Science.gov

Sample records for aerobic ammonia oxidation

  1. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.

    PubMed

    Könneke, Martin; Schubert, Daniel M; Brown, Philip C; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J; Stahl, David A; Berg, Ivan A

    2014-06-03

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.

  2. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation

    PubMed Central

    Könneke, Martin; Schubert, Daniel M.; Brown, Philip C.; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J.; Stahl, David A.; Berg, Ivan A.

    2014-01-01

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments. PMID:24843170

  3. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.

    PubMed

    Powell, C L; Nogaro, G; Agrawal, A

    2011-06-01

    The degradation potential of trichloroethene by the aerobic methane- and ammonia-oxidizing microorganisms naturally associated with wetland plant (Carex comosa) roots was examined in this study. In bench-scale microcosm experiments with washed (soil free) Carex comosa roots, the activity of root-associated methane- and ammonia-oxidizing microorganisms, which were naturally present on the root surface and/or embedded within the roots, was investigated. Significant methane and ammonia oxidation were observed reproducibly in batch reactors with washed roots incubated in growth media, where methane oxidation developed faster (2 weeks) compared to ammonia oxidation (4 weeks) in live microcosms. After enrichment, the methane oxidizers demonstrated their ability to degrade 150 μg l(-1) TCE effectively at 1.9 mg l(-1) of aqueous CH(4). In contrast, ammonia oxidizers showed a rapid and complete inhibition of ammonia oxidation with 150 μg l(-1) TCE at 20 mg l(-1) of NH(4)(+)-N, which may be attributed to greater sensitivity of ammonia oxidizers to TCE or its degradation product. No such inhibitory effect of TCE degradation was detected on methane oxidation at the above experimental conditions. The results presented here suggest that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments.

  4. Archaea produce lower yields of N2 O than bacteria during aerobic ammonia oxidation in soil.

    PubMed

    Hink, Linda; Nicol, Graeme W; Prosser, James I

    2016-03-11

    Nitrogen fertilisation of agricultural soil contributes significantly to emissions of the potent greenhouse gas nitrous oxide (N2 O), which is generated during denitrification and, in oxic soils, mainly by ammonia oxidisers. Although laboratory cultures of ammonia oxidising bacteria (AOB) and archaea (AOA) produce N2 O, their relative activities in soil are unknown. This work tested the hypothesis that AOB dominate ammonia oxidation and N2 O production under conditions of high inorganic ammonia (NH3 ) input, but result mainly from the activity of AOA when NH3 is derived from mineralisation. 1-octyne, a recently discovered inhibitor of AOB, was used to distinguish N2 O production resulting from archaeal and bacterial ammonia oxidation in soil microcosms, and specifically inhibited AOB growth, activity and N2 O production. In unamended soils, ammonia oxidation and N2 O production were lower and resulted mainly from ammonia oxidation by AOA. The AOA N2 O yield relative to nitrite produced was half that of AOB, likely due to additional enzymatic mechanisms in the latter, but ammonia oxidation and N2 O production were directly linked in all treatments. Relative contributions of AOA and AOB to N2 O production, therefore, reflect their respective contributions to ammonia oxidation. These results suggest potential mitigation strategies for N2 O emissions from fertilised agricultural soils.

  5. The history of aerobic ammonia oxidizers: from the first discoveries to today.

    PubMed

    Monteiro, Maria; Séneca, Joana; Magalhães, Catarina

    2014-07-01

    Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.

  6. Copper-catalyzed aerobic oxidative synthesis of aryl nitriles from benzylic alcohols and aqueous ammonia.

    PubMed

    Tao, Chuanzhou; Liu, Feng; Zhu, Youmin; Liu, Weiwei; Cao, Zhiling

    2013-05-28

    Copper-catalyzed direct conversion of benzylic alcohols to aryl nitriles was realized using NH3(aq.) as the nitrogen source, O2 as the oxidant and TEMPO as the co-catalyst. Furthermore, copper-catalyzed one-pot synthesis of primary aryl amides from alcohols was also achieved.

  7. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota

    PubMed Central

    Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J. E.; Rittmann, Simon K.-M. R.; Melcher, Michael; Leisch, Nikolaus

    2014-01-01

    A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76T, was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6–0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76T had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76T had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76T is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85 % 16S rRNA gene sequence identity with the closest cultivated relative ‘Candidatus Nitrosopumilus maritimus’ SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81 % 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. ‘Korarchaeota’ and ‘Aigarchaeota’). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76T. The type strain of Nitrososphaera viennensis is strain EN76T ( = DSM 26422T = JMC 19564T). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov. PMID:24907263

  8. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota.

    PubMed

    Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J E; Rittmann, Simon K-M R; Melcher, Michael; Leisch, Nikolaus; Schleper, Christa

    2014-08-01

    A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76(T), was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6-0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76(T) had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76(T) had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76(T) is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85% 16S rRNA gene sequence identity with the closest cultivated relative 'Candidatus Nitrosopumilus maritimus' SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81% 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. 'Korarchaeota' and 'Aigarchaeota'). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76(T). The type strain of Nitrososphaera viennensis is strain EN76(T) ( = DSM 26422(T) = JMC 19564(T)). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov.

  9. Role of nitrogen oxides in the metabolism of ammonia-oxidizing bacteria.

    PubMed

    Kampschreur, M J; Tan, N C G; Picioreanu, C; Jetten, M S M; Schmidt, I; van Loosdrecht, M C M

    2006-02-01

    Ammonia-oxidizing bacteria (AOB) can use oxygen and nitrite as electron acceptors. Nitrite reduction by Nitrosomonas is observed under three conditions: (i) hydrogen-dependent denitrification, (ii) anoxic ammonia oxidation with nitrogen dioxide (NO(2)) and (iii) NO(x)-induced aerobic ammonia oxidation. NO(x) molecules play an important role in the conversion of ammonia and nitrite by AOB. Absence of nitric oxide (NO), which is generally detectable during ammonia oxidation, severely impairs ammonia oxidation by AOB. The lag phase of recovery of aerobic ammonia oxidation was significantly reduced by NO(2) addition. Acetylene inhibition tests showed that NO(2)-dependent and oxygen-dependent ammonia oxidation can be distinguished. Addition of NO(x) increased specific activity of ammonia oxidation, growth rate and denitrification capacity. Together, these findings resulted in a hypothetical model on the role of NO(x) in ammonia oxidation: the NO(x) cycle.

  10. Inhibiting Wet Oxidation of Ammonia

    NASA Technical Reports Server (NTRS)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  11. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.

    PubMed

    Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali

    2012-07-01

    Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater.

  12. Effect of vortex flows on ammonia oxidation

    SciTech Connect

    Beskov, V.S.; Shpinel', E.E.

    1988-09-01

    The oxidation of ammonia over platinum sieve catalysts was investigated given the vortex flows found in industrial contact units. Mathematical and physical models were used to assess the influence of vortices on ammonia oxidation. The flow pattern of the ammonia-air mixture in the reactor was modeled as a stream with a partial recycle. It is shown that vortex flows reduce the conversion of ammonia to nitrogen monoxide and increase the passage of unconverted ammonia through the catalyst sieve. Over long contact periods, the main effect of vortices is to increase the passage of unconverted ammonia, which may lead to the formation of explosive compounds.

  13. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.

  14. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  15. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea

    PubMed Central

    2012-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research. PMID:22923400

  16. Oxidative and nitrosative stress in ammonia neurotoxicity.

    PubMed

    Skowrońska, Marta; Albrecht, Jan

    2013-04-01

    Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.

  17. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  18. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  19. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    PubMed

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  20. Transcriptional response of the archaeal ammonia oxidizer Nitrosopumilus maritimus to low and environmentally relevant ammonia concentrations.

    PubMed

    Nakagawa, Tatsunori; Stahl, David A

    2013-11-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment.

  1. Transcriptional Response of the Archaeal Ammonia Oxidizer Nitrosopumilus maritimus to Low and Environmentally Relevant Ammonia Concentrations

    PubMed Central

    Stahl, David A.

    2013-01-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment. PMID:23995944

  2. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria

    SciTech Connect

    Jiang, Q.Q.; Bakken, L.R.

    1999-06-01

    Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N{sub 2}O production and methane oxidation in soils. Most knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. The authors have conducted a comparative study of levels of aerobic N{sub 2}O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N{sub 2}O during aerobic growth was remarkably constant for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N{sub 2}O when they were supplied with ample amounts of substrates, but the fractions rose sharply when they were restricted by a low pH or substrate limitation. Phosphate buffer doubled the N{sub 2}O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH{sub 4} oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH{sub 4} in soils.

  3. Oxidation of ammonia and methane in an alkaline, saline lake

    USGS Publications Warehouse

    Joye, S.B.; Connell, T.L.; Miller, L.G.; Oremland, R.S.; Jellison, R.S.

    1999-01-01

    The oxidation of ammonia (NH3) and methane (CH4) was investigated in an alkaline saline lake, Mono Lake, California (U.S.A.). Ammonia oxidation was examined in April and July 1995 by comparing dark 14CO2 fixation rates in the presence or absence of methyl fluoride (MeF), an inhibitor of NH3 oxidation. Ammonia oxidizer-mediated dark 14CO2 fixation rates were similar in surface (5-7 m) and oxycline (11-15 m) waters, ranging between 70-340 and 89-186 nM d-1, respectively, or 1-7% of primary production by phytoplankton. Ammonia oxidation rates ranged between 580-2,830 nM d-1 in surface waters and 732-1,548 nM d-1 in oxycline waters. Methane oxidation was examined using a 14CH4 tracer technique in July 1994, April 1995, and July 1995. Methane oxidation rates were consistently higher in July, and rates in oxycline and anaerobic bottom waters (0.5-37 and 7-48 nM d-1, respectively) were 10-fold higher than those in aerobic surface waters (0.04-3.8 nM d-1). The majority of CH4 oxidation, in terms of integrated activity, occurred within anoxic bottom waters. Water column oxidation reduced the potential lake-atmosphere CH4 flux by a factor of two to three. Measured oxidation rates and water column concentrations were used to estimate the biological turnover times of NH3 and CH4. The NH3 pool turns over rapidly, on time scales of 0.8 d in surface waters and 10 d within the oxycline, while CH4 is cycled on 103-d time scales in surface waters and 102-d time scales within oxycline and bottom waters. Our data suggest an important role for NH3 oxidation in alkaline, saline lakes since the process converts volatile NH3 to soluble NO2-, thereby reducing loss via lake-atmosphere exchange and maintaining nitrogen in a form that is readily available to phytoplankton.

  4. Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria

    NASA Astrophysics Data System (ADS)

    Kozlowski, J.; Stein, L. Y.

    2014-12-01

    Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.

  5. Tin oxide nanocluster hydrogen and ammonia sensors.

    PubMed

    Lassesson, A; Schulze, M; van Lith, J; Brown, S A

    2008-01-09

    We have prepared sensitive hydrogen and ammonia sensors from thin films of tin nanoclusters with diameters between 3 and 10 nm. By baking the samples at 200 °C in ambient air the clusters were oxidized, resulting in very stable films of tin oxide clusters with similar diameters to the original Sn clusters. By monitoring the electrical resistance, it is shown that the cluster films are highly responsive to hydrogen and ammonia at relatively low temperatures, thereby making them attractive for commercial applications in which low power consumption is required. Doping of the films by depositing Pd on top of the clusters resulted in much improved sensor response and response times. It is shown that optimal sensor properties are achieved for very thin cluster films (a few monolayers of clusters).

  6. Ammonia sensors based on metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sekhar Rout, Chandra; Hegde, Manu; Govindaraj, A.; Rao, C. N. R.

    2007-05-01

    Ammonia sensing characteristics of nanoparticles as well as nanorods of ZnO, In2O3 and SnO2 have been investigated over a wide range of concentrations (1 800 ppm) and temperatures (100 300 °C). The best values of sensitivity are found with ZnO nanoparticles and SnO2 nanostructures. Considering all the characteristics, the SnO2 nanostructures appear to be good candidates for sensing ammonia, with sensitivities of 222 and 19 at 300 °C and 100 °C respectively for 800 ppm of NH3. The recovery and response times are respectively in the ranges 12 68 s and 22 120 s. The effect of humidity on the performance of the sensors is not marked up to 60% at 300 °C. With the oxide sensors reported here no interference for NH3 is found from H2, CO, nitrogen oxides, H2S and SO2.

  7. Niche specialization of terrestrial archaeal ammonia oxidizers.

    PubMed

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C; James, Phillip; Schloter, Michael; Griffiths, Robert I; Prosser, James I; Nicol, Graeme W

    2011-12-27

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were examined in soils at global, regional, and local scales. Globally distributed database sequences clustered into 18 well-supported phylogenetic lineages that dominated specific soil pH ranges classified as acidic (pH <5), acido-neutral (5 ≤ pH <7), or alkalinophilic (pH ≥ 7). To determine whether patterns were reproduced at regional and local scales, amoA gene fragments were amplified from DNA extracted from 47 soils in the United Kingdom (pH 3.5-8.7), including a pH-gradient formed by seven soils at a single site (pH 4.5-7.5). High-throughput sequencing and analysis of amoA gene fragments identified an additional, previously undiscovered phylogenetic lineage and revealed similar pH-associated distribution patterns at global, regional, and local scales, which were most evident for the five most abundant clusters. Archaeal amoA abundance and diversity increased with soil pH, which was the only physicochemical characteristic measured that significantly influenced community structure. These results suggest evolution based on specific adaptations to soil pH and niche specialization, resulting in a global distribution of archaeal lineages that have important consequences for soil ecosystem function and nitrogen cycling.

  8. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  9. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia.

    PubMed

    Caffrey, Jane M; Bano, Nasreen; Kalanetra, Karen; Hollibaugh, James T

    2007-11-01

    Nitrification, the oxidation of NH(4)(+) to NO(2)(-) and subsequently to NO(3)(-), plays a central role in the nitrogen cycle and is often a critical first step in nitrogen removal from estuarine and coastal environments. The first and rate-limiting step in nitrification is catalyzed by the enzyme ammonia monooxygenase (AmoA). We evaluate the relationships between the abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) amoA genes; potential nitrification rates and environmental variables to identify factors influencing AOA abundance and nitrifier activity in estuarine sediments. Our results showed that potential nitrification rates increased as abundance of AOA amoA increased. In contrast, there was no relationship between potential nitrification rates and AOB amoA abundance. This suggests that AOA are significant in estuarine nitrogen cycling. Surprisingly, more of the variability in potential nitrification rates was predicted by salinity and pore water sulfide than by dissolved oxygen history.

  10. Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil.

    PubMed

    Pett-Ridge, Jennifer; Petersen, Dorthe G; Nuccio, Erin; Firestone, Mary K

    2013-07-01

    Ammonia oxidation is a key process in the global nitrogen cycle. However, in tropical soils, little is known about ammonia-oxidizing microorganisms and how characteristically variable oxygen regimes affect their activity. We investigated the influence of brief anaerobic periods on ammonia oxidation along an elevation, moisture, and oxygen availability gradient in wet tropical soils. Soils from three forest types were incubated for up to 36 weeks in lab microcosms under three regimes: (1) static aerobic; (2) static anaerobic; and (3) fluctuating (aerobic/anaerobic). Nitrification potential was measured in field-fresh soils and incubated soils. The native ammonia-oxidizing community was also characterized, based on diversity assessments (clone libraries) and quantification of the ammonia monooxygenase α-subunit (amoA) gene. These relatively low pH soils appear to be dominated by ammonia-oxidizing archaea (AOA), and AOA communities in the three soil types differed significantly in their ability to oxidize ammonia. Soils from an intermediate elevation, and those incubated with fluctuating redox conditions, tended to have the highest nitrification potential following an influx of oxygen, although all soils retained the capacity to nitrify even after long anoxic periods. Together, these results suggest that wet tropical soil AOA are tolerant of extended periods of anoxia.

  11. An anoxic-aerobic system for simultaneous biodegradation of phenol and ammonia in a sequencing batch reactor.

    PubMed

    Liu, Qifeng; Singh, Vijay P; Fu, Zhimin; Wang, Jing; Hu, La

    2017-03-24

    A laboratory-scale sequencing batch reactor (SBR) was investigated to treat artificial pretreated coal gasification wastewater that was mainly contained of ammonia and phenol. The efficiency of SBR fed with increasing phenol concentrations (from 150 to 300 mg l(-1)) and the relationship among phenol, nitrogen removal, and the microbial community structure were evaluated. When the phenol feeding concentration was increased to about 300 mg l(-1), the removal efficiency was above 99.0%, demonstrating the robustness of phenol removal capacity. The study showed that most phenol was degraded in anoxic stage. The average removal efficiencies of ammonia and total nitrogen were 98.4 and 81.9%, respectively, with average NH4(+)-N concentration of 107.5 mg l(-1) and COD/N 7.5. Low temperature caused sludge loss that led to the decreased performance. Increasing the temperature could not recover the performance effectively. The data from bacterial analysis revealed that Delftia, Hydrogenophaga, and unclassified Xanthomonadaceae played a significant role in phenol degradation before the temperature increase, while uncultured Syntrophococcus sp. and unclassified Rhodocyclaceae were responsible for phenol degradation after the temperature increase. These results imply that the SBR holds potential for the simultaneous removal of phenolic compounds and nitrogen through aerobic ammonia oxidation and anoxic denitrification with phenol as the co-organic carbon source.

  12. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  13. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  14. Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian.

    PubMed

    Martínez-García, Manuel; Stief, Peter; Díaz-Valdés, Marta; Wanner, Gerhard; Ramos-Esplá, Alfonso; Dubilier, Nicole; Antón, Josefa

    2008-11-01

    Marine Crenarchaeota represent an abundant component of the oceanic microbiota that play an important role in the global nitrogen cycle. Here we report the association of the colonial ascidian Cystodytes dellechiajei with putative ammonia-oxidizing Crenarchaeota that could actively be involved in nitrification inside the animal tissue. As shown by 16S rRNA gene analysis, the ascidian-associated Crenarchaeota were phylogenetically related to Nitrosopumilus maritimus, the first marine archaeon isolated in pure culture that grows chemolithoautotrophically oxidizing ammonia to nitrite aerobically. Catalysed reporter deposition (CARD)-FISH revealed that the Crenarchaeota were specifically located inside the tunic tissue of the colony, where moreover the expression of amoA gene was detected. The amoA gene encodes the alpha-subunit of ammonia monooxygenase, which is involved in the first step of nitrification, the oxidation of ammonia to nitrite. Sequencing of amoA gene showed that they were phylogenetically related to amoA genes of N. maritimus and other putative ammonia-oxidizing marine Crenarchaeota. In order to track the suspected nitrification activity inside the ascidian colony under in vivo conditions, microsensor profiles were measured through the tunic tissue. Net NO(x) production was detected in the tunic layer 1200-1800 microm with rates of 58-90 nmol cm(-3) h(-1). Oxygen and pH microsensor profiles showed that the layer of net NO(x) production coincided with O(2) concentrations of 103-116 microM and pH value of 5.2. Together, molecular and microsensor data indicate that Crenarchaeota could oxidize ammonia to nitrite aerobically, and thus be involved in nitrification inside the ascidian tissue.

  15. Ammonia stimulates growth and nitrite-oxidizing activity of Nitrobacter winogradskyi

    PubMed Central

    Ma, Shouguang; Zhang, Demin; Zhang, Wenjun; Wang, Yinong

    2014-01-01

    The aim of this study was to obtain a nitrite-oxidizing bacterium with high nitrite oxidation activity for controlling nitrite levels. A nitrite-oxidizing bacterium, ZS-1, was isolated from the water of a coastal Pseudosciaena crocea-rearing pond. The strain was identified as Nitrobacter winogradskyi based on the phylogenetic analyses of the 16S ribosomal ribonucleic acid gene and nxrA sequence of ZS-1. Under aerobic condition, the nitrite-oxidizing activity of ZS-1 did not change considerably in the range of pH 7–9, but was strongly inhibited by lower (pH = 6) and higher (pH = 10) pH values. The optimum temperature range is 25–32 °C. Lower temperature made the adaptive phase of ZS-1 longer but did not affect its maximum nitrite oxidization rate. The nitrite-oxidizing activity of ZS-1 started to be inhibited by ammonia and nitrate when the concentrations of ammonia and nitrate reached 25 mg L−1 and 100 mg L−1, respectively. The inhibition was stronger with higher concentration of ammonia or nitrate. The nitrite-oxidizing activity of ZS-1, however, was not inhibited by high concentration of nitrite (500 mg L−1). The nitrite-oxidizing activity of ZS-1 was increased by low ammonia concentration (1 mg L−1 to 10 mg L−1). PMID:26019486

  16. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor.

  17. Removal of ammonia solutions used in catalytic wet oxidation processes.

    PubMed

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  18. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    SciTech Connect

    Nash, C.; Fowley, M.

    2016-12-30

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reduce hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.

  19. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  20. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  1. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.

    PubMed

    Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

    2014-08-29

    The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.

  2. Effect of ammonia plasma treatment on graphene oxide LB monolayers

    SciTech Connect

    Singh, Gulbagh; Botcha, V. Divakar; Narayanam, Pavan K.; Sutar, D. S.; Talwar, S. S.; Major, S. S.; Srinivasa, R. S.

    2013-02-05

    Graphene oxide monolayer sheets were transferred on Si and SiO{sub 2}/Si substrates by Langmuir-Blodgett technique and were exposed to ammonia plasma at room temperature. The monolayer character of both graphene oxide and plasma treated graphene oxide sheets were ascertained by atomic force microscopy. X-ray photoelectron spectroscopy and Raman spectroscopy revealed that ammonia plasma treatment results in enhancement of graphitic carbon content along with the incorporation of nitrogen. The conductivity of graphene oxide monolayers, which was in the range of 10{sup -6}-10{sup -7} S/cm, increased to 10{sup -2}-10{sup -3} S/cm after the ammonia plasma treatment. These results indicate that the graphene oxide was simultaneously reduced and N-doped during ammonia plasma treatment, without affecting the morphological stability of sheets.

  3. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.

  4. Isolation of an autotrophic ammonia-oxidizing marine archaeon.

    PubMed

    Könneke, Martin; Bernhard, Anne E; de la Torre, José R; Walker, Christopher B; Waterbury, John B; Stahl, David A

    2005-09-22

    For years, microbiologists characterized the Archaea as obligate extremophiles that thrive in environments too harsh for other organisms. The limited physiological diversity among cultivated Archaea suggested that these organisms were metabolically constrained to a few environmental niches. For instance, all Crenarchaeota that are currently cultivated are sulphur-metabolizing thermophiles. However, landmark studies using cultivation-independent methods uncovered vast numbers of Crenarchaeota in cold oxic ocean waters. Subsequent molecular surveys demonstrated the ubiquity of these low-temperature Crenarchaeota in aquatic and terrestrial environments. The numerical dominance of marine Crenarchaeota--estimated at 10(28) cells in the world's oceans--suggests that they have a major role in global biogeochemical cycles. Indeed, isotopic analyses of marine crenarchaeal lipids suggest that these planktonic Archaea fix inorganic carbon. Here we report the isolation of a marine crenarchaeote that grows chemolithoautotrophically by aerobically oxidizing ammonia to nitrite--the first observation of nitrification in the Archaea. The autotrophic metabolism of this isolate, and its close phylogenetic relationship to environmental marine crenarchaeal sequences, suggests that nitrifying marine Crenarchaeota may be important to global carbon and nitrogen cycles.

  5. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate.

    PubMed

    Law, Yingyu; Ni, Bing-Jie; Lant, Paul; Yuan, Zhiguo

    2012-06-15

    The relationship between the ammonia oxidation rate (AOR) and nitrous oxide production rate (N(2)OR) of an enriched ammonia-oxidising bacteria (AOB) culture was investigated. The AOB culture was enriched in a nitritation system fed with synthetic anaerobic digester liquor. The AOR was controlled by adjusting the dissolved oxygen (DO) and pH levels and also by varying the initial ammonium (NH(4)(+)) concentration in batch experiments. Tests were also performed directly on the parent reactor where a stepwise decrease/increase in DO was implemented to alter AOR. The experimental data indicated a clear exponential relationship between the biomass specific N(2)OR and AOR. Four metabolic models were used to analyse the experimental data. The metabolic model formulated based on aerobic N(2)O production from the decomposition of nitrosyl radical (NOH) predicted the exponential correlation observed experimentally. The experimental data could not be reproduced by models developed on the basis of N(2)O production through nitrite (NO(2)(-)) and nitric oxide (NO) reduction by AOB.

  6. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    PubMed

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p < 0.01). Pearson analysis also indicated that ORP was the most important factor influencing the abundances and diversities of ammonia-oxidizing microbes. ORP was significantly negatively correlated with AOA OTU numbers (p < 0.05), ratio of OTU numbers (AOA:AOB) (p < 0.01), and ratio of amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05).

  7. Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79

    PubMed Central

    Sedlacek, Christopher J.; Nielsen, Susanne; Greis, Kenneth D.; Haffey, Wendy D.; Revsbech, Niels Peter; Ticak, Tomislav; Laanbroek, Hendrikus J.

    2016-01-01

    ABSTRACT Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. IMPORTANCE Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to

  8. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  9. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants.

    PubMed

    Schmidt, Ingo; van Spanning, Rob J M; Jetten, Mike S M

    2004-12-01

    The phenotypes of three different Nitrosomonas europaea strains--wild-type, nitrite reductase (NirK)-deficient and nitric oxide reductase (NorB)-deficient strains--were characterized in chemostat cell cultures, and the effect of nitric oxide (NO) on metabolic activities was evaluated. All strains revealed similar aerobic ammonia oxidation activities, but the growth rates and yields of the knock-out mutants were significantly reduced. Dinitrogen (N2) was the main gaseous product of the wild-type, produced via its denitrification activity. The mutants were unable to reduce nitrite to N2, but excreted more hydroxylamine leading to the formation of almost equal amounts of NO, nitrous oxide (N2O) and N2 by chemical auto-oxidation and chemodenitrification of hydroxylamine. Under anoxic conditions Nsm. europaea wild-type gains energy for growth via nitrogen dioxide (NO2)-dependent ammonia oxidation or hydrogen-dependent denitrification using nitrite as electron acceptor. The mutant strains were restricted to NO and/or N2O as electron acceptor and consequently their growth rates and yields were much lower compared with the wild-type. When cells were transferred from anoxic (denitrification) to oxic conditions, the wild-type strain endogenously produced NO and recovered ammonia oxidation within 8 h. In contrast, the mutant strains remained inactive. For recovery of ammonia oxidation activity the NO concentration had to be adjusted to about 10 p.p.m. in the aeration gas.

  10. Physiological plasticity of the thermophilic ammonia oxidizing archaeon Nitrosocaldus yellowstonii in response to a changing environment

    NASA Astrophysics Data System (ADS)

    Jewell, T.; Johnson, A.; Gelsinger, D.; de la Torre, J. R.

    2012-12-01

    Our understanding of nitrogen biogeochemical cycling in high temperature environments underwent a dramatic revision with the discovery of ammonia oxidizing archaea (AOA). The importance of AOA to the global nitrogen cycle came to light when recent studies of marine AOA demonstrated the dominance of these organisms in the ocean microbiome and their role as producers of the greenhouse gas nitrous oxide (N2O). Understanding how AOA respond to fluctuating environments is crucial to fully comprehending their contribution to global biogeochemical cycling and climate change. In this study we use the thermophilic AOA Nitrosocaldus yellowstonii strain HL72 to explore the physiological plasticity of energy metabolism in these organisms. Previous studies have shown that HL72 grows autotrophically by aerobically oxidizing ammonia (NH3) to nitrite (NO2-). Unlike studies of marine AOA, we find that HL72 can grow over a wide ammonia concentration range (0.25 - 10 mM NH4Cl) with comparable generation times when in the presence of 0.25 to 4 mM NH4Cl. However, preliminary data indicate that amoA, the alpha subunit of ammonia monooxygenase (AMO), is upregulated at low ammonia concentrations (<50 μM) compared to growth at 1 mM. Although the ammonia oxidation pathway has not been fully elucidated, we have shown that nitric oxide (NO) appears to be a key intermediate: exponentially growing HL72 produces significant NO and the removal of NO using a scavenger reversibly inhibits growth. In addition to AMO, the HL72 genome also contains sequences for a urease encoded by subunits ureABC and an active urea transporter. Urea ((NH2)2CO) is an organic compound ubiquitous to aquatic and soil habitats that, when hydrolyzed, forms NH3 and CO2. We examined urea as an alternate source of ammonia for the ammonia oxidation pathway. HL72 grows over a wide range of urea concentrations (0.25 - 10 mM) at rates comparable to growth on ammonia. In a substrate competition experiment HL72 preferentially

  11. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules.

    PubMed

    Xu, Guangjing; Xu, Xiaochen; Yang, Fenglin; Liu, Sitong

    2011-01-15

    Partial nitrification was successfully achieved with addition of 5mM KClO(3) in the aerobic granules system. Batch tests demonstrated that KClO(3) selectively inhibited nitrite-oxidizing bacteria (NOB) but not ammonia-oxidizing bacteria (AOB). During stable partial nitrification, the influent pH was kept at 7.8-8.2, while the DO and temperature were not controlled in the SBR. When the NH(4)-N and COD levels were kept at 100mg/l and 400mg/l in the influent, the NH(4)-N and COD removal efficiencies reached 98.93% and 78.65%, respectively. The NO(2)-N accounted for 92.95% of the NO(χ)-N (NO(2)-N+NO(3)-N) in the effluent. Furthermore, about 90% of the chlorate was reduced to nontoxic chloride, thus it would not cause environmental problem. SEM showed that the main composition of the aerobic granules was bacilli and coccus bacteria. FISH analysis revealed that AOB became the dominant nitrifying bacteria, whereas NOB were detected only in low abundance. Chlorate could be used to control the development and maintenance of aerobic granules sludge for partial nitrification.

  12. Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria.

    PubMed

    Claros, J; Jiménez, E; Borrás, L; Aguado, D; Seco, A; Ferrer, J; Serralta, J

    2010-01-01

    A continuously aerated SHARON (single reactor high activity ammonia removal over nitrite) system has been operated to achieve partial nitritation. Two sets of batch experiments were carried out to study the effect of ammonia concentration and salinity on the activity of ammonia-oxidizing bacteria (AOB). Activity of AOB raised as free ammonia concentration was increased reaching its maximum value at 4.5 mg NH3-N l(-1). The half saturation constant for free ammonia was determined (K(NH3)=0.32 mg NH3-N l(-1)). Activity decreased at TAN (total ammonium-nitrogen) concentration over 2,000 mg NH4-N l(-1). No free ammonia inhibition was detected. The effect of salinity was studied by adding different concentrations of different salts to the biomass. No significant differences were observed between the experiments carried out with a salt containing or not containing NH4. These results support that AOB are inhibited by salinity, not by free ammonia. A mathematical expression to represent this inhibition is proposed. To compare substrate affinity and salinity inhibitory effect on different AOB populations, similar experiments were carried out with biomass from a biological nutrient removal pilot plant. The AOB activity reached its maximum value at 0.008 mg NH3-N l(-1) and decreased at TAN concentration over 400 mg NH4-N l(-1). These differences can be explained by the different AOB predominating species: Nitrosomonas europaea and N. eutropha in the SHARON biomass and Nitrosomonas oligotropha in the pilot plant.

  13. Nitrous oxide emissions from an aerobic granular sludge system treating low-strength ammonium wastewater.

    PubMed

    Gao, Mingming; Yang, Sen; Wang, Mingyu; Wang, Xin-Hua

    2016-11-01

    Aerobic granular sludge is a promising technology in wastewater treatment process. Its special microorganism structure could make the emissions of greenhouse gas nitrous oxide (N2O) more complicated. This study investigated the N2O emissions from a batch-fed aerobic granular sludge system during nitrification of low-strength synthetic ammonium wastewater. The N2O emission was 2.72 ± 0.52% of the oxidized ammonium during the whole anoxic-oxic sequencing batch reactor (SBR) cycle. Under nitrification batch test with sole ammonium substrate (50 mg N/L), N2O emission factor was 1.82% (N2ON/NH4(+)-Nox) and ammonia-oxidizing bacteria (AOB) was the responsible microorganism. The presence of high ammonium concentration (or high ammonium oxidation rate (AOR)) and accumulation of nitrite would lead to significant N2O emissions. AOB denitrification pathway was speculated to contribute more to the N2O emissions under nitrification conditions. While under simultaneous nitrification and denitrification condition with carbon source of 500 mg COD/L, the N2O emission factor increased to 2.76%. Both AOB and heterotrophic denitrifiers were responsible for N2O emission and heterotrophic denitrification enhances N2O emission. Step feeding of organic carbon source declined N2O emission factor to 1.60%, which underlined the role of storage substance consumption in N2O generation during denitrification.

  14. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger.

    PubMed

    Martens-Habbena, Willm; Qin, Wei; Horak, Rachel E A; Urakawa, Hidetoshi; Schauer, Andrew J; Moffett, James W; Armbrust, E Virginia; Ingalls, Anitra E; Devol, Allan H; Stahl, David A

    2015-07-01

    Nitrification is a critical process for the balance of reduced and oxidized nitrogen pools in nature, linking mineralization to the nitrogen loss processes of denitrification and anammox. Recent studies indicate a significant contribution of ammonia-oxidizing archaea (AOA) to nitrification. However, quantification of the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to in situ ammonia oxidation remains challenging. We show here the production of nitric oxide (NO) by Nitrosopumilus maritimus SCM1. Activity of SCM1 was always associated with the release of NO with quasi-steady state concentrations between 0.05 and 0.08 μM. NO production and metabolic activity were inhibited by the nitrogen free radical scavenger 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). Comparison of marine and terrestrial AOB strains with SCM1 and the recently isolated marine AOA strain HCA1 demonstrated a differential sensitivity of AOB and AOA to PTIO and allylthiourea (ATU). Similar to the investigated AOA strains, bulk water column nitrification at coastal and open ocean sites with sub-micromolar ammonia/ammonium concentrations was inhibited by PTIO and insensitive to ATU. These experiments support predictions from kinetic, molecular and biogeochemical studies, indicating that marine nitrification at low ammonia/ammonium concentrations is largely driven by archaea and suggest an important role of NO in the archaeal metabolism.

  15. Chemically reduced graphene oxide for ammonia detection at room temperature.

    PubMed

    Ghosh, Ruma; Midya, Anupam; Santra, Sumita; Ray, Samit K; Guha, Prasanta K

    2013-08-14

    Chemically reduced graphene oxide (RGO) has recently attracted growing interest in the area of chemical sensors because of its high electrical conductivity and chemically active defect sites. This paper reports the synthesis of chemically reduced GO using NaBH4 and its performance for ammonia detection at room temperature. The sensing layer was synthesized on a ceramic substrate containing platinum electrodes. The effect of the reduction time of graphene oxide (GO) was explored to optimize the response, recovery, and response time. The RGO film was characterized electrically and also with atomic force microscopy and X-ray photoelectron spectroscopy. The sensor response was found to lie between 5.5% at 200 ppm (parts per million) and 23% at 2800 ppm of ammonia, and also resistance recovered quickly without any application of heat (for lower concentrations of ammonia). The sensor was exposed to different vapors and found to be selective toward ammonia. We believe such chemically reduced GO could potentially be used to manufacture a new generation of low-power portable ammonia sensors.

  16. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil

    PubMed Central

    Tourna, Maria; Stieglmeier, Michaela; Spang, Anja; Könneke, Martin; Schintlmeister, Arno; Urich, Tim; Engel, Marion; Schloter, Michael; Wagner, Michael; Richter, Andreas; Schleper, Christa

    2011-01-01

    Genes of archaea encoding homologues of ammonia monooxygenases have been found on a widespread basis and in large amounts in almost all terrestrial and marine environments, indicating that ammonia oxidizing archaea (AOA) might play a major role in nitrification on Earth. However, only one pure isolate of this group from a marine environment has so far been obtained, demonstrating archaeal ammonia oxidation coupled with autotrophic growth similar to the bacterial counterparts. Here we describe the cultivation and isolation of an AOA from soil. It grows on ammonia or urea as an energy source and is capable of using higher ammonia concentrations than the marine isolate, Nitrosopumilus maritimus. Surprisingly, although it is able to grow chemolithoautotrophically, considerable growth rates of this strain are obtained only upon addition of low amounts of pyruvate or when grown in coculture with bacteria. Our findings expand the recognized metabolic spectrum of AOA and help explain controversial results obtained in the past on the activity and carbon assimilation of these globally distributed organisms. PMID:21525411

  17. Ammonia oxidation rates and nitrification in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.

    2011-12-01

    Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.

  18. Fabrication of highly selective tungsten oxide ammonia sensors

    SciTech Connect

    Llobet, E.; Molas, G.; Molinas, P.; Calderer, J.; Vilanova, X.; Brezmes, J.; Sueiras, J.E.; Correig, X.

    2000-02-01

    Tungsten oxide is shown to be a very promising material for the fabrication of highly selective ammonia sensors. Films of WO{sub 3} were deposited onto a silicon substrate by means of the drop-coating method. Then, the films were annealed in dry air at two different temperatures (300 and 400 C). X-ray photoelectron spectroscopy was used to investigate the composition of the films. Tungsten appeared both in WO{sub 2} and WO{sub 3} oxidation states, but the second state was clearly dominant. Scanning electron microscopy results showed that the oxide was amorphous or nanocrystalline. The WO{sub 3}-based devices were sensitive to ammonia vapors when operated between 250 and 350 C. The optimal operating temperature for the highest sensitivity to ammonia was 300 C. Furthermore, when the devices were operated at 300 C, their sensitivity to other reducing species such as ethanol, methane, toluene, and water vapor was significantly lower, and this resulted in a high selectivity to ammonia. A model for the sensing mechanisms of the fabricated sensors is proposed.

  19. Ammonia modification of oxide-free Si(111) surfaces

    NASA Astrophysics Data System (ADS)

    Chopra, Tatiana Peixoto; Longo, Roberto C.; Cho, Kyeongjae; Chabal, Yves J.

    2016-08-01

    Amination of surfaces is useful in a variety of fields, ranging from device manufacturing to biological applications. Previous studies of ammonia reaction on silicon surfaces have concentrated on vapor phase rather than wet chemical processes, and mostly on clean Si surfaces. In this work, the interaction of liquid and vapor-phase ammonia is examined on three types of oxide-free surfaces - passivated by hydrogen, fluorine (1/3 monolayer) or chlorine - combining infrared absorption spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations. The resulting chemical composition highly depends on the starting surface; there is a stronger reaction on both F- and Cl-terminated than on the H-terminated Si surfaces, as evidenced by the formation of Si-NH2. Side reactions can also occur, such as solvent reaction with surfaces, formation of ammonium salt by-products (in the case of 0.2 M ammonia in dioxane solution), and nitridation of silicon (in the case of neat and gas-phase ammonia reactions for instance). Unexpectedly, there is formation of Si-H bonds on hydrogen-free Cl-terminated Si(111) surfaces in all cases, whether vapor phase of neat liquid ammonia is used. The first-principles modeling of this complex system suggests that step-edge surface defects may play a key role in enabling the reaction under certain circumstances, despite the endothermic nature for Si-H bond formation.

  20. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types.

    PubMed

    Morimoto, Sho; Hayatsu, Masahito; Takada Hoshino, Yuko; Nagaoka, Kazunari; Yamazaki, Masatsugu; Karasawa, Toshihiko; Takenaka, Makoto; Akiyama, Hiroko

    2011-01-01

    Soil type is one of the key factors affecting soil microbial communities. With regard to ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), however, it has not been determined how soil type affects their community size and soil nitrification activity. Here we quantitatively analyzed the ammonia monooxygenase genes (amoA) of these ammonia oxidizers in fields with three different soil types (Low-humic Andosol [LHA], Gray Lowland Soil [GLS], and Yellow Soil [YS]) under common cropping conditions, and assessed the relationships between soil nitrification activity and the abundance of each amoA. Nitrification activity of LHA was highest, followed by that of GLS and YS; this order was consistent with that for the abundance of AOB amoA. Abundance of AOB amoA showed temporal variation, which was similar to that observed in nitrification activity, and a strong relationship (adjusted R(2)=0.742) was observed between the abundance of AOB amoA and nitrification activity. Abundance of AOA amoA also exhibited a significant relationship (adjusted R(2)=0.228) with nitrification activity, although this relationship was much weaker. Our results indicate that soil type affects the community size of AOA and AOB and the resulting nitrification activity, and that AOB are major contributors to nitrification in soils, while AOA are partially responsible.

  1. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream

    PubMed Central

    Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-01-01

    ABSTRACT Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2− and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of “Candidatus Nitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ18ONO2− in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying

  2. Evaluation of Methyl Fluoride and Dimethyl Ether as Inhibitors of Aerobic Methane Oxidation

    PubMed Central

    Oremland, Ronald S.; Culbertson, Charles W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ∼100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor. PMID:16348771

  3. Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil.

    PubMed

    Wang, Yu; Zhu, Guibing; Song, Liyan; Wang, Shanyun; Yin, Chengqing

    2014-03-01

    Manure fertilizers are widely used in agriculture and highly impacted the soil microbial communities such as ammonia oxidizers. However, the knowledge on the communities of archaeal versus bacterial ammonia oxidizers in paddy soil affected by manure fertilization remains largely unknown, especially for a long-term influence. In present work, the impact of manure fertilization on the population of ammonia oxidizers, related potential nitrification rates (PNRs) and the key factors manipulating the impact were investigated through studying two composite soil cores (long-term fed with manure fertilization versus undisturbed). Moreover, soil incubated with NH(4)(+) for 5 weeks was designed to verify the field research. The results showed that the copy numbers of bacterial amoA gene in the manure fed soil were significant higher than those in the unfed soil (p < 0.05), suggesting a clear stimulating effect of long-term manure fertilization on the population of ammonia-oxidizing bacteria (AOB). The detected PNRs in the manure fed soil core (14-218 nmol L(-1)  N g(-1)  h(-1)) were significant higher than those in the unfed soil core (5-72 nmol L(-1)  N g(-1)  h(-1) ; p < 0.05). Highly correlations between the PNRs and the bacterial amoA gene copies rather than archaeal amoA gene were observed, indicating strong nitrification capacity related to bacterial ammonia oxidizers. The NH(4)(+) -N significantly correlated to the abundance of AOB (p < 0.01) and explained 96.1% of the environmental variation, showing the NH(4)(+) -N was the main factor impacting the population of AOB. The incubation experiment demonstrated a clear increase of the bacterial amoA gene abundance (2.0 × 10(6) to 8.4 × 10(6)  g(-1) d.w.s. and 1.6 × 10(4) to 4.8 × 10(5)  g(-1) d.w.s.) in both soil but not for the archaeal amoA gene, in agreement with the field observation. Overall, our results suggested that manure fertilization promoted the

  4. Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria

    PubMed Central

    Casciotti, Karen L.; Ward, Bess B.

    2001-01-01

    The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of β-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria. PMID:11319103

  5. EXAMINING THE TEMPORAL VARIABILITY OF AMMONIA AND NITRIC OXIDE EMISSIONS FROM AGRICULTURAL PROCESSES

    EPA Science Inventory

    This paper examines the temporal variability of airborne emissions of ammonia from livestock operations and fertilizer application and nitric oxide from soils. In the United States, the livestock operations and fertilizer categories comprise the majority of the ammonia emissions...

  6. Structure Analysis of Aerobic Granule from a Sequencing Batch Reactor for Organic Matter and Ammonia Nitrogen Removal

    PubMed Central

    Li, Jun; Cai, Ang; Wang, Danjun; Chen, Chao; Ni, Yongjiong

    2014-01-01

    Aerobic granules were cultivated in a sequencing batch reactor (SBR). COD and ammonia nitrogen removal rate were 94% and 99%, respectively. The diameter, settling velocity and SVI10 of granules ranged from 2 to 5 mm, 80 to 110 m/h and about 40 mL/g, respectively. Freezing microtome images, DO concentration profiles by microelectrode, distribution of bacteria and EPS by confocal laser scanning microscopy (CLSM) show that the aerobic granules have a three-layer structure. Each layer has different thickness, character, bacteria, and DO transfer rate. A hypothesis for granule structure is proposed: the first layer, the surface of the granule, is composed mostly of heterotrophic organisms for organic matter removal, with a thickness range from 150 to 350 μm; the second layer, mostly composed of autotrophic organisms for ammonia nitrogen removal, with a thickness range from 250 to 450 μm; the third layer, located in the core of the granule, has mostly an inorganic composition and contains pores and channels. PMID:24577284

  7. Oxygen distribution and potential ammonia oxidation in floating, liquid manure crusts.

    PubMed

    Nielsen, Daniel Aa; Nielsen, Lars P; Schramm, Andreas; Revsbech, Niels P

    2010-01-01

    Floating, organic crusts on liquid manure, stored as a result of animal production, reduce emission of ammonia (NH3) and other volatile compounds during storage. The occurrence of NO2- and NO3- in the crusts indicate the presence of actively metabolizing NH3-oxidizing bacteria (AOB) which may be partly responsible for this mitigation effect. Six manure tanks with organic covers (straw and natural) were surveyed to investigate the prevalence and potential activity ofAOB and its dependence on the O2 availability in the crust matrix as studied by electrochemical profiling. Oxygen penetration varied from <1 mm in young, poorly developed natural crusts and old straw crusts, to several centimeters in the old natural crusts. The AOB were ubiquitously present in all crusts investigated, but nitrifying activity could only be detected in old natural crusts and young straw crust with high O2 availability. In old natural crusts, total potential NH3 oxidation rates were similar to reported fluxes of NH3 from slurry without surface crust. These results indicate that old, natural surface crusts may develop into a porous matrix with high O2 availability that harbors an active population of aerobic microorganisms, including AOB. The microbial activity may thus contribute to a considerable reduction of ammonia emissions from slurry tanks with well-developed crusts.

  8. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene.

    PubMed

    Offre, Pierre; Prosser, James I; Nicol, Graeme W

    2009-10-01

    Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 degrees C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.

  9. Bacteria dominate the ammonia-oxidizing community in a hydrothermal vent site at the Mid-Atlantic Ridge of the South Atlantic Ocean.

    PubMed

    Xu, Wei; Li, Meng; Ding, Jie-Fei; Gu, Ji-Dong; Luo, Zhu-Hua

    2014-09-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which is carried out by two groups of microorganisms: ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). In this study, diversity and abundance of AOB and AOA were investigated in five rock samples from a deep-sea hydrothermal vent site at the Mid-Atlantic Ridge (MAR) of the South Atlantic Ocean. Both bacterial and archaeal ammonia monooxygenase subunit A (amoA) gene sequences obtained in this study were closely related to the sequences retrieved from deep-sea environments, indicating that AOB and AOA in this hydrothermal vent site showed typical deep ocean features. AOA were more diverse but less abundant than AOB. The ratios of AOA/AOB amoA gene abundance ranged from 1/3893 to 1/242 in all investigate samples, indicating that bacteria may be the major members responding to the aerobic ammonia oxidation in this hydrothermal vent site. Furthermore, diversity and abundance of AOA and AOB were significantly correlated with the contents of total nitrogen and total sulfur in investigated samples, suggesting that these two environmental factors exert strong influences on distribution of ammonia oxidizers in deep-sea hydrothermal vent environment.

  10. Impact of biodegradation of organic matters on ammonia oxidation in compost.

    PubMed

    Zeng, Yang; De Guardia, Amaury; Ziebal, Christine; De Macedo, Flávia Junqueira; Dabert, Patrick

    2013-05-01

    Nitrification plays an important role in nitrogen turnover in composting process. It has been believed that nitrification occurs mainly during the maturation phase due to the elevated temperature during the active phase of composting. In this work, the intense biodegradation of organic matters is demonstrated to be another negative impact on the ammonia oxidation, the first step of nitrification. We investigated the ammonia oxidation in compost following organic matters addition at intermediate temperature. Different indicators of ammonia oxidation were studied, respectively. The accumulation of nitrite and nitrate was 10(2)-10(3) lower in composts with organic matters addition. The nitrous oxide emissions were absent or 40-fold inferior in these composts. The nitrogen mass balance indicated a less amount of oxidized ammonia after the addition. The ammonia-oxidizing bacteria declined following the organic matters addition. In contrast, the ammonia-oxidizing archaea were supported by the organic matters. Possible mechanisms of this impact were also discussed.

  11. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    PubMed Central

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis–Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l−1 was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used 15NH4+ dilution technique. PMID:23657360

  12. [Effect of pH for the electrochemical oxidation products and oxidation pathways of ammonia].

    PubMed

    Chen, Jin-luan; Shi, Han-chang; Xu, Li-li

    2008-08-01

    The electrochemical oxidation of ammonia in wastewater was investigated in a flow electrochemical cell. The effect of pH on ammonia removal efficiency, oxidation products and oxidation pathways was elucidated. The experimental results indicated that, the higher production efficiency of free chlorine and hydroxyl radical can be obtained under the moderate alkaline condition, and the electrochemical oxidation rate of ammonia was higher in this condition. In existence of chloride ions, chloramines produced during the electrolysis of ammonia. The constituent of chloramines related with the pH of reaction system. When pH was higher than 9, monochloramine was dominant; When pH was equal to 7, monochloramine and dichloramine existed at the same time and the concentration of the two chloramines was an approximation of the same; When pH was smaller than 5, most of the production was dichloramine. The production of nitrogen trichloride can be avoided when pH was higher than 5. Under the current density of 20 mA/cm2, the concentration of hydroxyl radical produced by electrolysis was smaller than 5 x 10(-15) mol/L. The indirect oxidation was the dominant reaction in the two pathways of electrochemical oxidation of ammonia.

  13. Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Hooper, A.B.

    1992-07-01

    Suspensions of Nitrosomonas europaea catalyzed the oxidation of the commercial nitrification inhibitor nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine). Rapid oxidation of nitrapyrin (at a concentration of 10 microM) required the concomitant oxidation of ammonia, hydroxylamine, or hydrazine. The turnover rate was highest in the presence of 10 mM ammonia (0.8 nmol of nitrapyrin per min/mg of protein). The product of the reaction was 6-chloropicolinic acid. By the use of (18)O2, it was shown that one of the oxygens in 6-chloropicolinic acid came from diatomic oxygen and that the other came from water. Approximately 13% of the radioactivity of (2,6-(14)C) nitrapyrin was shown to bind to cells. Most (94%) of the latter was bound indiscriminately to membrane proteins. The nitrapyrin bound to membrane proteins may account for the observed inactivation of ammonia oxidation. (Copyright (c) 1992, American Society for Microbiology.)

  14. Impact of TiO₂ and ZnO nanoparticles at predicted environmentally relevant concentrations on ammonia-oxidizing bacteria cultures under ammonia oxidation.

    PubMed

    Luo, Zhuanxi; Qiu, Zhaozheng; Chen, Zheng; Du Laing, Gijs; Liu, Aifen; Yan, Changzhou

    2015-02-01

    Increased application of titanium dioxide and zinc oxide nanoparticles (nano-TiO2 and nano-ZnO) raises concerns related to their environmental impacts. The effects that such nanoparticles have on environmental processes and the bacteria that carry them out are largely unknown. In this study, ammonia-oxidizing bacteria (AOB) enrichment cultures, grown from surface sediments taken from an estuary wetland in Fujian Province, China, were spiked with nano-TiO2 and nano-ZnO (with an average size of 32 and 43 nm, respectively) at predicted environmentally relevant concentrations (≤2 mg L(-1)) to determine their impacts on ammonia oxidation and the mechanisms involved. Results showed that higher nano-TiO2 concentrations significantly inhibited ammonia oxidation in enrichment cultures. It is noteworthy that the average ammonia oxidation rate was significantly correlated to the Shannon index, the Simpson's index, and AOB abundance. This suggested that ammonia oxidation inhibition primarily resulted from a reduction of AOB biodiversity and abundance. However, AOB biodiversity and abundance as well as the average ammonia oxidation rate were not inhibited by nano-ZnO at predicted environmentally relevant concentrations. Accordingly, an insignificant correlation was established between biodiversity and abundance of the AOB amoA gene and the average ammonia oxidation rate under nano-ZnO treatments. AOB present in samples belonged to the β-Proteobacteria class with an affinity close to Nitrosospira and Nitrosomonas genera. This suggested that identified impacts of nano-TiO2 and nano-ZnO on ammonia oxidation processes can be extrapolated to some extent to natural aquatic environments. Complex impacts on AOB may result from different nanomaterials present in aquatic environments at various ambient conditions. Further investigation on how and to what extent different nanomaterials influence AOB diversity and abundance and their subsequent ammonia oxidation processes is therefore

  15. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis

    SciTech Connect

    Anson, Colin W.; Ghosh, Soumya; Hammes-Schiffer, Sharon; Stahl, Shannon S.

    2016-03-30

    Macrocyclic metal complexes and p-benzoquinones are commonly used as co-catalytic redox mediators in aerobic oxidation reactions. In an effort to gain insight into the mechanism and energetic efficiency of these reactions, we investigated Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone. Kinetic and spectroscopic data suggest that the catalyst resting-state consists of an equilibrium between a CoII(salophen) complex, a CoIII-superoxide adduct, and a hydrogen-bonded adduct between the hydroquinone and the CoIII–O2 species. The kinetic data, together with density functional theory data, suggest that the turnover-limiting step features proton-coupled electron transfer from a semi-hydroquinone species and a CoIII-hydroperoxide intermediate. Additional experimental and computational data suggest that a coordinated H2O2 intermediate oxidizes a second equivalent of hydroquinone. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The NSF provided partial support for the EPR instrumentation (NSF CHE-0741901).

  16. Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.

    PubMed

    Hoover, Jessica M; Ryland, Bradford L; Stahl, Shannon S

    2013-02-13

    Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)Cu(I)/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic investigation of this catalyst system, in which we compare the reactivity of benzylic and aliphatic alcohols. This work includes analysis of catalytic rates by gas-uptake and in situ IR kinetic methods and characterization of the catalyst speciation during the reaction by EPR and UV-visible spectroscopic methods. The data support a two-stage catalytic mechanism consisting of (1) "catalyst oxidation" in which Cu(I) and TEMPO-H are oxidized by O(2) via a binuclear Cu(2)O(2) intermediate and (2) "substrate oxidation" mediated by Cu(II) and the nitroxyl radical of TEMPO via a Cu(II)-alkoxide intermediate. Catalytic rate laws, kinetic isotope effects, and spectroscopic data show that reactions of benzylic and aliphatic alcohols have different turnover-limiting steps. Catalyst oxidation by O(2) is turnover limiting with benzylic alcohols, while numerous steps contribute to the turnover rate in the oxidation of aliphatic alcohols.

  17. Genome sequence of Nitrosomonas sp. strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia.

    PubMed

    Suwa, Yuichi; Yuichi, Suwa; Norton, Jeanette M; Bollmann, Annette; Klotz, Martin G; Stein, Lisa Y; Laanbroek, Hendrikus J; Arp, Daniel J; Goodwin, Lynne A; Chertkov, Olga; Held, Brittany; Bruce, David; Detter, J Chris; Detter, Janine C; Tapia, Roxanne; Han, Cliff S

    2011-09-01

    Nitrosomonas sp. strain AL212 is an obligate chemolithotrophic ammonia-oxidizing bacterium (AOB) that was originally isolated in 1997 by Yuichi Suwa and colleagues. This organism belongs to Nitrosomonas cluster 6A, which is characterized by sensitivity to high ammonia concentrations, higher substrate affinity (lower K(m)), and lower maximum growth rates than strains in Nitrosomonas cluster 7, which includes Nitrosomonas europaea and Nitrosomonas eutropha. Genome-informed studies of this ammonia-sensitive cohort of AOB are needed, as these bacteria are found in freshwater environments, drinking water supplies, wastewater treatment systems, and soils worldwide.

  18. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment.

    PubMed

    Stopnisek, Nejc; Gubry-Rangin, Cécile; Höfferle, Spela; Nicol, Graeme W; Mandic-Mulec, Ines; Prosser, James I

    2010-11-01

    Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils in which mineralization is the major source of ammonia. To test this hypothesis, thaumarchaeal and bacterial ammonia oxidizers were investigated during nitrification in microcosms containing an organic, acidic forest peat soil (pH 4.1) with a low ammonium concentration but high potential for ammonia release during mineralization. Net nitrification rates were high but were not influenced by addition of ammonium. Bacterial amoA genes could not be detected, presumably because of low abundance of bacterial ammonia oxidizers. Phylogenetic analysis of thaumarchaeal 16S rRNA gene sequences indicated that dominant populations belonged to group 1.1c, 1.3, and "deep peat" lineages, while known amo-containing lineages (groups 1.1a and 1.1b) comprised only a small proportion of the total community. Growth of thaumarchaeal ammonia oxidizers was indicated by increased abundance of amoA genes during nitrification but was unaffected by addition of ammonium. Similarly, denaturing gradient gel electrophoresis analysis of amoA gene transcripts demonstrated small temporal changes in thaumarchaeal ammonia oxidizer communities but no effect of ammonium amendment. Thaumarchaea therefore appeared to dominate ammonia oxidation in this soil and oxidized ammonia arising from mineralization of organic matter rather than added inorganic nitrogen.

  19. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    SciTech Connect

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  20. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters

    PubMed Central

    Tolar, Bradley B; Ross, Meredith J; Wallsgrove, Natalie J; Liu, Qian; Aluwihare, Lihini I; Popp, Brian N; Hollibaugh, James T

    2016-01-01

    There are few measurements of nitrification in polar regions, yet geochemical evidence suggests that it is significant, and chemoautotrophy supported by nitrification has been suggested as an important contribution to prokaryotic production during the polar winter. This study reports seasonal ammonia oxidation (AO) rates, gene and transcript abundance in continental shelf waters west of the Antarctic Peninsula, where Thaumarchaeota strongly dominate populations of ammonia-oxidizing organisms. Higher AO rates were observed in the late winter surface mixed layer compared with the same water mass sampled during summer (mean±s.e.: 62±16 versus 13±2.8 nm per day, t-test P<0.0005). AO rates in the circumpolar deep water did not differ between seasons (21±5.7 versus 24±6.6 nm per day; P=0.83), despite 5- to 20-fold greater Thaumarchaeota abundance during summer. AO rates correlated with concentrations of Archaea ammonia monooxygenase (amoA) genes during summer, but not with concentrations of Archaea amoA transcripts, or with ratios of Archaea amoA transcripts per gene, or with concentrations of Betaproteobacterial amoA genes or transcripts. The AO rates we report (<0.1–220 nm per day) are ~10-fold greater than reported previously for Antarctic waters and suggest that inclusion of Antarctic coastal waters in global estimates of oceanic nitrification could increase global rate estimates by ~9%. Chemoautotrophic carbon fixation supported by AO was 3–6% of annualized phytoplankton primary production and production of Thaumarchaeota biomass supported by AO could account for ~9% of the bacterioplankton production measured in winter. Growth rates of thaumarchaeote populations inferred from AO rates averaged 0.3 per day and ranged from 0.01 to 2.1 per day. PMID:27187795

  1. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  2. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria.

    PubMed

    Sonthiphand, Puntipar; Hall, Michael W; Neufeld, Josh D

    2014-01-01

    Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments.

  3. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria

    PubMed Central

    Sonthiphand, Puntipar; Hall, Michael W.; Neufeld, Josh D.

    2014-01-01

    Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments. PMID:25147546

  4. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    PubMed

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  5. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  6. Ammonia

    Integrated Risk Information System (IRIS)

    Ammonia ; CASRN 7664 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  7. Inhibition, Inactivation, and Recovery of Ammonia-Oxidizing Activity in Cometabolism of Trichloroethylene by Nitrosomonas europaea

    PubMed Central

    Hyman, M. R.; Russell, S. A.; Ely, R. L.; Williamson, K. J.; Arp, D. J.

    1995-01-01

    The kinetics of the cometabolism of trichloroethylene (TCE) by the ammonia-oxidizing soil bacterium Nitrosomonas europaea in short-term (<10-min) incubations were investigated. Three individual effects of TCE cometabolism on this bacterium were characterized. First, we observed that TCE is a potent competitive inhibitor of ammonia oxidation by N. europaea. The K(infi) value for TCE (30 (mu)M) is similar to the K(infm) for ammonia (40 (mu)M). Second, we examined the toxicity associated with TCE cometabolism by N. europaea. Stationary-phase cells of N. europaea oxidized approximately 60 nmol of TCE per mg of protein before ammonia-oxidizing activity was completely inactivated by reactive intermediates generated during TCE oxidation. At the TCE concentrations used in these experiments, ammonia did not provide significant protection against inactivation. Third, we have determined the ability of cells to recover ammonia-oxidizing activity after exposure to TCE. Cells recovering from TCE inactivation were compared with cells recovering from the specific inactivation of ammonia-oxidizing activity by light. The recovery kinetics were indistinguishable when 40% or less of the activity was inactivated. However, at increased levels of inactivation, TCE-inactivated cells did not recover as rapidly as light-inactivated cells. The kinetics of recovery appear to be dependent on both the extent of inactivation of ammonia-oxidizing activity and the degree of specificity of the inactivating treatment. PMID:16534997

  8. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    PubMed

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity.

  9. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    PubMed

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction.

  10. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    NASA Technical Reports Server (NTRS)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  11. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean.

    PubMed

    Luo, Zhu-Hua; Xu, Wei; Li, Meng; Gu, Ji-Dong; Zhong, Tian-Hua

    2015-08-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is performed by nitrifying microbes including ammonia-oxidizing bacteria (AOB) and archaea (AOA). In the current study, the phylogenetic diversity and abundance of AOB and AOA in deep-sea sediments of the Pacific Ocean were investigated using ammonia monooxygenase subunit A (amoA) coding genes as molecular markers. The study uncovered 3 AOB unique operational taxonomic units (OTUs, defined at sequence groups that differ by ≤5 %), which indicates lower diversity than AOA (13 OTUs obtained). All AOB amoA gene sequences were phylogenetically related to amoA sequences similar to those found in marine Nitrosospira species, and all AOA amoA gene sequences were affiliated with the marine sediment clade. Quantitative PCR revealed similar archaeal amoA gene abundances [1.68 × 10(5)-1.89 × 10(6) copies/g sediment (wet weight)] among different sites. Bacterial amoA gene abundances ranged from 5.28 × 10(3) to 2.29 × 10(6) copies/g sediment (wet weight). The AOA/AOB amoA gene abundance ratios ranged from 0.012 to 162 and were negatively correlated with total C and C/N ratio. These results suggest that organic loading may be a key factor regulating the relative abundance of AOA and AOB in deep-sea environments of the Pacific Ocean.

  12. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    PubMed

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates.

  13. Formation of Hydroxylamine on Dust Grains via Ammonia Oxidation

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco; Lemaire, Jean-Louis; Garrod, Robin T.

    2015-01-01

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH2OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH2OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH2OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH2OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH3. Suggestions of conditions for future observations are provided.

  14. FORMATION OF HYDROXYLAMINE ON DUST GRAINS VIA AMMONIA OXIDATION

    SciTech Connect

    He, Jiao; Vidali, Gianfranco; Lemaire, Jean-Louis; Garrod, Robin T.

    2015-01-20

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH{sub 2}OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH{sub 2}OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH{sub 2}OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH{sub 2}OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH{sub 3}. Suggestions of conditions for future observations are provided.

  15. Molybdenum Catalyzed Ammonia Borane Dehydrogenation: Oxidation State Specific Mechanisms

    PubMed Central

    2015-01-01

    Though numerous catalysts for the dehydrogenation of ammonia borane (AB) are known, those that release >2 equiv of H2 are uncommon. Herein, we report the synthesis of Mo complexes supported by a para-terphenyl diphosphine ligand, 1, displaying metal–arene interactions. Both a Mo0 N2 complex, 5, and a MoII bis(acetonitrile) complex, 4, exhibit high levels of AB dehydrogenation, releasing over 2.0 equiv of H2. The reaction rate, extent of dehydrogenation, and reaction mechanism vary as a function of the precatalyst oxidation state. Several Mo hydrides (MoII(H)2, [MoII(H)]+, and [MoIV(H)3]+) relevant to AB chemistry were characterized. PMID:25034459

  16. The Distribution of Ammonia-Oxidizing Betaproteobacteria in Stands of Black Mangroves (Avicennia germinans).

    PubMed

    Laanbroek, Hendrikus J; Keijzer, Rosalinde M; Verhoeven, Jos T A; Whigham, Dennis F

    2012-01-01

    The distribution of species of aerobic chemolitho-autotrophic microorganisms such as ammonia-oxidizing bacteria are governed by pH, salinity, and temperature as well as the availability of oxygen, ammonium, carbon dioxide, and other inorganic elements required for growth. Impounded mangrove forests in the Indian River Lagoon, a coastal estuary on the east coast of Florida, are dominated by mangroves, especially stands of Black mangrove (Avicennia germinans) that differ in the size and density of individual plants. In March 2009, the management of one impoundment was changed to a regime of pumping estuarine water into the impoundment at critical times of the year to eliminate breeding sites for noxious insects. We collected soil samples in three different Black mangrove habitats before and after the change in management to determine the impacts of the altered hydrologic regimes on the distribution of 16s rRNA genes belonging to ammonia-oxidizing betaproteobacteria (β-AOB). We also sampled soils in an adjacent impoundment in which there had not been any hydrologic alteration. At the level of 97% mutual similarity in the 16s rRNA gene, 13 different operational taxonomic units were identified; the majority related to the lineages of Nitrosomonas marina (45% of the total clones), Nitrosomonas sp. Nm143 (23%), and Nitrosospira cluster 1 (19%). Long-term summer flooding of the impoundment in 2009, after initiation of the pumping regime, reduced the percentage of N. marina by half between 2008 and 2010 in favor of the two other major lineages and the potential ammonia-oxidizing activity decreased by an average of 73%. Higher interstitial salinities, probably due to a prolonged winter drought, had a significant effect on the composition of the β-AOB in March 2009 compared to March 2008: Nitrosomonas sp. Nm143 was replaced by Nitrosospira cluster 1 as the second most important lineage. There were small, but significant differences in the bacterial communities between the

  17. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  18. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon.

    PubMed

    Iosub, Andrei V; Stahl, Shannon S

    2015-09-18

    Dehydrogenation of (partially) saturated heterocycles provides an important route to heteroaromatic compounds. A heterogeneous cobalt oxide catalyst, previously employed for aerobic oxidation of alcohols and amines, is shown to be effective for aerobic dehydrogenation of various 1,2,3,4-tetrahydroquinolines to the corresponding quinolines. The reactions proceed in good yields under mild conditions. Other N-heterocycles are also successfully oxidized to their aromatic counterparts.

  19. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  20. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.

    PubMed

    Lehtovirta-Morley, Laura E; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I; Nicol, Graeme W

    2011-09-20

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, "Candidatus Nitrosotalea devanaterra," from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH.

  1. The influence of synthetic sheep urine on ammonia oxidizing bacterial communities in grassland soil.

    PubMed

    Mahmood, Shahid; Prosser, James I

    2006-06-01

    In grazed, grassland soils, sheep urine generates heterogeneity in ammonia concentrations, with potential impact on ammonia oxidizer community structure and soil N cycling. The influence of different levels of synthetic sheep urine on ammonia oxidizers was studied in grassland soil microcosms. 'Total' and active ammonia oxidizers were distinguished by comparing denaturing gradient gel electrophoresis (DGGE) profiles following PCR and RT-PCR amplification of 16S rRNA gene fragments, targeting DNA and RNA, respectively. The RNA-based approach indicated earlier, more reproducible and finer scale qualitative shifts in ammonia oxidizing communities than DNA-based analysis, but led to amplification of a small number of nonammonia oxidizer sequences. Qualitative changes in RNA-derived DGGE profiles were related to changes in nitrate accumulation. Sequence analysis of excised DGGE bands revealed that ammonia oxidizing communities in synthetic sheep urine-treated soils consisted mainly of Nitrosospira clusters 2, 3 and 4. Nitrosospira cluster 2 increased in relative abundance in microcosms treated with all levels of synthetic sheep urine. Low levels additionally led to increased relative abundance of Nitrosospira cluster 4 and medium and high levels increased relative abundance of cluster 3. Synthetic sheep urine is therefore likely to influence the spatial distribution and composition of ammonia oxidizer communities, with consequent effects on nitrate accumulation.

  2. The ammonia oxidizing and denitrifying prokaryotes associated with sponges from different sea areas.

    PubMed

    Han, Minqi; Li, Zhiyong; Zhang, Fengli

    2013-08-01

    Marine sponges have been suggested to play an important role in the marine nitrogen cycling. However, the role of sponge microbes in the nitrogen transformation remains limited, especially on the bacterial ammonia oxidization and denitrification. Hence, in the present study, using functional genes (amoA, nirS, nirK, and nxrA) involved in ammonia oxidization and denitrification and 16S rRNA genes for specific bacterial groups as markers, phylogenetically diverse prokaryotes including bacteria and archaea, which may be involved in the ammonia oxidization and denitrification processes in sponges, were revealed in seven sponge species. Ammonia oxidizers were found in all species, whereas three sponges (Placospongia sp., Acanthella sp., and Pericharax heteroraphis) harbor only ammonia-oxidizing bacteria (AOB), two sponges (Spirastrellidae diplastrella and Mycale fibrexilis) host only ammonia-oxidizing archaea (AOA), while the remaining two sponges (Haliclona sp. and Lamellomorpha sp.) harbor both AOB and AOA. S. diplastrella and Lamellomorpha sp. also harbor denitrifying bacteria. Nitrite reductase gene nirK was detected only in Lamellomorpha sp. with higher phylogenetic diversity than nirS gene observed only in S. diplastrella. The detected functional genes related to the ammonia oxidization and nitrite reduction in deep-sea and shallow-water sponges highlighted the potential ecological roles of prokaryotes in sponge-related nitrogen transformation.

  3. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”

    PubMed Central

    Sayavedra-Soto, Luis A.; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y.; Prosser, James I.; Nicol, Graeme W.

    2016-01-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “Ca. Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “Ca. Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “Ca. Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  4. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon "Candidatus Nitrosotalea devanaterra".

    PubMed

    Lehtovirta-Morley, Laura E; Sayavedra-Soto, Luis A; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer "Candidatus Nitrosotalea devanaterra" provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of "Ca Nitrosotalea devanaterra" reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that "Ca Nitrosotalea devanaterra" contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography-mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of "Ca Nitrosotalea devanaterra" were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization.

  5. A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  6. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    PubMed

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  7. A Zinc Oxide Nanorod Ammonia Microsensor Integrated with a Readout Circuit on-a-Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature. PMID:22247656

  8. Distribution of ammonia oxidizers in relation to vegetation characteristics in the Qilian Mountains, northwestern China

    NASA Astrophysics Data System (ADS)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.; Gao, T. P.

    2014-04-01

    Nitrogen is the major limiting nutrient in cold environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in alpine meadow soils in northwestern China, namely those catalyzing the rate-limiting step of ammonia oxidation. In this study, ammonia-oxidizing communities in alpine meadow soils were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. The results demonstrated that ammonia-oxidizing archaea (AOA) outnumbered ammonia-oxidizing bacteria (AOB) in the alpine meadow soils. Most of the AOA phylotypes detected in the study region fell within typical Group I.1b of Thaumarchaeota. Interestingly, a new ammonia-oxidizing archaeal group named "Kobresia meadow soil group" was found. Phylogenetic analysis of AOB communities exhibited a dominance of Nitrosospira-like sequences affiliated to beta-Proteobacteria. Compared with other alpine environments, Qilian Mountains had a great phylogenetic diversity of ammonia oxidizers. Principal Component Analysis (PCA) analysis showed that distinct AOA/AOB phylotype groups were attributed to different meadow types, reflecting an overall distribution of ammonia-oxidizing communities associated with meadow types. Redundancy Analysis (RDA) analysis showed that Axis 1 (90.9%) together with Axis 2 (9.1%) explained all the variables while Axis 1 exhibited a significant explanatory power. So that vegetation coverage mostly correlated to Axis 1 was the most powerful environmental factor in the study region. Characteristics of ammonia-oxidizing communities showed a close association with vegetation coverage.

  9. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    PubMed

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater.

  10. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea

    PubMed Central

    Vajrala, Neeraja; Martens-Habbena, Willm; Sayavedra-Soto, Luis A.; Schauer, Andrew; Bottomley, Peter J.; Stahl, David A.; Arp, Daniel J.

    2013-01-01

    The ammonia-oxidizing archaea have recently been recognized as a significant component of many microbial communities in the biosphere. Although the overall stoichiometry of archaeal chemoautotrophic growth via ammonia (NH3) oxidation to nitrite (NO2−) is superficially similar to the ammonia-oxidizing bacteria, genome sequence analyses point to a completely unique biochemistry. The only genomic signature linking the bacterial and archaeal biochemistries of NH3 oxidation is a highly divergent homolog of the ammonia monooxygenase (AMO). Although the presumptive product of the putative AMO is hydroxylamine (NH2OH), the absence of genes encoding a recognizable ammonia-oxidizing bacteria-like hydroxylamine oxidoreductase complex necessitates either a novel enzyme for the oxidation of NH2OH or an initial oxidation product other than NH2OH. We now show through combined physiological and stable isotope tracer analyses that NH2OH is both produced and consumed during the oxidation of NH3 to NO2− by Nitrosopumilus maritimus, that consumption is coupled to energy conversion, and that NH2OH is the most probable product of the archaeal AMO homolog. Thus, despite their deep phylogenetic divergence, initial oxidation of NH3 by bacteria and archaea appears mechanistically similar. They however diverge biochemically at the point of oxidation of NH2OH, the archaea possibly catalyzing NH2OH oxidation using a novel enzyme complex. PMID:23277575

  11. Prevalence of Nitrosomonas cluster 7 populations in the ammonia-oxidizing community of a submerged membrane bioreactor treating urban wastewater under different operation conditions.

    PubMed

    Cerrone, F; Poyatos, J M; Molina-Muñoz, M; Cortés-Lorenzo, C; González-López, J; Rodelas, B

    2013-07-01

    A pilot-scale ultrafiltration membrane bioreactor (MBR) was used for the aerobic treatment of urban wastewater in four experimental stages influenced by seasonal temperature and different sets of operation conditions. The structure of the ammonia-oxidizing bacteria (AOB) community was profiled by temperature gradient gel electrophoresis (TGGE), based on the amplification and separation of partial ammonia-monoxygenase subunit A (amoA) genes. Canonical correspondence analysis revealed that temperature, hydraulic retention time and percentage of ammonia removal had a significant effect on the fingerprints of AOB communities. Phylogenetic analysis conducted on amoA/AmoA sequences of reamplified TGGE bands showed, however, that closely related ammonia-oxidizing populations inhabited the sludge of the MBR in all experimental stages. Nitrosomonas cluster 7 populations (N. europaea-N. eutropha cluster) prevailed under all conditions tested, even when the MBR was operated under complete biomass retention or at low temperatures, suggesting that the high ammonia concentrations in the system were determinant to select r-strategist AOB.

  12. A mild oxidative aryl radical addition into alkenes by aerobic oxidation of arylhydrazines.

    PubMed

    Taniguchi, Tsuyoshi; Zaimoku, Hisaaki; Ishibashi, Hiroyuki

    2011-04-04

    A mild and practical oxyarylation of alkenes by oxidative radical addition has been developed by using aerobic oxidation of hydrazine compounds. The use of a catalytic amount of potassium ferrocyanide trihydrate (K(4)[Fe(CN)(6)]⋅3H(2)O) and water accelerated this radical reaction to give peroxides or alcohols from simple alkenes in good yields. The environmentally friendly and economical radical reactions were achieved at room temperature in the presence of iron catalyst, oxygen gas, and water. A method involving aniline as a radical precursor is also described.

  13. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-12-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m‑3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]‑1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5.

  14. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    PubMed Central

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-01-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m−3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]−1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5. PMID:27941955

  15. Ammonia-Oxidizing Bacteria in Biofilters Removing Trihalomethanes Are Related to Nitrosomonas oligotropha

    EPA Science Inventory

    Nitrifying biofilters degrading the four regulated trihalomethanes (THMs) trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) -were analyzed for the presence and activity of ammonia-oxidizing bacteria (AOB). Biofilter perfor...

  16. Macroecological patterns of archaeal ammonia oxidizers in the Atlantic Ocean.

    PubMed

    Sintes, Eva; De Corte, Daniele; Ouillon, Natascha; Herndl, Gerhard J

    2015-10-01

    Macroecological patterns are found in animals and plants, but also in micro-organisms. Macroecological and biogeographic distribution patterns in marine Archaea, however, have not been studied yet. Ammonia-oxidizing Archaea (AOA) show a bipolar distribution (i.e. similar communities in the northernmost and the southernmost locations, separated by distinct communities in the tropical and gyral regions) throughout the Atlantic, detectable from epipelagic to upper bathypelagic layers (<2000 m depth). This tentatively suggests an influence of the epipelagic conditions of organic matter production on bathypelagic AOA communities. The AOA communities below 2000 m depth showed a less pronounced biogeographic distribution pattern than the upper 2000 m water column. Overall, AOA in the surface and deep Atlantic waters exhibit distance-decay relationships and follow the Rapoport rule in a similar way as bacterial communities and macroorganisms. This indicates a major role of environmental conditions in shaping the community composition and assembly (species sorting) and no, or only weak limits for dispersal in the oceanic thaumarchaeal communities. However, there is indication of a different strength of these relationships between AOA and Bacteria, linked to the intrinsic differences between these two domains.

  17. Ammonia and nitrous oxide fluxes from a novel swine housing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia emission and subsequent deposition can be a major source of pollution, causing nitrogen enrichment, acidification of soils and surface waters, and aerosol formation. In livestock production housing, ammonia emissions can also adversely affect the health, performance, and welfare of both ani...

  18. Bilogical Treatment for Ammonia Oxidation in Drinking Water Facilities

    EPA Science Inventory

    Ammonia is an unregulated compound, but is naturally occurring in many drinking water sources. It is also used by some treatment facilities to produce chloramines for disinfection purposes. Because ammonia is non-toxic, its presence in drinking water is often disregarded. Thro...

  19. Impacts of Edaphic Factors on Communities of Ammonia-Oxidizing Archaea, Ammonia-Oxidizing Bacteria and Nitrification in Tropical Soils

    PubMed Central

    de Gannes, Vidya; Eudoxie, Gaius; Hickey, William J.

    2014-01-01

    Nitrification is a key process in soil nitrogen (N) dynamics, but relatively little is known about it in tropical soils. In this study, we examined soils from Trinidad to determine the edaphic drivers affecting nitrification levels and community structure of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in non-managed soils. The soils were naturally vegetated, ranged in texture from sands to clays and spanned pH 4 to 8. The AOA were detected by qPCR in all soils (ca. 105 to 106 copies archaeal amoA g−1 soil), but AOB levels were low and bacterial amoA was infrequently detected. AOA abundance showed a significant negative correlation (p<0.001) with levels of soil organic carbon, clay and ammonium, but was not correlated to pH. Structures of AOA and AOB communities, as determined by amoA terminal restriction fragment (TRF) analysis, differed significantly between soils (p<0.001). Variation in AOA TRF profiles was best explained by ammonium-N and either Kjeldahl N or total N (p<0.001) while variation in AOB TRF profiles was best explained by phosphorus, bulk density and iron (p<0.01). In clone libraries, phylotypes of archaeal amoA (predominantly Nitrososphaera) and bacterial amoA (predominanatly Nitrosospira) differed between soils, but variation was not correlated with pH. Nitrification potential was positively correlated with clay content and pH (p<0.001), but not to AOA or AOB abundance or community structure. Collectively, the study showed that AOA and AOB communities were affected by differing sets of edaphic factors, notably that soil N characteristics were significant for AOA, but not AOB, and that pH was not a major driver for either community. Thus, the effect of pH on nitrification appeared to mainly reflect impacts on AOA or AOB activity, rather than selection for AOA or AOB phylotypes differing in nitrifying capacity. PMID:24586878

  20. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California.

    PubMed

    Beman, J Michael; Popp, Brian N; Francis, Christopher A

    2008-04-01

    Nitrification plays an important role in marine biogeochemistry, yet efforts to link this process to the microorganisms that mediate it are surprisingly limited. In particular, ammonia oxidation is the first and rate-limiting step of nitrification, yet ammonia oxidation rates and the abundance of ammonia-oxidizing bacteria (AOB) have rarely been measured in tandem. Ammonia oxidation rates have not been directly quantified in conjunction with ammonia-oxidizing archaea (AOA), although mounting evidence indicates that marine Crenarchaeota are capable of ammonia oxidation, and they are among the most abundant microbial groups in the ocean. Here, we have directly quantified ammonia oxidation rates by 15N labeling, and AOA and AOB abundances by quantitative PCR analysis of ammonia monooxygenase subunit A (amoA) genes, in the Gulf of California. Based on markedly different archaeal amoA sequence types in the upper water column (60 m) and oxygen minimum zone (OMZ; 450 m), novel amoA PCR primers were designed to specifically target and quantify 'shallow' (group A) and 'deep' (group B) clades. These primers recovered extensive variability with depth. Within the OMZ, AOA were most abundant where nitrification may be coupled to denitrification. In the upper water column, group A tracked variations in nitrogen biogeochemistry with depth and between basins, whereas AOB were present in relatively low numbers or undetectable. Overall, 15NH4+ oxidation rates were remarkably well correlated with AOA group A amoA gene copies (r2=0.90, P<0.001), and with 16S rRNA gene copies from marine Crenarchaeota (r2=0.85, P<0.005). These findings represent compelling evidence for an archaeal role in oceanic nitrification.

  1. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Logan, M.; Arciero, D.M.; Hooper, A.B. )

    1990-04-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  2. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Logan, M.; Arciero, D.M.; Hooper, A.B.

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  3. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen.

    PubMed

    Fitzgerald, Colin M; Camejo, Pamela; Oshlag, J Zachary; Noguera, Daniel R

    2015-03-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions.

  4. Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils.

    PubMed

    Marusenko, Yevgeniy; Garcia-Pichel, Ferran; Hall, Sharon J

    2015-02-01

    In soils, nitrogen (N) addition typically enhances ammonia oxidation (AO) rates and increases the population density of ammonia-oxidizing bacteria (AOB), but not that of ammonia-oxidizing archaea (AOA). We asked if long-term inorganic N addition also has similar consequences in arid land soils, an understudied yet spatially ubiquitous ecosystem type. Using Sonoran Desert top soils from between and under shrubs within a long-term N-enrichment experiment, we determined community concentration-response kinetics of AO and measured the total and relative abundance of AOA and AOB based on amoA gene abundance. As expected, N addition increased maximum AO rates and the abundance of bacterial amoA genes compared to the controls. Surprisingly, N addition also increased the abundance of archaeal amoA genes. We did not detect any major effects of N addition on ammonia-oxidizing community composition. The ammonia-oxidizing communities in these desert soils were dominated by AOA as expected (78% of amoA gene copies were related to Nitrososphaera), but contained unusually high contributions of Nitrosomonas (18%) and unusually low numbers of Nitrosospira (2%). This study highlights unique traits of ammonia oxidizers in arid lands, which should be considered globally in predictions of AO responses to changes in N availability.

  5. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen

    PubMed Central

    Fitzgerald, Colin M.; Camejo, Pamela; Oshlag, J. Zachary; Noguera, Daniel R.

    2015-01-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762

  6. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    PubMed

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p < 0.001). Amplicons of AOA from the Nitrososphaera cluster dominated all four ecosystem soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils.

  7. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria

    PubMed Central

    Kozlowski, Jessica A.; Kits, K. Dimitri; Stein, Lisa Y.

    2016-01-01

    Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity. PMID:27462312

  8. Abundance of ammonia oxidizing bacteria and archaea under long-term maize cropping systems.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrification involves the oxidation of ammonium and is an important component of the overall N cycle. Nitrification occurs in two steps; first by oxidizing ammonium to nitrite, and then to nitrate. The first step is often the rate limiting step. Until recently ammonia-oxidizing bacteria were though...

  9. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus).

    PubMed

    Cheng, Chang-Hong; Yang, Fang-Fang; Ling, Ren-Zhi; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li

    2015-07-01

    Ammonia is one of major environmental pollutants in the freshwater aquatic system that affects the survival and growth of organisms. In the present study, we investigated the effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Fish were exposed to various concentrations of ammonia (0, 1.43, 3.57, 7.14mM) for 72h. The date showed that ammonia exposure could induce intracellular reactive oxygen species (ROS), interrupt intracellular Ca(2+) (cf-Ca(2+)) homeostasis, and subsequently lead to DNA damage and cell apoptosis. To test the apoptotic pathway, the expression patterns of some key apoptotic related genes including P53, Bax Bcl2, Caspase 9, Caspase 8 and Caspase 3 in the liver were examined. The results showed that ammonia stress could change these genes transcription, associated with increasing of cell apoptosis, suggesting that the P53-Bax-Bcl2 pathway and caspase-dependent apoptotic pathway could be involved in cell apoptosis induced by ammonia stress. In addition, ammonia stress could induced up-regulation of inflammatory cytokines (BAFF, TNF-α, IL-6 and IL-12) transcription, indicating that innate immune system play important roles in ammonia-induced toxicity in fish. Furthermore, the gene expressions of antioxidant enzymes (Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the liver were induced by ammonia stress, suggesting that antioxidant system and heat shock proteins tried to protect cells from oxidative stress and apoptosis induced by ammonia stress. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in fish.

  10. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    PubMed

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent.

  11. Ammonia Oxidizers in a Pilot-Scale Multilayer Rapid Infiltration System for Domestic Wastewater Treatment

    PubMed Central

    Lian, Yingli; Xu, Meiying; Zhong, Yuming; Yang, Yongqiang; Chen, Fanrong; Guo, Jun

    2014-01-01

    A pilot-scale multilayer rapid infiltration system (MRIS) for domestic wastewater treatment was established and efficient removal of ammonia and chemical oxygen demand (COD) was achieved in this study. The microbial community composition and abundance of ammonia oxidizers were investigated. Efficient biofilms of ammonia oxidizers in the stationary phase (packing material) was formed successfully in the MRIS without special inoculation. DGGE and phylogenetic analyses revealed that proteobacteria dominated in the MRIS. Relative abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) showed contrary tendency. In the flowing phase (water effluent), AOA diversity was significantly correlated with the concentration of dissolve oxygen (DO), NO3-N and NH3-N. AOB abundance was significantly correlated with the concentration of DO and chemical oxygen demand (COD). NH3-N and COD were identified as the key factors to shape AOB community structure, while no variable significantly correlated with that of AOA. AOA might play an important role in the MRIS. This study could reveal key environmental factors affecting the community composition and abundance of ammonia oxidizers in the MRIS. PMID:25479611

  12. Ammonia-oxidizing archaea versus bacteria in two soil aquifer treatment systems.

    PubMed

    Ding, Kun; Wen, Xianghua; Li, Yuyang; Shen, Bo; Zhang, Bing

    2015-02-01

    So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95% ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70 ± 0.56 and 0.82 ± 0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.

  13. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean

    PubMed Central

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J.

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  14. Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing

    SciTech Connect

    Dhivya, P.; Prasad, A.K.; Sridharan, M.

    2014-06-01

    Nanostructured cadmium oxide (CdO) films were deposited on to glass substrates by reactive dc magnetron sputtering technique. The depositions were carried out for different deposition times in order to obtain films with varying thicknesses. The CdO films were polycrystalline in nature with cubic structure showing preferred orientation in (1 1 1) direction as observed by X-ray diffraction (XRD). Field-emission scanning electron microscope (FE-SEM) micrographs showed uniform distribution of grains of 30–35 nm size and change in morphology from spherical to elliptical structures upon increasing the film thickness. The optical band gap value of the CdO films decreased from 2.67 to 2.36 eV with increase in the thickness. CdO films were deposited on to interdigitated electrodes to be employed as ammonia (NH{sub 3}) gas sensor. The fabricated CdO sensor with thickness of 294 nm has a capacity to detect NH{sub 3} as low as 50 ppm at a relatively low operating temperature of 150 °C with quick response and recovery time. - Highlights: • Nanostructured CdO films were deposited on to glass substrates using magnetron sputtering. • Deposition time was varied in order to obtain films with different thicknesses. • The CdO films were polycrystalline in nature with preferred orientation along (1 1 1) direction. • The optical bandgap values of the films decreased on increasing the thickness of the films. • CdO films with different thickness such as 122, 204, 294 nm was capable to detect NH{sub 3} down to 50 ppm at operating temperature of 150 °C.

  15. Competition between Ammonia-Oxidizing Bacteria and Benthic Microalgae

    PubMed Central

    Risgaard-Petersen, Nils; Nicolaisen, Mette H.; Revsbech, Niels Peter; Aa Lomstein, Bente

    2004-01-01

    The abundance, activity, and diversity of ammonia-oxidizing bacteria (AOB) were studied in prepared microcosms with and without microphytobenthic activity. In the microcosm without alga activity, both AOB abundance, estimated by real-time PCR, and potential nitrification increased during the course of the experiment. AOB present in the oxic zone of these sediments were able to fully exploit their nitrification potential because NH4+ did not limit growth. In contrast, AOB in the alga-colonized sediments reached less than 20% of their potential activity, suggesting starvation of cells. Starvation resulted in a decrease with time in the abundance of AOB as well as in nitrification potential. This decrease was correlated with an increase in alga biomass, suggesting competitive exclusion of AOB by microalgae. Induction of N limitation in the oxic zone of the alga-colonized sediments and O2 limitation of the majority of AOB in darkness were major mechanisms by which microalgae suppressed the growth and survival of AOB. The competition pressure from the algae seemed to act on the entire population of AOB, as no differences were observed by denaturing gradient gel electrophoresis of amoA fragments during the course of the experiment. Enumeration of bacteria based on 16S rRNA gene copies and d-amino acids suggested that the algae also affected other bacterial groups negatively. Our data indicate that direct competitive interaction takes place between algae and AOB and that benthic algae are superior competitors because they have higher N uptake rates and grow faster than AOB. PMID:15345441

  16. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2014-01-01

    Although it is known that a part of lactic acid bacteria can produce carotenoid, little is known about the regulation of carotenoid production. The objective of this study was to determine whether aerobic growth condition influences carotenoid production in carotenoid-producing Enterococcus gilvus. Enterococcus gilvus was grown under aerobic and anaerobic conditions. Its growth was slower under aerobic than under anaerobic conditions. The decrease in pH levels and production of lactic acid were also lower under aerobic than under anaerobic conditions. In contrast, the amount of carotenoid pigments produced by E. gilvus was significantly higher under aerobic than under anaerobic conditions. Further, real-time quantitative reverse transcription PCR revealed that the expression level of carotenoid biosynthesis genes crtN and crtM when E. gilvus was grown under aerobic conditions was 2.55-5.86-fold higher than when it was grown under anaerobic conditions. Moreover, after exposure to 16- and 32-mM H2O2, the survival rate of E. gilvus grown under aerobic conditions was 61.5- and 72.5-fold higher, respectively, than when it was grown under anaerobic conditions. Aerobic growth conditions significantly induced carotenoid production and the expression of carotenoid biosynthesis genes in E. gilvus, resulting in increased oxidative stress tolerance.

  17. Aerobic organocatalytic oxidation of aryl aldehydes: flavin catalyst turnover by Hantzsch's ester.

    PubMed

    Chen, Shuai; Foss, Frank W

    2012-10-05

    The first Dakin oxidation fueled by molecular oxygen as the terminal oxidant is reported. Flavin and NAD(P)H coenzymes, from natural enzymatic redox systems, inspired the use of flavin organocatalysts and a Hantzsch ester to perform transition-metal-free, aerobic oxidations. Catechols and electron-rich phenols are achieved with as low as a 0.1 mol % catalyst loading, 1 equiv of Hantzsch ester, and O(2) or air as the stoichiometric oxidant source.

  18. Environmental Controls on Aerobic Methane Oxidation in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Steinle, L.; Maltby, J.; Engbersen, N.; Zopfi, J.; Bange, H. W.; Elvert, M.; Hinrichs, K. U.; Kock, A.; Lehmann, M. F.; Treude, T.; Niemann, H.

    2015-12-01

    Large quantities of the greenhouse gas CH4 are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, and later into the atmosphere. Indeed, coastal seas account for more than 75% of global oceanic CH4 emissions. Yet, aerobic CH4 oxidizing bacteria (MOB) consume an important part of CH4 in the water column, thus mitigating CH4 release to the atmosphere. Coastal oceans are highly dynamic systems, in particular with regard to the variability of temperature, salinity and oxygen concentrations, all of which are potential key environmental factors controlling MOx. To determine the most important controlling factors, we conducted a two-year time-series study with measurements of CH4, MOx, the composition of the MOB community, and physicochemical water column parameters in a coastal inlet in the Baltic Sea (Eckernförde(E-) Bay, Boknis Eck Time Series Station). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, seasonal stratification leads to hypoxia in bottom waters towards the end of the stratification period. Methane is produced year-round in the sediments, resulting in accumulation of methane in bottom waters, and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were a) perturbations of the water column caused by storm events, currents or seasonal mixing, b) temperature and c) oxygen concentration. a) Perturbations of the water column led to a sharp decrease in MOx within hours, probably caused by replacement of 'old' water with a high standing stock of MOB by 'new' waters with a lower abundance of MOB. b) An increase in temperature generally led to higher MOx rates. c) Even though CH4 was abundant at all depths, MOx was highest in bottom waters (1-5 nM/d), which usually contain the lowest O2 concentrations. Lab-based experiments with adjusted O2

  19. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.

    PubMed

    Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun

    2012-11-16

    An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.

  20. Reaction-driven surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd.

    PubMed

    Lee, Adam F; Ellis, Christine V; Naughton, James N; Newton, Mark A; Parlett, Christopher M A; Wilson, Karen

    2011-04-20

    Synchronous, time-resolved DRIFTS/MS/XAS cycling studies of the vapor-phase selective aerobic oxidation of crotyl alcohol over nanoparticulate Pd have revealed surface oxide as the desired catalytically active phase, with dynamic, reaction-induced Pd redox processes controlling selective versus combustion pathways.

  1. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta

    PubMed Central

    Damashek, Julian; Smith, Jason M.; Mosier, Annika C.; Francis, Christopher A.

    2015-01-01

    Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic

  2. Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification

    PubMed Central

    Laverock, B.; Kitidis, V.; Tait, K.; Gilbert, J. A.; Osborn, A. M.; Widdicombe, S.

    2013-01-01

    Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79–97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms. PMID:23980243

  3. Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification.

    PubMed

    Laverock, B; Kitidis, V; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2013-01-01

    Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.

  4. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  5. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.

    PubMed

    Mora, Mabel; López, Luis R; Lafuente, Javier; Pérez, Julio; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Gamisans, Xavier; Gabriel, David

    2016-02-01

    Respirometry was used to reveal the mechanisms involved in aerobic biological sulfide oxidation and to characterize the kinetics and stoichiometry of a microbial culture obtained from a desulfurizing biotrickling filter. Physical-chemical processes such as stripping and chemical oxidation of hydrogen sulfide were characterized since they contributed significantly to the conversions observed in respirometric tests. Mass transfer coefficient for hydrogen sulfide and the kinetic parameters for chemical oxidation of sulfide with oxygen were estimated. The stoichiometry of the process was determined and the different steps in the sulfide oxidation process were identified. The conversion scheme proposed includes intermediate production of elemental sulfur and thiosulfate and the subsequent oxidation of both compounds to sulfate. A kinetic model describing each of the reactions observed during sulfide oxidation was calibrated and validated. The product selectivity was found to be independent of the dissolved oxygen to hydrogen sulfide concentration ratio in the medium at sulfide concentrations ranging from 3 to 30 mg S L(-1). Sulfide was preferentially consumed (SOURmax = 49.2 mg DO g(-1) VSS min(-1)) and oxidized to elemental sulfur at dissolved oxygen concentrations above 0.8 mg DO L(-1). Substrate inhibition of sulfide oxidation was observed (K(i,S(2-))= 42.4 mg S L(-1)). Intracellular sulfur accumulation also affected negatively the sulfide oxidation rate. The maximum fraction of elemental sulfur accumulated inside cells was estimated (25.6% w/w) and a shrinking particle equation was included in the kinetic model to describe elemental sulfur oxidation. The microbial diversity obtained through pyrosequencing analysis revealed that Thiothrix sp. was the main species present in the culture (>95%).

  6. A review of ammonia-oxidizing bacteria and archaea in Chinese soils.

    PubMed

    Shen, Ju-Pei; Zhang, Li-Mei; Di, Hong J; He, Ji-Zheng

    2012-01-01

    Ammonia (NH(3)) oxidation, the first and rate-limiting step of nitrification, is a key step in the global Nitrogen (N) cycle. Major advances have been made in recent years in our knowledge and understanding of the microbial communities involved in ammonia oxidation in a wide range of habitats, including Chinese agricultural soils. In this mini-review, we focus our attention on the distribution and community diversity of ammonia-oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in Chinese soils with variable soil properties and soil management practices. The niche differentiation of AOB and AOA in contrasting soils have been functionally demonstrated using DNA-SIP (stable isotope probing) methods, which have shown that AOA dominate nitrification processes in acidic soils, while AOB dominated in neutral, alkaline and N-rich soils. Finally, we discuss the composition and activity of ammonia oxidizers in paddy soils, as well as the mitigation of the greenhouse gas nitrous oxide (N(2)O) emissions and nitrate leaching via inhibition of nitrification by both AOB and AOA.

  7. A review of ammonia-oxidizing bacteria and archaea in Chinese soils

    PubMed Central

    Shen, Ju-Pei; Zhang, Li-Mei; Di, Hong J.; He, Ji-Zheng

    2012-01-01

    Ammonia (NH3) oxidation, the first and rate-limiting step of nitrification, is a key step in the global Nitrogen (N) cycle. Major advances have been made in recent years in our knowledge and understanding of the microbial communities involved in ammonia oxidation in a wide range of habitats, including Chinese agricultural soils. In this mini-review, we focus our attention on the distribution and community diversity of ammonia-oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in Chinese soils with variable soil properties and soil management practices. The niche differentiation of AOB and AOA in contrasting soils have been functionally demonstrated using DNA-SIP (stable isotope probing) methods, which have shown that AOA dominate nitrification processes in acidic soils, while AOB dominated in neutral, alkaline and N-rich soils. Finally, we discuss the composition and activity of ammonia oxidizers in paddy soils, as well as the mitigation of the greenhouse gas nitrous oxide (N2O) emissions and nitrate leaching via inhibition of nitrification by both AOB and AOA. PMID:22936929

  8. Isotopic signature of N(2)O produced by marine ammonia-oxidizing archaea.

    PubMed

    Santoro, Alyson E; Buchwald, Carolyn; McIlvin, Matthew R; Casciotti, Karen L

    2011-09-02

    The ocean is an important global source of nitrous oxide (N(2)O), a greenhouse gas that contributes to stratospheric ozone destruction. Bacterial nitrification and denitrification are thought to be the primary sources of marine N(2)O, but the isotopic signatures of N(2)O produced by these processes are not consistent with the marine contribution to the global N(2)O budget. Based on enrichment cultures, we report that archaeal ammonia oxidation also produces N(2)O. Natural-abundance stable isotope measurements indicate that the produced N(2)O had bulk δ(15)N and δ(18)O values higher than observed for ammonia-oxidizing bacteria but similar to the δ(15)N and δ(18)O values attributed to the oceanic N(2)O source to the atmosphere. Our results suggest that ammonia-oxidizing archaea may be largely responsible for the oceanic N(2)O source.

  9. Effect of acetylene and ammonia as reburn fuel additions to methane in nitric oxide reburning

    SciTech Connect

    Kumpaty, S.K.; Nokku, V.P.; Subramanian, K.

    1996-12-31

    Presented in this paper are the computational results of NO reburning with (a) a combination of methane and acetylene and (b) a combination of methane and ammonia. An updated reaction mechanism that was more comprehensive in terms of predicting the ammonia and isocyanic acid oxidation chemistry was employed to run the CKINTERP program. Using the binary file created by executing the above program and the input stoichiometric ratio conditions, the CHEMKIN package predicted the exit concentrations of various species involved in NO reburning.

  10. Graphene oxide based recyclable dehydrogenation of ammonia borane within a hybrid nanostructure.

    PubMed

    Tang, Ziwei; Chen, Hao; Chen, Xiaowei; Wu, Limin; Yu, Xuebin

    2012-03-28

    The recyclable dehydrogenation of ammonia borane (AB) is achievable within a graphene oxide (GO)-based hybrid nanostructure, in which a combined modification strategy of acid activation and nanoconfinement by GO allows AB to release more than 2 equiv of pure H(2) at temperatures below 100 °C. This process yields polyborazylene (PB) as a single product and, thus, promotes the chemical regeneration of AB via reaction of PB with hydrazine in liquid ammonia.

  11. Draft genome sequence of an ammonia-oxidizing archaeon, "Candidatus Nitrosopumilus sediminis" AR2, from Svalbard in the Arctic Circle.

    PubMed

    Park, Soo-Je; Kim, Jong-Geol; Jung, Man-Young; Kim, So-Jeong; Cha, In-Tae; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Rhee, Sung-Keun

    2012-12-01

    Ammonia-oxidizing archaea (AOA) typically predominate over ammonia-oxidizing bacteria in marine sediments. We herein present the draft genome sequence of an ammonia-oxidizing archaeon, "Candidatus Nitrosopumilus sediminis" AR2, which was enriched in culture from a marine sediment obtained off Svalbard, within the Arctic Circle. The typical genes involved in archaeal ammonia oxidation and carbon fixation necessary for chemolithoautotrophic growth were observed. Interestingly, the AR2 genome sequence was revealed to possess, uniquely among cultivated AOA from marine environments, a capability for urea utilization.

  12. Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst

    PubMed Central

    Wendlandt, Alison E.; Stahl, Shannon S.

    2014-01-01

    Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here, we report a novel bioinspired quinone catalyst system, consisting of 1,10-phenanthroline-5,6-dione/ZnI2, that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts. PMID:24328193

  13. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions†

    PubMed Central

    Ye, Xuan; Diao, Tianning

    2010-01-01

    Summary The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O2 in N2) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis. PMID:20694169

  14. Agreement between theory and measurement in quantification of ammonia-oxidizing bacteria.

    PubMed

    Coskuner, Gulnur; Ballinger, Stuart J; Davenport, Russell J; Pickering, Rheanne L; Solera, Rosario; Head, Ian M; Curtis, Thomas P

    2005-10-01

    Autotrophic ammonia-oxidizing bacteria (AOB) are of vital importance to wastewater treatment plants (WWTP), as well as being an intriguing group of microorganisms in their own right. To date, corroboration of quantitative measurements of AOB by fluorescence in situ hybridization (FISH) has relied on assessment of the ammonia oxidation rate per cell, relative to published values for cultured AOB. Validation of cell counts on the basis of substrate transformation rates is problematic, however, because published cell-specific ammonia oxidation rates vary by over two orders of magnitude. We present a method that uses FISH in conjunction with confocal scanning laser microscopy to quantify AOB in WWTP, where AOB are typically observed as microcolonies. The method is comparatively simple, requiring neither detailed cell counts or image analysis, and yet it can give estimates of either cell numbers or biomass. Microcolony volume and diameter were found to have a log-normal distribution. We were able to show that virtually all (>96%) of the AOB biomass occurred as microcolonies. Counts of microcolony abundance and measurement of their diameter coupled with a calibration of microcolony dimensions against cell numbers or AOB biomass were used to determine AOB cell numbers and biomass in WWTP. Cell-specific ammonia oxidation rates varied between plants by over three orders of magnitude, suggesting that cell-specific ammonia oxidation is an important process variable. Moreover, when measured AOB biomass was compared with process-based estimates of AOB biomass, the two values were in agreement.

  15. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis

    PubMed Central

    2016-01-01

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation. PMID:27046099

  16. Effects of copper on the abundance and diversity of ammonia oxidizers during dairy cattle manure composting.

    PubMed

    Yin, Yanan; Song, Wen; Gu, Jie; Zhang, Kaiyu; Qian, Xun; Zhang, Xin; Zhang, Yajun; Li, Yang; Wang, Xiaojuan

    2016-12-01

    This study investigated the effects of adding Cu(II) at two exposure levels (50 and 500mgkg(-1), i.e., Cu50 and Cu500 treatments, respectively) on the activity of ammonia-oxidizing microorganisms during dairy cattle manure composting. The results showed that the pH, NH4(+)-N, NO3(-)-N, and potential ammonia oxidation values were inhibited significantly by the addition of Cu(II). Furthermore, the abundances of the ammonia-oxidizing archaea (AOA) amoA gene and ammonia-oxidizing bacteria (AOB) amoA gene were determined by quantitative PCR, and their compositions were evaluated by denaturing gradient gel electrophoresis (DGGE). AOA was the dominant ammonia oxidizing microorganism, of which the abundance was much higher than AOB during composting. Cu50 and Cu500 had significant inhibitory effects on the abundance of the amoA gene. The DGGE profile and statistical analysis showed that Cu(II) changed the AOA and AOB community structure and diversity, where Nitrosomonas and Crenarchaeota dominated throughout the composting process.

  17. [Diversity and community structure of soil ammonia-oxidizing bacteria in Hulunbeier Grassland, Inner Mongolia].

    PubMed

    Wendu, Ri-le; Li, Gang; Yang, Dian-lin; Zhang, Jing-ni; Yi, Jin

    2011-04-01

    By the methods of polymerase chain reaction-denaturing gradient gel electrophoresis and sequence analysis, a comparative study was conducted on the diversity and community structure of soil ammonia-oxidizing bacteria in the Filifolium sibiricum steppe, Stipa baicalensis steppe, Leymus chinensis steppe, Stipa grandis steppe, and Stipa kryrowi steppe in Hulunbeier Grassland, Inner Mongolia. A significant difference was observed in the community structure of soil ammonia-oxidizing bacteria among the five steppes, with the similarity lower than 50%. The diversity of soil ammonia-oxidizing bacteria was the highest in F. sibiricum steppe, followed by in S. baicalensis steppe, L. chinensis steppe, S. kryrowi steppe, and S. grandis steppe. In the five steppes, Nitrosospira cluster 3 was the dominant group, and the Nitrosospira cluster 1, 2, and 4 as well as Nitrosomonas were also found. The community structure of soil ammonia oxidizing bacteria in F. sibiricum steppe was most complex, while that in L. chinensis steppe and S. grandis steppe was relatively simple. Correlation analysis indicated that there existed significant positive correlations between the diversity of soil ammonia-oxidizing bacteria and the soil moisture, total nitrogen, total organic carbon, and C/N ratio (P<0.05).

  18. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California

    PubMed Central

    Beman, J. M.; Bertics, Victoria J.; Braunschweiler, Thomas; Wilson, Jesse M.

    2012-01-01

    Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation–reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another – yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly understood. We report pore water geochemical (O2, NH4+, and NO3−) profiles, quantitative profiles of archaeal and bacterial amoA genes, and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina Island, California. Across triplicate sediment cores collected offshore at Bird Rock (BR) and within Catalina Harbor (CH), oxygen penetration (0.24–0.5 cm depth) and the abundance of amoA genes (up to 9.30 × 107 genes g–1) varied with depth and between cores. Bacterial amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was readily detected in BR cores, and CH cores from 2008, but not 2007. Although detection of DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate measurements made in 2008 (using isotope tracer) demonstrated the production of oxidized nitrogen at depths where amoA was present. Rates varied with depth and between cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated CH sediments, where it may be carried out by either or both ammonia-oxidizing archaea and bacteria. PMID:22837756

  19. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.

  20. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    PubMed Central

    Sauder, Laura A.; Mosquera, Mariela; Neufeld, Josh D.; Boon, Nico

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  1. Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine

    PubMed Central

    Wu, Kun; Huang, Zhiliang; Qi, Xiaotian; Li, Yingzi; Zhang, Guanghui; Liu, Chao; Yi, Hong; Meng, Lingkui; Bunel, Emilio E.; Miller, Jeffrey T.; Pao, Chih-Wen; Lee, Jyh-Fu; Lan, Yu; Lei, Aiwen

    2015-01-01

    Copper-catalyzed aerobic oxidative C–H/N–H coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 Å and two O atoms at a shorter distance of 1.98 Å was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation. PMID:26601302

  2. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    PubMed

    Tiso, Mauro; Schechter, Alan N

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  3. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    PubMed

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  4. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment.

    PubMed

    Sangave, Preeti C; Gogate, Parag R; Pandit, Aniruddha B

    2007-05-01

    Laboratory-scale experiments were conducted in order to investigate the effect of ozone as pre-aerobic treatment and post-aerobic treatment for the treatment of the distillery wastewater. The degradation of the pollutants present in distillery spent wash was carried out by ozonation, aerobic biological degradation processes alone and by using the combinations of these two processes to investigate the synergism between the two modes of wastewater treatment and with the aim of reducing the overall treatment costs. Pollutant removal efficiency was followed by means of global parameters directly related to the concentration of organic compounds in those effluents: chemical oxygen demand (COD) and the color removal efficiency in terms of absorbance of the sample at 254 nm. Ozone was found to be effective in bringing down the COD (up to 27%) during the pretreatment step itself. In the combined process, pretreatment of the effluent led to enhanced rates of subsequent biological oxidation step, almost 2.5 times increase in the initial oxidation rate has been observed. Post-aerobic treatment with ozone led to further removal of COD along with the complete discoloration of the effluent. The integrated process (ozone-aerobic oxidation-ozone) achieved approximately 79% COD reduction along with discoloration of the effluent sample as compared to 34.9% COD reduction for non-ozonated sample, over a similar treatment period.

  5. Photoelectrocatalytic oxidation of aqueous ammonia using TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhang, Xiufang; Su, Yan; Yu, Hongtao; Chen, Shuo; Quan, Xie; Yang, Fenglin

    2014-08-01

    The photoelectrocatalytic removal of ammonia in water was investigated using highly ordered TiO2 nanotube arrays as a photoanode. The results showed that the removal efficiency of total ammonia nitrogen (TAN) was closely related to the bias potential applied on TiO2 nanotube photoanode. Even without an adjustment of pH, over 99% of TAN (initial concentration 0.145 mM) was removed in 120 min with a bias potential of 1.0 V. It is important to note that the TAN could be directly oxidized into N2 and NO3--N without accumulation of an intermediate product of NO2--N. Meanwhile, the presence of the chemical scavengers revealed that photogenerated holes were the main oxidative species for the TAN oxidation. This work highlights the potential application of photoelectrocatalysis in the field of aqueous ammonia elimination.

  6. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    USGS Publications Warehouse

    Osborne, Brooke B; Baron, Jill S.; Wallenstein, Matthew D.

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  7. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    PubMed

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols.

  8. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade.

    PubMed

    Marshall, Katharine T; Morris, Robert M

    2013-02-01

    Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers (GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams and mussels, in oxygen minimum zones and throughout the deep ocean (>200 m). Here, we report isolation of the first cultured representative from this GSO clade. Closely related cultures were obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach higher final cell densities when glucose and thiosulfate are added to the media. This suggests that aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment 'Candidatus: Thioglobus singularis', alluding to the clade's known role in sulfur oxidation and the isolate's planktonic lifestyle.

  9. Active Autotrophic Ammonia-Oxidizing Bacteria in Biofilm Enrichments from Simulated Creek Ecosystems at Two Ammonium Concentrations Respond to Temperature Manipulation▿†

    PubMed Central

    Avrahami, Sharon; Jia, Zhongjun; Neufeld, Josh D.; Murrell, J. Colin; Conrad, Ralf; Küsel, Kirsten

    2011-01-01

    The first step of nitrification, the oxidation of ammonia to nitrite, is important for reducing eutrophication in freshwater environments when coupled with anammox (anaerobic ammonium oxidation) or denitrification. We analyzed active formerly biofilm-associated aerobic ammonia-oxidizing communities originating from Ammerbach (AS) and Leutra South (LS) stream water (683 ± 550 [mean ± standard deviation] and 16 ± 7 μM NH4+, respectively) that were developed in a flow-channel experiment and incubated under three temperature regimens. By stable-isotope probing using 13CO2, we found that members of the Bacteria and not Archaea were the functionally dominant autotrophic ammonia oxidizers at all temperatures under relatively high ammonium loads. The copy numbers of bacterial amoA genes in 13C-labeled DNA were lower at 30°C than at 13°C in both stream enrichment cultures. However, the community composition of the ammonia-oxidizing bacteria (AOB) in the 13C-labeled DNA responded differently to temperature manipulation at two ammonium concentrations. In LS enrichments incubated at the in situ temperature (13°C), Nitrosomonas oligotropha-like sequences were retrieved with sequences from Nitrosospira AmoA cluster 4, while the proportion of Nitrosospira sequences increased at higher temperatures. In AS enrichments incubated at 13°C and 20°C, AmoA cluster 4 sequences were dominant; Nitrosomonas nitrosa-like sequences dominated at 30°C. Biofilm-associated AOB communities were affected differentially by temperature at two relatively high ammonium concentrations, implicating them in a potential role in governing contaminated freshwater AOB distributions. PMID:21890674

  10. Ammonia-oxidizing bacteria and archaea in groundwater treatment and drinking water distribution systems.

    PubMed

    van der Wielen, Paul W J J; Voost, Stefan; van der Kooij, Dick

    2009-07-01

    The ammonia-oxidizing prokaryote (AOP) community in three groundwater treatment plants and connected distribution systems was analyzed by quantitative real-time PCR and sequence analysis targeting the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Results demonstrated that AOB and AOA numbers increased during biological filtration of ammonia-rich anoxic groundwater, and AOP were responsible for ammonium removal during treatment. In one of the treatment trains at plant C, ammonia removal correlated significantly with AOA numbers but not with AOB numbers. Thus, AOA were responsible for ammonia removal in water treatment at one of the studied plants. Furthermore, an observed negative correlation between the dissolved organic carbon (DOC) concentration in the water and AOA numbers suggests that high DOC levels might reduce growth of AOA. AOP entered the distribution system in numbers ranging from 1.5 x 10(3) to 6.5 x 10(4) AOPs ml(-1). These numbers did not change during transport in the distribution system despite the absence of a disinfectant residual. Thus, inactive AOP biomass does not seem to be degraded by heterotrophic microorganisms in the distribution system. We conclude from our results that AOA can be commonly present in distribution systems and groundwater treatment, where they can be responsible for the removal of ammonia.

  11. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring.

    PubMed

    Hatzenpichler, Roland; Lebedeva, Elena V; Spieck, Eva; Stoecker, Kilian; Richter, Andreas; Daims, Holger; Wagner, Michael

    2008-02-12

    The recent discovery of ammonia-oxidizing archaea (AOA) dramatically changed our perception of the diversity and evolutionary history of microbes involved in nitrification. In this study, a moderately thermophilic (46 degrees C) ammonia-oxidizing enrichment culture, which had been seeded with biomass from a hot spring, was screened for ammonia oxidizers. Although gene sequences for crenarchaeotal 16S rRNA and two subunits of the ammonia monooxygenase (amoA and amoB) were detected via PCR, no hints for known ammonia-oxidizing bacteria were obtained. Comparative sequence analyses of these gene fragments demonstrated the presence of a single operational taxonomic unit and thus enabled the assignment of the amoA and amoB sequences to the respective 16S rRNA phylotype, which belongs to the widely distributed group I.1b (soil group) of the Crenarchaeota. Catalyzed reporter deposition (CARD)-FISH combined with microautoradiography (MAR) demonstrated metabolic activity of this archaeon in the presence of ammonium. This finding was corroborated by the detection of amoA gene transcripts in the enrichment. CARD-FISH/MAR showed that the moderately thermophilic AOA is highly active at 0.14 and 0.79 mM ammonium and is partially inhibited by a concentration of 3.08 mM. The enriched AOA, which is provisionally classified as "Candidatus Nitrososphaera gargensis," is the first described thermophilic ammonia oxidizer and the first member of the crenarchaeotal group I.1b for which ammonium oxidation has been verified on a cellular level. Its preference for thermophilic conditions reinvigorates the debate on the thermophilic ancestry of AOA.

  12. Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design.

    PubMed

    Lechner, Manuel; Güttel, Robert; Streb, Carsten

    2016-11-14

    Selective catalytic oxidation is one of the most widely used chemical processes. Ideally, highly active and selective catalysts are used in combination with molecular oxygen as oxidant, leading to clean, environmentally friendly process conditions. For homogeneous oxidation catalysis, molecular metal oxide anions, so-called polyoxometalates (POMs) are ideal prototypes which combine high reactivity and stability with chemical tunability on the molecular level. Typically, POM-mediated aerobic oxidations are biphasic, using gaseous O2 and liquid reaction mixtures. Therefore, the overall efficiency of the reaction is not only dependent on the chemical components, but requires chemical engineering insight to design reactors with optimized productivity. This Perspective shows that POM-mediated aerobic liquid-phase oxidations are ideal reactions to be carried out in microstructured flow reactors as they enable facile mass and energy transfer, provide large gas-liquid interfaces and can be easily upscaled. Recent advances in POM-mediated aerobic catalytic oxidations are therefore summarized with a focus on technological importance and mechanistic insight. The principles of reactor design are discussed from a chemical engineering point of view with a focus on homogeneous oxidation catalysis using O2 in microfluidic systems. Further, current limitations to catalytic activity are identified and future directions based on combined chemistry and chemical engineering approaches are discussed to show that this approach could lead to sustainable production methods in industrial chemistry based on alternative energy sources and chemical feedstocks.

  13. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  14. Selective reduction of nitric oxides with ammonia using a cellular block catalyst

    SciTech Connect

    M.V. D'yakov; A.I. Kozlov; E.S. Lukin

    2004-03-15

    An aluminum-vanadium cellular block catalyst for selective reduction of nitric oxides with ammonia has been developed. With an average degree of conversion of oxides over 90%, the efficiency of the proposed catalyst is significantly higher than that of industrial catalysts currently used. Such catalyst can be recommended for use in selective plants for purification of waste gases from nitric oxides, which makes it possible to significantly decrease the cost of making a catalyst block.

  15. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    PubMed Central

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-01-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal. PMID:27687877

  16. Formation of High-Purity Indium Oxide Nanoparticles and Their Application to Sensitive Detection of Ammonia

    PubMed Central

    Bhardwaj, Sanjeev K.; Bhardwaj, Neha; Kukkar, Manil; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2015-01-01

    High-purity In2O3 nanoparticles were recovered from scrap indium tin oxide substrates in a stepwise process involving acidic leaching, liquid-liquid extraction with a phosphine oxide extractant, and combustion of the organic phase. The morphological and structural parameters of the recovered nanoparticles were investigated to support the formation of the desired products. These In2O3 nanoparticles were used for sensitive sensing of ammonia gas using a four-probe electrode device. The proposed sensor offered very quick response time (around 10 s) and highly sensitive detection of ammonia (at a detection limit of 1 ppm). PMID:26694415

  17. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    PubMed

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater.

  18. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  19. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors.

    PubMed

    Shen, Tianlin; Stieglmeier, Michaela; Dai, Jiulan; Urich, Tim; Schleper, Christa

    2013-07-01

    Nitrification inhibitors have been used for decades to improve nitrogen fertilizer utilization in farmland. However, their effect on ammonia-oxidizing Archaea (AOA) in soil is little explored. Here, we compared the impact of diverse inhibitors on nitrification activity of the soil archaeon Ca. Nitrososphaera viennensis EN76 and compared it to that of the ammonia-oxidizing bacterium (AOB) Nitrosospira multiformis. Allylthiourea, amidinothiourea, and dicyandiamide (DCD) inhibited ammonia oxidation in cultures of both N. multiformis and N. viennensis, but the effect on N. viennensis was markedly lower. In particular, the effective concentration 50 (EC50) of allylthiourea was 1000 times higher for the AOA culture. Among the tested nitrification inhibitors, DCD was the least potent against N. viennensis. Nitrapyrin had at the maximal soluble concentration only a very weak inhibitory effect on the AOB N. multiformis, but showed a moderate effect on the AOA. The antibiotic sulfathiazole inhibited the bacterium, but barely affected the archaeon. Only the NO-scavenger carboxy-PTIO had a strong inhibitory effect on the archaeon, but had little effect on the bacterium in the concentrations tested. Our results reflect the fundamental metabolic and cellular differences of AOA and AOB and will be useful for future applications of inhibitors aimed at distinguishing activities of AOA and AOB in soil environments.

  20. Wastewater Effluent Impacts Ammonia-Oxidizing Prokaryotes of the Grand River, Canada

    PubMed Central

    Sonthiphand, Puntipar; Cejudo, Eduardo; Schiff, Sherry L.

    2013-01-01

    The Grand River (Ontario, Canada) is impacted by wastewater treatment plants (WWTPs) that release ammonia (NH3 and NH4+) into the river. In-river microbial communities help transform this ammonia into more oxidized compounds (e.g., NO3− or N2), although the spatial distribution and relative abundance of freshwater autotrophic ammonia-oxidizing prokaryotes (AOP) are not well characterized. This study investigated freshwater N cycling within the Grand River, focusing on sediment and water columns, both inside and outside a WWTP effluent plume. The diversity, relative abundance, and nitrification activity of AOP were investigated by denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and reverse transcriptase qPCR (RT-qPCR), targeting both 16S rRNA and functional genes, together with activity assays. The analysis of bacterial 16S rRNA gene fingerprints showed that the WWTP effluent strongly affected autochthonous bacterial patterns in the water column but not those associated with sediment nucleic acids. Molecular and activity data demonstrated that ammonia-oxidizing archaea (AOA) were numerically and metabolically dominant in samples taken from outside the WWTP plume, whereas ammonia-oxidizing bacteria (AOB) dominated numerically within the WWTP effluent plume. Potential nitrification rate measurements supported the dominance of AOB activity in downstream sediment. Anaerobic ammonia-oxidizing (anammox) bacteria were detected primarily in sediment nucleic acids. In-river AOA patterns were completely distinct from effluent AOA patterns. This study demonstrates the importance of combined molecular and activity-based studies for disentangling molecular signatures of wastewater effluent from autochthonous prokaryotic communities. PMID:24056472

  1. [Stability of short-cut nitrification using immobilized ammonia-oxidizing bacteria].

    PubMed

    Li, Zheng-Kui; Lai, Ding-Dong; Yang, Zhu-You; Zhang, Xiao-Jiao; Li, Fang-Jie

    2008-10-01

    The ammonia-oxidizing bacteria were immobilized by copolymer with cell proliferation technology. The effects of NH(4+) -N load, HRT, free ammonia (FA) and organic matter on short-cut nitrification process were studied. The results showed that when influent NH(4+) -N load were 100 mg/L, 150 mg/L and 200 mg/L respectively, effluent NH(4+) -N concentration was less than 10 mg/L. When the system run for 3 h, 6 h and 12 h, corresponding to influent NH(4+) -N concentration of 25.8 mg/L, 51.1 mg/L and 93.3 mg/L respectively, NH(4+) -N concentration was low in effluent with high short-cut nitrification efficiency. The HRT could be adjusted to optimize the system operation with variation of influent NH(4+) -N concentration. The results also indicated that the ammonia-oxidizing bacteria were restrained while free ammonia concentration was over 9 mg/L. The activity of the ammonia-oxidizing bacteria could be enhanced under existence of low-molecular-weight organic compounds, but the short-cut nitrification efficiency was little affected. In addition, the short-cut nitrification and denitrification could be realized with existence of organic compounds during the experiment.

  2. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  3. Genome Sequence of Nitrosomonas communis Strain Nm2, a Mesophilic Ammonia-Oxidizing Bacterium Isolated from Mediterranean Soil

    PubMed Central

    Kozlowski, Jessica A.; Kits, K. Dimitri

    2016-01-01

    The complete genome sequence of Nitrosomonas communis strain Nm2, a mesophilic betaproteobacterial ammonia oxidizer isolated from Mediterranean soils in Corfu, Greece, is reported here. This is the first genome to describe a cluster 8 Nitrosomonas species and represents an ammonia-oxidizing bacterium commonly found in terrestrial ecosystems. PMID:26769932

  4. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters.

    PubMed

    Rice, Marlen C; Norton, Jeanette M; Stein, Lisa Y; Kozlowski, Jessica; Bollmann, Annette; Klotz, Martin G; Sayavedra-Soto, Luis; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Mikhailova, Natalia; Palaniappan, Krishna; Ivanova, Natalia; Mukherjee, Supratim; Reddy, T B K; Yee Ngan, Chew; Daum, Chris; Kyrpides, Nikos; Woyke, Tanja

    2017-03-16

    Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified.

  5. Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

    PubMed Central

    Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.

    2005-01-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant. PMID:15691975

  6. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters

    PubMed Central

    Rice, Marlen C.; Stein, Lisa Y.; Kozlowski, Jessica; Bollmann, Annette; Sayavedra-Soto, Luis; Shapiro, Nicole; Goodwin, Lynne A.; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Mikhailova, Natalia; Palaniappan, Krishna; Ivanova, Natalia; Mukherjee, Supratim; Reddy, T. B. K.; Yee Ngan, Chew; Daum, Chris; Kyrpides, Nikos; Woyke, Tanja

    2017-01-01

    ABSTRACT Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified. PMID:28302769

  7. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    PubMed

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes.

  8. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    NASA Astrophysics Data System (ADS)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  9. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    PubMed

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production.

  10. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation

    SciTech Connect

    Stein, Lisa Y; Arp, D J; Berube, PM; Chain, Patrick S. G.; Hauser, Loren John; Jetten, MSM; Klotz, Martin G; Larimer, Frank W; Norton, Jeanette M.; Op den Camp, HJM; Shin, M; Wei, Xueming

    2007-12-01

    Analysis of the structure and inventory of the genome of Nitrosomonas eutropha C91 revealed distinctive features that may explain the adaptation of N. eutropha-like bacteria to N-saturated ecosystems. Multiple gene-shuffling events are apparent, including mobilized and replicated transposition, as well as plasmid or phage integration events into the 2.66 Mbp chromosome and two plasmids (65 and 56 kbp) of N. eutropha C91. A 117 kbp genomic island encodes multiple genes for heavy metal resistance, including clusters for copper and mercury transport, which are absent from the genomes of other ammonia-oxidizing bacteria (AOB). Whereas the sequences of the two ammonia monooxygenase and three hydroxylamine oxidoreductase gene clusters in N. eutropha C91 are highly similar to those of Nitrosomonas europaea ATCC 19718, a break of synteny in the regions flanking these clusters in each genome is evident. Nitrosomonas eutropha C91 encodes four gene clusters for distinct classes of haem-copper oxidases, two of which are not found in other aerobic AOB. This diversity of terminal oxidases may explain the adaptation of N. eutropha to environments with variable O2 concentrations and/or high concentrations of nitrogen oxides. As with N. europaea, the N. eutropha genome lacks genes for urease metabolism, likely disadvantaging nitrosomonads in low-nitrogen or acidic ecosystems. Taken together, this analysis revealed significant genomic variation between N. eutropha C91 and other AOB, even the closely related N. europaea, and several distinctive properties of the N. eutropha genome that are supportive of niche specialization.

  11. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation.

    PubMed

    Stein, Lisa Y; Arp, Daniel J; Berube, Paul M; Chain, Patrick S G; Hauser, Loren; Jetten, Mike S M; Klotz, Martin G; Larimer, Frank W; Norton, Jeanette M; Op den Camp, Huub J M; Shin, Maria; Wei, Xueming

    2007-12-01

    Analysis of the structure and inventory of the genome of Nitrosomonas eutropha C91 revealed distinctive features that may explain the adaptation of N. eutropha-like bacteria to N-saturated ecosystems. Multiple gene-shuffling events are apparent, including mobilized and replicated transposition, as well as plasmid or phage integration events into the 2.66 Mbp chromosome and two plasmids (65 and 56 kbp) of N. eutropha C91. A 117 kbp genomic island encodes multiple genes for heavy metal resistance, including clusters for copper and mercury transport, which are absent from the genomes of other ammonia-oxidizing bacteria (AOB). Whereas the sequences of the two ammonia monooxygenase and three hydroxylamine oxidoreductase gene clusters in N. eutropha C91 are highly similar to those of Nitrosomonas europaea ATCC 19718, a break of synteny in the regions flanking these clusters in each genome is evident. Nitrosomonas eutropha C91 encodes four gene clusters for distinct classes of haem-copper oxidases, two of which are not found in other aerobic AOB. This diversity of terminal oxidases may explain the adaptation of N. eutropha to environments with variable O(2) concentrations and/or high concentrations of nitrogen oxides. As with N. europaea, the N. eutropha genome lacks genes for urease metabolism, likely disadvantaging nitrosomonads in low-nitrogen or acidic ecosystems. Taken together, this analysis revealed significant genomic variation between N. eutropha C91 and other AOB, even the closely related N. europaea, and several distinctive properties of the N. eutropha genome that are supportive of niche specialization.

  12. Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones

    PubMed Central

    Peng, Xuefeng; Jayakumar, Amal; Ward, Bess B.

    2013-01-01

    Ammonia-oxidizing archaea (AOA) have been reported at high abundance in much of the global ocean, even in environments, such as pelagic oxygen minimum zones (OMZs), where conditions seem unlikely to support aerobic ammonium oxidation. Due to the lack of information on any potential alternative metabolism of AOA, the AOA community composition might be expected to differ between oxic and anoxic environments. This hypothesis was tested by evaluating AOA community composition using a functional gene microarray that targets the ammonia monooxygenase gene subunit A (amoA). The relationship between environmental parameters and the biogeography of the Arabian Sea and the Eastern Tropical South Pacific (ETSP) AOA assemblages was investigated using principal component analysis (PCA) and redundancy analysis (RDA). In both the Arabian Sea and the ETSP, AOA communities within the core of the OMZ were not significantly different from those inhabiting the oxygenated surface waters above the OMZ. The AOA communities in the Arabian Sea were significantly different from those in the ETSP. In both oceans, the abundance of archaeal amoA gene in the core of the OMZ was higher than that in the surface waters. Our results indicate that AOA communities are distinguished by their geographic origin. RDA suggested that temperature (higher in the Arabian Sea than in the ETSP) was the main factor that correlated with the differences between the AOA communities. Physicochemical properties that characterized the different environments of the OMZ and surface waters played a less important role, than did geography, in shaping the AOA community composition. PMID:23847601

  13. Distribution patterns of ammonia-oxidizing bacteria and anammox bacteria in the freshwater marsh of Honghe wetland in Northeast China.

    PubMed

    Lee, Kwok-Ho; Wang, Yong-Feng; Zhang, Guo-Xia; Gu, Ji-Dong

    2014-12-01

    Community characteristics of aerobic ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria in Honghe freshwater marsh, a Ramsar-designated wetland in Northeast China, were analyzed in this study. Samples were collected from surface and low layers of sediments in the Experimental, Buffer, and Core Zones in the reserve. Community structures of AOB were investigated using both 16S rRNA and amoA (encoding for the α-subunit of the ammonia monooxygenase) genes. Majority of both 16S rRNA and amoA gene-PCR amplified sequences obtained from the samples in the three zones affiliated with Nitrosospira, which agreed with other wetland studies. A relatively high richness of β-AOB amoA gene detected in the freshwater marsh might suggest minimal external pressure was experienced, providing a suitable habitat for β-AOB communities. Anammox bacteria communities were assessed using both 16S rRNA and hzo (encoding for hydrazine oxidoreductase) genes. However, PCR amplification of the hzo gene in all samples failed, suggesting that the utilization of hzo biomarker for detecting anammox bacteria in freshwater marsh might have serious limitations. Results with 16S rRNA gene showed that Candidatus Kuenenia was detected in only the Experimental Zone, whereas Ca. Scalindua including different lineages was observed in both the Buffer and Experimental Zones but not the Core Zone. These results indicated that both AOB and anammox bacteria have specific distribution patterns in the ecosystem corresponding to the extent of anthropogenic impact.

  14. Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Cu/TEMPO and Related Catalyst Systems

    PubMed Central

    Ryland, Bradford L.; Stahl, Shannon S.

    2014-01-01

    Alcohol and amine oxidations are common reactions in laboratory and industrial synthesis of organic molecules. Aerobic oxidation methods have long been sought for these transformations, but few practical methods exist that offer advantages over traditional oxidation methods. Recently developed homogeneous Cu/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) and related catalyst systems appear to fill this void. The reactions exhibit high levels of chemoselectivity and broad functional-group tolerance, and they often operate efficiently at room temperature with ambient air as the oxidant. These advances, together with their historical context and recent applications, are highlighted in this minireview. PMID:25044821

  15. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  16. Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae

    PubMed Central

    Trias, Rosalia; García-Lledó, Arantzazu; Sánchez, Noemí; López-Jurado, José Luis; Hallin, Sara

    2012-01-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae, Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA and amoA genes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterial amoA genes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOA amoA gene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related to Nitrosospira spp. and to Nitrosomonas europaea and only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific for L. rodriguezii, 3 for O. volubilis, and 9 for P. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions. PMID:22081571

  17. Ammonia-Oxidizing Bacteria in Biofilters Removing Trihalomethanes Are Related to Nitrosomonas oligotropha ▿

    PubMed Central

    Wahman, David G.; Kirisits, Mary Jo; Katz, Lynn E.; Speitel, Gerald E.

    2011-01-01

    Ammonia-oxidizing bacteria (AOB) in nitrifying biofilters degrading four regulated trihalomethanes—trichloromethane, bromodichloromethane, dibromochloromethane, and tribromomethane—were related to Nitrosomonas oligotropha. N. oligotropha is associated with chloraminated drinking water systems, and its presence in the biofilters might indicate that trihalomethane tolerance is another reason that this bacterium is dominant in chloraminated systems. PMID:21278264

  18. Ammonia and nitrous oxide model for open lot cattle production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air emissions, such as ammonia (NH3) and nitrous oxide (N2O), vary considerably among beef and dairy open lot operations as influenced by the climate and manure pack conditions. Because of the challenges with direct measurements, process-based modeling is a recommended approach for estimating air em...

  19. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material.

    PubMed

    Bannov, Alexander G; Prášek, Jan; Jašek, Ondřej; Zajíčková, Lenka

    2017-02-09

    Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10-1000 ppm) and under different relative humidity levels (3%-65%). It was concluded that the graphite oxide-based sensor possessed a good response to NH₃ in dry synthetic air (ΔR/R₀ ranged from 2.5% to 7.4% for concentrations of 100-500 ppm and 3% relative humidity) with negligible cross-sensitivity towards H₂ and CH₄. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

  20. Abatement of ammonia and nitrous oxide emissions from dairy farms using milk urea N (MUN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urinary urea N (UUN) excreted by dairy cows is the principal nitrogen (N) source that controls emissions of ammonia (which can be hazardous to human and ecosystem health) and nitrous oxide (the most potent agricultural greenhouse gas) from dairy manure. The objectives of this study were (1) to inves...

  1. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  2. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  3. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.

    PubMed

    McCann, Scott D; Stahl, Shannon S

    2016-01-13

    Cooperative catalysis between Cu(II) and redox-active organic cocatalysts is a key feature of important chemical and enzymatic aerobic oxidation reactions, such as alcohol oxidation mediated by Cu/TEMPO and galactose oxidase. Nearly 20 years ago, Markó and co-workers reported that azodicarboxylates, such as di-tert-butyl azodicarboxylate (DBAD), are effective redox-active cocatalysts in Cu-catalyzed aerobic alcohol oxidation reactions [Markó, I. E., et al. Science 1996, 274, 2044], but the nature of the cooperativity between Cu and azodicarboxylates is not well understood. Here, we report a mechanistic study of Cu/DBAD-catalyzed aerobic alcohol oxidation. In situ infrared spectroscopic studies reveal a burst of product formation prior to steady-state catalysis, and gas-uptake measurements show that no O2 is consumed during the burst. Kinetic studies reveal that the anaerobic burst and steady-state turnover have different rate laws. The steady-state rate does not depend on [O2] or [DBAD]. These results, together with other EPR and in situ IR spectroscopic and kinetic isotope effect studies, reveal that the steady-state mechanism consists of two interdependent catalytic cycles that operate in sequence: a fast Cu(II)/DBAD pathway, in which DBAD serves as the oxidant, and a slow Cu(II)-only pathway, in which Cu(II) is the oxidant. This study provides significant insight into the redox cooperativity, or lack thereof, between Cu and redox-active organic cocatalysts in aerobic oxidation reactions.

  4. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

    1971-01-01

    By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

  5. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  6. Selective aerobic oxidation mediated by TiO(2) photocatalysis.

    PubMed

    Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-02-18

    TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In

  7. Combination of aerobic and vacuum packaging to control lipid oxidation and off-odor volatiles of irradiated raw turkey breast.

    PubMed

    Nam, K C; Ahn, D U

    2003-03-01

    Effects of the combination of aerobic and anaerobic packaging on color, lipid oxidation, and volatile production were determined to establish a modified packaging method to control quality changes in irradiated raw turkey meat. Lipid oxidation was the major problem with aerobically packaged irradiated turkey breast, while retaining characteristic irradiation off-odor volatiles such as dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide was the concern for vacuum-packaged breast during the 10-day refrigerated storage. Vacuum packaging of aerobically packaged irradiated turkey breast meat at 1 or 3 days of storage lowered the amounts of S-volatiles and lipid oxidation products compared with vacuum- and aerobically packaged meats, respectively. Irradiation increased the a-value of raw turkey breast, but exposing the irradiated meat to aerobic conditions alleviated the intensity of redness.

  8. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts.

    PubMed

    Fontanier, Virginie; Zalouk, Sofiane; Barbati, Stéphane

    2011-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated. Two step experiment was carried out consisting of a non-catalysed WAO run followed by a CWAO run at 170-275 degrees C, 20 MPa, and reaction time 180 min. The WAO (1st step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 +/- 4)% TOC removal and (78.4 +/- 13.2)% conversion of the initial organic-N into NH4(+)-N. Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid. It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity. The catalyst Pd was found to have the less activity while Pt had the best performance. The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution. Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.

  9. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

    PubMed Central

    Bannov, Alexander G.; Prášek, Jan; Jašek, Ondřej; Zajíčková, Lenka

    2017-01-01

    Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10–1000 ppm) and under different relative humidity levels (3%–65%). It was concluded that the graphite oxide–based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100–500 ppm and 3% relative humidity) with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level. PMID:28208762

  10. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil.

    PubMed

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-01-10

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.The ISME Journal advance online publication, 10 January 2017; doi:10.1038/ismej.2016.191.

  11. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1.

    PubMed

    Bobermin, Larissa Daniele; Wartchow, Krista Minéia; Flores, Marianne Pires; Leite, Marina Concli; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-07-01

    Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.

  12. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  13. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)

    SciTech Connect

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.; Markovic, Nenad M.; Koper, Marc T. M.

    2016-01-12

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH3-to-N2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed NOad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurring prior to the electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.

  14. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)

    DOE PAGES

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.; ...

    2016-01-12

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH3-to-N2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed NOad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurring prior to themore » electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less

  15. Bioaugmentation of Syntrophic Acetate-Oxidizing Culture in Biogas Reactors Exposed to Increasing Levels of Ammonia

    PubMed Central

    Westerholm, Maria; Levén, Lotta

    2012-01-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH4+-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors. PMID:22923397

  16. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia.

    PubMed

    Westerholm, Maria; Levén, Lotta; Schnürer, Anna

    2012-11-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH(4)(+)-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors.

  17. Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Vidal-Iglesias, F. J.; Solla-Gullón, J.; Montiel, V.; Feliu, J. M.; Aldaz, A.

    Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle and to transport as liquid or as concentrated aqueous solution. However, on noble metal electrodes ammonia oxidation is a sluggish reaction and the electrocatalyst needs to be improved for developing efficient ammonia fuel cells. In this work, ammonia electrooxidation reaction on 3-4-nm bimetallic PtMe (Ir, Rh, Pd, Ru) and on preferentially oriented Pt(1 0 0) nanoparticles is reported. PtMe nanoparticles have been prepared by using water-in-oil microemulsions to obtain a narrow size distribution whereas preferentially oriented Pt nanoparticles have been prepared through colloidal routes. Among all the bimetallic samples tested, only Pt 75Ir 25 and Pt 75Rh 25 nanoparticles show, at the low potential range, an enhancement of the oxidation density current with respect to the behaviour found for pure platinum nanoparticles prepared by the same method. In addition, two Pt(1 0 0) preferentially oriented nanoparticles of different particle size (4 and 9 nm) have been also studied. These oriented nanoparticles show higher current densities than polycrystalline Pt nanoparticles due to the sensitivity of ammonia oxidation toward the presence of surface sites with square symmetry. The reactivity of the different 4-nm nanoparticles parallels well with that expected from bulk PtMe alloys and Pt single crystal electrodes.

  18. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    PubMed Central

    Bollmann, Annette; Sedlacek, Christopher J.; Norton, Jeanette; Laanbroek, Hendrikus J.; Suwa, Yuichi; Stein, Lisa Y.; Klotz, Martin G.; Arp, Daniel; Sayavedra-Soto, Luis; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, James; Woyke, Tanja; Lucas, Susan M.; Pitluck, Sam; Pennacchio, Len; Nolan, Matt; Land, Miriam L.; Huntemann, Marcel; Deshpande, Shweta; Han, Cliff; Chen, Amy; Kyrpides, Nikos; Mavromatis, Konstantinos; Markowitz, Victor; Szeto, Ernest; Ivanova, Natalia; Mikhailova, Natalia; Pagani, Ioanna; Pati, Amrita; Peters, Lin; Ovchinnikova, Galina; Goodwin, Lynne A.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006. PMID:24019993

  19. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    SciTech Connect

    Bollmann, Annette; Sedlacek, Christopher J; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Klotz, Martin G; Arp, D J; Sayavedra-Soto, LA; Lu, Megan; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, James; Woyke, Tanja; Lucas, Susan; Pitluck, Sam; Pennacchio, Len; Nolan, Matt; Land, Miriam L; Huntemann, Marcel; Deshpande, Shweta; Han, Cliff; Chen, Amy; Kyrpides, Nikos C; Mavromatis, K; Markowitz, Victor; Szeto, Ernest; Ivanova, N; Mikhailova, Natalia; Pagani, Ioanna; Pati, Amrita; Peters, Lin; Ovchinnikova, Galina; Goodwin, Lynne A.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  20. Palladium nanoparticles in ionic liquids: reusable catalysts for aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Mondal, Arijit; Das, Amit; Adhikary, Bibhutosh; Mukherjee, Deb Kumar

    2014-04-01

    The search for more efficient catalytic systems that might combine the advantages of both homogenous (catalyst modulation) and heterogenous catalysis (catalyst recycling) is still the challenge of modern chemistry. With the advent of nanochemistry, it has been possible to prepare soluble analogues of heterogenous catalysts. These nanoparticles are generally stabilized against aggregation into larger less active particles by electrostatic or steric protection. In the present case, we demonstrate the use of room temperature ionic liquids (ILs) as effective agents of dispersion of palladium nanoparticles (prepared from palladium chloride with 5 ± 0.5 nm size distribution) that are recyclable catalysts for aerobic oxidation of alcohols under mild conditions. The particles suspended in ILs show no metal agglomeration or loss of catalytic activity even on prolonged use. An attempt has been made to elucidate the reaction mechanism of aerobic alcohol oxidation using a soluble palladium catalyst.

  1. Diversity and Abundance of Ammonia-Oxidizing Archaea in Hydrothermal Vent Chimneys of the Juan de Fuca Ridge▿ †

    PubMed Central

    Wang, Shufang; Xiao, Xiang; Jiang, Lijing; Peng, Xiaotong; Zhou, Huaiyang; Meng, Jun; Wang, Fengping

    2009-01-01

    The abundance and diversity of archaeal ammonia monooxygenase subunit A (amoA) genes from hydrothermal vent chimneys at the Juan de Fuca Ridge were investigated. The majority of the retrieved archaeal amoA sequences exhibited identities of less than 95% to those in the GenBank database. Novel ammonia-oxidizing archaea may exist in the hydrothermal vent environments. PMID:19395559

  2. Highly diastereoselective and regioselective copper-catalyzed nitrosoformate dearomatization reaction under aerobic-oxidation conditions.

    PubMed

    Yang, Weibo; Huang, Long; Yu, Yang; Pflästerer, Daniel; Rominger, Frank; Hashmi, A Stephen K

    2014-04-01

    An unprecedented copper-catalyzed acylnitroso dearomatization reaction, which expands the traditional acylnitroso ene reaction and acylnitroso Diels-Alder reaction to a new type of transformation, has been developed under aerobic oxidation. Intermolecular and intra-/intermolecular reaction modes demonstrate an entirely different N- or O-acylnitroso selectivity. Hence, we can utilize this reaction as a highly diastereoselective access to a series of new pyrroloindoline derivatives, which are important structural motifs for natural-product synthesis.

  3. Pathways of Carbon Assimilation and Ammonia Oxidation Suggested by Environmental Genomic Analyses of Marine Crenarchaeota

    PubMed Central

    Hallam, Steven J; Mincer, Tracy J; Schleper, Christa; Preston, Christina M; Roberts, Katie; Richardson, Paul M

    2006-01-01

    Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems. PMID:16533068

  4. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.

    PubMed

    Hallam, Steven J; Mincer, Tracy J; Schleper, Christa; Preston, Christina M; Roberts, Katie; Richardson, Paul M; DeLong, Edward F

    2006-04-01

    Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems.

  5. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  6. An insight into the mechanism of the aerobic oxidation of aldehydes catalyzed by N-heterocyclic carbenes.

    PubMed

    Bortolini, O; Chiappe, C; Fogagnolo, M; Giovannini, P P; Massi, A; Pomelli, C S; Ragno, D

    2014-02-25

    N-Heterocyclic carbene catalysis for the aerobic oxidation and esterification of aromatic aldehydes was monitored by ESI-MS (MS/MS) and the key intermediates were intercepted and characterized using the charge-tag strategy.

  7. The catalytic removal of ammonia and nitrogen oxides from spacecabin atmospheres

    NASA Technical Reports Server (NTRS)

    Gully, A. J.; Graham, R. R.; Halligan, J. E.; Bentsen, P. C.

    1973-01-01

    Investigations were made on methods for the removal of ammonia and to a lesser extent nitrogen oxides in low concentrations from air. The catalytic oxidation of ammonia was studied over a temperature range of 250 F to 600 F and a concentration range 20 ppm to 500 ppm. Of the catalysts studied, 0.5 percent ruthenium supported on alumina was found to be superior. This material is active at temperatures as low as 250 F and was found to produce much less nitrous oxide than the other two active catalysts, platinum on alumina and Hopcalite. A quantitative design model was developed which will permit the performance of an oxidizer to be calculated. The ruthenium was found to be relatively insensitive to low concentrations of water and to oxygen concentration between 21 percent and 100 percent. Hydrogen sulfide was found to be a poison when injected in relatively large quantities. The adsorption of ammonia by copper sulfate treated silica gel was investigated at temperatures of 72 F and 100 F. A quantitative model was developed for predicting adsorption bed behavior.

  8. Ammonia and nitrous oxide emissions from a commercial broiler house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex variation in gas emissions from animal facilities has been shown in recent research reports; uncertainties in these emission estimates are driving research activities concerning different animal species across the globe. Greenhouse gas (GHG, nitrous oxide (N2O) and carbon dioxide (CO2)) and ...

  9. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers.

    PubMed

    Avrahami, Sharon; Liesack, Werner; Conrad, Ralf

    2003-08-01

    We investigated the effect of temperature on the activity of soil ammonia oxidizers caused by changes in the availability of ammonium and in the microbial community structure. Both short (5 days) and long (6.5, 16 and 20 weeks) incubation of an agricultural soil resulted in a decrease in ammonium concentration that was more pronounced at temperatures between 10 and 25 degrees C than at either 4 degrees C or 30-37 degrees C. Consistently, potential nitrification was higher between 10 and 25 degrees C than at either 4 degrees C or 37 degrees C. However, as long as ammonium was not limiting, release rates of N2O increased monotonously between 4 and 37 degrees C after short-term temperature adaptation, with nitrification accounting for about 35-50% of the N2O production between 4 and 25 degrees C. In order to see whether temperature may also affect the community structure of ammonia oxidizers, we studied moist soil during long incubation at low and high concentrations of commercial fertilizer. The soil was also incubated in buffered (pH 7) slurry amended with urea. Communities of ammonia oxidizers were assayed by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the alpha subunit of ammonia monooxygenase. We found that a polymerase chain reaction (PCR) system using a non-degenerated reverse primer (amoAR1) gave the best results. Community shifts occurred in all soil treatments after 16 weeks of incubation. The community shifts were obviously influenced by the different fertilizer treatments, indicating that ammonium was a selective factor for different ammonia oxidizer populations. Temperature was also a selective factor, in particular as community shifts were also observed in the soil slurries, in which ammonium concentrations and pH were better controlled. Cloning and sequencing of selected DGGE bands indicated that amoA sequences belonging to Nitrosospira cluster 1 were dominant at low temperatures (4-10 degrees C), but were absent after

  10. Supplementation with vitamin A enhances oxidative stress in the lungs of rats submitted to aerobic exercise.

    PubMed

    Gasparotto, Juciano; Petiz, Lyvia Lintzmaier; Girardi, Carolina Saibro; Bortolin, Rafael Calixto; de Vargas, Amanda Rodrigues; Henkin, Bernardo Saldanha; Chaves, Paloma Rodrigues; Roncato, Sabrina; Matté, Cristiane; Zanotto-Filho, Alfeu; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-12-01

    Exercise training induces reactive oxygen species production and low levels of oxidative damage, which are required for induction of antioxidant defenses and tissue adaptation. This process is physiological and essential to improve physical conditioning and performance. During exercise, endogenous antioxidants are recruited to prevent excessive oxidative stress, demanding appropriate intake of antioxidants from diet or supplements; in this context, the search for vitamin supplements that enhance the antioxidant defenses and improve exercise performance has been continuously increasing. On the other hand, excess of antioxidants may hinder the pro-oxidant signals necessary for this process of adaptation. The aim of this study was to investigate the effects of vitamin A supplementation (2000 IU/kg, oral) upon oxidative stress and parameters of pro-inflammatory signaling in lungs of rats submitted to aerobic exercise (swimming protocol). When combined with exercise, vitamin A inhibited biochemical parameters of adaptation/conditioning by attenuating exercise-induced antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing the content of the receptor for advanced glycation end-products. Increased oxidative damage to proteins (carbonylation) and lipids (lipoperoxidation) was also observed in these animals. In sedentary animals, vitamin A decreased superoxide dismutase and increased lipoperoxidation. Vitamin A also enhanced the levels of tumor necrosis factor alpha and decreased interleukin-10, effects partially reversed by aerobic training. Taken together, the results presented herein point to negative effects associated with vitamin A supplementation at the specific dose here used upon oxidative stress and pro-inflammatory cytokines in lung tissues of rats submitted to aerobic exercise.

  11. Limitation of spatial distribution of ammonia-oxidizing microorganisms in the Haihe River, China, by heavy metals.

    PubMed

    Wang, Chao; Shan, Baoqing; Zhang, Hong; Zhao, Yu

    2014-03-01

    The Haihe River is characterized by high ammonia pollution. Therefore, it is necessary to determine how environmental factors, such as heavy metals in the river limit the spatial distribution of ammonia-oxidizing microorganisms. In this study, the relationships between five heavy metals and ammonia-oxidizing microorganisms were studied. The results showed that under high ammonia, low oxygen and high concentrations of suspended particles, ammonia-oxidizing bacteria (AOB) ranged from 10(1.3) to 10(4.8) gene copies/mL and ammonia-oxidizing archaea (AOA) ranged from 10(2.7) to 10(4.9) gene copies/mL. The average metal concentrations in water were 23.57 (Cr), 21.58 (Ni), 65.09 (Cu), 622.03 (Zn) and 10.16 (As) μg/L, with those of Zn, Cu and Cr being higher than the US EPA criteria. Scatter plots of microbial abundance and metals indicated that both AOA and AOB were limited by heavy metals, but in different ways. As had an inhibitory effect on AOB, while Ni and Zn promoted AOA, and the other metals investigated showed no significant correlation with microbial abundance. Overall, our results indicated that the effects of heavy metals on ammonia-oxidizing microorganisms in water are complex, and that the final effect is determined by the physiological role of each element in the microorganisms, as well as environmental conditions such as complexation of organic matter, not simply the total metal concentration.

  12. Diversity in the Ammonia-Oxidizing Nitrifier Population of a Soil †

    PubMed Central

    Belser, L. W.; Schmidt, E. L.

    1978-01-01

    Multiple genera of ammonia-oxidizing chemoautotrophic nitrifiers in a soil were detected, isolated, and studied by means of modified most-probable-number (MPN) techniques. The soil examined was a Waukegon silt loam treated with ammonium nitrate or sewage effluent. The genera Nitrosomonas and Nitrosospira were found to occur more commonly than the genus Nitrosolobus. Three different MPN media gave approximately the same overall ammonia oxidizer counts within statistical error after prolonged incubation but differed markedly in ratios of Nitrosomonas to Nitrosospira. Selectivity and counting efficiency of MPN media were studied by observing the growth response of representative pure cultures isolated from the soil. Selectivity was evident in each medium with respect to all strains tested, and the media differed greatly in incubation times required to obtain maximum counts. PMID:16345319

  13. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions

    PubMed Central

    Zheng, Changwu; Wang, Dian; Stahl, Shannon S.

    2012-01-01

    Pd-catalyzed aerobic oxidative coupling of vinylboronic acids and electronically unbiased alkyl olefins provides regioselective access to 1,3-disubstituted conjugated dienes. Catalyst-controlled regioselectivity is achieved by using 2,9-dimethylphenanthroline as a ligand. The observed regioselectivity is opposite to that observed from a traditional (non-oxidative) Heck reaction between a vinyl bromide and an alkene. DFT computational studies reveal that steric effects of the 2,9-dimethylphenanthroline ligand promote C–C bond-formation at the internal position of the alkene. PMID:22998540

  14. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  15. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    PubMed

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO.

  16. Distributions and activities of ammonia oxidizing bacteria and polyphosphate accumulating organisms in a pumped-flow biofilm reactor.

    PubMed

    Wu, Guangxue; Nielsen, Michael; Sorensen, Ketil; Zhan, Xinmin; Rodgers, Michael

    2009-10-01

    The spatial distributions and activities of ammonia oxidizing bacteria (AOB) and polyphosphate accumulating organisms (PAOs) were investigated for a novel laboratory-scale sequencing batch pumped-flow biofilm reactor (PFBR) system that was operated for carbon, nitrogen and phosphorus removal. The PFBR comprised of two 16.5l tanks (Reactors 1 and 2), each with a biofilm module of 2m(2) surface area. To facilitate the growth of AOB and PAOs in the reactor biofilms, the influent wastewater was held in Reactor 1 under stagnant un-aerated conditions for 6 h after feeding, and was then pumped over and back between Reactors 1 and 2 for 12 h, creating aerobic conditions in the two reactors during this period; as a consequence, the biofilm in Reactor 2 was in an aerobic environment for almost all the 18.2 h operating cycle. A combination of micro-sensor measurements, molecular techniques, batch experiments and reactor studies were carried out to analyse the performance of the PFBR system. After 100 days operation at a filtered chemical oxygen demand (COD(f)) loading rate of 3.46 g/m(2) per day, the removal efficiencies were 95% COD(f), 87% TN(f) and 74% TP(f). While the PFBR microbial community structure and function were found to be highly diversified with substantial AOB and PAO populations, about 70% of the phosphorus release potential and almost 100% of the nitrification potential were located in Reactors 1 and 2, respectively. Co-enrichment of AOB and PAOs was realized in the Reactor 2 biofilm, where molecular analyses revealed unexpected microbial distributions at micro-scale, with population peaks of AOB in a 100-250 microm deep sub-surface zone and of PAOs in the 0-150 microm surface zone. The micro-distribution of AOB coincided with the position of the nitrification peak identified during micro-sensor analyses. The study demonstrates that enrichment of PAOs can be realized in a constant or near constant aerobic biofilm environment. Furthermore, the findings suggest

  17. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply.

    PubMed

    Simonin, Marie; Le Roux, Xavier; Poly, Franck; Lerondelle, Catherine; Hungate, Bruce A; Nunan, Naoise; Niboyet, Audrey

    2015-10-01

    Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements.

  18. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.

    PubMed

    Wu, Ming L; Ettwig, Katharina F; Jetten, Mike S M; Strous, Marc; Keltjens, Jan T; van Niftrik, Laura

    2011-01-01

    Biological methane oxidation proceeds either through aerobic or anaerobic pathways. The newly discovered bacterium Candidatus 'Methylomirabilis oxyfera' challenges this dichotomy. This bacterium performs anaerobic methane oxidation coupled to denitrification, but does so in a peculiar way. Instead of scavenging oxygen from the environment, like the aerobic methanotrophs, or driving methane oxidation by reverse methanogenesis, like the methanogenic archaea in sulfate-reducing systems, it produces its own supply of oxygen by metabolizing nitrite via nitric oxide into oxygen and dinitrogen gas. The intracellularly produced oxygen is then used for the oxidation of methane by the classical aerobic methane oxidation pathway involving methane mono-oxygenase. The present mini-review summarizes the current knowledge about this process and the micro-organism responsible for it.

  19. Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes.

    PubMed

    Coci, M; Bodelier, P L E; Laanbroek, H J

    2008-04-01

    Next to the benthic and pelagic compartments, the epiphyton of submerged macrophytes may offer an additional niche for ammonia-oxidizing bacteria in shallow freshwater lakes. In this study, we explored the potential activities and community compositions of ammonia-oxidizing bacteria of the epiphytic, benthic, and pelagic compartments of seven shallow freshwater lakes which differed in their trophic status, distribution of submerged macrophytes, and restoration history. PCR-denaturing gradient gel electrophoresis analyses demonstrated that the epiphytic compartment was inhabited by species belonging to cluster 3 of the Nitrosospira lineage and to the Nitrosomonas oligotropha lineage. Both the ammonia-oxidizing bacterial community compositions and the potential activities differed significantly between compartments. Interestingly, both the ammonia-oxidizing bacterial community composition and potential activity were influenced by the restoration status of the different lakes investigated.

  20. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea

    PubMed Central

    Kim, Jong-Geol; Park, Soo-Je; Sinninghe Damsté, Jaap S.; Schouten, Stefan; Rijpstra, W. Irene C.; Jung, Man-Young; Kim, So-Jeong; Gwak, Joo-Han; Hong, Heeji; Si, Ok-Ja; Lee, SangHoon; Madsen, Eugene L.; Rhee, Sung-Keun

    2016-01-01

    Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 μM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes. PMID:27339136

  1. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-06-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances. To this end we conducted a rain-exclusion experiment at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Our results showed that the response to drought differed between the two sites. Effects were stronger at the managed meadow, where NH4+ immobilization rates increased and AOA abundances decreased. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while neither AOB, nor AOA abundances were affected. The different responses of the two sites to drought were likely related to site specific differences, such as soil organic matter content, nitrogen pools and absolute soil water content, resulting from differences in land-management. At both sites rewetting after drought had only minor short-term effects on the parameters that had been affected by drought, and seven weeks after the drought no effects of drought were detectable anymore. Thus, our findings indicate that drought can have distinct transient effects on soil nitrogen cycling and ammonia-oxidizer abundances in mountain grasslands and that the effect strength could be modulated by grassland management.

  2. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-11-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances in soil without drought history. To this end we conducted rain-exclusion experiments at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for potential gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia-oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Drought induced different responses at the two studied sites. At the managed meadow drought increased NH4+ immobilization rates and NH4+ concentrations in the soil water solution, but led to a reduction of AOA abundance compared to controls. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while AOB and AOA abundances remained stable. Rewetting had only minor, short-term effects on the parameters that had been affected by drought. Seven weeks after the end of drought no differences to control plots could be detected. Thus, our findings demonstrated that in mountain grasslands drought had distinct transient effects on soil nitrogen cycling and ammonia-oxidizers, which could have been related to a niche differentiation of AOB and AOA with increasing NH4+ levels. However, the effect strength of drought was modulated by grassland management.

  3. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy

    PubMed Central

    Hurley, Sarah J.; Elling, Felix J.; Könneke, Martin; Buchwald, Carolyn; Wankel, Scott D.; Santoro, Alyson E.; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe; Pearson, Ann

    2016-01-01

    Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R2 = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell−1·d−1 increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86. Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86–SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature. PMID:27357675

  4. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation

    PubMed Central

    Qin, Wei; Amin, Shady A.; Martens-Habbena, Willm; Walker, Christopher B.; Urakawa, Hidetoshi; Devol, Allan H.; Ingalls, Anitra E.; Moffett, James W.; Armbrust, E. Virginia; Stahl, David A.

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are now implicated in exerting significant control over the form and availability of reactive nitrogen species in marine environments. Detailed studies of specific metabolic traits and physicochemical factors controlling their activities and distribution have not been well constrained in part due to the scarcity of isolated AOA strains. Here, we report the isolation of two new coastal marine AOA, strains PS0 and HCA1. Comparison of the new strains to Nitrosopumilus maritimus strain SCM1, the only marine AOA in pure culture thus far, demonstrated distinct adaptations to pH, salinity, organic carbon, temperature, and light. Strain PS0 sustained nearly 80% of ammonia oxidation activity at a pH as low as 5.9, indicating that coastal strains may be less sensitive to the ongoing reduction in ocean pH. Notably, the two novel isolates are obligate mixotrophs that rely on uptake and assimilation of organic carbon compounds, suggesting a direct coupling between chemolithotrophy and organic matter assimilation in marine food webs. All three isolates showed only minor photoinhibition at 15 µE⋅m−2⋅s−1 and rapid recovery of ammonia oxidation in the dark, consistent with an AOA contribution to the primary nitrite maximum and the plausibility of a diurnal cycle of archaeal ammonia oxidation activity in the euphotic zone. Together, these findings highlight an unexpected adaptive capacity within closely related marine group I Archaea and provide new understanding of the physiological basis of the remarkable ecological success reflected by their generally high abundance in marine environments. PMID:25114236

  5. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils

    PubMed Central

    Jung, Man-Young; Well, Reinhard; Min, Deullae; Giesemann, Anette; Park, Soo-Je; Kim, Jong-Geol; Kim, So-Jeong; Rhee, Sung-Keun

    2014-01-01

    N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA. PMID:24225887

  6. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy.

    PubMed

    Hurley, Sarah J; Elling, Felix J; Könneke, Martin; Buchwald, Carolyn; Wankel, Scott D; Santoro, Alyson E; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe; Pearson, Ann

    2016-07-12

    Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature.

  7. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation.

    PubMed

    Qin, Wei; Amin, Shady A; Martens-Habbena, Willm; Walker, Christopher B; Urakawa, Hidetoshi; Devol, Allan H; Ingalls, Anitra E; Moffett, James W; Armbrust, E Virginia; Stahl, David A

    2014-08-26

    Ammonia-oxidizing archaea (AOA) are now implicated in exerting significant control over the form and availability of reactive nitrogen species in marine environments. Detailed studies of specific metabolic traits and physicochemical factors controlling their activities and distribution have not been well constrained in part due to the scarcity of isolated AOA strains. Here, we report the isolation of two new coastal marine AOA, strains PS0 and HCA1. Comparison of the new strains to Nitrosopumilus maritimus strain SCM1, the only marine AOA in pure culture thus far, demonstrated distinct adaptations to pH, salinity, organic carbon, temperature, and light. Strain PS0 sustained nearly 80% of ammonia oxidation activity at a pH as low as 5.9, indicating that coastal strains may be less sensitive to the ongoing reduction in ocean pH. Notably, the two novel isolates are obligate mixotrophs that rely on uptake and assimilation of organic carbon compounds, suggesting a direct coupling between chemolithotrophy and organic matter assimilation in marine food webs. All three isolates showed only minor photoinhibition at 15 µE ⋅ m(-2) ⋅ s(-1) and rapid recovery of ammonia oxidation in the dark, consistent with an AOA contribution to the primary nitrite maximum and the plausibility of a diurnal cycle of archaeal ammonia oxidation activity in the euphotic zone. Together, these findings highlight an unexpected adaptive capacity within closely related marine group I Archaea and provide new understanding of the physiological basis of the remarkable ecological success reflected by their generally high abundance in marine environments.

  8. Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Wrede, C.; Brady, S.; Rockstroh, S.; Dreier, A.; Kokoschka, S.; Heinzelmann, S. M.; Heller, C.; Reitner, J.; Taviani, M.; Daniel, R.; Hoppert, M.

    2012-07-01

    Methane oxidizing prokaryotes are ubiquitous in oxic and anoxic habitats wherever C1-compounds are present. Thus, methane saturated mud volcano fluids should be a preferred habitat of methane consuming prokaryotes, using the readily available electron donors. In order to understand the relevance of methane as a carbon and energy source in mud volcano communities, we investigate the diversity of prokaryotic organisms involved in oxidation of methane in fluid samples from the Salse di Nirano mud volcano field situated in the Northern Apennines. Cell counts were at approximately 0.7 × 106 microbial cells/ml. A fraction of the microbial biomass was identified as ANME (anaerobic methanotroph) archaea by fluorescence in situ hybridization (FISH) analysis. They are associated in densely colonized flakes, of some tens of μm in diameter, embedded in a hyaline matrix. Diversity analysis based on the 16S rDNA genes, retrieved from amplified and cloned environmental DNA, revealed a high proportion of archaea, involved in anaerobic oxidation of methane (AOM). Aerobic methane-oxidizing proteobacteria could be highly enriched from mud volcano fluids, indicating the presence of aerobic methanotrophic bacteria, which may contribute to methane oxidation, whenever oxygen is readily available. The results imply that biofilms, dominated by ANME archaea, colonize parts of the mud volcano venting system.

  9. Ammonia-oxidizing archaea in the low-oxygen water column of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Beman, J.; Popp, B. N.; Francis, C. A.

    2006-12-01

    Archaea constitute a ubiquitous and exceptionally abundant component of marine microbial assemblages, yet their role in ocean biogeochemistry has remained elusive. Several recent lines of evidence suggest that many mesophilic Crenarchaeota are capable of performing ammonia oxidation, the first and rate-limiting step of chemoautotrophic nitrification. However, associations between these organisms and ammonia oxidation in the marine water column have yet to be explored--as has their means of survival under low oxygen conditions, where, paradoxically, they appear to be remarkably successful. In this study, we examined AOA diversity and abundance throughout the water column of the Gulf of California, which is characterized by highly productive near-surface waters and a pronounced oxygen minimum layer (OML) at depths below about 300 meters. We examined AOA both in the near surface and the OML of the Gulf of California, comparing across the transition to low oxygen conditions in two separate basins. Our results suggest that these organisms may play a key role in oxidizing ammonia in the Gulf of California water column, yet their presence and abundance under low oxygen conditions remains unresolved.

  10. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    PubMed

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant.

  11. Revealing the halide effect on the kinetics of the aerobic oxidation of Cu(I) to Cu(II)

    SciTech Connect

    Deng, Yi; Zhang, Guanghui; Qi, Xiaotian; Liu, Chao; Miller, Jeffrey T.; Kropf, A. Jeremy; Bunel, Emilio E.; Lan, Yu; Lei, Aiwen

    2015-01-01

    In situ infrared (IR) and X-ray absorption near-edge structure (XANES) spectroscopic investigations reveal that different halide ligands have distinct effects on the aerobic oxidation of Cu(I) to Cu(II) in the presence of TMEDA (tetramethylethylenediamine). The iodide ligand gives the lowest rate and thus leads to the lowest catalytic reaction rate of aerobic oxidation of hydroquinone to benzoquinone. Further DFT calculations suggest that oxidation of CuI–TMEDA involves a side-on transition state, while oxidation of CuCl–TMEDA involves an end-on transition state which has a lower activation energy.

  12. D1FHS, the Type Strain of the Ammonia-Oxidizing Bacterium Nitrosococcus wardiae spec. nov.: Enrichment, Isolation, Phylogenetic, and Growth Physiological Characterization

    PubMed Central

    Wang, Lin; Lim, Chee Kent; Dang, Hongyue; Hanson, Thomas E.; Klotz, Martin G.

    2016-01-01

    An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcus halophilus Nc4T. The average nucleotide identity between the genomes of strain D1FHS and N. halophilus strain Nc4 is 89.5%. Known species in the genus Nitrosococcus are obligate aerobic chemolithotrophic ammonia-oxidizing bacteria adapted to and restricted to marine environments. The optimum growth (maximum nitrite production) conditions for D1FHS in a minimal salts medium are: 50 mM ammonium and 700 mM NaCl at pH of 7.5 to 8.0 and at 37°C in dark. Because pertinent conditions for other studied Nitrosococcus spp. are 100–200 mM ammonium and <700 mM NaCl at pH of 7.5 to 8.0 and at 28–32°C, D1FHS is physiologically distinct from other Nitrosococcus spp. in terms of substrate, salt, and thermal tolerance. PMID:27148201

  13. Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze estuary.

    PubMed

    Zheng, Yanling; Hou, Lijun; Newell, Silvia; Liu, Min; Zhou, Junliang; Zhao, Hui; You, Lili; Cheng, Xunliang

    2014-01-01

    Diversity, abundance, and activity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated using the ammonia monooxygenase α subunit (amoA) in the intertidal sediments of the Yangtze Estuary. Generally, AOB had a lower diversity of amoA genes than did AOA in this study. Clone library analysis revealed great spatial variations in both AOB and AOA communities along the estuary. The UniFrac distance matrix showed that all the AOB communities and 6 out of 7 AOA communities in the Yangtze Estuary were statistically indistinguishable between summer and winter. The studied AOB and AOA community structures were observed to correlate with environmental parameters, of which salinity, pH, ammonium, total phosphorus, and organic carbon had significant correlations with the composition and distribution of both communities. Also, the AOA communities were significantly correlated with sediment clay content. Quantitative PCR (qPCR) results indicated that the abundance of AOB amoA genes was greater than that of AOA amoA genes in 10 of the 14 samples analyzed in this study. Potential nitrification rates were significantly greater in summer than in winter and had a significant negative correlation with salinity. In addition, potential nitrification rates were correlated strongly only with archaeal amoA gene abundance and not with bacterial amoA gene abundance. However, no significant differences were observed between rates measured with and without ampicillin (AOB inhibitor). These results implied that archaea might play a more important role in mediating the oxidation of ammonia to nitrite in the Yangtze estuarine sediments.

  14. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China.

    PubMed

    Wang, Shanyun; Wang, Yu; Feng, Xiaojuan; Zhai, Liming; Zhu, Guibing

    2011-04-01

    With the rapid development of ammonia-synthesizing industry, the ammonia-nitrogen pollution in wetlands acting as the sink of point and diffuse pollution has been increased dramatically. Most of ammonia-nitrogen is oxidized at least once by ammonia-oxidizing prokaryotes to complete the nitrogen cycle. Current research findings have expanded the known ammonia-oxidizing prokaryotes from the domain Bacteria to Archaea. However, in the complex wetlands environment, it remains unclear whether ammonia oxidation is exclusively or predominantly linked to Archaea or Bacteria as implied by specific high abundance. In this research, the abundance and composition of Archaea and Bacteria in sediments of four kinds of wetlands with different nitrogen concentration were investigated by using quantitative real-time polymerase chain reaction, cloning, and sequencing approaches based on amoA genes. The results indicated that AOA distributed widely in wetland sediments, and the phylogenetic tree revealed that archaeal amoA functional gene sequences from wetlands sediments cluster as two major evolutionary branches: soil/sediment and sediment/water. The bacteria functionally dominated microbial ammonia oxidation in different wetlands sediments on the basis of molecule analysis, potential nitrification rate, and soil chemistry. Moreover, the factors influencing AOA and AOB abundances with environmental indicator were also analyzed, and the results addressed the copy numbers of archaeal and bacterial amoA functional gene having the higher correlation with pH and ammonia concentration. The pH had relatively great negative impact on the abundance of AOA and AOB, while ammonia concentration showed positive impact on AOB abundance only. These findings could be fundamental to improve understanding of the importance of AOB and AOA in nitrogen and other nutrients cycle in wetland ecosystems.

  15. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

    PubMed

    Nicol, Graeme W; Leininger, Sven; Schleper, Christa; Prosser, James I

    2008-11-01

    Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil pH gradient (4.9-7.5) by amplifying 16S rRNA and amoA genes followed by denaturing gradient gel electrophoresis (DGGE) and sequence analysis. The structure of both communities changed with soil pH, with distinct populations in acid and neutral soils. Phylogenetic reconstructions of crenarchaeal 16S rRNA and amoA genes confirmed selection of distinct lineages within the pH gradient and high similarity in phylogenies indicated a high level of congruence between 16S rRNA and amoA genes. The abundance of archaeal and bacterial amoA gene copies and mRNA transcripts contrasted across the pH gradient. Archaeal amoA gene and transcript abundance decreased with increasing soil pH, while bacterial amoA gene abundance was generally lower and transcripts increased with increasing pH. Short-term activity was investigated by DGGE analysis of gene transcripts in microcosms containing acidic or neutral soil or mixed soil with pH readjusted to that of native soils. Although mixed soil microcosms contained identical archaeal ammonia oxidizer communities, those adapted to acidic or neutral pH ranges showed greater relative activity at their native soil pH. Findings indicate that different bacterial and archaeal ammonia oxidizer phylotypes are selected in soils of different pH and that these differences in community structure and abundances are reflected in different contributions to ammonia oxidizer activity. They also suggest that both groups of ammonia oxidizers have distinct physiological characteristics and ecological niches, with consequences for nitrification in acid soils.

  16. A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

    PubMed Central

    Jung, Man-Young; Park, Soo-Je; Kim, So-Jeong; Kim, Jong-Geol; Sinninghe Damsté, Jaap S.

    2014-01-01

    Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and “Candidatus Nitrosoarchaeum koreensis,” is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and “Ca. Nitrosoarchaeum koreensis,” and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name “Candidatus Nitrosotenuis chungbukensis” for the ammonia-oxidizing archaeal strain MY2. PMID:24705324

  17. Induction of E. coli oh8Gua endonuclease by oxidative stress: its significance in aerobic life.

    PubMed

    Kim, H S; Park, Y W; Kasai, H; Nishimura, S; Park, C W; Choi, K H; Chung, M H

    1996-06-12

    The induction of 8-hydroxyguanine (oh8Gua) endonuclease, a DNA repair enzyme for an oxidatively modified guanine, oh8Gua was studied in various growth conditions in Escherichia coli (AB1157). Anaerobically grown E. coli were found to have a very low activity of this enzyme while aerobically grown cells showed activity about 20 times that of the anaerobic level. Under the same condition, superoxide dismutase (SOD) showed about 6-fold increase in activity. A shift in growth conditions from anaerobic to aerobic resulted in rapid induction of this enzyme, and this induction was blocked (but not completely) by chloramphenicol. It is indicated that molecular oxygen is an effective stimulator to the induction of this enzyme and its induction depends partly on protein synthesis. Superoxide-producing compounds such as paraquat and menadione also increased the activity of endonuclease as well as SOD, but H2O2 showed no effect. Thus, superoxides are also implied as a stimulator. In contrast, hyperoxia induced only SOD not the endonuclease. This induction of the endonuclease by hyperoxia was only observed in a SOD-deficient strain (QC774). The aerobic activity of the endonuclease in QC774 was the same as that of wild types (AB1157, GC4468). It is implied that the responsiveness of oh8Gua endonuclease to superoxides is less sensitive than that of SOD. The endonuclease was also induced by a temperature shift from 30 to 43 degrees C and treatment with nalidixic acid. Among the stimuli used, molecular oxygen seems to be most effective for its induction. The inducible nature of this enzyme will serve as an important mechanism for the protection of oxidative DNA damage in the aerobic environment.

  18. Inhibition of phenol on the rates of ammonia oxidation by Nitrosomonas europaea grown under batch, continuous fed, and biofilm conditions.

    PubMed

    Lauchnor, Ellen G; Semprini, Lewis

    2013-09-01

    Ammonia oxidation by Nitrosomonas europaea, an ammonia oxidizing bacterium prevalent in wastewater treatment, is inhibited in the presence of phenol, due to interaction of the phenol with the ammonia monooxygenase enzyme. Suspended cells of N. europaea were cultured in batch reactors and continuous flow reactors at dilution rates of 0.01-0.2 d(-1). The rate of ammonia oxidation in the continuous cultures correlated to the dilution rate in the reactor. The batch and continuous cultures were exposed to 20 μM phenol and ammonia oxidation activity was measured by specific oxygen uptake rates (SOURs). Inhibition of NH3 oxidation by 20 μM phenol ranged from a 77% reduction of SOUR observed with suspended cells harvested during exponential growth, to 26% in biofilms. The extent of inhibition was correlated with ammonia oxidation rates in both suspended and biofilm cells, with greater percent inhibition observed with higher initial rates of NH3 oxidation. In biofilm grown cells, an increase in activity and phenol inhibition were both observed upon dispersing the biofilm cells into fresh, liquid medium. Under higher oxygen tension, an increase in the NO2(-) production of the biofilms was observed and biofilms were more susceptible to phenol inhibition. Dissolved oxygen microsensor measurements showed oxygen limited conditions existed in the biofilms. The ammonia oxidation rate was much lower in biofilms, which were less inhibited during phenol exposure. The results clearly indicate in both suspended and attached cells of N. europaea that a higher extent of phenol inhibition is positively correlated with a higher rate of NH3 oxidation (enzyme turnover).

  19. Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments.

    PubMed

    Lage, Melissa D; Reed, Heather E; Weihe, Claudia; Crain, Caitlin M; Martiny, Jennifer B H

    2010-07-01

    Ammonia oxidation is a central process in the nitrogen cycle. Particularly in marine and estuarine environments, few experiments have been conducted to tease apart the factors influencing their abundance and composition. To investigate the effect of nitrogen and phosphorus availability on ammonia-oxidizing bacteria (AOB), we conducted a nutrient enrichment experiment in a Maine salt marsh and sampled sediment communities in three seasons over 2 years. We assessed community composition using terminal restriction fragment length polymorphism analysis and sequencing of cloned fragments of the ammonia monooxygenase (amoA) gene. Almost all of the amoA sequences fell within the marine and estuarine-specific Nitrosospira-like clade. Applied separately, nitrogen and phosphorus significantly altered AOB composition; however, together the nutrients had an interactive effect, and composition did not change. In contrast, nutrient enrichment did not alter AOB abundance. Furthermore, the response of AOB composition to nutrient enrichment varied over time. We conclude that closely related taxa within the marine/estuarine-specific Nitrosospira-like clade vary in their preference for nutrient concentrations, and this preference may depend on other temporally variable abiotic factors. Finally, AOB composition was highly variable within and across years even in untreated plots. Further studies are needed to test how these different aspects of compositional variability in AOB communities influence nitrogen cycling.

  20. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea.

    PubMed

    Chain, Patrick; Lamerdin, Jane; Larimer, Frank; Regala, Warren; Lao, Victoria; Land, Miriam; Hauser, Loren; Hooper, Alan; Klotz, Martin; Norton, Jeanette; Sayavedra-Soto, Luis; Arciero, Dave; Hommes, Norman; Whittaker, Mark; Arp, Daniel

    2003-05-01

    Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with approximately 47% transcribed from one strand and approximately 53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO(2) and NH(3) assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria.

  1. Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea†

    PubMed Central

    Chain, Patrick; Lamerdin, Jane; Larimer, Frank; Regala, Warren; Lao, Victoria; Land, Miriam; Hauser, Loren; Hooper, Alan; Klotz, Martin; Norton, Jeanette; Sayavedra-Soto, Luis; Arciero, Dave; Hommes, Norman; Whittaker, Mark; Arp, Daniel

    2003-01-01

    Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with ∼47% transcribed from one strand and ∼53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO2 and NH3 assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria. PMID:12700255

  2. [Effect of ammonia-oxidizing bacteria (AOB) on chloraminated disinfection attenuation in drinking water distribution system].

    PubMed

    Bai, Xiao-Hui; Cai, Yun-Long; Zhou, Bin-Hui; Zhi, Xing-Hua

    2009-06-15

    The growth of microbe and formation of biofilm in water distribution system were important factors affecting the security of water quality. The number of ammonia-oxidizing bacteria (AOB) in biofilm of a chloraminated drinking water distribution system in Shanghai was detected by MPN-Griess method, and the relations among AOB, nitrification and chloraminated disinfection were analyzed. Meanwhile, the effects of AOB on chloraminated disinfection fastness and attenuation by simulation experiment were studied. The result indicated that the number of ammonia-oxidizing bacteria in pipe biofilm was between 1.0 x 10(2)-4.3 x 10(5) MPN/g dry biofilm. Correlation coefficients of AOB with ammonia, nitrite and nitrate were -0.563, 0.603 and -0.563. Correlation coefficients of AOB with total chlorine and mono-chloramine were -0.659 and -0.571. Fastness of AOB to chloramine was higher than heterotrophic bacteria and AOB can deplete more chloramine than HPC.

  3. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress.

    PubMed

    Bloomer, Richard J; Goldfarb, Allan H; Wideman, Laurie; McKenzie, Michael J; Consitt, Leslie A

    2005-05-01

    The purpose of this study was to compare oxidative modification of blood proteins, lipids, DNA, and glutathione in the 24 hours following aerobic and anaerobic exercise using similar muscle groups. Ten cross-trained men (24.3 +/- 3.8 years, [mean +/- SEM]) performed in random order 30 minutes of continuous cycling at 70% of Vo(2)max and intermittent dumbbell squatting at 70% of 1 repetition maximum (1RM), separated by 1-2 weeks, in a crossover design. Blood samples taken before, and immediately, 1, 6, and 24 hours postexercise were analyzed for plasma protein carbonyls (PC), plasma malondialdehyde (MDA), and whole-blood total (TGSH), oxidized (GSSG), and reduced (GSH) glutathione. Blood samples taken before and 24 hours postexercise were analyzed for serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). PC values were greater at 6 and 24 hours postexercise compared with pre-exercise for squatting, with greater PC values at 24 hours postexercise for squatting compared with cycling (0.634 +/- 0.053 vs. 0.359 +/- 0.018 nM.mg protein(-1)). There was no significant interaction or main effects for MDA or 8-OHdG. GSSG experienced a short-lived increase and GSH a transient decrease immediately following both exercise modes. These data suggest that 30 minutes of aerobic and anaerobic exercise performed by young, cross-trained men (a) can increase certain biomarkers of oxidative stress in blood, (b) differentially affect oxidative stress biomarkers, and (c) result in a different magnitude of oxidation based on the macromolecule studied. Practical applications: While protein and glutathione oxidation was increased following acute exercise as performed in this study, future research may investigate methods of reducing macromolecule oxidation, possibly through the use of antioxidant therapy.

  4. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyong; Ji, Junfeng; Barrón, Vidal; Torrent, José

    2016-10-01

    Iron oxides are widely distributed across the surface of the Earth as a result of the aerobic weathering of primary Fe-bearing minerals. Pedogenic iron oxides which consist mainly of hematite (Hm), goethite (Gt), maghemite (Mgh), are often concentrated synchronously in aerobic soils under low to moderate rainfall regimes. Magnetic susceptibility (χ) and redness, which respectively reflect the content of Mgh and Hm in soils, are considered reasonable pedogenic and climatic indicators in soil taxonomy and paleorainfall reconstruction. However, under high rainfall regimes, the grain growth of Mgh and transformation to Hm, combined with the prior formation of Gt under conditions of high relative humidity (RH), can result in magnetic reduction and dramatic yellowing of soils and sediments, which explains the existence of rainfall thresholds for Mgh and Hm at a large scale even before the pedogenic environment turns anaerobic. In order to capture the rainfall thresholds for Mgh and Hm occurring under aerobic conditions, we explored a tropical transect across a granitic region where the soil color turned from red to yellow under a wide rainfall range of 900-2200 mm/yr and a corresponding mean annual RH range of 77%-85%. We observed a lower rainfall threshold of ∼1500 mm/yr and a corresponding RH ∼80% for Mgh and Hm along this transect, as well as a higher rainfall threshold of ∼1700 mm/yr and a corresponding RH of ∼81% for Gt and total pedogenic iron oxides (citrate/bicarbonate/dithionite-extractable Fe, Fed). Cross-referencing with comparable studies in temperate and subtropical regions, we noted that the rainfall or RH thresholds for Fed and Hm or Mgh likewise increase with temperature. Moreover, the different thresholds for total and individual iron oxide phase indicates that a negative correlation between chemical weathering intensity and redness or χ in sediment sequences can occur under the prevalent climate regime just between their thresholds. Finally

  5. Distribution of sediment ammonia-oxidizing microorganisms in plateau freshwater lakes.

    PubMed

    Liu, Yong; Zhang, Jingxu; Zhao, Lei; Li, Yuzhao; Dai, Yu; Xie, Shuguang

    2015-05-01

    Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) can play important roles in ammonia biotransformation in ecosystems. However, the factors regulating the distribution of these microorganisms in lacustrine ecosystems remain essentially unclear. The present study investigated the effects of geographic location on the distribution of sediment AOA and AOB in 13 freshwater lakes on the Yunnan Plateau (China). The spatial dissimilarity in the abundance and structure of sediment AOA and AOB communities was observed in these plateau lakes. AOA abundance was usually less than AOB abundance, and the AOA/AOB ratio was positively correlated with water depth. Nitrososphaera-like AOA occurred in most of the studied lakes and were dominant in two lakes. Nitrosospira was the dominant AOB species in most of the lakes, while Nitrosomonas showed high abundance only in three lakes. In addition, geographic location was found to affect lake sediment AOB community structure.

  6. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect

    Ku, B.J.; Rhee, H.K. . Dept. of Chemical Engineering); Lee, J.K.; Park, D. )

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  7. Microbial Community Dynamics and Stability during an Ammonia-Induced Shift to Syntrophic Acetate Oxidation

    PubMed Central

    Werner, Jeffrey J.; Garcia, Marcelo L.; Perkins, Sarah D.; Yarasheski, Kevin E.; Smith, Samuel R.; Muegge, Brian D.; Stadermann, Frank J.; DeRito, Christopher M.; Floss, Christine; Madsen, Eugene L.; Gordon, Jeffrey I.

    2014-01-01

    Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity. PMID:24657858

  8. Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils.

    PubMed

    Yang, Yuyin; Shan, Jingwen; Zhang, Jingxu; Zhang, Xiaoling; Xie, Shuguang; Liu, Yong

    2014-12-01

    Ammonia oxidation is known to be carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA), while methanotrophs (methane-oxidizing bacteria (MOB)) play an important role in mitigating methane emissions from the environment. However, the difference of AOA, AOB, and MOB distribution in wetland sediment and adjacent upland soil remains unclear. The present study investigated the abundances and community structures of AOA, AOB, and MOB in sediments of a high-altitude freshwater wetland in Yunnan Province (China) and adjacent agricultural soils. Variations of AOA, AOB, and MOB community sizes and structures were found in water lily-vegetated and Acorus calamus-vegetated sediments and agricultural soils (unflooded rice soil, cabbage soil, and garlic soil and flooded rice soil). AOB community size was higher than AOA in agricultural soils and lily-vegetated sediment, but lower in A. calamus-vegetated sediment. MOB showed a much higher abundance than AOA and AOB. Flooded rice soil had the largest AOA, AOB, and MOB community sizes. Principal coordinate analyses and Jackknife Environment Clusters analyses suggested that unflooded and flooded rice soils had relatively similar AOA, AOB, and MOB structures. Cabbage soil and A. calamus-vegetated sediment had relatively similar AOA and AOB structures, but their MOB structures showed a large difference. Nitrososphaera-like microorganisms were the predominant AOA species in garlic soil but were present with a low abundance in unflooded rice soil and cabbage soil. Nitrosospira-like AOB were dominant in wetland sediments and agricultural soils. Type I MOB Methylocaldum and type II MOB Methylocystis were dominant in wetland sediments and agricultural soils. Moreover, Pearson's correlation analysis indicated that AOA Shannon diversity was positively correlated with the ratio of organic carbon to nitrogen (p < 0.05). This work could provide some new insights toward ammonia and methane oxidation in soil and wetland sediment

  9. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.

  10. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation

    NASA Astrophysics Data System (ADS)

    Daines, Stuart J.; Lenton, Timothy M.

    2016-01-01

    The balance of evidence suggests that oxygenic photosynthesis had evolved by 3.0-2.7 Ga, several hundred million years prior to the Great Oxidation ≈2.4 Ga. Previous work has shown that if oxygenic photosynthesis spread globally prior to the Great Oxidation, this could have supported widespread aerobic ecosystems in the surface ocean, without oxidising the atmosphere. Here we use a suite of models to explore the implications for carbon cycling and the Great Oxidation. We find that recycling of oxygen and carbon within early aerobic marine ecosystems would have restricted the balanced fluxes of methane and oxygen escaping from the ocean, lowering the atmospheric concentration of methane in the Great Oxidation transition and its aftermath. This in turn would have minimised any bi-stability of atmospheric oxygen, by weakening a stabilising feedback on oxygen from hydrogen escape to space. The result would have been a more reversible and probably episodic rise of oxygen at the Great Oxidation transition, consistent with existing geochemical evidence. The resulting drop in methane levels to ≈10 ppm is consistent with climate cooling at the time but adds to the puzzle of what kept the rest of the Proterozoic warm. A key test of the scenario of abundant methanotrophy in oxygen oases before the Great Oxidation is its predicted effects on the organic carbon isotope (δ13Corg) record. Our open ocean general circulation model predicts δC13org ≈ - 30 to -45‰ consistent with most data from 2.65 to 2.45 Ga. However, values of δC13org ≈ - 50 ‰ require an extreme scenario such as concentrated methanotroph production where shelf-slope upwelling of methane-rich water met oxic shelf water.

  11. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K.; Sepulveda-Jauregui, A.; Anthony, K. Walter; Thalasso, F.

    2015-08-01

    Methanotrophic bacteria play an important role oxidizing a significant fraction of methane (CH4) produced in lakes. Aerobic CH4 oxidation depends mainly on lake CH4 and oxygen (O2) concentrations, in such a manner that higher MO rates are usually found at the oxic/anoxic interface, where both molecules are present. MO also depends on temperature, and via methanogenesis, on organic carbon input to lakes, including from thawing permafrost in thermokarst (thaw)-affected lakes. Given the large variability in these environmental factors, CH4 oxidation is expected to be subject to large seasonal and geographic variations, which have been scarcely reported in the literature. In the present study, we measured CH4 oxidation rates in 30 Alaskan lakes along a north-south latitudinal transect during winter and summer with a new field laser spectroscopy method. Additionally, we measured dissolved CH4 and O2 concentrations. We found that in the winter, aerobic CH4 oxidation was mainly controlled by the dissolved O2 concentration, while in the summer it was controlled primarily by the CH4 concentration, which was scarce compared to dissolved O2. The permafrost environment of the lakes was identified as another key factor. Thermokarst (thaw) lakes formed in yedoma-type permafrost had significantly higher CH4 oxidation rates compared to other thermokarst and non-thermokarst lakes formed in non-yedoma permafrost environments. As thermokarst lakes formed in yedoma-type permafrost have been identified to receive large quantities of terrestrial organic carbon from thaw and subsidence of the surrounding landscape into the lake, confirming the strong coupling between terrestrial and aquatic habitats and its influence on CH4 cycling.

  12. Response of Ammonia-oxidizing Bacterial and Archaeal Populations to Organic Nitrogen Amendments in Low-Nutrient Groundwater

    SciTech Connect

    David W. Reed; Yoshiko Fujita; Jason M. Smith; Christopher A. Francis

    2010-02-01

    To better understand the fate of ammonia introduced into low-nutrient groundwater as a result of the application of a novel remediation approach for trace metal contaminants, the diversity and abundance of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) were examined in samples collected during a field trial of the approach. The ammonia is derived from microbial urea hydrolysis, which has the potential to induce the formation of calcite and remove contaminants by coprecipitation in the calcite. The in situ oxidation of the ammonia by AOB and AOA could, however, potentially destabilize the calcite and lead to elevated nitrate levels in the groundwater. To evaluate the potential for stimulating ammonia oxidation by addition of urea, samples were collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea, and subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. AOB and AOA were present in all of the samples tested, with the AOA amoA genes more numerous in all of the samples except those collected following urea addition, when AOB genes were slightly more abundant. Following urea addition, nitrate levels rose and ammonia-oxidizing microorganisms (AOB + AOA) increased relative to the total microbial population, evidence that nitrification was stimulated by urea hydrolysis. Bacterial amoA diversity was limited to two sequence types, whereas the archaeal amoA analyses revealed 20 unique operational taxonomic units (OTUs), including several that were significantly different from any reported previously from other environments. In view of the results from this study, the potential for stimulation of ammonia-oxidizing communities should be considered in field-scale engineering activities involving microbial urea hydrolysis in groundwater.

  13. Acidification Enhances Hybrid N2O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms

    PubMed Central

    Frame, Caitlin H.; Lau, Evan; Nolan, E. Joseph; Goepfert, Tyler J.; Lehmann, Moritz F.

    2017-01-01

    Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15NH4+) and nitrite (15NO2−), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added NH4+ was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or NO2− produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15NO2− was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that NH4+ and 15NO2− each contributed N equally to N2O by a “hybrid-N2O” mechanism consistent with a reaction between NH2OH and NO2−, or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0–34.4‰) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia

  14. A rapid and simple respirometric biosensor with immobilized cells of Nitrosomonas europaea for detecting inhibitors of ammonia oxidation.

    PubMed

    Cui, Rong; Chung, Wook-Jin; Jahng, Deokjin

    2005-03-15

    As obligate chemolithotrophs, ammonia-oxidizing bacteria (AOB) grow very slowly and are known to be extremely sensitive to a wide variety of inhibitors. Since it is generally accepted that inhibition of ammonia oxidation by AOB results in a total failure of nitrogen removal, it is necessary to develop a method to detect inhibitors of ammonia oxidation in wastewater. Since ammonia oxidation accompanies oxygen consumption, ammonia oxidation can be easily evaluated by measuring oxygen consumption rate using a dissolved oxygen (DO) probe. In this study, a rapid and simple respirometric biosensor using the pure culture of Nitrosomonas europaea was developed. N. europaea was cultivated in a continuous fermentor operating at the dilution rate of 0.008 h(-1) to obtain physiologically constant cells and was immobilized onto the dialysis membrane through filtration. DO, determined by the biosensor, started to increase 30 s later after ammonia oxidation inhibitor was fed, and a new steady-state DO was obtained in 10-30 min. For this DO profile, steady-state kinetics was applied to evaluate ammonia oxidation efficiency. The concentration of a toxic compound causing 50% decrease of oxygen-consumption activity (EC50) was determined for different chemicals. The EC50 values obtained with the biosensor (0.018 mg l(-1) for allylthiourea, 0.027 mg l(-1) for thioacetamide, 1.10 mg l(-1) for phenol and 0.0 1mg l(-1) for thiourea) indicated that the developed biosensor was highly sensitive to a variety of the inhibitors. It was also shown that the biosensor is applicable for on-line real time monitoring.

  15. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    PubMed Central

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709

  16. Modeling of simultaneous denitrification--anaerobic digestion--organic matter aerobic oxidation and nitrification in an anoxic-anaerobic-aerobic compact filter reactor.

    PubMed

    Moya, Jaime; Huiliñir, César; Peredo, Karol; Aspé, Estrella; Roeckel, Marlene

    2012-08-31

    A mathematical model was developed for a compact anoxic-anaerobic-aerobic filter reactor with liquid recirculation for the treatment of fishing effluents. The model includes denitrification, anaerobic digestion, aerobic carbon oxidation and nitrification steps, as well as an evaluation of the liquid gas mass transfer and pH. The model was calibrated using one experimental condition at a recycling ratio (R)=10, and was validated with R equal to 2 and 0, with an organic concentration of 554±24 mg TOCL(-1), salinity of 24 g L(-1) and hydraulic retention time (HRT) of 2 d. Carbon total removal is higher than 98%, while maximum nitrogen removal is 62% using total nitrification in the aerobic zone, due to a higher quantity of NO(x) produced which were recirculated to the anoxic zone. In the aerobic zone, simultaneous nitrification and denitrification processes occur, because the diffusion limitations cause a low oxygen penetration in the biofilm. In the anoxic-anaerobic zone, denitrification or methanogenesis inhibition by DO (caused by the recycled oxygen) is not observed.

  17. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria.

    PubMed

    Taher, Edris; Chandran, Kartik

    2013-04-02

    The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH(4)) to methanol (CH3OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH(4) to CH(3)OH. In fed-batch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH(3)OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of Nitrosomonas europaea. The maximum specific rate of CH(4) to CH(3)OH conversion obtained during this study was 0.82 mg CH(3)OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH(4) oxidation to CH(3)OH by AOB was inhibited by NH(3) (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH(3)OH, itself. Further, oxidation of CH(4) to CH(3)OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH(2)OH) as an electron donor. Therefore, a potential optimum design for promoting CH(4) to CH(3)OH oxidation by AOB could involve supplying NH(3) (needed to maintain AMO activity) uncoupled from the supply of NH(2)OH and CH(4). Partial oxidation of CH(4)-containing gases to CH3OH by AOB represents an attractive platform for the conversion of a gaseous mixture to an aqueous compound, which could be used as a commodity chemical. Alternately, the nitrate and CH(3) OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N(2), using an internally produced organic electron donor.

  18. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean.

    PubMed

    Sintes, Eva; Bergauer, Kristin; De Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J

    2013-05-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotypes of marine Crenarchaeota Group I (MCGI) were detected in the waters of the tropical Atlantic and the coastal Arctic. The HAC-AOA ecotype (high ammonia concentration AOA) was ≈ 8000 times and 15 times more abundant in the coastal Arctic and the top 300 m layer of the open equatorial Atlantic, respectively, than the LAC-AOA (low ammonia concentration AOA) ecotype. In contrast, the LAC-AOA ecotype dominated the lower meso- and bathypelagic waters of the tropical Atlantic (≈ 50 times more abundant than the HAC-AOA) where ammonia concentrations are well below the detection limit using conventional spectrophotometric or fluorometric methods. Cluster analysis of the sequences from the clone libraries obtained by the two amoA primer sets revealed two phylogenetically distinct clusters. Taken together, our results suggest the presence of two ecotypes of archaeal ammonia oxidizers corresponding to the medium (1.24 µM on average in the coastal Arctic) and low ammonia concentration (< 0.01 µM) in the shallow and the deep waters respectively.

  19. Active Ammonia Oxidizers in an Acidic Soil Are Phylogenetically Closely Related to Neutrophilic Archaeon

    PubMed Central

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu

    2014-01-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the “heavy” DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that 13CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both 13C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated. PMID:24375137

  20. Spatiotemporal relationships between the abundance, distribution, and potential activities of ammonia-oxidizing and denitrifying microorganisms in intertidal sediments.

    PubMed

    Smith, Jason M; Mosier, Annika C; Francis, Christopher A

    2015-01-01

    The primary objective of this study was to gain an understanding of how key microbial communities involved in nitrogen cycling in estuarine sediments vary over a 12-month period. Furthermore, we sought to determine whether changes in the size of these communities are related to, or indicative of, seasonal patterns in fixed nitrogen dynamics in Elkhorn Slough--a small, agriculturally impacted estuary with a direct connection to Monterey Bay. We assessed sediment and pore water characteristics, abundance of functional genes for nitrification (bacterial and archaeal amoA, encoding ammonia monooxygenase subunit A) and denitrification (nirS and nirK, encoding nitrite reductase), and measurements of potential nitrification and denitrification activities at six sites. No seasonality in the abundance of denitrifier or ammonia oxidizer genes was observed. A strong association between potential nitrification activity and the size of ammonia-oxidizing bacterial communities was observed across the estuary. In contrast, ammonia-oxidizing archaeal abundances remained relatively constant in space and time. Unlike many other estuaries, salinity does not appear to regulate the distribution of ammonia-oxidizing communities in Elkhorn Slough. Instead, their distributions appear to be governed over two different time scales. Long-term niche characteristics selected for the gross size of archaeal and bacterial ammonia-oxidizing communities, yet covariation in their abundances between monthly samples suggests that they respond in a similar manner to short-term changes in their environment. Abundances of denitrifier and ammonia oxidizer genes also covaried, but site-specific differences in this relationship suggest differing levels of interaction (or coupling) between nitrification and denitrification.

  1. Presence of Ammonia-oxidizing Archaea and Their Influence on Nitrogen Cycling in Ilica Bay, Turkey

    NASA Astrophysics Data System (ADS)

    Gulecal, Y.; Temel, M.

    2011-12-01

    Recenlty, the processes of anaerobic ammonium oxidation (anammox), and ammonia oxidation within the domain Archaea, have been recognized as two new links in the global nitrogen cycle. The distribution and ubiquity of marine Archaea an important role in global carbon and nitrogen cycling (Ingalls et al., 2006; Leininger et al., 2006; Wuchter et al.,2006a). However, our knowledge on archaeal distribution in aquatic ecosystem was largely confined to the extreme environments for a long time until DeLong (1992, 1998) revealed the ubiquity of archaea in common marine environments. Despite the great progress, more efforts need to be given to the study of archaeal diversity in the vast oceans and of the variations in the ecological environment from coastal to oceanic waters (Massana et al.,2000). Our studying area which Ilica Bay in Izmir (Turkey) has a lot of thermal springs. The aim of study was to investigate the presence of ammonia-oxidizing Archaea and their roles of nitrogen cycling in marine enviroments.We have not only used the geochemical analyses but also genetic tools. This study will supply knowledge for marine nitrogen cycling to understanding very well, in addition how Archea genes players in the process of anammox in shallow coastal marine environments.

  2. [Ammonia-oxidizing bacteria community composition at the root zones of aquatic plants after ecological restoration].

    PubMed

    Xing, Peng; Kong, Fan-xiang; Chen, Kai-ning; Chen, Mei-jun; Wu, Xiao-dong

    2008-08-01

    To investigate the effects of aquatic plants on ammonia-oxidizing bacteria (AOB) at their root zones, four species of aquatic plants were selected, Phragmites communis, Typha angustifolia L., Potamogeton crispus L., and Limnanthemun nymphoides, which were widely used in ecological restorations. AOB in the samples were enumerated by most-probable-number (MPN) method. Nested polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) procedures were performed with ammonia oxidizer-selective primers. Main DGGE bands were excised from the gel and sequenced for phylogenetic affiliation. Results indicate that AOB densities are always higher at the root zones of emergent plants (Phragmites communis 2.8 x 10(5) cells/g and Typha angustifolia L.4.3 x 10(5) cells/g) than those of submerged and floating-leaved plant (Potamogeton crispus L. 9.3 x 10(4) cells/g and Limnanthemun nymphoides 7.7 x 10(4) cells/g). At the root zones, the oxidation-reduction potential is above zero and NH4+ concentration is lower than it in the bare surface sediment. Fourteen major bands were recovered from the DGGE gel, re-amplified and sequenced. Although the identified bands have their respective similar sequences in GenBank, most of them are related to Nitrosomonas-like. This type of bacteria would play an important role of nitrogen cycle in lake sediment after ecological restoration.

  3. Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA).

    PubMed

    Carini, Stephen; Bano, Nasreen; LeCleir, Gary; Joye, Samantha B

    2005-08-01

    Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.

  4. Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Guotao; Zhang, Qiuping; Xie, Guangzhong; Su, Yuanjie; Zhao, Kang; Du, Hongfei; Jiang, Yadong

    2016-11-01

    Polyaniline/zinc oxide (PANI/ZnO) hybrid film based sensors have been developed for ammonia (NH3) detection at room temperature (RT). Results shows that hybrid film sensor exhibits a p-type semiconductor behavior and larger response than that of pure PANI film sensor. In the system, ZnO nanorod arrays can not only create nanoscale gap for gas diffusion but also provide abundant adsorption sites, thus leading to enhancement of response. Besides, hydrothermal time is proportional to the length of nanorods, Longer nanorods will provide efficient gap for gas diffusion, which leads to better sensitivity. This work offers a promising way to optimize sensor performance.

  5. Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection.

    PubMed

    Cui, Shumao; Mao, Shun; Wen, Zhenhai; Chang, Jingbo; Zhang, Yang; Chen, Junhong

    2013-05-21

    We demonstrate controllable fabrication of Ag nanoparticle (NP)-decorated reduced graphene oxide (RGO/Ag) hybrids and their application for fast and selective detection of ammonia at room temperature. Ag NPs greatly improved the sensitivity of RGO. The response time (6 s) and recovery time (10 s) are comparable with our previous Ag NP-decorated multiwalled carbon nanotube (MWCNT/Ag) NH3 sensors; however, the sensitivity is about twice that of MWCNT/Ag hybrids. We found that the loading density of NPs greatly affects the sensing performance of RGO/Ag hybrids and a proper NP loading leads to maximum sensitivity.

  6. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota

    PubMed Central

    Weber, Eva B.; Lehtovirta-Morley, Laura E.; Prosser, James I.; Gubry-Rangin, Cécile

    2015-01-01

    Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological characterization of Group 1.1c Thaumarchaeota by determining conditions that favour their growth in soil. Several acidic grassland, birch and pine tree forest soils were sampled and those with the highest Group 1.1c 16S rRNA gene abundance were incubated in microcosms to determine optimal growth temperature, ammonia oxidation and growth on several organic compounds. Growth of Group 1.1c Thaumarchaeota, assessed by qPCR of Group 1.1c 16S rRNA genes, occurred in soil, optimally at 30°C, but was not associated with ammonia oxidation and the functional gene amoA could not be detected. Growth was also stimulated by addition of organic nitrogen compounds (glutamate and casamino acids) but not when supplemented with organic carbon alone. This is the first evidence for non-ammonia oxidation associated growth of Thaumarchaeota in soil. PMID:25764563

  7. Cobalt nanoparticles as recyclable catalyst for aerobic oxidation of alcohols in liquid phase

    NASA Astrophysics Data System (ADS)

    Mondal, Arijit; Mukherjee, Debkumar; Adhikary, Bibhutosh; Ahmed, Md Azharuddin

    2016-05-01

    Cobalt nanoparticles prepared at room temperature from cobalt sulphate and tetrabutyl ammonium bromide as surfactant have been found to be effective oxidation catalysts. Palladium and platinum nanoparticles (average size 4-6 nm) can also be prepared from PdCl2 and K2PtCl4, respectively, using the same surfactant but require high temperature ( 120 °C) and much longer preparation time. Agglomeration of nanoparticles prepared from metals like palladium and platinum in common solvents, however, restricts their use as catalysts. It is therefore our endeavour to find the right combination of catalyst and solvent that will be beneficial from industrial point of view. Magnetic property measurement of cobalt nanoclusters was made using SQUID to identify their reusability nature. Herein, we report the use of cobalt nanoparticles (average size 90-95 nm) in dichloromethane solvent as effective reusable catalysts for aerobic oxidation of a variety of alcohols.

  8. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine.

    PubMed

    Zöllig, Hanspeter; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M

    2015-02-01

    Electrolysis can be a viable technology for ammonia removal from source-separated urine. Compared to biological nitrogen removal, electrolysis is more robust and is highly amenable to automation, which makes it especially attractive for on-site reactors. In electrolytic wastewater treatment, ammonia is usually removed by indirect oxidation through active chlorine which is produced in-situ at elevated anode potentials. However, the evolution of chlorine can lead to the formation of chlorate, perchlorate, chlorinated organic by-products and chloramines that are toxic. This study focuses on using direct ammonia oxidation on graphite at low anode potentials in order to overcome the formation of toxic by-products. With the aid of cyclic voltammetry, we demonstrated that graphite is active for direct ammonia oxidation without concomitant chlorine formation if the anode potential is between 1.1 and 1.6 V vs. SHE (standard hydrogen electrode). A comparison of potentiostatic bulk electrolysis experiments in synthetic stored urine with and without chloride confirmed that ammonia was removed exclusively by continuous direct oxidation. Direct oxidation required high pH values (pH > 9) because free ammonia was the actual reactant. In real stored urine (pH = 9.0), an ammonia removal rate of 2.9 ± 0.3 gN·m(-2)·d(-1) was achieved and the specific energy demand was 42 Wh·gN(-1) at an anode potential of 1.31 V vs. SHE. The measurements of chlorate and perchlorate as well as selected chlorinated organic by-products confirmed that no chlorinated by-products were formed in real urine. Electrode corrosion through graphite exfoliation was prevented and the surface was not poisoned by intermediate oxidation products. We conclude that direct ammonia oxidation on graphite electrodes is a treatment option for source-separated urine with three major advantages: The formation of chlorinated by-products is prevented, less energy is consumed than in indirect ammonia oxidation and

  9. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions

    PubMed Central

    Reighard, Katelyn P.

    2015-01-01

    Chitosan oligosaccharides were modified with N-diazeniumdiolates to yield biocompatible nitric oxide (NO) donor scaffolds. The minimum bactericidal concentrations and MICs of the NO donors against Pseudomonas aeruginosa were compared under aerobic and anaerobic conditions. Differential antibacterial activities were primarily the result of NO scavenging by oxygen under aerobic environments and not changes in bacterial physiology. Bacterial killing was also tested against nonmucoid and mucoid biofilms and compared to that of tobramycin. Smaller NO payloads were required to eradicate P. aeruginosa biofilms under anaerobic versus aerobic conditions. Under oxygen-free environments, the NO treatment was 10-fold more effective at killing biofilms than tobramycin. These results demonstrate the potential utility of NO-releasing chitosan oligosaccharides under both aerobic and anaerobic environments. PMID:26239983

  10. Responses of ammonia-oxidizing archaeal and betaproteobacterial populations to wastewater salinity in a full-scale municipal wastewater treatment plant.

    PubMed

    Wu, Yi-Ju; Whang, Liang-Ming; Fukushima, Toshikazu; Chang, Shao-Hsiung

    2013-04-01

    The diversity and abundance of ammonia-oxidizing Betaproteobacteria and archaea were investigated in a full-scale municipal wastewater treatment plant where the wastewater conductivity level varied considerably (due to seawater salinity intrusion) during this study between 2004 and 2007. Based on the quantitative polymerase chain reaction of ammonia monooxygenase subunit A (amoA) genes, an increase in the ammonia oxidizing bacteria amoA gene copies occurred with a decrease in the wastewater salinity level. A corresponding decrease in the average ammonia-oxidizing archaea to bacteria ratio, from 1.22 (2004 and 2005), 0.17 (2006), and then to 0.07 (2007), was observed. Phylogenetic analyses on amoA gene sequences indicated that Nitrosomonas marina-like ammonia oxidizing bacteria and Thaumarcheota Ⅰ.1a (marina group) ammonia-oxidizing archaea were dominant when the wastewater salinity level fluctuated at high values with an average of 4.83 practical salinity unit (psu), while Nitrosomonas urea-like ammonia oxidizing bacteria and Thaumarcheota Ⅰ.1b (soil group) ammonia-oxidizing archaea became dominant when the wastewater salinity decreased to a more stable lower level with an average of 1.93 psu. Based on the amoA gene-based terminal restriction fragment length polymorphism analyses, results from this study demonstrated that the observed shift in ammonia oxidizing bacteria and archaea populations is likely caused by a change of the wastewater salinity level.

  11. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  12. Approach to construct polysubstituted 1,2-dihydronaphtho[2,1-b]furans and their aerobic oxidative aromatization.

    PubMed

    Huo, Congde; Xu, Xiaolan; An, Jinzhu; Jia, Xiaodong; Wang, Xicun; Wang, Cheng

    2012-09-21

    Triarylaminium salt was disclosed as an efficient initiator for the novel Friedel-Crafts alkylation/annulation cascade reaction between chalcone epoxides and 2-naphthols to construct polysubstituted 1,2-dihydronaphtho[2,1-b]furans. The DDQ/NaNO(2)/O(2) catalytic system was first applied to the aerobic oxidative aromatization of heterocycles, and a simple and efficient one-pot tandem FC alkylation/annulation/aerobic oxidative aromatization procedure was also developed for the synthesis of complex naphtho[2,1-b]furans.

  13. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate.

    PubMed

    Wang, Xiao-Jun; Song, Yang; Mai, Jun-Sheng

    2008-12-30

    The present study is to investigate the treatment of a surfactant wastewater containing abundant sulfate by Fenton oxidation and aerobic biological processes. The operating conditions have been optimized. Working at an initial pH value of 8, a Fe2+ dosage of 600mgL(-1) and a H2O2 dosage of 120mgL(-1), the chemical oxidation demand (COD) and linear alkylbenzene sulfonate (LAS) were decreased from 1500 and 490mgL(-1) to 230 and 23mgL(-1) after 40min of Fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton reagent was very effective at enhancing the biodegradability of this kind of wastewater. The wastewater was further treated by a bio-chemical treatment process based on an immobilized biomass reactor with a hydraulic detention time (HRT) of 20h after Fenton oxidation pretreatment under the optimal operating conditions. It was found that the COD and LAS of the final effluent were less than 100 and 5mgL(-1), corresponding to a removal efficiencies of over 94% and 99%, respectively.

  14. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.

    PubMed

    Kalanetra, Karen M; Bano, Nasreen; Hollibaugh, James T

    2009-09-01

    We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0-45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45-105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105-3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans.

  15. Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters

    PubMed Central

    Sauder, Laura A.; Engel, Katja; Stearns, Jennifer C.; Masella, Andre P.; Pawliszyn, Richard; Neufeld, Josh D.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology. PMID:21858055

  16. pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.

    PubMed

    Stempfhuber, Barbara; Engel, Marion; Fischer, Doreen; Neskovic-Prit, Ganna; Wubet, Tesfaye; Schöning, Ingo; Gubry-Rangin, Cécile; Kublik, Susanne; Schloter-Hai, Brigitte; Rattei, Thomas; Welzl, Gerhard; Nicol, Graeme W; Schrumpf, Marion; Buscot, Francois; Prosser, James I; Schloter, Michael

    2015-05-01

    In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH.

  17. Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils ▿ †

    PubMed Central

    Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.

    2011-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches. PMID:21571885

  18. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Saiful Alam, M.; Ren, G.; Lu, L.; Zheng, Y.; Peng, X.; Jia, Z.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  19. Nitrosomonas stercoris sp. nov., a Chemoautotrophic Ammonia-Oxidizing Bacterium Tolerant of High Ammonium Isolated from Composted Cattle Manure

    PubMed Central

    Nakagawa, Tatsunori; Takahashi, Reiji

    2015-01-01

    Among ammonia-oxidizing bacteria, Nitrosomonas eutropha-like microbes are distributed in strongly eutrophic environments such as wastewater treatment plants and animal manure. In the present study, we isolated an ammonia-oxidizing bacterium tolerant of high ammonium levels, designated strain KYUHI-ST, from composted cattle manure. Unlike the other known Nitrosomonas species, this isolate grew at 1,000 mM ammonium. Phylogenetic analyses based on 16S rRNA and amoA genes indicated that the isolate belonged to the genus Nitrosomonas and formed a unique cluster with the uncultured ammonia oxidizers found in wastewater systems and animal manure composts, suggesting that these ammonia oxidizers contributed to removing higher concentrations of ammonia in strongly eutrophic environments. Based on the physiological and phylogenetic data presented here, we propose and call for the validation of the provisional taxonomic assignment Nitrosomonas stercoris, with strain KYUHI-S as the type strain (type strain KYUHI-ST = NBRC 110753T = ATCC BAA-2718T). PMID:26156554

  20. A potentiometric flow biosensor based on ammonia-oxidizing bacteria for the detection of toxicity in water.

    PubMed

    Zhang, Qianyu; Ding, Jiawang; Kou, Lijuan; Qin, Wei

    2013-05-24

    A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation-allylthiourea and thioacetamide-have been tested. The IC50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 μM and 0.46 μM for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water.

  1. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles.

    PubMed

    Karlsson, Hua Lu

    2004-12-01

    In this paper, three unregulated components, ammonia, nitrous oxide and hydrogen cyanide, emitted from five passenger vehicles are investigated. With focus upon emission factors from existing production technology, vehicles produced between 1989 and 1998 with considerable mileage (7000 to 280,000) are chosen. Among the five vehicles, four were sold in the European market, whereas one was sold in the US market. The vehicles are tested on a chassis dynamometer. An EU2000 Driving Cycle (NEDC) and a US Urban Driving Cycle (UDC) of the Federal Test Procedure 75 (FTP-75) are used in the study. The regulated emissions are measured using a Horiba Mexa series. Unregulated emissions, ammonia (NH(3)), nitrous oxide (N(2)O) and hydrogen cyanide (HCN) are analysed by mass spectrometer, gas chromatography and CNT-NA, TIM315-74W method, respectively. Both the unregulated emissions and the regulated emissions show driving cycle dependency; and they are also improved with newer vehicle and emission control technology. However, a gasoline direct injection vehicle (relatively new technology in this study) has rather high regulated emissions, whereas the NH(3), N(2)O and HCN emissions are low.

  2. Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem

    PubMed Central

    Hu, Ziye; Meng, Han; Shi, Jin-Huan; Bu, Nai-Shun; Fang, Chang-Ming; Quan, Zhe-Xue

    2014-01-01

    Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA) are much higher than that of ammonia oxidizing bacteria (AOB). The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition. PMID:25101072

  3. Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe.

    PubMed

    Zhang, Cuijing; Shen, Jupei; Sun, Yifei; Wang, Juntao; Zhang, Limei; Yang, Zhongling; Han, Hongyan; Wan, Shiqiang; He, Jizheng

    2017-03-15

    Global climate change could have profound effects on belowground microbial communities and subsequently affect soil biogeochemical processes. The interactive effects of multiple co-occurring climate change factors on microbially-mediated processes are not well understood. A four-factorial field experiment with elevated CO2, watering, nitrogen (N) addition and night warming was conducted in a temperate steppe of northern China. Real-time polymerase chain reaction and terminal-restriction fragment length polymorphism, combined with clone library techniques were applied to examine the effects of those climate change factors on N-related microbial abundance and community composition. Only the abundance of ammonia-oxidizing bacteria significantly increased by nitrogen addition and decreased by watering. The interactions of watering × warming on the bacterial amoA community and warming × nitrogen addition on the nosZ community were found. Redundancy analysis indicated that the ammonia-oxidizing archaeal community was affected by total N and total carbon, while the community of bacterial amoA and nosZ were significantly affected by soil pH. According to a structural equation modeling analysis, climate change influenced net primary production indirectly by altering microbial abundance and activities. These results indicated that microbial responses to the combination of chronic global change tend to be smaller than expected from single-factor global change manipulations.

  4. [Effects of continuous cropping of vegetables on ammonia oxidizers community structure].

    PubMed

    Meng, De-Long; Yang, Yang; Wu, Yan-Zheng; Wu, Min-Na; Qin, Hong-Ling; Zhu, Yi-Jun; Wei, Wen-Xue

    2012-04-01

    Investigations were conducted on the effects of intensive application of chemical fertilizers in crop production on soil nitrifier communities and the relationship between nitrifier communities and soil nitrification ability. Two series of vegetable soils were selected from Huangxing, Changsha, reflecting continuous vegetable cropping with about 20 years and new vegetable field with only about 2 years vegetable growing history. In each series five independent topsoils (0-20 cm) were sampled and each soil was a mixture of 10 cores randomly taken in the same field. Terminal restriction fragment length polymorphism (T-RFLP) and quantity PCR (Q-PCR) were used to determine the composition and abundance of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities. Results indicated that long-term and continuous vegetable cropping obviously changed the compositions of both AOB and AOA amoA gene, soil pH and Olsen-P content were the dominant factors affecting the composition of AOB amoA. In the vegetable soils, although the copy number of AOA amoA gene was about 5 times higher than AOB amoA gene, no significant correlation was detected between AOA amoA gene abundance and soil nitrification rate. It was not sure whether long-term and continuous vegetable cropping could shift the abundance of AOB and AOA, but it resulted in the enrichment of some dominant AOB species and increase of soil nitrification potential (PNF).

  5. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes.

    PubMed

    Wang, Yanyan; Zhang, Liling; Hu, Nantao; Wang, Ying; Zhang, Yafei; Zhou, Zhihua; Liu, Yanhua; Shen, Su; Peng, Changsi

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields.

  6. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes

    PubMed Central

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701

  7. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, p<0.001). Bulk DNA was extracted from a tea orchard soil (pH 4.8; PNR, 0.078 μg NO2--Ng-1 h-1) and subjected to PCR-aided clone library analyses targeting archaeal and bacterial amoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  8. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yanyan; Zhang, Liling; Hu, Nantao; Wang, Ying; Zhang, Yafei; Zhou, Zhihua; Liu, Yanhua; Shen, Su; Peng, Changsi

    2014-05-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields.

  9. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters.

    PubMed

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-08-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity--ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts--varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification.

  10. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited

  11. Effects of allylthiourea, salinity, and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms.

    PubMed

    Wang, Yong-Feng; Gu, Ji-Dong

    2014-04-01

    Anaerobic ammonium-oxidizing (anammox) bacteria, aerobic ammonia-oxidizing archaea (AOA) and bacteria (AOB) are three groups of ammonia/ammonium-oxidizing prokaryotes (AOPs) involved in the biochemical nitrogen cycling. In this study, the effects of allylthiourea (ATU), pH, and salinity on these three groups from mangrove sediment were investigated through microcosm incubation in laboratory. ATU treatments (50, 100, and 500 mg L(-1)) obviously affected the community structure of anammox bacteria and AOB, but only slightly for AOA. ATU began to inhibit anammox bacteria growth slightly from day 10, but had an obvious inhibition on AOA growth from the starting of the study. At 100 mg L(-1) of ATU or higher, AOB growth was inhibited, but only lasted for 5 days. The pH treatments showed that acidic condition (pH 5) had a slight effect on the community structure of anammox bacteria and AOA, but an obvious effect on AOB. Acidic condition promoted the growth of all groups of AOPs in different extent, but alkaline condition (pH 9) had a weak effect on AOB community structure and a strong effect on both anammox bacteria and AOA. Alkaline condition obviously inhibited anammox bacteria growth, slightly promoted AOA, and slightly promoted AOB in the first 20 days, but inhibited afterward. Salinity treatment showed that higher salinity (20 and 40 ‰) resulted in higher anammox bacteria diversity, and both AOA and AOB might have species specificity to salinity. High salinity promoted the growth of both anammox bacteria and AOB, inhibited AOA between 5 and 10 days, but promoted afterward. The results help to understand the role of these microbial groups in biogeochemical nitrogen cycling and their responses to the changing environments.

  12. Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil

    PubMed Central

    Stempfhuber, Barbara; Richter-Heitmann, Tim; Regan, Kathleen M.; Kölbl, Angelika; Wüst, Pia K.; Marhan, Sven; Sikorski, Johannes; Overmann, Jörg; Friedrich, Michael W.; Kandeler, Ellen; Schloter, Michael

    2016-01-01

    Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m2. Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onward, indicating its important role in nitrite oxidation. PMID:26834718

  13. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    PubMed Central

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified. PMID:22319402

  14. Effects of calcination temperature and acid-base properties on mixed potential ammonia sensors modified by metal oxides.

    PubMed

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO(3), Bi(2)O(3) and V(2)O(5), while the use of WO(3,) Nb(2)O(5) and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO(3) > Bi(2)O(3) > V(2)O(5), which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  15. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    PubMed

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation.

  16. Oxidative stress and inflammation response following aerobic exercise: role of ethnicity.

    PubMed

    McKenzie, M J; Goldfarb, A; Garten, R S; Vervaecke, L

    2014-09-01

    African-Americans are at a significantly greater risk for developing several diseases and conditions. These conditions often have underlying oxidative stress mechanisms. Therefore the purpose of this investigation was to ascertain the post-exercise oxidative response to a single bout of aerobic exercise in African-American and Caucasian college-age females. A total of 10 African-American and 10 Caucasian females completed the study. Each subject had her VO2 max measured while exercising on a treadmill. A week later, each subject returned to the laboratory and performed a 30-min run at 70% of her VO2max. Blood samples were taken immediately prior to and following exercise for analysis. Lipid hydroperoxides, protein carbonyls, malondialdehyde, xanthine oxidase, glutathione in the reduced (GSH) and oxidized (GSSG) forms, TNFα and interleukin 6 were measured from blood taken before and after exercise. Significance was set at p≤0.05 a priori. Xanthine oxidase was the only measure that did not significantly increase following exercise. All other markers showed a significant elevation in response to the exercise bout with no difference between groups except that the Caucasian group had significantly higher malondialdehyde post-exercise compared to the African-American group. This cohort of college-age African-American and Caucasian females showed little difference in their response to a single 30-min run at 70% of their max in the markers of oxidative stress within the blood.

  17. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation

    PubMed Central

    Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony

    2016-01-01

    How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size. DOI: http://dx.doi.org/10.7554/eLife.13374.001 PMID:27282387

  18. Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic soil

    PubMed Central

    Huang, Tao; Gao, Bing; Hu, Xiao-Kang; Lu, Xing; Well, Reinhard; Christie, Peter; Bakken, Lars R.; Ju, Xiao-Tang

    2014-01-01

    We combine field observations, microcosm, stoichiometry, and molecular and stable isotope techniques to quantify N2O generation processes in an intensively managed low carbon calcareous fluvo-aquic soil. All the evidence points to ammonia oxidation and linked nitrifier denitrification (ND) being the major processes generating N2O. When NH4+-based fertilizers are applied the soil will produce high N2O peaks which are inhibited almost completely by adding nitrification inhibitors. During ammonia oxidation with high NH4+ concentrations (>80 mg N kg−1) the soil matrix will actively consume oxygen and accumulate high concentrations of NO2−, leading to suboxic conditions inducing ND. Calculated N2O isotopomer data show that nitrification and ND accounted for 35–53% and 44–58% of total N2O emissions, respectively. We propose that slowing down nitrification and avoiding high ammonium concentrations in the soil matrix are important measures to reduce N2O emissions per unit of NH4+-based N input from this type of intensively managed soil globally. PMID:24492201

  19. Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic ocean in summer and winter.

    PubMed

    Christman, Glenn D; Cottrell, Matthew T; Popp, Brian N; Gier, Elizabeth; Kirchman, David L

    2011-03-01

    Ammonia oxidation, the first step in nitrification, is performed by certain Beta- and Gammaproteobacteria and Crenarchaea to generate metabolic energy. Ammonia monooxygenase (amoA) genes from both Bacteria and Crenarchaea have been found in a variety of marine ecosystems, but the relative importance of Bacteria versus Crenarchaea in ammonia oxidation is unresolved, and seasonal comparisons are rare. In this study, we compared the abundance of betaproteobacterial and crenarchaeal amoA genes in the coastal Arctic Ocean during summer and winter over 2 years. Summer and winter betaproteobacterial amoA clone libraries were significantly different, although the gene sequences were similar to those found in temperate and polar environments. Betaproteobacterial and crenarchaeal amoA genes were 30- to 115-fold more abundant during the winter than during the summer in both years of the study. Archaeal amoA genes were more abundant than betaproteobacterial amoA genes in the first year, but betaproteobacterial amoA was more abundant than archaeal amoA the following year. The ratio of archaeal amoA gene copies to marine group I crenarchaeal 16S rRNA genes averaged 2.9 over both seasons and years, suggesting that ammonia oxidation was common in Crenarchaea at this location. Potential nitrification rates, as well as the total amoA gene abundance, were highest in the winter when competition with phytoplankton was minimal and ammonium concentrations were the highest. These results suggest that ammonium concentrations were important in determining the rates of ammonia oxidation and the abundance of ammonia-oxidizing Betaproteobacteria and Crenarchaea.

  20. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia.

    PubMed

    Meng, Bo; Zhao, Zongbin; Chen, Yongsheng; Wang, Xuzhen; Li, Yong; Qiu, Jieshan

    2014-10-21

    A series of Mn-based mixed metal oxide catalysts (Co-Mn-O, Fe-Mn-O, Ni-Mn-O) with high surface areas were prepared via low temperature crystal splitting and exhibited extremely high catalytic activity for the low-temperature selective catalytic reduction of nitrogen oxides with ammonia.

  1. The effect of human settlement on the abundance and community structure of ammonia oxidizers in tropical stream sediments

    PubMed Central

    Reis, Mariana P.; Ávila, Marcelo P.; Keijzer, Rosalinde M.; Barbosa, Francisco A. R.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.; Laanbroek, Hendrikus J.

    2015-01-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms. PMID:26379659

  2. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph

    PubMed Central

    Harrold, Zoë R.; Skidmore, Mark L.; Hamilton, Trinity L.; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E.

    2015-01-01

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O32−), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O32− that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO42−) several orders of magnitude higher than those of S2O32−. Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O32−, CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O32− as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O32−-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O32− by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. PMID:26712544

  3. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph.

    PubMed

    Harrold, Zoë R; Skidmore, Mark L; Hamilton, Trinity L; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E; Boyd, Eric S

    2015-12-28

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O3 (2-)), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O3 (2-) that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO4 (2-)) several orders of magnitude higher than those of S2O3 (2-). Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O3 (2-), CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O3 (2-) as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O3 (2-)-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O3 (2-) by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment.

  4. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    PubMed

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  5. Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high-affinity methane oxidation potential.

    PubMed

    Dam, Bomba; Dam, Somasri; Kube, Michael; Reinhardt, Richard; Liesack, Werner

    2012-11-01

    Methylocystis sp. strain SC2 is an aerobic type II methanotroph isolated from a highly polluted aquifer in Germany. A specific trait of the SC2 strain is the expression of two isozymes of particulate methane monooxygenase with different methane oxidation kinetics. Here we report the complete genome sequence of this methanotroph that contains not only a circular chromosome but also two large plasmids.

  6. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake

    PubMed Central

    Auguet, Jean-Christophe; Triadó-Margarit, Xavier; Nomokonova, Natalya; Camarero, Lluís; Casamayor, Emilio O

    2012-01-01

    Freshwater habitats have been identified as one of the largest reservoirs of archaeal genetic diversity, with specific lineages of ammonia-oxidizing archaea (AOA) populations different from soils and seas. The ecology and biology of lacustrine AOA is, however, poorly known. In the present study, vertical changes in archaeal abundance by CARD-FISH, quantitative PCR (qPCR) analyses and identity by clone libraries were correlated with environmental parameters in the deep glacial high-altitude Lake Redon. The lake is located in the central Spanish Pyrenees where atmospheric depositions are the main source of reactive nitrogen. Strong correlations were found between abundance of thaumarchaeotal 16S rRNA gene, archaeal amoA gene and nitrite concentrations, indicating an ammonium oxidation potential by these microorganisms. The bacterial amoA gene was not detected. Three depths with potential ammonia-oxidation activity were unveiled along the vertical gradient, (i) on the top of the lake in winter–spring (that is, the 0 oC slush layers above the ice-covered sheet), (ii) at the thermocline and (iii) the bottom waters in summer—autumn. Overall, up to 90% of the 16S rRNA gene sequences matched Thaumarchaeota, mostly from both the Marine Group (MG) 1.1a (Nitrosoarchaeum-like) and the sister clade SAGMGC−1 (Nitrosotalea-like). Clone-libraries analysis showed the two clades changed their relative abundances with water depth being higher in surface and lower in depth for SAGMGC−1 than for MG 1.1a, reflecting a vertical phylogenetic segregation. Overall, the relative abundance and recurrent appearance of SAGMGC−1 suggests a significant environmental role of this clade in alpine lakes. These results expand the set of ecological and thermal conditions where Thaumarchaeota are distributed, unveiling vertical positioning in the water column as a key factor to understand the ecology of different thaumarchaeotal clades in lacustrine environments. PMID:22495069

  7. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake.

    PubMed

    Auguet, Jean-Christophe; Triadó-Margarit, Xavier; Nomokonova, Natalya; Camarero, Lluís; Casamayor, Emilio O

    2012-09-01

    Freshwater habitats have been identified as one of the largest reservoirs of archaeal genetic diversity, with specific lineages of ammonia-oxidizing archaea (AOA) populations different from soils and seas. The ecology and biology of lacustrine AOA is, however, poorly known. In the present study, vertical changes in archaeal abundance by CARD-FISH, quantitative PCR (qPCR) analyses and identity by clone libraries were correlated with environmental parameters in the deep glacial high-altitude Lake Redon. The lake is located in the central Spanish Pyrenees where atmospheric depositions are the main source of reactive nitrogen. Strong correlations were found between abundance of thaumarchaeotal 16S rRNA gene, archaeal amoA gene and nitrite concentrations, indicating an ammonium oxidation potential by these microorganisms. The bacterial amoA gene was not detected. Three depths with potential ammonia-oxidation activity were unveiled along the vertical gradient, (i) on the top of the lake in winter-spring (that is, the 0 (o)C slush layers above the ice-covered sheet), (ii) at the thermocline and (iii) the bottom waters in summer-autumn. Overall, up to 90% of the 16S rRNA gene sequences matched Thaumarchaeota, mostly from both the Marine Group (MG) 1.1a (Nitrosoarchaeum-like) and the sister clade SAGMGC-1 (Nitrosotalea-like). Clone-libraries analysis showed the two clades changed their relative abundances with water depth being higher in surface and lower in depth for SAGMGC-1 than for MG 1.1a, reflecting a vertical phylogenetic segregation. Overall, the relative abundance and recurrent appearance of SAGMGC-1 suggests a significant environmental role of this clade in alpine lakes. These results expand the set of ecological and thermal conditions where Thaumarchaeota are distributed, unveiling vertical positioning in the water column as a key factor to understand the ecology of different thaumarchaeotal clades in lacustrine environments.

  8. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-06-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These

  9. Formation of Graphene Oxide Nanocomposites from Carbon Dioxide Using Ammonia Borane.

    PubMed

    Zhang, Junshe; Zhao, Yu; Guan, Xudong; Stark, Ruth E; Akins, Daniel L; Lee, Jae W

    2012-01-17

    To efficiently recycle CO(2) to economically viable products such as liquid fuels and carbon nanomaterials, the reactivity of CO(2) is required to be fully understood. We have investigated the reaction of CO(2) with ammonia borane (AB), both molecules being able to function as either an acid or a base, to obtain more insights into the amphoteric activity of CO(2). In the present work, we demonstrate that CO(2) can be converted to graphene oxide (GO) using AB at moderate conditions. The conversion consists of two consecutive steps: CO(2) fixation (CO(2) pressure < 3 MPa and temperature < 100 °C) and graphenization (600-750 °C under 0.1 MPa of N(2)). The first step generates a solid compound that contains methoxy (OCH(3)), formate (HCOO) and aliphatic groups while the second graphenization is the pyrolysis of the solid compound to produce graphene oxide-boron oxide nanocomposites, which have been confirmed by micro-Raman spectroscopy, solid state (13)C and (11)B magic angle spinning-nuclear magnetic resonance (MAS-NMR), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Our observations also show that the mass of solid product in CO(2) fixation process and raw graphene oxide nanocomposites is twice and 1.2 times that of AB initially charged, respectively. The formation of aliphatic groups without using metal-containing compounds at mild conditions is of great interest to the synthesis of various organic products starting from CO(2.).

  10. Oxidative stability of pork emulsion containing tomato products and pink guava pulp during refrigerated aerobic storage.

    PubMed

    Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari

    2014-11-01

    Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. Antioxidant potential of tomato puree (10 %; T-1), tomato pulp (12.5 %; T-2), lyophilized tomato peel (6 %; T-3), and pink guava pulp (10 %; T-4) was evaluated in raw pork emulsion during refrigerated storage for 9 days under aerobic packaging. The lycopene and β-carotene content varied in pork emulsion as T-3 > T-1 > T-2 > T-4 and decreased (P < 0.05) during storage. The surface redness (a* value) increased (P < 0.05) with the incorporation of tomato products and pink guava pulp. Furthermore, metmyoglobin formation and lipid oxidation were lower (P < 0.05) in tomato- and guava-treated emulsions than in control. Overall, incorporation of tomato products and pink guava pulp improved the visual colour and odour scores of raw pork emulsion. These results indicated that tomato products and guava pulp can be utilized as sources of natural antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.

  11. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms

    PubMed Central

    Kühl, Michael; Jørgensen, Bo Barker

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively. PMID:16348687

  12. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics

    NASA Astrophysics Data System (ADS)

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-03-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1.

  13. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics

    PubMed Central

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-01-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1. PMID:27030530

  14. Global Biodiversity of Aquatic Ammonia-Oxidizing Archaea is Partitioned by Habitat.

    PubMed

    Biller, Steven J; Mosier, Annika C; Wells, George F; Francis, Christopher A

    2012-01-01

    Archaea play an important role in nitrification and are, thus, inextricably linked to the global carbon and nitrogen cycles. Since the initial discovery of an ammonia monooxygenase α-subunit (amoA) gene associated with an archaeal metagenomic fragment, archaeal amoA sequences have been detected in a wide variety of nitrifying environments. Recent sequencing efforts have revealed extensive diversity of archaeal amoA sequences within different habitats. In this study, we have examined over 8000 amoA sequences from the literature and public databases in an effort to understand the ecological factors influencing the distribution and diversity of ammonia-oxidizing archaea (AOA), with a particular focus on sequences from aquatic habitats. This broad survey provides strong statistical support for the hypothesis that different environments contain distinct clusters of AOA amoA sequences, as surprisingly few sequences are found in more than one habitat type. Within aquatic environments, salinity, depth in the water column, and temperature were significantly correlated with the distribution of sequence types. These findings support the existence of multiple distinct aquatic AOA populations in the environment and suggest some possible selective pressures driving the partitioning of AOA amoA diversity.

  15. Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States.

    PubMed

    Yang, Yuyin; Zhang, Jingxu; Zhao, Qun; Zhou, Qiheng; Li, Ningning; Wang, Yilin; Xie, Shuguang; Liu, Yong

    2016-02-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can contribute to ammonia biotransformation in freshwater lake ecosystems. However, the factors shaping the distribution of sediment AOA and AOB in plateau freshwater lake remains unclear. The present study investigated sediment AOA and AOB communities in two freshwater lakes (hypertrophic Dianchi Lake and mesotrophic Erhai Lake) on the Yunnan Plateau (China). A remarkable difference in the abundance, diversity, and composition of sediment AOA and AOB communities was observed between Dianchi Lake and Erhai Lake. AOB usually outnumbered AOA in Dianchi Lake, but AOA showed the dominance in Erhai Lake. Organic matter (OM), total nitrogen (TN), and total phosphorus (TP) might be the key determinants of AOB abundance, while AOA abundance was likely influenced by the ration of OM to TN (C/N). AOA or AOB community structure was found to be relatively similar in the same lake. TN and TP might play important roles in shaping sediment AOA and AOB compositions in Dianchi Lake and Erhai Lake. Moreover, Nitrososphaera-like AOA were detected in Dianchi Lake. Nitrosospira- and Nitrosomonas-like AOB were dominant in Dianchi Lake and Erhai Lake, respectively. Sediment AOA and AOB communities in Dianchi Lake and Erhai Lake were generally regulated by trophic state.

  16. Atmospheric cycles of nitrogen oxides and ammonia. [source strengths and destruction rates

    NASA Technical Reports Server (NTRS)

    Bottger, A.; Ehhalt, D. H.; Gravenhorst, G.

    1981-01-01

    The atmospheric cycles of nitrogenous trace compounds for the Northern and Southern Hemispheres are discussed. Source strengths and destruction rates for the nitrogen oxides: NO, NO2 and HNO3 -(NOX) and ammonia (NH3) are given as a function of latitude over continents and oceans. The global amounts of NOX-N and NH3-N produced annually in the period 1950 to 1975 (34 + 5 x one trillion g NOx-N/yr and 29 + or - 6 x one trillion g NH3-N/yr) are much less than previously assumed. Globally, natural and anthropogenic emissions are of similar magnitude. The NOx emission from anthropogenic sources is 1.5 times that from natural processes in the Northern Hemisphere, whereas in the Southern Hemisphere, it is a factor of 3 or 4 less. More than 80% of atmospheric ammonia seems to be derived from excrements of domestic animals, mostly by bulk deposition: 24 + or - 9 x one trillion g NO3 -N/yr and 21 + or - 9 x one trillion g NH4+-N/yr. Another fraction may be removed by absorption on vegetation and soils.

  17. Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.

    PubMed

    Sher, Yonatan; Ronen, Zeev; Nejidat, Ali

    2016-08-01

    Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were < 1 independent of niche or water content. In contrast, the bacterial amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions.

  18. Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China

    PubMed Central

    Huang, Liuqin; Deng, Ye; Wang, Shang; Zhou, Yu; Liu, Li

    2014-01-01

    The response of soil ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities to individual environmental variables (e.g., pH, temperature, and carbon- and nitrogen-related soil nutrients) has been extensively studied, but how these environmental conditions collectively shape AOB and AOA distributions in unmanaged agricultural soils across a large latitudinal gradient remains poorly known. In this study, the AOB and AOA community structure and diversity in 26 agricultural soils collected from eastern China were investigated by using quantitative PCR and bar-coded 454 pyrosequencing of the amoA gene that encodes the alpha subunit of ammonia monooxygenase. The sampling locations span over a 17° latitude gradient and cover a range of climatic conditions. The Nitrosospira and Nitrososphaera were the dominant clusters of AOB and AOA, respectively; but the subcluster-level composition of Nitrosospira-related AOB and Nitrososphaera-related AOA varied across the latitudinal gradient. Variance partitioning analysis showed that geography and climatic conditions (e.g., mean annual temperature and precipitation), as well as carbon-/nitrogen-related soil nutrients, contributed more to the AOB and AOA community variations (∼50% in total) than soil pH (∼10% in total). These results are important in furthering our understanding of environmental conditions influencing AOB and AOA community structure across a range of environmental gradients. PMID:25002421

  19. Cu-catalyzed aerobic oxidative three-component coupling route to N-sulfonyl amidines via an ynamine intermediate.

    PubMed

    Kim, Jinho; Stahl, Shannon S

    2015-02-20

    Cu-catalyzed aerobic oxidative three-component coupling of a terminal alkyne, secondary amine, and sulfonamide enables efficient synthesis of amidines. The use of Cu(OTf)2 (5 mol %) produces amidines selectively without Glaser-Hay alkyne homocoupling products. Preliminary studies suggest that the reaction pathway involves initial oxidative coupling of the terminal alkyne with the secondary amine, followed by hydroamidation of the ynamine intermediate with the sulfonamide.

  20. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-03-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity by 6-fold during a 19 day incubation period, while ammonia oxidation activity was significantly inhibited in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like type Ia MOB, and nitrifying communities appeared to be suppressed by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to equal increase in Methylosarcina and Methylobacter-related MOB, indicating the differential growth requirements of representatives of these genera. Strikingly, type Ib MOB did not respond to methane nor to urea. Increase in 13C-assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, in addition of nitrite-oxidizing

  1. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    PubMed Central

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  2. Application of molecular biological techniques to a seasonal study of ammonia oxidation in a eutrophic freshwater lake

    SciTech Connect

    Hastings, R.C.; Saunders, J.R.; McCarthy, A.J.; Hall, G.H.; Pickup, R.W.

    1998-10-01

    The autotrophic ammonia-oxidizing bacteria in a eutrophic freshwater lake were studied over a 12-month period. Numbers of ammonia oxidizers in the lakewater were small throughout the year, and tangential-flow concentration was required to obtain meaningful estimates of most probable numbers. Sediments from littoral and profundal sites supported comparatively large populations of these bacteria, and the nitrification potential was high, particularly in summer samples from the littoral sediment surface. In enrichment cultures, lakewater samples nitrified at low ammonium concentrations only whereas sediment samples exhibited nitrification at high ammonium concentrations also. Enrichments at low ammonium concentration did not nitrify when inoculated into high-ammonium medium, but the converse was not true. This suggests that the water column contains a population of ammonia oxidizers that is sensitive to high ammonium concentrations. The observation of nitrification at high ammonium concentration by isolates from some winter lakewater samples, identified as nitrosospiras by 16S rRNA probing, is consistent with the hypothesis that sediment ammonia oxidizers enter the water column at overturn. With only one exception, nested PCR amplification enabled the detection of Nitrosospira 16S rDNA in all samples, but Nitrosomonas (N. europaea-eutropha lineage) 16S rDNA was never obtained.

  3. Process-based modeling of ammonia and nitrous oxide emissions from open lot beef and dairy facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air emissions, such as ammonia (NH3) and nitrous oxide (N2O), vary considerably among beef and dairy open lot operations as influenced by the climate and manure pack conditions. Because of the challenges with direct measurement, process-based modeling is a recommended approach for estimating air emi...

  4. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil.

    PubMed

    Rice, Marlen C; Norton, Jeanette M; Valois, Frederica; Bollmann, Annette; Bottomley, Peter J; Klotz, Martin G; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Sayavedra-Soto, Luis; Woyke, Tanja; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Kyrpides, Nikos; Varghese, Neha; Mikhailova, Natalia; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris

    2016-01-01

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments.

  5. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar.

    PubMed

    Wang, Zhenyu; Zong, Haiying; Zheng, Hao; Liu, Guocheng; Chen, Lei; Xing, Baoshan

    2015-11-01

    Adding biochar into soils has potential to manipulate soil nitrification process due to its impacts on nitrogen (N) cycling, however, the exact mechanisms underlying the alteration of nitrification process in soils are still not clear. Nitrification in an acidic orchard soil amended with peanut shell biochar (PBC) produced at 400 °C was investigated. Nitrification was weakened by PBC addition due to the decreased NH4(+)-N content and reduced ammonia-oxidizing bacteria (AOB) abundance in PBC-amended soils. Adding phenolic compounds (PHCs) free biochar (PBC-P) increased the AOB abundance and the DGGE band number, indicating that PHCs remaining in the PBC likely reduced AOB abundance and diversity. However, PBC addition stimulated rape growth and increased N bioavailability. Overall, adding PBC could suppress the nitrification process and improve N bioavailability in the agricultural soils, and thus possibly mitigate the environmental negative impacts and improving N use efficiency in the acidic soils added with N fertilizer.

  6. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy.

    PubMed

    Görg, Boris; Schliess, Freimut; Häussinger, Dieter

    2013-08-15

    Hepatic encephalopathy (HE) is a neuropsychiatric complication of acute or chronic liver failure. Currently, HE in cirrhotic patients is seen as a clinical manifestation of a low grade cerebral edema which exacerbates in response to a variety of precipitating factors after an ammonia-induced exhaustion of the volume-regulatory capacity of the astrocyte. Astrocyte swelling triggers a complex signaling cascade which relies on NMDA receptor activation, elevation of intracellular Ca(2+) concentration and prostanoid-driven glutamate exocytosis, which result in increased formation of reactive nitrogen and oxygen species (RNOS) through activation of NADPH oxidase and nitric oxide synthase. Since RNOS in turn promote astrocyte swelling, a self-amplifying signaling loop between osmotic- and oxidative stress ensues, which triggers a variety of downstream consequences. These include protein tyrosine nitration (PTN), oxidation of RNA, mobilization of zinc, alterations in intra- and intercellular signaling and multiple effects on gene transcription. Whereas PTN can affect the function of a variety of proteins, such as glutamine synthetase, oxidized RNA may affect local protein synthesis at synapses, thereby potentially interfering with protein synthesis-dependent memory formation. PTN and RNA oxidation are also found in post mortem human cerebral cortex of cirrhotic patients with HE but not in those without HE, thereby confirming a role for oxidative stress in the pathophysiology of HE. Evidence derived from animal experiments and human post mortem brain tissue also indicates an up-regulation of microglia activation markers in the absence of increased synthesis of pro-inflammatory cytokines. However, the role of activated microglia in the pathophysiology of HE needs to be worked out in more detail. Most recent observations made in whole genome micro-array analyses of post mortem human brain tissue point to a hitherto unrecognized activation of multiple anti

  7. Biological Oxidation of Ammonia and Arsenic in Pilot-scale Rapid Sand Filters

    EPA Science Inventory

    The removal of ammonia from source water entering a drinking water distribution system is desirable, as excess levels have been correlated with nitrification, chlorine demand, corrosion, and biological re-growth. Several technologies exist to remove ammonia with recent interest...

  8. Complete Genome Sequence of Nitrosospira multiformis, an Ammonia-Oxidizing Bacterium from the Soil Environment▿ †

    PubMed Central

    Norton, Jeanette M.; Klotz, Martin G.; Stein, Lisa Y.; Arp, Daniel J.; Bottomley, Peter J.; Chain, Patrick S. G.; Hauser, Loren J.; Land, Miriam L.; Larimer, Frank W.; Shin, Maria W.; Starkenburg, Shawn R.

    2008-01-01

    The complete genome of the ammonia-oxidizing bacterium Nitrosospira multiformis (ATCC 25196T) consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2,827 putative proteins. Of the 2,827 putative proteins, 2,026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and Nitrosomonas eutropha were the best match for 42% of the predicted genes in N. multiformis. The N. multiformis genome contains three nearly identical copies of amo and hao gene clusters as large repeats. The features of N. multiformis that distinguish it from N. europaea include the presence of gene clusters encoding urease and hydrogenase, a ribulose-bisphosphate carboxylase/oxygenase-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced genomes of ammonia-oxidizing bacteria. Gene clusters encoding proteins associated with outer membrane and cell envelope functions, including transporters, porins, exopolysaccharide synthesis, capsule formation, and protein sorting/export, were abundant. Numerous sensory transduction and response regulator gene systems directed toward sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate, and cyanophycin storage and utilization were identified, providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments. PMID:18390676

  9. Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria.

    PubMed Central

    Batchelor, S E; Cooper, M; Chhabra, S R; Glover, L A; Stewart, G S; Williams, P; Prosser, J I

    1997-01-01

    The speed of recovery of cell suspensions and biofilm populations of the ammonia oxidizer Nitrosomonas europaea, following starvation was determined. Stationary-phase cells, washed and resuspended in ammoniumfree inorganic medium, were starved for periods of up to 42 days, after which the medium was supplemented with ammonium and subsequent growth was monitored by measuring nitrite concentration changes. Cultures exhibited a lag phase prior to exponential nitrite production, which increased from 8.72 h (no starvation) to 153 h after starvation for 42 days. Biofilm populations of N. europaea colonizing sand or soil particles in continuous-flow, fixed column reactors were starved by continuous supply of ammonium-free medium. Following resupply of ammonium, starved biofilms exhibited no lag phase prior to nitrite production, even after starvation for 43.2 days, although there was evidence of cell loss during starvation. Biofilm formation will therefore provide a significant ecological advantage for ammonia oxidizers in natural environments in which the substrate supply is intermittent. Cell density-dependent phenomena in a number of gram-negative bacteria are mediated by N-acyl homoserine lactones (AHL), including N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). Addition of both ammonium and OHHL to cell suspensions starved for 28 days decreased the lag phase in a concentration-dependent manner from 53.4 h to a minimum of 10.8 h. AHL production by N. europaea was detected by using a luxR-luxAB AHL reporter system. The results suggest that rapid recovery of high-density biofilm populations may be due to production and accumulation of OHHL to levels not possible in relatively low-density cell suspensions. PMID:9172348

  10. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges.

    PubMed

    Radax, Regina; Hoffmann, Friederike; Rapp, Hans Tore; Leininger, Sven; Schleper, Christa

    2012-04-01

    The association of archaea with marine sponges was first described 15 years ago and their role in the nitrification process in Mediterranean and tropical sponges has been suggested. Here we explore the occurrence and abundance of potential ammonia-oxidizing archaea (AOA) in four morphologically different cold-water sponges (Phakellia ventilabrum, Geodia barretti, Antho dichotoma and Tentorium semisuberites) from the sublittoral and upper bathyal zone [Correction added on 30 December 2011, after first online publication on 19 December 2011: The term 'mesopelagic zone' has been replaced.] of the Norwegian coast, and relate them to nitrification rates determined in laboratory incubations. Net nitrification rates, calculated from the sum of nitrite and nitrate release during 24 h, were up to 1880 nmol N cm(-3) day(-1); i.e. comparable with those measured in Mediterranean sponges. Furthermore, a high abundance of archaeal cells was determined by fluorescence in situ hybridizations (CARD-FISH) and quantitative PCR, targeting archaeal amoA genes (encoding the alpha subunit of ammonia monooxygenase). AmoA genes as well as amoA transcripts were either exclusively detectable from archaea or were orders of magnitudes higher in abundance than their bacterial counterparts. Phylogenetic analyses of AOA and bacterial nitrite oxidizers (genus Nitrospira) confirmed the presence of specific populations of nitrifying microorganisms in the sponge mesohyl, which either were affiliated with groups detected earlier in marine sponges or were typical inhabitants of cold- and deep-water environments. Estimated cell-specific nitrification rates for P. ventilabrum were 0.6 to 6 fmol N archaeal cell(-1) day(-1), thus comparable with planktonic organisms. Our results identify AOA as the major drivers of nitrification in four cold-water sponges, and indicate that these archaea may be considered as a relevant factor in nitrogen cycling in ocean regions with high sponge biomass.

  11. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment.

    PubMed

    Urakawa, Hidetoshi; Garcia, Juan C; Nielsen, Jeppe L; Le, Vang Q; Kozlowski, Jessica A; Stein, Lisa Y; Lim, Chee Kent; Pommerening-Röser, Andreas; Martens-Habbena, Willm; Stahl, David A; Klotz, Martin G

    2015-01-01

    A Gram-negative, spiral-shaped, chemolithotrophic, ammonia-oxidizing bacterium, designated APG3(T), was isolated into pure culture from sandy lake sediment collected from Green Lake, Seattle, WA, USA. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain APG3(T) belongs to cluster 0 of the genus Nitrosospira, which is presently not represented by described species, with Nitrosospira multiformis (cluster 3) as the closest species with a validly published name (identity of 98.6 % to the type strain). Strain APG3(T) grew at 4 °C but could not grow at 35 °C, indicating that this bacterium is psychrotolerant. Remarkably, the strain was able to grow over a wide range of pH (pH 5-9), which was greater than the pH range of any studied ammonia-oxidizing bacteria in pure culture. The DNA G+C content of the APG3(T) genome is 53.5 %, which is similar to that of Nitrosospira multiformis ATCC 25196(T) (53.9 %) but higher than that of Nitrosomonas europaea ATCC 19718 (50.7 %) and Nitrosomonas eutropha C71 (48.5 %). The average nucleotide identity (ANI) calculated for the genomes of strain APG3(T) and Nitrosospira multiformis ATCC 25196(T) was 75.45 %, significantly lower than the value of 95 % ANI that corresponds to the 70 % species-level cut-off based on DNA-DNA hybridization. Overall polyphasic taxonomy study indicated that strain APG3(T) represents a novel species in the genus Nitrosospira, for which the name Nitrosospira lacus sp. nov. is proposed (type strain APG3(T) = NCIMB 14869(T) = LMG 27536(T) = ATCC BAA-2542(T)).

  12. Temperature and moisture effects on ammonia oxidizer communities in cryoturbated Arctic soils

    NASA Astrophysics Data System (ADS)

    Aiglsdorfer, Stefanie; Alves, Ricardo J. E.; Bárta, Jiří; Kohoutová, Iva; Bošková, Hana; Diáková, Katerina; Čapek, Petr; Schnecker, Jörg; Wild, Birgit; Mooshammer, Maria; Urich, Tim; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Mikutta, Robert; Lashchinskiy, Nikolay; Richter, Andreas; Šantrůčková, Hana; Shibistova, Olga; Schleper, Christa

    2014-05-01

    Arctic permafrost-affected soils contain large amounts of soil organic carbon (SOC) and are expected to experience drastic changes in environmental conditions, such as moisture and temperature, due to the high surface temperature increase predicted for these regions. Although the SOC decomposition processes driven by the microbiota are considered to be nitrogen (N) limited, little information about the microbial groups involved in N cycle is currently available, including their reactions to environmental changes. Here, we investigate the presence of ammonia oxidizing archaea (AOA) and bacteria (AOB) in distinct soil horizons from the Taymyr peninsula (Siberia, Russia), and investigate their activities under changing temperature and moisture regimes. These two groups of organisms perform the first step in nitrification, an important and rate limiting process in the global N cycle, which involves the oxidation of ammonia to nitrate via nitrite. The soil samples were separated into different horizons: organic topsoil (O) and subducted organic topsoil (Ajj). The samples were incubated for 18 weeks at 4, 12 and 20° C and 50, 80 and 100 % water holding capacity (WHC). AOA and AOB abundances were quantified by quantitative PCR targeting genes of the key metabolic enzyme, ammonia monooxygenase. AOA diversity was analyzed in-depth by high-throughput amplicon sequencing of the same gene. Additionally, gross and net nitrification and mineralization rates were determined in order to investigate potential relationships between AOA and AOB populations and these processes, in response to the incubation treatments. We found higher abundances of AOA than AOB in the organic topsoil, whereas AOB dominated in the subducted organic topsoil. Increased temperature resulted in higher numbers of both groups at low WHC %, with AOB showing a more pronounced response. However, these effects were not observed under anaerobic conditions (100 % WHC). Deep sequencing of AOA amoA genes revealed

  13. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  14. Ammonia-oxidizing archaea and bacteria in water columns and sediments of a highly eutrophic plateau freshwater lake.

    PubMed

    Yang, Yuyin; Li, Ningning; Zhao, Qun; Yang, Mengxi; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-08-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can play important roles in the microbial oxidation of ammonia nitrogen in freshwater lake, but information on spatiotemporal variation in water column and sediment community structure is still limited. Additionally, the drivers of the differences between sediment and water assemblages are still unclear. The present study investigated the variation of AOA and AOB communities in both water columns and sediments of eutrophic freshwater Dianchi Lake. The abundance, diversity, and structure of both planktonic and sediment ammonia-oxidizing microorganisms in Dianchi Lake showed the evident changes with sampling site and time. In both water columns and sediments, AOB amoA gene generally outnumbered AOA, and the AOB/AOA ratio was much higher in summer than in autumn. The total AOA amoA abundance was relatively great in autumn, while sediment AOB was relatively abundant in summer. Sediment AOA amoA abundance was likely correlated with ammonia nitrogen (rs = 0.963). The AOB/AOA ratio in lake sediment was positively correlated with total phosphorus (rs = 0.835), while pH, dissolved organic carbon, and ammonia nitrogen might be the key driving forces for the AOB/AOA ratio in lake water. Sediment AOA and AOB diversity was correlated with nitrate nitrogen (rs = -0.786) and total organic carbon (rs = 0.769), respectively, while planktonic AOB diversity was correlated with ammonia nitrogen (rs = 0.854). Surface water and sediment in the same location had a distinctively different microbial community structure. In addition, sediment AOB community structure was influenced by total phosphorus, while total phosphorus might be a key determinant of planktonic AOB community structure.

  15. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    NASA Astrophysics Data System (ADS)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  16. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes.

    PubMed

    Huang, Kui; Xia, Hui; Cui, Guangyu; Li, Fusheng

    2017-02-01

    Although it is known that earthworms enrich the nitrate content in their final products, the detailed mechanisms behind this are not well understood, and this is important for determining the agricultural value of vermicomposting. Hence, this study aimed to investigate the effects of earthworms on ammonia oxidization and to clarify the functions of ammonia-oxidizing bacteria and archaea (AOB and AOA) during vermicomposting of fruit and vegetable wastes (FVWs). For this, two dry systems using dry FVWs and a fresh system using fresh FVWs were adopted and compared during 60days of vermicomposting. Each system included two treatments, with earthworms and without earthworms. The results revealed that vermicomposting could facilitate the stabilization of FVWs, forming high value-added products. Based on the results of fluorescent excitation-emission matrix analysis, humification indices of the dry and fresh vermicomposts were 4.0 and 4.2, respectively. Moreover, compared to the minus net nitrification rates in groups without worm treatment, the net nitrification rates of 17.5mgN/kg/d and 9.3mgN/g/d, respectively, were found in dry and fresh vermicomposting systems, indicating that earthworms could significantly accelerate the nitrification process. Compost treated with earthworms exhibited elevated numbers of ammonia oxidizers (AOA and AOB) and greater community diversity in final products, compared to the counterparts without earthworms. Final vermicompost products were abundant in the AOB members of Nitrosomonas and Nitrosospira along with AOA groups including Crenarchaeota and Thaumarchaeota. By contrast, AOA were the dominate members completing ammonia oxidization during vermicomposting of dry and fresh FVWs. This study suggests that earthworms facilitate the ammonia oxidization process by promoting both numbers and diversity of AOA and AOB during vermicomposting of FVWs.

  17. Copper(I)/ABNO-catalyzed aerobic alcohol oxidation: alleviating steric and electronic constraints of Cu/TEMPO catalyst systems.

    PubMed

    Steves, Janelle E; Stahl, Shannon S

    2013-10-23

    Cu/TEMPO catalyst systems promote efficient aerobic oxidation of sterically unhindered primary alcohols and electronically activated substrates, but they show reduced reactivity with aliphatic and secondary alcohols. Here, we report a catalyst system, consisting of ((MeO)bpy)Cu(I)(OTf) and ABNO ((MeO)bpy = 4,4'-dimethoxy-2,2'-bipyridine; ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl), that mediates aerobic oxidation of all classes of alcohols, including primary and secondary allylic, benzylic, and aliphatic alcohols with nearly equal efficiency. The catalyst exhibits broad functional group compatibility, and most reactions are complete within 1 h at room temperature using ambient air as the source of oxidant.

  18. Release of ANP and fat oxidation in overweight persons during aerobic exercise in water.

    PubMed

    Fenzl, M; Schnizer, W; Aebli, N; Schlegel, C; Villiger, B; Disch, A; Gredig, J; Zaugg, T; Krebs, J

    2013-09-01

    Exercise in water compared to land-based exercise (LE) results in a higher release of natriuretic peptides, which are involved in the regulation of exercise-induced adipose tissue lipolysis. The present study was performed to compare the release of atrial natriuretic peptide (ANP) and free fatty acids (FFA) during prolonged aerobic water-based exercise (WE) with the release after an identical LE. 14 untrained overweight subjects performed 2 steady state workload tests on the same ergometer in water and on land. Before and after exercise, venous blood samples were collected for measuring ANP, FFA, epinephrine, norepinephrine, insulin and glucose. The respiratory exchange ratio (RER) was determined for fat oxidation.The exercises resulted in a significant increase in ANP in LE (61%) and in WE (177%), and FFA increased about 3-fold in LE and WE with no significant difference between the groups. Epinephrine increased, while insulin decreased similarly in both groups. The RER values decreased during the exercises, but there was no significant difference between LE and WE. In conclusion, the higher ANP concentrations in WE had no additional effect on lipid mobilization, FFA release and fat oxidation. Moderate-intensity exercises in water offer no benefit regarding adipose tissue lipolysis in comparison to LE.

  19. Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process.

    PubMed

    Mandal, Tamal; Dasgupta, Dalia; Mandal, Subhasis; Datta, Siddhartha

    2010-08-15

    Degradation of leather industry wastewater by sole aerobic treatment incorporating Thiobacillus ferrooxidans, Fenton's reagents, and combined treatment was investigated in this study. The sole treatment by Fenton's oxidation involving the introduction of 6g FeSO(4) and 266 g H(2)O(2) in a liter of wastewater at pH of 3.5 and 30 degrees C for 30 min at batch conditions reduced COD, BOD(5), sulfide, total chromium and color up to 69%, 72%, 88%, 5%, 100% and T. ferrooxidans alone showed maximum reduction to an extent of 77, 80, 85, 52, 89, respectively, in 21 d treatment at pH 2.5, FeSO(4) 16 g/L and temperature of 30 degrees C. The combined treatment at batch conditions involving 30 min chemical treatment by Fenton's oxidation followed by 72 h biochemical treatment by T. ferrooxidans at batch conditions gave rise up to 93%, 98%, 72%, 62% and 100% removal efficiencies of COD, BOD, sulfide, chromium and color at pH of 2.5 and 30 degrees C. Decrease in photo absorption of the Fenton's reagent treated samples, as compared to the banks, at 280, 350 and 470 nm wave lengths was observed. This may be the key factor for stimulating the biodegradation by T. ferrooxidans.

  20. Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Zerkle, Aubrey L.; Poulton, Simon W.; Newton, Robert J.; Mettam, Colin; Claire, Mark W.; Bekker, Andrey; Junium, Christopher K.

    2017-02-01

    The rise of oxygen on the early Earth (about 2.4 billion years ago) caused a reorganization of marine nutrient cycles, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event). Our data fill a gap of about 400 million years in the temporal 15N/14N record and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton.

  1. Onset of the aerobic nitrogen cycle during the Great Oxidation Event.

    PubMed

    Zerkle, Aubrey L; Poulton, Simon W; Newton, Robert J; Mettam, Colin; Claire, Mark W; Bekker, Andrey; Junium, Christopher K

    2017-02-23

    The rise of oxygen on the early Earth (about 2.4 billion years ago) caused a reorganization of marine nutrient cycles, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope ((15)N/(14)N) values from approximately 2.31-billion-year-old shales of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event). Our data fill a gap of about 400 million years in the temporal (15)N/(14)N record and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton.

  2. Role of nitrite reductase in the ammonia-oxidizing pathway of Nitrosomonas europaea.

    PubMed

    Cantera, J Jason L; Stein, Lisa Y

    2007-10-01

    Metabolism of ammonia (NH(3)) and hydroxylamine (NH(2)OH) by wild-type and a nitrite reductase (nirK) deficient mutant of Nitrosomonas europaea was investigated to clarify the role of NirK in the NH(3) oxidation pathway. NirK-deficient N. europaea grew more slowly, consumed less NH(3), had a lower rate of nitrite (NO(2) (-)) production, and a significantly higher rate of nitrous oxide (N(2)O) production than the wild-type when incubated with NH(3) under high O(2) tension. In incubations with NH(3) under low O(2) tension, NirK-deficient N. europaea grew more slowly, but had only modest differences in NH(3) oxidation and product formation rates relative to the wild-type. In contrast, the nirK mutant oxidized NH(2)OH to NO(2) (-) at consistently slower rates than the wild-type, especially under low O(2) tension, and lost a significant pool of NH(2)OH-N to products other than NO(2) (-) and N(2)O. The rate of N(2)O production by the nirK mutant was ca. three times higher than the wild-type during hydrazine-dependent NO(2) (-) reduction under both high and low O(2) tension. Together, the results indicate that NirK activity supports growth of N. europaea by supporting the oxidation of NH(3) to NO(2) (-) via NH(2)OH, and stimulation of hydrazine-dependent NO(2) (-) reduction by NirK-deficient N. europaea indicated the presence of an alternative, enzymatic pathway for N(2)O production.

  3. Variable carbon isotope fractionation expressed by aerobic CH 4-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Templeton, Alexis S.; Chu, Kung-Hui; Alvarez-Cohen, Lisa; Conrad, Mark E.

    2006-04-01

    Carbon isotope fractionation factors reported for aerobic bacterial oxidation of CH 4(α) range from 1.003 to 1.039. In a series of experiments designed to monitor changes in the carbon isotopic fractionation of CH 4 by Type I and Type II methanotrophic bacteria, we found that the magnitude of fractionation was largely due to the first oxidation step catalyzed by methane monooxygenase (MMO). The most important factor that modulates the (α) is the fraction of the total CH 4 oxidized per unit time, which strongly correlates to the cell density of the growth cultures under constant flow conditions. At cell densities of less than 0.1 g/L, fractionation factors greater than 1.03 were observed, whereas at cell densities greater than 0.5 g/L the fractionation factors decreased to as low as 1.002. At low cell densities, low concentrations of MMO limit the amount of CH 4 oxidized, while at higher cell densities, the overall rates of CH 4 oxidation increase sufficiently that diffusion of CH 4 from the gaseous to dissolved state and into the cells is likely the rate-determining step. Thus, the residual CH 4 is more fractionated at low cell densities, when only a small fraction of the total CH 4 has been oxidized, than at high cell densities, when up to 40% of the influent CH 4 has been utilized. Therefore, since Rayleigh distillation behavior is not observed, δ 13C values of the residual CH 4 cannot be used to infer the amount oxidized in either laboratory or field-studies. The measured (α) was the same for both Type I and Type II methanotrophs expressing particulate or soluble MMO. However, large differences in the δ 13C values of biomass produced by the two types of methanotrophs were observed. Methylosinus trichosporium OB3b (Type II) produced biomass with δ 13C values about 15‰ higher than the dissimilated CO 2, whereas Methylomonas methanica (Type I) produced biomass with δ 13C values only about 6‰ higher than the CO 2. These effects were independent of the

  4. Changes in community composition of ammonia-oxidizing betaproteobacteria from stands of Black mangrove (Avicennia germinans) in response to ammonia enrichment and more oxic conditions.

    PubMed

    Laanbroek, Hendrikus J; Keijzer, Rosalinde M; Verhoeven, Jos T A; Whigham, Dennis F

    2013-01-01

    In flooded and non-flooded impounded forests of Black mangrove (Avicennia germinans), the community structure of the ammonia-oxidizing betaproteobacteria (β-AOB) differed among distinct mangrove vegetation cover types and hydrological regimes. This had been explained by a differential response of lineages of β-AOB to the prevailing soil conditions that included increased levels of moisture and ammonium. To test this hypothesis, slurries of soils collected from a flooded and a non-flooded impoundment were subjected to enhanced levels of ammonium in the absence and presence of additional shaking. After a period of 6 days, the community composition of the β-AOB based on the 16S rRNA gene was determined and compared with the original community structures. Regardless of the incubation conditions and the origin of the samples, sequences belonging to the Nitrosomonas aestuarii lineage became increasingly dominant, whereas the number of sequences of the lineages of Nitrosospira (i.e., Cluster 1) and Nitrosomonas sp. Nm143 declined. Changes in community structure were related to changes in community sizes determined by quantitative PCR based on the amoA gene. The amoA gene copy numbers of β-AOB were compared to those of the ammonia-oxidizing archaea (AOA). Gene copy numbers of the bacteria increased irrespective of incubation conditions, but the numbers of archaea declined in the continuously shaken cultures. This observation is discussed in relation to the distribution of the β-AOB lineages in the impounded Black mangrove forests.

  5. Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary.

    PubMed

    Xia, Fei; Zeleke, Jemaneh; Sheng, Qiang; Wu, Ji-Hua; Quan, Zhe-Xue

    2015-05-01

    Spartina alterniflora, an aggressive invasive plant species at the estuarine wetlands of China's coasts, has become a major threat to the natural ecosystems. To understand its potential influence on nitrification processes, the community structures and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated using 454-pyrosequencing and quantitative real-time PCR (qPCR) in S. alterniflora invading salt marsh sediments at the Yangtze River estuary in Chongming island, Shanghai, China. Copy numbers of archaeal and bacterial ammonia monooxygenase subunit A (amoA) genes did not show accordant shifts with S. alterniflora invasion in the two sampling sites. However, the copy numbers of archaeal amoA gene were higher in summer than in spring. Phylogenetic analysis indicated that more than 90% of the archaeal and 92% of the bacterial amoA gene sequences were closely related to marine group I.1a and the clusters 13 and 15 in Nitrosospira lineage, respectively. The effect of different seasons (spring and summer) was important for the abundance variation of AOA, while different stages of S. alterniflora invasion did not show significant effect for both AOA and AOB. Variation of AOA community was significantly related to total carbon (TC) and sulfate concentration (P < 0.05), whereas the AOB community was significantly related to sulfate concentration, total nitrogen (TN), TC and pH (P < 0.05). In conclusion, the abundance and diversity of ammonia oxidizing microbial communities were not strongly affected by S. alterniflora invasion.

  6. Abundance and diversity of ammonia-oxidizing bacteria in relation to ammonium in a chinese shallow eutrophic urban lake

    PubMed Central

    Qiu, Shanlian; Chen, Guoyuan; Zhou, Yiyong

    2010-01-01

    The measures of most-probable-number and restriction fragment length polymorphism analysis were used to analyze the abundance and diversity of ammonia-oxidizing bacteria in sediment of a Chinese shallow eutrophic urban lake (Lake Yuehu). Among the 5 sampling sites, ammonia concentration in interstitial water was positively proportional not only to the content of organic matter, but also to ammonia-oxidizing bacteria numbers (at a magnitude of 105 cells g-1 dry weight) in sediment significantly. Furthermore, the diversity of ammonia-oxidizing bacteria were determined by means of PCR primers targeting the amoA gene with five gene libraries created and restriction pattern analysis. The 13 restriction patterns were recorded with 4 ones being common among all sampling sites. The 8 restriction patterns including 4 unique ones were found at the site with the highest NH4+ concentrations in interstitial water, while, there were only common patterns without unique ones at the site with the lowest NH4+ concentrations in interstitial water. Phylogenetic analysis showed that the amoA fragments retrieved belong to Nitrosomonas oligotropha & ureae lineage, N. europaea lineage, N. communis lineage and Nitrosospira lineage, most of which were affiliated with the genus Nitrosomonas. The N. oligotropha & ureae-like bacteria were the dominant species. Thus, the abundance and diversity of sediment AOB is closely linked to ammonium status in eutrophic lakes. PMID:24031484

  7. Responses of ammonia-oxidizing bacterial and archaeal populations to organic nitrogen amendments in low-nutrient groundwater.

    PubMed

    Reed, David W; Smith, Jason M; Francis, Christopher A; Fujita, Yoshiko

    2010-04-01

    To evaluate the potential for organic nitrogen addition to stimulate the in situ growth of ammonia oxidizers during a field scale bioremediation trial, samples collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea were subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) were present in all of the samples tested, with AOA amoA genes outnumbering AOB amoA genes in all of the samples. Following urea addition, nitrate levels rose and bacterial amoA copy numbers increased dramatically, suggesting that urea hydrolysis stimulated nitrification. Bacterial amoA diversity was limited to two Nitrosomonas phylotypes, whereas archaeal amoA analyses revealed 20 distinct operational taxonomic units, including several that were markedly different from all previously reported sequences. Results from this study demonstrate the likelihood of stimulating ammonia-oxidizing communities during field scale manipulation of groundwater conditions to promote urea hydrolysis.

  8. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments.

    PubMed

    dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P

    2012-01-27

    Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.

  9. Dissimilatory perchlorate reduction linked to aerobic methane oxidation via chlorite dismutase

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    The presence of methane (CH4) in the atmosphere of Mars is controversial yet the evidence has aroused scientific interest, as CH4 could be a harbinger of extant or extinct microbial life. There are various oxidized compounds present on the surface of Mars that could serve as electron acceptors for the anaerobic oxidation of CH4, including perchlorate (ClO4-). We examined the role of perchlorate, chlorate (ClO3-) and chlorite (ClO2-) as oxidants linked to CH4 oxidation. Dissimilatory perchlorate reduction begins with reduction of ClO4- to ClO2- and ends with dismutation of chlorite to yield chloride (Cl-) and molecular oxygen (O2). We explored the potential for aerobic CH4 oxidizing bacteria to couple with oxygen derived from chlorite dismutation during dissimilatory perchlorate reduction. Methane (0.2 kPa) was completely removed within several days from the N2-flushed headspace above cell suspensions of methanotrophs (Methylobacter albus strain BG8) and perchlorate reducing bacteria (Dechloromonas agitata strain CKB) in the presence of 5 mM ClO2-. Similar rates of CH4 consumption were observed for these mixed cultures whether they were co-mingled or segregated under a common headspace, indicating that direct contact of cells was not required for methane consumption to occur. We also observed complete removal of 0.2 kPa CH4 in bottles containing dried soil (enriched in methanotrophs by CH4 additions over several weeks) and D. agitata CKB and in the presence of 10 mM ClO2-. This soil (seasonally exposed sediment) collected from the shoreline of a freshwater lake (Searsville Lake, CA) demonstrated endogenous CH4 uptake as well as perchlorate, chlorate and chlorite reduction/dismutation. However, these experiments required physical separation of soil from the aqueous bacterial culture to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although dissimilatory reduction of ClO4- and ClO3- could be inferred from the

  10. Techno-economic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant.

    PubMed

    Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero

    2013-04-01

    This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge).

  11. Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California.

    PubMed

    Wankel, Scott D; Mosier, Annika C; Hansel, Colleen M; Paytan, Adina; Francis, Christopher A

    2011-01-01

    Ammonia oxidation-the microbial oxidation of ammonia to nitrite and the first step in nitrification-plays a central role in nitrogen cycling in coastal and estuarine systems. Nevertheless, questions remain regarding the connection between this biogeochemical process and the diversity and abundance of the mediating microbial community. In this study, we measured nutrient fluxes and rates of sediment nitrification in conjunction with the diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing betaproteobacteria (β-AOB). Sediments were examined from four sites in Elkhorn Slough, a small agriculturally impacted coastal California estuary that opens into Monterey Bay. Using an intact sediment core flowthrough incubation system, we observed significant correlations among NO(3)(-), NO(2)(-), NH(4)(+), and PO(4)(3+) fluxes, indicating a tight coupling of sediment biogeochemical processes. (15)N-based measurements of nitrification rates revealed higher rates at the less impacted, lower-nutrient sites than at the more heavily impacted, nutrient-rich sites. Quantitative PCR analyses revealed that β-AOB amoA (encoding ammonia monooxygenase subunit A) gene copies outnumbered AOA amoA gene copies by factors ranging from 2- to 236-fold across the four sites. Sites with high nitrification rates primarily contained marine/estuarine Nitrosospira-like bacterial amoA sequences and phylogenetically diverse archaeal amoA sequences. Sites with low nitrification rates were dominated by estuarine Nitrosomonas-like amoA sequences and archaeal amoA sequences similar to those previously described in soils. This is the first report measuring AOA and β-AOB amoA abundance in conjunction with (15)N-based nitrification rates in estuary sediments.

  12. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica

    USGS Publications Warehouse

    Voytek, M.A.; Priscu, J.C.; Ward, B.B.

    1999-01-01

    Marked differences in the concentrations of major ions and cations, macronutrient chemistry and general trophic status exist among the lakes of the McMurdo dry valleys in Antarctica. These differences have been attributed to both variations in stream inputs and in situ lake processes (Priscu, 1995; Lizotte et al., 1996, Spigel and Priscu, 1996). This study examines the role of nitrifying bacteria in nitrogen transformations in these lakes. Applying two polymerase chain reaction (PCR) assays targeting the 16S rRNA genes of ammonia-oxidizing bacteria and the active site of the ammonia monooxygenase gene (amoA), the distribution of ammonia-oxidizers was examined in six Antarctic lakes: Lake Bonney, Lake Hoare, Lake Fryxell and Lake Joyce in the Taylor Valley, Lake Miers in the the Miers Valley and Lake Vanda in the Wright Valley. Using a two stage amplification procedure, ammonia-oxidizers from both the beta and gamma- subclasses of the Proteobacteria were detected and their relative abundances were determined in samples collected from all sites. Ammonia-oxidizers were detected in all lakes sampled. Members of the gamma subclass were only present in the saline lakes. In general, nitrifiers were most abundant at depths above the pycnocline and were usually associated with lower concentrations of NH4 and elevated concentrations of NO3 or NO2. The distribution of nitrifiers suggests that the primary N2O peak observed in most of the lakes was produced via nitrification. Preliminary data on the rate of nitrification (Priscu et al., 1996) support the occurrence of nitrification and the presence of nitrifiers at the depth intervals where nitrifiers were detected. In all lakes, except Lake Miers, the data indicate that nitrifying bacteria have an important role in the vertical distribution of nitrogen compounds in these systems.

  13. Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance.

    PubMed Central

    Wolfe, R L; Lieu, N I; Izaguirre, G; Means, E G

    1990-01-01

    Nitrification in chloraminated drinking water can have a number of adverse effects on water quality, including a loss of total chlorine and ammonia-N and an increase in the concentration of heterotrophic plate count bacteria and nitrite. To understand how nitrification develops, a study was conducted to examine the factors that influence the occurrence of ammonia-oxidizing bacteria (AOB) in a chloraminated distribution system. Samples were collected over an 18-month period from a raw-water source, a conventional treatment plant effluent, and two covered, finished-water reservoirs that previously experienced nitrification episodes. Sediment and biofilm samples were collected from the interior wall surfaces of two finished-water pipelines and one of the covered reservoirs. The AOB were enumerated by a most-probable-number technique, and isolates were isolated and identified. The resistance of naturally occurring AOB to chloramines and free chlorine was also examined. The results of the monitoring program indicated that the levels of AOB, identified as members of the genus Nitrosomonas, were seasonally dependent in both source and finished waters, with the highest levels observed in the warm summer months. The concentrations of AOB in the two reservoirs, both of which have floating covers made of synthetic rubber (Hypalon; E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.), had most probable numbers that ranged from less than 0.2 to greater than 300/ml and correlated significantly with temperature and levels of heterotrophic plate count bacteria. No AOB were detected in the chloraminated reservoirs when the water temperature was below 16 to 18 degrees C. The study indicated that nitrifiers occur throughout the chloraminated distribution system. Higher concentrations of AOB were found in the reservoir and pipe sediment materials than in the pipe biofilm samples. The AOB were approximately 13 times more resistant to monochloramine than to free chlorine. After 33 min

  14. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

    SciTech Connect

    Klots, Martin G.; Arp, D J; Chain, Patrick S; El-Sheikh, Amal F.; Hauser, Loren John; Hommes, Norman G.; Larimer, Frank W; Malfatti, Stephanie; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).

  15. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707†

    PubMed Central

    Klotz, Martin G.; Arp, Daniel J.; Chain, Patrick S. G.; El-Sheikh, Amal F.; Hauser, Loren J.; Hommes, Norman G.; Larimer, Frank W.; Malfatti, Stephanie A.; Norton, Jeanette M.; Poret-Peterson, Amisha T.; Vergez, Lisa M.; Ward, Bess B.

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type). PMID:16957257

  16. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing.

    PubMed

    Bhuvaneshwari, S; Gopalakrishnan, N

    2016-10-15

    According to environmental protection agencies (EPA), the emission threshold of NH3 in air is 1000kg/yr which is now about 20Tg/yr. Hence, there is a rapid increase in need of NH3 sensors to timely detect and control NH3 emissions. Metal oxide nanostructures such as CuO with special features are potential candidates for NH3 sensing. In the present study, morphology controlled 3-dimensional CuO superstructures were synthesized by surfactant-free hydrothermal method for NH3 detection. In addition to conventional hydrothermal method where water as solvent, a modified approach using a mixture of water and ethylene glycol (EG) was used as solvent to control the growth process. Hierarchical superstructures namely, snowflake-like, flower-like, hollow-sphere-like and urchin-like feature with particle dimensions ranging from 0.3 to 1μm were obtained by varying water/EG ratio and reaction temperature. The synthesized nanostructures exhibited morphology dependent luminescence and gas sensing properties. The surface area and pore distribution determined by BET surface analysis also largely influenced by the presence of EG in the reaction system. The average pore diameter enhanced from 6nm to 14nm by the addition of 10ml EG as solvent. The room temperature ammonia sensing behavior of all samples was studied using an indigenous gas sensing set-up. It was found that hollow-sphere like CuO nanostructures showed a maximum sensitivity of 150% towards 600ppm ammonia with a response and recovery time of 6min. The hydrothermal synthesis strategy reported here has the advantage of producing shape controlled hierarchical materials are highly suitable for various technological applications.

  17. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    SciTech Connect

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  18. Aerial oxidation of tetraethyl silicate and effect on ammonia catalyzed hydrolysis

    SciTech Connect

    Thomas, I.M.

    1997-06-25

    Colloidal suspensions of Si0{sub 2} in ethanol prepared by the ammonia catalyzed hydrolysis of tetraethyl silicate (TEOS) in ethanol have been routinely used for over 10 years to prepare antireflective (AR) coatings on the fused silica transmissive optical components of high power fusion lasers. Very high purity coatings are required to avoid laser damage and these are obtained when the TEOS is fractionally distilled under N{sub 2} prior to use. Recently we found that products from aerial oxidation of distilled TEOS, had a significant effect on the particle size of our coating suspensions to the detriment of the optical performance. We require particle sizes less than 20 nm to avoid light loss due to scatter and contaminated TEOS gave suspensions with much higher particle sizes. Oxidation products were identified by GC mass spectroscopy and included acetaldehyde, acetic acid, silicon acetates and reaction products of these compounds with ethanol. Acetic acid and silicon acetates were found to be the major cause of large particle formation. These could be removed by careful redistillation preferably in the presence of a small quantity of magnesium ethoxide. Storage in sealed containers over N{sub 2} avoided further problems.

  19. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei).

    PubMed

    Liang, Zhongxiu; Liu, Rui; Zhao, Depeng; Wang, Lingling; Sun, Mingzhe; Wang, Mengqiang; Song, Linsheng

    2016-07-01

    Ammonia is one of major environmental pollutants in the aquatic system that poses a great threat to the survival of shrimp. In the present study, the mRNA expression of endoplasmic reticulum (ER) stress marker and unfolded protein response (UPR) related genes, as well as the change of redox enzyme and apoptosis were investigated in hepatopancreas of the pacific white shrimp, Litopenaeus vannamei after the exposure of 20 mg L(-1) total ammonia nitrogen (TAN). Compared with the control group, the superoxide dismutase (SOD) activity in hepatopancreas decreased significantly (p < 0.05) at 96 h, whereas the malonyldialdehyde (MDA) concentration increased significantly (p < 0.05). The mRNA expression levels of ER stress marker-immunoglobulin heavy chain binding protein (Bip) gene and key UPR related genes including activating transcription factor 4 (ATF4) and the spliced form of X box binding protein 1 (XBP1) increased significantly (p < 0.05) in hepatopancreas at 96 h after exposure to ammonia. In addition, apoptosis was observed obviously in the hepatopancreas of L. vannamei after exposure to ammonia by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The results indicated that ammonia exposure could induce oxidative stress, which further caused ER stress and apoptosis in hepatopancreas of L. vannamei.

  20. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  1. Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes.

    PubMed

    Sorokin, D; Tourova, T; Schmid, M C; Wagner, M; Koops, H P; Kuenen, J G; Jetten, M

    2001-09-01

    Five mixed samples prepared from the surface sediments of 20 north-east Mongolian soda lakes with total salt contents from 5 to 360 g/l and pH values from 9.7 to 10.5 were used to enrich for alkaliphilic ammonia-oxidizing bacteria. Successful enrichments at pH 10 were achieved on carbonate mineral medium containing 0.6 M total Na(+) and < or =4 mM NH(4)Cl. Five isolates (ANs1-ANs5) of ammonia-oxidizing bacteria capable of growth at pH 10 were obtained from the colonies developed on bilayered gradient plates. The cells were motile and coccoid, with well-developed intracytoplasmic membranes (ICPM) and carboxysomes. At pH 10.0, ammonia was toxic for growth at concentrations higher than 5 mM NH(4)Cl. The bacteria were able to grow within the salinity range of 0.1-1.0 M of total Na+ (optimum 0.3 M). In media containing 0.3-0.6 M total Na(+), optimal growth in batch cultures occurred in the presence of a bicarbonate/carbonate buffer system within the pH range 8.5-9.5, with the highest pH limit at pH 10.5. At pH lower than 8.0, growth was slower, most probably due to decreasing free ammonia. The pH profile of the respiratory activity was broader, with limits at 6.5-7.0 and 11.0 and an optimum at 9.5-10.0. In pH-controlled, NH(3)-limited continuous culture, isolate ANs5 grew up to pH 11.3, which is the highest pH limit known for ammonia-oxidizing bacteria so far. This showed the existence of extremely alkali-tolerant ammonia-oxidizing bacteria in the soda lakes. Comparative 16S rDNA sequence analysis of the five isolates demonstrated that they possess identical 16S rDNA genes and that they are closely related to Nitrosomonas halophila (sequence similarity 99.3%), a member of the beta-subclass of the Proteobacteria. This affiliation was confirmed by comparative sequence analysis of the amoA gene, encoding the active-site subunit of the ammonia-monoxygenase, of one of the isolates. DNA-DNA hybridization data further supported that the soda lake isolates are very similar to

  2. Analysis and quantification of ammonia-oxidizing bacteria community with amoA gene in sewage treatment plants.

    PubMed

    Hong, Sun Hwa; Jeong, Hyun Duck; Jung, Bongjin; Lee, Eun Young

    2012-09-01

    The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and L-serine after 192 h. The largest concentration of AOB was detected in S1 (7.6 × 10(6) copies/microliter), followed by S2 (3.2 × 10(6) copies/microliter), S4 (2.8 × 10(6) copies/microliter), and S3 (2.4 × 10(6) copies/microliter).

  3. [Enhanced Resistance of Pea Plants to Oxidative: Stress Caused by Paraquat during Colonization by Aerobic Methylobacteria].

    PubMed

    Agafonova, N V; Doronina, N Y; Trotsenko, Yu A

    2016-01-01

    The influence of colonization of the pea (Pisum sativum L.) by aerobic methylobacteria of five different species (Methylophilus flavus Ship, Methylobacterium extorquens G10, Methylobacillus arboreus Iva, Methylopila musalis MUSA, Methylopila turkiensis Sidel) on plant resistance to paraquat-induced stresses has been studied. The normal conditions of pea colonization by methylobacteria were characterized by a decrease in the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) and in the concentrations of endogenous H2O2, proline, and malonic dialdehyde, which is a product of lipid peroxidation and indicator of damage to plant cell membranes, and an increase in the activity of the photosynthetic apparatus (the content of chlorophylls a, b and carotenoids). In the presence of paraquat, the colonized plants had higher activities of antioxidant enzymes, stable photosynthetic indices, and a less intensive accumulation of the products of lipid peroxidation as compared to noncolonized plants. Thus, colonization by methylobacteria considerably increased the adaptive protection of pea plants to the paraquat-induced oxidative stress.

  4. Praseodymium incorporated AIPO-5 molecular sieves for aerobic oxidation of ethylbenzene.

    PubMed

    Sundaravel, B; Babu, C M; Palanisamy, B; Palanichamy, M; Shanthi, K; Murugesan, V

    2013-04-01

    PrAlPO-5 with (Al + P)/Pr ratios of 25, 50, 75 and 100 molecular sieves were successfully synthesized by hydrothermal method. These molecular sieves were characterised using XPS, TPD-NH3, ex-situ pyridine adsorbed IR, TPR, TGA, 27Al and 31P MAS-NMR and ESR studies. The incorporation of praseodymium in the framework of AlPO-5 was confirmed by XRD, DRS UV-vis and 27Al and 31P MAS-NMR analysis. ESR spectrum showed the presence of adsorbed oxygen. The nature and strength of acid sites were identified by ex-situ pyridine adsorbed IR and TPD-NH3. The BET surface area was found to be in the range of 238-272 m2 g(-1). The catalytic activity of the molecular sieves was tested for the liquid phase aerobic oxidation of ethylbenzene. Acetophenone was found to be the major product with more than 90% ethylbenzene conversion. ICP-OES analysis revealed the presence of praseodymium intact in the framework of AlPO-5 up to five cycles.

  5. Substrate Selectivity of a 3-Nitrophenol-Induced Metabolic System in Pseudomonas putida 2NP8 Transforming Nitroaromatic Compounds into Ammonia under Aerobic Conditions

    PubMed Central

    Zhao, Jian-Shen; Ward, Owen P.

    2001-01-01

    The 3-nitrophenol-induced enzyme system in cells of Pseudomonas putida 2NP8 manifested a wide substrate range in transforming nitroaromatic compounds through to ammonia production. All of the 30 mono- or dinitroaromatic substrates except 4-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, 3-nitroaniline, 2-nitrobenzoic acid, and 2-nitrofuran were quickly transformed. Ammonia production from most nitroaromatic substrates appeared to be stoichiometric. PMID:11229938

  6. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    NASA Astrophysics Data System (ADS)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-12-01

    The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800-900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic "cauliflower-shape protrusions". The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires' surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires' preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better understanding of the precious metals etching and deposition processes during oxidation.

  7. Impact of dicyandiamide on emissions of nitrous oxide, nitric oxide and ammonia from agricultural field in the North China Plain.

    PubMed

    Zhou, Yizhen; Zhang, Yuanyuan; Tian, Di; Mu, Yujing

    2016-02-01

    Nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) emissions from an agricultural field in the North China Plain were compared for three treatments during a whole maize growing period from 26 June to 11 October, 2012. Compared with the control treatment (without fertilization, designated as CK), remarkable pulse emissions of N2O, NO and NH3 were observed from the normal fertilization treatment (designated as NP) just after fertilization, whereas only N2O and NH3 pulse emissions were evident from the nitrification inhibitor treatment (designated as ND). The reduction proportions of N2O and NO emissions from the ND treatment compared to those from the NP treatment during the whole maize growing period were 31% and 100%, respectively. A measurable increase of NH3 emission from the ND treatment was found with a cumulative NH3 emission of 3.8 ± 1.2 kg N/ha, which was 1.4 times greater than that from the NP treatment (2.7 ± 0.7 kg N/ha).

  8. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    NASA Astrophysics Data System (ADS)

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-07-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  9. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    PubMed Central

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane. PMID:27460335

  10. Effects of sponge bleaching on ammonia-oxidizing Archaea: distribution and relative expression of ammonia monooxygenase genes associated with the barrel sponge Xestospongia muta.

    PubMed

    López-Legentil, Susanna; Erwin, Patrick M; Pawlik, Joseph R; Song, Bongkeun

    2010-10-01

    Sponge-mediated nitrification is an important process in the nitrogen cycle, however, nothing is known about how nitrification and symbiotic Archaea may be affected by sponge disease and bleaching events. The giant barrel sponge Xestospongia muta is a prominent species on Caribbean reefs that contains cyanobacterial symbionts, the loss of which results in two types of bleaching: cyclic, a recoverable condition; and fatal, a condition associated with the disease-like sponge orange band (SOB) syndrome and sponge death. Terminal restriction fragment length polymorphism (TRFLP) analyses, clone libraries, and relative mRNA quantification of ammonia monooxygenase genes (amoA) were performed using a RNA transcript-based approach to characterize the active ammonia-oxidizing Archaea (AOA) community present in bleached, non-bleached, and SOB tissues of cyclically and fatally bleached sponges. We found that non-bleached and cyclically bleached tissues of X. muta harbored a unique Crenarchaeota community closely related to those reported for other sponges. In contrast, bleached tissue from the most degraded sponge contained a Crenarchaeota community that was more similar to those found in sediment and sand. Although there were no significant differences in amoA expression among the different tissues, amoA expression was higher in the most deteriorated tissues. Results suggest that a shift in the Crenarchaeota community precedes an increase in amoA gene expression in fatally bleached sponges, while cyclic bleaching did not alter the AOA community structure and its amoA gene expression.

  11. Differential responses of ammonia/ammonium-oxidizing microorganisms in mangrove sediment to amendment of acetate and leaf litter.

    PubMed

    Wang, Yong-Feng; Li, Xiao-Yan; Gu, Ji-Dong

    2014-04-01

    The effects of acetate and leaf litter powder on ammonia/ammonium-oxidizing microorganisms (AOMs) in mangrove sediment were investigated in a laboratory incubation study for a period of 60 days. The results showed that different AOMs responded differently to the addition of acetate and leaf litter. A higher diversity of anaerobic ammonium-oxidizing (anammox) bacteria was observed when acetate or leaf litter was added than the control. However, acetate and leaf litter generally inhibited the growth of anammox bacteria despite that leaf litter promoted their growth in the first 5 days. The inhibitory effects on anammox bacteria were more pronounced by acetate than by leaf litter. Neither acetate nor leaf litter affected ammonia-oxidizing archaea (AOA) community structures, but promoted their growth. For ammonia-oxidizing bacteria (AOB), the addition of acetate or leaf litter resulted in changes of community structures and promoted their growth in the early phase of the incubation. In addition, the promoting effects by leaf litter on AOB growth were more obvious than acetate. These results indicated that organic substances affect AOM community structures and abundances. The study suggests that leaf litter has an important influence on the community structures and abundances of AOMs in mangrove sediment and affects the nitrogen cycle in such ecosystem.

  12. Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco.

    PubMed

    Li, Ming; Gong, Shiyan; Li, Qing; Yuan, Lixia; Meng, Fanxing; Wang, Rixin

    2016-01-01

    A study was carried to test the response of yellow catfish for 28 days under two ammonia concentrations. Weight gain of fish exposure to high and low ammonia abruptly increased at day 3. There were no significant changes in fish physiological indexes and immune responses at different times during 28-day exposure to low ammonia. Fish physiological indexes and immune responses in the treatment of high ammonia were lower than those of fish in the treatment of low ammonia. When fish were exposed to high ammonia, the ammonia concentration in the brain increased by 19-fold on day 1. By comparison, liver ammonia concentration reached its highest level much earlier at hour 12. In spite of a significant increase in brain and liver glutamine concentration, there was no significant change in glutamate level throughout the 28-day period. The total superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione reductase (GR) activities in the brain gradually decreased from hour 0 to day 28. Liver SOD, GPX and GR activities reached the highest levels at hour 12, and then gradually decreased. Thiobarbituric acid reactive substance brain and liver content gradually increased throughout the 28-day period. Lysozyme, acid phosphatase and alkaline phosphatase activities in the liver reached exceptionally low levels after day 14. This study indicated that glutamine accumulation in the brain was not the major cause of ammonia poisoning, the toxic reactive oxygen species is not fully counter acted by the antioxidant enzymes and immunosuppression is a process of gradual accumulation of immunosuppressive factors.

  13. Investigating the chemical and isotopic kinetics of aerobic methane oxidation in the Northern US Atlantic Margin, Hudson Canyon

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Shiller, A. M.; Redmond, M. C.; Arrington, E. C.; Valentine, D. L.

    2015-12-01

    Recent discoveries of methane seepage along the US Atlantic margin have led to speculation on the fate of the released methane. Here we examine the kinetics of aerobic methane oxidation to gain a fundamental understanding of this methane sink. In order to look at this process in its entirety, a unique mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) to monitor in real time the chemical and isotopic changes involved with aerobic methane oxidation. This system measures changes in methane, carbon dioxide, and oxygen concentrations as well as the stable carbon isotopes of methane and carbon dioxide with time. In addition samples are strategically removed to characterize trace metals, nutrients, cell counts, and microbial community genetics. This presentation will detail the results obtained from samples collected inside the Hudson Canyon at the edge of the methane clathrate stability zone and outside the Hudson Canyon, not influenced by the methane seepage. These results show that in both environments along the Atlantic margin, methane was consumed aggressively but the timing of consumption varied based on location. In addition, these results are leading to insights into the chemical requirements needed for aerobic methane oxidation and the resulting isotopic fractionation.

  14. Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors.

    PubMed

    Rodríguez-Freire, Lucía; Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2012-02-01

    Arsenic is a carcinogenic compound widely distributed in the groundwater around the world. The fate of arsenic in groundwater depends on the activity of microorganisms either by oxidizing arsenite (As(III)), or by reducing arsenate (As(V)). Because of the higher toxicity and mobility of As(III) compared to As(V), microbial-catalyzed oxidation of As(III) to As(V) can lower the environmental impact of arsenic. Although aerobic As(III)-oxidizing bacteria are well known, anoxic oxidation of As(III) with nitrate as electron acceptor has also been shown to occur. In this study, three As(III)-oxidizing bacterial strains, Azoarcus sp. strain EC1-pb1, Azoarcus sp. strain EC3-pb1 and Diaphorobacter sp. strain MC-pb1, have been characterized. Each strain was tested for its ability to oxidize As(III) with four different electron acceptors, nitrate, nitrite, chlorate and oxygen. Complete As(III) oxidation was achieved with both nitrate and oxygen, demonstrating the novel ability of these bacterial strains to oxidize As(III) in either anoxic or aerobic conditions. Nitrate was only reduced to nitrite. Different electron donors were used to study their suitability in supporting nitrate reduction. Hydrogen and acetate were readily utilized by all the cultures. The flexibility of these As(III)-oxidizing bacteria to use oxygen and nitrate to oxidize As(III) as well as organic and inorganic substrates as alternative electron donors explains their presence in non-arsenic-contaminated environments. The findings suggest that at least some As(III)-oxidizing bacteria are flexible with respect to electron-acceptors and electron-donors and that they are potentially widespread in low arsenic concentration environments.

  15. Diversity of Ammonia-Oxidizing Archaea and Bacteria Across Physical-Chemical Gradients in San Francisco Bay Estuary Sediments

    NASA Astrophysics Data System (ADS)

    Mosier, A. C.; Francis, C. A.

    2006-12-01

    A combination of recent metagenomic analyses and the cultivation of a novel, ammonia-oxidizing, marine crenarchaeota revealed the first evidence for nitrification within the Archaeal domain. Further genetic and metagenomic studies demonstrated the presence of ammonia-oxidizing crenarchaea in diverse marine and terrestrial environments. These discoveries challenge the currently accepted view of the global nitrogen cycle and validate the need for further research on microbial diversity and function. In particular, it is imperative to reexamine the microbial communities involved in ammonia oxidation in marine and estuarine sediments, where this process plays a pivotal role in the cycling and removal of nitrogen. Using phylogenetic analyses of ammonia monooxygenase subunit A (amoA) gene sequences, we examined the distribution and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in San Francisco Bay, the largest estuary on the West coast of the United States. The highly impacted bay, encompassing nearly 178,000 km2, effectively connects two estuaries with varying physical-chemical characteristics to the Pacific Ocean. We recovered archaeal and bacterial amoA genes from 11 sites distributed throughout the bay, spanning the northern and southern estuaries and the central region where they connect to the ocean. Richness estimates varied considerably across all sites examined, with archaeal amoA estimates being generally higher than bacterial amoA. Several of the bacterial amoA libraries were represented by fewer than 3 genotypes. Archaeal amoA sequences were phylogenetically diverse and grouped within previously described sediment and soil/sediment clusters. Several sequences were closely related to the only cultivated AOA, Nitrosopumilus maritimus. Both the archaeal and bacterial amoA sequences showed significant regional specificity. Distinct populations exist in the northern and southern estuaries and sequences from the northernmost and southernmost sites

  16. Nitrogen removal in an upflow sludge blanket (USB) reactor combined by aerobic biofiltration systems.

    PubMed

    Jun, H B; Park, S M; Park, J K; Choi, C O; Lee, J S

    2004-01-01

    A new nitrogen removal process (up-flow sludge blanket and aerobic filter, USB-AF) was proposed and tested with real sewage. In the USB reactor, the larger part of influent organic and nitrogen matters were removed, and ammonia was effectively oxidized in the subsequent aerobic filter. The role of the aerobic filter was to convert ammonia into nitrate, an electron acceptor that could convert soluble organic matters into volatile suspended solid (VSS) in the USB. The accumulated as well as influent VSS in the USB was finally degraded to fermented products that were another good carbon source for denitrification. Total COD, settleable COD and soluble COD in the raw sewage were 325, 80 and 140 mg/l, respectively. Most unsettleable COD as well as some SCOD in the influent was successfully removed in the USB. TCOD removal in the anoxic filter was by denitrification with the recycled nitrate. Low COD input to the aerobic filter could increase nitrification efficiency, reduce the start-up period and save the aeration energy in the USB-AF system. About 95% of ammonia was nitrified in the aerobic filter with no relation to the influent ammonia concentration. Denitrification efficiency of the recycled nitrate in the anoxic filter was about 85, 83, and 72% at recycle ratios of 100, 200, and 300%, respectively. T-N removal efficiency was 70% at recycle ratio of 300%.

  17. Changes in community composition of ammonia-oxidizing betaproteobacteria from stands of Black mangrove (Avicennia germinans) in response to ammonia enrichment and more oxic conditions

    PubMed Central

    Laanbroek, Hendrikus J.; Keijzer, Rosalinde M.; Verhoeven, Jos T. A.; Whigham, Dennis F.

    2013-01-01

    In flooded and non-flooded impounded forests of Black mangrove (Avicennia germinans), the community structure of the ammonia-oxidizing betaproteobacteria (β-AOB) differed among distinct mangrove vegetation cover types and hydrological regimes. This had been explained by a differential response of lineages of β-AOB to the prevailing soil conditions that included increased levels of moisture and ammonium. To test this hypothesis, slurries of soils collected from a flooded and a non-flooded impoundment were subjected to enhanced levels of ammonium in the absence and presence of additional shaking. After a period of 6 days, the community composition of the β-AOB based on the 16S rRNA gene was determined and compared with the original community structures. Regardless of the incubation conditions and the origin of the samples, sequences belonging to the Nitrosomonas aestuarii lineage became increasingly dominant, whereas the number of sequences of the lineages of Nitrosospira (i.e., Cluster 1) and Nitrosomonas sp. Nm143 declined. Changes in community structure were related to changes in community sizes determined by quantitative PCR based on the amoA gene. The amoA gene copy numbers of β-AOB were compared to those of the ammonia-oxidizing archaea (AOA). Gene copy numbers of the bacteria increased irrespective of incubation conditions, but the numbers of archaea declined in the continuously shaken cultures. This observation is discussed in relation to the distribution of the β-AOB lineages in the impounded Black mangrove forests. PMID:24312088

  18. Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718.

    PubMed

    Kozlowski, Jessica A; Price, Jennifer; Stein, Lisa Y

    2014-08-01

    Nitrite reductase (NirK) and nitric oxide reductase (NorB) have long been thought to play an essential role in nitrous oxide (N2O) production by ammonia-oxidizing bacteria. However, essential gaps remain in our understanding of how and when NirK and NorB are active and functional, putting into question their precise roles in N2O production by ammonia oxidizers. The growth phenotypes of the Nitrosomonas europaea ATCC 19718 wild-type and mutant strains deficient in expression of NirK, NorB, and both gene products were compared under atmospheric and reduced O2 tensions. Anoxic resting-cell assays and instantaneous nitrite (NO2 (-)) reduction experiments were done to assess the ability of the wild-type and mutant N. europaea strains to produce N2O through the nitrifier denitrification pathway. Results confirmed the role of NirK for efficient substrate oxidation of N. europaea and showed that NorB is involved in N2O production during growth at both atmospheric and reduced O2 tensions. Anoxic resting-cell assays and measurements of instantaneous NO2 (-) reduction using hydrazine as an electron donor revealed that an alternate nitrite reductase to NirK is present and active. These experiments also clearly demonstrated that NorB was the sole nitric oxide reductase for nitrifier denitrification. The results of this study expand the enzymology for nitrogen metabolism and N2O production by N. europaea and will be useful to interpret pathways in other ammonia oxidizers that lack NirK and/or NorB genes.

  19. Revision of N2O-Producing Pathways in the Ammonia-Oxidizing Bacterium Nitrosomonas europaea ATCC 19718

    PubMed Central

    Kozlowski, Jessica A.; Price, Jennifer

    2014-01-01

    Nitrite reductase (NirK) and nitric oxide reductase (NorB) have long been thought to play an essential role in nitrous oxide (N2O) production by ammonia-oxidizing bacteria. However, essential gaps remain in our understanding of how and when NirK and NorB are active and functional, putting into question their precise roles in N2O production by ammonia oxidizers. The growth phenotypes of the Nitrosomonas europaea ATCC 19718 wild-type and mutant strains deficient in expression of NirK, NorB, and both gene products were compared under atmospheric and reduced O2 tensions. Anoxic resting-cell assays and instantaneous nitrite (NO2−) reduction experiments were done to assess the ability of the wild-type and mutant N. europaea strains to produce N2O through the nitrifier denitrification pathway. Results confirmed the role of NirK for efficient substrate oxidation of N. europaea and showed that NorB is involved in N2O production during growth at both atmospheric and reduced O2 tensions. Anoxic resting-cell assays and measurements of instantaneous NO2− reduction using hydrazine as an electron donor revealed that an alternate nitrite reductase to NirK is present and active. These experiments also clearly demonstrated that NorB was the sole nitric oxide reductase for nitrifier denitrification. The results of this study expand the enzymology for nitrogen metabolism and N2O production by N. europaea and will be useful to interpret pathways in other ammonia oxidizers that lack NirK and/or NorB genes. PMID:24907318

  20. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire.

    PubMed

    Yeager, Chris M; Northup, Diana E; Grow, Christy C; Barns, Susan M; Kuske, Cheryl R

    2005-05-01

    This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizing species was less in soil from the fire-impacted sites than from the unburned sites. The number of dominant nifH sequence types was greater in fire-impacted soils, and nifH sequences that were most closely related to those from the spore-forming taxa Clostridium and Paenibacillus were more abundant in the burned soils. In T-RFLP patterns of the ammonia-oxidizing community, terminal restriction fragments (TRFs) representing amoA cluster 1, 2, or 4 Nitrosospira spp. were dominant (80 to 90%) in unburned soils, while TRFs representing amoA cluster 3A Nitrosospira spp. dominated (65 to 95%) in fire-impacted soils. The dominance of amoA cluster 3A Nitrosospira spp. sequence types was positively correlated with soil pH (5.6 to 7.5) and NH(3)-N levels (0.002 to 0.976 ppm), both of which were higher in burned soils. The decreased microbial biomass and shift in nitrogen-fixing and ammonia-oxidizing communities were still evident in fire-impacted soils collected 14 months after the fire.

  1. Nitrogen cycling and community structure of proteobacterial beta-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments.

    PubMed

    McCaig, A E; Phillips, C J; Stephen, J R; Kowalchuk, G A; Harvey, S M; Herbert, R A; Embley, T M; Prosser, J I

    1999-01-01

    A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-probable-number counts were determined in samples of sediment collected from beneath a fish cage and on a transect at 20 and 40 m from the cage. The data suggest that nitrogen cycling was significantly disrupted directly beneath the fish cage, with inhibition of nitrification and denitrification. Although visual examination indicated some slight changes in sediment appearance at 20 m, all other measurements were similar to those obtained at 40 m, where the sediment was considered pristine. The community structures of proteobacterial beta-subgroup ammonia-oxidizing bacteria at the sampling sites were compared by PCR amplification of 16S ribosomal DNA (rDNA), using primers which target this group. PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE) and with oligonucleotide hybridization probes specific for different ammonia oxidizers. A DGGE doublet observed in PCR products from the highly polluted fish cage sediment sample was present at a lower intensity in the 20-m sample but was absent from the pristine 40-m sample station. Band migration, hybridization, and sequencing demonstrated that the doublet corresponded to a marine Nitrosomonas group which was originally observed in 16S rDNA clone libraries prepared from the same sediment samples but with different PCR primers. Our data suggest that this novel Nitrosomonas subgroup was selected for within polluted fish farm sediments and that the relative abundance of this group was influenced by the extent of pollution.

  2. Influence of soil moisture on linear alkylbenzene sulfonate-induced toxicity in ammonia-oxidizing bacteria.

    PubMed

    Nielsen, Klaus B; Brandt, Kristian K; Jacobsen, Anne-Marie; Mortensen, Gerda K; Sørensen, Jan

    2004-02-01

    Moisture affects bioavailability and fate of pollutants in soil, but very little is known about moisture-induced effects on pollutant toxicity. We here report on a modifying effect of moisture on degradation of linear alkylbenzene sulfonates (LASs) and on their toxicity towards ammonia-oxidizing bacteria (AOB) in agricultural soil. In soil spiked with two LAS levels (250 or 1,000 mg/kg) and incubated at four different moisture levels (9-100% of water-holding capacity), degradation was strongly affected by both soil moisture and initial LAS concentration, resulting in degradation half-lives ranging from 13 to more than 160 d. Toxicity towards AOB assessed by a novel Nitrosomonas europaea luxAB-reporter assay was correlated to total LAS concentration, indicating that LAS remained bioavailable over time without accumulation of toxic intermediates. Toxicity towards indigenous AOB increased with increasing soil moisture. The results indicate that dry soil conditions inhibit LAS degradation and provide protection against toxicity within the indigenous AOB, thus allowing for a rapid recovery of this population when LAS degradation is resumed and completed after rewetting. We propose that the protection of microbial populations against toxicity in dry soil may be a general phenomenon caused primarily by limited diffusion and thus a low bioavailability of the toxicant.

  3. Effects of selected pharmaceutically active compounds on the ammonia oxidizing bacterium Nitrosomonas europaea.

    PubMed

    Wang, Shuyi; Gunsch, Claudia K

    2011-01-01

    Pharmaceutically active compounds (PhACs) are commonly found in wastewater influent. However, little research has focused on determining their impact on fundamental processes in wastewater treatment such as nitrogen removal. In this study, focus was placed on 4 commonly occurring PhACs (ketoprofen, naproxen, carbamazepine and gemfibrozil). Their effect was ascertained in the ammonia oxidizing bacterium (AOB), Nitrosomonas europaea in terms of membrane integrity and nitrite production. These PhACs were shown to inhibit nitrite production at concentrations of 1 and 10 μM while no effect was observed at 0.1 μM. The maximum observed nitrification inhibition was 25%, 29%, 22% and 26% for ketoprofen, naproxen, carbamazepine and gemfibrozil, respectively. A decrease in the live/dead ratio ranging from 10% to 16% suggests that these PhACs affect membrane integrity in N.europaea. The difference in nitrite production between PhACs treated cells and non PhAC treated controls was still significant following washing suggesting that inhibition is irreversible. Finally, nitrite production when adjusted to the live fraction of cells was also found to decrease suggesting that PhACs inhibited the activity of surviving cells. These results suggest that the presence of PhACs may affect AOB activity and may impact nitrogen removal, a key function in wastewater treatment. Follow up studies with additional AOB and in mixed culture are needed to further confirm these results.

  4. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment

    SciTech Connect

    Norton, Jeanette M.; Klotz, Martin G; Stein, Lisa Y; Arp, D J; Bottomley, Peter J; Chain, Patrick S. G.; Hauser, Loren John; Land, Miriam L; Larimer, Frank W; Shin, M; Starkenburg, Shawn R

    2008-01-01

    The complete genome of the ammonia-oxidizing bacterium, Nitrosospira multiformis (ATCC 25196T), consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2827 putative proteins. Of these, 2026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and N. eutropha were the best match for 42% of the predicted genes in N. multiformis. The genome contains three nearly identical copies of amo and hao gene clusters as large repeats. Distinguishing features compared to N. europaea include: the presence of gene clusters encoding urease and hydrogenase, a RuBisCO-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced AOB genomes. Gene clusters encoding proteins associated with outer membrane and cell envelope functions including transporters, porins, exopolysaccharide synthesis, capsule formation and protein sorting/export were abundant. Numerous sensory transduction and response regulator gene systems directed towards sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate and cyanophycin storage and utilization were identified providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.

  5. Temperature Responses of Ammonia-Oxidizing Prokaryotes in Freshwater Sediment Microcosms

    PubMed Central

    Yu, Zhongbo; Huang, Rui; Wu, Qinglong L.

    2014-01-01

    In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA) and bacteria (AOB), lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest diversity of bacterial amoA gene was found in the 25°C treatment sample. However, the 25°C treatment sample maintained the lowest diversity of archaeal amoA gene. Most of the archaeal amoA sequences obtained in this study affiliated with the Nitrosopumilus cluster. Two sequences obtained from the 15°C treatment samples were affiliated with the Nitrosotalea cluster. N. oligotropha lineage was the most dominant bacterial amoA gene group. Several sequences affiliated to Nitrosospira and undefined N. europaea/NC. mobilis like lineage were found in the pre-incubation and 25°C treatment groups. PMID:24959960

  6. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments.

    PubMed

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.

  7. Temperature responses of ammonia-oxidizing prokaryotes in freshwater sediment microcosms.

    PubMed

    Zeng, Jin; Zhao, Dayong; Yu, Zhongbo; Huang, Rui; Wu, Qinglong L

    2014-01-01

    In order to investigate the effects of temperature on the abundances and community compositions of ammonia-oxidizing archaea (AOA) and bacteria (AOB), lake microcosms were constructed and incubated at 15°C, 25°C and 35°C for 40 days, respectively. Temperature exhibited different effects on the abundance and diversity of archaeal and bacterial amoA gene. The elevated temperature increased the abundance of archaeal amoA gene, whereas the abundance of bacterial amoA gene decreased. The highest diversity of bacterial amoA gene was found in the 25°C treatment sample. However, the 25°C treatment sample maintained the lowest diversity of archaeal amoA gene. Most of the archaeal amoA sequences obtained in this study affiliated with the Nitrosopumilus cluster. Two sequences obtained from the 15°C treatment samples were affiliated with the Nitrosotalea cluster. N. oligotropha lineage was the most dominant bacterial amoA gene group. Several sequences affiliated to Nitrosospira and undefined N. europaea/NC. mobilis like lineage were found in the pre-incubation and 25°C treatment groups.

  8. Gold and silver nanoparticle effects on ammonia-oxidizing bacteria cultures under ammoxidation.

    PubMed

    Luo, Zhuanxi; Chen, Zheng; Qiu, Zhaozheng; Li, Yancai; Laing, Gijs Du; Liu, Aifen; Yan, Changzhou

    2015-02-01

    Owing to their wide application in industry and manufacturing, understanding the environmental safety of gold (Au) and silver (Ag) nanoparticles entering aquatic environment is a global issue of concern. For this study, ammonia-oxidizing bacteria (AOB) enrichment cultures reproduced from surface sediments taken from the Jiulong River estuary wetlands (Fujian Province, China) were spiked with nano-Ag and nano-Au to determine their impact on ammoxidation and the mechanisms involved in the process. Results showed that nano-Ag significantly inhibited bacterial ammoxidation in aquatic environment, with the average ammoxidation rate decreasing with increasing nano-Ag concentration. The average ammoxidation rate was significantly correlated to the Shannon index, the Simpson index, and AOB abundance. This suggested that ammoxidation inhibition resulted primarily from AOB biodiversity and abundance reduction, caused by the antibacterial property of nano-Ag. However, AOB biodiversity and abundance as well as bacterial ammoxidation were not inhibited by nano-Au (with a maximum experimental concentration of 2 mg L(-1)). Moreover, an insignificant correlation was found between AOB biodiversity and abundance and the average ammoxidation rate under the nano-Au treatment. Given that ammoxidation is regarded as a rate-limiting procedure in nitrogen (N) circulation, nano-Ag would affect N cycling but nano-Au would not after entering aquatic environments. Identified nano-Ag and nano-Au impacts on ammonium nitrogen transformation could be generalized in aquatic environment according to their extensive representation in the phylogenetic tree.

  9. Methane Emission From the Congo Deep Sea Fan and Subsequent Aerobic Oxidation in the Quaternary Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Handley, L.; Cooke, M. P.; Talbot, H. M.; Wagner, T.

    2008-12-01

    The Congo Fan is a well-documented region of important methane (CH4) storage and gas seepage: gas hydrates abound at and just below the sediment surface as do large deeply-buried reservoirs of thermogenic methane linked with hydrocarbon source rocks. In the Congo Fan, both sources of methane are intimately connected through a complex network of faults, structuring this massive sediment wedge in a unique way. Methane release from both reservoirs has the potential to drive or respond to changes in local and global climate, thus causing changes in ocean chemical properties and biotic responses. Understanding these poorly-constrained mechanisms of methane emission and reconstructing the history of past emissions in the ocean is the main focus of our study. The ultimate fate of CH4 is, typically, its oxidation to CO2; this process can occur aerobically and anaerobically. Compared to anaerobic processes, aerobic methane oxidation, and its underlying mechanisms and possible feedbacks for the ocean-climate system, has received little attention. Here we present molecular evidence from Congo Fan sediments for aerobic methane oxidation and highlight how the process may play a previously unrecognised role in carbon cycling and oxygen availability in the water column. Bacteriohopanepolyols (BHPs) are lipid membrane constituents and occur with a wide range of structural and functional variability in many bacteria. Amino-BHPs are produced in large abundances by methane-oxidising bacteria and the 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) is a highly specific biomarker for aerobic methane oxidation. The Congo Fan record (ODP Leg 175, Site 1075; 2996 m depth) spans the last 1 Myr and reveals remarkable organic biomarker preservation, with a suite of 13 different BHPs identified in most sediment horizons, including aminopentol. Aminopentol abundance varies widely throughout the section and appears to do so cyclically, with markedly greater concentrations between ca

  10. Energy-mediated vs. ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium, Nitrosococcus oceani

    PubMed Central

    Stein, Lisa Y.; Campbell, Mark A.; Klotz, Martin G.

    2013-01-01

    Ammonia serves as the source of energy and reductant and as a signaling molecule that regulates gene expression in obligate ammonia-oxidizing chemolithotrophic microorganisms. The gammaproteobacterium, Nitrosococcus oceani, was the first obligate ammonia-oxidizer isolated from seawater and is one of the model systems for ammonia chemolithotrophy. We compared global transcriptional responses to ammonium and the catabolic intermediate, hydroxylamine, in ammonium-starved and non-starved cultures of N. oceani to discriminate transcriptional effects of ammonium from a change in overall energy and redox status upon catabolite availability. The most highly expressed genes from ammonium- or hydroxylamine-treated relative to starved cells are implicated in catabolic electron flow, carbon fixation, nitrogen assimilation, ribosome structure and stress tolerance. Catabolic inventory-encoding genes, including electron flow-terminating Complexes IV, FoF1 ATPase, transporters, and transcriptional regulators were among the most highly expressed genes in cells exposed only to ammonium relative to starved cells, although the differences compared to steady-state transcript levels were less pronounced. Reduction in steady-state mRNA levels from hydroxylamine-treated relative to starved-cells were less than five-fold. In contrast, several transcripts from ammonium-treated relative to starved cells were significantly less abundant including those for forward Complex I and a gene cluster of cytochrome c encoding proteins. Identified uneven steady-state transcript levels of co-expressed clustered genes support previously reported differential regulation at the levels of transcription and transcript stability. Our results differentiated between rapid regulation of core genes upon a change in cellular redox status vs. those responsive to ammonium as a signaling molecule in N. oceani, both confirming and extending our knowledge of metabolic modules involved in ammonia chemolithotrophy. PMID

  11. High Concentrations of the Antibiotic Spiramycin in Wastewater Lead to High Abundance of Ammonia-Oxidizing Archaea in Nitrifying Populations.

    PubMed

    Zhang, Yu; Tian, Zhe; Liu, Miaomiao; Shi, Zhou Jason; Hale, Lauren; Zhou, Jizhong; Yang, Min

    2015-08-04

    To evaluate the potential effects of antibiotics on ammonia-oxidizing microbes, multiple tools including quantitative PCR (qPCR), 454-pyrosequencing, and a high-throughput functional gene array (GeoChip) were used to reveal the distribution of ammonia-oxidizing archaea (AOA) and archaeal amoA (Arch-amoA) genes in three wastewater treatment systems receiving spiramycin or oxytetracycline production wastewaters. The qPCR results revealed that the copy number ratios of Arch-amoA to ammonia-oxidizing bacteria (AOB) amoA genes were the highest in the spiramycin full-scale (5.30) and pilot-scale systems (1.49 × 10(-1)), followed by the oxytetracycline system (4.90 × 10(-4)), with no Arch-amoA genes detected in the control systems treating sewage or inosine production wastewater. The pyrosequencing result showed that the relative abundance of AOA affiliated with Thaumarchaeota accounted for 78.5-99.6% of total archaea in the two spiramycin systems, which was in accordance with the qPCR results. Mantel test based on GeoChip data showed that Arch-amoA gene signal intensity correlated with the presence of spiramycin (P < 0.05). Antibiotics explained 25.8% of variations in amoA functional gene structures by variance partitioning analysis. This study revealed the selection of AOA in the presence of high concentrations of spiramycin in activated sludge systems.

  12. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    PubMed

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  13. Quantitative analysis of ammonia-oxidizing bacteria in a combined system of MBR and worm reactors treating synthetic wastewater.

    PubMed

    Liu, Jia; Tian, Yu; Wang, Dezhen; Lu, Yaobin; Zhang, Jun; Zuo, Wei

    2014-12-01

    The Static Sequencing Batch Worm Reactor (SSBWR) followed by the MBR (S-MBR) is one of the advanced excess sludge treatments. In this paper, the control MBR (C-MBR) and the SSBWR-MBR were operated in parallel to study the changes of NH3-N removal and ammonia oxidizing bacteria (AOB). The results showed that the capacity of NH3-N removal of the S-MBR was improved by the worm reactors along with the operation. The S-MBR was favorable because it selected for the higher activity of the ammonia oxidization and better cells appearance of the sludge. The five species (Nitrosomonas, Betaproteobacteria, Clostridium, Dechloromonas and Bacteria) were found to be significantly correlate with the ammonia oxidization functions and performance of NH3-N removal in the C-MBR and S-MBR. The Nitrosomonas, Betaproteobacteria and Dechloromonas remained and eventually enriched in the S-MBR played a primary role in the NH3-N removal of the S-MBR.

  14. Response of ammonia oxidizing bacteria and archaea to acute zinc stress and different moisture regimes in soil.

    PubMed

    Vasileiadis, Sotirios; Coppolecchia, Damiano; Puglisi, Edoardo; Balloi, Annalisa; Mapelli, Francesca; Hamon, Rebecca E; Daffonchio, Daniele; Trevisan, Marco

    2012-11-01

    Ammonia oxidation has been intensively studied for its sensitivity to environmental shifts and stresses. However, acute stress effects on the occurrence and composition of ammonia oxidizing bacteria (AOB) and archaea (AOA) based on expression of related molecular markers in complex soil environments have been to an extent overlooked, particularly concerning transient but commonly occurring environmental changes like soil moisture shifts. The present study investigates the responses of AOB and AOA to moisture shifts and high Zn soil content. AmoA gene copies and transcripts of AOB and AOA along with potential nitrification activity were measured in a soil microcosm approach for investigating the referred environmental shifts. Moisture change from 87 to 50 % of the water holding capacity caused a ~99 % reduction of AOB but not of AOA amoA transcripts that did not change significantly. Increasing applied zinc concentrations resulted in a reduction of potential nitrification rates and negatively affected studied gene expressions of both AOB and AOA, with AOB being more responsive. Both 16 S rRNA and amoA transcripts of AOB had an inverse relation to the applied zinc, indicating a gradual loss in total cell activity. Our results suggest the existence of pronounced differences between AOB and AOA concerning ammonia oxidation activity.

  15. Analysis of nitrification in agricultural soil and improvement of nitrogen circulation with autotrophic ammonia-oxidizing bacteria.

    PubMed

    Matsuno, Toshihide; Horii, Sachie; Sato, Takanobu; Matsumiya, Yoshiki; Kubo, Motoki

    2013-02-01

    Accumulations of inorganic nitrogen (NH₄⁺, NO₂⁻, and NO₃⁻) were analyzed to evaluate the nitrogen circulation activity in 76 agricultural soils. Accumulation of NH₄⁺ was observed, and the reaction of NH₄⁺→ NO₂⁻ appeared to be slower than that of NO₂⁻ → NO₃⁻ in agricultural soil. Two autotrophic and five heterotrophic ammonia-oxidizing bacteria (AOB) were isolated and identified from the soils, and the ammonia-oxidizing activities of the autotrophic AOB were 1.0 × 10³-1.0 × 10⁶ times higher than those of heterotrophic AOB. The relationship between AOB number, soil bacterial number, and ammonia-oxidizing activity was investigated with 30 agricultural soils. The ratio of autotrophic AOB number was 0.00032-0.26% of the total soil bacterial number. The soil samples rich in autotrophic AOB (>1.0 × 10⁴ cells/g soil) had a high nitrogen circulation activity, and additionally, the nitrogen circulation in the agricultural soil was improved by controlling the autotrophic AOBs.

  16. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens.

    PubMed

    Sun, Jianlei; Bai, Mei; Shen, Jianlin; Griffith, David W T; Denmead, Owen T; Hill, Julian; Lam, Shu Kee; Mosier, Arvin R; Chen, Deli

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH3) emissions from livestock industries. We investigated the effects of lignite surface applications on NH3 and nitrous oxide (N2O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6kgm(-2), were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH3 and N2O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH3 analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH3 and N2O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240gNhead(-1)day(-1)) was lost via NH3 volatilization from the control pen, while lignite application decreased NH3 volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH3 emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14gN2O-Nhead(-1)day(-1) (<0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N2O emissions by 40 and 57%, to 0.14 and 0.22gN2O-Nhead(-1)day(-1), for Phase 1 and Phase 2, respectively. The increase in N2O emissions resulting from lignite application was counteracted by the lower indirect N2O emission due to decreased NH3 volatilization. Using 1% as a default emission factor of deposited NH3 for indirect N2O emissions, the application of lignite decreased total N2O emissions.

  17. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  18. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    PubMed Central

    2015-01-01

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977

  19. Six weeks of aerobic dance exercise improves blood oxidative stress status and increases interleukin-2 in previously sedentary women.

    PubMed

    Leelarungrayub, Donrawee; Saidee, Kunteera; Pothongsunun, Prapas; Pratanaphon, Sainetee; YanKai, Araya; Bloomer, Richard J

    2011-07-01

    This study evaluated the change in blood oxidative stress, blood interleukin-2, and physical performance following 6 weeks of moderate intensity and duration aerobic dance exercise in 24 sedentary women. Blood samples were collected at rest twice before (baseline) and after the 6-week intervention for analysis of protein hydroperoxide (PrOOH), malondialdehyde (MDA), total anti-oxidant capacity (TAC), and interleukin-2 (IL-2) levels. Maximal treadmill run time (Time(max)) and maximal oxygen consumption (VO(2max)) were also measured. All variables were statistically analyzed with a repeated measurement ANOVA and Tukey post hoc. No differences were noted in any variable during the baseline period (p > 0.05). After aerobic dance exercise, VO(2max), Time(max), TAC and IL-2 were significantly increased, whereas MDA levels were decreased significantly (p < 0.05). PrOOH did not change either between baseline measures or after exercise. It can be concluded that aerobic dance exercise at a moderate intensity and duration can improve physical fitness, decrease MDA, and increase TAC and IL-2 in previously sedentary women.

  20. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  1. Effects of Soil on Ammonia, Ethylene, Chloroethane, and 1,1,1-Trichloroethane Oxidation by Nitrosomonas europaea†

    PubMed Central

    Hommes, Norman G.; Russell, Sterling A.; Bottomley, Peter J.; Arp, Daniel J.

    1998-01-01

    Ammonia monooxygenase (AMO) from Nitrosomonas europaea catalyzes the oxidation of ammonia to hydroxylamine and has been shown to oxidize a variety of halogenated and nonhalogenated hydrocarbons. As part of a program focused upon extending these observations to natural systems, a study was conducted to examine the influence of soil upon the cooxidative abilities of N. europaea. Small quantities of Willamette silt loam (organic carbon content, 1.8%; cation-exchange capacity, 15 cmol/kg of soil) were suspended with N. europaea cells in a soil-slurry-type reaction mixture. The oxidations of ammonia and three different hydrocarbons (ethylene, chloroethane, and 1,1,1-trichloroethane) were compared to results for controls in which no soil was added. The soil significantly inhibited nitrite production from 10 mM ammonium by N. europaea. Inhibition resulted from a combination of ammonium adsorption onto soil colloids and the exchangeable acidity of the soil lowering the pH of the reaction mixture. These phenomena resulted in a substantial drop in the concentration of NH4+ in solution (10 to 4.5 mM) and, depending upon the pH, in a reduction in the amount of available NH3 to concentrations (8 to 80 μM) similar to the Ks value of AMO for NH3 (∼29 μM). At a fixed initial pH (7.8), the presence of soil also modified the rates of oxidation of ethylene and chloroethane and changed the concentrations at which their maximal rates of oxidation occurred. The modifying effects of soil on nitrite production and on the cooxidation of ethylene and chloroethane could be circumvented by raising the ammonium concentration in the reaction mixture from 10 to 50 mM. Soil had virtually no effect on the oxidation of 1,1,1-trichloroethane. PMID:16349541

  2. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.

    PubMed

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki

    2013-12-01

    Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and (13)C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated (13)C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium.

  3. Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water—“silver mirror”: From stoichiometric to catalytic

    PubMed Central

    Liu, Mingxin; Wang, Haining; Zeng, Huiying; Li, Chao-Jun

    2015-01-01

    The first example of a homogeneous silver(I)-catalyzed aerobic oxidation of aldehydes in water is reported. More than 50 examples of different aliphatic and aromatic aldehydes, including natural products, were tested, and all of them successfully underwent aerobic oxidation to give the corresponding carboxylic acids in extremely high yields. The reaction conditions are very mild and greener, requiring only a very low silver(I) catalyst loading, using atmospheric oxygen as the oxidant and water as the solvent, and allowing gram-scale oxidation with only 2 mg of our catalyst. Chromatography is completely unnecessary for purification in most cases. PMID:26601150

  4. Copper(II)-Catalyzed Benzylic C(sp(3))-H Aerobic Oxidation of (Hetero)Aryl Acetimidates: Synthesis of Aryl-α-ketoesters.

    PubMed

    Kumar, Yogesh; Jaiswal, Yogesh; Kumar, Amit

    2016-12-16

    A straightforward method is developed in this paper for the synthesis of α-ketoesters through copper-catalyzed aerobic oxidation of (hetero)aryl acetimidates using molecular oxygen as a sustainable oxidant. The reaction represents the first example of the direct synthesis of aryl-α-ketoesters from arylacetimidates through the aerobic oxidation of a benzylic C(sp3)-H (C═O) bond in moderate to good yield. This transformation occurs under mild reaction conditions with a wide range of substrates and utilizes a readily available oxidant and catalyst. The synthetic utility of this transformation is demonstrated through scaled-up synthesis. A plausible reaction mechanism is also proposed.

  5. A study on the reaction characteristics of vanadium-impregnated natural manganese oxide in ammonia selective catalytic reduction.

    PubMed

    Kim, Sung Su; Lee, Sang Moon; Park, Kwang Hee; Kwon, Dong Wook; Hong, Sung Chang

    2011-05-01

    This study investigated the effect of adding vanadium (V) to natural manganese oxide (NMO) in ammonia (NH3) selective catalytic reduction (SCR). The addition of V to NMO decreased the catalytic activity at low temperatures by blocking the active site. However, the enhancement of catalytic activity was achieved by controlling NH3 oxidation at high temperatures. From the NH3 temperature programmed desorption and oxygen on/off test, it was confirmed that the amount of Lewis acid site and active lattice oxygen of the catalyst affects the catalytic performance at low temperature.

  6. Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas

    PubMed Central

    Yu, Shaolan; Yao, Peng; Liu, Jiwen; Zhao, Bin; Zhang, Guiling; Zhao, Meixun; Yu, Zhigang; Zhang, Xiao-Hua

    2016-01-01

    The eastern China marginal seas (ECMS) are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, including marginal seas. However, few studies have attempted to address the distribution patterns of ammonia-oxidizing prokaryotes in mud deposits of these seas. The horizontal and vertical community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in mud deposits of the South Yellow Sea (SYS) and the East China Sea (ECS) by using amoA clone libraries and quantitative PCR. The diversity of AOB was comparable or higher in the mud zone of SYS and lower in ECS when compared with AOA. Vertically, surface sediments had generally higher diversity of AOA and AOB than middle and bottom layers. Diversity of AOA and AOB showed significant correlation with latitude. Nitrosopumilus and Nitrosospira lineages dominated AOA and AOB communities, respectively. Both AOA and AOB assemblages exhibited greater variations across different sites than those among various depths at one site. The abundance of bacterial amoA was generally higher than that of archaeal amoA, and both of them decreased with depth. Niche differentiation, which was affected by dissolved oxygen, salinity, ammonia, and silicate (SiO32-), was observed between AOA and AOB and among different groups of them. The spatial distribution of AOA and AOB was significantly correlated with δ15NTN and SiO32-, and nitrate and δ13C, respectively. Both archaeal and bacterial amoA abundance correlated strongly with SiO32-. This study improves our understanding of spatial distribution of AOA and AOB in ecosystems featuring oceanic mud deposits. PMID:26904010

  7. Spatial Distribution of Total, Ammonia-Oxidizing, and Denitrifying Bacteria in Biological Wastewater Treatment Reactors for Bioregenerative Life Support

    PubMed Central

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project—Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation. PMID:11976099

  8. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    NASA Technical Reports Server (NTRS)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  9. Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis

    PubMed Central

    Potanina, Anastasia; Francis, Christopher A.; Quake, Stephen R.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A (amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles. PMID

  10. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    PubMed Central

    Daebeler, Anne; Abell, Guy C. J.; Bodelier, Paul L. E.; Bodrossy, Levente; Frampton, Dion M. F.; Hefting, Mariet M.; Laanbroek, Hendrikus J.

    2012-01-01

    The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization. PMID:23060870

  11. Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis via Oxidative Stress, Mitophagy, and Aerobic Glycolysis

    PubMed Central

    Pavlides, Stephanos; Vera, Iset; Gandara, Ricardo; Sneddon, Sharon; Pestell, Richard G.; Mercier, Isabelle; Martinez-Outschoorn, Ubaldo E.; Whitaker-Menezes, Diana; Howell, Anthony

    2012-01-01

    Abstract Significance: Here, we review certain recent advances in oxidative stress and tumor metabolism, which are related to understanding the contributions of the microenvironment in promoting tumor growth and metastasis. In the early 1920s, Otto Warburg, a Nobel Laureate, formulated a hypothesis to explain the “fundamental basis” of cancer, based on his observations that tumors displayed a metabolic shift toward glycolysis. In 1963, Christian de Duve, another Nobel Laureate, first coined the phrase auto-phagy, derived from the Greek words “auto” and “phagy,” meaning “self” and “eating.” Recent Advances: Now, we see that these two ideas (autophagy and aerobic glycolysis) physically converge in the tumor stroma. First, cancer cells secrete hydrogen peroxide. Then, as a consequence, oxidative stress in cancer-associated fibroblasts drives autophagy, mitophagy, and aerobic glycolysis. Critical Issues: This “parasitic” metabolic coupling converts the stroma into a “factory” for the local production of recycled and high-energy nutrients (such as L-lactate)—to fuel oxidative mitochondrial metabolism in cancer cells. We believe that Warburg and de Duve would be pleased with this new two-compartment model for understanding tumor metabolism. It adds a novel stromal twist to two very well-established cancer paradigms: aerobic glycolysis and autophagy. Future Directions: Undoubtedly, these new metabolic models will foster the development of novel biomarkers, and corresponding therapies, to achieve the goal of personalized cancer medicine. Given the central role that oxidative stress plays in this process, new powerful antioxidants should be developed in the fight against cancer. Antioxid. Redox Signal. 16, 1264–1284. PMID:21883043

  12. Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions

    SciTech Connect

    Beller, H R; Letain, T E; Chakicherla, A; Kane, S R; Legler, T C; Coleman, M A

    2006-04-22

    Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately ten percent of the genome) as differentially expressed using Robust Multi-array Average statistical analysis and a 2-fold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated respectively with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur-compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription, quantitative PCR analysis was used to validate these trends.

  13. Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading.

    PubMed

    Vejmelkova, Dana; Sorokin, Dimitry Y; Abbas, Ben; Kovaleva, Olga L; Kleerebezem, Robbert; Kampschreur, Marlies J; Muyzer, Gerard; van Loosdrecht, Mark C M

    2012-01-01

    The ammonia-oxidizing bacterial community (AOB) was investigated in two types of laboratory-scale bioreactors performing partial oxidation of ammonia to nitrite or nitrate at high (80 mM) to extremely high (428 mM) concentrations of ammonium bicarbonate. At all conditions, the dominant AOB was affiliated to the Nitrosomonas europaea lineage as was determined by fluorescence in situ hybridization and polymerase chain reaction in combination with denaturing gradient gel electrophoresis. Molecular analysis of the mixed populations, based on the 16S rRNA and cbbL genes, demonstrated the presence of two different phylotypes of Nitrosomonas, while microbiological analysis produced a single phylotype, represented by three different morphotypes. One of the most striking features of the AOB populations encountered in the bioreactors was the domination of highly aggregated obligate microaerophilic Nitrosomonas, with unusual cellular and colony morphology, commonly observed in nitrifying bioreactors but rarely investigated by cultural methods. The latter is probably not an adaptation to stressful conditions created by high ammonia or nitrite concentrations, but oxygen seems to be a stressful factor in these bioreactors.

  14. Controlled growth of conical nickel oxide nanocrystals and their high performance gas sensing devices for ammonia molecule detection.

    PubMed

    Wang, Jian; Yang, Fan; Wei, Xiaowei; Zhang, Yafei; Wei, Liangming; Zhang, Jianjun; Tang, Qifeng; Guo, Biao; Xu, Lei

    2014-08-21

    NiO nanocones with good symmetry and highly ordered structure on NiO foil substrate have been successfully fabricated via a facile wet chemical approach combined with subsequent high temperature oxidation. These organized conical superstructures grow only along a certain direction and be controlled via the self-assembly and oriented attachment of a nucleus, which mainly rely on the similar surface energies and the extent of lattice matching of the oriented attached surfaces. During high temperature oxidation, the electric field created via the Ni(2+) and O(2-) facilitates Ni(2+) diffusion outward along the grain boundaries and O(2-) diffusion inward toward to meet the Ni(2+) ions, forming NiO. The as-grown NiO nanocones are 50-350 nm in diameter and 50-400 nm in height. The tip diameter of the nanocone is about 30 nm and the apex angle of the nanocone is about 40°. Meanwhile, we systematically investigated the gas sensing properties of the sensors based on the as-fabricated NiO foil covered with nanocone arrays for ammonia detection at room temperature. The results show that the gas sensing devices have outstanding sensitivity, reproducibility and selectivity, which are mainly because of the excellent connection between the NiO sensing materials and the Au electrodes, the strong electron donating ability of ammonia and the large active surface of selective physisorption for ammonia.

  15. A Potentiometric Flow Biosensor Based on Ammonia-Oxidizing Bacteria for the Detection of Toxicity in Water

    PubMed Central

    Zhang, Qianyu; Ding, Jiawang; Kou, Lijuan; Qin, Wei

    2013-01-01

    A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation—allylthiourea and thioacetamide—have been tested. The IC50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 μM and 0.46 μM for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water. PMID:23708274

  16. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea.

    PubMed

    Vetterli, Adrien; Hietanen, Susanna; Leskinen, Elina

    2016-02-01

    The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes.

  17. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    PubMed

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  18. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering

    NASA Astrophysics Data System (ADS)

    Chadwick, D. R.

    The effect of compaction and covering during storage of beef cattle ( Bos taurus) farmyard manure (FYM) on ammonia (NH 3), nitrous oxide (N 2O) and methane (CH 4) emissions was determined. Gaseous emission measurements were made over three separate storage periods of between 90 and 109 days. The effect of the different storage treatments on manure chemical composition was also determined. Compaction was carried out as the manure was put into store and the compacted manures covered with plastic sheeting. Compaction and covering significantly reduced NH 3 emissions from manure by over 90% during the first summer storage period (P<0.05). Over the subsequent storage periods NH 3 emissions from the FYM were small and unaffected by storage treatment. However, during the second storage period heavy and persistent rainfall during heap establishment and the following week appeared to reduce NH 3 emissions markedly. The low ammonium-N content of the FYM in the third storage period may have reduced the risk of NH 3 emission and reduced the relative effect of the compaction/covering treatment. Compaction and covering also significantly reduced N 2O emissions from cattle FYM (P<0.05) by ca. 30% during the first storage period. Subsequent N 2O emissions were unaffected by treatment. Methane emissions from cattle FYM were unaffected by treatment over the first storage period and were decreased by compaction in the second storage period yet was increased by compaction during the third storage period. It would appear that compacting and covering manure heaps does have the potential to reduce emissions of both NH 3 and N 2O when the manure contains relatively high ammonium-N contents. Additional benefits are that N and K are retained in the manure heap for agronomic benefit.

  19. Seasonal and annual reoccurrence in betaproteobacterial ammonia-oxidizing bacterial population structure.

    PubMed

    Bouskill, Nicholas J; Eveillard, Damien; O'Mullan, Gregory; Jackson, George A; Ward, Bess B

    2011-04-01

    Microbes exhibit remarkably high genetic diversity compared with plant and animal species. Many phylogenetically diverse but apparently functionally redundant microbial taxa are detectable within a cubic centimetre of mud or a millilitre of water, and the significance of this diversity, in terms of ecosystem function, has been difficult to understand. Thus it is not known whether temporal and spatial differences in microbial community composition are linked to particular environmental factors or might modulate ecosystem response to environmental change. Fifty-three water and sediment samples from upper and lower Chesapeake Bay were analysed in triplicate arrays to determine temporal and spatial patterns and relationships between ammonia-oxidizing bacterial (AOB) communities and environmental variables. Thirty-three water samples (three depths) collected during April, August and October, 2001-2004, from the oligohaline upper region of the Bay were analysed to investigate temporal patterns in archetype distribution. Using a combination of a non-weighted discrimination analysis and principal components analysis of community composition data obtained from functional gene microarrays, it was found that co-varying AOB assemblages reoccurred seasonally in concert with specific environmental conditions, potentially revealing patterns of niche differentiation. Among the most notable patterns were correlations of AOB archetypes with temperature, DON and ammonium concentrations. Different AOB archetypes were more prevalent at certain times of the year, e.g. some were more abundant every autumn and others every spring. This data set documents the successional return to an indigenous community following massive perturbation (hurricane induced flooding) as well as the seasonal reoccurrence of specific lineages, identified by key functional genes, associated with the biogeochemically important process nitrification.

  20. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Singh, Brajesh K

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered.

  1. Impact of acetochlor on ammonia-oxidizing bacteria in microcosm soils.

    PubMed

    Li, Xinyu; Zhang, Huiwen; Wu, Minna; Su, Zhencheng; Zhang, Chenggang

    2008-01-01

    Acetochlor is an increasingly used herbicide on corn in North China. Currently, the effect of acetochlor on soil ammonia-oxidizing bacteria (AOB) communities is not well documented. Here, we studied the diversity and community composition of AOB in soil amended with three concentrations of acetochlor (50, 150, 250 mg/kg) and the control (0 mg acetochlor/kg soil) in a microcosm experiment by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and the phylogenetic analysis of excised DGGE bands. DGGE profiles showed that acetochlor had a stimulating effect on AOB at the early stage after acetochlor amended, and the order of intensity and duration is medium-acetochlor amended samples (AM) > low-acetochlor amended samples (AL) > high-acetochlor amended samples (AH). At the end of 60 d microcosm, acetochlor had a negative effect on the diversity of AOB. Cluster analysis of DGGE profiles showed that acetochlor had a greater effect on the community structure of AOB on day 60 than on day 1. The phylogenetic analysis revealed that all the sequences of excised DGGE bands were closely related to members of the genus Nitrosospira and formed two separate subclusters designated as subcluster 1 and subcluster 2 affiliated respectively with clusters 3 and 4 in Nitrosospira as defined by Stephen. Some dominant AOB had a change from subcluster 2 to subcluster 1 with the incubation. The results showed that acetochlor had an effect on the AOB on a long-term basis and the chronic effect of acetochlor should be paid more attention in future.

  2. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials.

    PubMed

    Taylor, Anne E; Zeglin, Lydia H; Wanzek, Thomas A; Myrold, David D; Bottomley, Peter J

    2012-11-01

    It is well known that the ratio of ammonia-oxidizing archaea (AOA) and bacteria (AOB) ranges widely in soils, but no data exist on what might influence this ratio, its dynamism, or how changes in relative abundance influences the potential contributions of AOA and AOB to soil nitrification. By sampling intensively from cropped-to-fallowed and fallowed-to-cropped phases of a 2-year wheat/fallow cycle, and adjacent uncultivated long-term fallowed land over a 15-month period in 2010 and 2011, evidence was obtained for seasonal and cropping phase effects on the soil nitrification potential (NP), and on the relative contributions of AOA and AOB to the NP that recovers after acetylene inactivation in the presence and absence of bacterial protein synthesis inhibitors. AOB community composition changed significantly (P0.0001) in response to cropping phase, and there were both seasonal and cropping phase effects on the amoA gene copy numbers of AOA and AOB. Our study showed that the AOA:AOB shifts were generated by a combination of different phenomena: an increase in AOA amoA abundance in unfertilized treatments, compared with their AOA counterparts in the N-fertilized treatment; a larger population of AOB under the N-fertilized treatment compared with the AOB community under unfertilized treatments; and better overall persistence of AOA than AOB in the unfertilized treatments. These data illustrate the complexity of the factors that likely influence the relative contributions of AOA and AOB to nitrification under the various combinations of soil conditions and NH(4)(+)-availability that exist in the field.

  3. Effects of 30 Years of Crop Rotation and Tillage on Bacterial and Archaeal Ammonia Oxidizers.

    PubMed

    Munroe, Jake W; McCormick, Ian; Deen, William; Dunfield, Kari E

    2016-05-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) both mediate soil nitrification and may have specialized niches in the soil. Little is understood of how these microorganisms are affected by long-term crop rotation and tillage practices. In this study, we assessed abundance and gene expression of AOB and AOA under two contrasting crop rotations and tillage regimes at a 30-yr-old long-term experiment on a Canadian silt loam soil. Continuous corn ( L.) (CC) was compared with a corn-corn-soybean [ (L.) Merr.]-winter wheat ( L.) rotation under-seeded with red clover ( L.) (RC), with conventional tillage (CT) and no-till (NT) as subplot treatments. Soil sampling was performed during the first corn year at four time points throughout the 2010 season and at three discrete depths (0-5, 5-15, and 15-30 cm). Overall, AOA abundance was found to be more than 10 times that of AOB, although AOA transcriptional activity was below detectable levels across all treatments. Crop rotation had a marginally significant effect on AOB abundance, with 1.3 times as many gene copies under the simpler CC rotation than under the more diverse RC rotation. More pronounced effects of depth on AOB abundance and gene expression were observed under NT versus CT management, and NT supported higher abundances of total archaea and AOA than CT across the growing season. We suggest that AOB may be more functionally important than AOA in this high-input agricultural soil but that NT management can promote enhanced soil archaeal populations.

  4. Microsite Differentiation Drives the Abundance of Soil Ammonia Oxidizing Bacteria along Aridity Gradients

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Eldridge, David J.; Singh, Brajesh K.

    2016-01-01

    Soil ammonia oxidizing bacteria (AOB) and archaea (AOA) are responsible for nitrification in terrestrial ecosystems, and play important roles in ecosystem functioning by modulating the rates of N losses to ground water and the atmosphere. Vascular plants have been shown to modulate the abundance of AOA and AOB in drylands, the largest biome on Earth. Like plants, biotic and abiotic features such as insect nests and biological soil crusts (biocrusts) have unique biogeochemical attributes (e.g., nutrient availability) that may modify the local abundance of AOA and AOB. However, little is known about how these biotic and abiotic features and their interactions modulate the abundance of AOA and AOB in drylands. Here, we evaluate the abundance of amoA genes from AOB and AOA within six microsites commonly found in drylands (open areas, biocrusts, ant nests, grasses, nitrogen-fixing shrubs, and trees) at 21 sites from eastern Australia, including arid and mesic ecosystems that are threatened by predicted increases in aridity. Our results from structural equation modeling suggest that soil microsite differentiation alters the abundance of AOB (but not AOA) in both arid and mesic ecosystems. While the abundance of AOA sharply increased with increasing aridity in all microsites, the response of AOB abundance was microsite-dependent, with increases (nitrogen-fixing shrubs, ant nests), decreases (open areas) or no changes (grasses, biocrusts, trees) in abundance with increasing aridity. Microsites supporting the highest abundance of AOB were trees, nitrogen-fixing shrubs, and ant nests. These results are linked to particular soil characteristics (e.g., total carbon and ammonium) under these microsites. Our findings advance our understanding of key drivers of functionally important microbial communities and N availability in highly heterogeneous ecosystems such as drylands, which may be obscured when different soil microsites are not explicitly considered. PMID:27148194

  5. Determination of surface coverage of catalysts: Temperature programmed experiments on platinum and iridium sponge catalysts after low temperature ammonia oxidation

    SciTech Connect

    Broek, A.C.M. van den; Grondelle, J. van; Santen, R.A. van

    1999-07-25

    The activity of iridium and platinum sponge catalysts was studied in the low temperature gas phase oxidation of ammonia with oxygen. Under the reaction conditions used, iridium was found to be more active and more selective to nitrogen than platinum. Furthermore it was established from activity measurements that both catalysts lose activity as a function of time on stream due to inhibition of the surface by reaction intermediates. The used catalysts were studied by XPS and temperature programmed techniques. It was found that the surface of the catalysts had a high coverage of NH and OH and some additional NH{sub 2}. It seems most likely that the reaction mechanism proceeds through a stepwise dehydrogenation of the ammonia molecule. It appears that the last dehydrogenation step (NH by OH to N and water) is the rate determining step. The high selectivity of iridium to nitrogen can be explained by the higher activity of iridium in dissociating NO.

  6. [Quantitative and qualitative analysis of total bacteria and ammonia-oxidizing bacteria in Buji River in wet season].

    PubMed

    Sun, Hai-mei; Bai, Jiao-jiao; Sun, Wei-ling; Shao, Jun

    2012-08-01

    Microbial community structure and biomass in river water can reflect the situation of water quality in some extent. Nitrogen removal was mainly achieved by the nitrification and denitrification processes, and ammonia oxidation catalyzed by ammonia-oxidizing bacteria (AOB) is the first and rate-limiting step of nitrification. To explore the AOB community structure and biomass in nitrogen polluted river, water samples were collected from Buji River (Shenzhen) in wet season. Quantification of 16S rRNA copy numbers of total bacteria and AOB were performed by real-time PCR, and the microbial community structures were studied by denaturing gradient gel electrophoresis (DGGE). The results showed that the number of total bacterial 16S rRNA changed from 4.73 x 10(10) - 3.90 x 10(11) copies x L(-1) in the water samples. The copy numbers of AOB varied from 5.44 x 10(6) - 5.96 x 10(8)copies x L(-1). Redundancy discrimination analysis (RDA) showed that the main factors affecting the structure and the numbers of bacteria were different. For total bacteria, nitrate influenced the biomass significantly (P < 0.05) while nitrogen and heavy metals (Mn and Zn) were the main factors affecting the microbial community structures (P < 0.05). For AOB, ammonia and Zn were the main factors influencing the biomass while ammonia nitrogen and heavy metals (Mn and Zn) were the main factors affecting the microbial community structures. 16S rDNA sequences from the water samples indicated that the bacteria generally belonged to Epsilon-Proteobacteria, Gamma-Proteobacteria, Beta-Proteobacteria, and Delta-Proteobacteria. Nitrosomonas sp. and Nitrosospira sp. were the main AOB. Cluster analysis showed that water pollution in downstream resulted in evident difference in microbial community structure between upstream and downstream water samples.

  7. Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia

    SciTech Connect

    Matthews, E.

    1994-12-01

    The global distribution of nitrogen input via application of chemical nitrogenous fertilizers to agricultural ecosystems is presented. The suite of 1{degrees} (latitude/longitude) resolution data bases includes primary data on fertilizer consumption, as well as supporting data sets defining the distribution and intensity of agriculture associated with fertilizer use. The data were developed from a variety of sources and reflect conditions for the mid-1980s. East Asia, where fertilizer use is increasing at {approximately}10%/year, accounted for {approximately}37% of the total, while North America and western Europe, where fertilizer use is leveling off, accounted for 40% of the world`s total in the mid-1980s. While almost every country consumes urea, {approximately}75% of the large East Asian fertilizer use is supplied by this one fertilizer. Ammonium nitrate, used primarily in the former centrally planned economies of Europe, in West Asia, and in Africa, accounted for about one quarter of global consumption. These data were used to estimate distributions of the annual emission of nitrous oxide (N{sub 2}O) and ammonia (NH{sub 3}) associated with the use of fertilizers. Applying published ranges of emission coefficients for fertilizer types in the data base yields a median emission of 0.1 Tg N{sub 2}O-N, with lower and upper values of 0.03 and 2.0 Tg N{sub 2}O-N in 1984. This equals <1% to {approximately}3% of the total nitrogen applied via commercial fertilizers and represents ,=<1% to 15% of the annual emission of N{sub 2}O from terrestrial sources. Assuming that the {approximately}4% annual increase in consumption of nitrogenous fertilizers during the 1980s corresponds to a {approximately}4% rise in the release of N{sub 2}O-N, yearly increases in emissions from fertilizer use are <0.01 to 0.08 Tg N{sub 2}O-N equal to <1% to 3% of the current growth of atmospheric nitrous oxide. 98 refs., 3 figs., 5 tabs.

  8. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System

    PubMed Central

    Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using termi