. Calculations and data comparisons for TRAC-PF1/MOD1 assessment have been completed for two transients run in the MIST facility. These are the MIST nominal test. Test 3109AA, a scaled 10 cm/sup 2/ SBLOCA and Test 320201, a scaled 50 cm/sup 2/ SBLOCA. Only MIST assessment results are presented in this paper.

  11. Computational Aeroacoustics by the Space-time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2001-01-01

    In recent years, a new numerical methodology for conservation laws-the Space-Time Conservation Element and Solution Element Method (CE/SE), was developed by Dr. Chang of NASA Glenn Research Center and collaborators. In nature, the new method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its rigorous treatment of the fluxes and geometry, it is different from the existing schemes. The CE/SE scheme features: (1) space and time treated on the same footing, the integral equations of conservation laws are solve( for with second order accuracy, (2) high resolution, low dispersion and low dissipation, (3) novel, truly multi-dimensional, simple but effective non-reflecting boundary condition, (4) effortless implementation of computation, no numerical fix or parameter choice is needed, an( (5) robust enough to cover a wide spectrum of compressible flow: from weak linear acoustic waves to strong, discontinuous waves (shocks) appropriate for linear and nonlinear aeroacoustics. Currently, the CE/SE scheme has been developed to such a stage that a 3-13 unstructured CE/SE Navier-Stokes solver is already available. However, in the present paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen as a prototype and is sketched in Section 2. Then applications of the CE/SE scheme to linear, nonlinear aeroacoustics and airframe noise are depicted in Sections 3, 4, and 5 respectively to demonstrate its robustness and capability.

  12. Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas

    2012-01-01

    In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.

  13. Fast TracKer: A fast hardware track trigger for the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Pandini, Carlo

    2016-07-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing rate of 40 MHz to about 1 kHz for a LHC luminosity of the order of 1034cm-2s-1. To achieve high background rejection while maintaining good efficiency for interesting physics signals, sophisticated algorithms are needed which require an extensive use of tracking information. The Fast TracKer (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform track-finding at 100 kHz. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the combinatorial problem of pattern recognition is solved by 8000 standard-cell ASICs used to implement an Associative Memory architecture. The availability of the tracking and subsequent vertex information within a short latency ensures robust selections and allows improved trigger performance for the most difficult signatures, such as b-jets and τ leptons.

  14. SU-E-J-34: Setup Accuracy in Spine SBRT Using CBCT 6D Image Guidance in Comparison with 6D ExacTrac

    SciTech Connect

    Han, Z; Yip, S; Lewis, J; Mannarino, E; Friesen, S; Wagar, M; Hacker, F

    2015-06-15

    Purpose Volumetric information of the spine captured on CBCT can potentially improve the accuracy in spine SBRT setup that has been commonly performed through 2D radiographs. This work evaluates the setup accuracy in spine SBRT using 6D CBCT image guidance that recently became available on Varian systems. Methods ExacTrac radiographs have been commonly used for Spine SBRT setup. The setup process involves first positioning patients with lasers followed by localization imaging, registration, and repositioning. Verification images are then taken providing the residual errors (ExacTracRE) before beam on. CBCT verification is also acquired in our institute. The availability of both ExacTrac and CBCT verifications allows a comparison study. 41 verification CBCT of 16 patients were retrospectively registered with the planning CT enabling 6D corrections, giving CBCT residual errors (CBCTRE) which were compared with ExacTracRE. Results The RMS discrepancies between CBCTRE and ExacTracRE are 1.70mm, 1.66mm, 1.56mm in vertical, longitudinal and lateral directions and 0.27°, 0.49°, 0.35° in yaw, roll and pitch respectively. The corresponding mean discrepancies (and standard deviation) are 0.62mm (1.60mm), 0.00mm (1.68mm), −0.80mm (1.36mm) and 0.05° (0.58°), 0.11° (0.48°), −0.16° (0.32°). Of the 41 CBCT, 17 had high-Z surgical implants. No significant difference in ExacTrac-to-CBCT discrepancy was observed between patients with and without the implants. Conclusion Multiple factors can contribute to the discrepancies between CBCT and ExacTrac: 1) the imaging iso-centers of the two systems, while calibrated to coincide, can be different; 2) the ROI used for registration can be different especially if ribs were included in ExacTrac images; 3) small patient motion can occur between the two verification image acquisitions; 4) the algorithms can be different between CBCT (volumetric) and ExacTrac (radiographic) registrations.

  15. The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 1: Conventional Arrangement of Exit Nozzle and Surface

    NASA Astrophysics Data System (ADS)

    Carpenter, P. W.; Green, P. N.

    1997-12-01

    The literature on high-speed Coanda flows and its applications is reviewed. The lack of basic information for design engineers is noted. The present paper is based on an investigation of the aeroacoustics and aerodynamics of the high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Schlieren and other flow visualization techniques together with theoretical methods are used to reveal the various features of this complex flow field. The acoustic characteristics were obtained from measurements with an array of microphones in an anechoic chamber. The emphasis is placed on those features of the aerodynamics and aeroacoustics which may be of general interest.

  16. Exploratory investigation of aeroacoustic optimization of the variable impedance edge concept applied to upper surface blown configurations

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.

    1976-01-01

    The feasibility of using porous surfaces on lift augmentation flaps to reduce the noise at the source, without adversely affecting aerodynamic performance was investigated. Numerous flap configurations were tested on a USB (upper surface blowing) type powered lift model (approximately 1/5 full scale). Significant reductions of far field noise and aeroacoustic pressures were found, and many configurations exhibited aerodynamic characteristics comparable to unmodified configurations of the nozzle/flap system.

  17. Impact of turbulence on the prediction of linear aeroacoustic interactions: Acoustic response of a turbulent shear layer

    NASA Astrophysics Data System (ADS)

    Gikadi, Jannis; Föller, Stephan; Sattelmayer, Thomas

    2014-12-01

    A powerful model to predict aeroacoustic interactions in the linear regime is the perturbed compressible linearized Navier-Stokes equations. Thus far, the frequently employed derivation suggests that the effect of turbulence and its associated Reynolds stresses is neglected and a quasi-laminar model is employed. In this paper, dynamic perturbation equations are derived incorporating the effect of turbulence and its interaction with perturbation quantities. This is done by employing a triple decomposition of the instantaneous variables. The procedure results in a closure problem for the Reynolds stresses for which a linear eddy-viscosity model is proposed. The resulting perturbation equations are applied to a grazing flow in a T-joint for which strong shear layer instabilities at certain frequencies are experimentally observed. Passive scattering properties of the grazing flow are validated against the experiments performed by Karlsson and Åbom and perturbation equations being quasi-laminar. We find that prediction models must include the effect of Reynolds stresses to capture the aeroacoustic interaction effects correctly. Neglecting its effect naturally results in the over prediction of vortex growth at the frequencies of shear layer instability and therewith in an over prediction of aeroacoustic interactions.

  18. Validation of the Spatial Accuracy of the ExacTracRTM Adaptive Gating System

    NASA Astrophysics Data System (ADS)

    Twork, Gregory

    Stereotactic body radiation therapy (SBRT) is a method of treatment that is used in extracranial locations, including the abdominal and thoracic cavities, as well as spinal and paraspinal locations. At the McGill University Health Centre, liver SBRT treatments include gating, which places the treatment beam on a duty cycle controlled by tracking of fiducial markers moving with the patient's breathing cycle. Respiratory gated treatments aim to spare normal tissue, while delivering a dose properly to a moving target. The ExacTracRTM system (BrainLAB AG Germany) is an image-guided radiotherapy system consisting of a combination of infra-red (IR) cameras and dual kilovoltage (kV) X-ray tubes. The IR system is used to track patient positioning and respiratory motion, while the kV X-rays are used to determine a positional shift based on internal anatomy or fiducial markers. In order to validate the system's ability to treat under gating conditions, each step of the SBRT process was evaluated quantitatively. Initially the system was tested under ideal static conditions, followed by a study including gated parameters. The uncertainties of the isocenters, positioning algorithm, planning computed tomography (CT) and four dimensional CT (4DCT) scans, gating window size and tumor motion were evaluated for their contributions to the total uncertainty in treatment. The mechanical isocenter and 4DCT were found to be the largest sources of uncertainty. However, for tumors with large internal amplitudes (>2.25 cm) that are treated with large gating windows (>30%) the gating parameters can contribute more than 1.1 +/- 1.8 mm.

  19. RadTrac : A system for detecting, localizing, and tracking radioactive sources in real time.

    SciTech Connect

    Vilim, R.; Klann, R.; Nuclear Engineering Division

    2009-10-01

    Within the homeland security and emergency response communities, there is a need for a low-profile system to detect and locate radioactive sources. RadTrac has been developed at Argonne National Laboratory as an integrated system for the detection, localization, identification, and tracking of radioactive sources in real time. The system is based on a network of radiation detectors and advanced signal-processing algorithms. Features include video surveillance, automated tracking, easy setup, and logging of all data and images. This paper describes the advanced algorithms that were developed and implemented for source detection, localization, and tracking in real time. In the physio-spatial integration approach to source localization, counts from multiple detectors are processed according to the underlying physics linking these counts to obtain the probability that a source is present at any point in space. This information is depicted in a probability density function map. This type of depiction allows the results to be presented in a simple, easy-to-understand manner. It also allows for many different complicated factors to be accounted for in a single image as each factor is computed as a probability density in space. These factors include spatial limitations, variable shielding, directional detectors, moving detectors, and different detector sizes and orientations. The utility and versatility of this approach is described in further detail. Advanced signal-processing algorithms have also been incorporated to improve real-time tracking and to increase signal-to-noise ratios including temporal linking and energy binning. Measurements aimed at demonstrating the sensitivity improvements through the use of advanced signal-processing techniques were performed and are presented. Results of tracking weak sources (<100 {micro}Ci {sup 137}Cs) using four fixed-position detectors are presented.

  20. A sponge-layer damping technique for aeroacoustic Time-Reversal

    NASA Astrophysics Data System (ADS)

    Mimani, A.; Prime, Z.; Doolan, C. J.; Medwell, P. R.

    2015-04-01

    This paper presents the underlying theory, associated mathematical modelling and analysis of a sponge-layer damping technique, termed the Time-Reversal-Sponge-Layer (TRSL), that significantly improves the performance of aeroacoustic Time-Reversal (TR). The TR technique requires the use of multiple Line Arrays (LAs) in a Time-Reversal Mirror (TRM) to accurately predict the source location and its characteristics. However, it is shown that when using multiple LAs, the interference between the opposite propagating fluxes near the LA boundaries results in the formation of spurious local maxima regions throughout the computational domain, thereby reducing the capacity of TR to resolve acoustic sources. The novel TRSL technique proposed in this work minimises this unwanted interference by damping the flux normally incident on a LA boundary and is implemented using the Pseudo-Characteristic Formulation (PCF) of the two-dimensional Linearised Euler Equations (LEE). The performance of TRSL is assessed by simulating a number of test cases such as an idealised time-harmonic monopole, dipole and lateral quadrupole sources as well as multiple (two) dipole sources of different strengths located in a nonuniform mean shear flow. The use of TRSL suppresses the formation of spurious maxima and significantly improves the source map, thereby demonstrating the effectiveness of this damping technique. The performance of TRSL is compared with two other methods: a TR superposition technique and Conventional Beamforming (CB). The TR superposition technique prevents the flux interference problem near the LA boundaries by superposing the instantaneous time-reversed acoustic pressure fields computed from individual LAs. The source map obtained using the superposition technique was found to be identical to that obtained using the TRSL damping technique, however, the computational cost was much higher. A comparison with CB indicated that although CB accurately predicts the aeroacoustic source

  1. SU-E-J-47: Comparison of Online Image Registrations of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac Imaging Systems

    SciTech Connect

    Li, J; Shi, W; Andrews, D; Werner-Wasik, M; Yu, Y; Liu, H

    2015-06-15

    Purpose To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac imaging systems. Methods Tests were performed on a Varian TrueBeam STx linear accelerator (Version 2.0), which is integrated with a BrainLab ExacTrac imaging system (Version 6.0.5). The study was focused on comparing the online image registrations for translational shifts. A Rando head phantom was placed on treatment couch and immobilized with a BrainLab mask. The phantom was shifted by moving the couch translationally for 8 mm with a step size of 1 mm, in vertical, longitudinal, and lateral directions, respectively. At each location, the phantom was imaged with CBCT and ExacTrac x-ray. CBCT images were registered with TrueBeam and ExacTrac online registration algorithms, respectively. And ExacTrac x-ray image registrations were performed. Shifts calculated from different registrations were compared with nominal couch shifts. Results The averages and ranges of absolute differences between couch shifts and calculated phantom shifts obtained from ExacTrac x-ray registration, ExacTrac CBCT registration with default window, ExaxTrac CBCT registration with adjusted window (bone), Truebeam CBCT registration with bone window, and Truebeam CBCT registration with soft tissue window, were: 0.07 (0.02–0.14), 0.14 (0.01–0.35), 0.12 (0.02–0.28), 0.09 (0–0.20), and 0.06 (0–0.10) mm, in vertical direction; 0.06 (0.01–0.12), 0.27 (0.07–0.57), 0.23 (0.02–0.48), 0.04 (0–0.10), and 0.08 (0– 0.20) mm, in longitudinal direction; 0.05 (0.01–0.21), 0.35 (0.14–0.80), 0.25 (0.01–0.56), 0.19 (0–0.40), and 0.20 (0–0.40) mm, in lateral direction. Conclusion The shifts calculated from ExacTrac x-ray and TrueBeam CBCT registrations were close to each other (the differences between were less than 0.40 mm in any direction), and had better agreements with couch shifts than those from ExacTrac CBCT registrations. There were no significant differences between True

  2. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    PubMed

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  3. InfoTrac TFD: a microcomputer implementation of the Transcription Factor Database TFD with a graphical user interface.

    PubMed

    Hoeck, W G

    1994-06-01

    InfoTrac TFD provides a graphical user interface (GUI) for viewing and manipulating datasets in the Transcription Factor Database, TFD. The interface was developed in Filemaker Pro 2.0 by Claris Corporation, which provides cross platform compatibility between Apple Macintosh computers running System 7.0 and higher and IBM-compatibles running Microsoft Windows 3.0 and higher. TFD ASCII-tables were formatted to fit data into several custom data tables using Add/Strip, a shareware utility and Filemaker Pro's lookup feature. The lookup feature was also put to use to allow TFD data tables to become linked within a flat-file database management system. The 'Navigator', consisting of several pop-up menus listing transcription factor abbreviations, facilitates the search for transcription factor entries. Data are presented onscreen in several layouts, that can be further customized by the user. InfoTrac TFD makes the transcription factor database accessible to a much wider community of scientists by making it available on two popular microcomputer platforms. PMID:7922690

  4. Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?

    SciTech Connect

    Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba; Cozzolino, Mariella; Oliviero, Caterina; Califano, Giorgia; Caivano, Rocchina; Fusco, Vincenzo; Simeon, Vittorio

    2013-11-15

    Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences in shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.

  5. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    SciTech Connect

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  6. Clinical coding. Code breakers.

    PubMed

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships. PMID:15768716

  7. Self-Scheduling Parallel Methods for Multiple Serial Codes with Application to WOPWOP

    NASA Technical Reports Server (NTRS)

    Long, Lyle N.; Brentner, Kenneth S.

    2000-01-01

    This paper presents a scheme for efficiently running a large number of serial jobs on parallel computers. Two examples are given of computer programs that run relatively quickly, but often they must be run numerous times to obtain all the results needed. It is very common in science and engineering to have codes that are not massive computing challenges in themselves, but due to the number of instances that must be run, they do become large-scale computing problems. The two examples given here represent common problems in aerospace engineering: aerodynamic panel methods and aeroacoustic integral methods. The first example simply solves many systems of linear equations. This is representative of an aerodynamic panel code where someone would like to solve for numerous angles of attack. The complete code for this first example is included in the appendix so that it can be readily used by others as a template. The second example is an aeroacoustics code (WOPWOP) that solves the Ffowcs Williams Hawkings equation to predict the far-field sound due to rotating blades. In this example, one quite often needs to compute the sound at numerous observer locations, hence parallelization is utilized to automate the noise computation for a large number of observers.

  8. Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown

    NASA Astrophysics Data System (ADS)

    Violato, Daniele; Scarano, Fulvio

    2012-11-01

    The 3D patterns of jet core breakdown are investigated in a jet at Re=5,000 by time-resolved tomographic particle image velocimetry in the range between 0 and 10 jet diameters. The characteristic pulsatile motion of vortex ring shedding and pairing culminates with the growth of primary in-plane and out-of-plane azimuthal waves and leads to the formation of streamwise vortices. Vortex ring humps are tilted and ejected along the axial direction as they are subjected to higher axial velocities. By the end of the potential core, this process causes the breakdown of the vortex ring regime and the onset of streamwise filaments oriented at 30-45 degrees to the jet axis. A three dimensional modal analysis of velocity and vorticity fields is conducted by proper orthogonal decomposition within the first 10 modes. The decomposed velocity fluctuations describe helical motion in the region of the jet core-breakdown and, further downstream, jet axis flapping and precession motions. By the end of the potential core, vorticity modes show travelling waves of radial and axial vorticity with a characteristic 40 degree inclination to the jet axis. Following Powell's aeroacoustic analogy, the instantaneous spatial distribution of the acoustic source term is mapped. Far-field acoustic predictions are given based on the direct evaluation of Powell's analogy with the tomographic data.

  9. Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.

  10. Application of low dissipation and dispersion Runge-Kutta schemes to benchmark problems in computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hu, F. Q.; Hussaini, M. Y.; Manthey, J.

    1995-01-01

    We investigate accurate and efficient time advancing methods for computational aeroacoustics, where non-dissipative and non-dispersive properties are of critical importance. Our analysis pertains to the application of Runge-Kutta methods to high-order finite difference discretization. In many CFD applications, multi-stage Runge-Kutta schemes have often been favored for their low storage requirements and relatively large stability limits. For computing acoustic waves, however, the stability consideration alone is not sufficient, since the Runge-Kutta schemes entail both dissipation and dispersion errors. The time step is now limited by the tolerable dissipation and dispersion errors in the computation. In the present paper, it is shown that if the traditional Runge-Kutta schemes are used for time advancing in acoustic problems, time steps greatly smaller than that allowed by the stability limit are necessary. Low Dissipation and Dispersion Runge-Kutta (LDDRK) schemes are proposed, based on an optimization that minimizes the dissipation and dispersion errors for wave propagation. Optimizations of both single-step and two-step alternating schemes are considered. The proposed LDDRK schemes are remarkably more efficient than the classical Runge-Kutta schemes for acoustic computations. Numerical results of each Category of the Benchmark Problems are presented. Moreover, low storage implementations of the optimized schemes are discussed. Special issues of implementing numerical boundary conditions in the LDDRK schemes are also addressed.

  11. Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.

    2001-01-01

    An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.

  12. An Automated Approach to Very High Order Aeroacoustic Computations in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Goodrich, John W.

    2000-01-01

    Computational aeroacoustics requires efficient, high-resolution simulation tools. And for smooth problems, this is best accomplished with very high order in space and time methods on small stencils. But the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewslci recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that are located near wall boundaries. These procedures are used to automatically develop and implement very high order methods (>15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

  13. Large-Eddy Simulation of Trailing-Edge Turbulence and Aeroacoustics

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Moin, Parviz

    1997-11-01

    Turbulent boundary layers near the trailing-edge of a lifting surface are known to generate intense, broadband scattering noise as well as surface pressure fluctuations. To numerically predict the trailing-edge noise requires that the noise-generating eddies over a wide range of length scales be adequately represented. Large-eddy simulation (LES) techniques provide a promising tool for obtaining the unsteady wall-pressure fields and the near-field turbulence quantities. The latter serve as acoustic source functions in a Lighthill-analogy based aeroacoustic formulation. In the present work, LES is carried out for a flow past a flat strut with an asymmetrically beveled trailing edge, at a chord Reynolds number of 2.15 × 10^6, in a computational domain containing the aft section of the strut and the near-wake. The asymmetric edge shape produces a separated boundary layer on the upper side and an attached boundary layer on the lower side. The simulation is based on the unsteady, incompressible Navier-Stokes equations and employs the dynamic subgrid-scale model. The general methodology for the near-field LES and acoustic calculation will be discussed and preliminary results presented.

  14. Aeroacoustic Flow Phenomena Accurately Captured by New Computational Fluid Dynamics Method

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    2002-01-01

    One of the challenges in the computational fluid dynamics area is the accurate calculation of aeroacoustic phenomena, especially in the presence of shock waves. One such phenomenon is "transonic resonance," where an unsteady shock wave at the throat of a convergent-divergent nozzle results in the emission of acoustic tones. The space-time Conservation-Element and Solution-Element (CE/SE) method developed at the NASA Glenn Research Center can faithfully capture the shock waves, their unsteady motion, and the generated acoustic tones. The CE/SE method is a revolutionary new approach to the numerical modeling of physical phenomena where features with steep gradients (e.g., shock waves, phase transition, etc.) must coexist with those having weaker variations. The CE/SE method does not require the complex interpolation procedures (that allow for the possibility of a shock between grid cells) used by many other methods to transfer information between grid cells. These interpolation procedures can add too much numerical dissipation to the solution process. Thus, while shocks are resolved, weaker waves, such as acoustic waves, are washed out.

  15. Investigation of Twin Jet Aeroacoustic Properties in the Presence of a Hybrid Wing Body Shield

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.

    2012-01-01

    In preparation for upcoming wind tunnel acoustic experiments of a Hybrid Wing Body (HWB) vehicle with two jet engine simulator units, a series of twin jet aeroacoustic investigations were conducted leading to increased understanding and risk mitigation. A previously existing twin jet nozzle system and a fabricated HWB aft deck fuselage are combined for a 1.9% model scale study of jet nozzle spacing and jet cant angle effects, elevon deflection into the jet plume, and acoustic shielding by the fuselage body. Linear and phased array microphone measurements are made, and data processing includes the use of DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources). Closely-spaced twin jets with a 5 inward cant angle exhibit reduced noise levels compared to their parallel flow counterparts at similar and larger nozzle spacings. A 40 elevon deflection into the twin jet plume, which is required for HWB ground rotation, can significantly increase upstream noise levels (more than 5 dB OASPL) with only minimal increases in the downstream direction. Lastly, DAMAS processing can successfully measure the noise source distribution of multiple shielded jet sources.

  16. Setup Accuracy of the Novalis ExacTrac 6DOF System for Frameless Radiosurgery

    SciTech Connect

    Gevaert, Thierry; Verellen, Dirk; Tournel, Koen; Linthout, Nadine; Bral, Samuel; Engels, Benedikt; Collen, Christine; Depuydt, Tom; Duchateau, Michael; Reynders, Truus; Storme, Guy; De Ridder, Mark

    2012-04-01

    Purpose: Stereotactic radiosurgery using frame-based positioning is a well-established technique for the treatment of benign and malignant lesions. By contrast, a new trend toward frameless systems using image-guided positioning techniques is gaining mainstream acceptance. This study was designed to measure the detection and positioning accuracy of the ExacTrac/Novalis Body (ET/NB) for rotations and to compare the accuracy of the frameless with the frame-based radiosurgery technique. Methods and Materials: A program was developed in house to rotate reference computed tomography images. The angles measured by the system were compared with the known rotations. The accuracy of ET/NB was evaluated with a head phantom with seven lead beads inserted, mounted on a treatment couch equipped with a robotic tilt module, and was measured with a digital water level and portal films. Multiple hidden target tests (HTT) were performed to measure the overall accuracy of the different positioning techniques for radiosurgery (i.e., frameless and frame-based with relocatable mask or invasive ring, respectively). Results: The ET/NB system can detect rotational setup errors with an average accuracy of 0.09 Degree-Sign (standard deviation [SD] 0.06 Degree-Sign ), 0.02 Degree-Sign (SD 0.07 Degree-Sign ), and 0.06 Degree-Sign (SD 0.14 Degree-Sign ) for longitudinal, lateral, and vertical rotations, respectively. The average positioning accuracy was 0.06 Degree-Sign (SD 0.04 Degree-Sign ), 0.08 Degree-Sign (SD 0.06 Degree-Sign ), and 0.08 Degree-Sign (SD 0.07 Degree-Sign ) for longitudinal, lateral and vertical rotations, respectively. The results of the HTT showed an overall three-dimensional accuracy of 0.76 mm (SD 0.46 mm) for the frameless technique, 0.87 mm (SD 0.44 mm) for the relocatable mask, and 1.19 mm (SD 0.45 mm) for the frame-based technique. Conclusions: The study showed high detection accuracy and a subdegree positioning accuracy. On the basis of phantom studies, the

  17. GPS-based microenvironment tracker (MicroTrac) model to estimate time–location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina

    PubMed Central

    Breen, Michael S.; Long, Thomas C.; Schultz, Bradley D.; Crooks, James; Breen, Miyuki; Langstaff, John E.; Isaacs, Kristin K.; Tan, Yu-Mei; Williams, Ronald W.; Cao, Ye; Geller, Andrew M.; Devlin, Robert B.; Batterman, Stuart A.; Buckley, Timothy J.

    2014-01-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time–location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. PMID:24619294

  18. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Mccolgan, C. J.; Ladden, R. M.; Klatte, R. J.

    1991-01-01

    Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the

  19. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding

    NASA Astrophysics Data System (ADS)

    Hanson, D. B.; McColgan, C. J.; Ladden, R. M.; Klatte, R. J.

    1991-05-01

    Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the

  20. Validation of a High-Order Prefactored Compact Code on Nonlinear Flows with Complex Geometries

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Mankbadi, R. R.; Scott, J. R.

    2003-01-01

    A finite-difference time domain solution of the airfoil gust problem is obtained using a high-accuracy nonlinear computational aeroacoustics code. For computational efficiency, the equations are cast in chain-rule curvilinear form, and a structured multiblock solver is used in parallel. In order to fully investigate the performance of this solver, a test matrix of eight problems are computed (two airfoil geometries, two gust frequencies, and two gust configurations). These results are compared to solutions obtained by the GUST3D frequency-domain solver both on the airfoil surface and in the far field. Grid density and domain size studies are included.

  1. A new method for the estimation of high temperature radiant heat emittance by means of aero-acoustic levitation

    NASA Astrophysics Data System (ADS)

    Greffrath, Fabian; Prieler, Robert; Telle, Rainer

    2014-11-01

    A new method for the experimental estimation of radiant heat emittance at high temperatures has been developed which involves aero-acoustic levitation of samples, laser heating and contactless temperature measurement. Radiant heat emittance values are determined from the time dependent development of the sample temperature which requires analysis of both the radiant and convective heat transfer towards the surroundings by means of fluid dynamics calculations. First results for the emittance of a corundum sample obtained with this method are presented in this article and found in good agreement with literature values.

  2. BASS Code Development

    NASA Technical Reports Server (NTRS)

    Sawyer, Scott

    2004-01-01

    The BASS computational aeroacoustic code solves the fully nonlinear Euler equations in the time domain in two-dimensions. The acoustic response of the stator is determined simultaneously for the first three harmonics of the convected vortical gust of the rotor. The spatial mode generation, propagation and decay characteristics are predicted by assuming the acoustic field away from the stator can be represented as a uniform flow with small harmonic perturbations superimposed. The computed field is then decomposed using a joint temporal-spatial transform to determine the wave amplitudes as a function of rotor harmonic and spatial mode order. This report details the following technical aspects of the computations and analysis. 1) the BASS computational technique; 2) the application of periodic time shifted boundary conditions; 3) the linear theory aspects unique to rotor-stator interactions; and 4) the joint spatial-temporal transform. The computational results presented herein are twofold. In each case, the acoustic response of the stator is determined simultaneously for the first three harmonics of the convected vortical gust of the rotor. The fan under consideration here like modern fans is cut-off at +, and propagating acoustic waves are only expected at 2BPF and 3BPF. In the first case, the computations showed excellent agreement with linear theory predictions. The frequency and spatial mode order of acoustic field was computed and found consistent with linear theory. Further, the propagation of the generated modes was also correctly predicted. The upstream going waves propagated from the domain without reflection from the in ow boundary. However, reflections from the out ow boundary were noticed. The amplitude of the reflected wave was approximately 5% of the incident wave. The second set of computations were used to determine the influence of steady loading on the generated noise. Toward this end, the acoustic response was determined with three steady loading

  3. Three-Dimensional Application of DAMAS Methodology for Aeroacoustic Noise Source Definition

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2005-01-01

    At the 2004 AIAA/CEAS Aeroacoustic Conference, a breakthrough in acoustic microphone array technology was reported by the authors. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was developed which decouples the array design and processing influence from the noise being measured, using a simple and robust algorithm. For several prior airframe noise studies, it was shown to permit an unambiguous and accurate determination of acoustic source position and strength. As a follow-on effort, this paper examines the technique for three-dimensional (3D) applications. First, the beamforming ability for arrays, of different size and design, to focus longitudinally and laterally is examined for a range of source positions and frequency. Advantage is found for larger array designs with higher density microphone distributions towards the center. After defining a 3D grid generalized with respect to the array s beamforming characteristics, DAMAS is employed in simulated and experimental noise test cases. It is found that spatial resolution is much less sharp in the longitudinal direction in front of the array compared to side-to-side lateral resolution. 3D DAMAS becomes useful for sufficiently large arrays at sufficiently high frequency. But, such can be a challenge to computational capabilities, with regard to the required expanse and number of grid points. Also, larger arrays can strain basic physical modeling assumptions that DAMAS and all traditional array methodologies use. An important experimental result is that turbulent shear layers can negatively impact attainable beamforming resolution. Still, the usefulness of 3D DAMAS is demonstrated by the measurement of landing gear noise source distributions in a difficult hard-wall wind tunnel environment.

  4. Reducing Propulsion Airframe Aeroacoustic Interactions With Uniquely Tailored Chevrons: 3. Jet-Flap Interaction

    NASA Technical Reports Server (NTRS)

    Thomas, Russ H.; Mengle, Vinod G.; Brunsniak, Leon; Elkoby, Ronen

    2006-01-01

    Propulsion airframe aeroacoustic (PAA) interactions, resulting from the integration of engine and airframe, lead to azimuthal asymmetries in the flow/acoustic field, e.g., due to the interaction between the exhaust jet flow and the pylon, the wing and its high-lift devices, such as, flaps and flaperons. In the first two parts of this series we have presented experimental results which show that isolated and installed nozzles with azimuthally varying chevrons (AVCs) can reduce noise more than conventional chevrons when integrated with a pylon and a wing with flaps at take-off conditions. In this paper, we present model-scale experimental results for the reduction of jet-flap interaction noise source due to these AVCs and document the PAA installation effects (difference in noise between installed and isolated nozzle configurations) at both approach and take-off conditions. It is found that the installation effects of both types of chevron nozzles, AVCs and conventional, are reversed at approach and take-off, in that there is more installed noise reduction at approach and less at take-off compared to that of the isolated nozzles. Moreover, certain AVCs give larger total installed noise benefits at both conditions compared to conventional chevrons. Phased microphone array results show that at approach conditions (large flap deflection, low jet speed and low ambient Mach number), chevrons gain more noise benefit from reducing jetflap interaction noise than they do from quieting the jet plume noise source which is already weak at these low jet speeds. In contrast, at take-off (small flap deflection, high jet speed and high ambient Mach number) chevrons reduce the dominant jet plume noise better than the reduction they create in jet-flap interaction noise source. In addition, fan AVCs with enhanced mixing near the pylon are found to reduce jet-flap interaction noise better than conventional chevrons at take-off.

  5. Comparison of the Aeroacoustics of Two Small-Scale Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Ng, Wing

    1996-01-01

    An aerodynamic and acoustic investigation was performed on two small-scale supersonic inlets to determine which inlet would be more suitable for a High Speed Civil Transport (HSCT) aircraft during approach and takeoff flight conditions. The comparison was made between an axisymmetric supersonic P inlet and a bifurcated two-dimensional supersonic inlet. The 1/14 scale model supersonic inlets were used in conjunction with a 4.1 in (10.4 cm) turbofan engine simulator. A bellmouth was utilized on each inlet to eliminate lip separation commonly associated with airplane engine inlets that are tested under static conditions. Steady state measurements of the aerodynamic flowfield and acoustic farfield were made in order to evaluate the aeroacoustic performance of the inlets. The aerodynamic results show the total pressure recovery of the two inlets to be nearly identical, 99% at the approach condition and 98% at the takeoff condition. At the approach fan speed (60% design speed), there was no appreciable difference in the acoustic performance of either inlet over the entire 0 deg to 110 deg farfield measurement sector. The inlet flow field results at the takeoff fan speed (88% design speed), show the average inlet throat Mach number for the P inlet (Mach 0.52) to be approximately 2 times that of the 2D inlet (Mach 0.26). The difference in the throat Mach number is a result of the smaller throughflow area of the P inlet. This reduced area resulted in a 'soft choking' of the P inlet which lowered the tone and overall sound pressure levels of the simulator in the forward sector by an average of 9 dB and 3 dB, respectively, when compared to the 2D inlet.

  6. Aeroacoustics of volcanic jets: Acoustic power estimation and jet velocity dependence

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David; Neilsen, Tracianne B.; Gee, Kent L.; Ogden, Darcy E.

    2013-12-01

    A fundamental goal of volcano acoustics is to relate observed infrasonic signals to the eruptive processes generating them. A link between acoustic power Πaeroacoustics framework will lead to a more accurate relationship between volcanic infrasound and eruption parameters.

  7. An introduction to generalized functions with some applications in aerodynamics and aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1994-01-01

    In this paper, we start with the definition of generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support. The concept of generalization differentiation is introduced next. This is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some of the results of classical analysis, such as Leibniz rule of differentiation under the integral sign and the divergence theorem, are derived using the generalized function theory. It is shown that the divergence theorem remains valid for discontinuous vector fields provided that the derivatives are all viewed as generalized derivatives. This implies that all conservation laws of fluid mechanics are valid as they stand for discontinuous fields with all derivatives treated as generalized deriatives. Once these derivatives are written as ordinary derivatives and jumps in the field parameters across discontinuities, the jump conditions can be easily found. For example, the unsteady shock jump conditions can be derived from mass and momentum conservation laws. By using a generalized function theory, this derivative becomes trivial. Other applications of the generalized function theory in aerodynamics discussed in this paper are derivation of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of finite part of divergent integrals, derivation of Oswatiitsch integral equation of transonic flow, and analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics presented here include the derivation of the Kirchoff formula for moving surfaces,the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  8. Reducing Propulsion Airframe Aeroacoustic Interactions with Uniquely Tailored Chevrons. 1.; Isolated Nozzles

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Elkroby, Ronen; Brunsniak, Leon; Thomas, Russ H.

    2006-01-01

    The flow/acoustic environment surrounding an engine nozzle installed on an airplane, say, under the wing, is asymmetric due to the pylon, the wing and the interaction of the exhaust jet with flaps on the wing. However, the conventional chevrons, which are azimuthally uniform serrations on the nozzle lip, do not exploit the asymmetry due to these propulsion airframe aeroacoustic interactions to reduce jet noise. In this pioneering study we use this non-axisymmetry to our advantage and examine if the total jet-related noise radiated to the ground can be reduced by using different types of azimuthally varying chevrons (AVC) which vary the mixing around the nozzle periphery. Several scale models of the isolated nozzle, representative of high bypass ratio engine nozzles, were made with a pylon and azimuthally varying chevrons on both fan and core nozzles to enhance mixing at the top (near the pylon) with less mixing at the bottom (away from the pylon) or vice versa. Various combinations of fan and core AVC nozzles were systematically tested at typical take-off conditions inside a free jet wind-tunnel and, here, in Part 1 we analyze the acoustics results for the isolated nozzle with a pylon, with installation effects reported in Parts 2 and 3. Several interesting results are discovered: amongst the fan AVCs the top-enhanced mixing T-fan chevron nozzle is quieter in combination with any core AVC nozzle when compared to conventional chevrons; however, the bottom-mixing B-fan chevrons, as well as the core AVC nozzles, by themselves, are noisier. Further, the low-frequency source strengths in the jet plume, obtained via phased microphone arrays, also corroborate the far field sound, and for the T-fan chevrons such sources move further downstream than those for baseline or conventional chevron nozzles.

  9. Reducing Propulsion Airframe Aeroacoustic Interactions with Uniquely Tailored Chevrons. 2; Installed Nozzles

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Elkoby, Ronen; Brusniak, Leon; Thomas, Russ H.

    2006-01-01

    Propulsion airframe aeroacoustic (PAA) interactions arise due to the manner in which an engine is installed on the airframe and lead to an asymmetry in the flow/acoustic environment, for example, for under-the-wing installations due to the pylon, the wing and the high-lift devices. In this work we study how we can affect these PAA interactions to reduce the overall jet-related installed noise by tailoring the chevron shapes on fan and core nozzles in a unique fashion to take advantage of this asymmetry. In part 1 of this trio of papers we introduced the concept of azimuthally varying chevrons (AVC) and showed how some types of AVCs can be more beneficial than the conventional chevrons when tested on "isolated" scaled nozzles inclusive of the pylon effect. In this paper, we continue to study the effect of installing these AVC nozzles under a typical scaled modern wing with high-lift devices placed in a free jet. The noise benefits of these installed nozzles, as well as their installation effects are systematically studied for several fan/core AVC combinations at typical take-off conditions with high bypass ratio. We show, for example, that the top-enhanced mixing T-fan AVC nozzle (with enhanced mixing near the pylon and less mixing away from it) when combined with conventional chevrons on the core nozzle is quieter than conventional chevrons on both nozzles, and hardly produces any high-frequency lift, just as in the isolated case; however, its installed nozzle benefit is less than its isolated nozzle benefit. This suppression of take-off noise benefit under installed conditions, compared to its isolated nozzle benefit, is seen for all other chevron nozzles. We show how these relative noise benefits are related to the relative installation effects of AVCs and baseline nozzles.

  10. Aeroacoustic source analysis using time-resolved PIV in a free jet

    NASA Astrophysics Data System (ADS)

    Breakey, David E. S.; Fitzpatrick, John A.; Meskell, Craig

    2013-05-01

    Time-resolved particle image velocimetry (TR-PIV) has become a valuable tool for spatio-temporally resolved flow measurements. Current camera and laser technology has advanced such that time-domain events leading to sound generation can now be resolved over a reasonable spatial extent. This paper reports on the application of TR-PIV for the analysis of aeroacoustic sources in a free jet using the direct correlation between in-flow velocity fluctuations on the jet center-line and near-field pressure fluctuations. This correlation is considered both in the time domain and in the frequency domain (coherence), and the effect of TR-PIV errors on these estimates is considered by comparison to hot-wire anemometer measurements. In addition, a recently developed wavelet filtering technique is used to separate the acoustic and hydrodynamic components of recorded near-field pressure signals, enabling a gain in the signal-to-noise ratio. The results show that TR-PIV can recover the same time-domain correlation available from hot-wire and traditional PIV measurements, but that the frequency-domain estimates are corrupted by error, particularly at high frequencies. This result negates the principal benefit of using TR-PIV over PIV (the availability of coherence estimates). Despite this result, an analysis of the correlation signature gives evidence that large-scale, convecting, wave-like structures are associated with sound production, a result consistent with observations by many recent investigators. The analysis shows that in the presence of such large-scale structures, noise source localization based on the traditional correlation technique is ambiguous.

  11. Design and aero-acoustic analysis of a counter-rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Agrawal, Vineesh V.

    Wind turbines have become an integral part of the energy business because they are one of the most economical and reliable sources of renewable energy. Conventional wind turbines are capable of capturing less than half of the energy present in the wind. Hence, to make the wind turbines more efficient, it is important to increase their performance. A horizontal axis wind turbine with multiple rotors is one concept that can achieve a higher power conversion rate. Also, a concern for wind energy is the noise generated by wind turbines. Hence, an investigation into the acoustic behavior of a multi-rotor horizontal axis wind turbine is required. In response to the need of a wind turbine design with higher power coefficient, a unique design of a counter-rotating horizontal axis wind turbine (CR-HAWT) is proposed. The Blade Element Momentum (BEM) theory is used to aerodynamically design the blades of the two rotors. Modifications are made to the BEM theory to accommodate the interaction of the two rotors. The tower effect on the noise generation of the downwind rotor is investigated. Predictions are made for the total noise generated by the wind turbine at its design operating conditions. A total power coefficient of 65.2% is predicted for the proposed CR-HAWT design. A low tip speed ratio is chosen to minimize the noise generation. The aeroacoustic analysis of the CR-HAWT shows that the noise generated at its design operating conditions is within an acceptable range. Thus, the CR-HAWT is predicted to be a quiet wind turbine with a high power coefficient, making it highly desirable for small wind turbine applications.

  12. Flight Test Results for Uniquely Tailored Propulsion-Airframe Aeroacoustic Chevrons: Shockcell Noise

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Ganz, Ulrich W.; Nesbitt, Eric; Bultemeier, Eric J.; Thomas, Russell H.; Nesbitt, Eric

    2006-01-01

    Azimuthally varying chevrons (AVC) which have been uniquely tailored to account for the asymmetric propulsion-airframe aeroacoustic interactions have recently shown significant reductions in jet-related community noise at low-speed take-off conditions in scale model tests of coaxial nozzles with high bypass ratio. There were indications that such AVCs may also provide shockcell noise reductions at high cruise speeds. This paper describes the flight test results when one such AVC concept, namely, the T-fan chevrons with enhanced mixing near the pylon, was tested at full-scale on a modern large twin-jet aircraft (777-300ER) with focus on shockcell noise at mid-cruise conditions. Shockcell noise is part of the interior cabin noise at cruise conditions and its reduction is useful from the viewpoint of passenger comfort. Noise reduction at the source, in the exhaust jet, especially, at low frequencies, is beneficial from the perspective of reduced fuselage sidewall acoustic lining. Results are shown in terms of unsteady pressure spectra both on the exterior surface of the fuselage at several axial stations and also microphone arrays placed inside the fuselage aft of the engine. The benefits of T-fan chevrons, with and without conventional chevrons on the core nozzle, are shown for several engine operating conditions at cruise involving supersonic fan stream and subsonic or supersonic core stream. The T-fan AVC alone provides up to 5 dB low-frequency noise reduction on the fuselage exterior skin and up to 2 dB reduction inside the cabin. Addition of core chevrons appears to increase the higher frequency noise. This flight test result with the previous model test observation that the T-fan AVCs have hardly any cruise thrust coefficient loss (< 0.05%) make them viable candidates for reducing interior cabin noise in high bypass ratio engines.

  13. Flight Test Results for Uniquely Tailored Propulsion-Airframe Aeroacoustic Chevrons: Community Noise

    NASA Technical Reports Server (NTRS)

    Nesbitt, Eric; Mengle, Vinod; Czech, Michael; Callendar, Bryan; Thomas, Russ

    2006-01-01

    The flow/acoustic environment around the jet exhaust of an engine when installed on an airplane, say, under the wing, is highly asymmetric due to the pylon, the wing and the high-lift devices. Recent scale model tests have shown that such Propulsion Airframe Aeroacoustic (PAA) interactions and the jet mixing noise can be reduced more than with conventional azimuthally uniform chevrons by uniquely tailoring the chevrons to produce enhanced mixing near the pylon. This paper describes the community noise results from a flight test on a large twin-engine airplane using this concept of azimuthally varying chevrons for engines installed under the wing. Results for two different nozzle configurations are described: azimuthally varying "PAA T-fan" chevrons on the fan nozzle with a baseline no-chevron core nozzle and a second with PAA T-fan chevrons with conventional azimuthally uniform chevrons on the core nozzle. We analyze these test results in comparison to the baseline no-chevron nozzle on both spectral and integrated power level bases. The study focuses on the peak jet noise reduction and the effects at high frequencies for typical take-off power settings. The noise reduction and the absolute noise levels are then compared to model scale results. The flight test results verify that the PAA T-fan nozzles in combination with standard core chevron nozzles can, indeed, give a reasonable amount of noise reduction at low frequencies without high-frequency lift during take-off conditions and hardly any impact on the cruise thrust coefficient.

  14. Traversing Microphone Track Installed in NASA Lewis' Aero-Acoustic Propulsion Laboratory Dome

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.; Perusek, Gail P.

    1999-01-01

    The Aero-Acoustic Propulsion Laboratory is an acoustically treated, 65-ft-tall dome located at the NASA Lewis Research Center. Inside this laboratory is the Nozzle Acoustic Test Rig (NATR), which is used in support of Advanced Subsonics Technology (AST) and High Speed Research (HSR) to test engine exhaust nozzles for thrust and acoustic performance under simulated takeoff conditions. Acoustic measurements had been gathered by a far-field array of microphones located along the dome wall and 10-ft above the floor. Recently, it became desirable to collect acoustic data for engine certifications (as specified by the Federal Aviation Administration (FAA)) that would simulate the noise of an aircraft taking off as heard from an offset ground location. Since nozzles for the High-Speed Civil Transport have straight sides that cause their noise signature to vary radially, an additional plane of acoustic measurement was required. Desired was an arched array of 24 microphones, equally spaced from the nozzle and each other, in a 25 off-vertical plane. The various research requirements made this a challenging task. The microphones needed to be aimed at the nozzle accurately and held firmly in place during testing, but it was also essential that they be easily and routinely lowered to the floor for calibration and servicing. Once serviced, the microphones would have to be returned to their previous location near the ceiling. In addition, there could be no structure could between the microphones and the nozzle, and any structure near the microphones would have to be designed to minimize noise reflections. After many concepts were considered, a single arched truss structure was selected that would be permanently affixed to the dome ceiling and to one end of the dome floor.

  15. Forward velocity effects on fan noise and the influence of inlet aeroacoustic design as measured in the NASA Ames 40 x 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Holm, R. G.; Langenbrunner, L. E.; Mccann, E. O.

    1981-01-01

    The inlet radiated noise of a turbofan engine was studied. The principal research objectives were to characterize or suppress such noise with particular regard to its tonal characteristics. The major portion of this research was conducted by using ground-based static testing without simulation of aircraft forward speed or aircraft installation-related aeroacoustic effects.

  16. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy.

    PubMed

    Jin, Jian-Yue; Yin, Fang-Fang; Tenn, Stephen E; Medin, Paul M; Solberg, Timothy D

    2008-01-01

    The ExacTrac X-Ray 6D image-guided radiotherapy (IGRT) system will be described and its performance evaluated. The system is mainly an integration of 2 subsystems: (1) an infrared (IR)-based optical positioning system (ExacTrac) and (2) a radiographic kV x-ray imaging system (X-Ray 6D). The infrared system consists of 2 IR cameras, which are used to monitor reflective body markers placed on the patient's skin to assist in patient initial setup, and an IR reflective reference star, which is attached to the treatment couch and can assist in couch movement with spatial resolution to better than 0.3 mm. The radiographic kV devices consist of 2 oblique x-ray imagers to obtain high-quality radiographs for patient position verification and adjustment. The position verification is made by fusing the radiographs with the simulation CT images using either 3 degree-of-freedom (3D) or 6 degree-of-freedom (6D) fusion algorithms. The position adjustment is performed using the infrared system according to the verification results. The reliability of the fusion algorithm will be described based on phantom and patient studies. The results indicated that the 6D fusion method is better compared to the 3D method if there are rotational deviations between the simulation and setup positions. Recently, the system has been augmented with the capabilities for image-guided positioning of targets in motion due to respiration and for gated treatment of those targets. The infrared markers provide a respiratory signal for tracking and gating of the treatment beam, with the x-ray system providing periodic confirmation of patient position relative to the gating window throughout the duration of the gated delivery. PMID:18456164

  17. Use of the BrainLAB ExacTrac X-Ray 6D System in Image-Guided Radiotherapy

    SciTech Connect

    Jin, J.-Y. Yin Fangfang; Tenn, Stephen E.; Medin, Paul M.; Solberg, Timothy D.

    2008-07-01

    The ExacTrac X-Ray 6D image-guided radiotherapy (IGRT) system will be described and its performance evaluated. The system is mainly an integration of 2 subsystems: (1) an infrared (IR)-based optical positioning system (ExacTrac) and (2) a radiographic kV x-ray imaging system (X-Ray 6D). The infrared system consists of 2 IR cameras, which are used to monitor reflective body markers placed on the patient's skin to assist in patient initial setup, and an IR reflective reference star, which is attached to the treatment couch and can assist in couch movement with spatial resolution to better than 0.3 mm. The radiographic kV devices consist of 2 oblique x-ray imagers to obtain high-quality radiographs for patient position verification and adjustment. The position verification is made by fusing the radiographs with the simulation CT images using either 3 degree-of-freedom (3D) or 6 degree-of-freedom (6D) fusion algorithms. The position adjustment is performed using the infrared system according to the verification results. The reliability of the fusion algorithm will be described based on phantom and patient studies. The results indicated that the 6D fusion method is better compared to the 3D method if there are rotational deviations between the simulation and setup positions. Recently, the system has been augmented with the capabilities for image-guided positioning of targets in motion due to respiration and for gated treatment of those targets. The infrared markers provide a respiratory signal for tracking and gating of the treatment beam, with the x-ray system providing periodic confirmation of patient position relative to the gating window throughout the duration of the gated delivery.

  18. Experimental analysis of the aero-acoustic coupling in a plane impinging jet on a slotted plate

    NASA Astrophysics Data System (ADS)

    Assoum, Hassan H.; El Hassan, Mouhammad; Abed-Meraïm, Kamel; Martinuzzi, Robert; Sakout, Anas

    2013-08-01

    Impinging jets are encountered in many industrial applications and suppression of the noise generated by these jets is of great fundamental and practical interest. The vortex dynamics and the interaction between the vortical structures and the impinging wall should be understood in order to control the aero-acoustic coupling between shear layer oscillation and the acoustic modes (self-sustained tones). In this study, a plane jet issuing from a rectangular nozzle and impinging on a plate is considered for Re = 3900. The sound pressure, the vibration of the impinged plate and the spatial velocity field are obtained simultaneously using a microphone, an accelerometer and the time-resolved particle image velocimetry technique, respectively. Spectra and cross-correlations are used to educe the role of different vortical structures leading to the aero-acoustic coupling. The results show the evolution of the correlation between acoustic and transverse velocity fields in the longitudinal direction. A pre-whitening technique is used to investigate the coupling between the acoustic and the velocity signals. This method shows that the correlation between the two signals has a centred peak that is not directly related to the passage of the dominant Kelvin-Helmholtz vortices.

  19. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  20. Speech coding

    NASA Astrophysics Data System (ADS)

    Gersho, Allen

    1990-05-01

    Recent advances in algorithms and techniques for speech coding now permit high quality voice reproduction at remarkably low bit rates. The advent of powerful single-ship signal processors has made it cost effective to implement these new and sophisticated speech coding algorithms for many important applications in voice communication and storage. Some of the main ideas underlying the algorithms of major interest today are reviewed. The concept of removing redundancy by linear prediction is reviewed, first in the context of predictive quantization or DPCM. Then linear predictive coding, adaptive predictive coding, and vector quantization are discussed. The concepts of excitation coding via analysis-by-synthesis, vector sum excitation codebooks, and adaptive postfiltering are explained. The main idea of vector excitation coding (VXC) or code excited linear prediction (CELP) are presented. Finally low-delay VXC coding and phonetic segmentation for VXC are described.

  1. Coupled 2-dimensional cascade theory for noise an d unsteady aerodynamics of blade row interaction in turbofans. Volume 2: Documentation for computer code CUP2D

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

  2. Summary of papers on current and anticipated uses of thermal-hydraulic codes

    SciTech Connect

    Caruso, R.

    1997-07-01

    The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especially faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).

  3. SAFER03 and TRAC-BD1 analyses of a ROSA-III large-break experiment on a boiling water reactor

    SciTech Connect

    Itoya, S.; Kato, M.; Abe, N.; Nagasaka, I.

    1987-04-01

    Simulation tests of a boiling water reactor (BWR) loss-of-coolant accident (LOCA) caused by a double-ended guillotine break of a recirculation pump suction line were carried out with the rig of safety assessment III (ROSA-III) test facility at the Japan Atomic Energy Research Institute. SAFER03 and TRAC-BD1 analyses with the ROSA-III test data have been performed to assess predictive capability for the large-break LOCA thermal-hydraulic response of a BWR. The analytical results indicate that SAFER03 and TRAC-BD1 predicted key phenomena very well. Furthermore, it was confirmed that SAFER03 predicted higher peak cladding surface temperature than the test data due to the conservative thermal-hydraulic model.

  4. Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown

    NASA Astrophysics Data System (ADS)

    Violato, Daniele; Scarano, Fulvio

    2013-01-01

    The three-dimensional behavior of jet core breakdown is investigated with experiments conducted on a free water jet at Re = 5000 by time-resolved tomographic particle image velocimetry (TR-TOMO PIV). The investigated domain encompasses the range between 0 and 10 jet diameters. The characteristic pulsatile motion of vortex ring shedding and pairing culminates with the growth of four primary in-plane and out-of-plane azimuthal waves and leads to the formation of streamwise vortices. Vortex ring humps are tilted and ejected along the axial direction as they are subjected to higher axial velocities. By the end of the potential core, this process causes the breakdown of the vortex ring regime and the onset of streamwise filaments oriented at 30°-45° to the jet axis and "C" shaped peripheral structures. The latter re-organize further downstream in filaments oriented along the azimuthal direction at the jet periphery. Instead, in the vicinity of the jet axis the filaments do not exhibit any preferential direction resembling the isotropic turbulent regime. Following Powell's aeroacoustic analogy, the instantaneous spatial distribution of the acoustic source term is mapped by the second time derivative of the Lamb vector, revealing the highest activity during vortex ring breakdown. A three-dimensional modal analysis of velocity, vorticity, Lamb vector, and Lamb vector second time derivative fields is conducted by proper orthogonal decomposition (POD) within the first 10 modes. The decomposed velocity fluctuations describe a helical organization in the region of the jet core-breakdown and, further downstream, jet axis flapping and precession motions. By the end of the potential core, vorticity modes show that vortex rings are dominated by travelling waves of radial and axial vorticity with a characteristic 40°-45° inclination to the jet axis. The Lamb vector and the Lamb vector second time derivative modes exhibit similar patterns for the azimuthal component, whereas the

  5. Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Olson, Erik D.

    2010-01-01

    A system noise assessment of a hybrid wing body configuration was performed using NASA s best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology high bypass ratio turbofans. The baseline hybrid wing body aircraft was assessed at 22 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding area. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the

  6. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H.; Elkoby, Ronen

    2010-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4dB at high polar angles and increasing it by 2 to 3dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed relative to the jet nozzle from downstream to several diameters upstream of the wing trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequencies sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air through the shelf of the

  7. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H; Elkoby, Ronen

    2012-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4 dB at high polar angles and increasing it by 2 to 3 dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed such that the jet nozzle was positioned from downstream of to several diameters upstream of the airframe model trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequency sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air

  8. Maneuvering Rotorcraft Noise Prediction: A New Code for a New Problem

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Bres, Guillaume A.; Perez, Guillaume; Jones, Henry E.

    2002-01-01

    This paper presents the unique aspects of the development of an entirely new maneuver noise prediction code called PSU-WOPWOP. The main focus of the code is the aeroacoustic aspects of the maneuver noise problem, when the aeromechanical input data are provided (namely aircraft and blade motion, blade airloads). The PSU-WOPWOP noise prediction capability was developed for rotors in steady and transient maneuvering flight. Featuring an object-oriented design, the code allows great flexibility for complex rotor configuration and motion (including multiple rotors and full aircraft motion). The relative locations and number of hinges, flexures, and body motions can be arbitrarily specified to match the any specific rotorcraft. An analysis of algorithm efficiency is performed for maneuver noise prediction along with a description of the tradeoffs made specifically for the maneuvering noise problem. Noise predictions for the main rotor of a rotorcraft in steady descent, transient (arrested) descent, hover and a mild "pop-up" maneuver are demonstrated.

  9. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Pollara, Fabrizio; Hamkins, Jon; Dolinar, Sam; Andrews, Ken; Divsalar, Dariush

    2006-01-01

    This viewgraph presentation reviews uplink coding. The purpose and goals of the briefing are (1) Show a plan for using uplink coding and describe benefits (2) Define possible solutions and their applicability to different types of uplink, including emergency uplink (3) Concur with our conclusions so we can embark on a plan to use proposed uplink system (4) Identify the need for the development of appropriate technology and infusion in the DSN (5) Gain advocacy to implement uplink coding in flight projects Action Item EMB04-1-14 -- Show a plan for using uplink coding, including showing where it is useful or not (include discussion of emergency uplink coding).

  10. Mutation in the TCRα subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRαβ+ T cells

    PubMed Central

    Morgan, Neil V.; Goddard, Sarah; Cardno, Tony S.; McDonald, David; Rahman, Fatimah; Barge, Dawn; Ciupek, Andrew; Straatman-Iwanowska, Anna; Pasha, Shanaz; Guckian, Mary; Anderson, Graham; Huissoon, Aarnoud; Cant, Andrew; Tate, Warren P.; Hambleton, Sophie; Maher, Eamonn R.

    2011-01-01

    Inherited immunodeficiency disorders can be caused by mutations in any one of a large number of genes involved in the function of immune cells. Here, we describe two families with an autosomal recessive inherited immunodeficiency disorder characterized by increased susceptibility to infection and autoimmunity. Genetic linkage studies mapped the disorder to chromosomal region 14q11.2, and a homozygous guanine-to-adenine substitution was identified at the last base of exon 3 immediately following the translational termination codon in the TCRα subunit constant gene (TRAC). RT-PCR analysis in the two affected individuals revealed impaired splicing of the mRNA, as exon 3 was lost from the TRAC transcript. The mutant TCRα chain protein was predicted to lack part of the connecting peptide domain and all of the transmembrane and cytoplasmic domains, which have a critical role in the regulation of the assembly and/or intracellular transport of TCR complexes. We found that T cells from affected individuals were profoundly impaired for surface expression of the TCRαβ complex. We believe this to be the first report of a disease-causing human TRAC mutation. Although the absence of TCRαβ+ T cells in the affected individuals was associated with immune dysregulation and autoimmunity, they had a surprising level of protection against infection. PMID:21206088

  11. A comparison of data reduction techniques for the aeroacoustic analysis of flow over a blunt flat plate

    NASA Astrophysics Data System (ADS)

    Debesse, Ph.; Pastur, L.; Lusseyran, F.; Fraigneau, Y.; Tenaud, C.; Bonamy, C.; Cavalieri, A. V. G.; Jordan, P.

    2016-06-01

    A large eddy simulation of flow over a forward-facing plate is performed and the resulting database analyzed with respect to sound radiation. Aeroacoustic analysis motivates an initial data compression comprising eduction of the zeroth-order spanwise Fourier mode. The space-time structure of this component of the flow is then analyzed using POD and DMD in order to probe both the energetics and dynamics of the sound-producing flow skeleton. Both data processing techniques educe flapping and shedding modes and identify a nonlinear interaction between the two. POD shows the flapping mode to be energetically unimportant, while DMD highlights its dynamic importance. The difference mode—vortex shedding modulated by flapping of the separation bubble—is found to be the most acoustically important feature of the flow.

  12. Enhancing the focal-resolution of aeroacoustic time-reversal using a point sponge-layer damping technique.

    PubMed

    Mimani, A; Doolan, C J; Medwell, P R

    2014-09-01

    This letter presents the Point-Time-Reversal-Sponge-Layer (PTRSL) technique to enhance the focal-resolution of aeroacoustic Time-Reversal (TR). A PTRSL is implemented on a square domain centered at the predicted source location and is based on damping the radial components of the incoming and outgoing fluxes propagating toward and away from the source, respectively. A PTRSL is shown to overcome the conventional half-wavelength diffraction-limit; its implementation significantly reduces the focal spot size to one-fifth of a wavelength for a monopole source. Furthermore, PTRSL reduces the focal spots of a dipole source to three-tenths of a wavelength, as compared to three-fifths without its implementation. PMID:25190421

  13. A comparison of data reduction techniques for the aeroacoustic analysis of flow over a blunt flat plate

    NASA Astrophysics Data System (ADS)

    Debesse, Ph.; Pastur, L.; Lusseyran, F.; Fraigneau, Y.; Tenaud, C.; Bonamy, C.; Cavalieri, A. V. G.; Jordan, P.

    2015-12-01

    A large eddy simulation of flow over a forward-facing plate is performed and the resulting database analyzed with respect to sound radiation. Aeroacoustic analysis motivates an initial data compression comprising eduction of the zeroth-order spanwise Fourier mode. The space-time structure of this component of the flow is then analyzed using POD and DMD in order to probe both the energetics and dynamics of the sound-producing flow skeleton. Both data processing techniques educe flapping and shedding modes and identify a nonlinear interaction between the two. POD shows the flapping mode to be energetically unimportant, while DMD highlights its dynamic importance. The difference mode—vortex shedding modulated by flapping of the separation bubble—is found to be the most acoustically important feature of the flow.

  14. Perfectly Matched Layer for Galbrun's aeroacoustic equation in a cylindrical coordinates system with an axial and a swirling steady mean flow

    NASA Astrophysics Data System (ADS)

    Baccouche, Ryan; Tahar, Mabrouk Ben; Moreau, Solène

    2016-09-01

    A Perfectly Matched Layer (PML) for aeroacoustic problems using Galbrun's equation in the presence of an axial and a swirling steady mean flow is investigated in a cylindrical coordinates system. This equation is based on an Eulerian-Lagrangian description and leads to a wave equation written only in terms of the Lagrangian perturbation of the displacement. Galbrun's equation is solved by a mixed pressure-displacement Finite Element Method (FEM). To avoid instabilities in the presence of mean flow, a geometric transformation is presented. The validity and efficiency of the proposed PML formulation are established through comparisons with analytical, semi-analytical model based on Pridmore-Brown equation (extended to an axial and a swirling mean flow) and with multiple-scale models. The interest of the formulation is shown through an example of aeroacoustic radiation.

  15. High Order Discontinuous Gelerkin Methods for Convection Dominated Problems with Application to Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2000-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. On the analysis side, we have studied the efficient and stable discontinuous Galerkin framework for small second derivative terms, for example in Navier-Stokes equations, and also for related equations such as the Hamilton-Jacobi equations. This is a truly local discontinuous formulation where derivatives are considered as new variables. On the applied side, we have implemented and tested the efficiency of different approaches numerically. Related issues in high order ENO and WENO finite difference methods and spectral methods have also been investigated. Jointly with Hu, we have presented a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the RungeKutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method. Jointly with Hu, we have constructed third and fourth order WENO schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. The third order schemes are based on a combination of linear polynomials with nonlinear weights, and the fourth order schemes are based on combination of quadratic polynomials with nonlinear weights. We have addressed several difficult issues associated with high order WENO schemes on unstructured mesh, including the choice of linear and nonlinear weights, what to do with negative weights, etc. Numerical examples are shown to demonstrate the accuracies and robustness of the

  16. Computer Code

    NASA Technical Reports Server (NTRS)

    1985-01-01

    COSMIC MINIVER, a computer code developed by NASA for analyzing aerodynamic heating and heat transfer on the Space Shuttle, has been used by Marquardt Company to analyze heat transfer on Navy/Air Force missile bodies. The code analyzes heat transfer by four different methods which can be compared for accuracy. MINIVER saved Marquardt three months in computer time and $15,000.

  17. Aero-acoustic experimental verification of optimum configuration of variable-pitch fans for 40 x 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Lown, H.

    1977-01-01

    The aerodynamic and acoustic performance of two drive fan configurations (low-speed and high-speed variable pitch design) for a 40 x 80 foot wind tunnel were monitored. A 1/7-scale model was utilized. The necessary aero-acoustic data reduction computer program logic was supplied. Test results were evaluated, and the optimum configuration to be employed in the 40 foot full scale fan was recommended.

  18. DNA codes

    SciTech Connect

    Torney, D. C.

    2001-01-01

    We have begun to characterize a variety of codes, motivated by potential implementation as (quaternary) DNA n-sequences, with letters denoted A, C The first codes we studied are the most reminiscent of conventional group codes. For these codes, Hamming similarity was generalized so that the score for matched letters takes more than one value, depending upon which letters are matched [2]. These codes consist of n-sequences satisfying an upper bound on the similarities, summed over the letter positions, of distinct codewords. We chose similarity 2 for matches of letters A and T and 3 for matches of the letters C and G, providing a rough approximation to double-strand bond energies in DNA. An inherent novelty of DNA codes is 'reverse complementation'. The latter may be defined, as follows, not only for alphabets of size four, but, more generally, for any even-size alphabet. All that is required is a matching of the letters of the alphabet: a partition into pairs. Then, the reverse complement of a codeword is obtained by reversing the order of its letters and replacing each letter by its match. For DNA, the matching is AT/CG because these are the Watson-Crick bonding pairs. Reversal arises because two DNA sequences form a double strand with opposite relative orientations. Thus, as will be described in detail, because in vitro decoding involves the formation of double-stranded DNA from two codewords, it is reasonable to assume - for universal applicability - that the reverse complement of any codeword is also a codeword. In particular, self-reverse complementary codewords are expressly forbidden in reverse-complement codes. Thus, an appropriate distance between all pairs of codewords must, when large, effectively prohibit binding between the respective codewords: to form a double strand. Only reverse-complement pairs of codewords should be able to bind. For most applications, a DNA code is to be bi-partitioned, such that the reverse-complementary pairs are separated

  19. Statistical Safety Evaluation of BWR Turbine Trip Scenario Using Coupled Neutron Kinetics and Thermal Hydraulics Analysis Code SKETCH-INS/TRACE5.0

    NASA Astrophysics Data System (ADS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal- hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method.

  20. Assessing readiness for transition from paediatric to adult health care: Revision and psychometric evaluation of the ‘Am I ON TRAC for Adult Care’ questionnaire

    PubMed Central

    MOYNIHAN, Melissa; SAEWYC, Elizabeth; WHITEHOUSE, Sandra; PAONE, Mary; MCPHERSON, Gladys

    2015-01-01

    Aim To refine and psychometrically test the Am I ON TRAC for Adult Care questionnaire. Background. Inadequate transition to adult care for adolescents with special health care needs has been associated with greater risk of treatment non-adherence, lack of medical follow-up, increased morbidity and mortality. Presently there are no well-validated measures assessing adolescents’ readiness to transition from paediatric to adult medical care. Design Descriptive cross-sectional study. Methods The Am I ON TRAC for Adult Care questionnaire was refined to improve the instrument’s methodological soundness. A literature review informed the revisions. A convenience sample of 200 adolescents, 12–19 years, was recruited from four outpatient clinics at a paediatric hospital in Western Canada between April – June 2012. Construct validity was evaluated by Exploratory Factory Analysis; concurrent validity was assessed using the Psychosocial Maturity Index. Internal consistency was evaluated by computing Cronbach’s alpha estimates. Results Factor analysis of the knowledge items identified a 14-item unidimensional scale. Knowledge and behaviour sub-scale scores increased with age, with a stronger relationship between knowledge and age. Psychosocial maturity correlated with both sub-scale scores, but had a stronger association with behaviour. Psychosocial maturity and age had a weak but significant correlation suggesting age is a loose proxy for maturity. Only 27% of 17-year-olds, but 62% 18-year-olds, scored above the behaviour cut-off for transition readiness. Conclusion The Am I ON TRAC for Adult Care questionnaire is a psychometrically sound measure that has potential to be used as a readiness assessment tool in both clinical practice and research. PMID:25616006

  1. Reducing the Effect of Transducer Mount Induced Noise on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    NASA Technical Reports Server (NTRS)

    Herron, A. J.; Reed, D. K.; Nance, D. K.

    2015-01-01

    Characterization of launch vehicle unsteady aerodynamics is a field best studied through experimentation, which is often carried out in the form of large scale wind tunnel testing. Measurement of the fluctuating pressures induced by the boundary layer noise is customarily made with miniature pressure transducers installed into a model of the vehicle of interest. Literature shows that noise level increases between two to five decibels (dB referenced to 20 micropascal) can be induced when the transducer surface is not mounted perfectly flush with the model outer surface. To reduce this artificially induced noise, special transducer holders have been used for aeroacoustic wind tunnel testing by NASA. This holder is a sleeve into which the transducer fits, with a cap that allows it to be mounted in a recessed hole in the model. A single hole in the holder allows the transport of the tunnel medium so the transducer can discriminate the fluctuating pressure due to the turbulent boundary layer noise. The holder is first dry fitted into the model and any difference in height between the holder and the model surface can be sanded flush. The holder is then removed from the model, the transducer glued inside the holder, and the holder replaced in the model, secured also with glue, thus eliminating the problem of noise level increases due to lack of flushness. In order to work with this holder design, special transducers have been ordered with their standard screen removed and the diaphragm moved as close to the top of the casing as possible to minimize any cavity volume. Although this greatly reduces induced noise due to the transducers being out of flush, the holders can also induce a cavity resonance that is usually at a very high frequency. This noise is termed transducer mount induced noise (XMIN). The peak of the mode can vary with the cavity depth, boundary layer noise that can excite the mode, tunnel flow medium, and the build of the transducers. Because the boundary

  2. Speech coding

    SciTech Connect

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  3. Comparison of Computational Aeroacoustics Prediction of Acoustic Transmission Through a 3D Stator With Experiment

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel L.

    2014-01-01

    In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.

  4. Comparison of Computational Aeroacoustics Prediction of Acoustic Transmission Through a 3D Stator with Experiment

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel

    2014-01-01

    In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.

  5. On sound scattering by rigid edges and wedges in a flow, with applications to high-lift device aeroacoustics

    NASA Astrophysics Data System (ADS)

    Roger, Michel; Moreau, Stéphane; Kucukcoskun, Korcan

    2016-02-01

    Exact analytical solutions for the scattering of sound by the edge of a rigid half-plane and by a rigid corner in the presence of a uniform flow are considered in this work, for arbitrary source and observer locations. Exact Green's functions for the Helmholtz equation are first reviewed and implemented in a quiescent propagation space from reference expressions of the literature. The effect of uniform fluid motion is introduced in a second step and the properties of the field are discussed for point dipoles and quadrupoles. The asymptotic regime of a source close to the scattering edge/wedge and of an observer far from it in terms of acoustic wavelengths is derived in both cases. Its validity limits are assessed by comparing with the exact solutions. Typically the asymptotic directivity is imposed by Green's function but not by the source itself. This behaviour is associated with a strong enhancement of the radiation with respect to what the source would produce in free field. The amplification depends on the geometry, on the source type and on the source distance to the edge/wedge. Various applications in aeroacoustics of wall-bounded flows are addressed, more specifically dealing with high-lift device noise mechanisms, such as trailing-edge or flap side-edge noise. The asymptotic developments are used to highlight trends that are believed to play a role in airframe noise.

  6. Reducing the Effect of Transducer Mount Induced Noise on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    NASA Technical Reports Server (NTRS)

    Herron, Andrew J.; Reed, Darren K.; Nance, Donald K.

    2015-01-01

    Flight vehicle aeroacoustic environments induced during transonic and supersonic flight are usually predicted by subscale wind tunnel testing utilizing high frequency miniature pressure transducers. In order to minimize noise induced by the measurement itself, transducer flush mounting with the model surface is very important. The National Aeronautics and Space Administration (NASA) has accomplished flushness in recent testing campaigns via use of a transducer holder that can be machined and sanded. A single hole in the holder allows the flow medium to interact with the transducer diaphragm. Noise is induced by the resulting cavity however, and is a challenge to remove in post-processing. A new holder design has been developed that minimizes the effects of this transducer mount induced noise (XMIN) by reducing the resonance amplitude or increasing its resonance frequency beyond the range of interest. This paper describes a test conducted at the NASA/George C. Marshall Space Flight Center Trisonic Wind Tunnel intended to verify the effectiveness of this design. The results from this test show that this new transducer holder design does significantly reduce the influence of XMIN on measured fluctuating pressure levels without degrading a transducer's ability to accurately measure the noise external to the model.

  7. Applications of the Space-Time Conservation Element and Solution Element (CE/SE) Method to Computational Aeroacoustic Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Himansu, Ananda; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    The Internal Propagation problems, Fan Noise problem, and Turbomachinery Noise problems are solved using the space-time conservation element and solution element (CE/SE) method. The problems in internal propagation problems address the propagation of sound waves through a nozzle. Both the nonlinear and linear quasi 1D Euler equations are solved. Numerical solutions are presented and compared with the analytical solution. The fan noise problem concerns the effect of the sweep angle on the acoustic field generated by the interaction of a convected gust with a cascade of 3D flat plates. A parallel version of the 3D CE/SE Euler solver is developed and employed to obtain numerical solutions for a family of swept flat plates. Numerical solutions for sweep angles of 0, 5, 10, and 15 deg are presented. The turbomachinery problems describe the interaction of a 2D vortical gust with a cascade of flat-plate airfoils with/without a downstream moving grid. The 2D nonlinear Euler Equations are solved and the converged numerical solutions are presented and compared with the corresponding analytical solution. All the comparisons demonstrate that the CE/SE method is capable of solving aeroacoustic problems with/without shock waves in a simple and efficient manner. Furthermore, the simple non-reflecting boundary condition used in the CE/SE method which is not based on the characteristic theory works very well in 1D, 2D and 3D problems.

  8. Propulsion Airframe Aeroacoustics Technology Evaluation and Selection Using a Multi-Attribute Decision Making Process and Non-Deterministic Design

    NASA Technical Reports Server (NTRS)

    Burg, Cecile M.; Hill, Geoffrey A.; Brown, Sherilyn A.; Geiselhart, Karl A.

    2004-01-01

    The Systems Analysis Branch at NASA Langley Research Center has investigated revolutionary Propulsion Airframe Aeroacoustics (PAA) technologies and configurations for a Blended-Wing-Body (BWB) type aircraft as part of its research for NASA s Quiet Aircraft Technology (QAT) Project. Within the context of the long-term NASA goal of reducing the perceived aircraft noise level by a factor of 4 relative to 1997 state of the art, major configuration changes in the propulsion airframe integration system were explored with noise as a primary design consideration. An initial down-select and assessment of candidate PAA technologies for the BWB was performed using a Multi-Attribute Decision Making (MADM) process consisting of organized brainstorming and decision-making tools. The assessments focused on what effect the PAA technologies had on both the overall noise level of the BWB and what effect they had on other major design considerations such as weight, performance and cost. A probabilistic systems analysis of the PAA configurations that presented the best noise reductions with the least negative impact on the system was then performed. Detailed results from the MADM study and the probabilistic systems analysis will be published in the near future.

  9. Model-Scale Aerodynamic Performance Testing of Proposed Modifications to the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Coston, Calvin W., Jr.

    2005-01-01

    Tests were performed on a 1/20th-scale model of the Low Speed Aeroacoustic Wind Tunnel to determine the performance effects of insertion of acoustic baffles in the tunnel inlet, replacement of the existing collector with a new collector design in the open jet test section, and addition of flow splitters to the acoustic baffle section downstream of the test section. As expected, the inlet baffles caused a reduction in facility performance. About half of the performance loss was recovered by addition the flow splitters to the downstream baffles. All collectors tested reduced facility performance. However, test chamber recirculation flow was reduced by the new collector designs and shielding of some of the microphones was reduced owing to the smaller size of the new collector. Overall performance loss in the facility is expected to be a 5 percent top flow speed reduction, but the facility will meet OSHA limits for external noise levels and recirculation in the test section will be reduced.

  10. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  11. SU-E-J-23: Characteristics of X-Rays From ExacTrac and Patient Dose From Imaging Procedures

    SciTech Connect

    Ding, G

    2015-06-15

    Purpose: The purpose of this investigation is 1) provide the beam characteristics of x-rays produced by a Novalis TX ExacTrac system; 2) present a method to commission such beams, 3) present radiation dose to patients resulting from the imaging procedures. Methods: The Monte Carlo simulations were used to obtain the characteristics of kV beams and validated by measurements. The calculated beam HVLs, profiles and depth-dose curves were benchmarked against measurements. Twelve different image acquisition protocols were studied. The x-ray tube voltage ranges from 70 - 145 kV and milliampere-second (mAs) ranges from 8 - 80 mAs depending on the selection of Cranium, Head & Neck, Thorax or Abdomen imaging protocols. The beam output of each image acquisition protocol was determined by using an ionization chamber. The air kerma calibration factors of the ion chamber were obtained from an Accredited Dosimetry Calibration Laboratory for specified HVLs. Results: The agreements between measured and simulated results were within the uncertainties for HVLs, dose profiles and depth-dose curves. When %dd was normalized at 1 cm depth, its values at depth of 5 cm ranged from 45% to 66% of in water for kV beams range from 70 kVp to 145 kVp respectively. For head images, a typical dose to eye resulting from single projection ranged from 0.008 cGy to 0.025 cGy depending on the cranial image protocols selected. For a single pelvic image the skin dose could reach up to 0.1 cGy from an abdominal protocol. Conclusion: Although multiple pairs of x-ray images are commonly acquired during a daily patient treatment, the imaging doses to patients resulting from the sum of these projected x-rays are generally much less than 0.5 cGy. The knowledge obtained from this investigation can be used to estimate the image dose and optimize the used of the system.

  12. Comparison of Numerical Schemes for a Realistic Computational Aeroacoustics Benchmark Problem

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Wu, J.; Nallasamy, M.; Sawyer, S.; Dyson, R.

    2004-01-01

    In this work, a nonlinear structured-multiblock CAA solver, the NASA GRC BASS code, will be tested on a realistic CAA benchmark problem. The purpose of this test is to ascertain what effect the high-accuracy solution methods used in CAA have on a realistic test problem, where both the mean flow and the unsteady waves are simultaneously computed on a fully curvilinear grid from a commercial grid generator. The proposed test will compare the solutions obtained using several finite-difference methods on identical grids to determine whether high-accuracy schemes have advantages for this benchmark problem.

  13. Aeroacoustic Simulation of a Nose Landing Gear in an Open Jet Facility Using FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockhard, David P.; Khorrami, Mehdi R.; Carlson, Jan-Renee

    2012-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida s open-jet acoustic facility known as UFAFF. The unstructured-grid flow solver, FUN3D, developed at NASA Langley Research center is used to compute the unsteady flow field for this configuration. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions compare favorably with the measured data. Unsteady flowfield data obtained from the FUN3D code are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the sound pressure levels at microphones placed in the farfield. Significant improvement in predicted noise levels is obtained when the flowfield data from the open jet UFAFF simulations is used as compared to the case using flowfield data from the closed-wall BART configuration.

  14. Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockhard, David P.

    2013-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.

  15. Analysis of the Setup Uncertainty and Margin of the Daily ExacTrac 6D Image Guide System for Patients with Brain Tumors

    PubMed Central

    Oh, Se An; Yea, Ji Woon; Kang, Min Kyu; Park, Jae Won; Kim, Sung Kyu

    2016-01-01

    This study evaluated the setup uncertainties for brain sites when using BrainLAB’s ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27–33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Optimal PTV margins were calculated based on van Herk et al.’s [margin recipe = 2.5∑ + 0.7σ - 3 mm] and Stroom et al.’s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.’s and Stroom et al.’s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin. PMID:27019082

  16. Analysis of the Setup Uncertainty and Margin of the Daily ExacTrac 6D Image Guide System for Patients with Brain Tumors.

    PubMed

    Oh, Se An; Yea, Ji Woon; Kang, Min Kyu; Park, Jae Won; Kim, Sung Kyu

    2016-01-01

    This study evaluated the setup uncertainties for brain sites when using BrainLAB's ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27-33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Optimal PTV margins were calculated based on van Herk et al.'s [margin recipe = 2.5∑ + 0.7σ - 3 mm] and Stroom et al.'s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.'s and Stroom et al.'s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin. PMID:27019082

  17. Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2004-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier

  18. Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.

    2011-01-01

    Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.

  19. Aeroacoustic flowfield and acoustics of a model helicopter tail rotor at high advance ratio

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.

    1989-01-01

    Some results, relevant to rotorcraft noise generation process at high advance ratio, are presented in this paper from schlieren flow visualization and acoustic tests of a model tail rotor. The measured in-plane noise trends are consistent with the growth of the tip supersonic region seen in the schlieren visuals. Schlieren flow visuals reveal a propagating pressure wave in the second quadrant. Simultaneously measured acoustic data and the results of two-dimensional transonic Blade-Vortex Interaction analysis code ATRAN-2 indicate that this pressure wave is attributable to BVI activity in the first quadrant. This paper establishes that the transonic Blade-Vortex Interactions contribute to noise at high advance ratio level flight conditions.

  20. Development of image quality assurance measures of the ExacTrac localization system using commercially available image evaluation software and hardware for image-guided radiotherapy.

    PubMed

    Stanley, Dennis N; Papanikolaou, Nikos; Gutiérrez, Alonso N

    2014-01-01

    Quality assurance (QA) of the image quality for image-guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, a methodology was developed to assess and evaluate the constancy of the high-contrast spatial resolution, dose, energy, contrast, and geometrical accuracy of the BrainLAB ExacTrac system. An in-house fixation device was constructed to hold the QCkV-1 phantom firmly and reproducibly against the face of the flat panel detectors. Two image sets per detector were acquired using ExacTrac preset console settings over a period of three months. The image sets were analyzed in PIPSpro and the following metrics were recorded: high-contrast spatial resolution (f30, f40, f50 (lp/mm)), noise, and contrast-to-noise ratio. Geometrical image accu- racy was evaluated by assessing the length between to predetermined points of the QCkV-1 phantom. Dose and kVp were recorded using the Unfors RaySafe Xi R/F Detector. The kVp and dose were evaluated for the following: Cranial Standard (CS) (80 kV,80 mA,80 ms), Thorax Standard (TS) (120 kV,160 mA,160 ms), Abdomen Standard (AS) (120 kV,160 mA,130 ms), and Pelvis Standard (PS) (120 kV,160 mA,160 ms). With regard to high-contrast spatial resolution, the mean values of the f30 (lp/mm), f40 (lp/mm) and f50 (lp/mm) for the left detector were 1.39 ± 0.04, 1.24 ± 0.05, and 1.09 ± 0.04, respectively, while for the right detector they were 1.38 ± 0.04, 1.22 ± 0.05, and 1.09 ± 0.05, respectively. Mean CNRs for the left and right detectors were 148 ± 3 and 143 ± 4, respectively. For geometrical accuracy, both detectors had a measured image length of the QCkV-1 of 57.9 ± 0.5 mm. The left detector showed dose measurements of 20.4 ± 0.2 μGy (CS), 191.8 ± 0.7 μGy (TS), 154.2 ± 0.7 μGy (AS), and 192.2 ± 0.6 μGy (PS), while the right detector showed 20.3 ± 0.3 μGy (CS), 189.7 ± 0.8 μGy (TS), 151.0 ± 0.7 μGy (AS), and 189.7 ± 0.8 μGy (PS), respectively. For X

  1. Analysis of time-variant quadratic phase couplings in the tracé alternant EEG by recursive estimation of 3rd-order time-frequency distributions.

    PubMed

    Helbig, Marko; Schwab, Karin; Leistritz, Lutz; Eiselt, Michael; Witte, Herbert

    2006-10-15

    The quantification of transient quadratic phase couplings (QPC) by means of time-variant bispectral analysis is a useful approach to explain several interrelations between signal components. A generalized recursive estimation approach for 3rd-order time-frequency distributions (3rd-order TFD) is introduced. Based on 3rd-order TFD, time-variant estimations of biamplitude (BA), bicoherence (BC) and phase bicoherence (PBC) can be derived. Different smoothing windows and local moment functions for an optimization of the estimation properties are investigated and compared. The methods are applied to signal simulations and EEG signals, and it can be shown that the new time-variant bispectral analysis results in a reliable quantification of QPC in the tracé alternant EEG of healthy neonates. PMID:16737739

  2. The Acoustic Analogy: A Powerful Tool in Aeroacoustics with Emphasis on Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Doty, Michael J.; Hunter, Craig A.

    2004-01-01

    The acoustic analogy introduced by Lighthill to study jet noise is now over 50 years old. In the present paper, Lighthill s Acoustic Analogy is revisited together with a brief evaluation of the state-of-the-art of the subject and an exploration of the possibility of further improvements in jet noise prediction from analytical methods, computational fluid dynamics (CFD) predictions, and measurement techniques. Experimental Particle Image Velocimetry (PIV) data is used both to evaluate turbulent statistics from Reynolds-averaged Navier-Stokes (RANS) CFD and to propose correlation models for the Lighthill stress tensor. The NASA Langley Jet3D code is used to study the effect of these models on jet noise prediction. From the analytical investigation, a retarded time correction is shown that improves, by approximately 8 dB, the over-prediction of aft-arc jet noise by Jet3D. In experimental investigation, the PIV data agree well with the CFD mean flow predictions, with room for improvement in Reynolds stress predictions. Initial modifications, suggested by the PIV data, to the form of the Jet3D correlation model showed no noticeable improvements in jet noise prediction.

  3. Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.

    2015-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.

  4. A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Morris, Philip J.

    1999-01-01

    In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.

  5. A Comparison of Computational Aeroacoustic Prediction Methods for Transonic Rotor Noise

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Lyrintzis, Anastasios; Koutsavdis, Evangelos K.

    1996-01-01

    This paper compares two methods for predicting transonic rotor noise for helicopters in hover and forward flight. Both methods rely on a computational fluid dynamics (CFD) solution as input to predict the acoustic near and far fields. For this work, the same full-potential rotor code has been used to compute the CFD solution for both acoustic methods. The first method employs the acoustic analogy as embodied in the Ffowcs Williams-Hawkings (FW-H) equation, including the quadrupole term. The second method uses a rotating Kirchhoff formulation. Computed results from both methods are compared with one other and with experimental data for both hover and advancing rotor cases. The results are quite good for all cases tested. The sensitivity of both methods to CFD grid resolution and to the choice of the integration surface/volume is investigated. The computational requirements of both methods are comparable; in both cases these requirements are much less than the requirements for the CFD solution.

  6. Codes with special correlation.

    NASA Technical Reports Server (NTRS)

    Baumert, L. D.

    1964-01-01

    Uniform binary codes with special correlation including transorthogonality and simplex code, Hadamard matrices and difference sets uniform binary codes with special correlation including transorthogonality and simplex code, Hadamard matrices and difference sets

  7. Error-correction coding

    NASA Technical Reports Server (NTRS)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  8. High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development

    NASA Technical Reports Server (NTRS)

    Whitfield, C. E.; Gliebe, P. R.; Mani, R.; Mungur, P.

    1989-01-01

    A frequency-domain noncompact-source theory for the steady loading and volume-displacement (thickness) noise of high speed propellers has been developed and programmed. Both near field and far field effects have been considered. The code utilizes blade surface pressure distributions obtained from three-dimensional nonlinear aerodynamic flow field analysis programs as input for evaluating the steady loading noise. Simplified mathematical models of the velocity fields induced at the propeller disk by nearby wing and fuselage surfaces and by angle-of-attack operation have been developed to provide estimates of the unsteady loading imposed on the propeller by these potential field type interactions. These unsteady blade loadings have been coupled to a chordwise compact propeller unsteady loading noise model to provide predictions of unsteady loading noise caused by these installation effects. Finally, an analysis to estimate the corrections to be applied to the free-field noise predictions in order to arrive at the measurable fuselage sound pressure levels has been formulated and programmed. This analysis considers the effects of fuselage surface reflection and diffraction together with surface boundary layer refraction. The steady loading and thickness model and the unsteady loading model have been verified using NASA-supplied data for the SR-2 and SR-3 model propfans. In addition, the steady loading and thickness model has been compared with data from the SR-6 model propfan. These theoretical models have been employed in the evaluation of the SR-7 powered Gulfstream aircraft in terms of noise characteristics at representative takeoff, cruise, and approach operating conditions. In all cases, agreement between theory and experiment is encouraging.

  9. Code requirements document: MODFLOW 2.1: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F.; Paik, I.K.

    1992-03-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  10. Code requirements document: MODFLOW 2. 1: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F. . Dept. of Nuclear Engineering); Paik, I.K. )

    1992-03-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  11. Integration of Propulsion-Airframe-Aeroacoustic Technologies and Design Concepts for a Quiet Blended-Wing-Body Transport

    NASA Technical Reports Server (NTRS)

    Hill, G. A.; Brown, S. A.; Geiselhart, K. A.

    2004-01-01

    This paper summarizes the results of studies undertaken to investigate revolutionary propulsion-airframe configurations that have the potential to achieve significant noise reductions over present-day commercial transport aircraft. Using a 300 passenger Blended-Wing-Body (BWB) as a baseline, several alternative low-noise propulsion-airframe-aeroacoustic (PAA) technologies and design concepts were investigated both for their potential to reduce the overall BWB noise levels, and for their impact on the weight, performance, and cost of the vehicle. Two evaluation frameworks were implemented for the assessments. The first was a Multi-Attribute Decision Making (MADM) process that used a Pugh Evaluation Matrix coupled with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). This process provided a qualitative evaluation of the PAA technologies and design concepts and ranked them based on how well they satisfied chosen design requirements. From the results of the evaluation, it was observed that almost all of the PAA concepts gave the BWB a noise benefit, but degraded its performance. The second evaluation framework involved both deterministic and probabilistic systems analyses that were performed on a down-selected number of BWB propulsion configurations incorporating the PAA technologies and design concepts. These configurations included embedded engines with Boundary Layer Ingesting Inlets, Distributed Exhaust Nozzles installed on podded engines, a High Aspect Ratio Rectangular Nozzle, Distributed Propulsion, and a fixed and retractable aft airframe extension. The systems analyses focused on the BWB performance impacts of each concept using the mission range as a measure of merit. Noise effects were also investigated when enough information was available for a tractable analysis. Some tentative conclusions were drawn from the results. One was that the Boundary Layer Ingesting Inlets provided improvements to the BWB's mission range, by

  12. Simulations of the loading and radiated sound of airfoils and wings in unsteady flow using computational aeroacoustics and parallel computers

    NASA Astrophysics Data System (ADS)

    Lockard, David Patrick

    This thesis makes contributions towards the use of computational aeroacoustics (CAA) as a tool for noise analysis. CAA uses numerical methods to simulate acoustic phenomena. CAA algorithms have been shown to reproduce wave propagation much better than traditional computational fluid dynamics (CFD) methods. In the current approach, a finite-difference, time-domain algorithm is used to simulate unsteady, compressible flows. Dispersion-relation-preserving methodology is used to extend the range of frequencies that can be represented properly by the scheme. Since CAA algorithms are relatively inefficient at obtaining a steady-state solution, multigrid methods are applied to accelerate the convergence. All of the calculations are performed on parallel computers. Excellent speedup ratios are obtained for the explicit, time-stepping algorithm used in this research. A common problem in the area of broadband noise is the prediction of the acoustic field generated by a vortical gust impinging on a solid body. The problem is modeled initially in two-dimensions by a flat plate experiencing a uniform mean flow with a sinusoidal, vertical velocity perturbation. Good agreement is obtained with results from semi-analytic methods for several gust frequencies. Then, a cascade of plates is used to simulate a turbomachinery blade row. A new approach is used to impose the vortical disturbance inside the computational domain rather than imposing it at the computational boundary. The influence of the mean flow on the radiated noise is examined by considering NACA0012 and RAE2822 airfoils. After a steady-state is obtained from the multigrid method, the un-steady simulation is used to model the vortical gust's interaction with the airfoil. The mean loading on the airfoil is shown to have a significant effect on the directivity of the sound with the strongest influence observed for high frequencies. Camber is shown to have a similar effect as the angle of attack. A three-dimensional problem

  13. Homological stabilizer codes

    SciTech Connect

    Anderson, Jonas T.

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  14. Aeroacoustic Measurements of a Wing/Slat Model. [Research conducted at the Quiet Flow Facility of the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Mendoza, Jeff M.; Brooks, Thomas F.; Humphreys, William M.

    2002-01-01

    Aeroacoustic evaluations of high-lift devices have been carried out in the Quiet Flow Facility of the NASA Langley Research Center. The present paper deals with detailed flow and acoustic measurements that have been made to understand, and to possibly predict and reduce, the noise from a wing leading edge slat configuration. The acoustic database is obtained by a moveable Small Aperture Directional Array (SADA) of microphones designed to electronically steer to different portions of models under study. The slat is shown to be a uniform distributed noise source. The data was processed such that spectra and directivity were determined with respect to a one-foot span of slat. The spectra are normalized in various fashions to demonstrate slat noise character. In order to equate portions of the spectra to different slat noise components, trailing edge noise predictions using measured slat boundary layer parameters as inputs are compared to the measured slat noise spectra.

  15. Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise. Volume 1; Development of Theory for Blade Loading, Wakes, and Noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1991-01-01

    A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

  16. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  17. Quantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling.

    PubMed

    Keeling, Vance; Hossain, Sabbir; Jin, Hosang; Algan, Ozer; Ahmad, Salahuddin; Ali, Imad

    2016-01-01

    The purpose of this study is to evaluate patient setup accuracy and quantify indi-vidual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the Brainlab 6D ExacTrac system using the positioning shifts of 35 patients having cranial lesions. All these patients are immobilized with rigid head-and-neck masks, simu-lated with Brainlab localizer and planned with iPlan treatment planning system. Stereoscopic X-ray images (XC) are acquired and registered to corresponding digitally reconstructed radiographs using bony-anatomy matching to calculate 6D translational and rotational shifts. When the shifts are within tolerance (0.7 mm and 1°), treatment is initiated. Otherwise corrections are applied and additional X-rays (XV) are acquired to verify that patient position is within tolerance. The uncertain-ties from the mask, localizer, IR -frame, X-ray imaging, MV, and kV isocentricity are quantified individually. Mask uncertainty (translational: lateral, longitudinal, vertical; rotational: pitch, roll, yaw) is the largest and varies with patients in the range (-2.07-3.71 mm, -5.82-5.62 mm, -5.84-3.61 mm; -2.10-2.40°, -2.23-2.60°, and -2.7-3.00°) obtained from mean of XC shifts for each patient. Setup uncer-tainty in IR positioning (0.88, 2.12, 1.40 mm, and 0.64°, 0.83°, 0.96°) is extracted from standard deviation of XC. Systematic uncertainties of the frame (0.18, 0.25, -1.27mm, -0.32°, 0.18°, and 0.47°) and localizer (-0.03, -0.01, 0.03mm, and -0.03°, 0.00°, -0.01°) are extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine are (0.27, 0.24, 0.34 mm) and kV imager (0.15, -0.4, 0.21 mm). A statisti-cal model is developed to

  18. The design of test-section inserts for higher speed aeroacoustic testing in the Ames 80- by 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Olson, Larry E.

    1992-01-01

    An engineering feasibility study was made of aeroacoustic inserts designed for large-scale acoustic research on aircraft models in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center. The goal was to find test-section modifications that would allow improved aeroacoustic testing at airspeeds equal to and above the current 100 knots limit. Results indicate that the required maximum airspeed drives the design of a particular insert. Using goals of 200, 150, and 100 knots airspeed, the analysis led to a 30 x 60 ft open-jet test section, a 40 x 80 ft open-jet test section, and a 70 x 110 ft closed test section with enhanced wall lining respectively. The open-jet inserts would be composed of a nozzle, collector, diffuser, and acoustic wedges incorporated in the existing 80 x 120 ft test section. The closed test section would be composed of approximately 5-ft acoustic wedges covered by a porous plate attached to the test-section walls of the existing 80 x 120. All designs would require a double row of acoustic vanes between the test section and fan drive to attenuate fan noise and, in the case of the open-jet designs, to control flow separation at the diffuser downstream end. The inserts would allow virtually anechoic acoustics studies of large helicopter models, jets, and V/STOL aircraft models in simulated flight. Model scale studies would be necessary to optimize the aerodynamic and acoustic performance of any of the designs. Successful development of acoustically transparent walls, though not strictly necessary to the project, would lead to a porous-wall test section that could be substituted for any of the open-jet designs, and thereby eliminate many aerodynamic and acoustic problems characteristic of open-jet shear layers.

  19. Coding of Neuroinfectious Diseases.

    PubMed

    Barkley, Gregory L

    2015-12-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue. PMID:26633789

  20. Model Children's Code.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  1. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  2. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  3. Coset Codes Viewed as Terminated Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Fossorier, Marc P. C.; Lin, Shu

    1996-01-01

    In this paper, coset codes are considered as terminated convolutional codes. Based on this approach, three new general results are presented. First, it is shown that the iterative squaring construction can equivalently be defined from a convolutional code whose trellis terminates. This convolutional code determines a simple encoder for the coset code considered, and the state and branch labelings of the associated trellis diagram become straightforward. Also, from the generator matrix of the code in its convolutional code form, much information about the trade-off between the state connectivity and complexity at each section, and the parallel structure of the trellis, is directly available. Based on this generator matrix, it is shown that the parallel branches in the trellis diagram of the convolutional code represent the same coset code C(sub 1), of smaller dimension and shorter length. Utilizing this fact, a two-stage optimum trellis decoding method is devised. The first stage decodes C(sub 1), while the second stage decodes the associated convolutional code, using the branch metrics delivered by stage 1. Finally, a bidirectional decoding of each received block starting at both ends is presented. If about the same number of computations is required, this approach remains very attractive from a practical point of view as it roughly doubles the decoding speed. This fact is particularly interesting whenever the second half of the trellis is the mirror image of the first half, since the same decoder can be implemented for both parts.

  4. Aeroacoustics Research Program

    NASA Technical Reports Server (NTRS)

    Myers, Michael K.; Posey, Joe W. (Technical Monitor)

    2005-01-01

    Since its inception in January 2003, the program has provided support for 1 faculty and 1 graduate student researcher. One Graduate Research Scholar Assistant was partially supported by this award. One student has completed his M.S. degree program and 1 has nearly completed the D.Sc. degree program (expected completion Fall 2005). The program has generated 1 D.Sc. dissertation. 1 M.S. theses and 2 publications.

  5. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  6. Manually operated coded switch

    DOEpatents

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  7. Binary primitive alternant codes

    NASA Technical Reports Server (NTRS)

    Helgert, H. J.

    1975-01-01

    In this note we investigate the properties of two classes of binary primitive alternant codes that are generalizations of the primitive BCH codes. For these codes we establish certain equivalence and invariance relations and obtain values of d and d*, the minimum distances of the prime and dual codes.

  8. Algebraic geometric codes

    NASA Technical Reports Server (NTRS)

    Shahshahani, M.

    1991-01-01

    The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.

  9. Large-Eddy Simulation Code Developed for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2003-01-01

    A large-eddy simulation (LES) code was developed at the NASA Glenn Research Center to provide more accurate and detailed computational analyses of propulsion flow fields. The accuracy of current computational fluid dynamics (CFD) methods is limited primarily by their inability to properly account for the turbulent motion present in virtually all propulsion flows. Because the efficiency and performance of a propulsion system are highly dependent on the details of this turbulent motion, it is critical for CFD to accurately model it. The LES code promises to give new CFD simulations an advantage over older methods by directly computing the large turbulent eddies, to correctly predict their effect on a propulsion system. Turbulent motion is a random, unsteady process whose behavior is difficult to predict through computer simulations. Current methods are based on Reynolds-Averaged Navier- Stokes (RANS) analyses that rely on models to represent the effect of turbulence within a flow field. The quality of the results depends on the quality of the model and its applicability to the type of flow field being studied. LES promises to be more accurate because it drastically reduces the amount of modeling necessary. It is the logical step toward improving turbulent flow predictions. In LES, the large-scale dominant turbulent motion is computed directly, leaving only the less significant small turbulent scales to be modeled. As part of the prediction, the LES method generates detailed information on the turbulence itself, providing important information for other applications, such as aeroacoustics. The LES code developed at Glenn for propulsion flow fields is being used to both analyze propulsion system components and test improved LES algorithms (subgrid-scale models, filters, and numerical schemes). The code solves the compressible Favre-filtered Navier- Stokes equations using an explicit fourth-order accurate numerical scheme, it incorporates a compressible form of

  10. ARA type protograph codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2008-01-01

    An apparatus and method for encoding low-density parity check codes. Together with a repeater, an interleaver and an accumulator, the apparatus comprises a precoder, thus forming accumulate-repeat-accumulate (ARA codes). Protographs representing various types of ARA codes, including AR3A, AR4A and ARJA codes, are described. High performance is obtained when compared to the performance of current repeat-accumulate (RA) or irregular-repeat-accumulate (IRA) codes.

  11. QR Codes 101

    ERIC Educational Resources Information Center

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  12. The HART II International Workshop: An Assessment of the State-of-the-Art in Comprehensive Code Prediction

    NASA Technical Reports Server (NTRS)

    vanderWall, Berend G.; Lim, Joon W.; Smith, Marilyn J.; Jung, Sung N.; Bailly, Joelle; Baeder, James D.; Boyd, D. Douglas, Jr.

    2013-01-01

    Significant advancements in computational fluid dynamics (CFD) and their coupling with computational structural dynamics (CSD, or comprehensive codes) for rotorcraft applications have been achieved recently. Despite this, CSD codes with their engineering level of modeling the rotor blade dynamics, the unsteady sectional aerodynamics and the vortical wake are still the workhorse for the majority of applications. This is especially true when a large number of parameter variations is to be performed and their impact on performance, structural loads, vibration and noise is to be judged in an approximate yet reliable and as accurate as possible manner. In this article, the capabilities of such codes are evaluated using the HART II International Workshop database, focusing on a typical descent operating condition which includes strong blade-vortex interactions. A companion article addresses the CFD/CSD coupled approach. Three cases are of interest: the baseline case and two cases with 3/rev higher harmonic blade root pitch control (HHC) with different control phases employed. One setting is for minimum blade-vortex interaction noise radiation and the other one for minimum vibration generation. The challenge is to correctly predict the wake physics-especially for the cases with HHC-and all the dynamics, aerodynamics, modifications of the wake structure and the aero-acoustics coming with it. It is observed that the comprehensive codes used today have a surprisingly good predictive capability when they appropriately account for all of the physics involved. The minimum requirements to obtain these results are outlined.

  13. An Assessment of Comprehensive Code Prediction State-of-the-Art Using the HART II International Workshop Data

    NASA Technical Reports Server (NTRS)

    vanderWall, Berend G.; Lim, Joon W.; Smith, Marilyn J.; Jung, Sung N.; Bailly, Joelle; Baeder, James D.; Boyd, D. Douglas, Jr.

    2012-01-01

    Despite significant advancements in computational fluid dynamics and their coupling with computational structural dynamics (= CSD, or comprehensive codes) for rotorcraft applications, CSD codes with their engineering level of modeling the rotor blade dynamics, the unsteady sectional aerodynamics and the vortical wake are still the workhorse for the majority of applications. This is especially true when a large number of parameter variations is to be performed and their impact on performance, structural loads, vibration and noise is to be judged in an approximate yet reliable and as accurate as possible manner. In this paper, the capabilities of such codes are evaluated using the HART II Inter- national Workshop data base, focusing on a typical descent operating condition which includes strong blade-vortex interactions. Three cases are of interest: the baseline case and two cases with 3/rev higher harmonic blade root pitch control (HHC) with different control phases employed. One setting is for minimum blade-vortex interaction noise radiation and the other one for minimum vibration generation. The challenge is to correctly predict the wake physics - especially for the cases with HHC - and all the dynamics, aerodynamics, modifications of the wake structure and the aero-acoustics coming with it. It is observed that the comprehensive codes used today have a surprisingly good predictive capability when they appropriately account for all of the physics involved. The minimum requirements to obtain these results are outlined.

  14. Asymmetric quantum convolutional codes

    NASA Astrophysics Data System (ADS)

    La Guardia, Giuliano G.

    2016-01-01

    In this paper, we construct the first families of asymmetric quantum convolutional codes (AQCCs). These new AQCCs are constructed by means of the CSS-type construction applied to suitable families of classical convolutional codes, which are also constructed here. The new codes have non-catastrophic generator matrices, and they have great asymmetry. Since our constructions are performed algebraically, i.e. we develop general algebraic methods and properties to perform the constructions, it is possible to derive several families of such codes and not only codes with specific parameters. Additionally, several different types of such codes are obtained.

  15. Prostate Planning Treatment Volume Margin Calculation Based on the ExacTrac X-Ray 6D Image-Guided System: Margins for Various Clinical Implementations

    SciTech Connect

    Alonso-Arrizabalaga, Sara Brualla Gonzalez, Luis; Rosello Ferrando, Juan V.; Pastor Peidro, Jorge; Lopez Torrecilla, Jose; Planes Meseguer, Domingo; Garcia Hernandez, Trinidad

    2007-11-01

    Purpose: To assess the prostate motion from day-to-day setup, as well as during irradiation time, to calculate planning target volume (PTV) margins. PTV margins differ depending on the clinical implementation of an image-guided system. Three cases were considered in this study: daily bony anatomy match, center of gravity of the implanted marker seeds calculated with a limited number of imaged days, and daily online correction based on implanted marker seeds. Methods and Materials: A cohort of 30 nonrandomized patients and 1,330 pairs of stereoscopic kV images have been used to determine the prostate movement. The commercial image guided positioning tool employed was ExacTrac X-Ray 6D (BrainLAB AG, Feldkirchen, Germany). Results: Planning target volume margins such that a minimum of 95% of the prescribed dose covers the clinical target volume for 90% of the population are presented. PTV margins based on daily bony anatomy match, including intrafraction correction, would be 11.5, 13.5, and 4.5 mm in the anterior-posterior, superior-inferior, and right-left directions, respectively. This margin can be further reduced to 8.1, 8.6, and 4.8 mm (including intrafraction motion) if implanted marker seeds are used. Finally, daily on line correction based on marker seeds would result in the smallest of the studied margins: 4.7, 6.2, and 1.9 mm. Conclusion: Planning target volume margins are dependent on the local clinical use of the image-guided RT system available in any radiotherapy department.

  16. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    NASA Astrophysics Data System (ADS)

    Montes-Rodríguez, María de los Ángeles; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Mitsoura, Eleni; Santiago-Concha, Bernardino Gabriel

    2014-11-01

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  17. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    SciTech Connect

    Montes-Rodríguez, María de los Ángeles Mitsoura, Eleni; Hernández-Bojórquez, Mariana; Martínez-Gómez, Alma Angélica; Contreras-Pérez, Agustín; Negrete-Hernández, Ingrid Mireya; Hernández-Oviedo, Jorge Omar; Santiago-Concha, Bernardino Gabriel

    2014-11-07

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as the isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.

  18. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  19. SU-E-CAMPUS-J-05: Quantitative Investigation of Random and Systematic Uncertainties From Hardware and Software Components in the Frameless 6DBrainLAB ExacTrac System

    SciTech Connect

    Keeling, V; Jin, H; Hossain, S; Ahmad, S; Ali, I

    2014-06-15

    Purpose: To evaluate setup accuracy and quantify individual systematic and random errors for the various hardware and software components of the frameless 6D-BrainLAB ExacTrac system. Methods: 35 patients with cranial lesions, some with multiple isocenters (50 total lesions treated in 1, 3, 5 fractions), were investigated. All patients were simulated with a rigid head-and-neck mask and the BrainLAB localizer. CT images were transferred to the IPLAN treatment planning system where optimized plans were generated using stereotactic reference frame based on the localizer. The patients were setup initially with infrared (IR) positioning ExacTrac system. Stereoscopic X-ray images (XC: X-ray Correction) were registered to their corresponding digitally-reconstructed-radiographs, based on bony anatomy matching, to calculate 6D-translational and rotational (Lateral, Longitudinal, Vertical, Pitch, Roll, Yaw) shifts. XC combines systematic errors of the mask, localizer, image registration, frame, and IR. If shifts were below tolerance (0.7 mm translational and 1 degree rotational), treatment was initiated; otherwise corrections were applied and additional X-rays were acquired to verify patient position (XV: X-ray Verification). Statistical analysis was used to extract systematic and random errors of the different components of the 6D-ExacTrac system and evaluate the cumulative setup accuracy. Results: Mask systematic errors (translational; rotational) were the largest and varied from one patient to another in the range (−15 to 4mm; −2.5 to 2.5degree) obtained from mean of XC for each patient. Setup uncertainty in IR positioning (0.97,2.47,1.62mm;0.65,0.84,0.96degree) was extracted from standard-deviation of XC. Combined systematic errors of the frame and localizer (0.32,−0.42,−1.21mm; −0.27,0.34,0.26degree) was extracted from mean of means of XC distributions. Final patient setup uncertainty was obtained from the standard deviations of XV (0.57,0.77,0.67mm,0

  20. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  1. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  2. Multiple Turbo Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    A description is given of multiple turbo codes and a suitable decoder structure derived from an approximation to the maximum a posteriori probability (MAP) decision rule, which is substantially different from the decoder for two-code-based encoders.

  3. QR Code Mania!

    ERIC Educational Resources Information Center

    Shumack, Kellie A.; Reilly, Erin; Chamberlain, Nik

    2013-01-01

    space, has error-correction capacity, and can be read from any direction. These codes are used in manufacturing, shipping, and marketing, as well as in education. QR codes can be created to produce…

  4. STEEP32 computer code

    NASA Technical Reports Server (NTRS)

    Goerke, W. S.

    1972-01-01

    A manual is presented as an aid in using the STEEP32 code. The code is the EXEC 8 version of the STEEP code (STEEP is an acronym for shock two-dimensional Eulerian elastic plastic). The major steps in a STEEP32 run are illustrated in a sample problem. There is a detailed discussion of the internal organization of the code, including a description of each subroutine.

  5. The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 2: Effects of Modifications for Flow Control and Noise Reduction

    NASA Astrophysics Data System (ADS)

    Carpenter, P. W.; Smith, C.

    1997-12-01

    The paper describes two studies of the effects of flow control devices on the aerodynamics and aeroacoustics of a high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Shadowgraphy and other flow-visualization techniques are used to reveal the various features of the complex flow fields. The acoustic characteristics are obtained from far- and near-field measurements with an array of microphones in an anechoic chamber. First the effects of incorporating a step between the annular exit slot and the Coanda surface are investigated. The step is incorporated to ensure that the breakaway pressure is raised to a level well above the maximum operating pressure. It substantially increases the complexity of the flow field and acoustic characteristics. In particular, it promotes the generation of two groups of discrete tones. A theoretical model based on a self-generated feedback loop is proposed to explain how these tones are generated. The second study investigates the effects of replacing the annular exit slot with a saw-toothed one with the aim of eliminating the discrete tones and thereby substantially reducing the level of noise generated.

  6. Color code identification in coded structured light.

    PubMed

    Zhang, Xu; Li, Youfu; Zhu, Limin

    2012-08-01

    Color code is widely employed in coded structured light to reconstruct the three-dimensional shape of objects. Before determining the correspondence, a very important step is to identify the color code. Until now, the lack of an effective evaluation standard has hindered the progress in this unsupervised classification. In this paper, we propose a framework based on the benchmark to explore the new frontier. Two basic facets of the color code identification are discussed, including color feature selection and clustering algorithm design. First, we adopt analysis methods to evaluate the performance of different color features, and the order of these color features in the discriminating power is concluded after a large number of experiments. Second, in order to overcome the drawback of K-means, a decision-directed method is introduced to find the initial centroids. Quantitative comparisons affirm that our method is robust with high accuracy, and it can find or closely approach the global peak. PMID:22859022

  7. Software Certification - Coding, Code, and Coders

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  8. XSOR codes users manual

    SciTech Connect

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  9. DLLExternalCode

    SciTech Connect

    Greg Flach, Frank Smith

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  10. DLLExternalCode

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read frommore » files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.« less

  11. Biologic Treatment Registry Across Canada (BioTRAC): a multicentre, prospective, observational study of patients treated with infliximab for ankylosing spondylitis

    PubMed Central

    Rahman, Proton; Choquette, Denis; Bensen, William G; Khraishi, Majed; Chow, Andrew; Zummer, Michel; Shaikh, Saeed; Sheriff, Maqbool; Dixit, Sanjay; Sholter, Dalton; Psaradellis, Eliofotisti; Sampalis, John S; Letourneau, Vincent; Lehman, Allen J; Nantel, François; Rampakakis, Emmanouil; Otawa, Susan; Shawi, May

    2016-01-01

    Objectives To describe the profile of patients with ankylosing spondylitis (AS) treated with infliximab in Canadian routine care and to assess the effectiveness and safety of infliximab in real world. Setting 46 primary care rheumatology practices across Canada. Participants 303 biological-naïve patients with AS or patients previously treated with a biological for <6 months and who were eligible for infliximab treatment as per routine care within the Biologic Treatment Registry Across Canada (BioTRAC). Intervention Not applicable (non-interventional study). Primary and secondary outcomes Effectiveness was assessed with changes in disease parameters (AS Disease Activity Score (ASDAS), Bath AS Disease Activity Index (BASDAI), Bath AS Functional Index (BASFI), Health Assessment Questionnaire Disease Index (HAQ-DI), physician global assessment of disease activity (MDGA), patient global disease activity (PtGA), back pain, C-reactive protein, erythrocyte sedimentation rate (ESR), morning stiffness). Safety was assessed with the incidence of adverse events (AEs). Results Of the 303 patients included, 44.6% were enrolled in 2005–2007 and 55.4% in 2008–2013. Patients enrolled in 2005–2007 had significantly higher MDGA and ESR at baseline while all other disease parameters examined were numerically higher with the exception of PtGA. Treatment with infliximab significantly (p<0.001) improved all disease parameters over time in both groups. At 6 months, 56% and 31% of patients achieved clinically important (change≥1.1) and major (change≥2.0) improvement in ASDAS, respectively; at 48 months, these proportions increased to 75% and 50%, respectively. Among patients unemployed due to disability at baseline, 12.1% returned to work (mean Kaplan-Meier (KM)-based time=38.8 months). The estimated retention rate at 12 and 24 months was 78.3% and 60.1%, respectively. The profile and incidence of AEs were comparable to data previously reported for tumour necrosis

  12. Adaptive entropy coded subband coding of images.

    PubMed

    Kim, Y H; Modestino, J W

    1992-01-01

    The authors describe a design approach, called 2-D entropy-constrained subband coding (ECSBC), based upon recently developed 2-D entropy-constrained vector quantization (ECVQ) schemes. The output indexes of the embedded quantizers are further compressed by use of noiseless entropy coding schemes, such as Huffman or arithmetic codes, resulting in variable-rate outputs. Depending upon the specific configurations of the ECVQ and the ECPVQ over the subbands, many different types of SBC schemes can be derived within the generic 2-D ECSBC framework. Among these, the authors concentrate on three representative types of 2-D ECSBC schemes and provide relative performance evaluations. They also describe an adaptive buffer instrumented version of 2-D ECSBC, called 2-D ECSBC/AEC, for use with fixed-rate channels which completely eliminates buffer overflow/underflow problems. This adaptive scheme achieves performance quite close to the corresponding ideal 2-D ECSBC system. PMID:18296138

  13. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOEpatents

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  14. Mechanical code comparator

    DOEpatents

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  15. Theory of epigenetic coding.

    PubMed

    Elder, D

    1984-06-01

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward. PMID:6748695

  16. Updating the Read Codes

    PubMed Central

    Robinson, David; Comp, Dip; Schulz, Erich; Brown, Philip; Price, Colin

    1997-01-01

    Abstract The Read Codes are a hierarchically-arranged controlled clinical vocabulary introduced in the early 1980s and now consisting of three maintained versions of differing complexity. The code sets are dynamic, and are updated quarterly in response to requests from users including clinicians in both primary and secondary care, software suppliers, and advice from a network of specialist healthcare professionals. The codes' continual evolution of content, both across and within versions, highlights tensions between different users and uses of coded clinical data. Internal processes, external interactions and new structural features implemented by the NHS Centre for Coding and Classification (NHSCCC) for user interactive maintenance of the Read Codes are described, and over 2000 items of user feedback episodes received over a 15-month period are analysed. PMID:9391934

  17. Doubled Color Codes

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey

    Combining protection from noise and computational universality is one of the biggest challenges in the fault-tolerant quantum computing. Topological stabilizer codes such as the 2D surface code can tolerate a high level of noise but implementing logical gates, especially non-Clifford ones, requires a prohibitively large overhead due to the need of state distillation. In this talk I will describe a new family of 2D quantum error correcting codes that enable a transversal implementation of all logical gates required for the universal quantum computing. Transversal logical gates (TLG) are encoded operations that can be realized by applying some single-qubit rotation to each physical qubit. TLG are highly desirable since they introduce no overhead and do not spread errors. It has been known before that a quantum code can have only a finite number of TLGs which rules out computational universality. Our scheme circumvents this no-go result by combining TLGs of two different quantum codes using the gauge-fixing method pioneered by Paetznick and Reichardt. The first code, closely related to the 2D color code, enables a transversal implementation of all single-qubit Clifford gates such as the Hadamard gate and the π / 2 phase shift. The second code that we call a doubled color code provides a transversal T-gate, where T is the π / 4 phase shift. The Clifford+T gate set is known to be computationally universal. The two codes can be laid out on the honeycomb lattice with two qubits per site such that the code conversion requires parity measurements for six-qubit Pauli operators supported on faces of the lattice. I will also describe numerical simulations of logical Clifford+T circuits encoded by the distance-3 doubled color code. Based on a joint work with Andrew Cross.

  18. Phonological coding during reading

    PubMed Central

    Leinenger, Mallorie

    2014-01-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early (pre-lexical) or that phonological codes come online late (post-lexical)) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eyetracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model (Van Order, 1987), dual-route model (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), parallel distributed processing model (Seidenberg & McClelland, 1989)) are discussed. PMID:25150679

  19. Phonological coding during reading.

    PubMed

    Leinenger, Mallorie

    2014-11-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. PMID:25150679

  20. Bar Code Labels

    NASA Technical Reports Server (NTRS)

    1988-01-01

    American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.

  1. MORSE Monte Carlo code

    SciTech Connect

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described.

  2. Tokamak Systems Code

    SciTech Connect

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  3. FAA Smoke Transport Code

    SciTech Connect

    Domino, Stefan; Luketa-Hanlin, Anay; Gallegos, Carlos

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a code obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.

  4. Expander chunked codes

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Yang, Shenghao; Ye, Baoliu; Yin, Yitong; Lu, Sanglu

    2015-12-01

    Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the input packets are encoded into small chunks (i.e., subsets of the coded packets). During the network transmission, RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize the transmission of chunks and derive some basic properties of the model to facilitate the performance analysis. We then focus on the design of overlapped chunked codes, a class of chunked codes whose chunks are non-disjoint subsets of input packets, which are of special interest since they can be encoded with negligible computational cost and in a causal fashion. We propose expander chunked (EC) codes, the first class of overlapped chunked codes that have an analyzable performance, where the construction of the chunks makes use of regular graphs. Numerical and simulation results show that in some practical settings, EC codes can achieve rates within 91 to 97 % of the optimum and outperform the state-of-the-art overlapped chunked codes significantly.

  5. Results of Aero/Acoustic Tests and Analytical Studies of a Two-Dimensional Eight-Lobe Mixer-Ejector Exhaust Nozzle at Takeoff Conditions

    NASA Technical Reports Server (NTRS)

    Harrington, Douglas (Technical Monitor); Schweiger, P.; Stern, A.; Gamble, E.; Barber, T.; Chiappetta, L.; LaBarre, R.; Salikuddin, M.; Shin, H.; Majjigi, R.

    2005-01-01

    Hot flow aero-acoustic tests were conducted with Pratt & Whitney's High-Speed Civil Transport (HSCT) Mixer-Ejector Exhaust Nozzles by General Electric Aircraft Engines (GEAE) in the GEAE Anechoic Freejet Noise Facility (Cell 41) located in Evendale, Ohio. The tests evaluated the impact of various geometric and design parameters on the noise generated by a two-dimensional (2-D) shrouded, 8-lobed, mixer-ejector exhaust nozzle. The shrouded mixer-ejector provides noise suppression by mixing relatively low energy ambient air with the hot, high-speed primary exhaust jet. Additional attenuation was obtained by lining the shroud internal walls with acoustic panels, which absorb acoustic energy generated during the mixing process. Two mixer designs were investigated, the high mixing "vortical" and aligned flow "axial", along with variations in the shroud internal mixing area ratios and shroud length. The shrouds were tested as hardwall or lined with acoustic panels packed with a bulk absorber. A total of 21 model configurations at 1:11.47 scale were tested. The models were tested over a range of primary nozzle pressure ratios and primary exhaust temperatures representative of typical HSCT aero thermodynamic cycles. Static as well as flight simulated data were acquired during testing. A round convergent unshrouded nozzle was tested to provide an acoustic baseline for comparison to the test configurations. Comparisons were made to previous test results obtained with this hardware at NASA Glenn's 9- by 15-foot low-speed wind tunnel (LSWT). Laser velocimetry was used to investigate external as well as ejector internal velocity profiles for comparison to computational predictions. Ejector interior wall static pressure data were also obtained. A significant reduction in exhaust system noise was demonstrated with the 2-D shrouded nozzle designs.

  6. Research on Universal Combinatorial Coding

    PubMed Central

    Lu, Jun; Zhang, Zhuo; Mo, Juan

    2014-01-01

    The conception of universal combinatorial coding is proposed. Relations exist more or less in many coding methods. It means that a kind of universal coding method is objectively existent. It can be a bridge connecting many coding methods. Universal combinatorial coding is lossless and it is based on the combinatorics theory. The combinational and exhaustive property make it closely related with the existing code methods. Universal combinatorial coding does not depend on the probability statistic characteristic of information source, and it has the characteristics across three coding branches. It has analyzed the relationship between the universal combinatorial coding and the variety of coding method and has researched many applications technologies of this coding method. In addition, the efficiency of universal combinatorial coding is analyzed theoretically. The multicharacteristic and multiapplication of universal combinatorial coding are unique in the existing coding methods. Universal combinatorial coding has theoretical research and practical application value. PMID:24772019

  7. Research on universal combinatorial coding.

    PubMed

    Lu, Jun; Zhang, Zhuo; Mo, Juan

    2014-01-01

    The conception of universal combinatorial coding is proposed. Relations exist more or less in many coding methods. It means that a kind of universal coding method is objectively existent. It can be a bridge connecting many coding methods. Universal combinatorial coding is lossless and it is based on the combinatorics theory. The combinational and exhaustive property make it closely related with the existing code methods. Universal combinatorial coding does not depend on the probability statistic characteristic of information source, and it has the characteristics across three coding branches. It has analyzed the relationship between the universal combinatorial coding and the variety of coding method and has researched many applications technologies of this coding method. In addition, the efficiency of universal combinatorial coding is analyzed theoretically. The multicharacteristic and multiapplication of universal combinatorial coding are unique in the existing coding methods. Universal combinatorial coding has theoretical research and practical application value. PMID:24772019

  8. A Comparison of Measured and Predicted XV-15 Tiltrotor Surface Acoustic Pressures

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Burley, Casey L.; Prichard, Devon S.

    1997-01-01

    Predicted XV-15 exterior surface acoustic pressures are compared with previously published experimental data. Surface acoustic pressure transducers were concentrated near the tip-path-plane of the rotor in airplane mode. The comparison emphasized cruise conditions which are of interest for tiltrotor interior noise - level flight for speeds ranging from 72 m/s to 113 m/s. The predictions were produced by components of the NASA Langley Tiltrotor Aeroacoustic Code (TRAC) system of computer codes. Comparisons between measurements and predictions were made in both the time and frequency domains, as well as overall sound pressure levels. In general, the predictions replicated the measured data well. Discrepancies between measurements and predictions were noted. Some of the discrepancies were due to poor correlation of the measured data with the rotor tach signal. In other cases limitations of the predictive methodology have been indicated.

  9. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding

    PubMed Central

    Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content change (CC). Secondly, a CU coding tree probability model is proposed for modeling and predicting CU distribution. Eventually, a CU coding tree probability update is proposed, aiming to address probabilistic model distortion problems caused by CC. Experimental results show that the proposed low complexity CU coding tree mechanism significantly reduces encoding time by 27% for lossy coding and 42% for visually lossless coding and lossless coding. The proposed low complexity CU coding tree mechanism devotes to improving coding performance under various application conditions. PMID:26999741

  10. Synthesizing Certified Code

    NASA Technical Reports Server (NTRS)

    Whalen, Michael; Schumann, Johann; Fischer, Bernd

    2002-01-01

    Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.

  11. Lichenase and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  12. Codes of Conduct

    ERIC Educational Resources Information Center

    Million, June

    2004-01-01

    Most schools have a code of conduct, pledge, or behavioral standards, set by the district or school board with the school community. In this article, the author features some schools that created a new vision of instilling code of conducts to students based on work quality, respect, safety and courtesy. She suggests that communicating the code…

  13. Code of Ethics

    ERIC Educational Resources Information Center

    Division for Early Childhood, Council for Exceptional Children, 2009

    2009-01-01

    The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…

  14. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  15. Modified JPEG Huffman coding.

    PubMed

    Lakhani, Gopal

    2003-01-01

    It is a well observed characteristic that when a DCT block is traversed in the zigzag order, the AC coefficients generally decrease in size and the run-length of zero coefficients increase in number. This article presents a minor modification to the Huffman coding of the JPEG baseline compression algorithm to exploit this redundancy. For this purpose, DCT blocks are divided into bands so that each band can be coded using a separate code table. Three implementations are presented, which all move the end-of-block marker up in the middle of DCT block and use it to indicate the band boundaries. Experimental results are presented to compare reduction in the code size obtained by our methods with the JPEG sequential-mode Huffman coding and arithmetic coding methods. The average code reduction to the total image code size of one of our methods is 4%. Our methods can also be used for progressive image transmission and hence, experimental results are also given to compare them with two-, three-, and four-band implementations of the JPEG spectral selection method. PMID:18237897

  16. Binary concatenated coding system

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr.

    1973-01-01

    Coding, using 3-bit binary words, is applicable to any measurement having integer scale up to 100. System using 6-bit data words can be expanded to read from 1 to 10,000, and 9-bit data words can increase range to 1,000,000. Code may be ''read'' directly by observation after memorizing simple listing of 9's and 10's.

  17. Computerized mega code recording.

    PubMed

    Burt, T W; Bock, H C

    1988-04-01

    A system has been developed to facilitate recording of advanced cardiac life support mega code testing scenarios. By scanning a paper "keyboard" using a bar code wand attached to a portable microcomputer, the person assigned to record the scenario can easily generate an accurate, complete, timed, and typewritten record of the given situations and the obtained responses. PMID:3354937

  18. Coding for optical channels

    NASA Technical Reports Server (NTRS)

    Baumert, L. D.; Mceliece, R. J.; Rumsey, H., Jr.

    1979-01-01

    In a previous paper Pierce considered the problem of optical communication from a novel viewpoint, and concluded that performance will likely be limited by issues of coding complexity rather than by thermal noise. This paper reviews the model proposed by Pierce and presents some results on the analysis and design of codes for this application.

  19. Combustion chamber analysis code

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.

    1993-01-01

    A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.

  20. Energy Conservation Code Decoded

    SciTech Connect

    Cole, Pam C.; Taylor, Zachary T.

    2006-09-01

    Designing an energy-efficient, affordable, and comfortable home is a lot easier thanks to a slime, easier to read booklet, the 2006 International Energy Conservation Code (IECC), published in March 2006. States, counties, and cities have begun reviewing the new code as a potential upgrade to their existing codes. Maintained under the public consensus process of the International Code Council, the IECC is designed to do just what its title says: promote the design and construction of energy-efficient homes and commercial buildings. Homes in this case means traditional single-family homes, duplexes, condominiums, and apartment buildings having three or fewer stories. The U.S. Department of Energy, which played a key role in proposing the changes that resulted in the new code, is offering a free training course that covers the residential provisions of the 2006 IECC.