Science.gov

Sample records for aerobe pseudomonas mendocina

  1. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  2. Growth of Pseudomonas mendocina on Fe(III) (Hydr)Oxides

    PubMed Central

    Hersman, L. E.; Forsythe, J. H.; Ticknor, L. O.; Maurice, P. A.

    2001-01-01

    Although iron (Fe) is an essential element for almost all living organisms, little is known regarding its acquisition from the insoluble Fe(III) (hydr)oxides in aerobic environments. In this study a strict aerobe, Pseudomonas mendocina, was grown in batch culture with hematite, goethite, or ferrihydrite as a source of Fe. P. mendocina obtained Fe from these minerals in the following order: goethite > hematite > ferrihydrite. Furthermore, Fe release from each of the minerals appears to have occurred in excess, as evidenced by the growth of P. mendocina in the medium above that of the insoluble Fe(III) (hydr)oxide aggregates, and this release was independent of the mineral's surface area. These results demonstrate that an aerobic microorganism was able to obtain Fe for growth from several insoluble Fe minerals and did so with various growth rates. PMID:11571141

  3. Comparison of aspartate transcarbamoylase regulation in Pseudomonas alcaligenes and Pseudomonas mendocina.

    PubMed

    Santiago, Manuel F; West, Thomas P

    2003-01-01

    The regulation of aspartate transcarbamoylase activity in cell extracts of Pseudomonas alcaligenes ATCC 14909 and Pseudomonas mendocina ATCC 25411 was compared. Under saturating substrate concentrations, pyrophosphate, CTP, UDP and ADP were highly inhibitory of the P. alcaligenes transcarbamoylase activity while pyrophosphate, UDP, ADP, ATP and GTP were the most effective inhibitors of the P. mendocina transcarbamoylase. By examining transcarbamoylase inhibition by ribonucleotide triphosphates, it was possible to differentiate these species assigned to different DNA homology groups and such an analysis might prove useful in the reclassification of Pseudomonas species.

  4. Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis.

    PubMed Central

    Aragone, M R; Maurizi, D M; Clara, L O; Navarro Estrada, J L; Ascione, A

    1992-01-01

    Pseudomonas mendocina has been isolated from soil and water samples. Although it has been recovered from some human clinical samples, its pathogenic role has not yet been documented. We report the first known case of endocarditis in humans due to P. mendocina. PMID:1624580

  5. The isolation and functional identification on producing cellulase of Pseudomonas mendocina.

    PubMed

    Zhang, Jianfeng; Hou, Hongyan; Chen, Guang; Wang, Shusheng; Zhang, Jiejing

    2016-09-02

    The straw can be degraded efficiently into humus by powerful enzymes from microorganisms, resulting in the accelerated circulation of N,P,K and other effective elements in ecological system. We isolated a strain through screening the straw degradation strains from natural humic straw in the low temperature area in northeast of china, which can produce cellulase efficiently. The strain was identified as Pseudomonas mendocina by using morphological, physiological, biochemical test, and molecular biological test, with the functional clarification on producing cellulase for Pseudomonas mendocina for the first time. The enzyme force constant Km and the maximum reaction rate (Vmax) of the strain were 0.3261 g/L and 0.1525 mg/(min.L) through the enzyme activity detection, and the molecular weight of the enzyme produced by the strain were 42.4 kD and 20.4 kD based on SDS-PAGE. The effects of various ecological factors such as temperature, pH and nematodes on the enzyme produced by the strain in the micro ecosystem in plant roots were evaluated. The result showed that the optimum temperature was 28°C, and the best pH was 7.4∼7.8, the impact heavy metal was Pb(2+) and the enzyme activity and biomass of Pseudomonas mendocina increased the movement and predation of nematodes.

  6. Biotransformation of N-Nitrosodimethylamine by Pseudomonas mendocina KR1▿

    PubMed Central

    Fournier, Diane; Hawari, Jalal; Streger, Sheryl H.; McClay, Kevin; Hatzinger, Paul B.

    2006-01-01

    N-Nitrosodimethylamine (NDMA) is a potent carcinogen and an emerging contaminant in groundwater and drinking water. The metabolism of NDMA in mammalian cells has been widely studied, but little information is available concerning the microbial transformation of this compound. The objective of this study was to elucidate the pathway(s) of NDMA biotransformation by Pseudomonas mendocina KR1, a strain that possesses toluene-4-monooxygenase (T4MO). P. mendocina KR1 was observed to initially oxidize NDMA to N-nitrodimethylamine (NTDMA), a novel metabolite. The use of 18O2 and H218O revealed that the oxygen added to NDMA to produce NTDMA was derived from atmospheric O2. Experiments performed with a pseudomonad expressing cloned T4MO confirmed that T4MO catalyzes this initial reaction. The NTDMA produced by P. mendocina KR1 did not accumulate, but rather it was metabolized further to produce N-nitromethylamine (88 to 94% recovery) and a trace amount of formaldehyde (HCHO). Small quantities of methanol (CH3OH) were also detected when the strain was incubated with NDMA but not during incubation with either NTDMA or HCHO. The formation of methanol is hypothesized to occur via a second, minor pathway mediated by an initial α-hydroxylation of the nitrosamine. Strain KR1 did not grow on NDMA or mineralize significant quantities of the compound to carbon dioxide, suggesting that the degradation process is cometabolic. PMID:16950909

  7. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440.

    PubMed

    Wang, Yuanyuan; Zhang, Chi; Gong, Ting; Zuo, Zhenqiang; Zhao, Fengjie; Fan, Xu; Yang, Chao; Song, Cunjiang

    2015-06-01

    A markerless gene replacement method was adapted by combining a suicide plasmid, pEX18Tc, with a counterselectable marker, the upp gene encoding uracil phosphoribosyltransferase (UPRTase), for the medium-chain length polyhydroxyalkanoates (PHA(MCL))-producing strain Pseudomonas mendocina NK-01. An NK-01 5-fluorouracil (5-FU) resistant background strain was first constructed by deleting the chromosomal upp gene. The suicide plasmid pEX18Tc, carrying a functional allele of the upp gene of P. mendocina NK-01, was used to construct the vectors to delete the algA (encoding mannose-1-phosphate guanylyltransferase) and phaZ (encoding PHA(MCL) depolymerase) genes, and a 30 kb chromosomal fragment in the 5-FU resistant background host. The genes were removed efficiently from the genome of P. mendocina NK-01 and left a markerless chromosomal mutant. In addition, two exogenous genes were inserted into the phaC1 (PHA(MCL) polymerase) loci of Pseudomonas putida KT-∆UPP simultaneously. Thus, we constructed a genetically stable and marker-free P. putida KT2440 mutant with integrated mpd (encoding methyl parathion hydrolase (MPH)) and pytH (encoding a pyrethroid-hydrolyzing carboxylesterase (PytH)) gene on the chromosome. The upp-based counterselection system could be further adapted for P. mendocina NK-01 and P. putida KT2440 and used for genome reduction and metabolic pathway engineering.

  8. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation.

    PubMed

    Mangwani, Neelam; Shukla, Sudhir K; Rao, T Subba; Das, Surajit

    2014-02-01

    A potential biofilm forming and phenanthrene utilizing marine bacterium Pseudomonas mendocina NR802 was isolated from Rushukulya, Odisha, East Coast of India. The effect of Ca(2+) and Mg(2+) on biofilm growth and phenanthrene degradation was evaluated. Among the various tested concentrations, 20 mM of Ca(2+) and Mg(2+) showed a significant enhancement in biofilm production by the bacterium. The SEM-EDAX study showed that the elemental composition of the biofilm varied significantly when grown in the presence of Ca(2+) and Mg(2+). The CSLM analysis of biofilms grown in the presence of 20 mM Ca(2+) and Mg(2+) reveal the critical role of these ions on biofilm architectural parameters such as total biomass, biofilm thickness, roughness coefficient and surface to biovolume ratio. Ca(2+) was found to enhance the extracellular polymeric substances (EPS) production and phenanthrene degradation. Ca(2+) enhanced the biofilm growth in a dose dependent manner, whereas Mg(2+) significantly increased the cell growth in biofilm. More than 15% increase in phenanthrene degradation was observed when biofilm was grown in the presence of an additional 20 mM Ca(2+). This study also supports the fundamental role of Ca(2+) in biofilm growth, architecture as well as biofilm-mediated pollutant degradation.

  9. Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1.

    PubMed Central

    Whited, G M; Gibson, D T

    1991-01-01

    Pseudomonas mendocina KR1 grows on toluene as a sole carbon and energy source. A multicomponent oxygenase was partially purified from toluene-grown cells and separated into three protein components. The reconstituted enzyme system, in the presence of NADH and Fe2+, oxidized toluene to p-cresol as the first detectable product. Experiments with p-deutero-toluene led to the isolation of p-cresol which retained 68% of the deuterium initially present in the parent molecule. When the reconstituted enzyme system was incubated with toluene in the presence of 18O2, the oxygen in p-cresol was shown to be derived from molecular oxygen. The results demonstrate that P. mendocina KR1 initiates degradation of toluene by a multicomponent enzyme system which has been designated toluene-4-monooxygenase. PMID:2019563

  10. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  11. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  12. Acquisition of Fe from Natural Organic Matter by an Aerobic Pseudomonas Bacterium: Siderophores and Cellular Fe Status

    NASA Astrophysics Data System (ADS)

    Koehn, K.; Dehner, C.; Dubois, J.; Maurice, P. A.

    2010-12-01

    Aerobic microorganisms have evolved various strategies to acquire nutrient Fe, including release of Fe-chelating siderophores. The potential importance of siderophores in Fe acquisition from natural organic matter (NOM) (reverse osmosis, RO; and XAD-8 samples with naturally associated Fe) was investigated using a wild type strain (WT) of aerobic Pseudomonas mendocina that produces siderophore(s) and an engineered mutant that cannot. Microbial growth under Fe-limited batch conditions was monitored via optical density, and a β-galactosidase biosensor assay was used to quantify cellular Fe status. Both WT and mutant strains acquired Fe from NOM. Fe ‘stress’ in the presence of the RO sample decreased with increasing [Fe] (as determined by different [DOC]s) and was consistently less for the WT. For both WT and mutant, maximum growth in the presence of RO sample increased as: 1 mgC/L (0.2μM Fe) < 100 mgC/L (20μM Fe) < 10 mgC/L (2μM Fe). Comparison of XAD-8 and RO samples ([DOC] varied to give 2μM [Fe]total for each), showed that although there were no apparent differences in internal Fe status, growth was better on the XAD-8 sample. Chelex treatment to partially remove metals associated with the RO sample increased Fe stress but did not substantially affect growth. Results demonstrated that: (1) siderophores are useful but not necessary for Fe acquisition from NOM by P. mendocina and (2) NOM may have complex effects on microbial growth, related not just to Fe content but potentially to the presence of other (trace)metals such as Al and/or to effects on biofilm development.

  13. The effects of mutation of the anr gene on the aerobic respiratory chain of Pseudomonas aeruginosa.

    PubMed

    Ray, A; Williams, H D

    1997-11-15

    The anr gene of Pseudomonas aeruginosa encodes a transcriptional regulator of anaerobic gene expression, homologous to the Fnr protein of Escherichia coli. We report here that Anr has a role in regulating the activity of the aerobic respiratory chain of P. aeruginosa. Strains with internal deletions in their anr gene had lowered levels of membrane bound cytochromes whilst the activity of the cytochrome c oxidase, cytochrome co (likely to be a cytochrome cbb3-type oxidase), and the cyanide-insensitive respiratory pathway was markedly higher than in the wild-type strains. These data, and the finding that provision of multiple copies of the anr gene led to severe repression of these respiratory activities, suggest that Anr is a repressor of aerobic respiratory pathways and possibly the terminal oxidases themselves. In contrast, Anr activated cytochrome c peroxidase, a respiratory chain linked enzyme induced under low oxygen conditions.

  14. Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1.

    PubMed

    Gui, Mengyao; Chen, Qian; Ma, Tao; Zheng, Maosheng; Ni, Jinren

    2017-02-01

    Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L(-1) h(-1)), higher nitrite accumulation (47.3∼99.8 mg L(-1)), and higher N2O emission ratios (5∼283 mg L(-1)/mg L(-1)). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L(-1)) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L(-1)) > Cu(II) (0.5∼5 mg L(-1)) > Ni(II) (2∼10 mg L(-1)) > Zn(II) (25∼50 mg L(-1)). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  15. Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13.

    PubMed

    Sun, Yilu; Feng, Liang; Li, Ang; Zhang, Xuening; Yang, Jixian; Ma, Fang

    2017-03-12

    The present study investigated effect of ammonium utilization on aerobic denitrification by Pseudomonas stutzeri T13. Per nitrogen balance calculation, all consumed ammonium was utilized as nitrogen source for cell propagation by assimilation rather than heterotrophic nitrification. Total organic carbon (TOC) and ammonium were necessary substrates to sustain heterotrophic propagation of P. stutzeri T13 at optimum proportion equal to seven. Under aerobic condition, nitrate was utilized as substitute nitrogen source when ammonium was completely exhausted. Biomass production effectively increased with increasing initial ammonium from 0mg/L to 100mg/L. Owing to enlarged biomass, average nitrate reduction rate increased from 7.36mgL(-1)h(-1) to 11.95mgL(-1)h(-1). Such process also successfully reduced nitrite accumulation from 121.8mg/L to 66.16mg/L during aerobic denitrification. As important accessory during aerobic denitrification, ammonium assimilation efficiently doubled total nitrogen (TN) removal from 54.97mg/L (no ammonium provided) to 113.1mg/L (100mg/L ammonium involved).

  16. Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport.

    PubMed Central

    Bryan, L E; Kwan, S

    1981-01-01

    Two gentamicin-resistant mutants of Pseudomonas aeruginosa PAO 503 were selected after ethyl methane sulfonate mutagenesis. Mutant PAO 2403 had significantly increased resistance to aminoglycoside but not to other antibiotics. Mutant PAO 2402 showed a similar spectrum of resistance but of lower magnitude. Both mutants showed no detectable cytochrome d and had a high frequency of reversion to a fully wild-type phenotype. PAO 2403 had a marked decrease and PAO 2402 had a moderate decrease in nitrite reductase activity. Both mutants had reduced uptake of gentamicin and dihydrostreptomycin. Mutant PAO 2403 showed a general decrease in transport rate of cationic compounds, whereas mutant PAO 2402 had only deficient glucose transport. Both mutants showed enhanced rates of glutamine transport and no change in glutamic acid transport. Other components of electron transport and oxidative phosphorylation were normal. These mutants involve ferrocytochrome C551 oxidoreductase formed only on anaerobic growth but illustrate transport defects in aerobically grown cells. PMID:6791588

  17. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    PubMed

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  18. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions

    PubMed Central

    Reighard, Katelyn P.

    2015-01-01

    Chitosan oligosaccharides were modified with N-diazeniumdiolates to yield biocompatible nitric oxide (NO) donor scaffolds. The minimum bactericidal concentrations and MICs of the NO donors against Pseudomonas aeruginosa were compared under aerobic and anaerobic conditions. Differential antibacterial activities were primarily the result of NO scavenging by oxygen under aerobic environments and not changes in bacterial physiology. Bacterial killing was also tested against nonmucoid and mucoid biofilms and compared to that of tobramycin. Smaller NO payloads were required to eradicate P. aeruginosa biofilms under anaerobic versus aerobic conditions. Under oxygen-free environments, the NO treatment was 10-fold more effective at killing biofilms than tobramycin. These results demonstrate the potential utility of NO-releasing chitosan oligosaccharides under both aerobic and anaerobic environments. PMID:26239983

  19. Molecular and Cellular Fundamentals of Aerobic Cometabolism

    DTIC Science & Technology

    1998-10-01

    1 99 1 ) Butane Pseudomonas butane monooxygenase (Hamamura, et al . , butanovorars (BMO) 1 997) 2,4-Dichloro Alcaligenes eutrophus...Leadbetter and Foster, 1 960). These studies initially revealed that the methane-utilizing bacterium Pseudomonas (Methylomonas) methanica could not grow...enzyme is required for each insertion. Pseudomonas mendocina KR 1 toluene-4-monooxygenase (T4MO) produces p-cresol ; Pseudomonas picketii toluene

  20. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440

    PubMed Central

    Schmitz, Simone; Nies, Salome; Wierckx, Nick; Blank, Lars M.; Rosenbaum, Miriam A.

    2015-01-01

    Pseudomonas putida strains are being developed as microbial production hosts for production of a range of amphiphilic and hydrophobic biochemicals. P. putida's obligate aerobic growth thereby can be an economical and technical challenge because it requires constant rigorous aeration and often causes reactor foaming. Here, we engineered a strain of P. putida KT2440 that can produce phenazine redox-mediators from Pseudomonas aeruginosa to allow partial redox balancing with an electrode under oxygen-limited conditions. P. aeruginosa is known to employ its phenazine-type redox mediators for electron exchange with an anode in bioelectrochemical systems (BES). We transferred the seven core phenazine biosynthesis genes phzA-G and the two specific genes phzM and phzS required for pyocyanin synthesis from P. aeruginosa on two inducible plasmids into P. putida KT2440. The best clone, P. putida pPhz, produced 45 mg/L pyocyanin over 25 h of growth, which was visible as blue color formation and is comparable to the pyocyanin production of P. aeruginosa. This new strain was then characterized under different oxygen-limited conditions with electrochemical redox control and changes in central energy metabolism were evaluated in comparison to the unmodified P. putida KT2440. In the new strain, phenazine synthesis with supernatant concentrations up to 33 μg/mL correlated linearly with the ability to discharge electrons to an anode, whereby phenazine-1-carboxylic acid served as the dominating redox mediator. P. putida pPhz sustained strongly oxygen-limited metabolism for up to 2 weeks at up to 12 μA/cm2 anodic current density. Together, this work lays a foundation for future oxygen-limited biocatalysis with P. putida strains. PMID:25914687

  1. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa

    PubMed Central

    Arai, Hiroyuki

    2011-01-01

    Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO), and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article. PMID:21833336

  2. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    PubMed

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P < 0.05) total aerobic count in biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage.

  3. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.

    PubMed

    Kawakami, Takuro; Kuroki, Miho; Ishii, Masaharu; Igarashi, Yasuo; Arai, Hiroyuki

    2010-06-01

    Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration. Two of them, the bo(3) oxidase (Cyo) and the cyanide-insensitive oxidase (CIO), are quinol oxidases and the other three, the cbb(3)-1 oxidase (Cbb3-1), the cbb(3)-2 oxidase (Cbb3-2) and the aa(3) oxidase (Aa3), are cytochrome c oxidases. The expression pattern of the genes for these terminal oxidases under various growth conditions was investigated by using lacZ transcriptional fusions and some novel regulatory issues were found. The Aa3 genes were induced under starvation conditions. The Cyo genes were induced by exposure to the nitric oxide-generating reagent S-nitrosoglutathione. The CIO genes were induced by exposure to sodium nitroprusside as well as cyanide. The stationary phase sigma factor RpoS was found to be involved in the expression of the Aa3 and CIO genes. The role of two redox-responsive transcriptional regulators, ANR and RoxSR, was investigated using the anr and roxSR mutant strains. The ANR was involved in the repression of the CIO genes and induction of the Cbb3-2 genes. The other three terminal oxidase genes were not significantly regulated by ANR. On the other hand, all five terminal oxidase genes were shown to be directly or indirectly regulated by RoxSR. The Aa3 genes were repressed but the genes for the other four enzymes were induced by RoxSR. The transcriptome data also showed that some respiration-related genes were regulated by RoxSR, suggesting that this two-component regulatory system plays an important role in the regulation of respiration in P. aeruginosa.

  4. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions.

    PubMed

    Dominguez, Silvia A; Schaffner, Donald W

    2007-12-15

    Poultry meat spoils quickly unless it is processed, stored, and distributed under refrigerated conditions. Research has shown that the microbial spoilage rate is predominantly controlled by temperature and the spoilage flora of refrigerated, aerobically-stored poultry meat is generally dominated by Pseudomonas spp. The objective of our study was to develop and validate a mathematical model that predicts the growth of Pseudomonas in raw poultry stored under aerobic conditions over a variety of temperatures. Thirty-seven Pseudomonas growth rates were extracted from 6 previously published studies. Objectives, methods and data presentation formats varied widely among the studies, but all the studies used either naturally contaminated meat or poultry or Pseudomonas isolated from meat or poultry grown in laboratory media. These extracted growth rates were used to develop a model relating growth rate of Pseudomonas to storage or incubation temperature. A square-root equation [Ratkowsky, D.A., Olley, J., McMeekin, T.A., and Ball, A., 1982. Relationship between temperature and growth rate of bacterial cultures. J. Appl. Bacteriol. 149, 1-5.] was used to model the data. Model predictions were then compared to 20 Pseudomonas and 20 total aerobes growth rate measurements collected in our laboratory. The growth rates were derived from more than 600 bacterial concentration measurements on raw poultry at 10 temperatures ranging from 0 to 25 degrees C. Visual inspection of the data and the indices of bias and accuracy factors proposed by Baranyi et al. [Baranyi, J., Pin, C., and Ross, T., 1999. Validating and comparing predictive models. Int. J. Food Micro. 48, 159-166.] were used to analyze the performance of the model. The experimental data for Pseudomonas showed a 4.8% discrepancy with the predictions and a bias of +3.6%. Percent discrepancies show close agreement between model predictions and observations, and the positive bias factor demonstrates that the proposed model over

  5. Strategies of aerobic microbial Fe acquisition from Fe-bearing montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Kuhn, Keshia M.; DuBois, Jennifer L.; Maurice, Patricia A.

    2013-09-01

    This research investigated strategies used by the common aerobic soil bacterium Pseudomonas mendocina to acquire Fe associated with Fe(III)-bearing montmorillonite (MMT) clay. Given the known importance of Fe(III)-chelating siderophores, Fe-limited batch experiments were conducted using a wild-type (WT) strain that produces siderophores and a ΔpmhA mutant with a siderophore(-) phenotype. Growth measurements were coupled with a transcriptional biosensor assay that monitors the siderophore biosynthesis gene pmhA, measurements of cells' reducing ability, and quantification of exopolymeric substance (EPS) production. WT cells actively grow when MMT is the sole Fe source, but sorption to MMT may decrease the concentration of dissolved Fe-siderophore complex accessible to cells. Cells also obtain Fe by reducing MMT-associated Fe(III), but because P. mendocina lacks a secreted/diffusible reductant, direct physical contact is required. Dual strategies for Fe acquisition—a reducing mechanism that requires contact and that is likely facilitated by biofilm production and a siderophore related mechanism that does not require contact—provide flexibility to address the environmental Fe challenge.

  6. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    PubMed Central

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway. PMID:24116023

  7. Draft Genome Sequence of Pseudomonas hussainii Strain MB3, a Denitrifying Aerobic Bacterium Isolated from the Rhizospheric Region of Mangrove Trees in the Andaman Islands, India.

    PubMed

    Jaiswal, Shubham K; Saxena, Rituja; Mittal, Parul; Gupta, Ankit; Sharma, Vineet K

    2017-02-02

    The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification.

  8. Time-to-positivity-based discrimination between Enterobacteriaceae, Pseudomonas aeruginosa and strictly anaerobic Gram-negative bacilli in aerobic and anaerobic blood culture vials.

    PubMed

    Defrance, Gilles; Birgand, Gabriel; Ruppé, Etienne; Billard, Morgane; Ruimy, Raymond; Bonnal, Christine; Andremont, Antoine; Armand-Lefèvre, Laurence

    2013-05-01

    Time-to-positivity (TTP) of first positive blood cultures growing Gram-negative bacilli (GNB) was investigated. When anaerobic vials were positive first, TTP ≤ 18 h differentiated Enterobacteriaceae from strict anaerobic Gram-negative bacilli (PPV 98.8%). When the aerobic ones were first, TTP ≤ 13 h differentiated Enterobacteriaceae from Pseudomonas aeruginosa and other GNB (PPV 80.8%).

  9. Draft Genome Sequence of Pseudomonas hussainii Strain MB3, a Denitrifying Aerobic Bacterium Isolated from the Rhizospheric Region of Mangrove Trees in the Andaman Islands, India

    PubMed Central

    Jaiswal, Shubham K.; Saxena, Rituja; Mittal, Parul; Gupta, Ankit

    2017-01-01

    ABSTRACT The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification. PMID:28153890

  10. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    PubMed Central

    He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626

  11. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa.

  12. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440.

    PubMed

    Jiménez, José I; Canales, Angeles; Jiménez-Barbero, Jesús; Ginalski, Krzysztof; Rychlewski, Leszek; García, José L; Díaz, Eduardo

    2008-08-12

    The aerobic catabolism of nicotinic acid (NA) is considered a model system for degradation of N-heterocyclic aromatic compounds, some of which are major environmental pollutants; however, the complete set of genes as well as the structural-functional relationships of most of the enzymes involved in this process are still unknown. We have characterized a gene cluster (nic genes) from Pseudomonas putida KT2440 responsible for the aerobic NA degradation in this bacterium and when expressed in heterologous hosts. The biochemistry of the NA degradation through the formation of 2,5-dihydroxypyridine and maleamic acid has been revisited, and some gene products become the prototype of new types of enzymes with unprecedented molecular architectures. Thus, the initial hydroxylation of NA is catalyzed by a two-component hydroxylase (NicAB) that constitutes the first member of the xanthine dehydrogenase family whose electron transport chain to molecular oxygen includes a cytochrome c domain. The Fe(2+)-dependent dioxygenase (NicX) converts 2,5-dihydroxypyridine into N-formylmaleamic acid, and it becomes the founding member of a new family of extradiol ring-cleavage dioxygenases. Further conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD protein, the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. This work allows exploration of the existence of orthologous gene clusters in saprophytic bacteria and some pathogens, where they might stimulate studies on their role in virulence, and it provides a framework to develop new biotechnological processes for detoxification/biotransformation of N-heterocyclic aromatic compounds.

  13. Pseudomonas aeruginosa strain MA01 aerobically metabolizes the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro group reduction.

    PubMed

    Alvarez, M A; Kitts, C L; Botsford, J L; Unkefer, P J

    1995-11-01

    Many microbes reduce the nitro substituents of 2,4,6-trinitrotoluene (TNT), producing aminodinitrotoluenes (ADNTs). These compounds are recalcitrant to further breakdown and are acutely toxic. In a search for organisms capable of metabolizing ADNTs, a bacterial strain was isolated for the ability to use 2-aminobenzoate (anthranilate) as sole C-source. This isolate, Pseudomonas aeruginosa MA01, metabolized TNT by first reducing one nitro group to form either 2-amino-4,6-dinitrotoluene (2ADNT) or 4-amino-2,6-dinitrotoluene (4ADNT). However, strain MA01 was distinct from other TNT-reducing organisms in that it transformed these compounds into highly polar metabolites through an O2-dependent process. Strain MA01 was able to cometabolize TNT, 2ADNT, and 4ADNT in the presence of a variety of carbon and energy sources. During aerobic cometabolism with succinate, 45% of uniformly ring-labeled [14C]TNT was transformed to highly polar compounds. Aerobic cometabolism of purified [14C]2ADNT and [14C]4ADNT with succinate as C-source produced similar amounts of these polar metabolites. During O2-limited cometabolism with succinate as C-source and nitrate as electron acceptor, less than 8% of the [14C]TNT was transformed to polar metabolites. Purified 2,6-diamino-4-nitrotoluene was not metabolized, and while 2,4-diamino-6-nitrotoluene was acetylated, the product (N-acetyl-2,4-diamino-6-nitrotoluene) was not further metabolized. Therefore, strain MA01 metabolized TNT by oxidation of the ADNTs and not by reduction the remaining nitro groups on the ADNTs.

  14. Ammonium removal at low temperature by a newly isolated heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas fluorescens wsw-1001.

    PubMed

    Zhang, Shumei; Sha, Changqing; Jiang, Wei; Li, Weiguang; Zhang, Duoying; Li, Jing; Meng, Liqiang; Piao, Yongjian

    2015-01-01

    A heterotrophic nitrifier wsw-1001 was isolated from Songhua River and identified as Pseudomonas fluorescens. Ammonium removal by the strain at low temperature was investigated. The effect of initial ammonium concentration (from 5 to 1000 mg/L) and culture temperature (from 4°C to 30°C) on ammonium removal efficiency was studied. Biodegradation product, [Formula: see text], [Formula: see text], N2, N2O and intercellular N were monitored. The results indicated that the strain had potential for water and wastewater treatment. Ammonium could be removed by the strain at low temperature. Ammonium removal efficiency increased with temperature from 4°C to 20°C and decreased with ammonium concentration from 5 to 1000 mg/L. The strain exhibited a capability of heterotrophic nitrification and aerobic denitrification using [Formula: see text] as the sole nitrogen source at 8°C. [Formula: see text] and [Formula: see text] were reduced by the strain. Nitrogen balance analysis in the presence of 39.7 mg/L [Formula: see text] indicated that 71.2% [Formula: see text] was removed by converting to N2 (46.3%) and assimilating as biomass (42.5%). Substances such as [Formula: see text], [Formula: see text] and N2O were detected at very low concentrations. Ammonium mono-oxygenase, hydroxylamine oxidase, nitrite reductase and nitrate reductase activity were measured. The ammonium removal pathway of the strain was speculated to be [Formula: see text].

  15. A novel terminal oxidase, cytochrome baa3 purified from aerobically grown Pseudomonas aeruginosa: it shows a clear difference between resting state and pulsed state.

    PubMed

    Fujiwara, T; Fukumori, Y; Yamanaka, T

    1992-08-01

    A novel type of cytochrome c oxidase was purified to homogeneity from Pseudomonas aeruginosa which was grown aerobically. The purified oxidase contained two molecules of heme a, two atoms of copper, and one molecule of protoheme per molecule. One of the two heme a molecules in the oxidase reacted with carbon monoxide, so that the enzyme was of baa3-type. The oxidase molecule was composed of three subunits with molecular weights of 38,000, 57,000, and 82,000. Although the oxidase oxidized ferrocytochrome c-550 obtained from the bacterial cells grown aerobically, the oxidizing activity was not high. The "resting form" and the "pulsed form" of the oxidase were observed clearly with this enzyme, and the transition from the resting form to the pulsed form was accompanied by a distinct change of the enzymatic activity. The difference in the kinetics of the catalytic reactions between the two forms is discussed.

  16. Free radical scavengers and antioxidants from Tagetes mendocina.

    PubMed

    Schmeda-Hirschmann, Guillermo; Tapia, Alejandro; Theoduloz, Cristina; Rodríguez, Jaime; López, Susana; Feresin, Gabriela Egly

    2004-01-01

    Tagetes mendocina (Asteraceae) is a medicinal plant widely used in the Andean provinces of Argentina. Preliminary assays showed free radical scavenging activity in the methanol extract of the aerial parts, measured by the decoloration of a methanolic solution of the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and scavenging of the superoxide anion. Assay-guided isolation led to 4'-hydroxyacetophenone (1), protocatechuic acid (2), syringic acid (3), patuletin (4), quercetagetin 7-O-beta-D-glucoside (5), patuletin 7-O-beta-D-glucoside (6) and axillarin 7-O-beta-D-glucoside (7) as the free radical scavengers and antioxidant compounds from Tagetes mendocina. On the basis of dry starting material, the total phenolic content of the crude drug was 3.00% with 0.372% of flavonoids. The content of compounds 1-7 in the crude drug was 0.008, 0.015, 0.010, 0.029, 0.238, 0.058 and 0.017%, respectively. Quercetagetin 7-O-beta-D-glucoside proved to be the main free radical scavenger of the extracts measured by the DPPH decoloration test as well as for quenching the superoxide anion and inhibition of lipoperoxidation in erythrocytes. In the lipid peroxidation assay the percentual inhibition was related with the number of methoxy groups in the molecule, ranging from 86% for the quercetagetin glucoside to 67% for the monomethoxylated and 31% for the dimethoxylated derivative. The compounds showed low cytotoxicity towards human lung fibroblasts with IC50 > 1 mM for compounds 1-3 and 0.24 to 0.52 mM for the flavonoids 4-7.

  17. Anaerobic and aerobic degradation of cyanophycin by the denitrifying bacterium Pseudomonas alcaligenes strain DIP1 and role of three other coisolates in a mixed bacterial consortium.

    PubMed

    Sallam, Ahmed; Steinbüchel, Alexander

    2008-06-01

    Four bacterial strains were isolated from a cyanophycin granule polypeptide (CGP)-degrading anaerobic consortium, identified by 16S rRNA gene sequencing, and assigned to species of the genera Pseudomonas, Enterococcus, Clostridium, and Paenibacillus. The consortium member responsible for CGP degradation was assigned as Pseudomonas alcaligenes strain DIP1. The growth of and CGP degradation by strain DIP1 under anaerobic conditions were enhanced but not dependent on the presence of nitrate as an electron acceptor. CGP was hydrolyzed to its constituting beta-Asp-Arg dipeptides, which were then completely utilized within 25 and 4 days under anaerobic and aerobic conditions, respectively. The end products of CGP degradation by strain DIP1 were alanine, succinate, and ornithine as determined by high-performance liquid chromatography analysis. The facultative anaerobic Enterococcus casseliflavus strain ELS3 and the strictly anaerobic Clostridium sulfidogenes strain SGB2 were coisolates and utilized the beta-linked isodipeptides from the common pool available to the mixed consortium, while the fourth isolate, Paenibacillus odorifer strain PNF4, did not play a direct role in the biodegradation of CGP. Several syntrophic interactions affecting CGP degradation, such as substrate utilization, the reduction of electron acceptors, and aeration, were elucidated. This study demonstrates the first investigation of CGP degradation under both anaerobic and aerobic conditions by one bacterial strain, with regard to the physiological role of other bacteria in a mixed consortium.

  18. Pseudomonas guguanensis sp. nov., a gammaproteobacterium isolated from a hot spring.

    PubMed

    Liu, You-Cheng; Young, Li-Sen; Lin, Shih-Yao; Hameed, Asif; Hsu, Yi-Han; Lai, Wei-An; Shen, Fo-Ting; Young, Chiu-Chung

    2013-12-01

    An aerobic, Gram-stain-negative, rod-shaped bacterium (designated strain CC-G9A(T)), motile by a polar-flagellum, was isolated from a hot spring water sample in Taiwan. Strain CC-G9A(T) could grow at 20-42 °C, pH 6.0-10.0 and tolerate up to 7% (w/v) NaCl. The 16S rRNA gene sequence analysis of strain CC-G9A(T) showed pairwise sequence similarity to Pseudomonas mendocina LMG 1223(T) (97.7%), Pseudomonas alcaligenes ATCC 14909(T) (97.8 %), Pseudomonas alcaliphila DSM 17744(T) (97.8 %), Pseudomonas toyotomiensis JCM 15604(T) (97.6 %), Pseudomonas oleovorans subsp. lubricantis DSM 21016(T) (97.6 %) and Pseudomonas argentinensis BCRC 17807(T) (97.5 %), and lower sequence similarity to other species of the genus Pseudomonas. According to DNA-DNA association analysis, the relatedness of strain CC-G9A(T) to P. mendocina BCRC 10458(T), P. alcaliphila DSM 17744(T), P. alcaligenes BCRC 11893(T), P. oleovorans subsp. lubricantis DSM 21016(T), P. argentinensis BCRC 17807(T) and P. oleovorans subsp. oleovorans BCRC 11902 was 55.1±3.1, 13.7±1.5, 14.1±1.8, 58.5±1.1, 28.9±2.0 and 28.6±1.8 %, respectively. The evolutionary trees reconstructed based on 16S rRNA, gyrB and rpoB gene sequences revealed varying phylogenetic neighbourhoods of strain CC-G9A(T) with regard to the most closely related type strains. The predominant quinone system was ubiquinone (Q-9) and the DNA G+C content was 64.3±1.3 mol%. The major fatty acids were C10 : 0 3-OH, C12 : 0, C12 : 0 3-OH, C16 : 0 and summed features 3 and 8 consisting of C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. According to distinct phylogenetic, phenotypic and chemotaxonomic features, strain CC-G9A(T) is proposed to represent a novel species within the genus Pseudomonas for which the name Pseudomonas guguanensis sp. nov. is proposed. The type

  19. Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus.

    PubMed Central

    Millward-Sadler, S J; Davidson, K; Hazlewood, G P; Black, G W; Gilbert, H J; Clarke, J H

    1995-01-01

    To test the hypothesis that selective pressure has led to the retention of cellulose-binding domains (CBDs) by hemicellulase enzymes from aerobic bacteria, four new xylanase (xyn) genes from two cellulolytic soil bacteria, Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus, have been isolated and sequenced. Pseudomonas genes xynE and xynF encoded modular xylanases (XYLE and XYLF) with predicted M(r) values of 68,600 and 65000 respectively. XYLE contained a glycosyl hydrolase family 11 catalytic domain at its N-terminus, followed by three other domains; the second of these exhibited sequence identity with NodB from rhizobia. The C-terminal domain (40 residues) exhibited significant sequence identity with a non-catalytic domain of previously unknown function, conserved in all the cellulases and one of the hemicellulases previously characterized from the pseudomonad, and was shown to function as a CBD when fused to the reporter protein glutathione-S-transferase. XYLF contained a C-terminal glycosyl hydrolase family 10 catalytic domain and a novel CBD at its N-terminus. C. mixtus genes xynA and xynB exhibited substantial sequence identity with xynE and xynF respectively, and encoded modular xylanases with the same molecular architecture and, by inference, the same functional properties. In the absence of extensive cross-hybridization between other multiple cel (cellulase) and xyn genes from P. fluorescens subsp. cellulosa and genomic DNA from C. mixtus, similarity between the two pairs of xylanases may indicate a recent transfer of genes between the two bacteria. Images Figure 1 Figure 4 PMID:7492333

  20. Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir.

    PubMed

    Huang, Tinglin; Guo, Lin; Zhang, Haihan; Su, Junfeng; Wen, Gang; Zhang, Kai

    2015-11-01

    An aerobic denitrifier, identified as Pseudomonas stutzeri strain ZF31, was isolated from the Zhoucun drinking-water reservoir. Strain ZF31 removed 97% of nitrate nitrogen after 16h, without nitrite accumulation. Sequence amplification indicated the presence of the denitrification genes napA, nirS, norB, and nosZ. Nitrogen balance analysis revealed that approximately 75% of the initial nitrogen was removed as gas products. Response surface methodology (RSM) experiments showed that maximum removal of total nitrogen (TN) occurred at pH 8.23, a C/N ratio of 6.68, temperature of 27.72°C, and with shaking at 54.15rpm. The TN removal rate at low C/N ratio (i.e., 3) and low temperature (i.e., 10°C) was 73.30% and 60.08%, respectively. These results suggest that strain ZF31 has potential applications for the bioremediation of slightly polluted drinking-water reservoirs.

  1. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  2. Nosocomial Infections with IMP-19−Producing Pseudomonas aeruginosa Linked to Contaminated Sinks, France

    PubMed Central

    Amoureux, Lucie; Riedweg, Karena; Chapuis, Angélique; Bador, Julien; Siebor, Eliane; Péchinot, André; Chrétien, Marie-Lorraine; de Curraize, Claire

    2017-01-01

    We isolated IMP-19–producing Pseudomonas aeruginosa from 7 patients with nosocomial infections linked to contaminated sinks in France. We showed that blaIMP-19 was located on various class 1 integrons among 8 species of gram-negative bacilli detected in sinks: P. aeruginosa, Achromobacter xylosoxidans, A. aegrifaciens, P. putida, Stenotrophomonas maltophilia, P. mendocina, Comamonas testosteroni, and Sphingomonas sp. PMID:28098548

  3. Characterization of the hcnABC Gene Cluster Encoding Hydrogen Cyanide Synthase and Anaerobic Regulation by ANR in the Strictly Aerobic Biocontrol Agent Pseudomonas fluorescens CHA0

    PubMed Central

    Laville, Jacques; Blumer, Caroline; Von Schroetter, Christine; Gaia, Valeria; Défago, Geneviève; Keel, Christoph; Haas, Dieter

    1998-01-01

    The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the −40 sequence (TTGGC … .ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT … .ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and

  4. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0.

    PubMed

    Laville, J; Blumer, C; Von Schroetter, C; Gaia, V; Défago, G; Keel, C; Haas, D

    1998-06-01

    The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR

  5. IS1491 from Pseudomonas alcaligenes NCIB 9867: characterization and distribution among Pseudomonas species.

    PubMed

    Yeo, C C; Wong, D T; Poh, C L

    1998-01-01

    A new insertion sequence, IS1491, has been cloned and sequenced. The 2489-bp IS1491 was isolated from a Pseudomonas alcaligenes NCIB 9867 (strain P25X) 4.8-kb PstI chromosomal fragment. IS1491 is flanked by an imperfect inverted repeat of 23 bp and carries two overlapping open reading frames, ORF1 and ORF2. Both ORF1 and ORF2 displayed homology to the IstA-like and IstB-like transposases encoded by the IS21 family of insertion sequences, which include two IS elements previously isolated from P. alcaligenes P25X, IS1474, and IS1475 (Yeo, C. C., and Poh, C. L. (1997). FEMS Microbiol. Lett. 149, 257-263). Transposition assays showed that IS1491 transposed at a frequency of approximately 1.4 x 10(-6). Transposition of IS1491 into the target pRK415 replicon was observed but when ORF2 was disrupted, a fusion between the donor and target replicons was detected. IS1491-like sequences were detected in total DNA of Pseudomonas putida NCIB 9869 (strain P35X), Pseudomonas aeruginosa, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas mendocina, Comomonas acidovorans, and Comomonas testosteroni by hybridization with IS1491 DNA.

  6. Substrate Selectivity of a 3-Nitrophenol-Induced Metabolic System in Pseudomonas putida 2NP8 Transforming Nitroaromatic Compounds into Ammonia under Aerobic Conditions

    PubMed Central

    Zhao, Jian-Shen; Ward, Owen P.

    2001-01-01

    The 3-nitrophenol-induced enzyme system in cells of Pseudomonas putida 2NP8 manifested a wide substrate range in transforming nitroaromatic compounds through to ammonia production. All of the 30 mono- or dinitroaromatic substrates except 4-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, 3-nitroaniline, 2-nitrobenzoic acid, and 2-nitrofuran were quickly transformed. Ammonia production from most nitroaromatic substrates appeared to be stoichiometric. PMID:11229938

  7. Adsorption of B. Subtilis and P. Mendocina Onto Fe-Oxide Coated Quartz and Pure Quartz

    NASA Astrophysics Data System (ADS)

    Ams, D.; Fein, J. B.

    2002-12-01

    Understanding the controls on bacterial adsorption onto mineral surfaces is crucial in order to model a range of processes, such as contaminant transport, mineral dissolution behavior, and bioremediation techniques. At present, little is known concerning the adsorption behavior of bacteria, even onto some of the most common mineral surfaces present in near-surface environments. In this study, we measured the adsorption of a Gram positive bacterial species (B. subtilis) and a Gram negative species (P. mendocina) onto a quartz sand, and onto an Fe-oxide coated quartz sand, both as functions of time, pH and bacteria:mineral mass ratio. The extent of adsorption was determined by measuring the concentration of free bacteria in the mineral-bacteria systems both before, and after, reaction, using a uv-vis spectrophotometric approach. pH and bacteria:mineral ratio exert strong controls on the extent of bacterial adsorption of both species onto Fe-coated quartz. The extent of adsorption of B. subtilis onto the Fe-coated quartz increases with decreasing pH from close to 0% at pH 10 to a plateau of approximately 80% adsorption between pH 6 and 4. Below pH 4, adsorption of B. subtilis decreases to 50% at pH 2. Adsorption of P. mendocina is similar to that observed for B. subtilis, only it is significantly less extensive under otherwise identical conditions. These adsorption behaviors are in marked contrast to that observed for both species onto the uncoated quartz. There is little to no adsorption of either species onto the uncoated quartz sand over most of the pH range studied. We use a thermodynamic approach to model the adsorption behavior of each species onto the Fe-coated quartz sand, determining equilibrium constants for the dominant adsorption reactions. Our results demonstrate that bacterial adsorption within geologic systems can be strongly dependent on mineralogy, fluid composition, and on the bacterial species present. However, our modeling approach enables the

  8. Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli.

    PubMed

    Zimmermann, A; Reimmann, C; Galimand, M; Haas, D

    1991-06-01

    Anaerobic growth of Pseudomonas aeruginosa on nitrate or arginine requires the anr gene, which codes for a positive control element (ANR) capable of functionally complementing an fnr mutation in Escherichia coli. The anr gene was sequenced; it showed 51% identity with the fnr gene at the amino acid sequence level. Four cysteine residues known to be essential in the FNR protein are conserved in ANR. The anr gene product (deduced Mr 27,129) was visualized by the maxicell method and migrated like a 32 kDa protein in gel electrophoresis under denaturing conditions. An anr mutant of P. aeruginosa constructed by gene replacement was defective in nitrate respiration, arginine deiminase activity, and hydrogen cyanide biosynthesis, underscoring the diverse metabolic functions of ANR during oxygen limitation. Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas syringae, and Pseudomonas mendocina all had a functional analogue of ANR, indicating that similar anaerobic control mechanisms exist in these bacteria.

  9. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm.

    PubMed

    Xia, Jin; Yang, Chunguang; Xu, Dake; Sun, Da; Nan, Li; Sun, Ziqing; Li, Qi; Gu, Tingyue; Yang, Ke

    2015-01-01

    The microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel (2205 Cu-DSS) against an aerobic marine Pseudomonas aeruginosa biofilm was investigated. The electrochemical test results showed that Rp increased and icorr decreased sharply after long-term immersion in the inoculation medium, suggesting that 2205 Cu-DSS possessed excellent MIC resistance to the P. aeruginosa biofilm. Fluorescence microscope images showed that 2205 Cu-DSS possessed a strong antibacterial ability, and its antibacterial efficiency after one and seven days was 7.75% and 96.92%, respectively. The pit morphology comparison after 14 days between 2205 DSS and 2205 Cu-DSS demonstrated that the latter showed a considerably reduced maximum MIC pit depth compared with the former (1.44 μm vs 9.50 μm). The experimental results suggest that inhibition of the biofilm was caused by the copper ions released from the 2205 Cu-DSS, leading to its effective mitigation of MIC by P. aeruginosa.

  10. Characterization of the ability to form biofilms by plant-associated Pseudomonas species.

    PubMed

    Ueda, Akihiro; Saneoka, Hirofumi

    2015-04-01

    Successful colonization is the initial step for plant-bacteria interactions; therefore, the development of strategies to improve adherence to plant surfaces is critically important for environmental bacteria. Biofilm formation is thought to be one such strategy for bacteria to establish stable colonization on inert and living surfaces. Although biofilms play potential roles in enabling persistent bacterial colonization, little attention has been paid to biofilms formed by plant-associated bacteria. In this study, we characterized the biofilm-forming ability of 6 species of bacteria from the family Pseudomonadaceae: Pseudomonas protegens, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas stutzeri, Pseudomonas mendocina, and Pseudomonas syringae. These strains exhibit different degrees of biofilm formation depending on incubation time and nutrient availability. Distinct preferences for growth media were observed, as biofilms were formed by P. protegens with rich nutrients and by P. fluorescens and P. putida with poor nutrients. Likewise, P. stutzeri did not form biofilms with rich nutrients but did form biofilms under nutrient-poor conditions. These observations indicate that particular components in media may influence biofilm formation. P. putida, one of the strains with high biofilm-forming ability, showed the highest ability for initial attachment, which may be mediated by the hydrophobicity of its cell surface. P. mendocina also has high ability for initial attachment, and this strain produces cell surface-attached extracellular polysaccharides that promote cell aggregation. Thus, each strain possesses different properties that facilitate biofilm formation. Shedding light on bacterial strategies for colonization via biofilm formation would enable a better understanding of plant-bacteria interactions.

  11. Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper-containing N sub 2 O reductase

    SciTech Connect

    Lee, H.S.; Ingraham, J.L. ); Hancock, R.E.W. )

    1989-04-01

    A protein (NosA) in the outer membrane of Pseudomonas stutzeri that is required for copper to be inserted into N{sub 2}O reductase has been extracted and purified to homogeneity. The purified protein could form channels in black lipid bilayers. Line N{sub 2}O reductase, NosA contained copper and was only made anaerobically. In contrast to N{sub 2}O reductase, its synthesis was repressed by exogenous copper (but not by Mn, Co, Ni, Zn, or Fe). Also in contrast to N{sub 2}O reductase, NosA homologs were not immunologically detectable in Pseudomonas aeruginosa, Pseudomonas mendocina, Pseudomonas alcaligenes, or other strains of P. stutzeri.

  12. Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in serozem soil, semi arid region of Uzbekistan.

    PubMed

    Egamberdiyeva, Dilfuza

    2005-07-08

    Collections of native Pseudomonas spp. are kept at the NCAM of Uzbekistan. Some of those organisms were isolated from the rhizosphere of cotton, wheat, corn, melon, alfalfa, and tomato grown in field locations within a semi-arid region of Uzbekistan. Strains used for this study were Pseudomonas alcaligenes, P. aurantiaca, P. aureofaciens, P. denitrificans, P. mendocina, P. rathonis, and P. stutzeri. Some of the pseudomonads have been characterized in this report. These strains produced enzymes, phytohormone auxin (IAA), and were antagonist against plant pathogenic fungi in in vitro experiments. Most of the strains were salt tolerant and temperature resistant. Some of the Pseudomonas spp. isolated in this study have been found to increase the growth of wheat, corn, and tomato in pot experiments.

  13. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  14. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  15. Genetic Lineages and Antimicrobial Resistance in Pseudomonas spp. Isolates Recovered from Food Samples.

    PubMed

    Estepa, Vanesa; Rojo-Bezares, Beatriz; Torres, Carmen; Sáenz, Yolanda

    2015-06-01

    Raw food is a reservoir of Pseudomonas isolates that could be disseminated to consumers. The presence of Pseudomonas spp. was studied in food samples, and the phenotypic and genotypic characterizations of the recovered isolates were analyzed. Two samples of meat (3%, turkey and beef) and 13 of vegetables (22%, 7 green peppers and 6 tomatoes) contained Pseudomonas spp. A total of 20 isolates were identified, and were classified as follows (number of isolates): P. aeruginosa (5), P. putida (5), P. nitroreducens (4), P. fulva (2), P. mosselli (1), P. mendocina (1), P. monteilii (1), and Pseudomonas sp. (1). These 20 Pseudomonas isolates were clonally different by pulsed-field-gel-electrophoresis, and were resistant to the following antibiotics: ticarcillin (85%), aztreonam (30%), cefepime (10%), imipenem (10%), and meropenem (5%), but were susceptible to ceftazidime, piperacillin, piperacillin-tazobactam, doripenem, gentamicin, tobramycin, amikacin, ciprofloxacin, norfloxacin, and colistin. Only one strain (Ps158) presented a class 1 integron lacking the 3' conserved segment. The five P. aeruginosa strains were typed by multilocus sequence typing in five different sequence-types (ST17, ST270, ST800, ST1455, and ST1456), and different mutations were detected in protein OprD that were classified in three groups. One strain (Ps159) showed a new insertion sequence (ISPa47) truncating the oprD gene, and conferring resistance to imipenem.

  16. Pseudomonas chemotaxis.

    PubMed

    Sampedro, Inmaculada; Parales, Rebecca E; Krell, Tino; Hill, Jane E

    2015-01-01

    Pseudomonads sense changes in the concentration of chemicals in their environment and exhibit a behavioral response mediated by flagella or pili coupled with a chemosensory system. The two known chemotaxis pathways, a flagella-mediated pathway and a putative pili-mediated system, are described in this review. Pseudomonas shows chemotaxis response toward a wide range of chemicals, and this review includes a summary of them organized by chemical structure. The assays used to measure positive and negative chemotaxis swimming and twitching Pseudomonas as well as improvements to those assays and new assays are also described. This review demonstrates that there is ample research and intellectual space for future investigators to elucidate the role of chemotaxis in important processes such as pathogenesis, bioremediation, and the bioprotection of plants and animals.

  17. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  18. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  19. Differential Isotopic Fractionation during Cr(VI) Reduction by an Aquifer-Derived Bacterium under Aerobic versus Denitrifying Conditions

    SciTech Connect

    Han, R.; Qin, L.; Brown, S. T.; Christensen, J. N.; Beller, H. R.

    2012-01-27

    We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Finally, despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).

  20. Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate.

    PubMed Central

    Schleissner, C; Olivera, E R; Fernández-Valverde, M; Luengo, J M

    1994-01-01

    The phenylacetic acid transport system (PATS) of Pseudomonas putida U was studied after this bacterium was cultured in a chemically defined medium containing phenylacetic acid (PA) as the sole carbon source. Kinetic measurement was carried out, in vivo, at 30 degrees C in 50 mM phosphate buffer (pH 7.0). Under these conditions, the uptake rate was linear for at least 3 min and the value of Km was 13 microM. The PATS is an active transport system that is strongly inhibited by 2,4-dinitrophenol, 4-nitrophenol (100%), KCN (97%), 2-nitrophenol (90%), or NaN3 (80%) added at a 1 mM final concentration (each). Glucose or D-lactate (10 mM each) increases the PATS in starved cells (140%), whereas arsenate (20 mM), NaF, or N,N'-dicyclohexylcarbodiimide (1 mM) did not cause any effect. Furthermore, the PATS is insensitive to osmotic shock. These data strongly suggest that the energy for the PATS is derived only from an electron transport system which causes an energy-rich membrane state. The thiol-containing compounds mercaptoethanol, glutathione, and dithiothreitol have no significant effect on the PATS, whereas thiol-modifying reagents such as N-ethylmaleimide and iodoacetate strongly inhibit uptake (100 and 93%, respectively). Molecular analogs of PA with a substitution (i) on the ring or (ii) on the acetyl moiety or those containing (iii) a different ring but keeping the acetyl moiety constant inhibit uptake to different extents. None of the compounds tested significantly increase the PA uptake rate except adipic acid, which greatly stimulates it (163%). The PATS is induced by PA and also, gratuitously, by some phenyl derivatives containing an even number of carbon atoms on the aliphatic moiety (4-phenyl-butyric, 6-phenylhexanoic, and 8-phenyloctanoic acids). However, similar compounds with an odd number of carbon atoms (benzoic, 3-phenylpropionic, 5-phenylvaleric, 7-phenylheptanoic, and 9-phenylnonanoic acids) as well as many other PA derivatives do not induce the system

  1. Pseudomonas 2007 Meeting Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas is an important genus of bacteria. Pseudomonas aeruginosa is the third most common nosocomial pathogen in our society, associated with chronic and eventually fatal lung disease in cystic fibrosis patients, while Pseudomonas syringae species are prominent plant pathogens. The fluorescen...

  2. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  3. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.

    PubMed

    Zhang, Zhennan; Yin, Naiyi; Cai, Xiaolin; Wang, Zhenzhou; Cui, Yanshan

    2016-09-01

    A mesophilic, Gram-negative, arsenite[As(III)]-oxidizing and arsenate[As(V)]-reducing bacterial strain, Pseudomonas sp. HN-2, was isolated from an As-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Pseudomonas stutzeri. Under aerobic conditions, this strain oxidized 92.0% (61.4μmol/L) of arsenite to arsenate within 3hr of incubation. Reduction of As(V) to As(III) occurred in anoxic conditions. Pseudomonas sp. HN-2 is among the first soil bacteria shown to be capable of both aerobic As(III) oxidation and anoxic As(V) reduction. The strain, as an efficient As(III) oxidizer and As(V) reducer in Pseudomonas, has the potential to impact arsenic mobility in both anoxic and aerobic environments, and has potential application in As remediation processes.

  4. Pseudomonas hussainii sp. nov., isolated from droppings of a seashore bird, and emended descriptions of Pseudomonas pohangensis, Pseudomonas benzenivorans and Pseudomonas segetis.

    PubMed

    Hameed, Asif; Shahina, Mariyam; Lin, Shih-Yao; Liu, You-Cheng; Young, Chiu-Chung

    2014-07-01

    Two Gram-staining-negative, aerobic, rod-shaped, non-spore-forming bacterial strains that are motile by a monopolar flagellum, designated CC-AMH-11(T) and CC-AMHZ-5, were isolated from droppings of a seashore bird off the coast of Hualien, Taiwan. The strains showed 99.7% mutual pairwise 16S rRNA gene sequence similarity, while exhibiting <96.2% sequence similarity to strains of other species of the genus Pseudomonas (95.7-95.9% similarity with type species, Pseudomonas aeruginosa LMG 1242T), and formed a distinct co-phyletic lineage in the phylogenetic trees. The common major fatty acids (>5% of the total) were C18 : 1ω7c and/or C18 : 1ω6c (summed feature 8), C16 : 1ω6c and/or C16 : 1ω7c (summed feature 3), C16 : 0 and C12 : 0. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine, an unidentified lipid and an unidentified phospholipid were detected as common polar lipids. The DNA G+C contents of strains CC-AMH-11(T) and CC-AMHZ-5 were 61.1 and 61.6 mol%, respectively. The common major respiratory quinone was ubiquinone 9 (Q-9), and the predominant polyamine was putrescine. The DNA-DNA hybridization obtained between the two strains was 79.0% (reciprocal value 89.4% using CC-AMHZ-5 DNA as the probe). The very high 16S rRNA gene sequence similarity and DNA-DNA relatedness and the poorly distinguishable phenotypic features witnessed between CC-AMH-11(T) and CC-AMHZ-5 suggested unambiguously that they are two distinct strains of a single genomic species. However, the strains also showed several genotypic and phenotypic characteristics that distinguished them from other closely related species of Pseudomonas. Thus, the strains are proposed to represent a novel species of Pseudomonas, for which the name Pseudomonas hussainii sp. nov. is proposed. The type strain is CC-AMH-11(T) ( = JCM 19513(T) = BCRC 80696(T)); a second strain of the same species is CC-AMHZ-5 ( = JCM 19512 = BCRC 80697). In addition, emended descriptions

  5. MAJOR PRODUCTS OF GLUCOSE DISSIMILATION BY PSEUDOMONAS NATRIEGENS.

    PubMed

    EAGON, R G; CHO, H W

    1965-05-01

    Eagon, R. G. (University of Georgia, Athens), and H. W. Cho. Major products of glucose dissimilation by Pseudomonas natriegens. J. Bacteriol. 89:1209-1211. 1965.-Pseudomonas natriegens aerobically catabolized glucose to yield predominantly acetic acid, pyruvic acid, and CO(2), whereas little or no lactic acid was formed. Under anaerobic conditions, glucose in an enriched medium was fermented to yield acetic acid and lactic acid but no pyruvic acid or CO(2). Glucose in a basal salts medium was fermented to yield predominantly acetic acid, lactic acid, and CO(2), while small amounts of pyruvic acid were detected. It was suggested that the aerobic accumulation of acidic products results from rapid glucose dissimilation to the oxidation level of pyruvic acid, followed by a less rapidly functioning tricarboxylic acid cycle.

  6. Major Products of Glucose Dissimilation by Pseudomonas natriegens

    PubMed Central

    Eagon, R. G.; Cho, H. W.

    1965-01-01

    Eagon, R. G. (University of Georgia, Athens), and H. W. Cho. Major products of glucose dissimilation by Pseudomonas natriegens. J. Bacteriol. 89:1209–1211. 1965.—Pseudomonas natriegens aerobically catabolized glucose to yield predominantly acetic acid, pyruvic acid, and CO2, whereas little or no lactic acid was formed. Under anaerobic conditions, glucose in an enriched medium was fermented to yield acetic acid and lactic acid but no pyruvic acid or CO2. Glucose in a basal salts medium was fermented to yield predominantly acetic acid, lactic acid, and CO2, while small amounts of pyruvic acid were detected. It was suggested that the aerobic accumulation of acidic products results from rapid glucose dissimilation to the oxidation level of pyruvic acid, followed by a less rapidly functioning tricarboxylic acid cycle. PMID:14292987

  7. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes.

    PubMed

    Yamamoto, S; Kasai, H; Arnold, D L; Jackson, R W; Vivian, A; Harayama, S

    2000-10-01

    Phylogenetic analysis of the genus Pseudomonas: was conducted by using the combined gyrB and rpoD nucleotide sequences of 31 validly described species of Pseudomonas: (a total of 125 strains). Pseudomonas: strains diverged into two major clusters designated intrageneric cluster I (IGC I) and intrageneric cluster II (IGC II). IGC I was further split into two subclusters, the 'P: aeruginosa complex', which included P: aeruginosa, P: alcaligenes, P: citronellolis, P: mendocina, P: oleovorans and P: pseudoalcaligenes, and the 'P: stutzeri complex', which included P: balearica and P: stutzeri. IGC II was further split into three subclusters that were designated the 'P: putida complex', the 'P: syringae complex' and the 'P: fluorescens complex'. The 'P: putida complex' included P: putida and P: fulva. The 'P: syringae complex' was the cluster of phytopathogens including P: amygdali, P: caricapapayae, P: cichorii, P: ficuserectae, P: viridiflava and the pathovars of P. savastanoi and P. syringae. The 'P. fluorescens complex' was further divided into two subpopulations, the 'P. fluorescens lineage' and the 'P. chlororaphis lineage'. The 'P. fluorescens lineage' contained P. fluorescens biotypes A, B and C, P. azotoformans, P. marginalis pathovars, P. mucidolens, P. synxantha and P. tolaasii, while the 'P. chlororaphis lineage' included P. chlororaphis, P. agarici, P. asplenii, P. corrugata, P. fluorescens biotypes B and G and P. putida biovar B. The strains of P. fluorescens biotypes formed a polyphyletic group within the 'P. fluorescens complex'.

  8. Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses.

    PubMed

    Arslan, S; Eyi, A; Özdemir, F

    2011-12-01

    Pseudomonas spp. are aerobic, gram-negative bacteria that are recognized as major food spoilage microorganisms. A total of 32 (22.9%) Pseudomonas spp. from 140 homemade white cheese samples collected from the open-air public bazaar were isolated and characterized. The aim of the present study was to investigate the biochemical characteristics, the production of extracellular enzymes, slime and β-lactamase, and antimicrobial susceptibility of Pseudomonas spp. isolated from cheeses. The identified isolates including Pseudomonas pseudoalcaligenes, Pseudomonas alcaligenes, Pseudomonas aeruginosa, Pseudomonas fluorescens biovar V, and P. pseudoalcaligenes ssp. citrulli were found to produce extracellular enzymes, respectively: protease and lecithinase production (100%), and lipase activity (85.7, 42.9, 100, and 100%, and nonlipolytic, respectively). The isolates did not produce slime and had no detectable β-lactamase activity. The antimicrobial susceptibility of the isolates was tested using the disk diffusion method. Pseudomonas spp. had the highest resistance to penicillin G (100%), then sulphamethoxazole/trimethoprim (28.1%). However, all Pseudomonas spp. isolates were 100% susceptible to ceftazidime, ciprofloxacin, amikacin, gentamicin, and imipenem. Multidrug-resistance patterns were not observed among these isolates. In this study, Pseudomonas spp., exhibiting spoilage features, were isolated mainly from cheeses. Isolation of this organism from processed milk highlights the need to improve the hygienic practices. All of the stages in the milk processing chain during manufacturing have to be under control to achieve the quality and safety of dairy products.

  9. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  10. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  11. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  12. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  13. Pseudomonas kuykendallii sp. nov.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a submission to the list of microorganisms with standing in nomenclature maintained by the International Journal of Systematic and Evolutionary Microbiology. We wish to have Pseudomonas kuykendallii sp. nov. added to the list as a valid species belonging to the genus Pseudomonas. Three str...

  14. Pseudomonas screening assay

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth (Inventor)

    1993-01-01

    A method for the detection of Pseudomonas bacteria is described where an Azurin-specific antibody is employed for detecting the presence of Azurin in a test sample. The detection of the presence of Azurin in the sample is a conclusive indicator of the presence of the Pseudomonas bacteria since the Azurin protein is a specific marker for this bacterial strain.

  15. Analysis of the core genome and pangenome of Pseudomonas putida.

    PubMed

    Udaondo, Zulema; Molina, Lázaro; Segura, Ana; Duque, Estrella; Ramos, Juan L

    2016-10-01

    Pseudomonas putida are strict aerobes that proliferate in a range of temperate niches and are of interest for environmental applications due to their capacity to degrade pollutants and ability to promote plant growth. Furthermore solvent-tolerant strains are useful for biosynthesis of added-value chemicals. We present a comprehensive comparative analysis of nine strains and the first characterization of the Pseudomonas putida pangenome. The core genome of P. putida comprises approximately 3386 genes. The most abundant genes within the core genome are those that encode nutrient transporters. Other conserved genes include those for central carbon metabolism through the Entner-Doudoroff pathway, the pentose phosphate cycle, arginine and proline metabolism, and pathways for degradation of aromatic chemicals. Genes that encode transporters, enzymes and regulators for amino acid metabolism (synthesis and degradation) are all part of the core genome, as well as various electron transporters, which enable aerobic metabolism under different oxygen regimes. Within the core genome are 30 genes for flagella biosynthesis and 12 key genes for biofilm formation. Pseudomonas putida strains share 85% of the coding regions with Pseudomonas aeruginosa; however, in P. putida, virulence factors such as exotoxins and type III secretion systems are absent.

  16. Monocyte Profiles in Critically Ill Patients With Pseudomonas Aeruginosa Sepsis

    ClinicalTrials.gov

    2017-02-02

    Pseudomonas Infections; Pseudomonas Septicemia; Pseudomonas; Pneumonia; Pseudomonal Bacteraemia; Pseudomonas Urinary Tract Infection; Pseudomonas Gastrointestinal Tract Infection; Sepsis; Sepsis, Severe; Critically Ill

  17. Genome Sequence of a Strain of the Human Pathogenic Bacterium Pseudomonas alcaligenes That Caused Bloodstream Infection.

    PubMed

    Suzuki, Masato; Suzuki, Satowa; Matsui, Mari; Hiraki, Yoichi; Kawano, Fumio; Shibayama, Keigo

    2013-10-31

    Pseudomonas alcaligenes, a Gram-negative aerobic bacterium, is a rare opportunistic human pathogen. Here, we report the whole-genome sequence of P. alcaligenes strain MRY13-0052, which was isolated from a bloodstream infection in a medical institution in Japan and is resistant to antimicrobial agents, including broad-spectrum cephalosporins and monobactams.

  18. Aerobic biotransformation and mineralization of 2,4,6-trinitrotoluene

    SciTech Connect

    Bae, B.H.; Autenrieth, R.L.; Bonner, J.S.

    1995-12-31

    Respirometric mineralization studies of 2,4,6-trinitrotoluene (TNT) were conducted with microorganisms isolated from a site contaminated with munitions waste in Illinois. Nine aerobic bacterial species were isolated under a carbon- and nitrogen-limited condition and tentatively identified as: one Pseudomonas species; one Enterobacter species; and seven Alcaligenes species. Experiments were performed using each of the nine organisms individually and with a consortium of all nine bacterial species. The aerobic microorganisms were cultured in a sterile nutrient solution with glucose and 20 mg/L TNT. Mineralization was determined using uniformly ring-labeled {sup 14}C-TNT in a respirometer that trapped the evolved CO{sub 2}. Biodegradation behavior was characterized based on oxygen consumption, distribution of {sup 14}C activity, and high-performance liquid chromatography (HPLC) analysis of TNT and its transformation products.

  19. Pseudomonas salegens sp. nov., a halophilic member of the genus Pseudomonas isolated from a wetland.

    PubMed

    Amoozegar, Mohammad Ali; Shahinpei, Azadeh; Sepahy, Abbas Akhavan; Makhdoumi-Kakhki, Ali; Seyedmahdi, Shima Sadat; Schumann, Peter; Ventosa, Antonio

    2014-10-01

    A novel Gram-stain-negative, aerobic, non-endospore-forming, non-pigmented, rod-shaped, slightly halophilic bacterium, designated GBPy5(T), was isolated from aquatic plants of the Gomishan wetland, Iran. Cells of strain GBPy5(T) were motile. Growth occurred with between 1 and 10% (w/v) NaCl and the isolate grew optimally with 3% (w/v) NaCl. The optimum pH and temperature for growth of the strain were pH 8.0 and 30 °C, respectively, while it was able to grow over a pH range of 6.5-9.0 and a temperature range of 4-35 °C. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain GBPy5(T) is a member of the genus Pseudomonas forming a monophyletic branch. The novel strain exhibited 16S rRNA gene sequence similarity of 95.4% with type strains of Pseudomonas guariconensis PCAVU11(T) and Pseudomonas sabulinigri J64(T), respectively. The major cellular fatty acids of the isolate were C18:1ω7c (37.8%), C16:0 (14.9%), C16:1ω7c (12.9%), C12:0 3-OH (7.1%) and C12:0 (7.0%). The polar lipid pattern of strain GBPy5(T) comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and one phospholipid. Ubiquinone 9 (Q-9) was the predominant lipoquinone. The G+C content of the genomic DNA of strain GBPy5(T) was 59.2 mol%. On the basis of the phenotypic and phylogenetic data, strain GBPY5(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas salegens sp. nov. is proposed. The type strain is GBPy5(T) ( = IBRC-M 10762(T) = CECT 8338(T)).

  20. Biodegradation of Asphalt Cement-20 by Aerobic Bacteria

    PubMed Central

    Pendrys, John P.

    1989-01-01

    Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-degrading bacterium, Acinetobacter calcoaceticus NAV2, excretes an emulsifier which is capable of emulsifying the saturate and naphthene aromatic fractions of asphalt cement-20. This emulsifier is not denatured by phenol. PMID:16347928

  1. Indicator For Pseudomonas Bacteria

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  2. Testing for aerobic heterotrophic bacteria allows no prediction of contamination with potentially pathogenic bacteria in the output water of dental chair units

    PubMed Central

    Bristela, Margit; Skolka, Astrid; Schmid-Schwap, Martina; Piehslinger, Eva; Indra, Alexander; Wewalka, Günther; Stauffer, Fritz

    2012-01-01

    Background: Currently, to our knowledge, quality of output water of dental chair units is not covered by specific regulations in the European Union, and national recommendations are heterogeneous. In Germany, water used in dental chair units must follow drinking water quality. In the United States of America, testing for aerobic heterotrophic bacteria is recommended. The present study was performed to evaluate whether the counts of aerobic heterotrophic bacteria correlate with the presence of potentially pathogenic bacteria such as Legionella spp. or Pseudomonas aeruginosa. Methods: 71 samples were collected from 26 dental chair units with integrated disinfection device and 31 samples from 15 outlets of the water distribution pipework within the department were examined. Samples were tested for aerobic heterotrophic bacteria at 35°C and 22°C using different culture media and for Legionella spp. and for Pseudomonas aeruginosa. Additionally, strains of Legionella pneumophila serogroup 1 were typed with monoclonal antibodies and representative samples of Legionella pneumophila serogroup 1 were typed by sequence based typing. Results: Our results showed a correlation between different agars for aerobic heterotrophic bacteria but no correlation for the count of aerobic heterotrophic bacteria and the presence of Legionella spp. or Pseudomonas aeruginosa. Conclusion: Testing for aerobic heterotrophic bacteria in output water or water distribution pipework within the departments alone is without any value for predicting whether the water is contaminated with potentially pathogenic bacteria like Legionella spp. or Pseudomonas aeruginosa. PMID:22558046

  3. Pseudomonas orchitis in puberty.

    PubMed

    Rajagopal, Ambil S

    2004-10-01

    Acute epididymo-orchitis is a common cause of 'acute scrotum' in adolescence and young adults, and the common causative pathogens are Chlamydia trachomatis and Neisseria gonorrhoeae. This is a rare case of acute epididymo-orchitis due to Pseudomonas aeruginosa in a pubertal boy with a history of 'ano-receptive' intercourse. On Medline search there are no reports of pseudomonas orchitis in this age group.

  4. Aerobic granulation of aggregating consortium X9 isolated from aerobic granules and role of cyclic di-GMP.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Wang, Xin-Yue; Yang, Qiaoli; Pan, Xiangliang

    2014-01-01

    This study monitored the granulation process of an aggregating functional consortium X9 that was consisted of Pseudomonas putida X-1, Acinetobacter sp. X-2, Alcaligenes sp. X-3 and Comamonas testosteroni X-4 in shaken reactors. The growth curve of X9 was fit using logistic model as follows y=1.49/(1+21.3*exp(-0.33x)), the maximum specific cell growth rate for X9 was 0.33 h(-1). Initially X9 consumed polysaccharides (PS) and secreted proteins (PN) to trigger granulation. Then X9 grew in biomass and formed numerous micro-granules, driven by increasing hydrophobicity of cell membranes and of accumulated extracellular polymeric substances (EPS). In later stage the intracellular cyclic diguanylate (c-di-GMP) was at high levels for inhibiting bacteria swarming motility, thereby promotion formation of large aerobic granules. The findings reported herein advise the way to accelerate granule formation and to stabilize operation in aerobic granular reactors.

  5. Pseudomonas soli sp. nov., a novel producer of xantholysin congeners.

    PubMed

    Pascual, Javier; García-López, Marina; Carmona, Cristina; Sousa, Thiciana da S; de Pedro, Nuria; Cautain, Bastien; Martín, Jesús; Vicente, Francisca; Reyes, Fernando; Bills, Gerald F; Genilloud, Olga

    2014-09-01

    A chemoorganotrophic Gram-negative bacterium was isolated by means of a diffusion sandwich system from a soil sample from the Sierra Nevada National Park, Spain. Strain F-279,208(T) was oxidase and catalase positive, strictly aerobic, non-spore-forming and motile by single polar flagellum. Phylogenetic analysis of the 16S rRNA, gyrB, rpoB and rpoD genes revealed that strain F-279,208(T) belongs to the Pseudomonas putida group with Pseudomonas mosselii and Pseudomonas entomophila as its closest relatives. DNA-DNA hybridization assays and phenotypic traits confirmed that this strain belongs to a novel species of the genus Pseudomonas, for which the name Pseudomonas soli sp. nov. is proposed. The type strain is F-279,208(T) (=DSM 28043(T)=LMG 27941(T)), and during fermentation it produces xantholysins, a family of lipodepsipeptides. The major compound, xantholysin A, showed an interesting activity in a RCC4 kidney tumor cell line with inactivation of VHL linked with the HIF pathway, without any cytotoxic effects against other human tumor cell lines tested including, liver, pancreas and breast.

  6. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  7. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  8. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  9. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS; exemptions from the requirement of a tolerance... Tolerances § 180.1114 Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas...

  10. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    PubMed

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community.

  11. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  12. Polymicrobial ventriculitis involving Pseudomonas fulva.

    PubMed

    Rebolledo, Paulina A; Vu, Catphuong Cathy L; Carlson, Renee Donahue; Kraft, Colleen S; Anderson, Evan J; Burd, Eileen M

    2014-06-01

    Infections due to Pseudomonas fulva remain a rare but emerging concern. A case of ventriculitis due to Enterobacter cloacae and Pseudomonas fulva following placement of an external ventricular drain is described. Similar to other reports, the organism was initially misidentified as Pseudomonas putida. The infection was successfully treated with levofloxacin.

  13. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence.

    PubMed

    Nicolau, David P; Carmeli, Yehuda; Crank, Christopher W; Goff, Debra A; Graber, Christopher J; Lima, Ana Lucia L; Goldstein, Ellie J C

    2012-01-01

    The group 2 carbapenems (imipenem, meropenem and, more recently, doripenem) have been a mainstay of treatment for patients with serious hospital infections caused by Pseudomonas aeruginosa, Enterobacteriaceae and other difficult-to-treat Gram-negative pathogens as well as mixed aerobic/anaerobic infections. When ertapenem, a group 1 carbapenem, was introduced, questions were raised about the potential for ertapenem to select for imipenem- and meropenem-resistant Pseudomonas. Results from ten clinical studies evaluating the effect of ertapenem use on the susceptibility of Pseudomonas to carbapenems have uniformly shown that ertapenem use does not result in decreased Pseudomonas susceptibility to these antipseudomonal carbapenems. Here we review these studies evaluating the evidence of how ertapenem use affects P. aeruginosa as well as provide considerations for ertapenem use in the context of institutional stewardship initiatives.

  14. Development of Effective Aerobic Cometabolic Systems for the In Situ Transformation of Problematic Chlorinated Solvent Mixtures

    DTIC Science & Technology

    2005-02-01

    microorganism, Burkholderia cepacia ENV435 was reported by Steffan et al (1999). In that work, groundwater contaminated with 1000-2500 µg/L...aerobic cometabolism of TCE could be accomplished through bioaugmentation of a genetically modified strain of Burkholderia cepacia G4 (McCarty et al...Enhancement of Trichlorethylene Degradation in Aquifer Microcosms Bioagumented with Wild Type and Genetically Altered Burkholderia (Pseudomonas) cepacia G4

  15. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.

    PubMed

    Gangadharan Puthiya Veetil, Prajeesh; Vijaya Nadaraja, Anupama; Bhasi, Arya; Khan, Sudheer; Bhaskaran, Krishnakumar

    2012-07-01

    Triclosan (2, 4, 4'-trichloro-2'-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

  16. Hydrogen Isotope Fractionation As a Tool to Identify Aerobic and Anaerobic PAH Biodegradation.

    PubMed

    Kümmel, Steffen; Starke, Robert; Chen, Gao; Musat, Florin; Richnow, Hans H; Vogt, Carsten

    2016-03-15

    Aerobic and anaerobic polycyclic aromatic hydrocarbon (PAH) biodegradation was characterized by compound specific stable isotope analysis (CSIA) of the carbon and hydrogen isotope effects of the enzymatic reactions initiating specific degradation pathways, using naphthalene and 2-methylnaphtalene as model compounds. Aerobic activation of naphthalene and 2-methylnaphthalene by Pseudomonas putida NCIB 9816 and Pseudomonas fluorescens ATCC 17483 containing naphthalene dioxygenases was associated with moderate carbon isotope fractionation (εC = -0.8 ± 0.1‰ to -1.6 ± 0.2‰). In contrast, anaerobic activation of naphthalene by a carboxylation-like mechanism by strain NaphS6 was linked to negligible carbon isotope fractionation (εC = -0.2 ± 0.2‰ to -0.4 ± 0.3‰). Notably, anaerobic activation of naphthalene by strain NaphS6 exhibited a normal hydrogen isotope fractionation (εH = -11 ± 2‰ to -47 ± 4‰), whereas an inverse hydrogen isotope fractionation was observed for the aerobic strains (εH = +15 ± 2‰ to +71 ± 6‰). Additionally, isotope fractionation of NaphS6 was determined in an overlaying hydrophobic carrier phase, resulting in more reliable enrichment factors compared to immobilizing the PAHs on the bottle walls without carrier phase. The observed differences especially in hydrogen fractionation might be used to differentiate between aerobic and anaerobic naphthalene and 2-methylnaphthalene biodegradation pathways at PAH-contaminated field sites.

  17. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    PubMed

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae.

  18. Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils.

    PubMed

    Zhang, Lei; Pan, Yuanyuan; Wang, Kaibiao; Zhang, Xiaoxia; Zhang, Cheng; Zhang, Shuang; Fu, Xiaowei; Jiang, Juquan

    2015-03-01

    Strain NEAU-ST5-21(T) was isolated from saline and alkaline soils in Zhaodong City, Heilongjiang Province, China. It was aerobic, Gram-stain-negative, rod-shaped and motile with a polar flagellum. It produced yellow-orange colonies with a smooth surface, and grew in the presence of 0-5 % (w/v) NaCl (optimum 0 %, w/v), at temperatures of 20-40 °C (optimum 28 °C) and at pH 7-11 (optimum pH 7). Phylogenetic analyses based on the separate 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences indicated that strain NEAU-ST5-21(T) belongs to the genus Pseudomonas in the class Gammaproteobacteria. The most closely related species is Pseudomonas xanthomarina, whose type strain (KMM 1447(T)) showed gene sequence similarities of 99.0 % for 16S rRNA, 81.8 % for gyrB and 85.0 % for rpoD with strain NEAU-ST5-21(T). DNA-DNA hybridization values between strain NEAU-ST5-21(T) and P. xanthomarina DSM 18231(T), Pseudomonas kunmingensis CGMCC 1.12273(T), Pseudomonas stutzeri DSM 5190(T), Pseudomonas oleovorans subsp. lubricantis DSM 21016(T), Pseudomomas chengduensis CGMCC 2318(T), Pseudomonas alcaliphila DSM 17744(T) and Pseudomonas toyotomiensis DSM 26169(T) were 52±0 % to 25±2 %. The DNA G+C content of strain NEAU-ST5-21(T) was 65 mol%. The major fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 1ω7c and/or C16 : 1ω6c and C16 : 0, the predominant respiratory quinone was ubiquinone 9, and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid, phosphatidylglycerol, one unknown aminolipid, one unknown lipid and a glycolipid. The proposed name is Pseudomonas zhaodongensis sp. nov., NEAU-ST5-21(T) ( = ACCC 06362(T) = DSM 27559(T)) being the type strain.

  19. Draft Genome Sequence of Pseudomonas frederiksbergensis SI8, a Psychrotrophic Aromatic-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Striebich, Richard C.; Mueller, Susan S.; Gunasekera, Thusitha S.

    2015-01-01

    Pseudomonas frederiksbergensis strain SI8 is a psychrotrophic bacterium capable of efficient aerobic degradation of aromatic hydrocarbons. The draft genome of P. frederiksbergensis SI8 is 6.57 Mb in size, with 5,904 coding sequences and 60.5% G+C content. The isopropylbenzene (cumene) degradation pathway is predicted to be present in P. frederiksbergensis SI8. PMID:26184950

  20. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  1. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  2. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  3. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  4. Aerobic biodegradation of propylene glycol by soil bacteria.

    PubMed

    Toscano, Giuseppe; Cavalca, Lucia; Letizia Colarieti, M; Scelza, Rosalia; Scotti, Riccardo; Rao, Maria A; Andreoni, Vincenza; Ciccazzo, Sonia; Greco, Guido

    2013-09-01

    Propylene glycol (PG) is a main component of aircraft deicing fluids and its extensive use in Northern airports is a source of soil and groundwater contamination. Bacterial consortia able to grow on PG as sole carbon and energy source were selected from soil samples taken along the runways of Oslo Airport Gardermoen site (Norway). DGGE analysis of enrichment cultures showed that PG-degrading populations were mainly composed by Pseudomonas species, although Bacteroidetes were found, as well. Nineteen bacterial strains, able to grow on PG as sole carbon and energy source, were isolated and identified as different Pseudomonas species. Maximum specific growth rate of mixed cultures in the absence of nutrient limitation was 0.014 h(-1) at 4 °C. Substrate C:N:P molar ratios calculated on the basis of measured growth yields are in good agreement with the suggested values for biostimulation reported in literature. Therefore, the addition of nutrients is suggested as a suitable technique to sustain PG aerobic degradation at the maximum rate by autochthonous microorganisms of unsaturated soil profile.

  5. Pseudomonas sagittaria sp. nov., a siderophore-producing bacterium isolated from oil-contaminated soil.

    PubMed

    Lin, Shih-Yao; Hameed, Asif; Liu, You-Cheng; Hsu, Yi-Han; Lai, Wei-An; Chen, Wen-Ming; Shen, Fo-Ting; Young, Chiu-Chung

    2013-07-01

    An aerobic, Gram-stain-negative, rod-shaped bacterium with a single polar flagellum, designated CC-OPY-1(T), was isolated from an oil-contaminated site in Taiwan. CC-OPY-1(T) produces siderophores, and can grow at temperatures of 25-37 °C and pH 5.0-9.0 and tolerate <5 % (w/v) NaCl. The 16S rRNA gene sequence analysis of CC-OPY-1(T) showed high pairwise sequence similarity to Pseudomonas alcaligenes BCRC 11893(T) (97.1 %), Pseudomonas. alcaliphila DSM 17744(T) (97.1 %), Pseudomonas tuomuerensis JCM 14085(T) (97.1 %), Pseudomonas toyotomiensis JCM 15604(T) (96.9 %) and lower sequence similarity to remaining species of the genus Pseudomonas. The phylogenetic trees reconstructed based on gyrB and rpoB gene sequences supported the classification of CC-OPY-1(T) as a novel member of the genus Pseudomonas. The predominant quinone system of strain CC-OPY-1T was ubiquinone (Q-9) and the DNA G+C content was 68.4 ± 0.3 mol%. The major fatty acids were C12 : 0, C16 : 0, C17 : 0 cyclo and summed features 3 and 8 consisting of C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c, respectively. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylcholine (PC) and two unknown phospholipids (PL1-2). Due to distinct phylogenetic, phenotypic and chemotaxonomic features, CC-OPY-1(T) is proposed to represent a novel species within the genus Pseudomonas for which the name Pseudomonas sagittaria sp. nov. is proposed. The type strain is CC-OPY-1(T) ( = BCRC 80399(T) = JCM 18195(T)).

  6. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes.

    PubMed Central

    Nishino, S F; Spain, J C

    1993-01-01

    A Pseudomonas pseudoalcaligenes able to use nitrobenzene as the sole source of carbon, nitrogen, and energy was isolated from soil and groundwater contaminated with nitrobenzene. The range of aromatic substrates able to support growth was limited to nitrobenzene, hydroxylaminobenzene, and 2-aminophenol. Washed suspensions of nitrobenzene-grown cells removed nitrobenzene from culture fluids with the concomitant release of ammonia. Nitrobenzene, nitrosobenzene, hydroxylaminobenzene, and 2-aminophenol stimulated oxygen uptake in resting cells and in extracts of nitrobenzene-grown cells. Under aerobic and anaerobic conditions, crude extracts converted nitrobenzene to 2-aminophenol with oxidation of 2 mol of NADPH. Ring cleavage, which required ferrous iron, produced a transient yellow product with a maximum A380. In the presence of NAD, the product disappeared and NADH was produced. In the absence of NAD, the ring fission product was spontaneously converted to picolinic acid, which was not further metabolized. These results indicate that the catabolic pathway involves the reduction of nitrobenzene to nitrosobenzene and then to hydroxylaminobenzene; each of these steps requires 1 mol of NADPH. An enzyme-mediated Bamberger-like rearrangement converts hydroxylaminobenzene to 2-aminophenol, which then undergoes meta ring cleavage to 2-aminomuconic semialdehyde. The mechanism for release of ammonia and subsequent metabolism are under investigation. PMID:8368838

  7. Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill.

    PubMed

    Sánchez, David; Mulet, Magdalena; Rodríguez, Ana C; David, Zoyla; Lalucat, Jorge; García-Valdés, Elena

    2014-03-01

    Strains VGXO14(T) and Vi1 were isolated from the Atlantic intertidal shore from Galicia, Spain, after the Prestige oil spill. Both strains were Gram-negative rod-shaped bacteria with one polar inserted flagellum, strictly aerobic, and able to grow at 18-37°C, pH 6-10 and 2-10% NaCl. A preliminary analysis of the 16S rRNA and the partial rpoD gene sequences indicated that these strains belonged to the Pseudomonas genus but were distinct from any known Pseudomonas species. A polyphasic taxonomic approach including phylogenetic, chemotaxonomic, phenotypic and genotypic data confirmed that the strains belonged to the Pseudomonas pertucinogena group. In a multilocus sequence analysis, the similarity of VGXO14(T) and Vi1 to the closest type strain of the group, Pseudomonas pachastrellae, was 90.4%, which was lower than the threshold of 97% established to discriminate species in the Pseudomonas genus. The DNA-DNA hybridisation similarity between strains VGXO14(T) and Vi1 was 79.6%, but below 70% with the type strains in the P. pertucinogena group. Therefore, the strains should be classified within the genus Pseudomonas as a novel species, for which the name Pseudomonas aestusnigri is proposed. The type strain is VGXO14(T) (=CCUG 64165(T)=CECT 8317(T)).

  8. Biology of Pseudomonas stutzeri

    PubMed Central

    Lalucat, Jorge; Bennasar, Antoni; Bosch, Rafael; García-Valdés, Elena; Palleroni, Norberto J.

    2006-01-01

    Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri. PMID:16760312

  9. A cultivation-independent PCR-RFLP assay targeting oprF gene for detection and identification of Pseudomonas spp. in samples from fibrocystic pediatric patients.

    PubMed

    Lagares, Antonio; Agaras, Betina; Bettiol, Marisa P; Gatti, Blanca M; Valverde, Claudio

    2015-07-01

    Species-specific genetic markers are crucial to develop faithful and sensitive molecular methods for the detection and identification of Pseudomonas aeruginosa (Pa). We have previously set up a PCR-RFLP protocol targeting oprF, the gene encoding the genus-specific outer membrane porin F, whose strong conservation and marked sequence diversity allowed detection and differentiation of environmental isolates (Agaras et al., 2012). Here, we evaluated the ability of the PCR-RFLP assay to genotype clinical isolates previously identified as Pa by conventional microbiological methods within a collection of 62 presumptive Pa isolates from different pediatric clinical samples and different sections of the Hospital de Niños "Sor María Ludovica" from La Plata, Argentina. All isolates, but one, gave an oprF amplicon consistent with that from reference Pa strains. The sequence of the smaller-sized amplicon revealed that the isolate was in fact a mendocina Pseudomonas strain. The oprF RFLP pattern generated with TaqI or HaeIII nucleases matched those of reference Pa strains for 59 isolates (96%). The other two Pa isolates (4%) revealed a different RFLP pattern based on HaeIII digestion, although oprF sequencing confirmed that Pa identification was correct. We next tested the effectiveness of the PCR-RFLP to detect pseudomonads on clinical samples of pediatric fibrocystic patients directly without sample cultivation. The expected amplicon and its cognate RFLP profile were obtained for all samples in which Pa was previously detected by cultivation-dependent methods. Altogether, these results provide the basis for the application of the oprF PCR-RFLP protocol to directly detect and identify Pa and other non-Pa pseudomonads in fibrocystic clinical samples.

  10. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  11. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  12. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  13. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  14. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  15. Chronic Pseudomonas aeruginosa cervical osteomyelitis

    PubMed Central

    Meher, Sujeet Kumar; Jain, Harsh; Tripathy, Laxmi Narayan; Basu, Sunandan

    2016-01-01

    Pseudomonas aeruginosa is a rare cause of osteomyelitis of the cervical spine and is usually seen in the background of intravenous drug use and immunocompromised state. Very few cases of osteomyelitis of the cervical spine caused by pseudomonas aeruginosa have been reported in otherwise healthy patients. This is a case presentation of a young female, who in the absence of known risk factors for cervical osteomyelitis presented with progressively worsening neurological signs and symptoms. PMID:27891039

  16. Spoilage potential characterization of Shewanella and Pseudomonas isolated from spoiled large yellow croaker (Pseudosciaena crocea).

    PubMed

    Ge, Y; Zhu, J; Ye, X; Yang, Y

    2017-01-01

    Ten strains were isolated from a spoiled large yellow croaker (Pseudosciaena crocea). All of them were able to grow aerobically from 4 to 30°C, and reduce trimethylamine-N-oxide to trimethylamine (TMA) and produce H2 S except SB01, PF05 and PF07. Biochemical characterization and phylogenetic analysis of 16S rRNA gene showed that eight H2 S-producing isolates were closely related to Shewanella baltica, and two isolates PF05 and PF07 were identified as Pseudomonas fluorescens and Pseudomonas fragi respectively. However, of the eight Shewanella, seven isolates cluster with S. baltica and one with Shewanella glacialipiscicola based on the analysis of the gyrB gene. Shewanella baltica also had the ability to produce biogenic amines, while two Pseudomonas had high activities of proteinase and lipase, and failed to produce TMA and biogenic amines. In spoilage potential evaluation, the TVB-N value of S. baltica was significantly higher than that of Pseudomonas in sterile fish juice, although its growth was slower than Pseudomonas. Therefore, this work demonstrated that S. baltica was able to cause rapid and strong spoilage and was therefore identified as a specific spoilage organism in refrigerated P. crocea.

  17. Pseudomonas glareae sp. nov., a marine sediment-derived bacterium with antagonistic activity.

    PubMed

    Romanenko, Lyudmila A; Tanaka, Naoto; Svetashev, Vassilii I; Mikhailov, Valery V

    2015-06-01

    An aerobic, Gram-negative, motile, rod-shaped bacterium designated KMM 9500(T) was isolated from a sediment sample collected from the Sea of Japan seashore. Comparative 16S rRNA gene sequence analysis affiliated strain KMM 9500(T) to the genus Pseudomonas as a distinct subline clustered with Pseudomonas marincola KMM 3042(T) and Pseudomonas segetis KCTC 12331(T) sharing the highest similarities of 98 and 97.9 %, respectively. Strain KMM 9500(T) was characterized by mainly possessing ubiquinone Q-9, and by the predominance of C18:1 ω7c, C16:1 ω7c, and C16:0 followed by C12:0 in its fatty acid profile. Polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unknown aminophospholipid, and unknown phospholipids. Strain KMM 9500(T) was found to inhibit growth of Gram-negative and Gram-positive indicatory microorganisms. Based on the phylogenetic analysis and distinctive phenotypic characteristics, strain 9500(T) is concluded to represent a novel species of the genus Pseudomonas, for which the name Pseudomonas glareae sp. nov. is proposed. The type strain of the species is strain KMM 9500(T) (=NRIC 0939(T)).

  18. Kinetics of Aerobic Cometabolism of Chlorinated Solvents

    DTIC Science & Technology

    1998-07-01

    used to describe the cometabolic degradation of 4-chlorophenol in the presence of phenol by Pseudomonas put ida PpG4, an aromatic degrading... Pseudomonas cepacia G4, has shown the most rapid degradation kinetics, with a k1 for TCE that is comparable to that of M trichosporium OB3b. All mixed...competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates, Biotech. Bioeng. 41 : 1 057- 1

  19. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  20. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  1. Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain.

    PubMed

    Pascual, Javier; García-López, Marina; Bills, Gerald F; Genilloud, Olga

    2015-02-01

    During the course of screening bacterial isolates as sources of as-yet unknown bioactive compounds with pharmaceutical applications, a chemo-organotrophic, Gram-negative bacterium was isolated from a soil sample taken from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Strain F-278,770(T) was oxidase- and catalase-positive, aerobic, with a respiratory type of metabolism with oxygen as the terminal electron acceptor, non-spore-forming and motile by one polar flagellum, although some cells had two polar flagella. Phylogenetic analysis of the 16S rRNA, gyrB, rpoB and rpoD genes revealed that strain F-278,770(T) belongs to the Pseudomonas koreensis subgroup (Pseudomonas fluorescens lineage), with Pseudomonas moraviensis, P. koreensis, P. baetica and P. helmanticensis as its closest relatives. Chemotaxonomic traits such as polar lipid and fatty acid compositions and G+C content of genomic DNA corroborated the placement of strain F-278,770(T) in the genus Pseudomonas. DNA-DNA hybridization assays and phenotypic traits confirmed that this strain represents a novel species of the genus Pseudomonas, for which the name Pseudomonas granadensis sp. nov. is proposed. The type strain is F-278,770(T) ( = DSM 28040(T) = LMG 27940(T)).

  2. Pseudomonas salina sp. nov., isolated from a salt lake.

    PubMed

    Zhong, Zhi-Ping; Liu, Ying; Hou, Ting-Ting; Liu, Hong-Can; Zhou, Yu-Guang; Wang, Fang; Liu, Zhi-Pei

    2015-09-01

    A Gram-staining-negative, facultatively aerobic bacterium, strain XCD-X85(T), was isolated from Xiaochaidan Lake, a salt lake (salinity 9.9%, w/v) in Qaidam basin, Qinghai province, China. Its taxonomic position was determined by using a polyphasic approach. Cells of strain XCD-X85(T) were non-endospore-forming rods, 0.4-0.6 μm wide and 1.0-1.6 μm long, and motile by means of a single polar flagellum. Strain XCD-X85(T) was catalase- and oxidase-positive. Growth was observed in the presence of 0-12.0% (w/v) NaCl (optimum, 1.0-2.0%) and at 4-35 °C (optimum, 25-30 °C) and pH 6.5-10.5 (optimum, pH 8.0-8.5). Strain XCD-X85(T) contained (>10%) summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C12 : 0, C16 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the predominant fatty acids. The major respiratory quinone was ubiquinone 9 (Q-9). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 57.4 mol%. Phylogenetic trees based on 16S rRNA gene sequences showed that strain XCD-X85(T) was associated with the genus Pseudomonas, and showed highest 16S rRNA gene sequence similarities to Pseudomonas pelagia CL-AP6(T) (99.0%) and Pseudomonas bauzanensis BZ93(T) (96.8%). DNA-DNA relatedness of strain XCD-X85T to P. pelagia JCM 15562(T) was 19 ± 1%. On the basis of the data presented above, it is concluded that strain XCD-X85(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas salina sp. nov. is proposed. The type strain is XCD-X85(T) ( = CGMCC 1.12482(T) = JCM 19469(T)).

  3. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp.

    PubMed Central

    Spanggord, R J; Spain, J C; Nishino, S F; Mortelmans, K E

    1991-01-01

    Previous studies of the biodegradation of nonpolar nitroaromatic compounds have suggested that microorganisms can reduce the nitro groups but cannot cleave the aromatic ring. We report here the initial steps in a pathway for complete biodegradation of 2,4-dinitrotoluene (DNT) by a Pseudomonas sp. isolated from a four-member consortium enriched with DNT. The Pseudomonas sp. degraded DNT as the sole source of carbon and energy under aerobic conditions with stoichiometric release of nitrite. During induction of the enzymes required for growth on DNT, 4-methyl-5-nitrocatechol (MNC) accumulated transiently in the culture fluid when cells grown on acetate were transferred to medium containing DNT as the sole carbon and energy source. Conversion of DNT to MNC in the presence of 18O2 revealed the simultaneous incorporation of two atoms of molecular oxygen, which demonstrated that the reaction was catalyzed by a dioxygenase. Fully induced cells degraded MNC rapidly with stoichiometric release of nitrite. The results indicate an initial dioxygenase attack at the 4,5 position of DNT with the concomitant release of nitrite. Subsequent reactions lead to complete biodegradation and removal of the second nitro group as nitrite. PMID:1781682

  4. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  5. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  6. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  7. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  8. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  9. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    PubMed

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils.

  10. Use of Antimicrobial Food Additives as Potential Dipping Solutions to Control Pseudomonas spp. Contamination in the Frankfurters and Ham

    PubMed Central

    Oh, Mi-Hwa; Park, Beom-Young; Choi, Kyoung-Hee

    2014-01-01

    This study evaluated the effect of sodium diacetate and sodium lactate solutions for reducing the cell count of Pseudomonas spp. in frankfurters and hams. A mixture of Pseudomonas aeruginosa (NCCP10338, NCCP10250, and NCCP11229), and Pseudomonas fluorescens (KACC10323 and KACC10326) was inoculated on cooked frankfurters and ham. The inoculated samples were immersed into control (sterile distilled water), sodium diacetate (5 and 10%), sodium lactate (5 and 10%), 5% sodium diacetate + 5% sodium lactate, and 10% sodium diacetate + 10% sodium lactate for 0-10 min. Inoculated frankfurters and ham were also immersed into acidified (pH 3.0) solutions such as acidified sodium diacetate (5 and 10%), and acidified sodium lactate (5 and 10%) in addition to control (acidified distilled water) for 0-10 min. Total aerobic plate counts for Pseudomonas spp. were enumerated on Cetrimide agar. Significant reductions (ca. 2 Log CFU/g) in Pseudomonas spp. cells on frankfurters and ham were observed only for a combination treatment of 10% sodium lactate + 10% sodium diacetate. When the solutions were acidified to pH 3.0, the total reductions of Pseudomonas spp. were 1.5-4.0 Log CFU/g. The order of reduction amounts of Pseudomonas spp. cell counts was 10% sodium lactate > 5% sodium lactate ≥ 10% sodium diacetate > 5% sodium diacetate > control for frankfurters, and 10% sodium lactate > 5% sodium lactate > 10% sodium diacetate > 5% sodium diacetate > control for ham. The results suggest that using acidified food additive antimicrobials, as dipping solutions, should be useful in reducing Pseudomonas spp. on frankfurters and ham. PMID:26761492

  11. Utilization of Phenylpropanoids by Newly Isolated Bacterium Pseudomonas sp. TRMK1.

    PubMed

    T R, Monisha; I, Mukram; B, Kirankumar; Reddy, Pooja V; Nayak, Anand S; Karegoudar, T B

    2017-01-25

    A bacterium Pseudomonas sp. TRMK1 capable of utilizing various phenylpropanoids was isolated from agro-industrial waste by enrichment culture technique. It is gram-negative, motile, aerobic, and able to utilize three different phenolic acids such as p-coumaric, ferulic, and caffeic acids at concentrations of 5, 10, and 15 mM in 18 h of incubation. The residual concentration of phenolic acids was analyzed by HPLC. The catabolic pathway of p-coumaric, ferulic, and caffeic acids is suggested based on the characterization of metabolic intermediates by GC, GC-HRMS, and different enzymatic assays. Further, Pseudomonas sp. TRMK1 utilizes a wide range of mixture of phenolic acids present in the synthetic effluent.

  12. Aerobic fitness testing: an update.

    PubMed

    Stevens, N; Sykes, K

    1996-12-01

    This study confirms that all three tests are reliable tools for the assessment of cardiorespiratory fitness and the prediction of aerobic capacity. While this particular study consisted of active, youthful subjects, subsequent studies at University College Chester have found similar findings with larger databases and a wider cross-section of subjects. The Astrand cycle test and Chester step test are submaximal tests with error margins of 5-15 per cent and therefore, not as precise as maximal testing. However, they still give a reasonably accurate reflection of an individual's fitness without the cost, time, effort and risk on the part of the subject. The bleep test is a low-cost maximal test designed for well-motivated, active individuals who are used to running to physical exhaustion. Used on other groups, results will not accurately reflect cardiorespiratory fitness values. While all three tests have inherent advantages and disadvantages, perhaps the most important factors are the knowledge and skills of the tester. Without a sound understanding of the physiological principles underlying these tests, and the ability to conduct an accurate assessment and evaluation of results in a knowledgeable and meaningful way, then the credibility of the tests and the results become suspect. However, used correctly, aerobic capacity tests can provide valuable baseline data about the fitness levels of individuals and data from which exercise programmes may be developed. The tests also enable fitness improvements to be monitored, help to motivate participants by establishing reasonable and achievable goals, assist in risk stratification and facilitate participants' education about the importance of physical fitness for work and for life. Since this study was completed, further tests have been repeated on 140 subjects of a wider age and ability range. This large database confirms the results found in this study.

  13. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  14. Microbial degradation of pyridine using Pseudomonas sp. and isolation of plasmid responsible for degradation.

    PubMed

    Mohan, S Venkata; Sistla, Srinivas; Guru, R Kumar; Prasad, K Krishna; Kumar, C Suresh; Ramakrishna, S V; Sarma, P N

    2003-01-01

    Pseudomonas (PI2) capable of degrading pyridine was isolated from the mixed population of the activated sludge unit which was being used for treating complex effluents, the strain was characterized. Aerobic degradation of pyridine was studied with the isolated strain and the growth parameters were evaluated. Pyridine degradation was further conformed by chromatography (HPLC) analysis. The process parameters like biomass growth and dissolved oxygen consumption were monitored during pyridine degradation. In order to conform with the plasmid capability to degrade pyridine, the requisite plasmid was isolated and transferred to DH 5alpha Escherichia coli. The subsequent biodegradation studies revealed the ability of the transformed plasmid capability to degrade the pyridine.

  15. Genetic engineering using fungal flavohemoglobin for constructing Pseudomonas stutzeri strain emitting less nitrous oxide.

    PubMed

    Takaya, Naoki; Shoun, Hirofumi

    2002-01-01

    Most denitrifiers produce the greenhouse gas nitrous oxide (N2O) due to insufficient anaerobiosis. We constructed a recombinant Pseudomonas stutzeri strain producing Fusarium oxysporum flavohemoglobin (fhb) and found that it emitted less N2O than the wild-type strain under aerobic and anaerobic conditions. The rate of N2 production was higher than in the wild-type strain after the depletion of oxygen in culture, suggesting that fhb enhanced the reduction of N2O to N2. The strain is the first recombinant bacterial denitrifier that reduces N2O production.

  16. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  17. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  18. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  19. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed Central

    Askeland, R A; Morrison, S M

    1983-01-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. PMID:6410989

  20. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed

    Askeland, R A; Morrison, S M

    1983-06-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.

  1. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  2. Pseudomonas matsuisoli sp. nov., isolated from a soil sample.

    PubMed

    Lin, Shih-Yao; Hameed, Asif; Hung, Mei-Hua; Liu, You-Cheng; Hsu, Yi-Han; Young, Li-Sen; Young, Chiu-Chung

    2015-03-01

    An aerobic, Gram-stain-negative, rod-shaped and polar-flagellated bacterium, designated strain CC-MHH0089(T), was isolated from a soil sample taken on Matsu Island (Taiwan). Strain CC-MHH0089(T) grew at 15-30 °C and pH 5.0-10.0 and tolerated ≤8 % (w/v) NaCl. 16S rRNA gene sequence analysis showed high pairwise sequence similarity to Pseudomonas azotifigens 6H33b(T) (97.3 %) and Pseudomonas balearica SP1402(T) (96.7 %) and lower sequence similarity to other strains (<96.0 %). In DNA-DNA reassociation experiments, the relatedness of strain CC-MHH0089(T) to P. azotifigens JCM 12708(T) was 38.3 % (reciprocal value 19.5 %). Evolutionary trees reconstructed on the basis of 16S rRNA, gyrB and rpoB gene sequences revealed a varying phylogenetic neighbourhood of strain CC-MHH0089(T) with regard to the most closely related type strains. The predominant quinone system was ubiquinone 9 (Q-9) and the DNA G+C content was 63.6 mol%. The major fatty acids were C12 : 0, C16 : 0, C17 : 0, C19 : 0 cyclo ω8c and summed features 2 (C14 : 0 3-OH/iso-C16 : 1 I), 3 (C16 : 1ω7c/C16 : 1ω6c) and 8 (C18 : 1ω7c/C18 : 1ω6c). The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. According to its distinct phylogenetic, phenotypic and chemotaxonomic features, strain CC-MHH0089(T) is proposed to represent a novel species within the genus Pseudomonas, for which the name Pseudomonas matsuisoli sp. nov. is proposed. The type strain is CC-MHH0089(T) ( = BCRC 80771(T) = JCM 30078(T)).

  3. Description of Pseudomonas asuensis sp. nov. from biological soil crusts in the Colorado plateau, United States of America.

    PubMed

    Reddy, Gundlapally Sathyanarayana; Garcia-Pichel, Ferran

    2015-01-01

    A Gram-negative, aerobic, non spore-forming, non-motile, rod-shaped, yellow pigmented bacterium CP155-2(T) was isolated from a biological soil crusts sample collected in the Colorado plateau, USA and subjected to polyphasic taxonomic characterization. Strain CP155-2(T) contained summed feature 3 (C(16:1)ω5c/C(16:1)ω7c) and C(18:1)ω7c as major fatty acids and diphosphatidylglycerol (DPG) along with phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) as major polar lipids. Based on these characteristics CP155-2(T) was assigned to the genus Pseudomonas. Phylogenetic analysis based on 16S rRNA gene sequence further confirmed the affiliation of CP155-2(T) to the genus Pseudomonas and showed a 16S rRNA gene sequence similarity of less than 98.7% with already described species of the genus. Pseudomonas luteola, Pseudomonas zeshuii, and Pseudomonas duriflava were identified as the closest species of the genus Pseudomonas with 16S rRNA gene sequence similarities of 98.7%, 98.6%, and 96.9%, respectively. The values for DNA¨CDNA relatedness between CP155-2(T) and Pseudomonas luteola and Pseudomonas zeshuii were 23% and 14% respectively a value below the 70% threshold value, indicating that strain CP155-2(T) belongs to a novel taxon of the genus Pseudomonas lineage. The novel taxon status was strengthened by a number of phenotypic differences wherein CP155-2(T) was positive for oxidase, negative for gelatin hydrolysis, could utilize D-cellobiose, D-raffinose, L-rhamnose, D-sorbitol but not L-aspartic acid and L-glutamic acid. Based on the collective differences strain CP155-2(T) exhibited, it was identified as a novel species and the name Pseudomonas asuensis sp. nov. was proposed. The type strain of Pseudomonas asuensis sp. nov. is CP155-2(T) (DSM 17866(T) =ATCC BAA-1264(T) =JCM13501(T) =KCTC 32484(T)).

  4. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  5. The rise of oxygen and aerobic biochemistry.

    PubMed

    Saito, Mak A

    2012-01-11

    Analysis of conserved protein folding domains across extant genomes by Kim et al. in this issue of Structure provides insights into the timing of some of the earliest aerobic metabolisms to arise on Earth.

  6. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  7. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  8. Pseudomonas linyingensis sp. nov.: a novel bacterium isolated from wheat soil subjected to long-term herbicides application.

    PubMed

    He, Wei-Hong; Wang, Ya-Nan; Du, Xun; Zhou, Yang; Jia, Bin; Bian, Jiang; Liu, Shuang-Jiang; Chen, Guo-Can

    2012-11-01

    A strain of genus Pseudomonas, LYBRD3-7(T) was isolated from long-term sulfonylurea herbicides applied wheat-field soil in Linying located in Henan province of China. This strain is a strictly aerobic and Gram-negative short rod-shaped bacterium with single flagellum. Phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this isolate as a member of Pseudomonas, and most closely to Pseudomonas tuomuerensis CGMCC 1.1365(T) (97.1 %) and P. alcaligenes IAM12411(T) (97.1 %). Morphological characters and chemotaxonomic data confirmed the affiliation of strain LYBRD3-7(T) to the genus Pseudomonas. The results of phylogenetic analysis, physiological and biochemical studies, and DNA-DNA hybridization allowed the differentiation of genotype and phenotype between strain LYBRD3-7(T) and the phylogenetic closest species with valid names. The name proposed for the new species is Pseudomonas linyingensis sp. nov. The type strain is LYBRD3-7(T) (=CGMCC 1.10701(T ) =LMG 25967(T)).

  9. LACTIC DEHYDROGENASES OF PSEUDOMONAS NATRIEGENS.

    PubMed

    WALKER, H; EAGON, R G

    1964-07-01

    Walker, Hazel (University of Georgia, Athens), and R. G. Eagon. Lactic dehydrogenases of Pseudomonas natriegens. J. Bacteriol. 88:25-30. 1964.-Lactic dehydrogenases specific for d- and l-lactate were demonstrated in Pseudomonas natriegens. The l-lactic dehydrogenase showed considerable heat stability, and 40% of the activity remained in extracts after heating at 60 C for 10 min. An essential thiol group for enzyme activity was noted. The results of these experiments were consistent with the view that lactate was dehydrogenated initially by a flavin cofactor and that electrons were transported through a complete terminal oxidase system to oxygen. The intracellular site of these lactic dehydrogenases was shown to be the cell membrane. It was suggested that the main physiological role of these lactic dehydrogenases is that of lactate utilization.

  10. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  11. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  12. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  13. Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water.

    PubMed

    Guo, Liyun; Chen, Qiankun; Fang, Fei; Hu, Zhixin; Wu, Jun; Miao, Aijun; Xiao, Lin; Chen, Xiaofeng; Yang, Liuyan

    2013-08-01

    The aim of this work was to evaluate the utilization potential of a newly isolated indigenous aerobic denitrifier, Pseudomonas stutzeri strain T1, for nitrogen removal from the eutrophic Lake Taihu in China. The strain was capable of conducting heterotrophic nitrification-aerobic denitrification and had both excellent nitrate and ammonium removal without nitrite build-up. The characteristics of P. stutzeri strain T1 were studied under different cultural conditions. Furthermore, under the optimized cultivation conditions, strain T1 was added into the water samples from Lake Taihu, the ammonium and nitrate removal rates of the strain reached to 60% and 75%, respectively. Via adding this strain, the water qualities of the sample ameliorated from Grade V to Grade II. Thus, the strain T1 should be an useful biological tool to remediate eutrophic lakes and do not meet acclimation problems.

  14. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan

    PubMed Central

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  15. Bioconversion of 2,4-diamino-6-nitrotoluene to a novel metabolite under anoxic and aerobic conditions.

    PubMed Central

    Gilcrease, P C; Murphy, V G

    1995-01-01

    Under nitrate-reducing, nongrowth conditions, a Pseudomonas fluorescens species reduced 2,4,6-trinitrotoluene to aminodinitrotoluenes, which were then further reduced to diaminonitrotoluenes. 2,4-Diamino-6-nitrotoluene (2,4-DANT) was further transformed to a novel metabolite, 4-N-acetylamino-2-amino-6-nitrotoluene (4-N-AcANT), while 2,6-diamino-4-nitrotoluene (2,6-DANT) was persistent. Efforts to further degrade 2,4-DANT and 2,6-DANT under aerobic, nitrogen-limited conditions were unsuccessful; 2,6-DANT remained persistent, and 2,4-DANT was again transformed to the 4-N-AcANT compound. PMID:8534088

  16. Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons.

    PubMed

    Hirota, Kikue; Yamahira, Keiko; Nakajima, Kenji; Nodasaka, Yoshinobu; Okuyama, Hidetoshi; Yumoto, Isao

    2011-08-01

    A psychrotolerant, facultatively alkaliphilic strain, HT-3(T), was isolated from a sample of soil immersed in hot-spring water containing hydrocarbons in Toyotomi, Hokkaido, Japan. 16S rRNA gene sequence-based phylogeny suggested that strain HT-3(T) is a member of the genus Pseudomonas and belongs to the Pseudomonas oleovorans group. Cells of the isolate were Gram-negative, aerobic, straight rods, motile by a single polar flagellum. The strain grew at 4-42 °C, with optimum growth at 35 °C at pH 7, and at pH 6-10. It hydrolysed Tweens 20, 40, 60 and 80, but not casein, gelatin, starch or DNA. Its major isoprenoid quinone was ubiquinone-9 (Q-9) and the DNA G+C content was 65.1 mol%. The whole-cell fatty acid profile consisted mainly of C(16 : 0), C(16 : 1)ω9c and C(18 : 1)ω9c. Phylogenetic analyses based on gyrB, rpoB and rpoD sequences revealed that the isolate could be discriminated from Pseudomonas species that exhibited more than 97 % 16S rRNA gene sequence similarity and phylogenetic neighbours belonging to the P. oleovorans group including the closest relative of the isolate, Pseudomonas alcaliphila. DNA-DNA hybridization with P. alcaliphila AL15-21(T) revealed 51 ± 5 % relatedness. Owing to differences in phenotypic properties and phylogenetic analyses based on multilocus gene sequence analysis and DNA-DNA relatedness data, the isolate merits classification in a novel species, for which the name Pseudomonas toyotomiensis sp. nov. is proposed. The type strain is HT-3(T) ( = JCM 15604(T)  = NCIMB 14511(T)).

  17. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  18. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  19. The coordinate regulation of multiple terminal oxidases by the Pseudomonas putida ANR global regulator.

    PubMed

    Ugidos, Ana; Morales, Gracia; Rial, Eduardo; Williams, Huw D; Rojo, Fernando

    2008-07-01

    Pseudomonas putida KT2440 contains a branched aerobic respiratory chain with multiple terminal oxidases. Their relative proportion varies according to environmental conditions. The role of the oxygen-responsive ANR global regulator on expression of these terminal oxidases was analysed. During exponential growth in a highly aerated complete medium, ANR activated expression of the Cbb3-1 terminal oxidase (equivalent to Pseudomonas aeruginosa Cbb3-2), but had little role on expression of other terminal oxidases. In early stationary phase, or under oxygen limitation, inactivation of the anr gene led to increased expression of the bo(3)-type cytochrome (Cyo) and cyanide-insensitive (CIO) terminal oxidases, and to a much lower expression of Cbb3-1. DNase I footprints identified ANR binding sites at the promoters for these oxidases. Their location suggests that ANR is a transcriptional activator of Cbb3-1 genes and a repressor of CIO genes, consistent with expression data. ANR binding sites at the promoter for Cyo genes suggests a complex regulation in combination with other factors. Therefore, ANR coordinates expression of Cyo, CIO and Cbb3-1, but does not influence cytochrome aa3 and Cbb3-2 terminal oxidases under the conditions analysed. Functional assays showed that Cyo has a leading role during aerobic exponential growth, while Cbb3-1 becomes very important in stationary phase.

  20. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC.

    PubMed Central

    Lewis, T A; Crawford, R L

    1993-01-01

    Pseudomonas sp. strain KC was grown on a medium with a low content of transition metals in order to examine the conditions for carbon tetrachloride (CT) transformation. Several carbon sources, including acetate, glucose, glycerol, and glutamate, were able to support CT transformation. The chelators 2,2'-dipyridyl and 1,10-phenanthroline stimulated CT transformation in a rich medium that otherwise did not support this activity. Low (< 10 microM) additions of dissolved iron(II), iron(III), and cobalt(II), as well as an insoluble iron(III) compound, ferric oxyhydroxide, inhibited CT transformation. The addition of 50 microM iron to actively growing cultures resulted in delayed inhibition of CT transformation. CT transformation was seen in aerobic cultures of KC, but with reduced efficiency compared with denitrifying cultures. Inhibition of CT transformation by iron was also seen in aerobically grown cultures. Optimal conditions were used in searching for effective CT transformation activity among denitrifying enrichments grown from samples of aquifer material. No activity comparable to that of Pseudomonas sp. strain KC was found among 16 samples tested. PMID:8517754

  1. Genomics of Secondary Metabolism in Pseudomonas spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas is a heterogeneous genus of bacteria known for its ubiquity in natural habitats and its prolific production of secondary metabolites. The structurally diverse chemical structures produced by Pseudomonas spp. result from biosynthetic processes with unusual features that have revealed no...

  2. Pseudomonas blight discovered on raspberry in Watsonville

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the winter (February) of 2013, a field of raspberries in Watsonville was discovered to be infected with Pseudomonas syringae, the causal agent of Pseudomonas blight disease. This was the first documentation of this disease on raspberry in our region. The infection of raspberry plants is manifeste...

  3. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  4. Biodegradation of nicotine by a newly isolated Pseudomonas stutzeri JZD

    NASA Astrophysics Data System (ADS)

    Petricevic, Jelena; Gujanicic, Vera; Radic, Danka; Jovicic Petrovic, Jelena; Jovic, Jelena; Raicevic, Vera

    2013-04-01

    The tobacco-manufacturing process and all activities that use tobacco, produce solid or liquid wastes with high concentrations of nicotine. Nicotine is a significant toxic waste product in tobacco industry. This waste is classified as 'toxic and hazardous' by European Union regulations when the nicotine content exceeds 500 milligrams per kilogram dry weight. Therefore, there is a major environmental requirement to remove nicotine from tobacco wastes. Bioremediation techniques which involve nicotine degradation by microorganisms have attracted attention during the last years, because microorganisms have the potential to reduce nicotine levels in tobacco and to detoxify tobacco wastes. The aim of this study is isolation and identification of nicotine degraded bacteria and optimization of nicotine degradation in laboratory conditions. An aerobic bacterial strain capable of effectively degrading nicotine was isolated from the tobacco industry waste, Serbia. After isolation, the liquid culture was spread onto the solid plates of the nicotine inorganic salt medium using the dilution plate method. Cell morphology of strain was observed by a light microscope and physiological characteristics were determined by Api technique and sequence analyzes of 16S rDNA. This isolate was identified as Pseudomonas stutzeri based on morphology, physiological characteristics, and Apiweb technique. Comparison with sequences available in data library showed the 99% similarity with 16S rDNA gene sequence of the species Pseudomonas stutzeri ( GenBank Acc. No. CP003725). We analyzed the effect of initial nicotine concentration (1g/L, 1.5 g/L, 2.5 g/L) on microbial activity in aim to optimize biodegradation. The effect of cultivation temperature (25°C; 30°C; 37°C) on nicotine degradation by P. stutzeri was evaluated after 24 h of cultivation, with 1.5 g/L nicotine added as the sole carbon source. Effect of biodegradation has depended on initial concentration. During incubation, number of

  5. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    NASA Astrophysics Data System (ADS)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  6. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.

    PubMed

    Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David

    2013-02-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition.

  7. Comparative study of the aerobic, heterotrophic bacterial flora of Chesapeake Bay and Tokyo Bay.

    PubMed Central

    Austin, B; Garges, S; Conrad, B; Harding, E E; Colwell, R R; Simidu, U; Taga, N

    1979-01-01

    A comparative study of the bacterial flora of the water of Chesapeake Bay and Tokyo Bay was undertaken to assess similarities and differences between the autochthonous flora of the two geographical sites and to test the hypothesis that, given similarities in environmental parameters, similar bacterial populations will be found, despite extreme geographic distance between locations. A total of 195 aerobic, heterotrophic bacterial strains isolated from Chesapeake Bay and Tokyo Bay water were examined for 115 biochemical, cultural, morphological, nutritional, and physiological characters. The data were analyzed by the methods of numerical taxonomy. From sorted similarity matrices, 77% of the isolates could be grouped into 30 phena and presumptively identified as Acinetobacter-Moraxella, Caulobacter, coryneforms, Pseudomonas, and Vibrio spp. Vibrio and Acinetobacter species were found to be common in the estuarine waters of Chesapeake Bay, whereas Acinetobacter-Moraxella and Caulobacter predominated in Tokyo Bay waters, at the sites sampled in the study. PMID:453838

  8. Mineralization of Linear Alkylbenzene Sulfonate by a Four-Member Aerobic Bacterial Consortium

    PubMed Central

    Jiménez, Luis; Breen, Alec; Thomas, Nikki; Federle, Thomas W.; Sayler, Gary S.

    1991-01-01

    A bacterial consortium capable of linear alkylbenzene sulfonate (LAS) mineralization under aerobic conditions was isolated from a chemostat inoculated with activated sludge. The consortium, designated KJB, consisted of four members, all of which were gram-negative, rod-shaped bacteria that grew in pairs and short chains. Three isolates had biochemical properties characteristic of Pseudomonas spp.; the fourth showed characteristics of the Aeromonas spp. Cell suspensions were grown together in minimal medium with [14C]LAS as the only carbon source. After 13 days of incubation, more than 25% of the [14C]LAS was mineralized to 14CO2 by the consortium. Pure bacterial cultures and combinations lacking any one member of the KJB bacterial consortium did not mineralize LAS. Three isolates carried out primary biodegradation of the surfactant, and one did not. This study shows that the four bacteria complemented each other and synergistically mineralized LAS, indicating catabolic cooperation among the four consortium members. PMID:16348496

  9. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment.

    PubMed

    Kolpen, Mette; Mousavi, Nabi; Sams, Thomas; Bjarnsholt, Thomas; Ciofu, Oana; Moser, Claus; Kühl, Michael; Høiby, Niels; Jensen, Peter Østrup

    2016-02-01

    Chronic Pseudomonas aeruginosa lung infection is the most severe complication in cystic fibrosis patients. It is characterised by antibiotic-tolerant biofilms in the endobronchial mucus with zones of oxygen (O2) depletion mainly due to polymorphonuclear leucocyte activity. Whilst the exact mechanisms affecting antibiotic effectiveness on biofilms remain unclear, accumulating evidence suggests that the efficacy of several bactericidal antibiotics such as ciprofloxacin is enhanced by stimulation of the aerobic respiration of pathogens, and that lack of O2 increases their tolerance. Reoxygenation of O2-depleted biofilms may thus improve susceptibility to ciprofloxacin possibly by restoring aerobic respiration. We tested such a strategy using reoxygenation of O2-depleted P. aeruginosa strain PAO1 agarose-embedded biofilms by hyperbaric oxygen treatment (HBOT) (100% O2, 2.8bar), enhancing the diffusive supply for aerobic respiration during ciprofloxacin treatment. This proof-of-principle study demonstrates that biofilm reoxygenation by HBOT can significantly enhance the bactericidal activity of ciprofloxacin on P. aeruginosa. Combining ciprofloxacin treatment with HBOT thus clearly has potential to improve the treatment of P. aeruginosa biofilm infections.

  10. Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments.

    PubMed

    Ballarini, E; Beyer, C; Bauer, R D; Griebler, C; Bauer, S

    2014-06-01

    The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic /anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation.

  11. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  12. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.

    PubMed

    Wade, Dana S; Calfee, M Worth; Rocha, Edson R; Ling, Elizabeth A; Engstrom, Elana; Coleman, James P; Pesci, Everett C

    2005-07-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rhl system is composed of RhlR and the signal N-butyryl homoserine lactone. A third intercellular signal, the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone), also regulates numerous virulence factors. PQS synthesis requires the expression of multiple operons, one of which is pqsABCDE. Previous experiments showed that the transcription of this operon, and therefore PQS production, is negatively regulated by the rhl quorum-sensing system and positively regulated by the las quorum-sensing system and PqsR (also known as MvfR), a LysR-type transcriptional regulator protein. With the use of DNA mobility shift assays and beta-galactosidase reporter fusions, we have studied the regulation of pqsR and its relationship to pqsA, lasR, and rhlR. We show that PqsR binds the promoter of pqsA and that this binding increases dramatically in the presence of PQS, implying that PQS acts as a coinducer for PqsR. We have also mapped the transcriptional start site for pqsR and found that the transcription of pqsR is positively regulated by lasR and negatively regulated by rhlR. These results suggest that a regulatory chain occurs where pqsR is under the control of LasR and RhlR and where PqsR in turn controls pqsABCDE, which is required for the production of PQS.

  13. Production of selenium nanoparticles in Pseudomonas putida KT2440.

    PubMed

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I; Chavarría, Max

    2016-11-15

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L(-1) h(-1) beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles.

  14. Production of selenium nanoparticles in Pseudomonas putida KT2440

    PubMed Central

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I.; Chavarría, Max

    2016-01-01

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L−1 h−1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles. PMID:27845437

  15. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  16. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  17. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  18. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  19. Aerobic exercise in fibromyalgia: a practical review.

    PubMed

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  20. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  1. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  2. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  3. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: The phenylacetyl-CoA catabolon

    PubMed Central

    Olivera, E. R.; Miñambres, B.; García, B.; Muñiz, C.; Moreno, M. A.; Ferrández, A.; Díaz, E.; García, J. L.; Luengo, J. M.

    1998-01-01

    Fourteen different genes included in a DNA fragment of 18 kb are involved in the aerobic degradation of phenylacetic acid by Pseudomonas putida U. This catabolic pathway appears to be organized in three contiguous operons that contain the following functional units: (i) a transport system, (ii) a phenylacetic acid activating enzyme, (iii) a ring-hydroxylation complex, (iv) a ring-opening protein, (v) a β-oxidation-like system, and (vi) two regulatory genes. This pathway constitutes the common part (core) of a complex functional unit (catabolon) integrated by several routes that catalyze the transformation of structurally related molecules into a common intermediate (phenylacetyl-CoA). PMID:9600981

  4. [Pseudomonas genus bacteria on weeds].

    PubMed

    Gvozdiak, R I; Iakovleva, L M; Pasichnik, L A; Shcherbina, T N; Ogorodnik, L E

    2005-01-01

    It has been shown in the work that the weeds (couch-grass and ryegrass) may be affected by bacterial diseases in natural conditions, Pseudomonas genus bacteria being their agents. The isolated bacteria are highly-aggressive in respect of the host-plant and a wide range of cultivated plants: wheat, rye, oats, barley, apple-tree and pear-tree. In contrast to highly aggressive bacteria isolated from the affected weeds, bacteria-epi phytes isolated from formally healthy plants (common amaranth, orache, flat-leaved spurge, field sow thistle, matricary, common coltsfoot, narrow-leaved vetch) and identified as P. syringae pv. coronafaciens, were characterized by weak aggression. A wide range of ecological niches of bacteria evidently promote their revival and distribution everywhere in nature.

  5. Ice crystallization by Pseudomonas syringae.

    PubMed

    Cochet, N; Widehem, P

    2000-08-01

    Several bacterial species can serve as biological ice nuclei. The best characterized of these is Pseudomonas syringae, a widely distributed bacterial epiphyte of plants. These biological ice nuclei find various applications in different fields, but an optimized production method was required in order to obtain the highly active cells which may be exploited as ice nucleators. The results presented here show that P. syringae cells reduce supercooling of liquid or solid media and enhance ice crystal formation at sub-zero temperatures, thus leading to a remarkable control of the crystallization phenomenon and a potential for energy savings. Our discussion focuses on recent and future applications of these ice nucleators in freezing operations, spray-ice technology and biotechnological processes.

  6. [Pneumonia due to Pseudomonas aeruginosa].

    PubMed

    Vallés, Jordi; Mariscal, Dolors

    2005-12-01

    Pseudomonas aeruginosa is one of the leading causes of Gram-negative nosocomial pneumonia. It is the most common cause of ventilator-associated pneumonia and carries the highest mortality among hospital-acquired infections. P. aeruginosa produces a large number of toxins and surface components that make it especially virulent compared with other microorganisms. These include pili, flagella, membrane bound lipopolysaccharide, and secreted products such as exotoxins A, S and U, elastase, alkaline protease, cytotoxins and phospholipases. The most common mechanism of infection in mechanically ventilated patients is through aspiration of upper respiratory tract secretions previously colonized in the process of routine nursing care or via contaminated hands of hospital personnel. Intravenous therapy with an antipseudomonal regimen should be started immediately when P. aeruginosa pneumonia is suspected or confirmed. Empiric therapy with drugs active against P. aeruginosa should be started, especially in patients who have received previous antibiotics or present late-onset pneumonia.

  7. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    PubMed

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  8. Glyphosate catabolism by Pseudomonas sp

    SciTech Connect

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing (3-/sup 14/C) glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO/sub 2/. Fractionation of stationary phase cells labeled with (3-/sup 14/C)glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with (3-/sup 14/C)glyphosate revealed that (3-/sup 14/C)sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates.

  9. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C.

    PubMed

    Liang, Rongrong; Yu, Xiaoqiao; Wang, Renhuan; Luo, Xin; Mao, Yanwei; Zhu, Lixian; Zhang, Yimin

    2012-06-01

    This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration.

  10. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury.

    PubMed Central

    Britigan, B E; Roeder, T L; Rasmussen, G T; Shasby, D M; McCormick, M L; Cox, C D

    1992-01-01

    Pyocyanin, a secretory product of Pseudomonas aeruginosa, has the capacity to undergo redox cycling under aerobic conditions with resulting generation of superoxide and hydrogen peroxide. By using spin trapping techniques in conjunction with electron paramagnetic resonance spectrometry (EPR), superoxide was detected during the aerobic reduction of pyocyanin by NADH or porcine endothelial cells. No evidence of hydroxyl radical formation was detected. Chromium oxalate eliminated the EPR spectrum of the superoxide-derived spin adduct resulting from endothelial cell exposure to pyocyanin, suggesting superoxide formation close to the endothelial cell plasma membrane. We have previously reported that iron bound to the P. aeruginosa siderophore pyochelin (ferripyochelin) catalyzes the formation of hydroxyl free radical from superoxide and hydrogen peroxide via the Haber-Weiss reaction. In the present study, spin trap evidence of hydroxyl radical formation was detected when NADH and pyocyanin were allowed to react in the presence of ferripyochelin. Similarly, endothelial cell exposure to pyocyanin and ferripyochelin also resulted in hydroxyl radical production which appeared to occur in close proximity to the cell surface. As assessed by 51Cr release, endothelial cells which were treated with pyocyanin or ferripyochelin alone demonstrated minimal injury. However, endothelial cell exposure to the combination of pyochelin and pyocyanin resulted in 55% specific 51Cr release. Injury was not observed with the substitution of iron-free pyochelin and was diminished by the presence of catalase or dimethyl thiourea. These data suggest the possibility that the P. aeruginosa secretory products pyocyanin and pyochelin may act synergistically via the generation of hydroxyl radical to damage local tissues at sites of pseudomonas infection. PMID:1469082

  11. Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes▿ †

    PubMed Central

    Setubal, João C.; dos Santos, Patricia; Goldman, Barry S.; Ertesvåg, Helga; Espin, Guadelupe; Rubio, Luis M.; Valla, Svein; Almeida, Nalvo F.; Balasubramanian, Divya; Cromes, Lindsey; Curatti, Leonardo; Du, Zijin; Godsy, Eric; Goodner, Brad; Hellner-Burris, Kaitlyn; Hernandez, José A.; Houmiel, Katherine; Imperial, Juan; Kennedy, Christina; Larson, Timothy J.; Latreille, Phil; Ligon, Lauren S.; Lu, Jing; Mærk, Mali; Miller, Nancy M.; Norton, Stacie; O'Carroll, Ina P.; Paulsen, Ian; Raulfs, Estella C.; Roemer, Rebecca; Rosser, James; Segura, Daniel; Slater, Steve; Stricklin, Shawn L.; Studholme, David J.; Sun, Jian; Viana, Carlos J.; Wallin, Erik; Wang, Baomin; Wheeler, Cathy; Zhu, Huijun; Dean, Dennis R.; Dixon, Ray; Wood, Derek

    2009-01-01

    Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins. PMID:19429624

  12. Nitrate and COD removal in an upflow biofilter under an aerobic atmosphere.

    PubMed

    Ji, Bin; Wang, Hongyu; Yang, Kai

    2014-04-01

    A continuous-upflow submerged biofilter packed with ceramsite was constructed for nitrate removal under an aerobic atmosphere. Pseudomonas stutzeri X31, an aerobic denitrifier isolate, was added to the bioreactor as an inoculum. The influent NO3(-)-N concentrations were 63.0-73.8 mg L(-1). The best results were achieved when dissolved oxygen level was 4.6 mg L(-1) and C/N ratio was 4.5. The maximum removal efficiencies of carbon oxygen demand (COD) and NO3(-)-N were 94.04% and 98.48%, respectively at 30°C, when the hydraulic load was 0.75 m h(-1). The top section of the bioreactor possessed less biofilm but higher COD and NO3(-)-N removal rates than the bottom section. Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) technique combined with electron microscopic examination indicated P. stutzeri X31 and Paracoccus versutus were the most dominant bacteria. Amoeba sp., Vorticella sp., Philodina sp., and Stephanodiscus sp. were also found in the bioreactor.

  13. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  14. Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon, Korea.

    PubMed

    Chang, Dong-Ho; Rhee, Moon-Soo; Kim, Ji-Sun; Lee, Yookyung; Park, Mi Young; Kim, Haseong; Lee, Seung-Goo; Kim, Byoung-Chan

    2016-11-01

    Two bacterial strains, 46-1 and 46-2(T), were isolated from garden soil. These strains were observed to be aerobic, Gram-stain negative, rod-shaped, non-spore-forming, motile and catalase and oxidase positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two strains shared 100 % sequence similarity with each other and belong to the genus Pseudomonas in the class Gammaproteobacteria. The concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences further confirmed that the isolates belong to the Pseudomonas koreensis subgroup (SG), with P. koreensis Ps 9-14(T), Pseudomonas moraviensis 1B4(T) and Pseudomonas granadensis F-278,770(T) as their close relatives (>96 % pairwise similarity). DNA-DNA hybridization with the closely related type strain P. koreensis SG revealed a low level of relatedness (<50 %). A cladogram constructed using whole-cell matrix-assisted laser desorption/ionization time-of-flight (WC-MALDI-TOF) MS analysis showed the isolates formed a completely separate monophyletic group. The isolates were negative for utilization of glycogen, D-psicose, α-keto butyric acid, α-keto valeric acid, succinamic acid and D, L-α-glycerol phosphate. In contrast, all these reactions were positive in P. koreensis JCM 14769(T) and P. moraviensis DSM 16007(T). The fatty acid C17:0 cyclo was detected as one of the major cellular fatty acids (>15 %) in the isolates but it was a minor component (<4 %) in both reference type strains. In contrast, the fatty acid, C12:0 was not observed in the isolates but was present in both reference strains. Based on differences such as phylogenetic position, low-level DNA-DNA hybridization, WC-MALDI-TOF MS analysis, fluorescence pigmentation, fatty acid profiles, and substrate utilization, we propose that the isolates 46-1 and 46-2(T) represent a novel species of the genus Pseudomonas, for which the name Pseudomonas kribbensis sp. nov. is proposed; the type strain is 46-2(T) (=KCTC 32541(T) = DSM 100278(T)).

  15. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  16. Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707.

    PubMed Central

    Gibson, D T; Cruden, D L; Haddock, J D; Zylstra, G J; Brand, J M

    1993-01-01

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in the substrate specificity of the biphenyl 2,3-dioxygenases from both organisms. PMID:8331086

  17. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOALCALIGENES KF707

    EPA Science Inventory

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...

  18. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  19. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  20. Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobic cultivation.

    PubMed

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M; Weightman, Andrew J; Mahenthiralingam, Eshwar

    2011-07-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by "JW") was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.

  1. Culture-Independent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation ▿ †

    PubMed Central

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M.; Weightman, Andrew J.; Mahenthiralingam, Eshwar

    2011-01-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386

  2. Pseudomonas aeruginosa: breaking down barriers.

    PubMed

    Berube, Bryan J; Rangel, Stephanie M; Hauser, Alan R

    2016-02-01

    Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia.

  3. Carbenicillin resistance of Pseudomonas aeruginosa.

    PubMed Central

    Rodríguez-Tebar, A; Rojo, F; Dámaso, D; Vázquez, D

    1982-01-01

    Four strains of Pseudomonas aeruginosa obtained from clinical isolates which are carbenicillin resistant were studied to find the cause(s) of resistance to this beta-lactam antibiotic. The electrophoresis patterns of the four strains (PH20610, PH20815, PH4011, and PH4301) were found to be different from those of a wild-type strain, P. aeruginosa NCTC 10662, and appeared to lack penicillin-binding protein 2. Affinity of other penicillin-binding proteins from strains PH20610 and PH20815 for carbenicillin seemed to be normal or slightly diminished. Electrophoretic patterns of penicillin-binding proteins from strains PH4011 and PH4301 had more profound differences, since the affinities of their penicillin-binding proteins 1a, 1b, and 4 for carbenicillin were decreased by nearly two orders of magnitude relative to the preparations from the wild-type strain. Kinetic studies on binding of carbenicillin to penicillin-binding proteins both in isolated membrane preparations and in intact cells revealed that carbenicillin penetration into resistant cells was a much slower process than in susceptible cells, suggesting that the outer envelope structures serve as an efficient barrier against carbenicillin entry into our P. aeruginosa strains from clinical isolates. PMID:6821456

  4. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis.

    PubMed

    Yoon, Sang Sun; Hennigan, Robert F; Hilliard, George M; Ochsner, Urs A; Parvatiyar, Kislay; Kamani, Moneesha C; Allen, Holly L; DeKievit, Teresa R; Gardner, Paul R; Schwab, Ute; Rowe, John J; Iglewski, Barbara H; McDermott, Timothy R; Mason, Ronald P; Wozniak, Daniel J; Hancock, Robert E W; Parsek, Matthew R; Noah, Terry L; Boucher, Richard C; Hassett, Daniel J

    2002-10-01

    Recent data indicate that cystic fibrosis (CF) airway mucus is anaerobic. This suggests that Pseudomonas aeruginosa infection in CF reflects biofilm formation and persistence in an anaerobic environment. P. aeruginosa formed robust anaerobic biofilms, the viability of which requires rhl quorum sensing and nitric oxide (NO) reductase to modulate or prevent accumulation of toxic NO, a byproduct of anaerobic respiration. Proteomic analyses identified an outer membrane protein, OprF, that was upregulated approximately 40-fold under anaerobic versus aerobic conditions. Further, OprF exists in CF mucus, and CF patients raise antisera to OprF. An oprF mutant formed poor anaerobic biofilms, due, in part, to defects in anaerobic respiration. Thus, future investigations of CF pathogenesis and therapy should include a better understanding of anaerobic metabolism and biofilm development by P. aeruginosa.

  5. A Quiet Riot: Furthering the discussion on aerobic heterotrophy in deep sediments

    NASA Astrophysics Data System (ADS)

    Russell, J. A., III; Biddle, J.

    2014-12-01

    North Pond, a sediment deposit ringed by basalt outcrops just west of the Mid-Atlantic Ridge, remains a site of intense study of the subseafloor biosphere. During IODP Expedition 336, core samples of sediment and basalt were drilled and permanent CORK observatories were installed in the basalt crust. Heterotrophic enrichments were started aboard ship and multiple aerobic, heterotrophic bacterial isolates were obtained from two sediment horizons. Isolate identities were compared to sequences from drilling fluid and surrounding sediment to establish the likelihood of their sedimentary source. Three isolates currently in pure culture are from site U1382B and include an Arthrobacter species from 4 meters below seafloor (mbsf) as well as a Paracoccus and Pseudomonas species from 70 mbsf. All isolates grow at tested temperatures of 4 to 37°C. Only the Arthrobacter species grows at 42°C and no isolates grew at 50°C. The presence of aerobic microorganisms at these depths is consistent with previously published oxygen profiles of site U1382B where O2 is present in low amounts (10 to 20μm) at both 4 mbsf (originating from overlying seawater) and 70 mbsf (originating from subseafloor aquifer leaching into deep sediment), yet substantial enough to support aerobic heterotrophy. Despite similar oxygen concentrations, two key differences between these depths are the origin and quality of organic matter and the surrounding lithology. Section 1H4 from site U1382B, where the Arthrobacter species was isolated, consists primarily of a nanofossil ooze. Section 8H6 (~70 mbsf) is much more clay-rich. Previous explorations of microbial heterotrophy in North Pond sediments using 14C-acetate have suggested that this metabolism may be linked to particular lithologies. A 2011 study noted higher rates of potential aerobic heterotrophy in sandy and clay-rich layers compared to nannofossil ooze layers. Since isolates are from different depths, ages and lithologies they can be used to examine

  6. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  7. [Cardiovascular protection and mechanisms of actions of aerobic exercise].

    PubMed

    Hou, Zuo-Xu; Zhang, Yuan; Gao, Feng

    2014-08-01

    It is well established that aerobic exercise exerts beneficial effect on cardiovascular system, but the underlying mechanisms are yet to be elucidated. Recent studies have shown that aerobic exercise ameliorates insulin resistance, inflammation and mitochondrial dysfunction which play important roles in the development of cardiovascular disease. In this review, we discussed the underlying mechanisms of the cardioprotective role of aerobic exercise, especially the latest progress in this field.

  8. Specific gonadotropin binding to Pseudomonas maltophilia.

    PubMed

    Richert, N D; Ryan, R J

    1977-03-01

    Binding of 125I-labeled human chorionic gonadotropin to Pseudomonas maltophilia is dependent on time, temperature, and pH and the binding to this procaryotic species is hormone-specific and saturable. The equilibrium dissociation constant is 2.3 X 10(-9) M. There are no cooperative interactions between binding sites (Hill coefficient, 1.05). The number of sites is estimaated as 240 fmol/100 mug of protein. NaCl and KCl, at concentrations from 1 to 10 mM, have no effect on binding. Divalent cations (Mg2+ and Ca2+) and 1 mM EDTA inhibit hormone binding. Binding is destroyed by heat or by treatment with Pronase of alpha-chymotrypsin and is increased by phospholipase C. Binding of the labeled gonadotropin is not observed with other gram-negative organisms--e.g., Escherichia coli, Pseudomonas testosteroni, Pseudomonas aeruginosa, Enterobacter aerogenes, or Enterobacter cloacae.

  9. Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment.

    PubMed

    Arnau, Víctor Gonzalo; Sánchez, Leandro Arturo; Delgado, Osvaldo Daniel

    2015-02-01

    A psychrotolerant strain, 8H1(T), was isolated from soil samples collected in Isla de los Estados, Ushuaia, Argentina. Cells were Gram-negative, aerobic, straight rods, occurring singly or in pairs, non-spore-forming and motile by means of two polar flagella. The isolate was able to grow in the range 4-35 °C, with optimum growth at 28 °C. The predominant cellular fatty acids were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c). The polar lipid pattern of strain 8H1(T) comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. Ubiquinone 9 (Q-9) was the predominant lipoquinone. The DNA G+C content was 59.8 mol%. 16S rRNA gene sequence-based phylogeny suggested the affiliation of strain 8H1(T) to the 'Pseudomonas fluorescens group', displaying ≥98.5 % sequence similarity to 29 type strains. A multilocus sequence analysis (MLSA) study performed by concatenating 16S rRNA, gyrB, rpoD and rpoB gene sequences showed that isolate 8H1(T) could be discriminated from closely related species of the genus Pseudomonas and placed in the 'Pseudomonas gessardii subgroup', including the species with the highest MLSA sequence similarities: Pseudomonas brenneri (96.2 %), P. gessardii (96.1 %), P. proteolytica (96.0 %), P. meridiana (96.0 %) and P. mucidolens (95.4 %). DNA-DNA hybridization analysis between 8H1(T) and the type strains of these closely related species revealed relatedness values of 27.0, 8.8, 41.2, 39.7 and 46.1 %, respectively. These results, together with differences in several phenotypic features, support the classification of a novel species, for which the name Pseudomonas yamanorum sp. nov. is proposed. The type strain is 8H1(T) ( = DSM 26522(T) = CCUG 63249(T) = LMG 27247(T)).

  10. Pseudomonas songnenensis sp. nov., isolated from saline and alkaline soils in Songnen Plain, China.

    PubMed

    Zhang, Lei; Pan, Yuanyuan; Wang, Kaibiao; Zhang, Xiaoxia; Zhang, Shuang; Fu, Xiaowei; Zhang, Cheng; Jiang, Juquan

    2015-03-01

    The strain NEAU-ST5-5(T) was isolated from the saline and alkaline soil in Songnen Plain, North East of China. The bacterium was found to be aerobic, Gram-stain negative, rod-shaped and motile by means of several polar flagella. It forms yellow-orange colonies with a radial wrinkled surface. Phylogenetic analyses based on the separate 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences indicated that it belongs to the genus Pseudomonas in the class Gammaproteobacteria. Strain NEAU-ST5-5(T) shows gene sequence similarities of 98.8-97.1 % for 16S rRNA, 90.5-78.4 % for gyrB and 90.4-71.1 % for rpoD with type strains of the closely related species of the genus Pseudomonas, respectively. DNA-DNA hybridization relatedness between strain NEAU-ST5-5(T) and type strains of the most closely related species, Pseudomonas stutzeri DSM 5190(T), P. xanthomarina DSM 18231(T), P. kunmingensis CGMCC 1.12273(T), P. alcaliphila DSM 17744(T) and P. oleovorans subsp. lubricantis DSM 21016(T) were 43 ± 1 to 25 ± 2 %. The major fatty acids (>10 %) were determined to be C18:1 ω7c/C18:1 ω6c, C16:1 ω7c/C16:1 ω6c and C16:0, the predominant respiratory quinone was identified as ubiquinone 9 and polar lipids were found to consist of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unknown phospholipid, one unidentified aminophospholipid and one unknown lipid. The genotypic, chemotaxonomic and phenotypic analysis indicated that strain NEAU-ST5-5(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas songnenensis sp. nov. is proposed. The type strain is NEAU-ST5-5(T) (=ACCC 06361(T) = DSM 27560(T)).

  11. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  12. Aerobic Capacity and Postprandial Flow Mediated Dilation.

    PubMed

    Ballard, Kevin D; Miller, James J; Robinson, James H; Olive, Jennifer L

    The consumption of a high-fat meal induces transient vascular dysfunction. Aerobic exercise enhances vascular function in healthy individuals. Our purpose was to determine if different levels of aerobic capacity impact vascular function, as measured by flow mediated dilation, following a high-fat meal. Flow mediated dilation of the brachial artery was determined before, two- and four-hours postprandial a high-fat meal in young males classified as highly trained (n = 10; VO2max = 74.6 ± 5.2 ml·kg·min(-1)) or moderately active (n = 10; VO2max = 47.3 ± 7.1 ml·kg·min(-1)). Flow mediated dilation was reduced at two- (p < 0.001) and four-hours (p < 0.001) compared to baseline for both groups but was not different between groups at any time point (p = 0.108). Triglycerides and insulin increased at two- (p < 0.001) and four-hours (p < 0.05) in both groups. LDL-C was reduced at four-hours (p = 0.05) in highly trained subjects, and two- and four-hours (p ≤ 0.01) in moderately active subjects. HDL-C decreased at two- (p = 0.024) and four-hours (p = 0.014) in both groups. Glucose increased at two-hours postprandial for both groups (p = 0.003). Our results indicate that a high-fat meal results in reduced endothelium-dependent vasodilation in highly trained and moderately active individuals with no difference between groups. Thus, high aerobic capacity does not protect against transient reductions in vascular function after the ingestion of a single high-fat meal compared to individuals who are moderately active.

  13. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  14. A new selective medium for isolating Pseudomonas spp. from water.

    PubMed Central

    Krueger, C L; Sheikh, W

    1987-01-01

    A new medium, pseudomonas selective isolation agar, was developed to isolate Pseudomonas spp. from water. It consists of 350 micrograms of nitrofurantoin per ml and 2 micrograms of crystal violet per ml in a nutrient agar base. It is more selective for Pseudomonas spp. than are available commercial media. Its ingredients are inexpensive and readily available, and it is easy to prepare. PMID:3579287

  15. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  16. Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values.

    PubMed

    Gonçalves, Letícia Dias Dos Anjos; Piccoli, Roberta Hilsdorf; Peres, Alexandre de Paula; Saúde, André Vital

    Meat is one of the most perishable foods owing to its nutrient availability, high water activity, and pH around 5.6. These properties are highly conducive for microbial growth. Fresh meat, when exposed to oxygen, is subjected to the action of aerobic psychrotrophic, proteolytic, and lipolytic spoilage microorganisms, such as Pseudomonas spp. The spoilage results in the appearance of slime and off-flavor in food. In order to predict the growth of Pseudomonas fluorescens in fresh meat at different pH values, stored under refrigeration, and temperature abuse, microbial mathematical modeling was applied. The primary Baranyi and Roberts and the modified Gompertz models were fitted to the experimental data to obtain the growth parameters. The Ratkowsky extended model was used to determine the effect of pH and temperature on the growth parameter μmax. The program DMFit 3.0 was used for model adjustment and fitting. The experimental data showed good fit for both the models tested, and the primary and secondary models based on the Baranyi and Roberts models showed better validation. Thus, these models can be applied to predict the growth of P. fluorescens under the conditions tested.

  17. The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity

    PubMed Central

    Gruber, Jordon D.; Chen, Wei; Parnham, Stuart; Beauchesne, Kevin; Moeller, Peter; Flume, Patrick A.

    2016-01-01

    Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), activate transcriptional regulator PqsR to promote the production of quinolone signals and virulence factors. Our work focused on the most abundant quinolone produced from the Pqs system, 2,4-dihydroxyquinoline (DHQ), which was shown previously to sustain pyocyanin production and antifungal activity of P. aeruginosa. However, little is known about how DHQ affects P. aeruginosa pathogenicity. Using C. elegans as a model for P. aeruginosa infection, we found pqs mutants only able to produce DHQ maintained virulence towards the nematodes similar to wild-type. In addition, DHQ-only producing mutants displayed increased colonization of C. elegans and virulence factor production compared to a quinolone-null strain. DHQ also bound to PqsR and activated the transcription of pqs operon. More importantly, high extracellular concentration of DHQ was maintained in both aerobic and anaerobic growth. High levels of DHQ were also detected in the sputum samples of cystic fibrosis patients. Taken together, our findings suggest DHQ may play an important role in sustaining P. aeruginosa pathogenicity under oxygen-limiting conditions. PMID:26788419

  18. Bacterial effects and interfacial inactivation mechanism of nZVI/Pd on Pseudomonas putida strain.

    PubMed

    Lv, Yuancai; Niu, Zhuyu; Chen, Yuancai; Hu, Yongyou

    2017-05-15

    With the introduction of nano zero valent iron (nZVI) technology into our environment, its potential environmental risk to environmental microorganisms has attracted considerable attention. In this study, Pseudomonas putida was chosen as a typical strain to study the bacterial toxicity of nZVI/Pd. The CFU assay results indicated that nZVI/Pd was toxic to P. putida cells but the toxicity decreased with an increase in DO. The experiments isolated by dialysis bag and flow cytometry analysis suggested that both membrane disruption caused by direct contact and oxidative stress were the main bactericidal mechanisms under the aerobic condition, while membrane disruption resulting from direct contact was the primary bactericidal mechanism in the anaerobic system. Furthermore, according to TEM, SEM, EDS, XRD, FTIR and XPS, it was indicated that in the aerobic system, the reactive oxygen species (ROS) generated by nZVI/Pd could oxidize the amide and hydroxyl groups into carboxyl groups, resulting in a decline in peptides and increase in polysaccharides. In addition, the ROS also accumulated inside the cell and caused cell inactivation via oxidative stress. In the anaerobic system, the adhered nZVI/Pd particles would attack the functional groups such as carboxyl, ester and amide, leading to the decline in proteins and polysaccharides and subsequent damage of the membrane. The findings provide a significant guide for the application of nano-bio combined technology.

  19. Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans.

    PubMed

    Zhou, Shengfang; Catherine, Christy; Rathnasingh, Chelladurai; Somasundar, Ashok; Park, Sunghoon

    2013-12-01

    3-Hydroxypropionic acid (3-HP) can be produced from glycerol through two sequential enzymatic reactions that are catalyzed by a coenzyme B12 -dependent glycerol dehydratase and an NAD(P)(+) -dependent aldehyde dehydrogenase (ALDH), respectively. Pseudomonas denitrificans synthesizes coenzyme B12 under aerobic conditions, where NAD(P)(+) is regenerated efficiently. Hence, it is considered an ideal host for the production of 3-HP from glycerol under aerobic conditions. In this study, recombinant strains of P. denitrificans were developed and their potential for the production of 3-HP from glycerol was evaluated. When the enzymes, glycerol dehydratase (DhaB) and glycerol dehydratase reactivase (GdrAB), of Klebsiella pneumoniae were expressed heterologously, P. denitrificans could produce 3-HP at 37.7 mmol/L with 62% (mol/mol) yield on glycerol. Glucose was required as the carbon and energy sources for cell growth. The overexpression of heterologous ALDH was not essential; however, the titer and yield of 3-HP were improved to 54.7 mmol/L and 67% (mol/mol), respectively, when an ALDH gene (puuC) from K. pneumoniae was overexpressed. One serious drawback hindering the use of P. denitrificans as a recombinant host for 3-HP production is that it oxidizes 3-HP to malonate and utilizes 3-HP as a carbon source for growth. This is the first report on the development and use of recombinant P. denitrificans for 3-HP production from glycerol.

  20. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase.

    PubMed Central

    Hass, D; Evans, R; Mercenier, A; Simon, J P; Stalon, V

    1979-01-01

    In Pseudomonas aeruginosa arginine can be degraded by the arginine "dihydrolase" system, consisting of arginine deiminase, catabolic ornithine carbamoyltransferase, and carbamate kinase. Mutants of P. aeruginosa strain PAO affected in the structural gene (arcB) of the catabolic ornithine carbamoyltransferase were isolated. Firt, and argF mutation (i.e., a block in the anabolic ornithine carbamoyltransferase) was suppressed specifically by a mutationally altered catabolic ornithine carbamoyltransferase capable of functioning in the anabolic direction. The suppressor locus arcB (Su) was mapped by transduction between hisII and argA. Second, mutants having lost suppressor activity were obtained. The Su- mutations were very closely linked to arcB (Su) and caused strongly reduced ornithine carbamoyltransferase activities in vitro. Under aerobic conditions, a mutant (PA0630) which had less than 1% of the wild-type catabolic ornithine carbamoyltransferase activity grew on arginine as the only carbon and nitrogen source, at the wild-type growth rate. When oxygen was limiting, strain PA0630 grown on arginine excreted citrulline in the stationary growth phase. These observations suggest that during aerobic growth arginine is not degraded exclusively via the dihydrolase pathway. PMID:113384

  1. Continuous rhamnolipid production using denitrifying Pseudomonas aeruginosa cells in hollow-fiber bioreactor.

    PubMed

    Pinzon, Neissa M; Cook, Aaron G; Ju, Lu-Kwang

    2013-01-01

    Rhamnolipids are high-value effective biosurfactants produced by Pseudomonas aeruginosa. Large-scale production of rhamnolipids is still challenging especially under free-cell aerobic conditions in which the highly foaming nature of the culture broth reduces the productivity of the process. Immobilized systems relying on oxygen as electron acceptor have been previously investigated but oxygen transfer limitation presents difficulties for continuous rhamnolipid production. A coupled system using immobilized cells and nitrate instead of oxygen as electron acceptor taking advantage of the ability of P. aeruginosa to perform nitrate respiration was evaluated. This denitrification-based immobilized approach based on a hollow-fiber setup eliminated the transfer limitation problems and was found suitable for continuous rhamnolipid production in a period longer than 1,500 h. It completely eliminated the foaming difficulties related to aerobic systems with a comparable specific productivity of 0.017 g/(g dry cells)-h and allowed easy recovery of rhamnolipids from the cell-free medium.

  2. The impact of anaerobiosis on strain-dependent phenotypic variations in Pseudomonas aeruginosa.

    PubMed

    Fang, Hao; Toyofuku, Masanori; Kiyokawa, Tatsunori; Ichihashi, Akihiro; Tateda, Kazuhiro; Nomura, Nobuhiko

    2013-01-01

    Bacteria participate in social behaviors by communicating with each other and forming surface-associated biofilms. In Pseudomonas aeruginosa, such social behaviors are affected greatly by the environment. Although P. aeruginosa survive under anaerobic conditions, previous studies indicate that quorum sensing is attenuated under such conditions, and that this leads to decreased activity of extracellular virulence factors as compared to aerobic conditions. Hence it has come into question whether P. aeruginosa are virulent under anaerobic conditions. Here, we compared various phenotypes between PAO1 and clinical isolates under anaerobic conditions. Our data revealed that when grown anaerobically, growth and cell morphology greatly differed among the strains. One of the clinical isolates produced comparable amounts of quorum-sensing signaling molecules and extracellular virulence factors under aerobic and anaerobic conditions, while the other strains showed low production under anaerobic conditions. Biofilm formation also exhibited strain-dependent variations, suggesting that there are several mechanisms that lead to biofilm formation under anaerobic conditions. Taken together, these results indicate that the impact of anaerobiosis on the social interactions of P. aeruginosa is strain dependent, and suggest that multiple regulatory mechanisms are involved in the regulation of quorum sensing and biofilm formation under anaerobic conditions.

  3. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite.

    PubMed

    Kora, Aruna Jyothi; Rastogi, Lori

    2016-10-01

    A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres.

  4. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  5. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe

    NASA Astrophysics Data System (ADS)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H.

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp = 200…600 μm, porosity ε = 0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol) = 0 after t = 6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest.

  6. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    PubMed

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest.

  7. Mechanism for Biotransformation of Nonylphenol Polyethoxylates to Xenoestrogens in Pseudomonas putida

    PubMed Central

    John, Dominic M.; White, Graham F.

    1998-01-01

    A strain of Pseudomonas putida isolated from activated sewage grew aerobically on the xenoestrogen precursor, nonylphenol polyethoxylate (NPEOx, where x is the number of ethoxylate units) as sole carbon source. Comparative growth yields on NPEOav6, NPEOav9, and NPEOav20 (mixtures with average ethoxylate numbers as indicated) were consistent with utilization of all but two ethoxylate units, and the final accumulating metabolite was identified by gas chromatography-mass spectroscopy as nonylphenol diethoxylate (NPEO2). There was no growth on nonylphenol or polyethylene glycols, and there was no evidence for production of carboxylic acid analogs of NPEOx. Biodegradation kinetics measured by high-pressure liquid chromatography (HPLC) for each component in NPEOx mixtures showed that biodegradation proceeded via successive exoscission of the ethoxylate chain and not by direct scission between the second and third ethoxylate residues. The NPEOx-degrading activity was inducible by substrate, and cell extracts of NPEOav9-induced cells were also active on the pure alcohol ethoxylate, dodecyl octaethoxylate (AEO8), producing sequentially, under either aerobic or anaerobic conditions, AEO7, AEO6, AEO5, etc., thus demonstrating that the pathway involved removal of single ethoxylate units. HPLC analysis of 2,4-dinitrophenylhydrazone derivatives revealed acetaldehyde (ethanal) as the sole aldehydic product from either NPEOav9 or AEO8 under either aerobic or anaerobic conditions. We propose a mechanism for biotransformation which involves an oxygen-independent hydroxyl shift from the terminal to the penultimate carbon of the terminal ethoxylate unit of NPEOx and dissociation of the resulting hemiacetal to release acetaldehyde and the next-lower homolog, NPEOx−1, which then undergoes further cycles of the same reaction until x = 2. PMID:9721266

  8. Mechanism for biotransformation of nonylphenol polyethoxylates to Xenoestrogens in Pseudomonas putida.

    PubMed

    John, D M; White, G F

    1998-09-01

    A strain of Pseudomonas putida isolated from activated sewage grew aerobically on the xenoestrogen precursor, nonylphenol polyethoxylate (NPEOx, where x is the number of ethoxylate units) as sole carbon source. Comparative growth yields on NPEOav6, NPEOav9, and NPEOav20 (mixtures with average ethoxylate numbers as indicated) were consistent with utilization of all but two ethoxylate units, and the final accumulating metabolite was identified by gas chromatography-mass spectroscopy as nonylphenol diethoxylate (NPEO2). There was no growth on nonylphenol or polyethylene glycols, and there was no evidence for production of carboxylic acid analogs of NPEOx. Biodegradation kinetics measured by high-pressure liquid chromatography (HPLC) for each component in NPEOx mixtures showed that biodegradation proceeded via successive exoscission of the ethoxylate chain and not by direct scission between the second and third ethoxylate residues. The NPEOx-degrading activity was inducible by substrate, and cell extracts of NPEOav9-induced cells were also active on the pure alcohol ethoxylate, dodecyl octaethoxylate (AEO8), producing sequentially, under either aerobic or anaerobic conditions, AEO7, AEO6, AEO5, etc., thus demonstrating that the pathway involved removal of single ethoxylate units. HPLC analysis of 2,4-dinitrophenylhydrazone derivatives revealed acetaldehyde (ethanal) as the sole aldehydic product from either NPEOav9 or AEO8 under either aerobic or anaerobic conditions. We propose a mechanism for biotransformation which involves an oxygen-independent hydroxyl shift from the terminal to the penultimate carbon of the terminal ethoxylate unit of NPEOx and dissociation of the resulting hemiacetal to release acetaldehyde and the next-lower homolog, NPEOx-1, which then undergoes further cycles of the same reaction until x = 2.

  9. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  10. Aerobic treatment of wine-distillery wastewaters

    SciTech Connect

    Sales, D.; Valcarcel, M.J.; Perez, L.; de la Ossa, E.M.

    1987-01-01

    Waste from food-processing and allied industries is largely made up of organic compounds which can be metabolized by aerobic or anaerobic means. However, these wastes present a series of problems to biological depuration plants, such as the need for prior treatment to establish conditions suitable for the development of the microorganisms responsible for the process; and the long retention time of the biomass if acceptable effluents are to be obtained. Again, the seasonal nature of many of these industries makes for very heterogeneous waste. This means that treatment plant must be versatile and are subject to rapid successions of close-down and start-up interspersed with long intervals of inactivity. All these difficulties oblige the industries in the sector to adapt depurative technology to their particular needs. Wine distilleries fall into this general category. Their waste (called vinasses) is acidic, has a high organic content and varies widely according to the raw matter distilled: wine, lies, etc. This paper studies the start-up of digestors for aerobic treatment of vinasses and the establishment of optimum operating conditions for an adequate depurative performance.

  11. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  12. [A sarcoma-static new species of Pseudomonas, Pseudomonas jinanensis sp. nov].

    PubMed

    Cai, M Y; Lu, D S; Wang, D S; He, Z Z; Wang, J H

    1989-06-01

    A strain of Gram negative bacteria was isolated from the surface soil of Wuying Hill at Jinan, Shandong province with Gause's medium in 1973. It is a strain of antagonistic bacteria for hysterocervicoma, hepatoma and melanoma of mice screened from 2100 strains of bacteria. It is also antagonistic to Staphylococcus aureus, Bacillus subtilis and Micrococcus. It is a Gram negative bacterium with lophotrichous polar flagella. Straight rods in shape or with a little slightly curved rods, 0.5-0.6 X 1-2 microns, randomly arranged, poly-beta-hydroxybutyrate granules are accumulated in cells after 2-5 days cultivation. Water green soluble pigment and green fluorescent pigment are produced. Respiratory metabolism, chemoorganotroph, many carbon-containing organic compounds can be used as carbon sources, such as glucose, trehalose, ethanol, cellulobiose, fucose, arginine and betaine, but propionic acid or tartaric acid is not utilized. Inorganic nitrogen containing compounds can be used ae the sole source of nitrogen. No growth factor is necessary for growth. Gelatin is hydrolyzed. Starch and cellulose are not hydrolyzed. Nitrate is not reduced. Arginine dihydrolase is produced. Levan is produced from sucrose. Growth occurs from 7 degrees C to 37 degrees C and from pH 5.65-8.40. No growth occurs at 40 degrees C and at pH value below 4.86. It can not grow autotrophically with hydrogen. Its G + C contents in DNA is 58.1 mol%. DNA-DNA hybridization experiments reveals a relatedness value of 58.6% between this strain and Ps. fluorescens. The above evidence shows that this strain differs from all species known in Pseudomonas, such as Pseudomonas fluorescens group. Pseudomonas caryophylli, Pseudomonas cepacia, Pseudomonas marginata, Pseudomonas acidovorans, Pseudomonas testosteroni and Pseudomonas delafieldii.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Aerobic bacterial oral flora of garter snakes: development of normal flora and pathogenic potential for snakes and humans.

    PubMed

    Goldstein, E J; Agyare, E O; Vagvolgyi, A E; Halpern, M

    1981-05-01

    Garter snakes that are used for scientific laboratory studies or kept as exotic pets often become ill and die early in captivity. They may also act as reservoirs of potential human pathogens or transmit infection to man. A total of 126 strains of aerobic and facultative bacteria, most potential human and snake pathogens, were isolated from 82 garter snake oropharyngeal cultures. Coagulase-negative Staphylococcus species were the most common species isolated. Acinetobacter calcoaceticus var. anitratus, Hafnia alvei, Arizona hinshawii, Salmonella species, Shigella species, Klebsiella oxytoca, and Pseudomonas aeruginosa were among the potential pathogens isolated. The spectrum of bacteria with potential for causing oral and pulmonary infections in garter snakes is greater than has been previously appreciated. Garter snakes should also be considered reservoirs of human pathogens, and appropriate precautions should be taken by laboratory personnel and pet owners.

  14. Chemotaxis of Pseudomonas putida toward chlorinated benzoates

    SciTech Connect

    Harwood, C.S.; Parales, R.E.; Dispensa, M. )

    1990-05-01

    The chlorinated aromatic acids 3-chlorobenzoate and 4-chlorobenzoate are chemoattractants for Pseudomonas putida PRS2000. These compounds are detected by a chromosomally encoded chemotactic response to benzoate which is inducible by {beta}-ketoadipate, and intermediate of benzoate catabolism. Plasmid pAC27, encoding enzymes for 3-chlorobenzoate degradation, does not appear to carry genes for chemotaxis toward chlorinated compounds.

  15. New Pseudomonas spp. Are Pathogenic to Citrus

    PubMed Central

    Beiki, Farid; Busquets, Antonio; Gomila, Margarita; Rahimian, Heshmat; Lalucat, Jorge; García-Valdés, Elena

    2016-01-01

    Five putative novel Pseudomonas species shown to be pathogenic to citrus have been characterized in a screening of 126 Pseudomonas strains isolated from diseased citrus leaves and stems in northern Iran. The 126 strains were studied using a polyphasic approach that included phenotypic characterizations and phylogenetic multilocus sequence analysis. The pathogenicity of these strains against 3 cultivars of citrus is demonstrated in greenhouse and field studies. The strains were initially grouped phenotypically and by their partial rpoD gene sequences into 11 coherent groups in the Pseudomonas fluorescens phylogenetic lineage. Fifty-three strains that are representatives of the 11 groups were selected and analyzed by partial sequencing of their 16S rRNA and gyrB genes. The individual and concatenated partial sequences of the three genes were used to construct the corresponding phylogenetic trees. The majority of the strains were identified at the species level: P. lurida (5 strains), P. monteilii (2 strains), P. moraviensis (1 strain), P. orientalis (16 strains), P. simiae (7 strains), P. syringae (46 strains, distributed phylogenetically in at least 5 pathovars), and P. viridiflava (2 strains). This is the first report of pathogenicity on citrus of P. orientalis, P. simiae, P. lurida, P. moraviensis and P. monteilii strains. The remaining 47 strains that could not be identified at the species level are considered representatives of at least 5 putative novel Pseudomonas species that are not yet described. PMID:26919540

  16. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    PubMed

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides.

  17. New Pseudomonas spp. Are Pathogenic to Citrus.

    PubMed

    Beiki, Farid; Busquets, Antonio; Gomila, Margarita; Rahimian, Heshmat; Lalucat, Jorge; García-Valdés, Elena

    2016-01-01

    Five putative novel Pseudomonas species shown to be pathogenic to citrus have been characterized in a screening of 126 Pseudomonas strains isolated from diseased citrus leaves and stems in northern Iran. The 126 strains were studied using a polyphasic approach that included phenotypic characterizations and phylogenetic multilocus sequence analysis. The pathogenicity of these strains against 3 cultivars of citrus is demonstrated in greenhouse and field studies. The strains were initially grouped phenotypically and by their partial rpoD gene sequences into 11 coherent groups in the Pseudomonas fluorescens phylogenetic lineage. Fifty-three strains that are representatives of the 11 groups were selected and analyzed by partial sequencing of their 16S rRNA and gyrB genes. The individual and concatenated partial sequences of the three genes were used to construct the corresponding phylogenetic trees. The majority of the strains were identified at the species level: P. lurida (5 strains), P. monteilii (2 strains), P. moraviensis (1 strain), P. orientalis (16 strains), P. simiae (7 strains), P. syringae (46 strains, distributed phylogenetically in at least 5 pathovars), and P. viridiflava (2 strains). This is the first report of pathogenicity on citrus of P. orientalis, P. simiae, P. lurida, P. moraviensis and P. monteilii strains. The remaining 47 strains that could not be identified at the species level are considered representatives of at least 5 putative novel Pseudomonas species that are not yet described.

  18. PSEUDOMONAS PYOCYANEA AND THE ARGININE DIHYDROLASE SYSTEM.

    PubMed

    TAYLOR, J J; WHITBY, J L

    1964-03-01

    Non-pigmented strains of Pseudomonas pyocyanea occur frequently and this organism has only limited activity in conventional biochemical tests; 50 strains were tested for the presence of arginine dihydrolase and found positive whereas only Salmonella sp. and Enterobacter sp. among other Gram-negative species were positive. The test for arginine dihydrolase is rapid and simple and suitable for routine use.

  19. Aerobic Physical Activity and the Leadership of Principals

    ERIC Educational Resources Information Center

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  20. The Effectiveness of Aerobic Exercise Instruction for Totally Blind Women.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.; And Others

    1992-01-01

    A multifaceted method (involving verbal and hands-on training) was used to teach aerobic exercises to 3 totally blind women (ages 24-37). All three women demonstrated positive gains in their performance, physical fitness, and attitudes toward participating in future mainstream aerobic exercise classes. (DB)

  1. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  2. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  3. p53 aerobics: the major tumor suppressor fuels your workout.

    PubMed

    Kruse, Jan-Philipp; Gu, Wei

    2006-07-01

    In addition to its role as the central regulator of the cellular stress response, p53 can regulate aerobic respiration via the novel transcriptional target SCO2, a critical regulator of the cytochrome c oxidase complex (Matoba et al., 2006). Loss of p53 results in decreased oxygen consumption and aerobic respiration and promotes a switch to glycolysis, thereby reducing endurance during physical exercise.

  4. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  5. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  6. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  7. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  8. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  9. External Bacterial Flora and Antimicrobial Susceptibility Patterns of Staphylococcus spp. and Pseudomonas spp. Isolated from Two Household Cockroaches, Blattella germanica and Blatta orientalis.

    PubMed

    Menasria, Taha; Tine, Samir; Mahcene, Djaouida; Benammar, Leyla; Megri, Rochdi; Boukoucha, Mourad; Debabza, Manel

    2015-04-01

    A study was performed to estimate the prevalence of the external bacterial flora of two domestic cockroaches (Blattella germanica and Blatta orientalis) collected from households in Tebessa (northeast Algeria). Three major bacterial groups were cultured (total aerobic, enterobacteria, and staphylococci) from 14 specimens of cockroaches, and antibiotic susceptibility was tested for both Staphylococcus and Pseudomonas isolates. Culturing showed that the total bacterial load of cockroaches from different households were comparable (P<0.001) and enterobacteria were the predominant colonizers of the insect surface, with a bacterial load of (2.1 × 10⁵ CFU/insect), whereas the staphylococci group was the minority. Twenty-eight bacterial species were isolated, and susceptibility patterns showed that most of the staphylococci isolates were highly susceptible to chloramphenicol, gentamycin, pristinamycin, ofloxacin, clindamycin, and vancomycin; however, Pseudomonas strains exhibited resistance to amoxicillin/clavulanic acid, imipenem, and the second-generation antibiotic cephalosporin cefuroxime.

  10. High pressure inactivation of Pseudomonas in black truffle - comparison with Pseudomonas fluorescens in tryptone soya broth

    NASA Astrophysics Data System (ADS)

    Ballestra, Patricia; Verret, Catherine; Cruz, Christian; Largeteau, Alain; Demazeau, Gerard; El Moueffak, Abdelhamid

    2010-03-01

    Pseudomonas is one of the most common genera in black Perigord truffle. Its inactivation by high pressure (100-500 MPa/10 min) applied on truffles at sub-zero or low temperatures was studied and compared with those of Pseudomonas fluorescens in tryptone soya broth. Pressurization of truffles at 300 MPa/4 °C reduced the bacterial count of Pseudomonas by 5.3 log cycles. Higher pressures of 400 or 500 MPa, at 4 °C or 20 °C, allowed us to slightly increase the level of destruction to the value of ca. 6.5 log cycles but did not permit us to completely inactivate Pseudomonas. The results showed a residual charge of about 10 CFU/g. Pressure-shift freezing of truffles, which consists in applying a pressure of 200 MPa/-18 °C for 10 min and then quickly releasing this pressure to induce freezing, reduced the population of Pseudomonas by 3.3 log cycles. The level of inactivation was higher than those obtained with conventional freezing. Endogenous Pseudomonas in truffle was shown to be more resistant to high pressure treatments than P. fluorescens used for inoculation of broths.

  11. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.

    PubMed

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-05-22

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10⁷ cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  12. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    PubMed Central

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-01-01

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

  13. Artificial control of nitrate respiration through the lac promoter permits the assessment of oxygen-mediated posttranslational regulation of the nar operon in Pseudomonas aeruginosa.

    PubMed

    Noriega, Chris E; Sharma, Vandana; Rowe, John J

    2007-09-01

    In this study, oxygen and nitrate regulation of transcription and subsequent protein expression of the unique narK1K2GHJI respiratory operon of Pseudomonas aeruginosa were investigated. Under the control of PLAC, P. aeruginosa was able to transcribe nar and subsequently express methyl viologen-linked nitrate reductase activity under aerobic conditions without nitrate. Modulation of PLAC through the LacI repressor enabled us to assess both transcriptional and posttranslational regulation by oxygen during physiological whole-cell nitrate reduction.

  14. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  15. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  16. Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp. nov. and Pseudomonas cremoricolorata sp. nov.

    PubMed

    Uchino, Masataka; Shida, Osamu; Uchimura, Tai; Komagata, Kazuo

    2001-10-01

    Seven Pseudomonas fulva strains obtained from culture collections were taxonomically studied. The seven strains were separated into three clusters (Clusters I to III) on the basis of 16S rRNA gene sequences, and located phylogenetically in the genus Pseudomonas sensu stricto. Further, the strains were classified into 4 groups (Groups I to IV) on the basis of DNA-DNA similarity. As a result, Cluster I was split into Groups I and II. Group I included the type strain of P. fulva and two strains, and levels of DNA-DNA similarity ranged from 88 to 100% among the strains. Group II contained two strains, and the level between the two strains ranged from 91 to 100%. Group III consisted of one strain. Group IV included one strain, and this strain showed a high level of DNA-DNA similarity with the type strain of Pseudomonas straminea NRIC 0164(T). Clusters II and III corresponded to Groups III and IV, respectively. The four groups were separated from one another and from related Pseudomonas species at the level from 3 to 45% of DNA-DNA similarity. The strains of Groups I, II, and III had ubiquinone 9 as the major quinone. According to numerical analysis by the use of 133 phenotypic characteristics, the seven P. fulva strains were split into four phenons (Phenons I to IV). The groups by DNA-DNA similarity corresponded well with the phenons produced by numerical taxonomy, and differential characteristics were recognized. Consequently, Group I was regarded as P. fulva because the type strain (NRIC 0180(T)) of this species was included in this group. Strains in Group II were identified as a new species, Pseudomonas parafulva sp. nov., and the type strain is AJ 2129 (=IFO 16636=JCM 11244=NRIC 0501). NRIC 0181 in Group III was identified as a new species, Pseudomonas cremoricolorata sp. nov., and the type strain is NRIC 0181 (=IFO 16634=JCM 11246). NRIC 0182 in Group IV was identified as P. straminea on the basis of the high level of DNA-DNA similarity with the type strain of this

  17. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  18. Magnesium carbonate precipitate strengthened aerobic granules.

    PubMed

    Lee, Duu-Jong; Chen, Yu-You

    2015-05-01

    Aerobic granules were precipitated internally with magnesium carbonate to enhance their structural stability under shear. The strengthened granules were tested in continuous-flow reactors for 220 days at organic loadings of 6-39 kg/m(3)/day, hydraulic retention times of 0.44-19 h, and temperatures of 10 or 28°C. The carbonate salt had markedly improved the granule strength without significant changes in granule morphology or microbial communities (with persistent strains Streptomyces sp., Rhizobium sp., Brevundimonas sp., and Nitratireductor sp.), or sacrifice in biological activity for organic degradation. MgCO3 precipitated granules could be used in continuous-flow reactor for wastewater treatment at low cost and with easy processing efforts.

  19. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  20. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  1. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  2. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  3. Effects of Kettlebell Training on Aerobic Capacity.

    PubMed

    Falatic, J Asher; Plato, Peggy A; Holder, Christopher; Finch, Daryl; Han, Kyungmo; Cisar, Craig J

    2015-07-01

    This study examined the effects of a kettlebell training program on aerobic capacity. Seventeen female National Collegiate Athletic Association Division I collegiate soccer players (age: 19.7 ± 1.0 years, height: 166.1 ± 6.4 cm, weight: 64.2 ± 8.2 kg) completed a graded exercise test to determine maximal oxygen consumption (V̇O2max). Participants were assigned to a kettlebell intervention group (KB) (n = 9) or a circuit weight-training (CWT) control group (n = 8). Participants in the KB group completed a kettlebell snatch test to determine individual snatch repetitions. Both groups trained 3 days a week for 4 weeks in addition to their off-season strength and conditioning program. The KB group performed the 15:15 MVO2 protocol (20 minutes of kettlebell snatching with 15 seconds of work and rest intervals). The CWT group performed multiple free-weight and dynamic body-weight exercises as part of a continuous circuit program for 20 minutes. The 15:15 MVO2 protocol significantly increased V̇O2max in the KB group. The average increase was 2.3 ml·kg⁻¹·min⁻¹, or approximately a 6% gain. There was no significant change in V̇O2max in the CWT control group. Thus, the 4-week 15:15 MVO2 kettlebell protocol, using high-intensity kettlebell snatches, significantly improved aerobic capacity in female intercollegiate soccer players and could be used as an alternative mode to maintain or improve cardiovascular conditioning.

  4. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor

    PubMed Central

    Lajoie, Barbora; El Hage, Salome; Baziard, Genevieve; Roques, Christine

    2015-01-01

    Pseudomonas aeruginosa plays an important role in chronic lung infections among patients with cystic fibrosis (CF) through its ability to form antibiotic-resistant biofilms. In P. aeruginosa, biofilm development and the production of several virulence factors are mainly regulated by the rhl and las quorum-sensing (QS) systems, which are controlled by two N-acyl-homoserine lactone signal molecules. In a previous study, we discovered an original QS inhibitor, N-(2-pyrimidyl)butanamide, called C11, based on the structure of C4-homoserine lactone, and found that it is able to significantly inhibit P. aeruginosa biofilm formation. However, recent data indicate that P. aeruginosa grows under anaerobic conditions and forms biofilms in the lungs of CF patients that are denser and more robust than those formed under aerobic conditions. Our confocal microscopy observations of P. aeruginosa biofilms developed under aerobic and anaerobic conditions confirmed that the biofilms formed under these two conditions have radically different architectures. C11 showed significant dose-dependent antibiofilm activity on biofilms grown under both aerobic and anaerobic conditions, with a greater inhibitory effect being seen under conditions of anaerobiosis. Gene expression analyses performed by quantitative reverse transcriptase PCR showed that C11 led to the significant downregulation of rhl QS regulatory genes but also to the downregulation of both las QS regulatory genes and QS system-regulated virulence genes, rhlA and lasB. Furthermore, the activity of C11 in combination with antibiotics against P. aeruginosa biofilms was tested, and synergistic antibiofilm activity between C11 and ciprofloxacin, tobramycin, and colistin was obtained under both aerobic and anaerobic conditions. This study demonstrates that C11 may increase the efficacy of treatments for P. aeruginosa infections by increasing the susceptibility of biofilms to antibiotics and by attenuating the pathogenicity of the

  5. Culture-Based Screening of Aerobic Microbiome in Diabetic Foot Subjects and Developing Non-healing Ulcers

    PubMed Central

    Noor, Saba; Ahmad, Jamal; Parwez, Iqbal; Ozair, Maaz

    2016-01-01

    The study was carried on diabetic foot patients to deduce clinical attributes, the occurrence of the range of aerobic microbial flora and to assess their comparative in vitro susceptibility to the customarily used antimicrobials. We also studied the potential risk factors involved in the development of non-healing ulcers. A total of 87 organisms were isolated from 70 specimens, including Escherichia coli (19.5%) among the Gram-negative and Staphylococcus aureus (18.4%) among the Gram-positive as the predominant aerobes explored. Pseudomonas aeruginosa and E. coli were predominant isolates of non-healing ulcers. The antimicrobial sensitivity pattern revealed that vancomycin (100%) and amikacin (90.4%) exhibited highest sensitivity to Gram-positive cocci, while all strains of P. aeruginosa were sensitive toward imipenem (100%). The prevalent uncontrolled glycemic status, altered lipid spectra, the existence of neuropathy, and peripheral vascular disease, suggested predisposition toward the development of non-healing lesions. The study has underlined the need for continuous surveillance of bacteria and their antimicrobial sensitivity blueprints to provide the basis for empirical therapy and to minimize the risk of complications. Further, stringent clinical evaluation, and medical history will help in revealing the risk of developing non-healing status in diabetic foot ulcers. PMID:27920754

  6. Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil.

    PubMed

    Sánchez-Peinado, María del Mar; González-López, Jesús; Rodelas, Belén; Galera, Vanesa; Pozo, Clementina; Martínez-Toledo, María Victoria

    2008-08-01

    An enrichment culture technique was used to isolate soil bacteria capable of growing in the presence of two different concentrations of linear alkylbenzene sulfonates (LAS) (10 and 500 microg ml(-1)). Nine bacterial strains, representatives of the major colony types of aerobic heterotrophic cultivable bacteria in the enriched samples, were isolated and subsequently identified by PCR-amplification and partial sequencing of the 16S rRNA gene. Amongst the isolates, strains LAS05 (Pseudomonas syringae), LAS06 (Staphylococcus epidermidis), LAS07 (Delftia tsuruhatensis), LAS08 (Staphylococcus epidermidis) and LAS09 (Enterobacter aerogenes), were able to grow in pure culture in dialysed soil media amended with LAS (50 microg ml(-1)). The three Gram-negative strains grew to higher cell numbers in the presence of 50 microg ml(-1) of LAS, compared to LAS-unamended dialysed soil medium, and were selected for further testing of their ability to use LAS as carbon source. However, HPLC analysis of culture supernatants showed that the three strains can tolerate but not degrade LAS when grown in pure cultures. A higher concentration of soluble phosphates was recorded in dialysed soil media amended with LAS (50 microg ml(-1)) compared to unamended control media, suggesting an effect of the surfactant that enhanced the bioavailability of P from soil. The presence of LAS at a concentration of 50 microg ml(-1) had an important impact on growth of selected aerobic heterotrophic soil bacteria, a deleterious effect which may be relevant for the normal function and evolution of agricultural soil.

  7. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  8. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    PubMed

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-04

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches.

  9. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  10. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  11. Screening the Drug Resistance Property Among Aerobic Pathogenic Microorganisms of Dental Caries in North-Western Indian Population: A Preliminary Study

    PubMed Central

    Sahni, Priya; Singhvi, Abhishek; Hans, Manoj Kumar; Ahluwalia, Amrit Singh

    2015-01-01

    Aims and Objectives To evaluate the emerging drug resistance among the caries pathogens isolated from carious dentine microbiologically. Materials and Methods Specimens from dental caries were collected from 75 patients referred to Department of Conservative Dentistry and Endodontics, Vyas Dental College. Microbiological processing of all the samples was done within three hours to isolate the caries pathogens. The samples were inoculated on agar medium (Nutrient agar, Mac-conkey’s agar) at 370C for 48 hours aerobically. The identification of strains was done by observing colony morphology and gram’s staining. The predominant isolates were subjected to antimicrobial sensitivity test (Kirby Bauer’s method). Statistical analysis of the isolates was done using paired t-test. Results Out of 75 patients more common isolates were Staphylococcus aureus, Klebsiella, Pseudomonas aeruginosa, Yeast. The predominant were Staphylococcus and Pseudomonas species. Newer antibiotics were proved to be effective against these predominant strains after evaluating antibiotic sensitivity tests. Conclusion Although Streptococcus mutans (S.mutans) is the most prevalent microorganism seen in dental caries, the role of other microorganisms like Staphylococcus, Pseudomonas in initiation and progression of caries is evident from this study. Further extensive and large scale studies need to be conducted for better understanding the role of these microorganisms in dental caries. PMID:26393195

  12. Pseudomonas punonensis sp. nov., isolated from straw.

    PubMed

    Ramos, Elena; Ramírez-Bahena, Martha-Helena; Valverde, Angel; Velázquez, Encarna; Zúñiga, Doris; Velezmoro, Carmen; Peix, Alvaro

    2013-05-01

    During a study of the 'tunta' (frozen-dry potato) production process in Peru, a bacterial strain, LMT03(T), was isolated from the straw grass in which the potatoes are dried. This strain was classified into the genus Pseudomonas on the basis of the 16S rRNA gene sequence analysis, and is most closely related to Pseudomonas argentinensis CH01(T) with 99.3 % identity in this gene and 96 %, 92 % and 86 % identities in rpoB, rpoD and gyrB genes, respectively. Strain LMT03(T) has a single polar flagellum, like other related yellow-pigment-producing pseudomonads. The major quinone is Q-9. The major fatty acids are C18 : 1ω7c in summed feature 8 (40.82 %), C16 : 1ω6c/C16 : 1ω6c in summed feature 3 (23.72 %) and C16 : 0 (15.20 %). The strain produces oxidase but it does not produce gelatinase, indole, urease, arginine dihydrolase or β-galactosidase. Catalase production was very weak after 28 and 48 h incubation on nutrient agar medium. Nitrate reduction is negative. It does not hydrolyse aesculin. The DNA G+C content is 57.8 mol%. DNA-DNA hybridization results showed lower than 52 % relatedness with respect to the type strain of P. argentinensis, CH01(T). These results, together with other phenotypic characteristics, support the definition of a novel species within the genus Pseudomonas, for which the name Pseudomonas punonensis sp. nov. is proposed. The type strain is LMT03(T) ( = LMG 26839(T) = CECT 8089(T)).

  13. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil.

    PubMed

    Singleton, David R; Richardson, Stephen D; Aitken, Michael D

    2011-11-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.

  14. Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene.

    PubMed

    Vorbeck, C; Lenke, H; Fischer, P; Spain, J C; Knackmuss, H J

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur.

  15. Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene

    PubMed Central

    Vorbeck, Claudia; Lenke, Hiltrud; Fischer, Peter; Spain, Jim C.; Knackmuss, Hans-Joachim

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H−-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H−-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT−), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur. PMID:16349484

  16. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

  17. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.

    PubMed

    Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai

    2016-11-15

    P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples.

  18. Adhesion of Pseudomonas fluorescens onto nanophase materials

    NASA Astrophysics Data System (ADS)

    Webster, Thomas J.; Tong, Zonghua; Liu, Jin; Banks, M. Katherine

    2005-07-01

    Nanobiotechnology is a growing area of research, primarily due to the potentially numerous applications of new synthetic nanomaterials in engineering/science. Although various definitions have been given for the word 'nanomaterials' by many different experts, the commonly accepted one refers to nanomaterials as those materials which possess grains, particles, fibres, or other constituent components that have one dimension specifically less than 100 nm. In biological applications, most of the research to date has focused on the interactions between mammalian cells and synthetic nanophase surfaces for the creation of better tissue engineering materials. Although mammalian cells have shown a definite positive response to nanophase materials, information on bacterial interactions with nanophase materials remains elusive. For this reason, this study was designed to assess the adhesion of Pseudomonas fluorescens on nanophase compared to conventional grain size alumina substrates. Results provide the first evidence of increased adhesion of Pseudomonas fluorescens on alumina with nanometre compared to conventional grain sizes. To understand more about the process, polymer (specifically, poly-lactic-co-glycolic acid or PLGA) casts were made of the conventional and nanostructured alumina surfaces. Results showed similar increased Pseudomonas fluorescens capture on PLGA casts of nanostructured compared to conventional alumina as on the alumina itself. For these reasons, a key material property shown to enhance bacterial adhesion was elucidated in this study for both polymers and ceramics: nanostructured surface features.

  19. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  20. Effects of a Rebound Exercise Training Program on Aerobic Capacity and Body Composition.

    ERIC Educational Resources Information Center

    Tomassoni, Teresa L.; And Others

    1985-01-01

    This study was designed to determine if aerobic dancing on rebound exercise equipment (minitrampolines) is an effective way to improve aerobic capacity and body composition. Although aerobic capacity improved, percent body fat did not change. Results were similar to those produced by conventional aerobic dance programs of like intensity. (MT)

  1. Issues of Health, Appearance and Physical Activity in Aerobic Classes for Women

    ERIC Educational Resources Information Center

    D'Abundo, Michelle Lee

    2009-01-01

    The purpose of this research was to explore what appearance-focused messages were conveyed by aerobic instructors in aerobic classes for women. This qualitative research was influenced by the concept of wellness and how feminist pedagogy can be applied to promote individuals' well-being in aerobic classes. The practices of five aerobic instructors…

  2. Prediction of Maximum Aerobic Power in Untrained Females

    ERIC Educational Resources Information Center

    Dolgener, Forrest A.

    1978-01-01

    The author presents an equation for predicting maximum aerobic power in untrained females from values of percent body fat, weight, and submaximal values of heart rate, respiratory quotient, and expired gas. (MJB)

  3. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation.

  4. Concomitant aerobic biodegradation of benzene and thiophene

    SciTech Connect

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1998-05-01

    The concomitant aerobic biodegradation of benzene and thiophene was investigated in microcosm experiments using a groundwater enrichment culture. Benzene was biodegraded within 1 d, whereas thiophene could not be biodegraded as the sole source of carbon and energy. Some interesting phenomena were observed when both benzene and thiophene were present. In most cases, removal of thiophene was observed, and the removal occurred concomitantly with the biodegradation of benzene, suggesting that benzene was used as a primary substrate in the cometabolic biodegradation of thiophene. No biodegradation of the two compounds was observed for some combinations of concentrations, suggesting that thiophene could act as an inhibitor to benzene biodegradation. However, this effect could be overcome if more benzene was added to the microcosm. Residual concentrations of benzene and thiophene were observed in some microcosms and the data indicated that the biodegradation of the two compounds stopped when a critical threshold ratio between the concentrations of thiophene and benzene was reached. This ratio varied between 10 and 20. Results from modeling the biodegradation data suggested that thiophene was cometabolized concomitantly with the biodegradation of benzene and that the biodegradation may be described by a modified model based on a traditional model with an inhibition term incorporated.

  5. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  6. Dancing the aerobics ''hearing loss'' choreography

    NASA Astrophysics Data System (ADS)

    Pinto, Beatriz M.; Carvalho, Antonio P. O.; Gallagher, Sergio

    2002-11-01

    This paper presents an overview of gymnasiums' acoustic problems when used for aerobics exercises classes (and similar) with loud noise levels of amplified music. This type of gymnasium is usually a highly reverberant space, which is a consequence of a large volume surrounded by hard surfaces. A sample of five schools in Portugal was chosen for this survey. Noise levels in each room were measured using a precision sound level meter, and analyzed to calculate the standardized daily personal noise exposure levels (LEP,d). LEP,d values from 79 to 91 dB(A) were found to be typical values in this type of room, inducing a health risk for its occupants. The reverberation time (RT) values were also measured and compared with some European legal requirements (Portugal, France, and Belgium) for nearly similar situations. RT values (1 kHz) from 0.9 s to 2.8 s were found. These reverberation time values clearly differentiate between good and acoustically inadequate rooms. Some noise level and RT limits for this type of environment are given and suggestions for the improvement of the acoustical environment are shown. Significant reductions in reverberation time values and noise levels can be obtained by simple measures.

  7. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  8. Aerobic nitroreduction of dehydrochloramphenicol by bone marrow.

    PubMed

    Isildar, M; Abou-Khalil, W H; Jimenez, J J; Abou-Khalil, S; Yunis, A A

    1988-06-30

    It has been previously demonstrated that dehydrochloramphenicol (DH-CAP), a bacterial metabolite of chloramphenicol, induces DNA single strand breaks in intact cells and is profoundly more cytotoxic than chloramphenicol (CAP). In view of previous observations relating genotoxicity of nitrocompounds to their nitroreduction by the target tissue, we studied the nitroreduction of DH-CAP by human and rabbit bone marrow. Nitroreduction by tissue homogenates was determined by the Bratton Marshall colorimetric assay and by high-performance liquid chromatography (HPLC). Nitroreduction of DH-CAP by bone marrow cell homogenates was observed under aerobic conditions and the reduction was both cell concentration- and time-dependent. The formation of the amino product aminodehydrochloramphenicol was confirmed by HPLC. Reduction by other tissues including human liver, Raji cells, and HL-60 tumors was also observed. These results suggest that genotoxicity of DH-CAP may be related to its nitroreduction by the target tissue with in situ production of toxic intermediates. Together with previous studies, these observations lend support to the thesis that the p-NO2 group may be the structural feature underlying aplastic anemia from CAP.

  9. The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners

    PubMed Central

    GILLEN, ZACHARY M.; WYATT, FRANK B.; WINCHESTER, JASON B.; SMITH, DALTON A.; GHETIA, VIDHI

    2016-01-01

    Research has indicated that combined aerobic and anaerobic training (concurrent training) may improve aerobic performance greater than aerobic training alone. The purpose of this investigation was to establish any associations between aerobic and anaerobic performance. Eleven participants (n = 11, age = 34.1 ± 13 years, VO2max = 58.4 ± 7.8) volunteered for this study. Participants were asked for endurance training experience (4.7 ± 3.7 years) and resistance training experience (4.1 ± 4.6 years). To meet training status, participants were to have a VO2max in the 80th percentile as per ACSM guidelines. The Bruce treadmill test was used to measure aerobic performance. In order to measure anaerobic performance, several tests were completed utilizing a force platform. A Pearson Product R Correlation Coefficient was calculated to determine correlations between variables. The results show significant correlation between VO2max and RFD (r = 0.68). Further analyses utilizing Cohen’s effect size indicated a strong association between VO2max and peak force, as well as running efficiency and peak power, relative peak power, and power endurance. These results indicate an existing possibility that anaerobic performance measures such as RFD may have a positive relationship with aerobic performance measures such as VO2max. Therefore, it may be beneficial to integrate specific training components which focus on improving RFD as a method of improving running performance. PMID:27990224

  10. Aerobic Exercise Preserves Olfaction Function in Individuals with Parkinson's Disease

    PubMed Central

    Rosenfeldt, Anson B.; Dey, Tanujit

    2016-01-01

    Introduction. Based on anecdotal reports of improved olfaction following aerobic exercise, the aim of this study was to evaluate the effects of an 8-week aerobic exercise program on olfaction function in individuals with Parkinson's disease (PD). Methods. Thirty-eight participants with idiopathic PD were randomized to either an aerobic exercise group (n = 23) or a nonexercise control group (n = 15). The aerobic exercise group completed a 60-minute cycling session three times per week for eight weeks while the nonexercise control group received no intervention. All participants completed the University of Pennsylvania Smell Identification Test (UPSIT) at baseline, end of treatment, and a four-week follow up. Results. Change in UPSIT scores between the exercise and nonexercise groups from baseline to EOT (p = 0.01) and from baseline to EOT+4 (p = 0.02) favored the aerobic exercise group. Individuals in the nonexercise group had worsening olfaction function over time, while the exercise group was spared from decline. Discussion. The difference in UPSIT scores suggested that aerobic exercise may be altering central nervous system pathways that regulate the physiologic or cognitive processes controlling olfaction in individuals with PD. While these results provide promising preliminary evidence that exercise may modify the disease process, further systematic evaluation is necessary. PMID:27999706

  11. Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke

    PubMed Central

    Rosenfeldt, Anson B.; Dey, Tanujit; Alberts, Jay L.

    2017-01-01

    OBJECTIVE. To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. METHOD. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. RESULTS. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice–only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. CONCLUSION. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. PMID:28218596

  12. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  13. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  14. Amphoteric surfactant N-oleoyl-N-methyltaurine utilized by Pseudomonas alcaligenes with excretion of N-methyltaurine.

    PubMed

    Denger, Karin; Mayer, Jutta; Hollemeyer, Klaus; Cook, Alasdair M

    2008-11-01

    The amphoteric surfactant N-oleoyl-N-methyltaurine, which is in use in skin-care products, was utilized by aerobic bacteria as the sole source of carbon or of nitrogen in enrichment cultures. One isolate, which was identified as Pseudomonas alcaligenes, grew with the xenobiotic compound as the sole source of carbon and energy. The sulfonate moiety, N-methyltaurine, was excreted quantitatively during growth, while the fatty acid was dissimilated. The initial degradative reaction was shown to be hydrolytic and inducible. This amidase reaction could be demonstrated with crude cell extracts. The excreted N-methyltaurine could be utilized by other bacteria in cocultures. Complete degradation of similar natural compounds in bacterial communities seems likely.

  15. Enzymes responsible for chlorate reduction by Pseudomonas sp. are different from those used for perchlorate reduction by Azospira sp.

    PubMed

    Steinberg, Lisa M; Trimble, John J; Logan, Bruce E

    2005-06-15

    Pseudomonas sp. PDA is an unusual bacterium due to its ability to respire using chlorate under aerobic conditions. The chlorate reductase produced by PDA was shown to be intrinsically different from the enzyme responsible for chlorate and perchlorate [(per)chlorate] reduction produced by Azospira sp. KJ based on subunit composition and other enzyme properties. The perchlorate reductase from strain KJ appeared to have two subunits (100 and 40 kDa) while the chlorate reductase from PDA had three subunits (60, 48, and 27 kDa). N-terminal amino acid sequencing of the 100 kDa protein from strain KJ showed a 77% similarity with the perchlorate reductase alpha subunit from another perchlorate-respiring bacterium, Dechloromonas agitata, while the N-terminus amino acid sequence of the 60 kDa protein from strain PDA did not show a similarity to previously isolated chlorate or perchlorate reductases.

  16. High quality draft genome sequences of Pseudomonas fulva DSM 17717(T), Pseudomonas parafulva DSM 17004(T) and Pseudomonas cremoricolorata DSM 17059(T) type strains.

    PubMed

    Peña, Arantxa; Busquets, Antonio; Gomila, Margarita; Mulet, Magdalena; Gomila, Rosa M; Reddy, T B K; Huntemann, Marcel; Pati, Amrita; Ivanova, Natalia; Markowitz, Victor; García-Valdés, Elena; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos; Lalucat, Jorge

    2016-01-01

    Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717(T), Pseudomonas parafulva DSM 17004(T) and Pseudomonas cremoricolorata DSM 17059(T). All three genomes are comparable in size (4.6-4.9 Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-to-genome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex.

  17. Siderotyping of fluorescent pseudomonads: characterization of pyoverdines of Pseudomonas fluorescens and Pseudomonas putida strains from Antarctica.

    PubMed

    Meyer, J M; Stintzi, A; Coulanges, V; Shivaji, S; Voss, J A; Taraz, K; Budzikiewicz, H

    1998-11-01

    Five independent fluorescent pseudomonad isolates originating from Antarctica were analysed for their pyoverdine systems. A pyoverdine-related siderotyping, which involved pyoverdine-induced growth stimulation, pyoverdine-mediated iron uptake, pyoverdine analysis by electrophoresis and isoelectric focusing, revealed three different pyoverdine-related siderotypes among the five isolates. One siderotype, including Pseudomonas fluorescens 1W and P. fluorescens 10CW, was identical to that of P. fluorescens ATCC 13525. Two other strains, P. fluorescens 9AW and Pseudomonas putida 9BW, showed identical pyoverdine-related behaviour to each other, whereas the fifth strain, P. fluorescens 51W, had unique features compared to the other strains or to a set of 12 fluorescent Pseudomonas strains used as comparison material. Elucidation of the structure of the pyoverdines produced by the Antarctic strains supported the accuracy of the siderotyping methodology by confirming that pyoverdines from strains 1W and 10CW had the same structures as the P. fluorescens ATCC 13525 pyoverdine, whereas the 9AW and 9BW pyoverdines are probably identical with the pyoverdine of P. fluorescens strain 244. Pyoverdine from strain 51W appeared to be a novel pyoverdine since its structure was different from all previously established pyoverdine structures. Together with the conclusion that the Antarctic Pseudomonas strains have no special features at the level of their pyoverdines and pyoverdine-mediated iron metabolism compared to worldwide strains, the present work demonstrates that siderotyping provides a rapid means of screening for novel pyoverdines.

  18. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  19. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  20. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions

    PubMed Central

    Kolpen, Mette; Appeldorff, Cecilie F.; Brandt, Sarah; Mousavi, Nabi; Kragh, Kasper N.; Aydogan, Sevtap; Uppal, Haleema A.; Bjarnsholt, Thomas; Ciofu, Oana; Høiby, Niels; Jensen, Peter Ø.

    2015-01-01

    Tolerance towards antibiotics of Pseudomonas aeruginosa biofilms is recognized as a major cause of therapeutic failure of chronic lung infection in cystic fibrosis (CF) patients. This lung infection is characterized by antibiotic-tolerant biofilms in mucus with zones of O2 depletion mainly due to polymorphonuclear leukocytic activity. In contrast to the main types of bactericidal antibiotics, it has not been possible to establish an association between the bactericidal effects of colistin and the production of detectable levels of OH ˙ on several strains of planktonic P. aeruginosa. Therefore, we propose that production of OH ˙ may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wild-type PAO1, a catalase-deficient mutant (ΔkatA) and a colistin-resistant CF isolate cultured in microtiter plates in normoxic- or anoxic atmosphere with 1 mM nitrate. The killing of bacteria during colistin treatment was measured by CFU counts, and the OH⋅ formation was measured by 3′-(p-hydroxylphenyl fluorescein) fluorescein (HPF) fluorescence. Validation of the assay was done by hydrogen peroxide treatment. OH⋅ formation was undetectable in aerobic PAO1 biofilms during 3 h of colistin treatment. Interestingly, we demonstrate increased susceptibility of P. aeruginosa biofilms towards colistin during anaerobic conditions. In fact, the maximum enhancement of killing by anaerobic conditions exceeded 2 logs using 4 mg L−1 of colistin compared to killing at aerobic conditions. PMID:26458402

  1. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa.

    PubMed

    Arai, Hiroyuki; Kawakami, Takuro; Osamura, Tatsuya; Hirai, Takehiro; Sakai, Yoshiaki; Ishii, Masaharu

    2014-12-01

    The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo(3)-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb(3)-type cytochrome c oxidases (cbb(3)-1and cbb(3)-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb(3)-1 and cbb(3)-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb(3)-1 and cbb(3)-2 are high-affinity enzymes. Although cbb(3)-1 and cbb(3)-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb(3)-1 and cbb(3)-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb(3)-1 and cbb(3)-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.

  2. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection

    PubMed Central

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe3+ uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe2+ acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe3+ transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  3. Inactivation of Salmonella serovars by Pseudomonas chlororaphis and Pseudomonas fluorescens strains on tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica and its serovars have been associated with pathogen contamination of tomatoes and numerous outbreaks of Salmonellisis. To improve food safety, pathogen control is of immediate concern. The aim of this reserach was to: 1) Assess the populations of natural microflora (aerobic meso...

  4. Oxidation of 1-Tetradecene by Pseudomonas aeruginosa

    PubMed Central

    Markovetz, A. J.; Klug, M. J.; Forney, F. W.

    1967-01-01

    Pseudomonas aeruginosa strain Sol 20 was grown on 1-tetradecene as sole carbon source, and a vinyl-unsaturated 14-carbon monocarboxylic acid, 13-tetradecenoic acid, was identified from culture fluid. This acid was not produced when n-tetradecane served as substrate for growth. Oxidation of the methyl group represents one method of attack on the 1-alkene by this organism. Tentative identification of 2-tetradecanol indicates that an attack on the double bond is also occurring. α, ω-Dienes would not support growth. PMID:4962057

  5. A giant Pseudomonas phage from Poland.

    PubMed

    Drulis-Kawa, Zuzanna; Olszak, Tomasz; Danis, Katarzyna; Majkowska-Skrobek, Grazyna; Ackermann, Hans-W

    2014-03-01

    A novel giant phage of the family Myoviridae is described. Pseudomonas phage PA5oct was isolated from a sewage sample from an irrigated field near Wroclaw, Poland. The virion morphology indicates that PA5oct differs from known giant phages. The phage has a head of about 131 nm in diameter and a tail of 136 × 19 nm. Phage PA5oct contains a genome of approximately 375 kbp and differs in size from any tailed phages known. PA5oct was further characterized by determination of its latent period and burst size and its sensitivity to heating, chloroform, and pH.

  6. Binding of germanium of Pseudomonas putida cells

    SciTech Connect

    Klapcinska, B.; Chmielowski, J.

    1986-05-01

    The binding of germanium to Pseudomonas putida ATCC 33015 was investigated by using whole intact cells grown in a medium supplemented with GeO/sub 2/ and catechol or acetate. Electron-microscopic examination of the control and metal-loaded samples revealed that germanium was bound within the cell envelope. A certain number of small electron-dense deposits of the bound element were found in the cytoplasm when the cells were grown in the presence of GeO/sub 2/ and catechol. The study of germanium distribution in cellular fractions revealed that catechol facilitated the intracellular accumulation of this element.

  7. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis,...

  8. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis,...

  9. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis,...

  10. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis,...

  11. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pseudomonas spp. serological reagents. 866.3415 Section 866.3415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., abscesses, and meningitis (inflammation of brain membranes). Pseudomonas pseudomallei causes melioidosis,...

  12. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge.

    PubMed

    Romanenko, Lyudmila A; Uchino, Masataka; Falsen, Enevold; Frolova, Galina M; Zhukova, Natalia V; Mikhailov, Valery V

    2005-03-01

    Two Gram-negative, non-fermentative, non-denitrifying, non-pigmented, rod-shaped bacteria that were motile by means of polar flagella, designated strains KMM 330(T) and KMM 331, were isolated from a deep-sea sponge specimen and subjected to a polyphasic taxonomic study. The new isolates exhibited 16S rRNA gene sequence similarity of 99.9 %, and their mean level of DNA-DNA relatedness was 82 %. Phylogenetic analysis based on their 16S rRNA gene sequences placed the strains within the genus Pseudomonas as an independent deep clade. Strain KMM 330(T) shared highest sequence similarity (96.3 %) with each of Pseudomonas fulva NRIC 0180(T), Pseudomonas parafulva AJ 2129(T) and Pseudomonas luteola IAM 13000(T); sequence similarity to other recognized species of the genus Pseudomonas was below 95.7 %. The marine sponge isolates KMM 330(T) and KMM 331 could be distinguished from the other recognized Pseudomonas species based on a unique combination of their phenotypic characteristics, including growth in 8 or 10 % NaCl, the absence of pigments, the inability to denitrify and lack of carbohydrate utilization. On the basis of phylogenetic analysis, physiological and biochemical characterization, strains KMM 330(T) and KMM 331 should be classified as a novel species of the genus Pseudomonas, for which the name Pseudomonas pachastrellae sp. nov. is proposed. The type strain is KMM 330(T) (=JCM 12285(T)=NRIC 0583(T)=CCUG 46540(T)).

  13. Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica.

    PubMed Central

    Shivaji, S; Rao, N S; Saisree, L; Sheth, V; Reddy, G S; Bhargava, P M

    1989-01-01

    Ten cultures of Pseudomonas spp. were established from soil samples collected in and around a lake in Antarctica. Based on their morphology, biochemical and physiological characteristics, and moles percent G + C of their DNA, they were identified as P. fluorescens, P. putida, and P. syringae. This is the first report on the identification of Pseudomonas spp. from continental Antarctica. PMID:2930174

  14. Pseudomonas Exotoxin A: optimized by evolution for effective killing

    PubMed Central

    Michalska, Marta; Wolf, Philipp

    2015-01-01

    Pseudomonas Exotoxin A (PE) is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells. PMID:26441897

  15. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  16. Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions

    PubMed Central

    2014-01-01

    An amylase and lipase producing bacterium (strain C2) was enriched and isolated from soil regularly contaminated with olive washing wastewater in Sfax, Tunisia. Cell was aerobic, mesophilic, Gram-negative, motile, non-sporulating bacterium, capable of growing optimally at pH 7 and 30°C and tolerated maximally 10% (W/V) NaCl. The predominant fatty acids were found to be C18:1ω7c (32.8%), C16:1ω7c (27.3%) and C16:0 (23.1%). Phylogenetic analysis of the 16S rRNA gene revealed that this strain belonging to the genus Pseudomonas. Strain C2 was found to be closely related to Pseudomonas luteola with more than 99% of similarity. Amylase optimization extraction was carried out using Box Behnken Design (BBD). Its maximal activity was found when the pH and temperature ranged from 5.5 to 6.5 and from 33 to 37°C, respectively. Under these conditions, amylase activity was found to be about 9.48 U/ml. PMID:24405763

  17. Siloxanes removal from biogas by a lab-scale biotrickling filter inoculated with Pseudomonas aeruginosa S240.

    PubMed

    Li, Yunhui; Zhang, Weijiang; Xu, Jiao

    2014-06-30

    Removing volatile methyl siloxanes (VMSs) from biogas remains a longstanding challenge in the field of biological process due to their low bioavailability and biodegradation. To address this issue, a lab-scale aerobic biotrickling filter, packed with porous lava and inoculated with an effective strain of Pseudomonas aeruginosa, was developed and its performance for octamethylcyclotetrasiloxane (D4, selected as a model VMS) removal from an aerobic synthetic gas was monitored. The biotrickling filter exhibited a relatively high removal efficiency over 74% at empty bed residence time of 13.2 min. Rhamnolipids, biosurfactants produced by P. aeruginosa, were identified in the liquid phase of the biotrickling filter by HPLC-MS and ATR-FTIR, and they were found to be the main factor of improving D4 removal. Moreover, dimethylsilanediol, methanol, silicic acid in the liquid phase and carbon dioxide in the gas phase, as the biodegradation products of D4, were determined by GC-MS, silicic acid analysis and non-dispersive infrared analysis. To our knowledge, it is the first time to report the existence of methanol in the D4 degradation products. Finally, a metabolic pathway for D4 degradation by P. aeruginosa was proposed based on our results.

  18. Oxygen-sensitive global regulator, Anr, is involved in the biosynthesis of poly(3-hydroxybutyrate) in Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Méndez, Beatriz S; López, Nancy I

    2010-01-01

    We analyzed the influence of the redox global regulator Anr on the accumulation of poly(3-hydroxybutyrate) (PHB) in Pseudomonas extremaustralis. Anr regulates a set of genes in the aerobic-anaerobic transition including genes involved in nitrate reduction and arginine fermentation. An anr mutant was constructed using PCR-based strategies. The wild-type strain was able to grow in both microaerobic and anaerobic conditions using nitrate as the terminal electron acceptor while the mutant strain was unable to grow under anaerobic conditions. In bioreactor cultures, PHB content in the wild-type strain was higher in microaerobic and anaerobic cultures compared with highly aerated cultures. The mutant strain showed decreased PHB levels in both aerobic and microaerobic conditions compared with the wild-type strain. Inactivation of anr led to decreased expression of phaC and phaR genes as demonstrated in real-time RT-PCR experiments. Associated with the PHB gene region, two putative binding sites for Anr were found that, in line with the phenotype observed in bioreactor cultures, suggest a role of this regulator in PHB biosynthesis.

  19. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri.

    PubMed Central

    Körner, H; Zumft, W G

    1989-01-01

    The onset and cessation of the synthesis of denitrification enzymes of Pseudomonas stutzeri were investigated by using continuous culture and defined dissolved oxygen levels covering the full range of transition from air saturation to complete anaerobiosis. Expression of nitrate reductase, nitrite reductase (cytochrome cd1), and N2O reductase was controlled by discrete oxygen levels and by the nature of the nitrogenous oxide available for respiration. N2O reductase was synthesized constitutively at a low level; for enhanced expression, oxygen concentrations were required to decrease below 5 mg of O2 per liter. The threshold values for synthesis of nitrate reductase and cytochrome cd1 in the presence of nitrate were ca. 5 and ca. 2.5 mg of O2 per liter, respectively. With nitrous oxide as the respiratory substrate, nitrite reductase was again the most sensitive to oxygen concentration; however, thresholds for all denitrification enzymes shifted to lower oxygen levels. Whereas the presence of nitrate resulted in maximum expression and nearly uniform induction of all reductases, nitrite and nitrous oxide stimulated preferably the respective enzyme catalyzing reduction. In the absence of a nitrogenous oxide, anaerobiosis did not induce enzyme synthesis to any significant degree. The accumulation of nitrite seen during both the aerobic-anaerobic and anaerobic-aerobic transition phases was caused by the differences in onset or cessation of synthesis of nitrate and nitrite reductases and an inhibitory effect of nitrate on nitrite reduction. Images PMID:2764573

  20. Proteomic analysis of sulfur-nitrogen-carbon removal by Pseudomonas sp. C27 under micro-aeration condition.

    PubMed

    Guo, Hongliang; Chen, Chuan; Lee, Duu-Jong; Wang, Aijie; Ren, Nanqi

    2014-03-05

    Pseudomonas sp. C27 is a facultative autotrophic bacterium (FAB) that can effectively conduct mixotrophic and heterotrophic denitrifying sulfide removal (DSR) reactions under anaerobic condition using organic matters and sulfide as electron donors. Micro-aeration was proposed to enhance DSR reaction by FAB; however, there is no experimental proof on the effects of micro-aeration on capacity of denitrifying sulfide removal of FAB on proteomic levels. The proteome in total C27 cell extracts was observed by two-dimensional gel electrophoresis. Differentially expressed protein spots and specifically expressed protein spots were identified by MALDI TOF/TOF MS. We identified 55 microaerobic-responsive protein spots, representing 55 unique proteins. Hierarchical clustering analysis revealed that 75% of the proteins were up-regulated, and 5% of the proteins were specifically expressed under micro-aerobic conditions. These enzymes were mainly involved in membrane transport, protein folding and metabolism. The noted expression changes of the microaerobic-responsive proteins suggests that C27 strain has a highly efficient enzyme system to conduct DSR reactions under micro-aerobic condition. Additionally, micro-aeration can increase the rates of protein synthesis and cell growth, and enhance cell defensive system of the strain.

  1. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    PubMed Central

    Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio

    2006-01-01

    Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in

  2. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  3. Haemoglobin, blood volume, cardiac function, and aerobic power.

    PubMed

    Gledhill, N; Warburton, D; Jamnik, V

    1999-02-01

    Alterations in [Hb], which are mediated through changes in arterial oxygen content, and alterations in BV, which are mediated through changes in cardiac output (Q), have a significant effect on both VO2max and aerobic performance. If BV is held constant, a decrease in [Hb] (anaemia) causes a decrease in VO2max and aerobic performance, while an increase in [Hb] (blood doping) causes an increase in VO2max and aerobic performance. If [Hb] is held constant, an increase in BV can cause and increase in both VO2max and aerobic performance, while a decrease in BV can cause a decrease in VO2max and aerobic performance. In addition, an increase in BV can compensate for moderate reductions in [Hb] through increase in Q, allowing VO2max to remain unchanged or even increase. Also, a large portion of the difference in the enhanced cardiovascular function of endurance athletes is due to their high BV and the resultant enhancement of diastolic function. Hence, optimizing both [Hb] and BV is a very important consideration for endurance performance.

  4. Gender difference in anaerobic capacity: role of aerobic contribution.

    PubMed

    Hill, D W; Smith, J C

    1993-03-01

    The purpose of this study was to evaluate effects of gender on anaerobic and aerobic contributions to high-intensity exercise. A group of 38 subjects (22 women, 16 men) performed modified Wingate tests against resistances of 0.086 kg kg-1 body mass (0.844 N kg-1) for women and 0.095 kg kg-1 body mass (0.932 N kg-1) for men. The aerobic contribution to total work performed was determined from breath-by-breath analyses of expired gases during each test. Total work in 30 s was 30% lower (Student's t test; P < 0.01) in women than men (211 +/- 5 J kg-1 versus 299 +/- 14 J kg-1). Aerobic contribution was only 7% lower (P = 0.12) in women than men (53 +/- 1 J kg-1 versus 57 +/- 2 J kg-1). The anaerobic component of the work performed, determined by subtraction of the aerobic component from total work in 30 s, was 35% lower (P < 0.01) in women than men (158 +/- 5 J kg-1 versus 242 +/- 15 J kg-1). It is concluded that, because women provide a relatively higher (P < 0.01) portion of the energy for a 30-s test aerobically than men (25% versus 20%), total work during a Wingate test actually underestimates the gender difference in anaerobic capacity between women and men.

  5. Mood alterations in mindful versus aerobic exercise modes.

    PubMed

    Netz, Yael; Lidor, Ronnie

    2003-09-01

    The results of most recent studies have generally indicated an improvement in mood after participation in aerobic exercise. However, only a few researchers have compared mindful modes of exercise with aerobic exercise to examine the effect of 1 single session of exercise on mood. In the present study, the authors assessed state anxiety, depressive mood, and subjective well-being prior to and following 1 class of 1 of 4 exercise modes: yoga, Feldenkrais (awareness through movement), aerobic dance, and swimming; a computer class served as a control. Participants were 147 female general curriculum and physical education teachers (mean age = 40.15, SD = 0.2) voluntarily enrolled in a 1-year enrichment program at a physical education college. Analyses of variance for repeated measures revealed mood improvement following Feldenkrais, swimming, and yoga but not following aerobic dance and computer lessons. Mindful low-exertion activities as well as aerobic activities enhanced mood in 1 single session of exercise. The authors suggest that more studies assessing the mood-enhancing benefits of mindful activities such as Feldenkrais and yoga are needed.

  6. Strength and aerobic training in overweight females in Gdansk, Poland

    PubMed Central

    Sawczyn, Stanisław; Mishchenko, Viktor; Moska, Waldemar; Sawczyn, Michał; Jagiełło, Marina; Kuehne, Tatiana; Nowak, Robert; Cięszczyk, Paweł

    2015-01-01

    We compared the effects of 16-week-training on rest metabolic rate, aerobic power, and body fat, and the post-exercise effects upon rest oxygen uptake and respiratory exchange ratio in overweight middle-aged females. Twenty nine overweight women (BMI 29.9 ± 1.2 kg*m−2) participated in training (3 days a week). The subjects were divided onto groups of aerobic (AT) and strength (ST) training. The results showed that the total body mass decrease and VO2 max increase did not differ in both groups. Decrease in waist circumference after 16 weeks was higher in the ST group. In the ST group fat-free mass increased during the first 8 weeks. Rest metabolic rate was increased significantly at 16th week compared to initial value in ST group only. Significant increase in post-exercise resting VO2 and respiratory exchange ratio at 12 and 36 h was observed after the strength training session only. Increase in rest metabolic rate and post-exercise rest energy expenditure occurred after strength training but not after aerobic training despite the similar increase in aerobic power. The effect of 8–16 weeks of strength training on body mass decrease was higher in comparison to aerobic training. PMID:28352690

  7. Biotransformation of myrcene by Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet (UV) analysis, gas chromatography (GC), and gas chromatography-mass spectroscopy (GC-MS). Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0%) and α-terpineol (7.7%) and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5%) and 2,6-dimethyloctane (9.3%), with a total yield of 88.8%. PMID:21609445

  8. Development and Dynamics of Pseudomonas sp. Biofilms

    PubMed Central

    Tolker-Nielsen, Tim; Brinch, Ulla C.; Ragas, Paula C.; Andersen, Jens Bo; Jacobsen, Carsten Suhr; Molin, Søren

    2000-01-01

    Pseudomonas sp. strain B13 and Pseudomonas putida OUS82 were genetically tagged with the green fluorescent protein and the Discosoma sp. red fluorescent protein, and the development and dynamics occurring in flow chamber-grown two-colored monospecies or mixed-species biofilms were investigated by the use of confocal scanning laser microscopy. Separate red or green fluorescent microcolonies were formed initially, suggesting that the initial small microcolonies were formed simply by growth of substratum attached cells and not by cell aggregation. Red fluorescent microcolonies containing a few green fluorescent cells and green fluorescent microcolonies containing a few red fluorescent cells were frequently observed in both monospecies and two-species biofilms, suggesting that the bacteria moved between the microcolonies. Rapid movement of P. putida OUS82 bacteria inside microcolonies was observed before a transition from compact microcolonies to loose irregularly shaped protruding structures occurred. Experiments involving a nonflagellated P. putida OUS82 mutant suggested that the movements between and inside microcolonies were flagellum driven. The results are discussed in relation to the prevailing hypothesis that biofilm bacteria are in a physiological state different from planktonic bacteria. PMID:11053394

  9. Ethylene Glycol Metabolism by Pseudomonas putida

    PubMed Central

    Mückschel, Björn; Simon, Oliver; Klebensberger, Janosch; Graf, Nadja; Rosche, Bettina; Altenbuchner, Josef; Pfannstiel, Jens; Huber, Armin

    2012-01-01

    In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol. PMID:23023748

  10. Methylmercury degradation by Pseudomonas putida V1.

    PubMed

    Cabral, Lucélia; Yu, Ri-Qing; Crane, Sharron; Giovanella, Patricia; Barkay, Tamar; Camargo, Flávio A O

    2016-08-01

    Environmental contamination of mercury (Hg) has caused public health concerns with focuses on the neurotoxic substance methylmercury, due to its bioaccumulation and biomagnification in food chains. The goals of the present study were to examine: (i) the transformation of methylmercury, thimerosal, phenylmercuric acetate and mercuric chloride by cultures of Pseudomonas putida V1, (ii) the presence of the genes merA and merB in P. putida V1, and (iii) the degradation pathways of methylmercury by P. putida V1. Strain V1 cultures readily degraded methylmercury, thimerosal, phenylmercury acetate, and reduced mercuric chloride into gaseous Hg(0). However, the Hg transformation in LB broth by P. putida V1 was influenced by the type of Hg compounds. The merA gene was detected in P. putida V1, on the other hand, the merB gene was not detected. The sequencing of this gene, showed high similarity (100%) to the mercuric reductase gene of other Pseudomonas spp. Furthermore, tests using radioactive (14)C-methylmercury indicated an uncommon release of (14)CO2 concomitant with the production of Hg(0). The results of the present work suggest that P. putida V1 has the potential to remove methylmercury from contaminated sites. More studies are warranted to determine the mechanism of removal of methylmercury by P. putida V1.

  11. Characteristics of alcohol dehydrogenases of certain aerobic bacteria representing human colonic flora.

    PubMed

    Nosova, T; Jousimies-Somer, H; Kaihovaara, P; Jokelainen, K; Heine, R; Salaspuro, M

    1997-05-01

    We have recently proposed the existence of a bacteriocolonic pathway for ethanol oxidation [i.e., ethanol is oxidized by alcohol dehydrogenases (ADHs) of intestinal bacteria resulting in high intracolonic levels of reactive and toxic acetaldehyde]. The aim of this in vitro study was to characterize further ADH activity of some aerobic bacteria, representing the normal human colonic flora. These bacteria were earlier shown to possess high cytosolic ADH activities (Escherichia coli IH 133369, Klebsiella pneumoniae IH 35385, Klebsiella oxytoca IH 35339, Pseudomonas aeruginosa IH 35342, and Hafnia alvei IH 53227). ADHs of the tested bacteria strongly preferred NAD as a cofactor. Marked ADH activities were found in all bacteria, even at low ethanol concentrations (1.5 mM) that may occur in the colon due to bacterial fermentation. The Km for ethanol varied from 29.9 mM for K. pneumoniae to 0.06 mM for Hafnia alvei. The inhibition of ADH by 4-methylpyrazole was found to be of the competitive type in 4 of 5 bacteria, and Ki varied from 18.26 +/- 3.3 mM for Escherichia coli to 0.47 +/- 0.13 mM for K. pneumoniae. At pH 7.4, ADH activity was significantly lower than at pH 9.6 in four bacterial strains. ADH of K. oxytoca, however, showed almost equal activities at neutral pH and at 9.6. In conclusion, NAD-linked alcohol dehydrogenases of aerobic colonic bacteria possess low apparent Km's for ethanol. Accordingly, they may oxidize moderate amounts of ethanol ingested during social drinking with nearly maximal velocity. This may result in the marked production of intracolonic acetaldehyde. Kinetic characteristics of the bacterial enzymes may enable some of them to produce acetaldehyde even from endogenous ethanol formed by other bacteria via alcoholic fermentation. The microbial ADHs were inhibited by 4-methylpyrazole by the same competitive inhibition as hepatic ADH, however, with nearly 1000 times lower susceptibility. Individual variations in human colonic flora may thus

  12. Effects of 12 weeks of aerobic training on autonomic modulation, mucociliary clearance, and aerobic parameters in patients with COPD

    PubMed Central

    Leite, Marceli Rocha; Ramos, Ercy Mara Cipulo; Kalva-Filho, Carlos Augusto; Freire, Ana Paula Coelho Figueira; de Alencar Silva, Bruna Spolador; Nicolino, Juliana; de Toledo-Arruda, Alessandra Choqueta; Papoti, Marcelo; Vanderlei, Luiz Carlos Marques; Ramos, Dionei

    2015-01-01

    Introduction Patients with chronic obstructive pulmonary disease (COPD) exhibit aerobic function, autonomic nervous system, and mucociliary clearance alterations. These parameters can be attenuated by aerobic training, which can be applied with continuous or interval efforts. However, the possible effects of aerobic training, using progressively both continuous and interval sessions (ie, linear periodization), require further investigation. Aim To analyze the effects of 12-week aerobic training using continuous and interval sessions on autonomic modulation, mucociliary clearance, and aerobic function in patients with COPD. Methods Sixteen patients with COPD were divided into an aerobic (continuous and interval) training group (AT) (n=10) and a control group (CG) (n=6). An incremental test (initial speed of 2.0 km·h−1, constant slope of 3%, and increments of 0.5 km·h−1 every 2 minutes) was performed. The training group underwent training for 4 weeks at 60% of the peak velocity reached in the incremental test (vVO2peak) (50 minutes of continuous effort), followed by 4 weeks of sessions at 75% of vVO2peak (30 minutes of continuous effort), and 4 weeks of interval training (5×3-minute effort at vVO2peak, separated by 1 minute of passive recovery). Intensities were adjusted through an incremental test performed at the end of each period. Results The AT presented an increase in the high frequency index (ms2) (P=0.04), peak oxygen uptake (VO2peak) (P=0.01), vVO2peak (P=0.04), and anaerobic threshold (P=0.02). No significant changes were observed in the CG (P>0.21) group. Neither of the groups presented changes in mucociliary clearance after 12 weeks (AT: P=0.94 and CG: P=0.69). Conclusion Twelve weeks of aerobic training (continuous and interval sessions) positively influenced the autonomic modulation and aerobic parameters in patients with COPD. However, mucociliary clearance was not affected by aerobic training. PMID:26648712

  13. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  14. Anaerobic and aerobic treatment of chlorinated, aliphatic compounds

    SciTech Connect

    Long, J.L.; Stensel, H.D.; Ferguson, J.F.; Strand, S.E.; Ongerth, J.E.

    1993-01-01

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). The anaerobic culture degraded seven of the feed CACs. The specialized aerobic cultures degraded all but three of the highly chlorinated CACs. The sequential system outperformed either of the other systems alone by degrading 10 of the feed CACs: chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,1,1-trichloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, perchloroethylene, and 1,2,3-trichloropropane, plus the anaerobic metabolites: dichloromethane and cis-1,2-dichloroethylene.

  15. High-intensity aerobic interval exercise in chronic heart failure.

    PubMed

    Meyer, Philippe; Gayda, Mathieu; Juneau, Martin; Nigam, Anil

    2013-06-01

    Aerobic exercise training is strongly recommended in patients with heart failure (HF) and reduced left ventricular ejection fraction (LVEF) to improve symptoms and quality of life. Moderate-intensity aerobic continuous exercise (MICE) is the best established training modality in HF patients. For about a decade, however, another training modality, high-intensity aerobic interval exercise (HIIE), has aroused considerable interest in cardiac rehabilitation. Originally used by athletes, HIIE consists of repeated bouts of high-intensity exercise interspersed with recovery periods. The rationale for its use is to increase exercise time spent in high-intensity zones, thereby increasing the training stimulus. Several studies have demonstrated that HIIE is more effective than MICE, notably for improving exercise capacity in patients with HF. The aim of the present review is to describe the general principles of HIIE prescription, the acute physiological effects, the longer-term training effects, and finally the future perspectives of HIIE in patients with HF.

  16. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    PubMed

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.

  17. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  18. Vocal parameters of aerobic instructors with and without voice problems.

    PubMed

    Wolfe, Virginia; Long, Joanne; Youngblood, Heather Conner; Williford, Henry; Olson, Michelle Scharff

    2002-03-01

    Aerobic instructors frequently experience vocal fatigue and are at risk for the development of vocal fold pathology. Six female aerobic instructors, three with self-reported voice problems and three without, served as subjects. Measures of vocal function (perturbation and EGG) were obtained before and after a 30-minute exercise session. Results showed that the group with self-reported voice problems had greater amounts of jitter, lower harmonic-to-noise ratios, and less periodicity in sustained vowels overall, but no significant differences in measures of perturbation and EGG were found before and immediately after instruction. Measures of vocal parameters showed that subjects with self-reported voice problems projected with relatively greater vocal intensity and phonated for a greater percentage of time across beginning, middle, and ending periods of aerobic instruction than subjects with no reported voice problems.

  19. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration

    PubMed Central

    Lopez, Christopher A.; Miller, Brittany M.; Rivera-Chávez, Fabian; Velazquez, Eric; Byndloss, Mariana X.; Chávez-Arroyo, Alfredo; Lokken, Kristen L.; Tsolis, Renée M.; Winter, Sebastian E.; Bäumler, Andreas J.

    2016-01-01

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration. PMID:27634526

  20. General review of maximal aerobic velocity measurement at laboratory. Proposition of a new simplified protocol for maximal aerobic velocity assessment.

    PubMed

    Berthon, P; Fellmann, N

    2002-09-01

    The maximal aerobic velocity concept developed since eighties is considered as either the minimal velocity which elicits the maximal aerobic consumption or as the "velocity associated to maximal oxygen consumption". Different methods for measuring maximal aerobic velocity on treadmill in laboratory conditions have been elaborated, but all these specific protocols measure V(amax) either during a maximal oxygen consumption test or with an association of such a test. An inaccurate method presents a certain number of problems in the subsequent use of the results, for example in the elaboration of training programs, in the study of repeatability or in the determination of individual limit time. This study analyzes 14 different methods to understand their interests and limits in view to propose a general methodology for measuring V(amax). In brief, the test should be progressive and maximal without any rest period and of 17 to 20 min total duration. It should begin with a five min warm-up at 60-70% of the maximal aerobic power of the subjects. The beginning of the trial should be fixed so that four or five steps have to be run. The duration of the steps should be three min with a 1% slope and an increasing speed of 1.5 km x h(-1) until complete exhaustion. The last steps could be reduced at two min for a 1 km x h(-1) increment. The maximal aerobic velocity is adjusted in relation to duration of the last step.

  1. Assessment of Aerobic Exercise Adverse Effects during COPD Exacerbation Hospitalization

    PubMed Central

    Mesquita, Carolina Bonfanti; Caram, Laura M. O.; Dourado, Victor Zuniga; de Godoy, Irma; Tanni, Suzana Erico

    2017-01-01

    Introduction. Aerobic exercise performed after hospital discharge for exacerbated COPD patients is already recommended to improve respiratory and skeletal muscle strength, increase tolerance to activity, and reduce the sensation of dyspnea. Previous studies have shown that anaerobic activity can clinically benefit patients hospitalized with exacerbated COPD. However, there is little information on the feasibility and safety of aerobic physical activity performed by patients with exacerbated COPD during hospitalization. Objective. To evaluate the effects of aerobic exercise on vital signs in hospitalized patients with exacerbated COPD. Patients and Methods. Eleven COPD patients (63% female, FEV1: 34.2 ± 13.9% and age: 65 ± 11 years) agreed to participate. Aerobic exercise was initiated 72 hours after admission on a treadmill; speed was obtained from the distance covered in a 6-minute walk test (6MWT). Vital signs were assessed before and after exercise. Results. During the activity systolic blood pressure increased from 125.2 ± 13.6 to 135.8 ± 15.0 mmHg (p = 0.004) and respiratory rate from 20.9 ± 4.4 to 24.2 ± 4.5 rpm (p = 0.008) and pulse oximetry (SpO2) decreased from 93.8 ± 2.3 to 88.5 ± 5.7% (p < 0.001). Aerobic activity was considered intense, heart rate ranged from 99.2 ± 11.5 to 119.1 ± 11.1 bpm at the end of exercise (p = 0.092), and patients reached on average 76% of maximum heart rate. Conclusion. Aerobic exercise conducted after 72 hours of hospitalization in patients with exacerbated COPD appears to be safe. PMID:28265180

  2. Plant perceptions of plant growth-promoting Pseudomonas.

    PubMed Central

    Preston, Gail M

    2004-01-01

    Plant-associated Pseudomonas live as saprophytes and parasites on plant surfaces and inside plant tissues. Many plant-associated Pseudomonas promote plant growth by suppressing pathogenic micro-organisms, synthesizing growth-stimulating plant hormones and promoting increased plant disease resistance. Others inhibit plant growth and cause disease symptoms ranging from rot and necrosis through to developmental dystrophies such as galls. It is not easy to draw a clear distinction between pathogenic and plant growth-promoting Pseudomonas. They colonize the same ecological niches and possess similar mechanisms for plant colonization. Pathogenic, saprophytic and plant growth-promoting strains are often found within the same species, and the incidence and severity of Pseudomonas diseases are affected by environmental factors and host-specific interactions. Plants are faced with the challenge of how to recognize and exclude pathogens that pose a genuine threat, while tolerating more benign organisms. This review examines Pseudomonas from a plant perspective, focusing in particular on the question of how plants perceive and are affected by saprophytic and plant growth-promoting Pseudomonas (PGPP), in contrast to their interactions with plant pathogenic Pseudomonas. A better understanding of the molecular basis of plant-PGPP interactions and of the key differences between pathogens and PGPP will enable researchers to make more informed decisions in designing integrated disease-control strategies and in selecting, modifying and using PGPP for plant growth promotion, bioremediation and biocontrol. PMID:15306406

  3. Chemical characterization of some aerobic liquids in CELSS

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1993-01-01

    Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.

  4. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm.

    PubMed

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-02-05

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm.

  5. Metabolism of dibenzofuran by pseudomonas sp. strain HH69 and the mixed culture HH27

    SciTech Connect

    Fortnagel, P.; Harms, H.; Wittich, R.M. ); Krohn, S.; Meyer, H.; Sinnwell, V.; Wilkes, H.; Francke, W. )

    1990-04-01

    A Pseudomonas sp. strain, HH69, and a mixed culture, designated HH27, were isolated by selective enrichment from soil samples. The pure strain and the mixed culture grew aerobically on dibenzofuran as the sole source of carbon and energy. Degradation proceeded via salicylic acid which was branched into the gentisic acid and the catechol pathway. Both salicylic acid and gentisic acid accumulated in the culture medium of strain HH69. The acids were slowly metabolized after growth ceased. The enzymes responsible for their metabolism showed relatively low activities. Besides the above-mentioned acids, 2-hydroxyacetophenone, benzopyran-4-one (chrome), several 2-substituted chroman-4-ones, and traces of the four isomeric monohydroxydibenzofurans were identified in the culture medium. 2,2{prime},3-Trihydroxybiphenyl was isolated from the medium of a dibenzofuran-converting mutant derived from parent strain HH69, which can no longer grow on dibenzofuran. This gives evidence for a novel type of dioxygenases responsible for the attack on the biarylether structure of the dibenzofuran molecule. A meta-fission mechanism for cleavage of the dihydroxylated aromatic nucleus of 2,2{prime},3-trihydroxybiphenyl is suggested as the next enzymatic step in the degradative pathway.

  6. Reduction and Acetylation of 2,4-Dinitrotoluene by a Pseudomonas aeruginosa Strain.

    PubMed

    Noguera, D R; Freedman, D L

    1996-07-01

    Aerobic and anoxic biotransformation of 2,4-dinitrotoluene (DNT) was examined by using a Pseudomonas aeruginosa strain isolated from a plant treating propellant manufacturing wastewater. DNT biotransformation in the presence and absence of oxygen was mostly reductive and was representative of the type of cometabolic transformations that occur when a high concentration of an easily degradable carbon source is present. P. aeruginosa reduced both nitro groups on DNT, with the formation of mainly 4-amino-2-nitrotoluene and 2-amino-4-nitrotoluene and small quantities of 2,4-diaminotoluene. Acetylation of the arylamines was a significant reaction. 4-Acetamide-2-nitrotoluene and the novel compounds 2-acetamide-4-nitrotoluene, 4-acetamide-2-aminotoluene, and 2,4-diacetamidetoluene were identified as DNT metabolites. The biotransformation of 2,4-diaminotoluene to 4-acetamide-2-aminotoluene was 24 times faster than abiotic transformation. 2-Nitrotoluene and 4-nitrotoluene were also reduced to their corresponding toluidines and then acetylated. However, the yield of 4-acetamidetoluene was much higher than that of 2-acetamidetoluene, demonstrating that acetylation at the position para to the methyl group was favored.

  7. Reduction and Acetylation of 2,4-Dinitrotoluene by a Pseudomonas aeruginosa Strain

    PubMed Central

    Noguera, D. R.; Freedman, D. L.

    1996-01-01

    Aerobic and anoxic biotransformation of 2,4-dinitrotoluene (DNT) was examined by using a Pseudomonas aeruginosa strain isolated from a plant treating propellant manufacturing wastewater. DNT biotransformation in the presence and absence of oxygen was mostly reductive and was representative of the type of cometabolic transformations that occur when a high concentration of an easily degradable carbon source is present. P. aeruginosa reduced both nitro groups on DNT, with the formation of mainly 4-amino-2-nitrotoluene and 2-amino-4-nitrotoluene and small quantities of 2,4-diaminotoluene. Acetylation of the arylamines was a significant reaction. 4-Acetamide-2-nitrotoluene and the novel compounds 2-acetamide-4-nitrotoluene, 4-acetamide-2-aminotoluene, and 2,4-diacetamidetoluene were identified as DNT metabolites. The biotransformation of 2,4-diaminotoluene to 4-acetamide-2-aminotoluene was 24 times faster than abiotic transformation. 2-Nitrotoluene and 4-nitrotoluene were also reduced to their corresponding toluidines and then acetylated. However, the yield of 4-acetamidetoluene was much higher than that of 2-acetamidetoluene, demonstrating that acetylation at the position para to the methyl group was favored. PMID:16535348

  8. A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.

    PubMed

    Samin, Ghufrana; Pavlova, Martina; Arif, M Irfan; Postema, Christiaan P; Damborsky, Jiri; Janssen, Dick B

    2014-09-01

    1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase with improved TCP degradation activity into the DCP-degrading bacterium Pseudomonas putida MC4. For this purpose, the dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and was introduced into the genome of strain MC4 using a transposon delivery system. The transposon-located antibiotic resistance marker was subsequently removed using a resolvase step. Growth of the resulting engineered bacterium, P. putida MC4-5222, on TCP was indeed observed, and all organic chlorine was released as chloride. A packed-bed reactor with immobilized cells of strain MC4-5222 degraded >95% of influent TCP (0.33 mM) under continuous-flow conditions, with stoichiometric release of inorganic chloride. The results demonstrate the successful use of a laboratory-evolved dehalogenase and genetic engineering to produce an effective, plasmid-free, and stable whole-cell biocatalyst for the aerobic bioremediation of a recalcitrant chlorinated hydrocarbon.

  9. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by 'pseudomonas cepacia' g4

    SciTech Connect

    Folsom, B.R.; Chapman, P.J.

    1991-01-01

    Of the volatile organic chemicals present in common groundwater contaminants, trichloroethylene (TCE) is the one most commonly found. TCE has been shown to be biodegraded by axenic cultures of aerobic organisms. Pseudomonas cepacia G4 grown in chemostats with phenol demonstrated constant specific degradation rates for both phenol and trichloroethylene (TCE) over a range of dilution rates. Washout of cells from chemostats was evident at a dilution rate of 0.2/h at 28C. Increased phenol concentrations in the nutrient feed led to increased biomass production with constant specific degradation rates for both phenol and TCE. The addition of lactate to the phenol feed led to increased biomass production but lowered specific phenol and TCE degradation rates. The maximum potential for TCE degradation was about 1.1 g per day per g of cell protein. Cell growth and degradation kinetic parameters were used in the design of a recirculating bioreactor for TCE degradation. In the reactor, the total amount of TCE degraded increased as either reaction time or biomass was increased. TCE degradation was observed up to 300 microM TCE with no significant decreases in rates. On the average, the reactor was able to degrade 0.7 g of TCE per day per g of cell protein. The results demonstrate the feasibility of TCE bioremediation through the use of bioreactors. (Copyright (c) 1991, American Society for Microbiology.)

  10. Pseudomoniasis phytotherapy: a review on most important Iranian medicinal plants effective on Pseudomonas aeruginosa

    PubMed Central

    Bahmani, Mahmoud; Rafieian-Kopaei, Mahmoud; Hassanzadazar, Hassan; Taherikalani, Morovat

    2016-01-01

    Background and Objectives: Pseudomonas aeruginosa is a Gram-negative, aerobic bacterium found in water and soil. It is a normal flora in skin and gastrointestinal tract of human beings. P. aeruginosa as an opportunistic pathogen involved in nosocomial infections having multiple pathogenic factors and shows high rate of resistance to different antibiotics. The aim of this study was to identify the most important native medicinal plants of Iran effective on P. aeruginosa. Materials and Methods: All required information was obtained by searching keywords such as P. aeruginosa, medicinal plant extracts or essential oils in published articles in authentic scientific databases such as Science Direct, Wiley-Blackwell, Springer, Google scholar, Scientific Information Database (SID) and Magiran. Results: According to the literature review, our results showed 12 different native medicinal plants were effective against P. aeruginosa in Iran including Eucalyptus camadulensis, Marticaria chamomilla, Ferula gummosa Boiss, Lawsonia inermis, Ocimumgra tissimum, Allium sativum, Satureja hortensis L, Satureja bachtiarica Bunge, Satureja khuzestanica (Jamzad), Thymus daenensis Celak, Thymus carmanicus Jalals and Camellia sinensis. Conclusion: Phytochemical analysis has shown that bioactive compounds of medicinal plants with their antioxidant and antimicrobial properties can be good alternatives for the synthetic medicines in food and drug industry. PMID:28149496

  11. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration.

    PubMed

    Yoon, Mi Young; Lee, Kang-Mu; Park, Yongjin; Yoon, Sang Sun

    2011-01-18

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.

  12. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    PubMed Central

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  13. BTEX biodegradation and its nitrogen removal potential by a newly isolated Pseudomonas thivervalensis MAH1.

    PubMed

    Qu, Dan; Zhao, Yongsheng; Sun, Jiaqiang; Ren, Hejun; Zhou, Rui

    2015-09-01

    Benzene, toluene, ethylbenzene, and xylene (BTEX) are of great environmental concern because of their widespread occurrence in groundwater and soil, posing an increasing threat to human health. The aerobic denitrifying BTEX-degrading bacterium Pseudomonas thivervalensis MAH1 was isolated from BTEX-contaminated sediment under nitrate-reducing conditions. The degradation rates of benzene, toluene, ethylbenzene, and xylene by strain MAH1 were 4.71, 6.59, 5.64, and 2.59 mg·L⁻¹day⁻¹, respectively. The effects of sodium citrate, nitrate, and NaH2PO4 on improving BTEX biodegradation were investigated, and their optimum concentrations were 0.5 g·L⁻¹, 100 mg·L⁻¹, and 0.8 mmol·L⁻¹, respectively. Moreover, MAH1, which has nirS and nosZ genes, removed ammonium, nitrate, and nitrite at 2.49 mg NH(4)(+)-N·L⁻¹·h⁻¹, 1.50 mg NO(3)(-)-N·L⁻¹·h⁻¹, and 0.83 mg NO(2)(-)-N·L⁻¹·h⁻¹, respectively. MAH1 could help in mitigating the pollution caused by nitrogen amendments for biostimulation. This study highlighted the feasibility of using MAH1 for the bioremediation of BTEX-contaminated sites.

  14. Pseudomonas helmanticensis sp. nov., isolated from forest soil.

    PubMed

    Ramírez-Bahena, Martha-Helena; Cuesta, Maria José; Flores-Félix, José David; Mulas, Rebeca; Rivas, Raúl; Castro-Pinto, Joao; Brañas, Javier; Mulas, Daniel; González-Andrés, Fernando; Velázquez, Encarna; Peix, Alvaro

    2014-07-01

    A bacterial strain, OHA11(T), was isolated during the course of a study of phosphate-solubilizing bacteria occurring in a forest soil from Salamanca, Spain. The 16S rRNA gene sequence of strain OHA11(T) shared 99.1% similarity with respect to Pseudomonas baetica a390(T), and 98.9% similarity with the type strains of Pseudomonas jessenii, Pseudomonas moorei, Pseudomonas umsongensis, Pseudomonas mohnii and Pseudomonas koreensis. The analysis of housekeeping genes rpoB, rpoD and gyrB confirmed its phylogenetic affiliation to the genus Pseudomonas and showed similarities lower than 95% in almost all cases with respect to the above species. Cells possessed two polar flagella. The respiratory quinone was Q9. The major fatty acids were C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c/iso-C15 : 0 2-OH). The strain was oxidase-, catalase- and urease-positive, positive for arginine dihydrolase but negative for nitrate reduction, β-galactosidase production and aesculin hydrolysis. It was able to grow at 31 °C and at pH 11. The DNA G+C content was 58.1 mol%. DNA-DNA hybridization results showed values lower than 49% relatedness with respect to the type strains of the seven closest related species. Therefore, the combined genotypic, phenotypic and chemotaxonomic data support the classification of strain OHA11(T) to a novel species of the genus Pseudomonas, for which the name Pseudomonas helmanticensis sp. nov. is proposed. The type strain is OHA11(T) ( = LMG 28168(T) = CECT 8548(T)).

  15. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates.

    PubMed

    Ude, Susanne; Arnold, Dawn L; Moon, Christina D; Timms-Wilson, Tracey; Spiers, Andrew J

    2006-11-01

    The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air-liquid (A-L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments.

  16. Isolation and characterization of group II introns from Pseudomonas alcaligenes and Pseudomonas putida.

    PubMed

    Yeo, C C; Yiin, S; Tan, B H; Poh, C L

    2001-05-01

    Group II introns isolated from Pseudomonas alcaligenes NCIB 9867, Pseudomonas putida NCIB 9869, and P. putida KT2440 were closely related with nucleotide sequence identities of between 87 and 96%. The genome of P. alcaligenes also harbored a truncated group II intron of 682 bp that lacks the gene for the intron-encoded protein (IEP). Unlike most bacterial group II introns, the Pseudomonas introns were found to lack the Zn domains in their IEPs, did not appear to interrupt any genes, and were located downstream of open reading frames which were adjacent to hairpin loop structures that resemble rho-independent terminators. These structures also contain the intron binding sites 1 and 2 (IBS1 and IBS2 sequences) that were required for intron target site recognition in transposition. One of the group II introns found in P. alcaligenes, Xln3, was shown to have transposed from the chromosome to the endogenous pRA2 plasmid at a site adjacent to IBS1- and IBS2-like sequences.

  17. Effect of aerobic training and aerobic and resistance training on the inflammatory status of hypertensive older adults.

    PubMed

    Lima, Leandra G; Bonardi, José M T; Campos, Giulliard O; Bertani, Rodrigo F; Scher, Luria M L; Louzada-Junior, Paulo; Moriguti, Júlio C; Ferriolli, Eduardo; Lima, Nereida K C

    2015-08-01

    There is a relationship between high levels of inflammatory markers and low adhesion to the practice of physical activity in the older population. The objective of the present study was to compare the effect of two types of exercise programs, i.e., aerobic training and aerobic plus resistance training on the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) of elderly hypertensive subjects. Hypertensive older volunteers in use of antihypertensive drugs were randomized to three groups: aerobic group (AG), resistance and aerobic group (RAG) and control group (CG). Training lasted 10 weeks, with sessions held three times a week. Blood samples were collected before training and 24 h after completion of the 30 sessions for the determination of serum IL-6 and TNF-α levels. Body mass index was obtained before and after 10 weeks. After intervention, BMI values were lower in AG and RAG compared to CG (p < 0.001), IL-6 was reduced in AG compared to CG (p = 0.04), and TNF-α levels were lower only in RAG compared to CG (p = 0.01). Concluding, both types of training were effective in reducing BMI values in hypertensive older subjects. Aerobic exercise produced the reduction of plasma IL-6 levels. However, the combination of aerobic and resistance exercise, which would be more indicated for the prevention of loss of functionality with aging, showed lower TNF-α mediator after training than control group and a greater fall of TNF-α levels associated to higher BMI reduction.

  18. Influence of organic and inorganic growth supplements on the aerobic biodegradation of chlorobenzoic acids.

    PubMed

    Fava, F; Armenante, P M; Kafkewitz, D; Marchetti, L

    1995-04-01

    The effect of yeast extract and its less complex substituents on the rate of aerobic dechlorination of 2-chlorobenzoic acid (2-ClBZOH) and 2,5-dichlorobenzoic acid (2,5-Cl2BZOH) by Pseudomonas sp. CPE2 strain, and of 3-chlorobenzoic acid (3-ClBZOH), 4-chlorobenzoic acid (4-ClBZOH) and 3,4-dichlorobenzoic acid (3,4-Cl2BZOH) by Alcaligenes sp. CPE3 strain were investigated. Yeast extract at 50 mg/l increased the average dechlorination rate of 200 mg/l of 4-ClBZOH, 2,5-Cl2BZOH, 3,4-Cl2BZOH, 3-ClBZOH and 2-ClBZOH by about 75%, 70%, 55%, 7%, and 1%, respectively. However, in the presence of yeast extract the specific dechlorination activity of CPE2 and CPE3 cells (per unit biomass) was always lower than without yeast extract, although it increased significantly during the exponential growth phase. When a mixed vitamin solution or a mixed trace element solution was used instead of yeast extract the rate of 4-ClBZOH dechlorination increased by 30%-35%, whereas the rate of 2,5-Cl2BZOH and 3,4-Cl2BZOH dechlorination increased by only 2%-10%. The presence of vitamins or trace elements also resulted in a specific dechlorination activity that was generally higher than that observed for the same cells grown solely on chlorobenzoic acid. The results of this work indicate that yeast extract, a complex mixture of readily oxidizable carbon sources, vitamins, and trace elements, enhances the growth and the dechlorination activity of CPE2 and CPE3 cells, thus resulting in an overall increase in the rate of chlorobenzoic acid utilization and dechlorination.

  19. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria.

  20. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  1. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  2. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  3. Osmoregulation in Pseudomonas aeruginosa under hyperosmotic shock.

    PubMed

    Velasco, R; Burgoa, R; Flores, E; Hernández, E; Villa, A; Vaca, S

    1995-01-01

    Pseudomonas aeruginosa PAO1 strain was found to be able to tolerate 700 mM NaCl. 0.5 mM of the osmoprotectant betaine restablished the growth of this strain in 1200 mM NaCl. Intracellular K+ and glutamate concentrations of P. aeruginosa PAO1 after an hyperosmotic shock (400 mM NaCl) showed a permanent increase. Adition of betaine (0.5 mM) to the medium with NaCl had an inhibitory effect on the intracellular accumulation of glutamate. The results indicate that P. aeruginosa PAO1 resists high NaCl concentrations, K+ accumulation and glutamate synthesis probably being the first mechanisms involved in adaptation to osmotic stress. Also is is demonstrated that betaine modulates intracellular glutamate levels in osmotically stressed P. aeruginosa PAO1.

  4. Fluoranthene degradation in Pseudomonas alcaligenes PA-10.

    PubMed

    Gordon, L; Dobson, A D

    2001-01-01

    Pseudomonas alcaligenes strain PA-10 degrades the four-ring polycyclic aromatic hydrocarbon fluoranthene, co-metabolically. HPLC analysis of the growth medium identified four intermediates, 9-fluorenone-1-carboxylic acid; 9-hydroxy-1-fluorene carboxylic acid; 9-fluorenone and 9-fluorenol, formed during fluoranthene degradation. Pre-exposure of PA-10 to 9-fluorenone-1-carboxylic acid and 9-hydroxy-1-fluorene-carboxylic acid resulted in increases in fluoranthene removal, while pre-exposure to 9-fluorenone and 9-fluorenol resulted in a decrease in fluoranthene degradation. The rate of indole transformation was similarly affected by pre-exposure to these metabolic intermediates, indicating a link between fluoranthene degradation and indigo formation in this strain.

  5. Thermal mitigation of Pseudomonas aeruginosa biofilms

    PubMed Central

    O’Toole, Ann; Ricker, Erica B.; Nuxoll, Eric

    2015-01-01

    Bacterial biofilms infect 2 – 4 % of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7 × 109 CFU cm−2) and subjected to thermal shocks ranging from 50 °C to 80 °C for durations of 1 to 30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control. PMID:26371591

  6. Helping Adults to Stay Physically Fit: Preventing Relapse Following Aerobic Exercise Training.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; And Others

    1984-01-01

    Long-term adherence to an aerobic exercise regime is a major problem among exercise program graduates. This article discusses the steps involved in developing relapse prevention treatment strategies for aerobic exercise programs. (JMK)

  7. [Population development characteristics of rice crop cultivated on aerobic soil with mulching].

    PubMed

    Sheng, Haijun; Shen, Qirong; Feng, Ke

    2004-01-01

    Field experiments were carried out to study the population development characteristics of rice crop cultivated both on aerobic and waterlogged soil conditions. The results showed that the whole growth duration of rice growing on aerobic soil was one week longer than that on waterlogged soil. Shorter and narrower leaves and smaller LAI of rice population were found on aerobic soil than on waterlogged soil, which resulted in a decreased photosynthesis, smaller amount and lighter weight of rice grains on aerobic soil, compared with those on waterlogged soil. Among the aerobic treatments, more tillers, lower percentage of filled grains and shorter duration of grain forming were found on soils covered with plastic film than on soils covered with semi-decomposed straw or without mulching. The rice grain yield was decreased in the order of waterlogged soil > aerobic soil covered with plastic film > aerobic soil covered with semi-decomposed straw > aerobic soil without mulching.

  8. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.

    PubMed

    Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia

    2003-01-01

    A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes.

  9. Two-Dimensional Stable Isotope Fractionation During Aerobic and Anaerobic Alkane Biodegradation and Implications for the Field

    NASA Astrophysics Data System (ADS)

    El Morris, Brandon; Suflita, Joseph M.; Richnow, Hans-Hermann

    2010-05-01

    Quantitatively, n-alkanes comprise a major portion of most crude oils. In petroliferous formations, it may be possible to relate the loss of these compounds to the levels of biodegradation occurring in situ [1]. Moreover, it is important to develop indicators of alkane degradation that may be used to monitor bioremediation of hydrocarbon-impacted environments. Desulfoglaeba alkanexedens and Pseudomonas putida GPo1 were used to determine if carbon and hydrogen stable isotope fractionation could differentiate between n-alkane degradation under anaerobic and aerobic conditions, respectively in the context of the Rayleigh equation model [2]. Bacterial cultures were sacrificed by acidification and headspace samples were analyzed for stable isotope composition using gas chromatography-isotope ratio mass spectrometry. Carbon enrichment factors (bulk) for anaerobic and aerobic biodegradation of hexane were -5.52 ± 0.2‰ and -4.34 ± 0.3‰, respectively. Hydrogen enrichment during hexane degradation was -43.14 ± 6.32‰ under sulfate-reducing conditions, and was too low for quantification during aerobiosis. Collectively, this indicates that the correlation between carbon and hydrogen stable isotope fractionation (may be used to help elucidate in situ microbial processes in oil reservoirs, and during intrinsic as well as engineered remediation efforts. References 1. Asif, M.; Grice, K.; Fazeelat, T., Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Organic Geochemistry 2009, 40, (3), 301-311. 2. Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S. A. B.; Stams, A., J. M.; Schloemann, M.; Richnow, H.-H.; Vogt, C., Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ. Sci. Technol. 2008, 42, 4356-4363.

  10. Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula.

    PubMed

    Kobayashi, Tohru; Koide, Osamu; Mori, Kozue; Shimamura, Shigeru; Matsuura, Takae; Miura, Takeshi; Takaki, Yoshihiro; Morono, Yuki; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Takai, Ken; Horikoshi, Koki

    2008-07-01

    "A meta-enzyme approach" is proposed as an ecological enzymatic method to explore the potential functions of microbial communities in extreme environments such as the deep marine subsurface. We evaluated a variety of extra-cellular enzyme activities of sediment slurries and isolates from a deep subseafloor sediment core. Using the new deep-sea drilling vessel "Chikyu", we obtained 365 m of core sediments that contained approximately 2% organic matter and considerable amounts of methane from offshore the Shimokita Peninsula in Japan at a water depth of 1,180 m. In the extra-sediment fraction of the slurry samples, phosphatase, esterase, and catalase activities were detected consistently throughout the core sediments down to the deepest slurry sample from 342.5 m below seafloor (mbsf). Detectable enzyme activities predicted the existence of a sizable population of viable aerobic microorganisms even in deep subseafloor habitats. The subsequent quantitative cultivation using solid media represented remarkably high numbers of aerobic, heterotrophic microbial populations (e.g., maximally 4.4x10(7) cells cm(-3) at 342.5 mbsf). Analysis of 16S rRNA gene sequences revealed that the predominant cultivated microbial components were affiliated with the genera Bacillus, Shewanella, Pseudoalteromonas, Halomonas, Pseudomonas, Paracoccus, Rhodococcus, Microbacterium, and Flexibacteracea. Many of the predominant and scarce isolates produced a variety of extra-cellular enzymes such as proteases, amylases, lipases, chitinases, phosphatases, and deoxyribonucleases. Our results indicate that microbes in the deep subseafloor environment off Shimokita are metabolically active and that the cultivable populations may have a great potential in biotechnology.

  11. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress.

    PubMed

    Feng, Jinsong; Lamour, Guillaume; Xue, Rui; Mirvakliki, Mehr Negar; Hatzikiriakos, Savvas G; Xu, Jie; Li, Hongbin; Wang, Shuo; Lu, Xiaonan

    2016-12-05

    Campylobacter jejuni is a microaerophilic pathogen and leading cause of human gastroenteritis. The presence of C. jejuni encased in biofilms found in meat and poultry processing facilities may be the major strategy for its survival and dissemination in aerobic environment. In this study, Staphylococcus aureus, Salmonella enterica, or Pseudomonas aeruginosa was mixed with C. jejuni F38011 as a culture to form dual-species biofilms. After 4days' exposure to aerobic stress, no viable C. jejuni cells could be detected from mono-species C. jejuni biofilm. In contrast, at least 4.7logCFU/cm(2) of viable C. jejuni cells existed in some dual-species biofilms. To elucidate the mechanism of protection mode, chemical, physical and morphological features of biofilms were characterized. Dual-species biofilms contained a higher level of extracellular polymeric substances with a more diversified chemical composition, especially for polysaccharides and proteins, than mono-species C. jejuni biofilm. Structure of dual-species biofilms was more compact and their surface was >8 times smoother than mono-species C. jejuni biofilm, as indicated by atomic force microscopy. Under desiccation stress, water content of dual-species biofilms decreased slowly and remained at higher levels for a longer time than mono-species C. jejuni biofilm. The surface of all biofilms was hydrophilic, but total surface energy of dual-species biofilms (ranging from 52.5 to 56.2mJ/m(2)) was lower than that of mono-species C. jejuni biofilm, leading to more resistance to wetting by polar liquids. This knowledge can aid in developing intervention strategies to decrease the survival and dispersal of C. jejuni into foods or environment.

  12. Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr.

    PubMed

    Rompf, A; Hungerer, C; Hoffmann, T; Lindenmeyer, M; Römling, U; Gross, U; Doss, M O; Arai, H; Igarashi, Y; Jahn, D

    1998-08-01

    The oxidative decarboxylation of coproporphyrinogen III catalysed by an oxygen-dependent oxidase (HemF) and an oxygen-independent dehydrogenase (HemN) is one of the key regulatory points of haem biosynthesis in Pseudomonas aeruginosa. To investigate the oxygen-dependent regulation of hemF and hemN, the corresponding genes were cloned from the P. aeruginosa chromosome. Recognition sequences for the Fnr-type transcriptional regulator Anr were detected -44.5 bp from the 5' end of the hemF mRNA transcript and at an optimal distance of -41.5 bp with respect to the transcriptional start of hemN. An approximately 10-fold anaerobic induction of hemN gene expression was mediated by the dual action of Anr and a second Fnr-type regulator, Dnr. Regulation by both proteins required the Anr recognition sequence. Surprisingly, aerobic expression of hemN was dependent only on Anr. An anr mutant did not contain detectable amounts of hemN mRNA and accumulated coproporphyrin III both aerobically and anaerobically, indicating the importance of HemN for aerobic and anaerobic haem formation. Mutation of hemN and hemF did not abolish aerobic or anaerobic growth, indicating the existence of an additional HemN-type enzyme, which was termed HemZ. Expression of hemF was induced approximately 20-fold during anaerobic growth and, as was found for hemN, both Anr and Dnr were required for anaerobic induction. Paradoxically, oxygen is necessary for HemF catalysis, suggesting the existence of an additional physiological function for the P. aeruginosa HemF protein.

  13. Effect of oxygen limitation on the in vitro activity of levofloxacin and other antibiotics administered by the aerosol route against Pseudomonas aeruginosa from cystic fibrosis patients.

    PubMed

    King, Paula; Citron, Diane M; Griffith, David C; Lomovskaya, Olga; Dudley, Michael N

    2010-02-01

    Studies have demonstrated that thickened mucous layers in the lungs of cystic fibrosis (CF) patients contain areas of low oxygen tension. These microaerophilic environments may reduce the activity of aerosol antibiotics used in the management of chronic infection in CF. The aim of this study was to compare the MICs of levofloxacin, tobramycin, amikacin, and aztreonam against Pseudomonas aeruginosa under reference and anaerobic conditions and evaluate the in vitro pharmacodynamics of levofloxacin under aerobic and hypoxic testing conditions. The MICs for 114 isolates of P. aeruginosa from CF patients were determined in cation-adjusted Mueller Hinton broth alone or supplemented with 1% potassium nitrate for anaerobic testing. Levofloxacin time-kill curves were performed under aerobic and hypoxic conditions using strains of P. aeruginosa with elevated efflux pump overexpression and/or target mutations. The MICs of nonmucoid or mucoid P. aeruginosa isolates to levofloxacin incubated under aerobic and anaerobic conditions were similar. In contrast, anaerobic incubation resulted in higher MICs for tobramycin, amikacin, and aztreonam among nonmucoid or mucoid isolates, with > or =4-fold increase in MICs for over 40% of the isolates. Time-kill curves performed in aerobic and hypoxic environments with levofloxacin concentrations attained in CF sputum demonstrated similar activity, approaching a maximum bactericidal effect within 10 min of exposure. Together, these results indicate that the activity of some antibiotics against P. aeruginosa is significantly reduced under conditions relevant to the CF lung environment. In contrast, levofloxacin maintains activity against P. aeruginosa under anaerobic or hypoxic conditions similar to those found in CF microaerophilic environments.

  14. Ergolytic/ergogenic effects of creatine on aerobic power.

    PubMed

    Smith, A E; Fukuda, D H; Ryan, E D; Kendall, K L; Cramer, J T; Stout, J

    2011-12-01

    This study evaluated the effects of creatine (Cr) loading and sex differences on aerobic running performance. 27 men (mean±SD; age: 22.2±3.1 years, ht: 179.5±8.7 cm, wt: 78.0±9.8 kg) and 28 women (age: 21.2±2.1 years, ht: 166.0±5.8 cm, wt: 63.4±8.9 kg) were randomly assigned to either creatine (Cr, di-creatine citrate; n=27) or a placebo (PL; n=28) group, ingesting 1 packet 4 times daily (total of 20 g/day) for 5 days. Aerobic power (maximal oxygen consumption: VO2max) was assessed before and after supplementation using open circuit spirometry (Parvo-Medics) during graded exercise tests on a treadmill. 4 high-speed runs to exhaustion were conducted at 110, 105, 100, and 90% of peak velocity to determine critical velocity (CV). Distances achieved were plotted over times-to-exhaustion and linear regression was used to determine the slopes (critical velocity, CV) assessing aerobic performance. The results indicated that Cr loading did not positively or negatively influence VO2max, CV, time to exhaustion or body mass (p>0.05). These results suggest Cr supplementation may be used in aerobic running activities without detriments to performance.

  15. Thirty-Three Years of Aerobic Exercise Adherence.

    ERIC Educational Resources Information Center

    Kasch, Frederick W.

    2001-01-01

    Followed 15 middle-aged men for 25-33 years while they participated in an aerobic exercise program. Adherence in the sample was 100 percent. Possible explanations for the adherence include program leadership, peer support, written evaluations and progress reports, emphasis on health, early and continued interest in sport and exercise, recognition…

  16. Aerobic Exercise Equipment Preferences among Older Adults: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Looney, Marilyn A.; Rimmer, James H.

    2003-01-01

    Developed an instrument to measure the aerobic exercise equipment preference of a frail older population and applied many-facet Rasch analysis to study construct validity and equipment preferences. Results for 16 participants show the usefulness of many-facet Rasch analysis in guiding instrument revision. (SLD)

  17. Aerobic and anaerobic cecal bacterial flora of commercially processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in the bacterial flora of aerobic and anaerobic cultures of broiler ceca collected from a commercial poultry processing facility were determined. Bacterial isolates from cecal cultures were selected based on the ability of the bacteria to grow in media supplemented with lactate and succ...

  18. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy

    PubMed Central

    Schadler, Keri L.; Thomas, Nicholas J.; Galie, Peter A.; Bhang, Dong Ha; Roby, Kerry C.; Addai, Prince; Till, Jacob E.; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S.; Ryeom, Sandra

    2016-01-01

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant. PMID:27589843

  19. Group Aquatic Aerobic Exercise for Children with Disabilities

    ERIC Educational Resources Information Center

    Fragala-Pinkham, Maria; Haley, Stephen M.; O'Neill, Margaret E.

    2008-01-01

    The effectiveness and safety of a group aquatic aerobic exercise program on cardiorespiratory endurance for children with disabilities was examined using an A-B study design. Sixteen children (11 males, five females) age range 6 to 11 years (mean age 9y 7mo [SD 1y 4mo]) participated in this twice-per-week program lasting 14 weeks. The children's …

  20. Aerobic Capacity in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Verschuren, Olaf; Takken, Tim

    2010-01-01

    This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…

  1. Is Low-Impact Aerobic Dance an Effective Cardiovascular Workout?

    ERIC Educational Resources Information Center

    Williford, Henry N.; And Others

    1989-01-01

    Presents results of an investigation comparing energy cost and cardiovascular responses of aerobic dance routines performed at different intensity levels in varying amounts of energy expenditure. For low-impact dance to meet minimum guidelines suggested by the American College of Sports Medicine, it should be performed at high intensity. (SM)

  2. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  3. Aerobic Capacities of Early College High School Students

    ERIC Educational Resources Information Center

    Loflin, Jerry W.

    2014-01-01

    The Early College High School Initiative (ECHSI) was introduced in 2002. Since 2002, limited data, especially student physical activity data, have been published pertaining to the ECHSI. The purpose of this study was to examine the aerobic capacities of early college students and compare them to state and national averages. Early college students…

  4. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  5. Aerobic response to exercise of the fastest land crab.

    PubMed

    Full, R J; Herreid, C F

    1983-04-01

    To view the aerobic response to exercise, the ghost crab Ocypode guadichaudii was run in a treadmill respirometer at three velocities (0.13, 0.19, and 0.28 km/h) while oxygen consumption (VO2) was monitored. A steady-state VO2 that increased linearly with velocity was attained. VO2 transient periods at the beginning and end of exercise were extremely rapid with half times from 50 to 150 s. The magnitude of oxygen deficit and debt were small and both showed increases with an increase in velocity. Oxygen debt was measured at each velocity after 4-, 10-, and 20-min exercise bouts. No change in the magnitude of oxygen debt was observed with respect to exercise duration. Maximal VO2 was 11.9 times the average resting VO2. Oxygen uptake kinetics have shown only very sluggish and reduced rates in five other more sedentary crab species previously tested. The aerobic response pattern observed in the present study is more comparable to that of exercising mammals and highly aerobic ectothermic vertebrates. This suggests that the ghost crab meets the energy demand of sustained exercise by aerobic ATP production in contrast to many other crab species.

  6. AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA

    EPA Science Inventory

    MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...

  7. Relative importance of aerobic versus resistance training for healthy aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review will focus on the importance of aerobic and resistance modes of physical activity for healthy aging as supported by findings in 2007. In line with public health recommendations, several studies in 2007 employed an exercise paradigm that combined both modes of physical activity. While a...

  8. Aerobic Capacity and Anaerobic Power Levels of the University Students

    ERIC Educational Resources Information Center

    Taskin, Cengiz

    2016-01-01

    The aim of study was to analyze aerobic capacity and anaerobic power levels of the university students. Total forty university students who is department physical education and department business (age means; 21.15±1.46 years for male and age means; 20.55±1.79 years for female in department physical education), volunteered to participate in this…

  9. Aerobic Fitness for the Severely and Profoundly Mentally Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    The booklet discusses the aerobic fitness capacities of severely/profoundly retarded students and discusses approaches for improving their fitness. An initial section describes a method for determining the student's present fitness level on the basis of computations of height, weight, blood pressure, resting pulse, and Barach Index and Crampton…

  10. Waiting to inhale: HIF-1 modulates aerobic respiration.

    PubMed

    Boutin, Adam T; Johnson, Randall S

    2007-04-06

    The hypoxia-inducible factor HIF-1 is known to promote anaerobic respiration during low oxygen conditions (hypoxia). In this issue, Fukuda et al. (2007) expand the range of HIF-1's functions by showing that it modulates aerobic respiration as well.

  11. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  12. Teaching Aerobic Cell Respiration Using the 5Es

    ERIC Educational Resources Information Center

    Patro, Edward T.

    2008-01-01

    The 5E teaching model provides a five step method for teaching science. While the sequence of the model is strictly linear, it does provide opportunities for the teacher to "revisit" prior learning before moving on. The 5E method is described as it relates to the teaching of aerobic cell respiration.

  13. Identification of serum analytes and metabolites associated with aerobic capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies aimed at identifying serum markers of cellular metabolism (biomarkers) that are associated at baseline with aerobic capacity (V02 max) in young, healthy individuals have yet to be reported. Therefore, the goal of the present study was to use the standard chemistry screen and untargeted mass ...

  14. The medically important aerobic actinomycetes: epidemiology and microbiology.

    PubMed Central

    McNeil, M M; Brown, J M

    1994-01-01

    The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes. Images PMID:7923055

  15. In situ aerobic cometabolism of chlorinated solvents: a review.

    PubMed

    Frascari, Dario; Zanaroli, Giulio; Danko, Anthony S

    2015-01-01

    The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.

  16. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  17. Measurement Agreement between Estimates of Aerobic Fitness in Youth: The Impact of Body Mass Index

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Welk, Gregory J.; Laurson, Kelly R.; Brown, Dale D.

    2014-01-01

    Purpose: The purpose of this study was to examine the impact of body mass index (BMI) on the agreement between aerobic capacity estimates from different Progressive Aerobic Cardiorespiratory Endurance Run (PACER) equations and the Mile Run Test. Method: The agreement between 2 different tests of aerobic capacity was examined on a large data set…

  18. Effects of dominant somatotype on aerobic capacity trainability

    PubMed Central

    Chaouachi, M; Chaouachi, A; Chamari, K; Chtara, M; Feki, Y; Amri, M; Trudeau, F

    2005-01-01

    Purpose: This study examined the association between dominant somatotype and the effect on aerobic capacity variables of individualised aerobic interval training. Methods: Forty one white North African subjects (age 21.4±1.3 years; V·o2max = 52.8±5.7 ml kg–1 min–1) performed three exercise tests 1 week apart (i) an incremental test on a cycle ergometer to determine V·o2max and V·o2 at the second ventilatory threshold (VT2); (ii) a VAM-EVAL track test to determine maximal aerobic speed (vV·o2max); and (iii) an exhaustive constant velocity test to determine time limit performed at 100% vV·o2max (tlim100). Subjects were divided into four somatometric groups: endomorphs-mesomorphs (Endo-meso; n = 9), mesomorphs (Meso; n = 11), mesomorphs-ectomorphs (Meso-ecto; n = 12), and ectomorphs (Ecto; n = 9). Subjects followed a 12 week training program (two sessions/week). Each endurance training session consisted of the maximal number of successive fractions for each subject. Each fraction consisted of one period of exercise at 100% of vV·o2max and one of active recovery at 60% of vV·o2max. The duration of each period was equal to half the individual tlim100 duration (153.6±39.7 s). After the training program, all subjects were re-evaluated for comparison with pre-test results. Results: Pre- and post-training data were grouped by dominant somatotype. Two way ANOVA revealed significant somatotype-aerobic training interaction effects (p<0.001) for improvements in vV·o2max, V·o2max expressed classically and according to allometric scaling, and V·o2 at VT2. There were significant differences among groups post-training: the Meso-ecto and the Meso groups showed the greatest improvements in aerobic capacity. Conclusion: The significant somatotype-aerobic training interaction suggests different trainability with intermittent and individualised aerobic training according to somatotype. PMID:16306506

  19. Aerobic Development of Elite Youth Ice Hockey Players.

    PubMed

    Leiter, Jeff R; Cordingley, Dean M; MacDonald, Peter B

    2015-11-01

    Ice hockey is a physiologically complex sport requiring aerobic and anaerobic energy metabolism. College and professional teams often test aerobic fitness; however, there is a paucity of information regarding aerobic fitness of elite youth players. Without this knowledge, training of youth athletes to meet the standards of older age groups and higher levels of hockey may be random, inefficient, and or effective. Therefore, the purpose of this study was to determine the aerobic fitness of elite youth hockey players. A retrospective database review was performed for 200 male AAA hockey players between the ages of 13 and 17 (age, 14.4 ± 1.2 years; height, 174.3 ± 8.5 cm; body mass, 67.2 ± 11.5 kg; body fat, 9.8 ± 3.5%) before the 2012-13 season. All subjects performed a graded exercise test on a cycle ergometer, whereas expired air was collected by either a Parvo Medics TrueOne 2400 or a CareFusion Oxycon Mobile metabolic cart to determine maximal oxygen consumption (V[Combining Dot Above]O2max). Body mass, absolute V[Combining Dot Above]O2max, and the power output achieved during the last completed stage increased in successive age groups from age 13 to 15 years (p ≤ 0.05). Ventilatory threshold (VT) expressed as a percentage of V[Combining Dot Above]O2max and the heart rate (HR) at which VT occurred decreased between the ages of 13 and 14 years (p ≤ 0.05), whereas the V[Combining Dot Above]O2 at which VT occurred increased from the age of 14-15 years. There were no changes in relative V[Combining Dot Above]O2max or HRmax between any successive age groups. The aerobic fitness levels of elite youth ice hockey players increased as players age and mature physically and physiologically. However, aerobic fitness increased to a lesser extent at older ages. This information has the potential to influence off-season training and maximize the aerobic fitness of elite amateur hockey players, so that these players can meet standards set by advanced elite age groups.

  20. Chloroform mineralization by toluene-oxidizing bacteria.

    PubMed Central

    McClay, K; Fox, B G; Steffan, R J

    1996-01-01

    Seven toluene-oxidizing bacterial strains (Pseudomonas mendocina KR1, Burkholderia cepacia G4, Pseudomonas putida F1, Pseudomonas pickettii PKO1, and Pseudomonas sp. strains ENVPC5, ENVBF1, and ENV113) were tested for their ability to degrade chloroform (CF). The greatest rate of CF oxidation was achieved with strain ENVBF1 (1.9 nmol/min/mg of cell protein). CF also was oxidized by P. mendocina KR1 (0.48 nmol/min/mg of cell protein), strain ENVPC5 (0.49 nmol/min/mg of cell protein), and Escherichia coli DH510B(pRS202), which contained cloned toluene 4-monooxygenase genes from P. mendocina KR1 (0.16 nmol/min/mg of cell protein). Degradation of [14C]CF and ion analysis of culture extracts revealed that CF was mineralized to CO2 (approximately 30 to 57% of the total products), soluble metabolites (approximately 15%), a total carbon fraction irreversibly bound to particulate cellular constituents (approximately 30%), and chloride ions (approximately 75% of the expected yield). CF oxidation by each strain was inhibited in the presence of trichloroethylene, and acetylene significantly inhibited trichloroethylene oxidation by P. mendocina KR1. Differences in the abilities of the CF-oxidizing strains to degrade other halogenated compounds were also identified. CF was not degraded by B. cepacia G4, P. putida F1, P. pickettii PKO1, Pseudomonas sp. strain ENV113, or P. mendocina KRMT, which contains a tmo mutation. PMID:8702263

  1. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  2. Pseudomonas Folliculitis Associated with Use of Hot Tubs and Spas.

    ERIC Educational Resources Information Center

    Ramsey, Michael L.

    1989-01-01

    Discusses the history, etiology, diagnosis, histopathology, treatment, and prevention of Pseudomonas Folliculitis, an increasingly common skin infection contracted in hot tubs and, to some extent, in swimming pools. (Author/SM)

  3. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed

    Hampton, K D; Wasilauskas, B L

    1979-05-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented.

  4. Effect of Vincristine Sulfate on Pseudomonas Infections in Monkeys

    PubMed Central

    Saslaw, Samuel; Carlisle, Harold N.; Moheimani, Mohammad

    1972-01-01

    In rhesus monkeys, intravenous challenge with 0.6 × 1010 to 2.2 × 1010Pseudomonas aeruginosa organisms caused acute illness of 4 to 5 days' duration with spontaneous recovery in 13 of 15 monkeys; blood cultures became negative 3 to 17 days after challenge. Leukocytosis was observed in all monkeys. Intravenous or intratracheal inoculation of 2.0 to 2.5 mg of vincristine sulfate was followed by leukopenia in 4 to 5 days. Intravenous inoculation of 4.2 × 1010 to 7.8 × 1010 pyocin type 6 Pseudomonas organisms in monkeys given vincristine sulfate 4 days previously resulted in fatal infection in 11 of 14 monkeys, whereas none of four receiving Pseudomonas alone died. These studies suggest that an antimetabolite-induced leukopenia predisposes to severe Pseudomonas sepsis and that such monkeys may serve as a biological model for study of comparative efficacy of antimicrobial agents. PMID:4631913

  5. New strategies for genetic engineering Pseudomonas syringae using recombination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  6. Genetic construction of recombinant Pseudomonas chlororaphis for improved glycerol utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to improve by genetic engineering the glycerol metabolic capability of Pseudomonas chlororaphis which is capable of producing commercially valuable biodegradable poly(hydroxyalkanoate) (PHA) and biosurfactant rhamnolipids (RLs). In the study, glycerol uptake facilitat...

  7. Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial

    PubMed Central

    Van Sciver, Angela; Mahnken, Jonathan D.; Honea, Robyn A.; Brooks, William M.; Billinger, Sandra A.; Swerdlow, Russell H.; Burns, Jeffrey M.

    2017-01-01

    Background There is increasing interest in the role of physical exercise as a therapeutic strategy for individuals with Alzheimer’s disease (AD). We assessed the effect of 26 weeks (6 months) of a supervised aerobic exercise program on memory, executive function, functional ability and depression in early AD. Methods and findings This study was a 26-week randomized controlled trial comparing the effects of 150 minutes per week of aerobic exercise vs. non-aerobic stretching and toning control intervention in individuals with early AD. A total of 76 well-characterized older adults with probable AD (mean age 72.9 [7.7]) were enrolled and 68 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. Neuropsychological tests and surveys were conducted at baseline,13, and 26 weeks to assess memory and executive function composite scores, functional ability (Disability Assessment for Dementia), and depressive symptoms (Cornell Scale for Depression in Dementia). Cardiorespiratory fitness testing and brain MRI was performed at baseline and 26 weeks. Aerobic exercise was associated with a modest gain in functional ability (Disability Assessment for Dementia) compared to individuals in the ST group (X2 = 8.2, p = 0.02). There was no clear effect of intervention on other primary outcome measures of Memory, Executive Function, or depressive symptoms. However, secondary analyses revealed that change in cardiorespiratory fitness was positively correlated with change in memory performance and bilateral hippocampal volume. Conclusions Aerobic exercise in early AD is associated with benefits in functional ability. Exercise-related gains in cardiorespiratory fitness were associated with improved memory performance and reduced hippocampal atrophy, suggesting cardiorespiratory fitness gains may be important in driving brain benefits. Trial registration ClinicalTrials.gov NCT01128361 PMID:28187125

  8. Control of aerobic glycolysis in the brain in vitro.

    PubMed

    Benjamin, A M; Verjee, Z H

    1980-09-01

    Protoveratrine-(5 microM) stimulated aerobic glycolysis of incubated rat brain cortex slices that accompanies the enhanced neuronal influx of Na+ is blocked by tetrodotoxin (3 microM) and the local anesthetics, cocaine (0.1 mM) and lidocaine (0.5 mM). On the other hand, high [K+]-stimulated aerobic glycolysis that accompanies the acetylcholine-sensitive enhanced glial uptakes of Na+ and water is unaffected by acetylcholine (2 mM). Experiments done under a variety of metabolic conditions show that there exists a better correlation between diminished ATP content of the tissue and enhanced aerobic glycolysis than between tissue ATP and the ATP-dependent synthesis of glutamine. Whereas malonate (2 mM) and amino oxyacetate (5 mM) suppress ATP content and O2 uptake, stimulate lactate formation, but have little effect on glutamine levels, fluoroacetate (3 mM) suppresses glutamine synthesis in glia, presumably by suppressing the operation of the citric acid cycle, with little effect on ATP content, O2 uptake, and lactate formation. Exogenous citrate (5 mM), which may be transported and metabolized in glia but not in neurons, inhibits lactate formation by cell free acetone-dried powder extracts of brain cortex but not by brain cortex slices. These results suggest that the neuron is the major site of stimulated aerobic glycolysis in the brain, and that under our experimental conditions glycolysis in glia is under lesser stringent metabolic control than that in the neuron. Stimulation of aerobic glycolysis by protoveratrine occurs due to diminution of the energy charge of the neuron as a result of stimulation of the sodium pump following tetrodotoxin-sensitive influx of Na+; stimulation by high [K+], NH4+, or Ca2+ deprivation occurs partly by direct stimulation of key enzymes of glycolysis and partly by a fall in the tissue ATP concentration.

  9. Acute aerobic exercise modulates primary motor cortex inhibition.

    PubMed

    Mooney, Ronan A; Coxon, James P; Cirillo, John; Glenny, Helen; Gant, Nicholas; Byblow, Winston D

    2016-12-01

    Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABAB-mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.

  10. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing.

    PubMed

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process.

  11. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing

    PubMed Central

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process. PMID:26461260

  12. Effects of Aerobic Exercise Based upon Heart Rate at Aerobic Threshold in Obese Elderly Subjects with Type 2 Diabetes

    PubMed Central

    Donini, Lorenzo Maria

    2015-01-01

    In obese diabetic subjects, a correct life style, including diet and physical activity, is part of a correct intervention protocol. Thus, the aim of this study was to evaluate the effects of aerobic training intervention, based on heart rate at aerobic gas exchange threshold (AerTge), on clinical and physiological parameters in obese elderly subjects with type 2 diabetes (OT2DM). Thirty OT2DM subjects were randomly assigned to an intervention (IG) or control group (CG). The IG performed a supervised aerobic exercise training based on heart rate at AerTge whereas CG maintained their usual lifestyle. Anthropometric measures, blood analysis, peak oxygen consumption (V˙O2peak), metabolic equivalent (METpeak), work rate (WRpeak), and WRAerTge were assessed at baseline and after intervention. After training, patients enrolled in the IG had significantly higher (P < 0.001) V˙O2peak, METpeak, WRpeak, and WRAerTge and significantly lower (P < 0.005) weight, BMI, %FM, and waist circumference than before intervention. Both IG and CG subjects had lower glycated haemoglobin levels after intervention period. No significant differences were found for all the other parameters between pre- and posttraining and between groups. Aerobic exercise prescription based upon HR at AerTge could be a valuable physical intervention tool to improve the fitness level and metabolic equilibrium in OT2DM patients. PMID:26089890

  13. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    PubMed

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  14. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese.

    PubMed

    Graham, Marilynn H; Bush, Jill A; Olvera, Norma; Puyau, Maurice R; Butte, Nancy F

    2014-10-01

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (≥ 95 th body mass index [BMI] percentile) and 16 children who were considered normal weight (<85th BMI percentile) participated in this study. Performance outcomes included test duration (in minutes) and exercise heart rate (HR) (first-stage and peak HR) for each test. Ninety-five percent confidence intervals and independent t-tests were used to assess differences in primary outcomes. Mean PACER test duration was 1.6 ± 0.6 and 3.1 ± 1.3 minutes for children who were obese and normal weight, respectively. Modified PACER duration was higher than 3 minutes for the obese (3.6 ± 0.6 minutes) and normal weight (5.3 ± 1.2 minutes) groups. Children first-stage HR, expressed as a percent of peak HR, was above the predicted anaerobic threshold during the PACER, but below the anaerobic threshold during the MPACER. Relative first-stage HR was not significantly different between groups for the PACER, but they were significantly different between groups for the MPACER. In conclusion, the MPACER was a better alternative than the PACER for assessing aerobic fitness in Hispanic children who were normal weight and obese. When validated, this modified field test could be used to assess aerobic fitness in Hispanic children, particularly those who are overweight or obese. Additionally, the study provides evidence in which physical educators, personal trainers, and others most apt to assess aerobic fitness in children who are obese, should modify tests originally designed for the population who are normal weight.

  15. Degradation of toluene by a mixed population of archetypal aerobes, microaerophiles, and denitrifiers: laboratory sand column experiment and multispecies biofilm model formulation.

    PubMed

    Kim, Hyun-Su; Jaffé, Peter R

    2008-02-01

    An experiment was conducted in a saturated sand column with three bacterial strains that have different growth characteristics on toluene, Pseudomonas putida F1 which degrades toluene only under aerobic conditions, Thauera aromatica T1 which degrades toluene only under denitrifying conditions, and Ralstonia pickettii PKO1 has a facultative nature and can perform nitrate-enhanced biodegradation of toluene under hypoxic conditions (DO <2 mg/L). Steady-state concentration profiles showed that oxygen and nitrate appeared to be utilized simultaneously, regardless of the dissolved oxygen concentration and the results from fluorescent in-situ hybridization (FISH) indicated that PKO1 maintained stable cells numbers throughout the column, even when the pore water oxygen concentration was high. Since PKO1's growth rate under aerobic condition is much lower than that of F1, except under hypoxic conditions, these observations were not anticipated. Therefore these observations require a mechanistic explanation that can account for localized low oxygen concentrations under aerobic conditions. To simulate the observed dynamics, a multispecies biofilm model was implemented. This model formulation assumes the formation of a thin biofilm that is composed of the three bacterial strains. The individual strains grow in response to the substrate and electron acceptor flux from bulk fluid into the biofilm. The model was implemented such that internal changes in bacterial composition and substrate concentration can be simulated over time and space. The model simulations from oxic to denitrifying conditions compared well to the experimental profiles of the chemical species and the bacterial strains, indicating the importance of accounting for the biological activity of individual strains in biofilms that span different redox conditions.

  16. Spoilage potential of Pseudomonas species isolated from goat milk.

    PubMed

    Scatamburlo, T M; Yamazi, A K; Cavicchioli, V Q; Pieri, F A; Nero, L A

    2015-02-01

    Pseudomonas spp. are usually associated with spoilage microflora of dairy products due to their proteolytic potential. This is of particular concern for protein-based products, such as goat milk cheeses and fermented milks. Therefore, the goal of the present study was to characterize the proteolytic activity of Pseudomonas spp. isolated from goat milk. Goat milk samples (n=61) were obtained directly from bulk tanks on dairy goat farms (n=12), and subjected to a modified International Organization for Standardization (ISO) protocol to determine the number and proteolytic activity of Pseudomonas spp. Isolates (n=82) were obtained, identified by PCR, and subjected to pulsed-field gel electrophoresis with XbaI macro-restriction. Then, the isolates were subjected to PCR to detect the alkaline protease gene (apr), and phenotypic tests were performed to check proteolytic activity at 7°C, 25°C, and 35°C. Mean Pseudomonas spp. counts ranged from 2.9 to 4.8 log cfu/mL, and proteolytic Pseudomonas spp. counts ranged from 1.9 to 4.6 log cfu/mL. All isolates were confirmed to be Pseudomonas spp., and 41 were identified as Pseudomonas fluorescens, which clustered into 5 groups sharing approximately 82% similarity. Thirty-six isolates (46.9%) were positive for the apr gene; and 57 (69.5%) isolates presented proteolytic activity at 7°C, 82 (100%) at 25°C, and 64 (78%) at 35°C. The isolates were distributed ubiquitously in the goat farms, and no relationship among isolates was observed when the goat farms, presence of apr, pulsotypes, and proteolytic activity were taken into account. We demonstrated proteolytic activity of Pseudomonas spp. present in goat milk by phenotypic and genotypic tests and indicated their spoilage potential at distinct temperatures. Based on these findings and the ubiquity of Pseudomonas spp. in goat farm environments, proper monitoring and control of Pseudomonas spp. during production are critical.

  17. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    NASA Astrophysics Data System (ADS)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  18. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step

  19. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds.

    PubMed

    Melendez, J H; Frankel, Y M; An, A T; Williams, L; Price, L B; Wang, N-Y; Lazarus, G S; Zenilman, J M

    2010-12-01

    Chronic wounds cause substantial morbidity and disability. Infection in chronic wounds is clinically defined by routine culture methods that can take several days to obtain a final result, and may not fully describe the community of organisms or biome within these wounds. Molecular diagnostic approaches offer promise for a more rapid and complete assessment. We report the development of a suite of real-time PCR assays for rapid identification of bacteria directly from tissue samples. The panel of assays targets 14 common, clinically relevant, aerobic pathogens and demonstrates a high degree of sensitivity and specificity using a panel of organisms commonly associated with chronic wound infection. Thirty-nine tissue samples from 29 chronic wounds were evaluated and the results compared with those obtained by culture. As revealed by culture and PCR, the most common organisms were methicillin-resistant Staphylococcus aureus (MRSA) followed by Streptococcus agalactiae (Group B streptococcus) and Pseudomonas aeruginosa. The sensitivities of the PCR assays were 100% and 90% when quantitative and qualitative culture results were used as the reference standard, respectively. The assays allowed the identification of bacterial DNA from ten additional organisms that were not revealed by quantitative or qualitative cultures. Under optimal conditions, the turnaround time for PCR results is as short as 4-6 h. Real-time PCR is a rapid and inexpensive approach that can be easily introduced into clinical practice for detection of organisms directly from tissue samples. Characterization of the anaerobic microflora by real-time PCR of chronic wounds is warranted.

  20. Aerobic and anoxic growth and nitrate removal capacity of a marine denitrifying bacterium isolated from a recirculation aquaculture system.

    PubMed

    Borges, Maria-Teresa; Sousa, André; De Marco, Paolo; Matos, Ana; Hönigová, Petra; Castro, Paula M L

    2008-01-01

    Bacterial biofilters used in marine recirculation aquaculture systems need improvements to enhance nitrogen removal efficiency. Relatively little is known about biofilter autochthonous population structure and function. The present study was aimed at isolating and characterizing an autochthonous denitrifying bacterium from a marine biofilter installed at a recirculation aquaculture system. Colonization of four different media in a marine fish farm was followed by isolation of various denitrifying strains and molecular classification of the most promising one, strain T2, as a novel member of the Pseudomonas fluorescens cluster. This strain exhibits high metabolic versatility regarding N and C source utilization and environmental conditions for growth. It removed nitrate through aerobic assimilatory metabolism at a specific rate of 116.2 mg NO(3)-N g dw(-1) h(-1). Dissimilatory NO(3)-N removal was observed under oxic conditions at a limited rate, where transient NO(2)-N formed represented 22% (0.17 mg L(-1)) of the maximum transient NO(2)-N observed under anoxic conditions. Dissimilatory NO(3)-N removal under anoxic conditions occurred at a specific rate of 53.5 mg NO(3)-N g dw(-1) h(-1). The isolated denitrifying strain was able to colonize different materials, such as granular activated carbon (GAC), Filtralite and Bioflow plastic rings, which allow the development of a prototype bioreactor for strain characterization under dynamic conditions and mimicking fish-farm operating conditions.

  1. Availability of O2 as a substrate in the cytoplasm of bacteria under aerobic and microaerobic conditions.

    PubMed

    Arras, T; Schirawski, J; Unden, G

    1998-04-01

    The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O2 tension [pO2] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O2 (corresponding to 7 to 8 microM O2) (1 bar = 10(5) Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and microaerobic conditions (about 10 mbar of O2), the diffusion of O2 into the cytoplasm occurs at high rates sufficient for catabolic processes. This is in agreement with calculated O2 diffusion rates. Below 10 mbar of O2, oxygen became limiting for the oxygenases, probably due to their high Km values, but the diffusion of O2 into the cytoplasm presumably should be sufficiently rapid to maintain ambient oxygen concentrations at oxygen tensions as low as 1 mbar of O2. The consequences of this finding for the availability of O2 as a substrate or as a regulatory signal in the cytoplasm of bacterial cells are discussed.

  2. Availability of O2 as a Substrate in the Cytoplasm of Bacteria under Aerobic and Microaerobic Conditions

    PubMed Central

    Arras, Tanja; Schirawski, Jan; Unden, Gottfried

    1998-01-01

    The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O2 tension [pO2] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O2 (corresponding to 7 to 8 μM O2) (1 bar = 105 Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and microaerobic conditions (about 10 mbar of O2), the diffusion of O2 into the cytoplasm occurs at high rates sufficient for catabolic processes. This is in agreement with calculated O2 diffusion rates. Below 10 mbar of O2, oxygen became limiting for the oxygenases, probably due to their high Km values, but the diffusion of O2 into the cytoplasm presumably should be sufficiently rapid to maintain ambient oxygen concentrations at oxygen tensions as low as 1 mbar of O2. The consequences of this finding for the availability of O2 as a substrate or as a regulatory signal in the cytoplasm of bacterial cells are discussed. PMID:9555896

  3. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs).

  4. Molecular Cloning and Characterization of the Gene Coding for the Aerobic Azoreductase from Xenophilus azovorans KF46F

    PubMed Central

    Blümel, Silke; Knackmuss, Hans-Joachim; Stolz, Andreas

    2002-01-01

    The gene coding for an aerobic azoreductase was cloned from Xenophilus azovorans KF46F (formerly Pseudomonas sp. strain KF46F), which was previously shown to grow with the carboxylated azo compound 1-(4′-carboxyphenylazo)-2-naphthol (carboxy-Orange II) as the sole source of carbon and energy. The deduced amino acid sequence encoded a protein with a molecular weight of 30,278 and showed no significant homology to amino acid sequences currently deposited at the relevant data bases. A presumed NAD(P)H-binding site was identified in the amino-terminal region of the azoreductase. The enzyme was heterologously expressed in Escherichia coli and the azoreductase activities of resting cells and cell extracts were compared. The results suggested that whole cells of the recombinant E. coli strains were unable to take up sulfonated azo dyes and therefore did not show in vivo azoreductase activity. The turnover of several industrially relevant azo dyes by cell extracts from the recombinant E. coli strain was demonstrated. PMID:12147495

  5. Regulation of alkane oxidation in Pseudomonas putida.

    PubMed Central

    Grund, A; Shapiro, J; Fennewald, M; Bacha, P; Leahy, J; Markbreiter, K; Nieder, M; Toepfer, M

    1975-01-01

    We have studied the appearance of whole-cell oxidizing activity for n-alkanes and their oxidation products in strains of Pseudomonas putida carrying the OCT plasmid. Our results indicate that the OCT plasmid codes for inducible alkane-hydroxylating and primary alcohol-dehydrogenating activities and that the chromosome codes for constitutive oxidizing activities for primary alcohols, aliphatic aldehydes, and fatty acids. Mutant isolation confirms the presence of an alcohol dehydrogenase locus on the OCT plasmid and indicated the presence of multiple alcohol and aldehyde dehydrogenase loci on the P. putida chromosome. Induction tests with various compounds indicate that inducer recognition has specificity for chain length and can be affected by the degree of oxidation of the carbon chain. Some inducers are neither growth nor respiration substrates. Growth tests with and without a gratuitous inducer indicate that undecane is not a growth substrate because it does not induce alkane hydroxylase activity. Using a growth test for determining induction of the plasmid alcohol dehydrogenase it is possible to show that heptane induces this activity in hydroxylase-negative mutants. This suggests that unoxidized alkane molecules are the physiological inducers of both plasmid activities. PMID:1150626

  6. Secretion of phospholipase C by Pseudomonas aeruginosa.

    PubMed Central

    Stinson, M W; Hayden, C

    1979-01-01

    The conditions necessary for the secretion of phospholipase C (phosphatidylcholine cholinephosphohydrolase) by Pseudomonas aeruginosa were studied. Enzyme secretion by washed cell suspensions required a carbon source and ammonium, potassium, and calcium ions. The calcium requirement could be substituted by magnesium and strontium but not by copper, manganese, cobalt, or zinc. During growth in liquid medium, cells secreted phospholipase C during late logarithmic and early stationary phases. Secretion was repressed by the addition of inorganic phosphate but not by organic phosphates, glucose, or sodium succinate. Studies with tetracycline indicated that de novo protein synthesis was necessary for the secretion of phospholipase C and that the exoenzyme was not released from a preformed periplasmic pool. Similarly, extraction of actively secreting cells with 0.2 M MgCl2 at pH 8.4 solubilized large quantities of the periplasmic enzyme alkaline phosphatase but insignificant amounts of phospholipase C. Bacteria continued to secrete enzyme for nearly 45 min after the addition of inorganic phosphate or rifampin. Images PMID:114487

  7. Nitrite inhibition of denitrification by Pseudomonas fluorescens

    SciTech Connect

    Almeida, J.S.; Julio, S.M.; Reis, M.A.M. |

    1995-05-05

    Using a pure culture of Pseudomonas fluorescens as a model system nitrite inhibition of denitrification was studied. A mineral media with acetate and nitrate as sole electron donor and acceptor, respectively, was used. Results obtained in continuous stirred-tank reactors (CSTR) operated at pH values between 6.6 and 7.8 showed that growth inhibition depended only on the nitrite undissociated fraction concentration (nitrous acid). A mathematical model to describe this dependence is put forward. The maximum nitrous acid concentration compatible with cell growth and denitrification activity was found to be 66 {mu}g N/L. Denitrification activity was partially associated with growth, as described by the Luedeking-Piret equation. However, when the freshly inoculated reactor was operated discontinuously, nitrite accumulation caused growth uncoupling from denitrification activity. The authors suggest that these results can be interpreted considering that (a) nitrous acid acts as a proton uncoupler; and (b) cultures continuously exposed to nitrous acid prevent the uncoupling effect but not the growth inhibition. Examination of the growth dependence on nitrite concentration at pH 7.0 showed that adapted cultures (growth on CSTR) are less sensitive to nitrous acid inhibition than the ones cultivated in batch.

  8. Comprehensive transposon mutant library of Pseudomonas aeruginosa

    PubMed Central

    Jacobs, Michael A.; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V.; Manoil, Colin

    2003-01-01

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering. PMID:14617778

  9. Comprehensive transposon mutant library of Pseudomonas aeruginosa.

    PubMed

    Jacobs, Michael A; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V; Manoil, Colin

    2003-11-25

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.

  10. Chemotaxis by Pseudomonas syringae pv. tomato.

    PubMed

    Cuppels, Diane A

    1988-03-01

    Optimal laboratory conditions for studying chemotaxis by Pseudomonas syringae pv. tomato were determined by using the Adler capillary tube assay. Although they are not an absolute requirement for chemotaxis, the presence of 0.1 mM EDTA and 1 mM MgCl(2) in the chemotaxis buffer (10 mM potassium phosphate [pH 7.2]) significantly enhanced the response to attractant. The addition of mannitol as an energy source had little effect. The optimal temperature for chemotaxis was 23 degrees C, which is 5 degrees C below the optimal growth temperature for this pathogen. The best response occurred when the bacteria were exposed to attractant for 60 min at a concentration of approximately 5 x 10 CFU/ml. P. syringae pv. tomato was strongly attracted to citric and malic acids, which are the predominant organic acids in tomato fruit. With the exception of asparagine, the major amino acids of tomatoes were weak to moderate attractants. Glucose and fructose, which account for approximately 47% of tomato dry matter, also elicited poor responses. In assays with tomato intercellular fluid and leaf surface water, the bacterial speck pathogen could not chemotactically distinguish between a resistant and a susceptible cultivar of tomato.

  11. Effect of temperature on Pseudomonas fluorescens chemotaxis.

    PubMed

    Lynch, W H

    1980-07-01

    The effects of temperature and attractants on chemotaxis in psychrotrophic Pseudomonas fluorescens were examined using the Adler capillary assay technique. Several organic acids, amino acids, and uronic acids were shown to be attractants, whereas glucose and its oxidation products, gluconate and 2-ketogluconate, elicited no detectable response. Chemotaxis toward many attractants was dependent on prior growth of the microorganism with these compounds. However, the organic acids, malate and succinate, caused strong chemotactic responses regardless of the carbon source used for growth of the bacteria. The temperature at which the cells were grown (30 or 5 degrees C) had no significant detectable effect on chemotaxis to the above attractants. The temperature at which the cells were assayed appeared to affect the rate but the extent of the chemotactic response, nor the concentration response curves. The ratios of the rate of accumulation of cells to the attractant malate were approximately 2, 4, and 1 at 30, 17, and 5 degrees C, respectively. Strong chemotactic responses were observed with cells assayed at temperatures approaching 0 degree C and appeared to be functional over a broad temperature range of 3 to 35 degrees C.

  12. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  13. Regulation of Leucine Catabolism in Pseudomonas putida

    PubMed Central

    Massey, Linda K.; Conrad, Robert S.; Sokatch, John R.

    1974-01-01

    The generation time of Pseudomonas putida with l-leucine was 20 h in synthetic media but only 3 h with d-leucine. Slow growth in the presence of l-leucine was partially overcome by addition of 0.1 mM amounts of either d-valine, l-valine, or 2-ketoisovalerate. The activities of five enzymes which take part in the oxidation of leucine by P. putida were measured under various conditions of growth. Four enzymes were induced by growth with dl-leucine as sole source of carbon: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-methylcrotonyl-coenzyme A carboxylase, and 3-hydroxy-3-methylglutaryl-coenzyme A lyase. The segment of the pathway required for oxidation of 3-methylcrotonate was induced by growth on isovalerate or 3-methylcrotonate without formation of the preceding enzymes. The synthesis of carboxylase and lyase appeared to have been repressed by the addition of l-glutamate or glucose to cells growing on dl-leucine as the sole carbon source. Mutants unable to grow at the expense of isovalerate had reduced levels of carboxylase and lyase, whereas the levels of three enzymes common to the catabolism of all three branched-chain amino acids and those of two isoleucine catabolic enzymes were normal. PMID:4150714

  14. Evolutionary convergence in experimental Pseudomonas populations.

    PubMed

    Lind, Peter A; Farr, Andrew D; Rainey, Paul B

    2017-03-01

    Model microbial systems provide opportunity to understand the genetic bases of ecological traits, their evolution, regulation and fitness contributions. Experimental populations of Pseudomonas fluorescens rapidly diverge in spatially structured microcosms producing a range of surface-colonising forms. Despite divergent molecular routes, wrinkly spreader (WS) niche specialist types overproduce a cellulosic polymer allowing mat formation at the air-liquid interface and access to oxygen. Given the range of ways by which cells can form mats, such phenotypic parallelism is unexpected. We deleted the cellulose-encoding genes from the ancestral genotype and asked whether this mutant could converge on an alternate phenotypic solution. Two new traits were discovered. The first involved an exopolysaccharide encoded by pgaABCD that functions as cell-cell glue similar to cellulose. The second involved an activator of an amidase (nlpD) that when defective causes cell chaining. Both types form mats, but were less fit in competition with cellulose-based WS types. Surprisingly, diguanylate cyclases linked to cellulose overexpression underpinned evolution of poly-beta-1,6-N-acetyl-d-glucosamine (PGA)-based mats. This prompted genetic analyses of the relationships between the diguanylate cyclases WspR, AwsR and MwsR, and both cellulose and PGA. Our results suggest that c-di-GMP regulatory networks may have been shaped by evolution to accommodate loss and gain of exopolysaccharide modules facilitating adaptation to new environments.

  15. Developing an international Pseudomonas aeruginosa reference panel.

    PubMed

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-12-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.

  16. Pseudomonas biofilms: possibilities of their control.

    PubMed

    Masák, Jan; Čejková, Alena; Schreiberová, Olga; Rezanka, Tomáš

    2014-07-01

    Genus Pseudomonas includes a large number of species that can be encountered in biotechnological processes as well as in the role of serious human or plant pathogens. Pseudomonads easily form biofilms on various types of surfaces. The biofilm phenotype is characterized by an increased resistance to environmental influences including resistance to antibiotics and other disinfectants, causing a number of problems in health care, food industry, and other areas. Considerable attention is therefore paid to the possibilities of eradication/destruction of pseudomonads biofilms both in terms of understanding the mechanisms of biofilm formation and at the level of finding suitable antibiofilm tools applicable in practice. The first part of this review is devoted to an overview of the regulatory mechanisms that are directly or indirectly involved in the formation of biofilm. The most effective approaches to suppressing the formation of biofilm that do not cause the development of resistance are based on the application of substances that interfere with the regulatory molecules or block the appropriate regulatory mechanisms involved in biofilm development by the cells. Pseudomonads biofilm formation is, similar to other microorganisms, a sophisticated process with many regulatory elements. The suppression of this process therefore also requires multiple antibiofilm tools.

  17. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  18. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  19. [Characterization of the Lipopolysaccharides of Pseudomonas chlororaphis].

    PubMed

    Varbanets, L D; Zdorovenko, E L; Kiprianova, E A; Avdeeva, L V; Brovarskaya, O S; Rybalko, S L

    2015-01-01

    Lipopolysaccharides (LPS) from two strains ot Pseudomonas chlororaphis subsp. aureofaciens,UCM B-111 and UCM B-306, were isolated and characterized. The LPS preparations exhibited low toxicity, high pyrogenicity and high antiviral activity. Mild acid hydrolysis was used to obtain the O-specific polysaccharides. Their structures were established by monosaccharide analysis and determination of absolute configurations, as well as by 1D and 2D NMR spectroscopy. The O-polysaccharides were shown to contain the linear tri- or tetrasaccharide repeating units. Both O-polysaccharides were structurally heterogeneous: P. chlororaphis subsp. aureofaciens UCM B-111--> 4)-αD-GalpNAc6Ac-(1 --> 3)-β-D-QuipNAc-(1 --> 6)-αD-GlcpNAc-(l --> βD-GlcpNAc-(l --> 3)] GalNAc -60%; degree of the non-stoichiometric 6-O-acetylation of GalNAc -60%; P. chlorophis subsp. aureofaciens UCM B-306 --> 3)-α-D-Rhap-(1 --> 4)-α-D-GalpNAcAN-(1 --> 3)-αD-QuipNAc4NAc-(1 -->, where GalNAcAN is 2-acetamido-2-deoxy-D-galacturonamide, the degree of non-stoichiometric amidation of the GalNAcA residue -60%.

  20. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    SciTech Connect

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  1. Anamet anaerobic-aerobic treatment of concentrated wastewaters

    SciTech Connect

    Frostell, B.

    1982-01-01

    The process, consisting of a closed anaerobic tank reactor with side mounted agitator and electric heaters to control temperature at 35-37 degrees, an external solids separator for recycle of anaerobic sludge, an open aerobic tank reactor with an air sparger at the bottom, and a conical settling clarifier to separate and recycle aerobic sludge, decreased the COD from 3-89 to 0.10-18 and the BOD5 from 1.4-26 to 0.03-0.30 g O2/L in dairy, vegetable cannery, beet sugar, wheat starch, mixed pulp and paper, citric acid, and rum distillery wastewater. Recoveries of CH4-containing gas produced by the process were 69-107% of theory. Total excess sludge production was only 0.05 kg/kg COD added or 0.06 kg/kg COD removed.

  2. Aerobic and microaerophilic actinomycetes of typical agropeat and peat soils

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Gryadunova, A. A.; Pozdnyakov, A. I.; Zvyagintsev, D. G.

    2008-02-01

    A high number (from tens of thousands to millions of CFU/g of soil) of actinomycetes and a high diversity of genera were found in typical peat and agropeat soils. Agricultural use increases the number and diversity of the actinomycete complexes of the peat soils. In the peat soils, the actinomycete complex is represented by eight genera: Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, Saccharopolyspora, Saccharomonospora, and Microtetraspora. A considerable share of sporangial forms in the actinomycete complex of the peat soils not characteristic of the zonal soils was revealed. The number of actinomycetes that develop under aerobic conditions is smaller by 10-100 times than that of aerobic forms in the peat soils. Among the soil actinomycetes of the genera Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, and Microtetraspora, the microaerophilic forms were found; among the Saccharopolyspora and Saccharomonospora, no microaerophilic representatives were revealed.

  3. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: Purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13

    SciTech Connect

    Schirmer, A.; Jendrossek, D.; Schlegel, H.G. )

    1993-04-01

    Poly(3-hydroxyoctanoic acid)[P(3HO)] and other poly(hydroxyalkanoic acids) PHA are widespread bacterial storage compounds of carbon and reducing power. They are biodegradable to carbon dioxide and water, and both aerobic and anaerobic P(3HB)-degradable bacteria are widely distributed in various ecosytems: soil, activated sludge, lake water and air, sea water, estuarine sediment, and anaerobic sewage sludge. This study describes the isolation and characterization of P(3HO) degrading bacteria: Alcaligenes eutrophus, Comamonas violaceum, Pseudomonas citronellolis, and P. fluorescenes (2 strains). The authors also describe purified P(3HO) depolymerase and compared it to PHB and PHA deploymerases. P(3HO) depolymerase activity was found not only in the sulture supernatant but also in the soluble fraction and membrane fractions of P(3HO) grown cells.39 refs.,5 figs.,3 tabs.

  4. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation.

    PubMed

    Pezzoni, Magdalena; Meichtry, Martín; Pizarro, Ramón A; Costa, Cristina S

    2015-01-01

    One of the main stress factors that bacteria face in the environment is solar ultraviolet-A (UVA) radiation, which leads to lethal effects through oxidative damage. The aim of this work was to investigate the role of 2-heptyl-3-hydroxi-4-quinolone (the Pseudomonas quinolone signal or PQS) in the response of Pseudomonas aeruginosa to UVA radiation. PQS is an intercellular quorum sensing signal associated to membrane vesicles which, among other functions, regulates genes related to iron acquisition, forms stable complexes with iron and participates in oxidative phenomena. UVA exposure of the wild-type PAO1 strain and a pqsA mutant unable to produce PQS revealed a sensitising role for this signal. Research into the mechanism involved in this phenomenon revealed that catalase, an essential factor in the UVA defence, is not related to PQS-mediated UVA sensitivity. Absorption of UVA by PQS produced its own photo-degradation, oxidation of the probe 2',7'- dichlorodihydrofluorescein and generation of singlet oxygen and superoxide anion, suggesting that this signal could be acting as an endogenous photosensitiser. The results presented in this study could explain the high sensitivity to UVA of P. aeruginosa when compared to enteric bacteria.

  5. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS).

    PubMed

    McGrath, Stephen; Wade, Dana S; Pesci, Everett C

    2004-01-15

    The opportunistic human pathogen Pseudomonas aeruginosa regulates the production of numerous virulence factors via the action of two separate but coordinated quorum sensing systems, las and rhl. These systems control the transcription of genes in response to population density through the intercellular signals N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and N-(butanoyl)-L-homoserine lactone (C(4)-HSL). A third P. aeruginosa signal, 2-heptyl-3-hydroxy-4-quinolone [Pseudomonas quinolone signal (PQS)], also plays a significant role in the transcription of multiple P. aeruginosa virulence genes. PQS is intertwined in the P. aeruginosa quorum sensing hierarchy with its production and bioactivity requiring the las and rhl quorum sensing systems, respectively. This report presents a preliminary transcriptional analysis of pqsA, the first gene of the recently discovered PQS biosynthetic gene cluster. We show that pqsA transcription required pqsR, a transcriptional activator protein encoded within the PQS biosynthetic gene cluster. It was also found that the transcription of pqsA and subsequent production of PQS was induced by the las quorum sensing system and repressed by the rhl quorum sensing system. In addition, PQS production was dependent on the ratio of 3-oxo-C(12)-HSL to C(4)-HSL, suggesting a regulatory balance between quorum sensing systems. These data are an important early step toward understanding the regulation of PQS synthesis and the role of PQS in P. aeruginosa intercellular signaling.

  6. The evolutionary stability of cytochrome c-551 in Pseudomonas aeruginosa and Pseudomonas fluorescens biotype C

    PubMed Central

    Ambler, R. P.

    1974-01-01

    Cytochrome c-551 was prepared from nine different strains of Pseudomonas aeruginosa and six of Pseudomonas fluorescens biotype C, and their amino acid sequences were compared with the sequences previously determined for the cytochromes of type strains of each species. The standard of sequence examination was such that all single amino acid substitutions, delections or insertions ought to have been detected. Balanced double changes in sites in the same part of the sequence might have escaped detection. The standard of some of the quantitative amino acid analyses was not as high as would be required for the investigation of completely unknown sequences. Eight of the Ps. aeruginosa sequences could not be distinguished from the type sequence, whereas the ninth had a single amino acid substitution. The sequences from Ps. fluorescens biotype C were more varied, differing in from zero to four substitutions from the type sequence, with the most diverse sequences differing in seven positions. The results for Ps. aeruginosa are interpreted as evidence that neutral mutations are not responsible for much molecular evolution. The superficially paradoxical differences in the results for the two species are discussed. PMID:4362497

  7. COMPARATIVE TAXONOMY OF CRYSTALLOGENIC STRAINS OF PSEUDOMONAS AERUGINOSA AND PSEUDOMONAS CHLORORAPHIS

    PubMed Central

    Haynes, William C.; Rhodes, Lenora J.

    1962-01-01

    Haynes, William C. (Northern Utilization Research and Development Division, Peoria, Ill.) and Lenora J. Rhodes. Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bacteriol. 84:1080–1084. 1962.—Only 11 of 39 strains received in the Agricultural Research Service Culture Collection under the designation Pseudonomas chlororaphis proved to be authentic; 28 were typical, pyocyanogenic strains of P. aeruginosa. The reason for this disproportionately high rate of misidentification apparently arises from an erroneous belief that the ability to produce green and yellow crystals of chlororaphin and oxychlororaphin is confined to P. chlororaphis. The ability of many strains of P. aeruginosa to do likewise is not well known. Inasmuch as the characteristic is not unique to P. chlororaphis, other criteria are required to distinguish crystallogenic strains of these species. After a taxonomic comparison of 18 strains of P. chlororaphis and 47 crystallogenic strains of P. aeruginosa, it was determined that there are three main distinctions: (i) P. aeruginosa grows well at 42 C but fails to grow upon serial transfer at 5 C, whereas P. chlororaphis fails to grow at 42 C, but grows well at 5 C: (ii) most strains of P. aeruginosa produce pyocyanin, whereas P. chlororaphis strains do not; (iii) P. aeruginosa cells possess only one or two polar flagella, whereas P. chlororaphis usually has at least four, sometimes as many as eight, polar flagella. PMID:13963593

  8. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females.

    PubMed

    Myers, Terrence R; Schneider, Matthew G; Schmale, Matthew S; Hazell, Tom J

    2015-06-01

    This study aimed to determine whether a time-effective whole-body aerobic resistance training circuit using only body weight exercises is as effective in improving aerobic and anaerobic fitness, as well as muscular strength and endurance as a traditional concurrent style training combining resistance and endurance training. Thirty-four sedentary females (20.9 ± 3.2 years; 167.6 ± 6.4 cm; 65.0 ± 15.2 kg) were assigned to either: (a) a combined resistance and aerobic exercise group (COMBINED; n = 17) or (b) a circuit-based whole-body aerobic resistance training circuit group (CIRCUIT; n = 17). Training was 3 days per week for 5 weeks. Pre- and post-training measures included a (Equation is included in full-text article.)test, anaerobic Wingate cycling test, and muscular strength and endurance tests. After training, (Equation is included in full-text article.)improved with CIRCUIT by 11% (p = 0.015), with no change for COMBINED (p = 0.375). Both relative peak power output and relative average power output improved with CIRCUIT by 5% (p = 0.027) and 3.2% (p = 0.006), respectively, and with COMBINED by 5.3% (p = 0.025) and 5.1% (p = 0.003). Chest and hamstrings 1 repetition maximum (1RM) improved with CIRCUIT by 20.6% (p = 0.011) and 8.3% (p = 0.022) and with COMBINED by 35.6% (p < 0.001) and 10.2% (p = 0.004), respectively. Only the COMBINED group improved back (11.7%; p = 0.017) and quadriceps (9.6%; p = 0.006) 1RM. The COMBINED group performed more repetitions at 60% of their pretraining 1RM for back (10.0%; p = 0.006) and hamstring (23.3%; p = 0.056) vs. CIRCUIT. Our results suggest that a circuit-based whole-body aerobic resistance training program can elicit a greater cardiorespiratory response and similar muscular strength gains with less time commitment compared with a traditional resistance training program combined with aerobic exercise.

  9. Physiological adaptation in noncompetitive rock climbers: good for aerobic fitness?

    PubMed

    Rodio, Angelo; Fattorini, Luigi; Rosponi, Alessandro; Quattrini, Filippo M; Marchetti, Marco

    2008-03-01

    The present investigation aimed to establish whether noncompetitive rock climbing fulfills sports medicine recommendations for maintaining a good level of aerobic fitness. The physiological profile of 13 rock climbers, 8 men (age, 43 +/- 8 years) and 5 women (age, 31 +/- 8 years) was assessed by means of laboratory tests. Maximal aerobic power (VO2peak) and ventilatory threshold (VT) were assessed using a cycloergometer incremental test. During outdoor rock face climbing, VO2 and heart rate (HR) were measured with a portable metabolimeter and the relative steady-state values (VO2 and HR during rock climbing) were computed. Blood lactate was measured during recovery. All data are presented as mean +/- SD. VO2 was 39.1 +/- 4.3 mL.kg.min in men and 39.7 +/- 5 mL.kg.min in women, while VT was 29.4 +/- 3.0 mL.kg.min in men and 28.8 +/- 4.6 mL.kg.min in women. The VO2 during rock climbing was 28.3 +/- 1.5 mL.kg.min in men and 27.5 +/- 3.7 mL.kg.min in women. The HR during rock climbing was 144 +/- 16 b.min in men and 164 +/- 13 b.min in women. The aerobic profile was classified from excellent to superior in accordance with the standards of the American College of Sports Medicine (ACSM). The exercise intensity (VO2 during rock climbing expressed as a percentage of VO2peak) was 70 +/- 6% in men and 72 +/- 8% in women. Moreover, the energy expenditure was 1000-1500 kcal per week. In conclusion, noncompetitive rock climbing has proved to be a typical aerobic activity. The intensity of exercise is comparable to that recommended by the American College of Sports Medicine to maintain good cardiorespiratory fitness.

  10. Aerobic vs anaerobic exercise training effects on the cardiovascular system.

    PubMed

    Patel, Harsh; Alkhawam, Hassan; Madanieh, Raef; Shah, Niel; Kosmas, Constantine E; Vittorio, Timothy J

    2017-02-26

    Physical exercise is one of the most effective methods to help prevent cardiovascular (CV) disease and to promote CV health. Aerobic and anaerobic exercises are two types of exercise that differ based on the intensity, interval and types of muscle fibers incorporated. In this article, we aim to further elaborate on these two categories of physical exercise and to help decipher which provides the most effective means of promoting CV health.

  11. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  12. Aerobic vs anaerobic exercise training effects on the cardiovascular system

    PubMed Central

    Patel, Harsh; Alkhawam, Hassan; Madanieh, Raef; Shah, Niel; Kosmas, Constantine E; Vittorio, Timothy J

    2017-01-01

    Physical exercise is one of the most effective methods to help prevent cardiovascular (CV) disease and to promote CV health. Aerobic and anaerobic exercises are two types of exercise that differ based on the intensity, interval and types of muscle fibers incorporated. In this article, we aim to further elaborate on these two categories of physical exercise and to help decipher which provides the most effective means of promoting CV health. PMID:28289526

  13. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  14. Treatment of Industrial Process Effluents & Contaminated Groundwater Using the Biological Granular Activated Carbon-Fluidized Bed Reactor (GAC-FBR) Process. Volume II

    DTIC Science & Technology

    2007-11-02

    which degrade toluene and phenol as well as benzene including Pseudomonas mendocina KR1 (Winter et al. 1989), Pseudomonas putida Fl (Wackett and Gibson...1988), Burkeholderia cepacia G4 (Shields et al., 1989; Folsom et al., 1990), Pseudomonas pickettii PKO1 (Kukor and Olsen, 1990), and Pseudomonas ...sp. (Ensign et al., 1992), Alcaligenes denitrificans subsp. xylooxidans JE75, and Rhodococcus erthyropolis JE77 (Ewers et al., 1990). In the early

  15. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  16. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  17. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  18. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose.

  19. Concentric left ventricular morphology in aerobically trained kayak canoeists.

    PubMed

    Gates, Phillip E; Campbell, Ian G; George, Keith P

    2004-09-01

    The aim of the present study was to test the hypothesis that upper body aerobically trained athletes (kayak canoeists) would have greater left ventricular wall thickness, but similar left ventricular diastolic chamber dimensions, compared with recreationally active and sedentary men. Ultrasound echocardiography was used to determine cardiac structure and function in highly trained kayak canoeists (n = 10), moderately active (n = 10) and sedentary men (n = 10). The septal and posterior left ventricular walls were approximately 0.2 cm thicker in kayak canoeists (P < 0.05), and left ventricular mass was 51% and 32% greater (P < 0.05) in canoeists than in the sedentary and moderately trained participants, respectively. There were no differences in left ventricular chamber dimension, suggesting that the kayak canoeists had a concentric pattern of left ventricular adaptation to aerobic upper body training. Scaling the data to body composition indices had no effect on the outcome of the statistical analysis. There were no differences in resting Doppler left ventricular diastolic or systolic function among the groups. Ejection fraction was lower in the kayak canoeists, but the magnitude of the difference was within the normal variability for this measurement. Thus aerobically upper body trained athletes demonstrated a concentric pattern of cardiac enlargement, but resting left ventricle function was not different between athletes, moderately active and sedentary individuals.

  20. Echinacea Supplementation: Does it Really Improve Aerobic Fitness?

    PubMed Central

    Baumann, Cory W.; Kwak, Dongmin

    2016-01-01

    [Purpose] Echinacea is an herbal supplement used by endurance athletes for its performance boosting properties. It is thought that Echinacea improves the blood’s oxygen carrying capacity by increasing production of erythropoietin (EPO), a glycoprotein that regulates red blood cell formation. Subsequently, these changes would lead to an overall improvement in maximal oxygen uptake (VO2max) and running economy (RE), two markers of aerobic fitness. The purpose of this review is to briefly discuss the physiological variables associated with distance running performance and how these variables are influenced by Echinacea supplementation. [Methods] To determine Echinacea’s ergogenic potential, human studies that used Echinacea in conjunction to analyzing the blood’s oxygen carrying capacity and/or aerobic fitness were assessed. [Results] Taken together, the majority of the published literature does not support the claim that Echinacea is a beneficial ergogenic aid. With the exception of one study, several independent groups have reported Echinacea supplementation does not increase EPO production, blood markers of oxygen transport, VO2max or RE in healthy untrained or trained subjects. [Conclusion] To date, the published literature does not support the use of Echinacea as an ergogenic aid to improve aerobic fitness in healthy untrained or trained subjects. PMID:27757381

  1. Aerobic fitness and orthostatic tolerance: Evidence against an association

    NASA Technical Reports Server (NTRS)

    Ebert, Thomas J.

    1994-01-01

    This presentation will focus on only one side of the debate as to whether high levels of aerobic fitness have a deleterious effect on tolerance to gravitational stress. This issue was raised in the early 1970's as a result of two research publications. The first work investigated the carotid sinus baroreflex of humans with an airtight chamber that surrounded the head and neck. The steady-state reflex changes in blood pressure that were recorded 3 minutes after application of the head and neck stimuli, were attenuated in an athletic group compared to a sedentary group of volunteers. A second report in the NASA literature indicated that five endurance-trained runners were less tolerant to LBNP than five nonrunners. These early research findings have stimulated a considerable amount of interest that has lead to a growing number of research efforts seeking an association between aerobic fitness and orthostatic tolerance in humans. I will briefly review some of the more pertinent published research information which suggests that there is no relationship between aerobic fitness and orthostatic tolerance in humans.

  2. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  3. Adherence of older women with strength training and aerobic exercise

    PubMed Central

    Picorelli, Alexandra Miranda Assumpção; Pereira, Daniele Sirineu; Felício, Diogo Carvalho; Dos Anjos, Daniela Maria; Pereira, Danielle Aparecida Gomes; Dias, Rosângela Corrêa; Assis, Marcella Guimarães; Pereira, Leani Souza Máximo

    2014-01-01

    Background Participation of older people in a program of regular exercise is an effective strategy to minimize the physical decline associated with age. The purpose of this study was to assess adherence rates in older women enrolled in two different exercise programs (one aerobic exercise and one strength training) and identify any associated clinical or functional factors. Methods This was an exploratory observational study in a sample of 231 elderly women of mean age 70.5 years. We used a structured questionnaire with standardized tests to evaluate the relevant clinical and functional measures. A specific adherence questionnaire was developed by the researchers to determine motivators and barriers to exercise adherence. Results The adherence rate was 49.70% in the aerobic exercise group and 56.20% in the strength training group. Multiple logistic regression models for motivation were significant (P=0.003) for the muscle strengthening group (R2=0.310) and also significant (P=0.008) for the aerobic exercise group (R2=0.154). A third regression model for barriers to exercise was significant (P=0.003) only for the muscle strengthening group (R2=0.236). The present study shows no direct relationship between worsening health status and poor adherence. Conclusion Factors related to adherence with exercise in the elderly are multifactorial. PMID:24600212

  4. Electric motor assisted bicycle as an aerobic exercise machine.

    PubMed

    Nagata, T; Okada, S; Makikawa, M

    2012-01-01

    The goal of this study is to maintain a continuous level of exercise intensity around the aerobic threshold (AT) during riding on an electric motor assisted bicycle using a new control system of electrical motor assistance which uses the efficient pedaling rate of popular bicycles. Five male subjects participated in the experiment, and the oxygen uptake was measured during cycling exercise using this new pedaling rate control system of electrical motor assistance, which could maintain the pedaling rate within a specific range, similar to that in previous type of electrically assisted bicycles. Results showed that this new pedaling rate control system at 65 rpm ensured continuous aerobic exercise intensity around the AT in two subjects, and this intensity level was higher than that observed in previous type. However, certain subjects were unable to maintain the expected exercise intensity because of their particular cycling preferences such as the pedaling rate. It is necessary to adjust the specific pedaling rate range of the electrical motor assist control according to the preferred pedaling rate, so that this system becomes applicable to anyone who want continuous aerobic exercise.

  5. Decomposition of organic waste products under aerobic and anaerobic conditions

    SciTech Connect

    Gale, P.M.

    1988-01-01

    The objectives of this research were to determine the kinetics of C and N mineralization under aerobic and anaerobic conditions. These parameters were then used to verify the simulation model, DECOMPOSITION, for the anaerobic system. Incubation experiments were conducted to compare the aerobic and anaerobic decomposition of alfalfa (Medicago sativa L.), a substrate with a low C:N ratio. Under anaerobic conditions the net mineralization of N occurred more rapidly than that under aerobic conditions. However, the rate of C mineralization as measured by CO{sub 2} evolution was much lower. For the anaerobic decomposition of alfalfa, C mineralization was best described as the sum of the CO{sub 2} and CH{sub 4} evolved plus the water soluble organic C formed. The kinetics of C mineralization, as determined by this approach, were used to successfully predict the rate and amount of N mineralization from alfalfa undergoing anaerobic decomposition. The decomposition of paper mill sludge, a high C:N ratio substrate, was also evaluated.

  6. Catalase (KatA) Plays a Role in Protection against Anaerobic Nitric Oxide in Pseudomonas aeruginosa

    PubMed Central

    Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J.; Mahtani, Harry K.; Li, Qian; VanderWielen, Bradley D.; Makris, Thomas M.; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D.; Irvin, Randall T.; Schurr, Michael J.; Lancaster, Jack R.; Kovall, Rhett A.; Hassett, Daniel J.

    2014-01-01

    Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of

  7. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.

    PubMed

    Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J; Mahtani, Harry K; Li, Qian; Vanderwielen, Bradley D; Makris, Thomas M; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D; Irvin, Randall T; Schurr, Michael J; Lancaster, Jack R; Kovall, Rhett A; Hassett, Daniel J

    2014-01-01

    Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of

  8. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.

    PubMed

    Nwinyi, Obinna C; Ajayi, Oluseyi O; Amund, Olukayode O

    2016-01-01

    The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site.

  9. Diversity of small RNAs expressed in Pseudomonas species.

    PubMed

    Gómez-Lozano, María; Marvig, Rasmus L; Molina-Santiago, Carlos; Tribelli, Paula M; Ramos, Juan-Luis; Molin, Søren

    2015-04-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P. putida DOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P. extremaustralis and the second strain of P. putida to have their transcriptomes analysed for sRNAs, and we identify the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited. In addition, when comparing the sRNAs expressed in different strains of the same species, we observe that numerous sRNAs exhibit a strain-specific expression pattern. These results support the idea that the evolution of most bacterial sRNAs is rapid, which limits the extent of both interspecies and intraspecies conservation.

  10. Pseudomonas fluorescens' view of the periodic table.

    PubMed

    Workentine, Matthew L; Harrison, Joe J; Stenroos, Pernilla U; Ceri, Howard; Turner, Raymond J

    2008-01-01

    Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.

  11. The Regulatory Network of Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Pseudomonas aeruginosa is an important bacterial model due to its metabolic and pathogenic abilities, which allow it to interact and colonize a wide range of hosts, including plants and animals. In this work we compile and analyze the structure and organization of an experimentally supported regulatory network in this bacterium. Results The regulatory network consists of 690 genes and 1020 regulatory interactions between their products (12% of total genes: 54% sigma and 16% of transcription factors). This complex interplay makes the third largest regulatory network of those reported in bacteria. The entire network is enriched for activating interactions and, peculiarly, self-activation seems to occur more prominent for transcription factors (TFs), which contrasts with other biological networks where self-repression is dominant. The network contains a giant component of 650 genes organized into 11 hierarchies, encompassing important biological processes, such as, biofilms formation, production of exopolysaccharide alginate and several virulence factors, and of the so-called quorum sensing regulons. Conclusions The study of gene regulation in P. aeruginosa is biased towards pathogenesis and virulence processes, all of which are interconnected. The network shows power-law distribution -input degree -, and we identified the top ten global regulators, six two-element cycles, the longest paths have ten steps, six biological modules and the main motifs containing three and four elements. We think this work can provide insights for the design of further studies to cover the many gaps in knowledge of this important bacterial model, and for the design of systems strategies to combat this bacterium. PMID:22587778

  12. A Genomic Redefinition of Pseudomonas avellanae species

    PubMed Central

    Scortichini, Marco; Marcelletti, Simone; Ferrante, Patrizia; Firrao, Giuseppe

    2013-01-01

    The circumscription of bacterial species is a complex task. So far, DNA-DNA hybridization (DDH), 16S rRNA gene sequencing, and multiocus sequence typing analysis (MLSA) are currently the preferred techniques for their genetic determination. However, the average nucleotide identity (ANI) analysis of conserved and shared genes between two bacterial strains based on the pair-wise genome comparisons, with support of the tetranucleotide frequency correlation coefficients (TETRA) value, has recently been proposed as a reliable substitute for DDH. The species demarcation boundary has been set to a value of 95-96% of the ANI identity, with further confirmation through the assessment of the corresponding TETRA value. In this study, we performed a genome-wide MLSA of 14 phytopathogenic pseudomonads genomes, and assessed the ANI and TETRA values of 27 genomes, representing seven out of the nine genomospecies of Pseudomonas spp. sensu Gardan et alii, and their phylogenetic relationships using maximum likelihood and Bayesian approaches. The results demonstrate the existence of a well demarcated genomic cluster that includes strains classified as P. avellanae, P. syringae pv. theae, P. s. pv. actinidiae and one P. s. pv. morsprunorum strain all belonging to the single species P. avellanae. In addition, when compared with P. avellanae, five strains of P. s. pv. tomato, including the model strain DC3000, and one P. s. pv. lachrymans strain, appear as very closely related to P. avellanae, with ANI values of nearly 96% as confirmed by the TETRA analysis. Conversely, one representative strain, previously classified as P. avellanae and isolated in central Italy, is a genuine member of the P. syringae species complex and can be defined as P. s. pv. avellanae. Currently. The core and pan genomes of P. avellanae species consist of 3,995 and 5,410 putative protein-coding genes, respectively. PMID:24086635

  13. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  14. Cryptic transposable phages of Pseudomonas aeruginosa

    SciTech Connect

    Krylov, V.N.; Mit`kina, L.N.; Pleteneva, E.A.; Aleshin, V.V.

    1995-11-01

    Frequencies of nucleotide sequences homologous to phage transposons (PT) of two species, D3112 and B3, were assessed in genomes of natural Pseudomonas aeruginosa strains by the dot-blot hybridization method. These strains were incapable of liberating viable phages on a lawn of the PA01 standard indicator strain of P. aeruginosa. It was shown that the homologies detected belong to two groups, high and intermediate, with respect to homology level. Homology patterns were classified as high when they provided signals comparable to those for hybridization in a positive control; patterns were classified as intermediate when the hybridization level was higher than the background level, but lower than in the positive control. Homologous PT sequences were designated as cryptic PT. Intact cryptic PT prophages were shown to exist in genomes of particular natural strains manifesting a higher level of hybridization. However, the growth of these phages was limited by the restriction system of strain PA01. It is possible to isolate strains maintaining the growth of some cryptic PT. These strains differed from P. aeruginosa with respect to the specificity of the restriction and modification system. Nevertheless, in most cases, the attempt to identify a novel host capable of maintaining growth of a cryptic PT failed. Natural strains often carry cryptic PT related to both known PT species, D3112 and B3. The frequency of cryptic PT is extremely high, reaching 30% in strains with a high level of homology only and up to 50% in all strains exhibiting homology. This high PT frequency is assumed to be associated with the considerable variation of P. aeruginosa. 15 refs., 1 fig., 2 tabs.

  15. Regulation of Glucose Metabolism in Pseudomonas

    PubMed Central

    Daddaoua, Abdelali; Krell, Tino; Ramos, Juan-Luis

    2009-01-01

    In Pseudomonas putida, genes for the glucose phosphorylative pathway and the Entner-Doudoroff pathway are organized in two operons; one made up of the zwf, pgl, and eda genes and another consisting of the edd, glk, gltR2, and gltS genes. Divergently with respect to the edd gene is the gap-1 gene. Expression from Pzwf, Pedd, and Pgap is modulated by HexR in response to the availability of glucose in the medium. To study the regulatory process in greater detail we purified HexR and showed that it is a monomer in solution. Electrophoretic mobility shift assays and isothermal titration calorimetry assays were done showing that HexR recognizes the Pedd, Pzwf, and Pgap-1 promoters with affinity in the nanomolar range. DNA footprinting assays identified the binding site between +30 and +1 at Pzwf, between +16 and +41 at Pedd, and between −6 and +18 at Pgap-1. Based on DNA sequence alignment of the target sites and isothermal titration calorimetry data, two monomers of HexR bind to a pseudopalindrome with a consensus sequence of 5′-TTGTN7–8ACAA-3′. Binding of the Entner-Doudoroff pathway intermediate 2-keto-3-deoxy-6-phosphogluconate to HexR released the repressor from its target operators, whereas other chemicals such as glucose, glucose 6-phosphate, and 6-phosphogluconate did not induce complex dissociation. The phosphorylated effector is likely to be recognized by a sugar isomerase domain located at the C-terminal end of HexR, whereas the helix-turn-helix DNA binding domain of HexR exhibits high similarity to proteins of the RpiR family of regulators. PMID:19506074

  16. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  17. Aerobic training in persons who have recovered from juvenile dermatomyositis.

    PubMed

    Riisager, M; Mathiesen, P R; Vissing, J; Preisler, N; Ørngreen, M C

    2013-12-01

    A recent study has shown that 36 persons who had recovered from juvenile dermatomyositis (JDM) have on average an 18% decrease in maximal oxygen uptake. The objective of this study was to investigate the effect of a 12-week aerobic training program in this group, and assess whether aerobic training can normalize aerobic capacity to the expected level for age and gender. The patients participating in the study, one male and nine females (16-42 years of age), were in remission from JDM, defined as no clinical or biochemical evidence of disease activity and no medical treatment for 1 year. The patients had a median disease duration of 3.4 years (1.4-10.3), a median treatment duration of 2.4 years (0.4-9.3) and a median duration of remission of 7.0 years (1.2-30.0). Patients trained at home on a cycle ergometer for 12 weeks at a heart rate interval corresponding to 65% of their maximal oxygen uptake (VO(2max)). VO(2max) and maximal workload (W(max)) were determined before and after the 12-week training period through an incremental cycling test to exhaustion. The patients served as their own controls. Eight patients with JDM in remission completed the 12-week exercise program; one patient completed 9 weeks out of the 12-week program and one dropped out of the study. Training increased VO(2max) and W(max) by 26% and 30% (P < 0.001). Creatine kinase (CK) levels were normal pre-training and did not change with training, reflecting no muscle damage. We also found that at a given workload, heart rate was lowered significantly after the 12-week training period, indicating an improvement in cardiovascular fitness. This study shows that 12 weeks of moderate-intensity aerobic training is an effective and safe method to increase oxidative capacity and fitness in persons who have recovered from JDM. The results indicate that the low oxidative capacity in JDM patients in remission is reversible and can be improved. Thus, we recommend frequent aerobic training to be incorporated

  18. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    from ingesting P. aeruginosa in drinking water is low. The risk is slightly higher if the subject is taking an antibiotic resisted by P. aeruginosa. The fact that individuals on ampicillin are more susceptible to Pseudomonas gastrointestinal infection probably results from suppression of normal intestinal flora, which would allow Pseudomonas to colonize. The process of estimating risk was significantly constrained because of the absence of specific (quantitative) occurrence data for Pseudomonas. Sensitivity analysis shows that the greatest source of variability/uncertainty in the risk assessment is from the density distribution in the exposure rather than the dose-response or water consumption distributions. In summary, two routes appear to carry the greatest health risks from contacting water contaminated with P. aeruginosa (1) skin exposure in hot tubs and (2) lung exposure from inhaling aerosols.

  19. Evaluation of the petrifilm aerobic count plate for enumeration of aerobic marine bacteria from seawater and Caulerpa lentillifera.

    PubMed

    Kudaka, Jun; Horii, Toru; Tamanaha, Koji; Itokazu, Kiyomasa; Nakamura, Masaji; Taira, Katsuya; Nidaira, Minoru; Okano, Sho; Kitahara, Akio

    2010-08-01

    The enumeration and evaluation of the activity of marine bacteria are important in the food industry. However, detection of marine bacteria in seawater or seafood has not been easy. The Petrifilm aerobic count plate (ACP) is a ready-to-use alternative to the traditional enumeration media used for bacteria associated with food. The purpose of this study was to evaluate the usefulness of a simple detection and enumeration method utilizing the Petrifilm ACP for enumeration of aerobic marine bacteria from seawater and an edible seaweed, Caulerpa lentillifera. The efficiency of enumeration of total aerobic marine bacteria on Petrifilm ACP was compared with that using the spread plate method on marine agar with 80 seawater and 64 C. lentillifera samples. With sterile seawater as the diluent, a close correlation was observed between the method utilizing Petrifilm ACP and that utilizing the conventional marine agar (r=0.98 for seawater and 0.91 for C. lentillifera). The Petrifilm ACP method was simpler and less time-consuming than the conventional method. These results indicate that Petrifilm ACP is a suitable alternative to conventional marine agar for enumeration of marine microorganisms in seawater and C. lentillifera samples.

  20. β-alanine Supplementation Fails to Increase Peak Aerobic Power or Ventilatory Threshold in Aerobically Trained Males.

    PubMed

    Greer, Beau Kjerulf; Katalinas, Matthew E; Shaholli, Danielle M; Gallo, Paul M

    2016-01-01

    The purpose of the present study was to determine the effect of 30 days of β-alanine supplementation on peak aerobic power and ventilatory threshold (VT) in aerobically fit males. Fourteen males (28.8 ± 9.8 yrs) were assigned to either a β-alanine (SUPP) or placebo (PLAC) group; groups were matched for VT as it was the primary outcome measure. β-alanine supplementation consisted of 3 g/day for 7 days, and 6 g/day for the remaining 23 days. Before and after the supplementation period, subjects performed a continuous, graded cycle ergometry test to determine VO2 peak and VT. Metabolic data were analyzed using a 2 × 2 ANOVA with repeated measures. Thirty days of β-alanine supplementation (SUPP) did not increase VO2 peak (4.05 ± 0.6 vs. 4.14 ± 0.6 L/min) as compared to the placebo (PLAC) group (3.88 ± 0.2 vs. 3.97 ± 0.2 L/min) (p > .05). VT did not significantly improve in either the SUPP (3.21 ± 0.5 vs. 3.33 ± 0.5 L/min) or PLAC (3.19 ± 0.1 vs. 3.20 ± 0.1 L/min) group (p > .05). In conclusion, 30 days of β-alanine supplementation had no effect on VO2 peak or VT in aerobically trained athletes.

  1. Assessing Enhanced Anaerobic and Intrinsic Aerobic Biodegradation of Trichloroethene

    NASA Astrophysics Data System (ADS)

    Sorenson, K. S.; Ely, R. L.; Martin, J. P.; Alvarez-Cohen, L.; Kauffman, M. E.

    2001-12-01

    Biodegradation of chloroethenes can proceed either anaerobically or aerobically; however, the techniques for monitoring the two pathways are quite different. At the Idaho National Engineering and Environmental Laboratory's Test Area North (TAN, a combination of anaerobic and aerobic biodegradation of trichloroethene (TCE) is being employed for restoration of a large plume of contaminated groundwater. During stimulation of anaerobic biodegradation of TCE through lactate addition, several assessment tools have proven effective for various objectives. Monitoring TCE and its lesser chlorinated degradation products provides a straightforward assessment tool for the occurrence of degradation. It does not, however, provide information regarding the potential for reductive dechlorination, nor progress from less suitable to more suitable conditions. A technique for obtaining this information is monitoring redox-sensitive geochemical parameters such as dissolved iron, sulfate, methane, and oxidation-reduction potential. This approach was demonstrated by the strong correlation of steps in the reductive dechlorination pathway to redox conditions at the TAN site. Yet another tool is required to determine adequacy of conditions for efficient dechlorination. Dechlorination efficiency appears to be dependent upon the predominant electron donor utilization (or fermentation) process occurring at any given time, an observation consistent with thermodynamic considerations. Thus, monitoring of added electron donor and intermediate product concentrations can help determine an efficient operations strategy. One final tool demonstrated at the TAN site was monitoring stable carbon isotope ratios. As TCE was dechlorinated, a clear fractionation occurred from cis-dichloroethene to vinyl chloride, and from vinyl chloride to ethene. This fractionation provides a clear signature of reductive dechlorination. Assessment of aerobic biodegradation of chloroethenes at TAN is more challenging because

  2. Biological manganese oxidation by Pseudomonas putida in trickling filters.

    PubMed

    McKee, Kyle P; Vance, Cherish C; Karthikeyan, Raghupathy

    2016-01-01

    Biological oxidation has been researched as a viable alternative for treating waters with high manganese (Mn) concentrations, typically found in mine drainage or in some geological formations. In this study, laboratory-scale trickling filters were constructed to compare the Mn removal efficiency between filters inoculated with the Mn oxidizing bacteria, Pseudomonas putida, and filters without inoculation. Manganese oxidation and removal was found to be significantly greater in trickling filters with Pseudomonas putida after startup times of only 48 h. Mn oxidation in Pseudomonas putida inoculated trickling filters was up to 75% greater than non-inoculated filters. One-dimensional advective-dispersive models were formulated to describe the transport of Mn in trickling filter porous media. Based on the experimental transport parameters obtained, the model predicted that a filter depth of only 16 cm is needed to reduce influent concentration of 10 mg L(-1) to 0.05 mg L(-1).

  3. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    PubMed Central

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  4. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa

    PubMed Central

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-01-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ΔsprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  5. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms.

  6. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water.

    PubMed

    Vaz-Moreira, Ivone; Nunes, Olga C; Manaia, Célia M

    2012-06-01

    Pseudomonas spp. are common inhabitants of aquatic environments, including drinking water. Multi-antibiotic resistance in clinical isolates of P. aeruginosa is widely reported and deeply characterized. However, the information regarding other species and environmental isolates of this genus is scant. This study was designed based on the hypothesis that members of the genus Pseudomonas given their high prevalence, wide distribution in waters and genetic plasticity can be important reservoirs of antibiotic resistance in drinking water. With this aim, the diversity and antibiotic resistance phenotypes of Pseudomonas isolated from different drinking water sources were evaluated. The genotypic diversity analyses were based on six housekeeping genes (16S rRNA, rpoD, rpoB, gyrB, recA and ITS) and on pulsed field gel electrophoresis. Susceptibility to 21 antibiotics of eight classes was tested using the ATB PSE EU (08) and disk diffusion methods. Pseudomonas spp. were isolated from 14 of the 32 sampled sites. A total of 55 non-repetitive isolates were affiliated to twenty species. Although the same species were isolated from different sampling sites, identical genotypes were never observed in distinct types of water (water treatment plant/distribution system, tap water, cup fillers, biofilm, and mineral water). In general, the prevalence of antibiotic resistance was low and often the resistance patterns were related with the species and/or the strain genotype. Resistance to ticarcillin, ticarcillin with clavulanic acid, fosfomycin and cotrimoxazol were the most prevalent (69-84%). No resistance to piperacillin, levofloxacin, ciprofloxacin, tetracycline, gentamicin, tobramycin, amikacin, imipenem or meropenem was observed. This study demonstrates that Pseudomonas spp. are not so widespread in drinking water as commonly assumed. Nevertheless, it suggests that water Pseudomonas can spread acquired antibiotic resistance, preferentially via vertical transmission.

  7. Pseudomonas chengduensis sp. nov., isolated from landfill leachate.

    PubMed

    Tao, Yong; Zhou, Yan; He, Xiaohong; Hu, Xiaohong; Li, Daping

    2014-01-01

    Strain MBR(T) was isolated from landfill leachate in a solid-waste disposal site in Chengdu, Sichuan, China. An analysis of 16S rRNA gene sequences revealed that the isolate was closely related to members of the genus Pseudomonas, sharing the highest sequence similarities with Pseudomonas toyotomiensis HT-3(T) (99.8 %), Pseudomonas alcaliphila AL15-21(T) (99.7 %) and Pseudomonas oleovorans ATCC 8062(T) (99.4 %). Multi-locus sequence analysis based on three housekeeping genes (gyrB, rpoB and rpoD) provided higher resolution at the species level than that based on 16S rRNA gene sequences, which was further confirmed by less than 70 % DNA-DNA relatedness between the new isolate and P. toyotomiensis HT-3(T) (61.3 %), P. alcaliphila AL15-21(T) (51.5 %) and P. oleovorans ATCC 8062(T) (57.8 %). The DNA G+C content of strain MBR(T) was 61.9 mol% and the major ubiquinone was Q-9. The major cellular fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 0, and C16 : 1ω7c and/or C16 : 1ω6c. Polyphasic analysis indicates that strain MBR(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas chengduensis sp. nov. is proposed. The type strain is MBR(T) ( = CGMCC 2318(T) = DSM 26382(T)).

  8. IDENTIFICATION OF Pseudomonas spp. AS AMOEBA-RESISTANT MICROORGANISMS IN ISOLATES OF Acanthamoeba

    PubMed Central

    Maschio, Vinicius José; Corção, Gertrudes; Rott, Marilise Brittes

    2015-01-01

    Acanthamoeba is a “Trojan horse” of the microbial world. The aim of this study was to identify the presence of Pseudomonas as an amoeba-resistant microorganism in 12 isolates of Acanthamoeba. All isolates showed the genus Pseudomonas spp. as amoeba-resistant microorganisms. Thus, one can see that the Acanthamoeba isolates studied are hosts of Pseudomonas. PMID:25651331

  9. Genetically enhanced cellulase production in Pseudomonas cellulosa using recombinant DNA technology

    DOEpatents

    Dees, H. Craig

    1999-01-01

    An enhanced strain of Pseudomonas celllulosa was obtained by introducing a recombinant genetic construct comprising a heterologous cellulase gene operably connected to a promoter into ATCC 55702, mutagenizing the transformants by treatment with MNNG, and selecting a high cellulase producing transformant. The transformant, designated Pseudomonas cellulosa ATCC XXXX, exhibits enhanced levels of cellulase production relative to the untransformed Pseudomonas cellulosa strain #142 ATCC 55702.

  10. identification of Pseudomonas spp. as amoeba-resistant microorganisms in isolates of Acanthamoeba.

    PubMed

    José Maschio, Vinicius; Corção, Gertrudes; Rott, Marilise Brittes

    2015-01-01

    Acanthamoeba is a "Trojan horse" of the microbial world. The aim of this study was to identify the presence of Pseudomonas as an amoeba-resistant microorganism in 12 isolates of Acanthamoeba. All isolates showed the genus Pseudomonas spp. as amoeba-resistant microorganisms. Thus, one can see that the Acanthamoeba isolates studied are hosts of Pseudomonas.

  11. The global regulator ANR is essential for Pseudomonas chlororaphis strain PA23 biocontrol.

    PubMed

    Nandi, Munmun; Selin, Carrie; Brawerman, Gabriel; Fernando, W G Dilantha; de Kievit, Teresa R

    2016-12-01

    Pseudomonas chlororaphis PA23 is a biocontrol agent capable of protecting canola from stem rot disease caused by the fungus Sclerotinia sclerotiorum. The focus of the current study was to elucidate the role of the transcriptional regulator ANR in the biocontrol capabilities of this bacterium. An anr mutant was created, PA23anr, that was devoid antifungal activity. In other pseudomonads, ANR is essential for regulating HCN production. Characterization of PA23anr revealed that, in addition to HCN, ANR controls phenazine (PHZ), pyrrolnitrin (PRN), protease and autoinducer (AHL) signal molecule production. In gene expression studies, hcnA, phzA, prnA and phzI were found to be downregulated, consistent with our endproduct analysis. Because the phenotype of PA23anr closely resembles that of quorum sensing (QS)-deficient strains, we explored whether there is a connection between ANR and the PhzRI QS system. Both phzI and phzR are positively regulated by ANR, whereas PhzR represses anr transcription. Complementation of PA23anr with pUCP-phzR, C6-HSL or both yielded no change in phenotype. Conversely, PA23phzR harbouring pUCP23-anr exhibited partial-to-full restoration of antifungal activity, HCN, PRN and AHL production together with hcnA, prnA, phzI and rpoS expression. PHZ and protease production remained unchanged indicating that ANR can complement the QS-deficient phenotype with respect to some but not all traits. Our experiments were conducted at atmospheric O2 levels underscoring the fact that ANR has a profound effect on PA23 physiology under aerobic conditions.

  12. Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge

    PubMed Central

    2010-01-01

    Background Pseudomonas putida is a model organism for bioremediation because of its remarkable metabolic versatility, extensive biodegradative functions, and ubiquity in contaminated soil environments. To further the understanding of molecular pathways responding to the heavy metal chromium(VI) [Cr(VI)], the proteome of aerobically grown, Cr(VI)-stressed P. putida strain F1 was characterized within the context of two disparate nutritional environments: rich (LB) media and minimal (M9L) media containing lactate as the sole carbon source. Results Growth studies demonstrated that F1 sensitivity to Cr(VI) was impacted substantially by nutrient conditions, with a carbon-source-dependent hierarchy (lactate > glucose >> acetate) observed in minimal media. Two-dimensional HPLC-MS/MS was employed to identify differential proteome profiles generated in response to 1 mM chromate under LB and M9L growth conditions. The immediate response to Cr(VI) in LB-grown cells was up-regulation of proteins involved in inorganic ion transport, secondary metabolite biosynthesis and catabolism, and amino acid metabolism. By contrast, the chromate-responsive proteome derived under defined minimal growth conditions was characterized predominantly by up-regulated proteins related to cell envelope biogenesis, inorganic ion transport, and motility. TonB-dependent siderophore receptors involved in ferric iron acquisition and amino acid adenylation domains characterized up-regulated systems under LB-Cr(VI) conditions, while DNA repair proteins and systems scavenging sulfur from alternative sources (e.g., aliphatic sulfonates) tended to predominate the up-regulated proteome profile obtained under M9L-Cr(VI) conditions. Conclusions Comparative analysis indicated that the core molecular response to chromate, irrespective of the nutritional conditions tested, comprised seven up-regulated proteins belonging to six different functional categories including transcription, inorganic ion transport

  13. Pseudomonas fluorescens pirates both ferrioxamine and ferricoelichelin siderophores from Streptomyces ambofaciens.

    PubMed

    Galet, Justine; Deveau, Aurélie; Hôtel, Laurence; Frey-Klett, Pascale; Leblond, Pierre; Aigle, Bertrand

    2015-05-01

    Iron is essential in many biological processes. However, its bioavailability is reduced in aerobic environments, such as soil. To overcome this limitation, microorganisms have developed different strategies, such as iron chelation by siderophores. Some bacteria have even gained the ability to detect and utilize xenosiderophores, i.e., siderophores produced by other organisms. We illustrate an example of such an interaction between two soil bacteria, Pseudomonas fluorescens strain BBc6R8 and Streptomyces ambofaciens ATCC 23877, which produce the siderophores pyoverdine and enantiopyochelin and the siderophores desferrioxamines B and E and coelichelin, respectively. During pairwise cultures on iron-limiting agar medium, no induction of siderophore synthesis by P. fluorescens BBc6R8 was observed in the presence of S. ambofaciens ATCC 23877. Cocultures with a Streptomyces mutant strain that produced either coelichelin or desferrioxamines, as well as culture in a medium supplemented with desferrioxamine B, resulted in the absence of pyoverdine production; however, culture with a double mutant deficient in desferrioxamines and coelichelin production did not. This strongly suggests that P. fluorescens BBbc6R8 utilizes the ferrioxamines and ferricoelichelin produced by S. ambofaciens as xenosiderophores and therefore no longer activates the production of its own siderophores. A screening of a library of P. fluorescens BBc6R8 mutants highlighted the involvement of the TonB-dependent receptor FoxA in this process: the expression of foxA and genes involved in the regulation of its biosynthesis was induced in the presence of S. ambofaciens. In a competitive environment, such as soil, siderophore piracy could well be one of the driving forces that determine the outcome of microbial competition.

  14. Biochemical Characterization of the Split Class II Ribonucleotide Reductase from Pseudomonas aeruginosa

    PubMed Central

    Crona, Mikael; Hofer, Anders; Astorga-Wells, Juan; Sjöberg, Britt-Marie; Tholander, Fredrik

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa can grow under both aerobic and anaerobic conditions. Its flexibility with respect to oxygen load is reflected by the fact that its genome encodes all three existing classes of ribonucleotides reductase (RNR): the oxygen-dependent class I RNR, the oxygen-indifferent class II RNR, and the oxygen-sensitive class III RNR. The P. aeruginosa class II RNR is expressed as two separate polypeptides (NrdJa and NrdJb), a unique example of a split RNR enzyme in a free-living organism. A split class II RNR is also found in a few closely related γ-Proteobacteria. We have characterized the P. aeruginosa class II RNR and show that both subunits are required for formation of a biologically functional enzyme that can sustain vitamin B12-dependent growth. Binding of the B12 coenzyme as well as substrate and allosteric effectors resides in the NrdJa subunit, whereas the NrdJb subunit mediates efficient reductive dithiol exchange during catalysis. A combination of activity assays and activity-independent methods like surface plasmon resonance and gas phase electrophoretic macromolecule analysis suggests that the enzymatically active form of the enzyme is a (NrdJa-NrdJb)2 homodimer of heterodimers, and a combination of hydrogen-deuterium exchange experiments and molecular modeling suggests a plausible region in NrdJa that interacts with NrdJb. Our detailed characterization of the split NrdJ from P. aeruginosa provides insight into the biochemical function of a unique enzyme known to have central roles in biofilm formation and anaerobic growth. PMID:26225432

  15. UO(2) 2+ speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate.

    PubMed

    Vanengelen, Michael R; Field, Erin K; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M

    2010-04-01

    In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO(2) (2+)) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO(2) (2+) fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO(2) (2+) and accumulated significantly more UO(2) (2+) in low-bicarbonate concentrations. In addition, UO(2) (2+) growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO(2) (2+) inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO(2) (2+) accumulation was also diminished. The observed patterns were related to UO(2) (2+) aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO(2) (2+)-hydroxide complexes explained both the greater sensitivity of isolate A to UO(2) (2+), and the ability of isolate A to accumulate significant amounts of UO(2) (2+). The exclusive presence of negatively charged and stable UO(2) (2+)-carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of

  16. Pseudomonas creosotenesis sp. n., a Creosote-tolerant Marine Bacterium

    PubMed Central

    O'Neill, Thomas B.; Drisko, Richard W.; Hochman, Harry

    1961-01-01

    In a study of the marine biological environment in which creosoted pilings are located, a previously unreported species of bacteria was isolated. This species was detected on creosoted piling from 11 widely differing locations and was the predominant species of bacteria found on these piling. The new organism was identified as a gram-negative rod belonging to the genus Pseudomonas and has been named Pseudomonas creosotensis. It has been completely described by the standard morphological and biochemical tests. Images FIG. 1 PMID:14480909

  17. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    PubMed

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.

  18. Expression of a fully functional cd1 nitrite reductase from Pseudomonas aeruginosa in Pseudomonas stutzeri.

    PubMed

    Arese, Marzia; Zumft, Walter G; Cutruzzolà, Francesca

    2003-01-01

    Nitrite reductases are redox enzymes catalysing the one electron reduction of nitrite to nitrogen monoxide (NO) within the bacterial denitrification process. We have cloned the gene for cd(1) nitrite reductase (Pa-nirS) from Pseudomonas aeruginosa into the NiRS(-) strain MK202 of Pseudomonas stutzeri and expressed the enzyme under denitrifying conditions. In the MK202 strain, denitrification is abolished by the disruption of the endogenous nitrite reductase gene; thus, cells can be grown only in the presence of oxygen. After complementation with Pa-nirS gene, cells supplemented with nitrate can be grown in the absence of oxygen. The presence of nitrite reductase was proven in vivo by the demonstration of NO production, showing that the enzyme was expressed in the active form, containing both heme c and d(1). A purification procedure for the recombinant PaNir has been developed, based on the P. aeruginosa purification protocol; spectroscopic analysis of the purified protein fully confirms the presence of the d(1) heme cofactor. Moreover, the functional characterisation of the recombinant NiR has been carried out by monitoring the production of NO by the purified NiR enzyme in the presence of nitrite by an NO electrode. The full recovery of the denitrification properties in the P. stutzeri MK202 strain by genetic complementation with Pa-NiR underlines the high homology between enzymes of nitrogen oxianion respiration. Our work provides an expression system for cd(1) nitrite reductase and its site-directed mutants in a non-pathogenic strain and is a starting point for the in vivo study of recombinant enzyme variants.

  19. Secretion of Pseudomonas aeruginosa Type III Cytotoxins is Dependent on Pseudomonas Quinolone Signal Concentration

    PubMed Central

    Singh, G.; Wu, B.; Baek, M.S.; Camargo, A.; Nguyen, A.; Slusher, N.A.; Srinivasan, R.; Wiener-Kronish, J.P.; Lynch, S.V.

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two-component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent posttranslational control, specifically governing type III cytotoxin secretion, exists in this species. PMID:20570614

  20. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems.

    PubMed Central

    Compeau, G; Al-Achi, B J; Platsouka, E; Levy, S B

    1988-01-01

    The fate of spontaneous chromosomal rifampin-resistant (Rifr) mutants of Pseudomonas putida and Pseudomonas fluorescens in sterile and live organic soil from which they were isolated was studied. In sterile native-soil assays, a Rifr mutant of P. putida showed no decrease in competitive fitness when compared with the wild-type parent. However, mutants of P. fluorescens were of two general categories. Group 1 showed no difference from the wild type in terms of growth rate, competitive fitness, and membrane protein composition. Group 2 showed a slower growth rate in both minimal and enriched media and an altered membrane protein profile. These mutants also demonstrated decreased competitive fitness compared with the wild-type strain. In live soil, the Rifr P. putida strain persisted throughout the 38-day test period with a decay rate of 0.7 log10 CFU/g of soil per 10 days. A group 1 Rifr P. fluorescens mutant maintained its inoculated titer for 7 to 10 days and then decayed at a rate of 0.2 to 0.4 log10 CFU/g of soil per 10 days. A group 2 Rifr P. fluorescens mutant remained at its titer for 1 to 5 days before decaying at a two- to threefold-faster rate. These findings indicate that rifampin resistance may not be an innocuous mutation in some pseudomonads and that marked strains should be compared with wild-type parents before being used as monitors of parental strain survival. Colonization of sterile soil with either the wild-type or mutant strain precluded normal colonization of the second added strain.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:3144244