Science.gov

Sample records for aerobic anoxygenic phototroph

  1. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  2. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    PubMed

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop.

  3. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean.

    PubMed

    Koblízek, Michal; Masín, Michal; Ras, Josephine; Poulton, Alex J; Prásil, Ondrej

    2007-10-01

    We analysed bacteriochlorophyll diel changes to assess growth rates of aerobic anoxygenic phototrophs in the euphotic zone across the Atlantic Ocean. The survey performed during Atlantic Meridional Transect cruise 16 has shown that bacteriochlorophyll in the North Atlantic Gyre cycles at rates of 0.91-1.08 day(-1) and in the South Atlantic at rates of 0.72-0.89 day(-1). In contrast, in the more productive equatorial region and North Atlantic it cycled at rates of up to 2.13 day(-1). These results suggest that bacteriochlorophyll-containing bacteria in the euphotic zone of the oligotrophic gyres grow at rates of about one division per day and in the more productive regions up to three divisions per day. This is in striking contrast with the relatively slow growth rates of the total bacterial community. Thus, aerobic anoxygenic phototrophs appear to be a very dynamic part of the marine microbial community and due to their rapid growth, they are likely to be larger sinks for dissolved organic matter than their abundance alone would predict.

  4. Biotechnology of Anoxygenic Phototrophic Bacteria.

    PubMed

    Frigaard, Niels-Ulrik

    Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H2 and other valuable compounds.

  5. Phylogenetically Diverse Aerobic Anoxygenic Phototrophic Bacteria Isolated from Epilithic Biofilms in Tama River, Japan

    PubMed Central

    Hirose, Setsuko; Matsuura, Katsumi; Haruta, Shin

    2016-01-01

    The diversity of aerobic anoxygenic phototrophic (AAP) bacteria in freshwater environments, particularly in rivers, has not been examined in as much detail as in ocean environments. In the present study, we investigated the phylogenetic and physiological diversities of AAP bacteria in biofilms that developed on submerged stones in a freshwater river using culture methods. The biofilms collected were homogenized and inoculated on solid media and incubated aerobically in the dark. Sixty-eight red-, pink-, yellow-, orange-, or brown-colored colonies were isolated, and, of these, 28 isolates contained the photosynthetic pigment, bacteriochlorophyll (BChl) a. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates were classified into 14 groups in 8 operational taxonomic units (OTUs) and distributed in the orders Rhodospirillales, Rhodobacterales, and Sphingomonadales of Alphaproteobacteria and in Betaproteobacteria. Physiological analyses confirmed that none of the representative isolates from any of the groups grew under anaerobic phototrophic conditions. Seven isolates in 4 OTUs showed a 16S rRNA gene sequence identity of 98.0% or less with any established species, suggesting the presence of previously undescribed species of AAP bacteria. Six isolates in 2 other OTUs had the closest relatives, which have not been reported to be AAP bacteria. Physiological comparisons among the isolates revealed differences in preferences for nutrient concentrations, BChl contents, and light-harvesting proteins. These results suggest that diverse and previously unknown AAP bacteria inhabit river biofilms. PMID:27453124

  6. Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area

    PubMed Central

    Sato-Takabe, Yuki; Nakao, Hironori; Kataoka, Takafumi; Yokokawa, Taichi; Hamasaki, Koji; Ohta, Kohei; Suzuki, Satoru

    2016-01-01

    Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10–53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas. PMID:28018324

  7. Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area.

    PubMed

    Sato-Takabe, Yuki; Nakao, Hironori; Kataoka, Takafumi; Yokokawa, Taichi; Hamasaki, Koji; Ohta, Kohei; Suzuki, Satoru

    2016-01-01

    Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10-53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas.

  8. Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic western Pacific Ocean.

    PubMed

    Zheng, Qiang; Liu, Yanting; Steindler, Laura; Jiao, Nianzhi

    2015-04-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) represent a widespread functional bacterial group defined by their obligate aerobic and facultative photoheterotrophic abilities. They are an active part of the marine microbial community as revealed by a large number of previous investigations. Here, we made an in-depth comparison of AAPB community structures in the subsurface water and the upper twilight zone of the western Pacific Ocean using high-throughput sequencing based on the pufM gene. Approximately, 100 000 sequences, grouped into 159 OTUs (94% cut-off value), included 44 and 24 OTUs unique to the subsurface and the upper twilight zone, respectively; 92 OTUs were common to both subsurface and twilight zone, and 3 OTUs were found in all samples. Consistent with previous studies, AAPB belonging to the Gammaproteobacteria were the dominant group in the whole water column, followed by the alphaproteobacterial AAPB. Comparing the relative abundance distribution patterns of different clades, an obvious community-structure separation according to deeper or shallower environment could be observed. Sulfitobacter-like, Loktanella-like, Erythrobacter-like, Dinoroseobacter-like and Gamma-HIMB55-like AAPB preferred the high-light subsurface water, while Methylobacterium-like, 'Citromicrobium'-like, Roseovarius-like and Bradyrhizobium-like AAPB, the dim light environment.

  9. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient.

    PubMed

    Ferrera, Isabel; Sarmento, Hugo; Priscu, John C; Chiuchiolo, Amy; González, José M; Grossart, Hans-Peter

    2017-01-01

    Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient).

  10. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient

    PubMed Central

    Ferrera, Isabel; Sarmento, Hugo; Priscu, John C.; Chiuchiolo, Amy; González, José M.; Grossart, Hans-Peter

    2017-01-01

    Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient). PMID:28275369

  11. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised

    NASA Technical Reports Server (NTRS)

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2005-01-01

    The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

  12. The Effect of Tellurite on Highly Resistant Freshwater Aerobic Anoxygenic Phototrophs and Their Strategies for Reduction

    PubMed Central

    Maltman, Chris; Yurkov, Vladimir

    2015-01-01

    Six fresh water aerobic anoxygenic phototrophs (Erythromicrobium ezovicum, strain E1; Erythromicrobium hydrolyticum, E4(1); Erythromicrobium ramosum, E5; Erythromonas ursincola, KR99; Sandaracinobacter sibiricus, RB 16-17; and Roseococcus thiosulfatophilus, RB3) possessing high level resistance to TeO32− and the ability to reduce it to elemental Te were studied to understand their interaction with this highly toxic oxyanion. Tested organic carbon sources, pH, and level of aeration all had an impact on reduction. Physiological and metabolic responses of cells to tellurite varied among strains. In its presence, versus absence, cellular biomass either increased (KR99, 66.6% and E5, 21.2%) or decreased (RB3, 66.1%, E1, 57.8%, RB 16-17, 41.5%, and E4(1), 21.3%). The increase suggests a possible benefit from tellurite. Cellular ATP production was similarly affected, resulting in an increase (KR99, 15.2% and E5, 38.9%) or decrease (E4(1), 31.9%; RB 16-17, 48.8%; RB3, 55.9%; E1, 35.9%). Two distinct strategies to tellurite reduction were identified. The first, found in E4(1), requires de novo protein preparations as well as an undisturbed whole cell. The second strategy, in which reduction depended on a membrane associated constitutive reductase, was used by the remaining strains. PMID:27682119

  13. Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean.

    PubMed

    Boeuf, Dominique; Cottrell, Matthew T; Kirchman, David L; Lebaron, Philippe; Jeanthon, Christian

    2013-09-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are found in a range of aquatic and terrestrial environments, potentially playing unique roles in biogeochemical cycles. Although known to occur in the Arctic Ocean, their ecology and the factors that govern their community structure and distribution in this extreme environment are poorly understood. Here, we examined summer AAP abundance and diversity in the North East Pacific and the Arctic Ocean with emphasis on the southern Beaufort Sea. AAP bacteria comprised up to 10 and 14% of the prokaryotic community in the bottom nepheloid layer and surface waters of the Mackenzie plume, respectively. However, relative AAP abundances were low in offshore waters. Environmental pufM clone libraries revealed that AAP bacteria in the Alphaproteobacteria and Betaproteobacteria classes dominated in offshore and in river-influenced surface waters, respectively. The most frequent AAP group was a new uncultivated betaproteobacterial clade whose abundance decreased along the salinity gradient of the Mackenzie plume even though its photosynthetic genes were actively expressed in offshore waters. Our data indicate that AAP bacterial assemblages represented a mixture of freshwater and marine taxa mostly restricted to the Arctic Ocean and highlight the substantial influence of riverine inputs on their distribution in coastal environments.

  14. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-07-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 %) was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  15. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-05-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 52 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94%) was affiliated with the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  16. Influence of selected environmental factors on the abundance of aerobic anoxygenic phototrophs in peat-bog lakes.

    PubMed

    Lew, Sylwia; Lew, Marcin; Koblížek, Michal

    2016-07-01

    Aerobic anoxygenic phototrophs (AAPs) are photoheterotrophic prokaryotes that are widespread in many limnic and marine environments. So far, little is known about their distribution in peat-bog lakes. Seventeen peat-bog lakes were sampled during three summer seasons 2009, 2011, and 2012, and the vertical distribution of AAPs was determined by infrared epifluorescence microscopy. The analysis demonstrated that in the surface layers of the studied lakes, AAP abundance ranged from 0.3 to 12.04 × 10(5) cells mL(-1), which represents <1 to 18.3 % of the total bacteria. The vertical distribution of AAPs confirmed their presence in the upper parts of the water column with minimum numbers in the anoxic bottom waters. We have shown that the AAP abundance was significantly positively correlated with the water pH, and the highest proportion of photoheterotrophs was found in peat-bog lakes with a pH between 6.7 and 7.6. Our results demonstrated an influence of water acidity on the abundance of AAPs, which may reflect a fundamental difference in the microbial composition between acidic and pH neutral peat-bog lakes.

  17. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes.

    PubMed

    Salka, Ivette; Cuperová, Zuzana; Mašín, Michal; Koblížek, Michal; Grossart, Hans-Peter

    2011-11-01

    The presence of aerobic anoxygenic phototrophs (AAPs) has been repeatedly reported from various marine environments, but their distribution in freshwater lakes was neglected until recently. We investigated the phylogenetic composition of AAP communities in 10 lakes in Northeastern Germany with different trophic status including oligotrophic Lake Stechlin and humic matter rich Lake Grosse Fuchskuhle. The AAP community was composed by members of Alpha- and Betaproteobacteria, but their contribution varied largely among the studied lakes. Our results show that AAP community composition in the studied lakes was affected mostly by pH and humic matter content. While alkaline lakes were mostly composed of Betaproteobacteria, the acidic and humic matter rich south-west (SW) basin of Lake Grosse Fuchskule was dominated (87%) by Alphaproteobacteria. The most frequent group within Betaproteobacteria was a cluster of pufM genes which was phylogenetically related to Rhodoferax representing 38.5% of all retrieved sequences. Alphaproteobacteria-related sequences had a broader phylogenetic diversity including six different taxa dominated by Sphingomonas- and Rhodobacter-like bacteria in lakes with alkaline to neutral pH. In the acidic and humic matter-rich SW basin of Lake Grosse Fuchskuhle, however, Methylobacterium-related sequences dominated the AAP community. We suggest that the variable AAP community structure might reflect the potential of these bacteria to cope with the contrasting conditions in freshwater environments.

  18. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters.

    PubMed

    Ferrera, Isabel; Gasol, Josep M; Sebastián, Marta; Hojerová, Eva; Koblízek, Michal

    2011-11-01

    Growth is one of the basic attributes of any living organism. Surprisingly, the growth rates of marine bacterioplankton are only poorly known. Current data suggest that marine bacteria grow relatively slowly, having generation times of several days. However, some bacterial groups, such as the aerobic anoxygenic phototrophic (AAP) bacteria, have been shown to grow much faster. Two manipulation experiments, in which grazing, viruses, and resource competition were reduced, were conducted in the coastal Mediterranean Sea (Blanes Bay Microbial Observatory). The growth rates of AAP bacteria and of several important phylogenetic groups (the Bacteroidetes, the alphaproteobacterial groups Roseobacter and SAR11, and the Gammaproteobacteria group and its subgroups the Alteromonadaceae and the NOR5/OM60 clade) were calculated from changes in cell numbers in the manipulation treatments. In addition, we examined the role that top-down (mortality due to grazers and viruses) and bottom-up (resource availability) factors play in determining the growth rates of these groups. Manipulations resulted in an increase of the growth rates of all groups studied, but its extent differed largely among the individual treatments and among the different groups. Interestingly, higher growth rates were found for the AAP bacteria (up to 3.71 day⁻¹) and for the Alteromonadaceae (up to 5.44 day⁻¹), in spite of the fact that these bacterial groups represented only a very low percentage of the total prokaryotic community. In contrast, the SAR11 clade, which was the most abundant group, was the slower grower in all treatments. Our results show that, in general, the least abundant groups exhibited the highest rates, whereas the most abundant groups were those growing more slowly, indicating that some minor groups, such the AAP bacteria, very likely contribute much more to the recycling of organic matter in the ocean than what their abundances alone would predict.

  19. Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability.

    PubMed

    Xiao, Na; Jiao, Nianzhi

    2011-11-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12(T), Labrenzia alexandrii DFL 11(T), and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and (1)H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark.

  20. A marine inducible prophage vB_CibM-P1 isolated from the aerobic anoxygenic phototrophic bacterium Citromicrobium bathyomarinum JL354

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Zhang, Rui; Xu, Yongle; , Richard Allen White, III; Wang, Yu; Luo, Tingwei; Jiao, Nianzhi

    2014-11-01

    A prophage vB_CibM-P1 was induced by mitomycin C from the epipelagic strain Citromicrobium bathyomarinum JL354, a member of the alpha-IV subcluster of marine aerobic anoxygenic phototrophic bacteria (AAPB). The induced bacteriophage vB_CibM-P1 had Myoviridae-like morphology and polyhedral heads (approximately capsid 60-100 nm) with tail fibers. The vB_CibM-P1 genome is ~38 kb in size, with 66.0% GC content. The genome contains 58 proposed open reading frames that are involved in integration, DNA packaging, morphogenesis and bacterial lysis. VB_CibM-P1 is a temperate phage that can be directly induced in hosts. In response to mitomycin C induction, virus-like particles can increase to 7 × 109 per ml, while host cells decrease an order of magnitude. The vB_CibM-P1 bacteriophage is the first inducible prophage from AAPB.

  1. Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere

    PubMed Central

    Stiefel, Philipp; Zambelli, Tomaso

    2013-01-01

    In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

  2. Remotely Detectable Biosignatures of Anoxygenic Phototrophs

    NASA Astrophysics Data System (ADS)

    Parenteau, M. N.; Kiang, N. Y.; Blankenship, R. E.; Sanromá, E.; Palle Bago, E.; Hoehler, T. M.; Pierson, B. K.

    2014-12-01

    Many astrobiological/exobiological studies have been directed at searching for evidence of life on planetary bodies within our solar system, but the search for life does not have to be restricted to our stellar neighborhood. The field of exoplanet research has grown rapidly over the last several years. Studies have moved beyond detection to assessing the habitability and biosignatures of these worlds. The biosignatures considered thus far focus on biogenic gases and planetary surface features, such as the light reflected from the surface of plants to generate the "red edge" of vegetation. Much work has focused on detecting biosignatures of higher life forms (vegetation) on exoplanets. However, land plants only appeared on the Earth 450 million years ago, and required a long path of photosynthetic evolution. There is a dearth of studies examining how light might interact with much simpler, more evolutionarily ancient pigmented communities, such as photosynthetic microbes. These anoxygenic phototrophs, which have inhabited Earth for nearly 80% of its history, may dominate exoplanets at a similar stage of evolution as the Archean or Paleoproterozoic Earth. Similar to the remotely detectable "red edge" of chlorophyll a - containing vegetation, we measured the reflectance spectra of pure cultures and environmental samples of purple sulfur, purple non-sulfur, heliobacteria, green sulfur, and green non-sulfur anoxygenic phototrophs. We observed an increase in reflectivity just past the absorption maximum for the bacteriochlorophyll pigments. Since this reflectance feature is shifted into the NIR compared to that of the red edge of vegetation, we're calling this the "NIR edge" of anoxygenic phototrophs. The bacteriochlorophyll pigments are particularly well suited to absorb the far-red and near-infrared radiation emitted by M dwarf stars, the most common type of star in our galaxy. Therefore these phototrophs serve as model organisms for photosynthesis adapted to

  3. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo—Brazil)

    PubMed Central

    Cuadrat, Rafael R. C.; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M. R.

    2016-01-01

    Abstract Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean. PMID:26871866

  4. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)].

    PubMed

    Kalashnikov, A M; Gaĭsin, V A; Sukhacheva, M V; Namsaraeva, B B; Panteleeva, A N; Nuianzina-Boldareva, E N; Kuznetsov, B B; Gorlenko, V M

    2014-01-01

    Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54 degrees C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected irn the samples from both the thermophilic and mesophilic mats. Cultures ofnonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolatd from the mats developing at high (50.6-49.4 degrees C) and low temperatures (45-20 degrees C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealedin low-temperature mats. Truly thermophilic purple and gree sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfuret communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophylla-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20 degrees C) mat is of interest.

  5. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff; Hauser, Loren John; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Sam; Pierson, Beverly K

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  6. Ferrous iron oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Widdel, Friedrich; Schnell, Sylvia; Heising, Silke; Ehrenreich, Armin; Assmus, Bernhard; Schink, Bernhard

    1993-04-01

    NATURAL oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4-6 or a photobiological process involving two photosystems7-9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10-14. The reducing power of ferrous iron increases dramatically at pH values higher than 2-3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E'0 = -0.236V) or Fe(OH)3 + HCO-3FeCO3 (E'0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.

  7. Extremely 'vanadiphilic' multiply metal-resistant and halophilic aerobic anoxygenic phototrophs, strains EG13 and EG8, from hypersaline springs in Canada.

    PubMed

    Csotonyi, J T; Maltman, C; Swiderski, J; Stackebrandt, E; Yurkov, V

    2015-01-01

    Two pinkish peach-colored strains of obligately aerobic phototrophic bacteria, EG13 and EG8, were isolated from a saline spring effluent stream in west central Manitoba, Canada. The strains possessed bacteriochlorophyll a incorporated into a typical purple bacterial light-harvesting complex 1 (870 nm) and reaction center (801 nm). Analysis of 16S rRNA gene sequences indicated 100% identity among the isolates and 99% similarity to Roseovarius tolerans EL-172(T). The strains were physiologically well adapted to high salinity (0-22%), fluctuating pH (7-12) and temperature (7-40 °C) of the exposed hypersaline stream of East German Creek. EG8 and EG13 were also highly resistant to the toxic metal(loid) oxyanions tellurite, selenite and metavanadate (≥1000 μg/ml each). Most intriguingly, growth and pigment production of EG13 on glutamate minimal medium was stimulated by 1000-10000 μg/ml of sodium metavanadate compared to metal-free conditions. Phylogenetic analysis and phenotypic properties such as pigment composition and morphology indicate close relatedness to Roseovarius genus.

  8. Chloroflexus islandicus sp. nov., a thermophilic filamentous anoxygenic phototrophic bacterium from geyser Strokkur (Iceland).

    PubMed

    Gaisin, Vasil A; Kalashnikov, Alexander M; Grouzdev, Denis S; Sukhacheva, Marina V; Kuznetsov, Boris B; Gorlenko, Vladimir M

    2017-01-23

    A novel, thermophilic filamentous anoxygenic phototrophic bacterium, strain isl-2T, was isolated from the Strokkur Geyser, Iceland. Strain isl-2T formed unbranched multicellular filaments with gliding motility. The cells formed no spores and stained Gram-negative. The existence of pili was described in Chloroflexus spp. for the first time. Optimal growth occurred in a pH range of 7.5-7.7 and at a temperature of 55°C. Strain isl-2T grew photoheterotrophically under anaerobic conditions in the light and chemoheterotrophically under aerobic conditions in the dark. The major cellular fatty acids were C18:1ω9, C16:0, C18:0, and C18:0-OH. The major quinone was menaquinone-10. The photosynthetic pigments were bacteriochlorophylls c and a as well as β- and γ-carotenes. Phylogenetic analysis of the 16S rRNA gene sequences placed strain isl-2T into the genus Chloroflexus of the phylum Chloroflexi with Chloroflexus aggregans DSM 9485T as the closest relative (97.0% identity). The whole-genome sequence of strain isl-2T was determined. Average nucleotide identity values obtained for strain isl-2T in comparison to available genomic sequences of other strains of Chloroflexus spp. were ≤81.4% and digital DNA-DNA hybridisation values ≤ 22.8%. Additional phylogenetic analysis of the PufLM and BchG amino acid sequences supported the separate position of the isl-2T phylotype from other Chloroflexus phylotypes. Based on physiological and phylogenetic data as well as on genomic data, it was suggested that strain isl-2T represents a novel species within the genus Chloroflexus, with the proposed name Chloroflexus islandicus sp. nov. The type strain of the species is isl-2T (=VKM B-2978T, =DSM 29225T, =JCM 30533T).

  9. Computation studies into architecture and energy transfer properties of photosynthetic units from filamentous anoxygenic phototrophs

    SciTech Connect

    Linnanto, Juha Matti; Freiberg, Arvi

    2014-10-06

    We have used different computational methods to study structural architecture, and light-harvesting and energy transfer properties of the photosynthetic unit of filamentous anoxygenic phototrophs. Due to the huge number of atoms in the photosynthetic unit, a combination of atomistic and coarse methods was used for electronic structure calculations. The calculations reveal that the light energy absorbed by the peripheral chlorosome antenna complex transfers efficiently via the baseplate and the core B808–866 antenna complexes to the reaction center complex, in general agreement with the present understanding of this complex system.

  10. Competition for inorganic carbon between oxygenic and anoxygenic phototrophs in a hypersaline microbial mat, Guerrero Negro, Mexico.

    PubMed

    Finke, Niko; Hoehler, Tori M; Polerecky, Lubos; Buehring, Benjamin; Thamdrup, Bo

    2013-05-01

    While most oxygenic phototrophs harvest light only in the visible range (400-700 nm, VIS), anoxygenic phototrophs can harvest near infrared light (> 700 nm, NIR). To study interactions between the photosynthetic guilds we used microsensors to measure oxygen and gross oxygenic photosynthesis (gOP) in a hypersaline microbial mat under full (VIS + NIR) and VIS illumination. Under normal dissolved inorganic carbon (DIC) concentrations (2 mM), volumetric rates of gOP were reduced up to 65% and areal rates by 16-31% at full compared with VIS illumination. This effect was enhanced (reduction up to 100% in volumetric, 50% in areal rates of gOP) when DIC was lowered to 1 mM, but diminished at 10 mM DIC or lowered pH. In conclusion, under full-light illumination anoxygenic phototrophs are able to reduce the activity of oxygenic phototrophs by efficiently competing for inorganic carbon within the highly oxygenated layer. Anoxygenic photosynthesis, calculated from the difference in gOP under full and VIS illumination, represented between 10% and 40% of the C-fixation. The DIC depletion in the euphotic zone as well as the significant C-fixation by anoxygenic phototrophs in the oxic layer influences the carbon isotopic composition of the mat, which needs to be taken into account when interpreting isotopic biosignals in geological records.

  11. Oxygen and sulfur isotope fractionation during sulfide oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Brabec, Michelle Y.; Lyons, Timothy W.; Mandernack, Kevin W.

    2012-04-01

    Sulfide-mediated anoxygenic photosynthesis (SMAP) carried out by anaerobic phototrophic bacteria may have played an important role in sulfur cycling, formation of sulfate, and, perhaps, primary production in the Earth’s early oceans. Determination of ε34SSO4-Sulfide- and ε18OSO4-H2O values for bacterial sulfide oxidation will permit more refined interpretation of the δ34S and δ18OSO4 values measured in modern anoxic environments, such as meromictic lakes where sulfide commonly extends into the photic zone, and in the ancient rock record, particularly during periods of the Precambrian when anoxic and sulfidic (euxinic) conditions were believed to be more pervasive than today. Laboratory experiments with anaerobic purple and green sulfur phototrophs, Allochromatium vinosum and Chlorobaculum tepidum, respectively, were conducted to determine the sulfur and oxygen isotope fractionation during the oxidation of sulfide to sulfate. Replicate experiments were conducted at 25 °C for A. vinosum and 45 °C for C. tepidum, and in duplicate at three different starting oxygen isotope values for water to determine sulfate-water oxygen isotope fractionations accurately (ε18OSO4-H2O). ε18OSO4-H2O values of 5.6 ± 0.2‰ and 5.4 ± 0.1‰ were obtained for A. vinosum and C. tepidum, respectively. Temperature had no apparent effect on the ε18OSO4-H2O values. By combining all data from both cultures, an average ε18OSO4-H2O value of 5.6 ± 0.3‰ was obtained for SMAP. This value falls between those previously reported for bacterial oxidation of sphalerite and elemental sulfur (7-9‰) and abiotic and biotic oxidation of pyrite and chalcopyrite (2-4‰). Sulfur isotope fractionation between sulfide and sulfate formed by A.vinosum was negligible (0.1 ± 0.2‰) during all experiments. For C. tepidum an apparent fractionation of -2.3 ± 0.5‰ was observed during the earlier stages of oxidation based on bulk δ34S measurements of sulfate and sulfide and became smaller (-0.7

  12. Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a marine microbial mat

    NASA Astrophysics Data System (ADS)

    Yurkov, Vladimir V.; Van Gemerden, Hans

    Data have been collected on the abundance of obligately aerobic, bacteriochlorophyll- a-containing bacteria in a marine microbial mat on the West Frisian Island of Texel, The Netherlands. Plate counts on media rich in organic matter revealed average numbers of 3 ∗10 5·cm -3 sediment in the top 10 mm of the mat; the number of purple non-sulphur bacteria was of the same magnitude. Due to the relatively small dimensions of obligately aerobic anoxygenic phototrophic bacteria and purple non-sulphur bacteria, compared to those of purple sulphur bacteria, the contributions of either of the two former groups to the biomass of Bchl- a-containing organisms was approximately 3%. The specific Bchl- a-content of the isolated obligately aerobic phototrophs was very low (0.8 to 1.0 μg·mg -1 protein) compared to that of purple non-sulphur bacteria (16 to 20 μg·mg -1 protein), and purple sulphur bacteria (27 to 30 μg·mg -1). As a consequence, the relative contribution to the total Bchl a concentration of the two former groups (0.1% and 2.1%, respectively) was negligible, compared to that of the purple sulphur bacteria (97.8%). Salinities <50 had little effect on growth rate and yield of isolates; at salinities between 50 and 100 the doubling time increased progressively with a concomitant decrease in yield; no growth occurred at salinities > 140.

  13. Spatial and temporal variability of aerobic anoxygenic photoheterotrophic bacteria along the east coast of Australia.

    PubMed

    Bibiloni-Isaksson, Jaime; Seymour, Justin R; Ingleton, Tim; van de Kamp, Jodie; Bodrossy, Levente; Brown, Mark V

    2016-12-01

    Aerobic Anoxygenic Phototrophic Bacteria (AAnPB) are ecologically important microorganisms, widespread in oceanic photic zones. However, the key environmental drivers underpinning AAnPB abundance and diversity are still largely undefined. The temporal patterns in AAnPB dynamics at three oceanographic reference stations spanning at approximately 15° latitude along the Australian east coast were examined. AAnPB abundance was highly variable, with pufM gene copies ranging from 1.1 × 10(2) to 1.4 × 10(5) ml(-1) and positively correlated with day length and solar radiation. pufM gene Miseq sequencing revealed that the majority of sequences were closely related to those obtained previously, suggesting that key AAnPB groups are widely distributed across similar environments globally. Temperature was a major structuring factor for AAnPB assemblages across large spatial scales, correlating positively with richness and Gammaproteobacteria (phylogroup K) abundance but negatively with Roseobacter-clade (phylogroup E) abundance, with temperatures between 16°C and 18°C identified as a potential transition zone between these groups. Network analysis revealed that discrete AAnPB populations exploit specific niches defined by varying temperature, light and nutrient conditions in the Tasman Sea system, with evidence for both niche sharing and partitioning amongst closely related operational taxonomic units.

  14. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean.

    PubMed

    Lami, Raphaël; Cottrell, Matthew T; Ras, Joséphine; Ulloa, Osvaldo; Obernosterer, Ingrid; Claustre, Hervé; Kirchman, David L; Lebaron, Philippe

    2007-07-01

    Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 x 10(5) cells ml(-1) and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 x 10(-3) microg liter(-1)) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.

  15. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland.

    PubMed

    Gaisin, Vasil A; Ivanov, Timophey M; Kuznetsov, Boris B; Gorlenko, Vladimir M; Grouzdev, Denis S

    2016-07-21

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain's ecological role as a phototrophic bacterium within the bacterial community.

  16. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland

    PubMed Central

    Gaisin, Vasil A.; Ivanov, Timophey M.; Kuznetsov, Boris B.; Gorlenko, Vladimir M.

    2016-01-01

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain’s ecological role as a phototrophic bacterium within the bacterial community. PMID:27445390

  17. Characterization of giant spheroplasts generated from the aerobic anoxygenic photosynthetic marine bacterium Roseobacter litoralis.

    PubMed

    Nojiri, Akane; Ogita, Shinjiro; Isogai, Yasuhiro; Nishida, Hiromi

    2015-01-01

    We generated and characterized giant spheroplasts from the aerobic anoxygenic photosynthetic marine bacterium Roseobacter litoralis. The giant spheroplasts contained vacuole-like structures within the cells, mainly consisting of a single membrane. The in vivo absorption spectrum of the giant spheroplasts did not have peaks typically observed for bacteriochlorophyll a. The culture media pH decreased during the growth of the giant spheroplasts. The change in the pH profile for cells grown under light was no different from that for cells grown in the dark. These results showed that the R. litoralis giant spheroplasts formed lost their photosynthetic apparatus in culture. Most of the giant spheroplasts returned to their original size, likely via filamentous cells. The culture media pH increased during the growth of the filamentous cells. Some filamentous cells had septum-like structures. In such filamentous cells, DNA was separated. Initially, the color of the separated cells was white. Two weeks later, the cells changed to red in the dark, and the in vivo absorption spectrum of the cells had peaks typically observed for bacteriochlorophyll a. Our findings strongly suggest that the giant spheroplasts of R. litoralis can control the genetic information, return to their original cell size, and regain their original functions.

  18. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum--implications for Precambrian Fe(II) oxidation.

    PubMed

    Wu, Wenfang; Swanner, Elizabeth D; Hao, Likai; Zeitvogel, Fabian; Obst, Martin; Pan, Yongxin; Kappler, Andreas

    2014-06-01

    Anoxygenic phototrophic Fe(II)-oxidizing bacteria (photoferrotrophs) are suggested to have contributed to the deposition of banded iron formations (BIFs) from oxygen-poor seawater. However, most studies evaluating the contribution of photoferrotrophs to Precambrian Fe(II) oxidation have used freshwater and not marine strains. Therefore, we investigated the physiology and mineral products of Fe(II) oxidation by the marine photoferrotroph Rhodovulum iodosum. Poorly crystalline Fe(III) minerals formed initially and transformed to more crystalline goethite over time. During Fe(II) oxidation, cell surfaces were largely free of minerals. Instead, the minerals were co-localized with EPS suggesting that EPS plays a critical role in preventing cell encrustation, likely by binding Fe(III) and directing precipitation away from cell surfaces. Fe(II) oxidation rates increased with increasing initial Fe(II) concentration (0.43-4.07 mM) under a light intensity of 12 μmol quanta m(-2) s(-1). Rates also increased as light intensity increased (from 3 to 20 μmol quanta m(-2) s(-1)), while the addition of Si did not significantly change Fe(II) oxidation rates. These results elaborate on how the physical and chemical conditions present in the Precambrian ocean controlled the activity of marine photoferrotrophs and confirm the possibility that such microorganisms could have oxidized Fe(II), generating the primary Fe(III) minerals that were then deposited to some Precambrian BIFs.

  19. Dynamics of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake (NY) and the associated sedimentary pigment record

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Fulton, J. M.; Hunter, S.; Macalady, J. L.; Kump, L.; Freeman, K. H.

    2012-12-01

    Photosynthetic pigments and their diagenetic products in marine sedimentary rocks hold important clues about recent and ancient variability in the Earth's surface environment. The chemical relicts of carotenoids from anoxygenic sulfur bacteria are of particular interest to geoscientists because of their potential to signal episodes of marine photic-zone euxinia such as those proposed for extended periods in the Proterozoic as well as brief intervals during the Phanerozoic. It is therefore critical to constrain the environmental and physiological factors that influence carotenoid production and preservation in modern environments. Our work in redox stratified, microbially dominated Fayetteville Green Lake (New York) has spanned the past decade and included seasonal (2005-2006) and monthly (2011) pigment monitoring in the water column, as well as a coupled pigment and nucleic acid clone library analyses from planktonic and benthic samples in 2006. Populations of photosynthetic bacteria in the water column are dynamic on monthly and annual scales. In 2011, purple sulfur bacteria (PSB) and green sulfur bacteria (GSB) were most abundant in spring and fall, respectively, responding to environmental conditions. PSB are diverse both at the chemocline and in benthic mats below oxygenated shallow waters, with different PSB species inhabiting the two environments. Okenone (from PSB) is an abundant carotenoid in both the chemocline waters and in benthic mats. GSB and their primary pigment Bchl e are also represented in and below the chemocline. However, the water column and sediments contain only trace concentrations of the GSB carotenoid isorenieratene, with concentrations relative to Bchl e being at least two orders of magnitude lower than we have observed in other meromictic lakes. Sediments deposited over the past ~550 years also reveal decadal to centennial scale variability in pigment production in the water column, possibly associated with hypothesized climatic and

  20. Zeta potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: possible implications for cell protection from CaCO3 precipitation in alkaline solutions.

    PubMed

    Bundeleva, Irina A; Shirokova, Liudmila S; Bénézeth, Pascale; Pokrovsky, Oleg S; Kompantseva, Elena I; Balor, Stephanie

    2011-08-01

    Electrophoretic mobility measurements and surface adsorption of Ca on living, inactivated, and heat-killed haloalkaliphilic Rhodovulum steppense, A-20s, and halophilic Rhodovulum sp., S-17-65 anoxygenic phototrophic bacteria (APB) cell surfaces were performed to determine the degree to which these bacteria metabolically control their surface potential equilibria. Zeta potential of both species was measured as a function of pH and ionic strength, calcium and bicarbonate concentrations. For both live APB in 0.1M NaCl, the zeta potential is close to zero at pH from 2.5 to 3 and decreases to -30 to -40 mV at pH of 5-8. In alkaline solutions, there is an unusual increase of zeta potential with a maximum value of -10 to -20 mV at a pH of 9-10.5. This increase of zeta potential in alkaline solutions is reduced by the presence of NaHCO(3) (up to 10 mM) and only slightly affected by the addition of equivalent amount of Ca. At the same time, for inactivated (exposure to NaN(3), a metabolic inhibitor) and heat-killed bacteria cells, the zeta potential was found to be stable (-30 to -60 mV, depending upon the ionic strength) between pH 5 and 11 without any increase in alkaline solutions. Adsorption of Ca ions on A-20s cells surface was more significant than that on S-17-65 cells and started at more acidic pHs, consistent with zeta potential measurements in the presence of 0.001-0.01 mol/L CaCl(2). Overall, these results indicate that APB can metabolically control their surface potential to electrostatically attract nutrients at alkaline pH, while rejecting/avoiding Ca ions to prevent CaCO(3) precipitation in the vicinity of cell surface and thus, cell incrustation.

  1. Isolation of Aerobic Anoxygenic Photosynthetic Bacteria from Black Smoker Plume Waters of the Juan de Fuca Ridge in the Pacific Ocean

    PubMed Central

    Yurkov, Vladimir; Beatty, J. Thomas

    1998-01-01

    A strain of the aerobic anoxygenic photosynthetic bacteria was isolated from a deep-ocean hydrothermal vent plume environment. The in vivo absorption spectra of cells indicate the presence of bacteriochlorophyll a incorporated into light-harvesting complex I and a reaction center. The general morphological and physiological characteristics of this new isolate are described. PMID:16349490

  2. Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China)

    PubMed Central

    Zeng, Yanhua; Lu, Hang; Feng, Hao; Zeng, Yonghui

    2016-01-01

    ABSTRACT Anoxygenic phototrophs represent an environmentally important and phylogenetically diverse group of organisms. They harvest light using bacteriochlorophyll-containing reaction centers. Recently, a novel phototrophic bacterium, Gemmatimonas phototrophica, belonging to a rarely studied phylum, Gemmatimonadetes, was isolated from a freshwater lake in the Gobi Desert. To obtain more information about the environmental distribution of phototrophic Gemmatimonadetes, we collected microbial samples from the water column, upper sediment, and deeper anoxic sediment of Lake Taihu, China. MiSeq sequencing of the 16S rRNA, pufM, and bchY genes was carried out to assess the diversity of local phototrophic communities. In addition, we designed new degenerate primers of aerobic cyclase gene acsF, which serves as a convenient marker for both phototrophic Gemmatimonadetes and phototrophic Proteobacteria. Our results showed that most of the phototrophic species in Lake Taihu belong to Alpha- and Betaproteobacteria. Sequences of green sulfur and green nonsulfur bacteria (phototrophic Chlorobi and Chloroflexi, respectively) were found in the sediment. Using the newly designed primers, we identified a diverse community of phototrophic Gemmatimonadetes forming 30 operational taxonomic units. These species represented 10.5 and 17.3% of the acsF reads in the upper semiaerobic sediment and anoxic sediment, whereas their abundance in the water column was <1%. IMPORTANCE Photosynthesis is one of the most fundamental biological processes on Earth. Recently, the presence of photosynthetic reaction centers has been reported from a rarely studied bacterial phylum, Gemmatimonadetes, but almost nothing is known about the diversity and environmental distribution of these organisms. The newly designed acsF primers were used to identify phototrophic Gemmatimonadetes from planktonic and sediment samples collected in Lake Taihu, China. The Gemmatimonadetes sequences were found mostly in the

  3. A Comparison of 14 Erythrobacter Genomes Provides Insights into the Genomic Divergence and Scattered Distribution of Phototrophs

    PubMed Central

    Zheng, Qiang; Lin, Wenxin; Liu, Yanting; Chen, Chang; Jiao, Nianzhi

    2016-01-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) are bacteriochlorophyll a (Bchl a)-containing microbial functional population. Erythrobacter is the first genus that was identified to contain AAPB species. Here, we compared 14 Erythrobacter genomes: seven phototrophic strains and seven non- phototrophic strains. Interestingly, AAPB strains are scattered in this genus based on their phylogenetic relationships. All 14 strains could be clustered into three groups based on phylo-genomic analysis, average genomic nucleotide identity and the phylogeny of signature genes (16S rRNA and virB4 genes). The AAPB strains were distributed in three groups, and gain and loss of phototrophic genes co-occurred in the evolutionary history of the genus Erythrobacter. The organization and structure of photosynthesis gene clusters (PGCs) in seven AAPB genomes displayed high synteny of major regions except for few insertions. The 14 Erythrobacter genomes had a large range of genome sizes, from 2.72 to 3.60 M, and the sizes of the core and pan- genomes were 1231 and 8170 orthologous clusters, respectively. Integrative and conjugative elements (ICEs) were frequently identified in genomes we studied, which might play significant roles in shaping or contributing to the pan-genome of Erythrobacter. Our findings suggest the ongoing evolutionary divergence of Erythrobacter genomes and the scattered distribution characteristic of PGC. PMID:27446024

  4. Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae.

    PubMed

    Rijkenberg, M J; Kort, R; Hellingwerf, K J

    2001-05-01

    From cultures of the anoxygenic phototroph Halorhodospira halophila SL-1, an aerobic, gram-negative spirillum was isolated. This moderately halophilic, alkaliphilic bacterium was motile by means of a single polar flagellum. It is described here as Alkalispirillum mobile gen. nov., spec. nov. Phylogenetic analysis of the Alkalispirillum mobile 16S rRNA gene led to its classification in the gamma-subclass of the Proteobacteria, as it appears closely related to phototrophic purple sulfur bacteria of the genera Ectothiorhodospira and Halorhodospira. Surprisingly, A. mobile is an obligate aerobe. The organism grows optimally with a number of carboxylic acids (such as sodium acetate) as carbon source, at 2% (i.e. approximately 0.34 M) sodium chloride, at pH 9-10, and at temperatures ranging from 35 to 38 degrees C. The dominant cellular fatty acids of Alkalispirillum mobile are C12:0, C16:0, C18:1cis11, and C18:0; its G+C content is 66.2+/-0.5 mol%.

  5. Anoxygenic Photosynthesis and Nitrogen Fixation by a Microbial Mat Community in a Bahamian Hypersaline Lagoon

    PubMed Central

    Pinckney, J. L.; Paerl, H. W.

    1997-01-01

    Simultaneous measurements of photosynthesis (both oxygenic and anoxygenic) and N(inf2) fixation were conducted to discern the relationships between photosynthesis, N(inf2) fixation, and environmental factors potentially regulating these processes in microbial mats in a tropical hypersaline lagoon (Salt Pond, San Salvador Island, Bahamas). Major photoautotrophs included cyanobacteria, purple phototrophic bacteria, and diatoms. Chemosystematic photopigments were used as indicators of the relative abundance of mat phototrophs. Experimental manipulations consisted of light and dark incubations of intact mat samples exposed to the photosystem II inhibitor DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea], a dissolved organic carbon source (D-glucose), and normal seawater (37(permil)). Photosynthetic rates were measured by both O(inf2) and (sup14)C methods, and nitrogenase activity (NA) was estimated by the acetylene reduction assay. Moderate reductions in salinity (from 74 to 37(permil)) had no measurable effect on photosynthesis, O(inf2) consumption, or NA. CO(inf2) fixation in DCMU-amended samples was (symbl)25% of that in the control (nonamended) samples and demonstrated photosynthetic activity by anoxygenic phototrophs. NA in DCMU-amended samples, which was consistently higher (by a factor of 2 to 3) than the other (light and dark) treatments, was also attributed to purple phototrophic bacteria. The ecological implication is that N(inf2) fixation by anoxygenic phototrophs (purple phototrophic bacteria and possibly cyanobacteria) may be regulated by the activity of oxygenic phototrophs (cyanobacteria and diatoms). Consortial interactions that enhance the physiological plasticity of the mat community may be a key for optimizing production, N(inf2) fixation, and persistence in these extreme environments. PMID:16535506

  6. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake

    PubMed Central

    Walter, Xavier A.; Picazo, Antonio; Miracle, Maria R.; Vicente, Eduardo; Camacho, Antonio; Aragno, Michel; Zopfi, Jakob

    2014-01-01

    Precambrian Banded Iron Formation (BIF) deposition was conventionally attributed to the precipitation of iron-oxides resulting from the abiotic reaction of ferrous iron (Fe(II)) with photosynthetically produced oxygen. Earliest traces of oxygen date from 2.7 Ga, thus raising questions as to what may have caused BIF precipitation before oxygenic photosynthesis evolved. The discovery of anoxygenic phototrophic bacteria thriving through the oxidation of Fe(II) has provided support for a biological origin for some BIFs, but despite reports suggesting that anoxygenic phototrophs may oxidize Fe(II) in the environment, a model ecosystem of an ancient ocean where they are demonstrably active was lacking. Here we show that anoxygenic phototrophic bacteria contribute to Fe(II) oxidation in the water column of the ferruginous sulfate-poor, meromictic lake La Cruz (Spain). We observed in-situ photoferrotrophic activity through stimulation of phototrophic carbon uptake in the presence of Fe(II), and determined light-dependent Fe(II)-oxidation by the natural chemocline microbiota. Moreover, a photoferrotrophic bacterium most closely related to Chlorobium ferrooxidans was enriched from the ferruginous water column. Our study for the first time demonstrates a direct link between anoxygenic photoferrotrophy and the anoxic precipitation of Fe(III)-oxides in a ferruginous water column, providing a plausible mechanism for the bacterial origin of BIFs before the advent of free oxygen. However, photoferrotrophs represent only a minor fraction of the anoxygenic phototrophic community with the majority apparently thriving by sulfur cycling, despite the very low sulfur content in the ferruginous chemocline of Lake La Cruz. PMID:25538702

  7. Distribution and Origin of Oxygen-Dependent and Oxygen-Independent Forms of Mg-Protoporphyrin Monomethylester Cyclase among Phototrophic Proteobacteria

    PubMed Central

    Boldareva-Nuianzina, Ekaterina N.; Bláhová, Zuzana; Sobotka, Roman

    2013-01-01

    Magnesium-protoporphyrin IX monomethylester cyclase is one of the key enzymes of the bacteriochlorophyll biosynthesis pathway. There exist two fundamentally different forms of this enzyme. The oxygen-dependent form, encoded by the gene acsF, catalyzes the formation of the bacteriochlorophyll fifth ring using oxygen, whereas the oxygen-independent form encoded by the gene bchE utilizes an oxygen atom extracted from water. The presence of acsF and bchE genes was surveyed in various phototrophic Proteobacteria using the available genomic data and newly designed degenerated primers. It was found that while the majority of purple nonsulfur bacteria contained both forms of the cyclase, the purple sulfur bacteria contained only the oxygen-independent form. All tested species of aerobic anoxygenic phototrophs contained acsF genes, but some of them also retained the bchE gene. In contrast to bchE phylogeny, the acsF phylogeny was in good agreement with 16S inferred phylogeny. Moreover, the survey of the genome data documented that the acsF gene occupies a conserved position inside the photosynthesis gene cluster, whereas the bchE location in the genome varied largely between the species. This suggests that the oxygen-dependent cyclase was recruited by purple phototrophic bacteria very early during their evolution. The primary sequence and immunochemical similarity with its cyanobacterial counterparts suggests that acsF may have been acquired by Proteobacteria via horizontal gene transfer from cyanobacteria. The acquisition of the gene allowed purple nonsulfur phototrophic bacteria to proliferate in the mildly oxygenated conditions of the Proterozoic era. PMID:23396335

  8. Facultative anoxygenic photosynthesis in cyanobacteria driven by arsenite and sulfide with evidence for the support of nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Hoeft, S. E.; Baesman, S. M.; Oremland, R. S.

    2010-12-01

    The rise in atmospheric oxygen (O2) over geologic time is attributed to the evolution and widespread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. In the environment, cyanobacteria may use a variety of alternative electron donors rather than water that are known to be used by other anoxygenic phototrophs (eg. purple sulfur bacteria) including reduced forms of sulfur, iron, nitrogen, and arsenic. Recent evidence suggests cyanobacteria actively take advantage of at least a few of these alternatives. We used a classical Winogradsky approach to enrich for cyanobacteria from the high salinity, elevated pH and arsenic-enriched waters of Mono Lake (CA). Experiments, optimized for cyanobacteria, revealed light-dependent, anaerobic arsenite-oxidation in sub-cultured sediment-free enrichments dominated by a filamentous cyanobacteria. We isolated and identified the dominant member of this enrichment to be a member of the Oscillatoriales by 16S rDNA. Addition of 1 mM arsenite induced facultative anoxygenic photosynthesis under continuous and circadian light. This isolate also oxidized sulfide under the same light-based conditions. Aerobic conditions elicited no arsenite oxidation in the light or dark and the isolate grew as a typical cyanobacterium using oxygenic photosynthesis. Under near-infrared light (700 nm) there was a direct correlation of enhanced growth with an increase in the rate arsenite or sulfide oxidation suggesting the use of photosystem I. Additionally, to test the wide-spread nature of this metabolism in the Oscillatoriales, we followed similar arsenite- and sulfide-driven facultative anoxygenic photosynthesis as well as nitrogen fixation (C2H2 reduction) in the axenic isolate Oscillatoria sp. CCMP 1731. Future characterization includes axenic isolation of the Mono Lake Oscillatoria sp. as well as the arsenite oxidase responsible for electron

  9. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring.

    PubMed

    Klatt, Christian G; Liu, Zhenfeng; Ludwig, Marcus; Kühl, Michael; Jensen, Sheila I; Bryant, Donald A; Ward, David M

    2013-09-01

    Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to Chloroflexus spp. and Roseiflexus spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to Synechococcus spp. strains A and B'. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both Roseiflexus spp. and Chloroflexus spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night, Chloroflexus spp. and Roseiflexus spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle.

  10. Sulfur metabolism in phototrophic sulfur bacteria.

    PubMed

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2009-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the Chromatiaceae), and many are well characterized also on a molecular genetic level. Complete genome sequence data are currently available for 10 strains of GSB and for one strain of PSB. We present here a genome-based survey of the distribution and phylogenies of genes involved in oxidation of sulfur compounds in these strains. It is evident from biochemical and genetic analyses that the dissimilatory sulfur metabolism of these organisms is very complex and incompletely understood. This metabolism is modular in the sense that individual steps in the metabolism may be performed by different enzymes in different organisms. Despite the distant evolutionary relationship between GSB and PSB, their photosynthetic nature and their dependency on oxidation of sulfur compounds resulted in similar ecological roles in the sulfur cycle as important anaerobic oxidizers of sulfur compounds.

  11. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    PubMed

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  12. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    PubMed Central

    Al-Najjar, Mohammad A. A.; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3− during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. PMID:25576611

  13. Taxonomy of phototrophic green and purple bacteria: a review.

    PubMed

    Pfennig, N; Trüper, H G

    1983-01-01

    The presently existing classification for the green and purple bacteria comprises physiological-ecological assemblages of phototrophic bacteria with anoxygenic photosynthesis. The taxonomic units of the different levels were based entirely on common phenotypic traits, including morphological, cytological, physiological and biochemical characteristics. Since degrees of resemblance form the basis of the grouping, this classification cannot reflect the genetic or evolutionary relatedness of these bacteria, neither among themselves nor with other bacteria. The advantage of the artificial system, however, is the use of features which can be established in most laboratories and which allow the comparison and identification of newly isolated strains with those already studied and described. The four existing families correspond to the four major recognized, ecophysiological groups, the Chlorobiaceae and Chloroflexaceae among the green bacteria, and the Chromatiaceae and Rhodospirillaceae among the purple bacteria. Our knowledge of all these groups is incomplete; this is reflected by the fact that seven new species have been described during the past three years (6th Newsletter on phot. bacteria, Trüper and Hansen, 1982). The description of the new genus and species Erythrobacter longus (Shiba and Simidu, 1982) is also interesting, as it comprises aerobic chemoorganotrophic marine bacteria which form bacteriochlorophyll a and carotenoids; however, no strains were able to grow phototrophilcally. Significant success is currently being obtained in the different approaches toward elucidating the genetic relationships within and outside of the purple and green bacteria. Detailed studies of the lipopolysaccharides of several species and genera of the Rhodospirillaceae (Weckesser et al., 1979, and more recent paper) have proven to be very useful for the recognition of relationships or dissimilarities between the species of a genus or between different genera. Amino acid sequence

  14. A Combined Molecular and Isotopic Study of Anoxygenic Photosynthesis in Meromictic Lakes of the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Harris, J. H., IV; Gilhooly, W., III; Crane, E. J., III; Steinman, B.; Shelton, M. R.

    2014-12-01

    Sulfur isotope fractionations within the chemocline can be an indication of green and purple sulfur photosynthetic activity. This isotopic signal is, however, small and variable, on the order of +2-6‰ (Zerkle et al. 2009). It is therefore advantageous to investigate the environmental and ecological effects on this signal so that these influences can be taken into account when estimating the contribution of anoxygenic phototrophs to the sulfur cycle in aquatic environments. This project aims to investigate the ways in which anoxygenic phototroph community structure and lake water geochemistry impact the sulfur isotope fractionation expressed during anoxygenic photosynthesis in meromictic lakes. During the summer of 2013, water column profile analysis of six lakes in the Pacific Northwest (located in eastern Washington and western Montana) were conducted to assess photosynthetically available radiation, salinity, pH, temperature, dissolved solids, and specific conductivity. Water column samples were obtained to determine the sulfur isotopic composition of dissolved sulfate and sulfide, major ion and sulfide concentrations. Microbial samples were also collected for genetic sequencing. Initial results found green (e.g., Chlorobiaceae sp.) and purple (e.g., Lamprocystis purpurea) bacteria at the same depth in one of the study lakes. These data, in addition to the same suite of samples collected in the summer of 2014, provide insight into relationships between the isotopic composition of sulfur (in H2S, S0, and SO4), lake water chemistry, and the presence or absence of green and purple sulfur bacteria.

  15. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring

    PubMed Central

    Klatt, Christian G; Liu, Zhenfeng; Ludwig, Marcus; Kühl, Michael; Jensen, Sheila I; Bryant, Donald A; Ward, David M

    2013-01-01

    Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to Chloroflexus spp. and Roseiflexus spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to Synechococcus spp. strains A and B′. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both Roseiflexus spp. and Chloroflexus spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night, Chloroflexus spp. and Roseiflexus spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle. PMID:23575369

  16. Phototrophic bacteria and their role in the biogeochemical sulfur cycle

    NASA Technical Reports Server (NTRS)

    Trueper, H. G.

    1985-01-01

    An essential step that cannot be bypassed in the biogeochemical cycle of sulfur today is dissimilatory sulfate reduction by anaerobic bacteria. The enormous amounts of sulfides produced by these are oxidized again either anaerobically by phototrophic bacteria or aerobically by thiobacilli and large chemotrophic bacteria (Beggiatoa, Thiovulum, etc.). Phototrophic bacteria use sulfide, sulfur, thiosulfate, and sulfite as electron donors for photosynthesis. The most obvious intermediate in their oxidative sulfur metabolism is a long chain polysulfide that appears as so called sulfur globules either inside (Chromatiaceae) or outside (Ectothiorhodospiraceae, Chlorobiaceae, and some of the Rhodospirillaceae) the cells. The assimilation of sulfur compounds in phototrophic bacteria is in principle identical with that of nonphototrophic bacteria. However, the Chlorobiaceae and some of the Chromatiaceae and Rhodospirillaceae, unable to reduce sulfate, rely upon reduced sulfur for biosynthetic purposes.

  17. Community Shift from Phototrophic to Chemotrophic Sulfide Oxidation following Anoxic Holomixis in a Stratified Seawater Lake

    PubMed Central

    Korlević, Marino; Berg, Jasmine S.; Bura-Nakić, Elvira; Ciglenečki, Irena; Amann, Rudolf; Orlić, Sandi

    2014-01-01

    Most stratified sulfidic holomictic lakes become oxygenated after annual turnover. In contrast, Lake Rogoznica, on the eastern Adriatic coast, has been observed to undergo a period of water column anoxia after water layer mixing and establishment of holomictic conditions. Although Lake Rogoznica's chemistry and hydrography have been studied extensively, it is unclear how the microbial communities typically inhabiting the oxic epilimnion and a sulfidic hypolimnion respond to such a drastic shift in redox conditions. We investigated the impact of anoxic holomixis on microbial diversity and microbially mediated sulfur cycling in Lake Rogoznica with an array of culture-independent microbiological methods. Our data suggest a tight coupling between the lake's chemistry and occurring microorganisms. During stratification, anoxygenic phototrophic sulfur bacteria were dominant at the chemocline and in the hypolimnion. After an anoxic mixing event, the anoxygenic phototrophic sulfur bacteria entirely disappeared, and the homogeneous, anoxic water column was dominated by a bloom of gammaproteobacterial sulfur oxidizers related to the GSO/SUP05 clade. This study is the first report of a community shift from phototrophic to chemotrophic sulfide oxidizers as a response to anoxic holomictic conditions in a seasonally stratified seawater lake. PMID:25344237

  18. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria

    NASA Technical Reports Server (NTRS)

    Fischer, U.

    1985-01-01

    Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.

  19. Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobium vannielii

    SciTech Connect

    Wright, G.E.; Madigan, M.T. )

    1991-07-01

    The phototrophic purple non-sulfur bacterium Thodomicrobium vannielii grew phototrophically (illuminated anaerobic conditions) on a variety of aromatic compounds (in the presence of CO{sub 2}). Benzoate was universally photocatabolized by all five strains of R. vannielii examined, and benzyl alcohol was photocatabolized by four of the five strains. Catabolism of benzyl alcohol by phototrophic bacteria has not been previously reported. Other aromatic substrates supporting reasonably good growth of R. vannielii strains were the methozylated benzoate derivatives vanillate (4-hydroxy-3-methoxybenzoate) and syringate (4-hydroxy-3,5-dimethoxybenzoate). However, catabolism of vanillate and syringate led to significant inhibition of bacteriochlorophyll synthesis in R. vannielii cells, eventually causing cultures to cease growing. No such effect on photopigment synthesis in cells grown on benzoate or benzyl alcohol was observed. Along with a handful of other species of anoxygenic phototrophic bacteria, the ability of the species R. vannielii to photocatabolize aromatic compounds indicates that this organism may also be ecologically significant as a consumer of aromatic derivatives in illuminated anaerobic habitats in nature.

  20. Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico.

    PubMed

    Stolz, J F

    1990-01-01

    The microbial mat community in the saltmarsh/evaporate flat interface at Laguna Figueroa involved in the deposition of laminated sediments was investigated. Pigment analysis, light microscopy and transmission electron microscopy were used to determine the relative abundance and distribution of phototrophic species. The community is vertically stratified into four distinct phototrophic populations. The layering could be distinguished by pigment and species composition. The two layers closest to the surface contained mostly oxygenic phototrophs and chlorophyll a as the primary photosynthetic pigment. Anoxic phototrophs predominated in the bottom two layers with bacteriochlorophylls a and c in the third layer and bacteriochlorophyll a and b in the bottom layer. The surface yellow layer was composed primarily of Navicula, Rhopalodia and other diatom species as well as the cyanobacteria Aphanothece sp. and Phormidium sp. Microcoleus chthonoplasces and Chroococcidiopsis sp. were the major cyanobacteria in the green colored second layer. In the third layer, pinkish-purple in color, purple photographs (Chromatium sp., Thiocapsa roseoparsicina) and filamentous green phototrophs (Chloroflexus sp., Oscillochloris sp.) were abundant. The fourth and deepest photosynthetic layer was salmon colored and composed primarily of Thiocapsa pfennigii, and other purple sulfur phototrophs. The pattern of alternating light (oxygenic community) and dark (anoxygenic community) layering preserved in older laminae is a consequence of this community structure. Study of the flat laminated mat over the 10-year period (1978-1988) including and after its destruction by catastrophic flooding events in 1978 and 1980, showed a succession of stratified communities culminating in the return of Microcoleus and the full compliment of layers by the fall of 1984.

  1. Production of lipases by four anoxygenic purple non-sulphur phototrophic bacteria.

    PubMed

    Munjam, Srinivas; Girisham, S; Reddy, S M

    Production of lipases by Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodocyclus gelatinosus and Rhodocyclus tenuis in different synthetic media was investigated. Rc. gelatinosus followed by Rb. sphaeroides were good producers of lipases, while Rps. palustris and Rc. tenuis were poor in lipase secretion. Lipase secretion by Rc. gelatinosus was adaptive in nature, while other three bacterial behavior was inconsistent. No positive correlation could be observed between growth and lipase production.

  2. Analysis of cbbL, nifH, and pufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria.

    PubMed

    Tahon, Guillaume; Tytgat, Bjorn; Stragier, Pieter; Willems, Anne

    2016-01-01

    Cyanobacteria are generally thought to be responsible for primary production and nitrogen fixation in the microbial communities that dominate Antarctic ecosystems. Recent studies of bacterial communities in terrestrial Antarctica, however, have shown that Cyanobacteria are sometimes only scarcely present, suggesting that other bacteria presumably take over their role as primary producers and diazotrophs. The diversity of key genes in these processes was studied in surface samples from the Sør Rondane Mountains, Dronning Maud Land, using clone libraries of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL, cbbM) and dinitrogenase-reductase (nifH) genes. We recovered a large diversity of non-cyanobacterial cbbL type IC in addition to cyanobacterial type IB, suggesting that non-cyanobacterial autotrophs may contribute to primary production. The nifH diversity recovered was predominantly related to Cyanobacteria, particularly members of the Nostocales. We also investigated the occurrence of proteorhodopsin and anoxygenic phototrophy as mechanisms for non-Cyanobacteria to exploit solar energy. While proteorhodopsin genes were not detected, a large diversity of genes coding for the light and medium subunits of the type 2 phototrophic reaction center (pufLM) was observed, suggesting for the first time, that the aerobic photoheterotrophic lifestyle may be important in oligotrophic high-altitude ice-free terrestrial Antarctic habitats.

  3. Sulfur cycling and metabolism of phototrophic and filamentous sulfur bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Brune, D.; Poplawski, R.; Schmidt, T. M.

    1985-01-01

    Phototrophic sulfur bacteria taken from different habitate (Alum Rock State Park, Palo Alto salt marsh, and Big Soda Lake) were grown on selective media, characterized by morphological and pigment analysis, and compared with bacteria maintained in pure culture. A study was made of the anaerobic reduction of intracellular sulfur globules by a phototrophic sulfur bacterium (Chromatium vinosum) and a filamentous aerobic sulfur bacterium (Beggiatoa alba). Buoyant densities of different bacteria were measured in Percoll gradients. This method was also used to separate different chlorobia in mixed cultures and to assess the relative homogeneity of cultures taken directly or enriched from natural samples (including the purple bacterial layer found at a depth of 20 meters at Big Soda Lake.) Interactions between sulfide oxidizing bacteria were studied.

  4. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California.

    PubMed

    Kulp, T R; Hoeft, S E; Asao, M; Madigan, M T; Hollibaugh, J T; Fisher, J C; Stolz, J F; Culbertson, C W; Miller, L G; Oremland, R S

    2008-08-15

    Phylogenetic analysis indicates that microbial arsenic metabolism is ancient and probably extends back to the primordial Earth. In microbial biofilms growing on the rock surfaces of anoxic brine pools fed by hot springs containing arsenite and sulfide at high concentrations, we discovered light-dependent oxidation of arsenite [As(III)] to arsenate [As(V)] occurring under anoxic conditions. The communities were composed primarily of Ectothiorhodospira-like purple bacteria or Oscillatoria-like cyanobacteria. A pure culture of a photosynthetic bacterium grew as a photoautotroph when As(III) was used as the sole photosynthetic electron donor. The strain contained genes encoding a putative As(V) reductase but no detectable homologs of the As(III) oxidase genes of aerobic chemolithotrophs, suggesting a reverse functionality for the reductase. Production of As(V) by anoxygenic photosynthesis probably opened niches for primordial Earth's first As(V)-respiring prokaryotes.

  5. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California

    USGS Publications Warehouse

    Kulp, T.R.; Hoeft, S.E.; Asao, M.; Madigan, M.T.; Hollibaugh, J.T.; Fisher, J.C.; Stolz, J.F.; Culbertson, C.W.; Miller, L.G.; Oremland, R.S.

    2008-01-01

    Phylogenetic analysis indicates that microbial arsenic metabolism is ancient and probably extends back to the primordial Earth. In microbial biofilms growing on the rock surfaces of anoxic brine pools fed by hot springs containing arsenite and sulfide at high concentrations, we discovered light-dependent oxidation of arsenite [As(III)] to arsenate [As(V)] occurring under anoxic conditions. The communities were composed primarily of Ectothiorhodospira-like purple bacteria or Oscillatoria-like cyanobacteria. A pure culture of a photosynthetic bacterium grew as a photoautotroph when As(III) was used as the sole photosynthetic electron donor. The strain contained genes encoding a putative As(V) reductase but no detectable homologs of the As(III) oxidase genes of aerobic chemolithotrophs, suggesting a reverse functionality for the reductase. Production of As(V) by anoxygenic photosynthesis probably opened niches for primordial Earth's first As(V)-respiring prokaryotes.

  6. Engineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    SciTech Connect

    James C. Liao

    2012-05-22

    This project is a collaboration with F. R. Tabita of Ohio State. Our major goal is to understand the factors and regulatory mechanisms that influence hydrogen production. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Our part of the project was to develop a modeling technique to investigate the metabolic network in connection to hydrogen production and regulation. Organisms must balance the pathways that generate and consume reducing power in order to maintain redox homeostasis to achieve growth. Maintaining this homeostasis in the nonsulfur purple photosynthetic bacteria is a complex feat with many avenues that can lead to balance, as these organisms possess versatile metabolic capabilities including anoxygenic photosynthesis, aerobic or anaerobic respiration, and fermentation. Growth is achieved by using H{sub 2} as an electron donor and CO{sub 2} as a carbon source during photoautotrophic and chemoautotrophic growth, where CO{sub 2} is fixed via the Calvin-Benson-Bassham (CBB) cycle. Photoheterotrophic growth can also occur when alternative organic carbon compounds are utilized as both the carbon source and electron donor. Regardless of the growth mode, excess reducing equivalents generated as a result of oxidative processes, must be transferred to terminal electron acceptors, thus insuring that redox homeostasis is maintained in the cell. Possible terminal acceptors include O{sub 2}, CO{sub 2}, organic carbon, or various oxyanions. Cells possess regulatory mechanisms to balance the activity of the pathways which supply energy, such as photosynthesis, and those that consume energy, such as CO{sub 2} assimilation or N{sub 2} fixation. The major route for CO{sub 2} assimilation is the CBB

  7. Diversity of anoxygenic phototrophic sulfur bacteria in the microbial mats of the Ebro Delta: a combined morphological and molecular approach.

    PubMed

    Martínez-Alonso, Maira; Van Bleijswijk, Judith; Gaju, Núria; Muyzer, Gerard

    2005-05-01

    The diversity of purple and green sulfur bacteria in the multilayered sediments of the Ebro Delta was investigated. Specific oligonucleotide primers for these groups were used for the selective amplification of 16S rRNA gene sequences. Subsequently, amplification products were separated by denaturing gradient gel electrophoresis and sequenced, which yielded a total of 32 sequences. Six of the sequences were related to different cultivated members of the green sulfur bacteria assemblage, whereas seven fell into the cluster of marine or halophilic Chromatiaceae. Six sequences were clustered with the family Ectothiorhodospiraceae, three of the six being closely related to chemotrophic bacteria grouped together with Halorhodospira genus, and the other three forming a group related to the genus Ectothiorhodospira. The last thirteen sequences constituted a cluster where no molecular isolate from microbial mats has so far been reported. Our results indicate that the natural diversity in the ecosystem studied has been significantly underestimated in the past and point out the presence of novel species not related to all known purple sulfur bacteria. Furthermore, the detection of green sulfur bacteria, after only an initial step of enrichment, suggests that -- with the appropriate methodology -- several genera, such as Prosthecochloris, could be established as regular members of marine microbial mats.

  8. Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria.

    PubMed

    Edwardson, Christian F; Planer-Friedrich, Britta; Hollibaugh, James T

    2014-12-01

    Thioarsenates are the dominant arsenic species in arsenic-rich, alkaline, and sulfidic waters, but bacterial interactions with these compounds have only recently been examined. Previous studies have shown that microorganisms play a role in the transformation of monothioarsenate to arsenate, including use of monothioarsenate as a chemolithotrophic electron donor coupled with oxygen as an electron acceptor. We obtained enrichment cultures from two saline, alkaline lakes (Mono Lake, CA and Big Soda Lake, NV) that are able to use monothioarsenate as the sole electron donor for anoxygenic photosynthesis. These anoxic cultures were able to convert a 1 mM mixture of thioarsenates completely to arsenate in c. 13 days and 4 mM monothioarsenate to arsenate in c. 17 days. This conversion was light dependent; thus, monothioarsenate can be used as the sole electron donor for anoxygenic photosynthesis. Both of the Mono Lake and Big Soda Lake enrichment cultures were dominated by an organism closely related to Ectothiorhodospira species. We tested additional strains of purple sulfur bacteria and found widespread ability to use monothioarsenate as an electron donor. The ability of bacteria to transform thioarsenates directly via anoxygenic photosynthesis adds a new perspective to the well-studied arsenic and sulfur cycles.

  9. Phototrophic Fe(II) oxidation promotes organic carbon acquisition by Rhodobacter capsulatus SB1003.

    PubMed

    Caiazza, Nicky C; Lies, Douglas P; Newman, Dianne K

    2007-10-01

    Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.

  10. Utilization of 'elemental' sulfur by different phototrophic sulfur bacteria (Chromatiaceae, Ectothiorhodospiraceae): A sulfur K-edge XANES spectroscopy study

    NASA Astrophysics Data System (ADS)

    Franz, B.; Lichtenberg, H.; Dahl, C.; Hormes, J.; Prange, A.

    2009-11-01

    Phototrophic sulfur bacteria are generally able to use elemental sulfur as an electron donor for anoxygenic photosynthesis. Elemental sulfur is mainly a mixture of cyclo-octasulfur and polymeric sulfur. The purple sulfur bacterium Allochromatium vinosum strongly prefers the polymeric sulfur fraction showing that sulfur speciation has a strong influence on availability of elemental sulfur. X-ray absorption near edge structure (XANES) spectroscopy was used to investigate whether polymeric sulfur is also the preferred sulfur species in other purple sulfur bacteria belonging to the families Chromatiaceae and Ecothiorodospiraceae. The cultures were fed with 50 mM of elemental sulfur consisting of 68% polymeric sulfur and 30% cyclo-octasulfur. In all cultures, elemental sulfur was converted into intra- or extracellular sulfur globules, respectively, and further oxidized to sulfate. Sulfate concentrations were determined by HPLC and turbidometric assays, respectively. However, the added elemental sulfur was only partly used by the bacteria, one part of the 'elemental sulfur' remained in the cultures and was not taken up. XANES spectroscopy revealed that only the polymeric sulfur fraction was taken up by all cultures investigated. This strongly indicates that polymeric 'chain-like' sulfur is the form preferably used by phototrophic sulfur bacteria.

  11. Diversity of Phototrophic Genes Suggests Multiple Bacteria May Be Able to Exploit Sunlight in Exposed Soils from the Sør Rondane Mountains, East Antarctica

    PubMed Central

    Tahon, Guillaume; Tytgat, Bjorn; Willems, Anne

    2016-01-01

    Microbial life in exposed terrestrial surface layers in continental Antarctica is faced with extreme environmental conditions, including scarcity of organic matter. Bacteria in these exposed settings can therefore be expected to use alternative energy sources such as solar energy, abundant during the austral summer. Using Illumina MiSeq sequencing, we assessed the diversity and abundance of four conserved protein encoding genes involved in different key steps of light-harvesting pathways dependent on (bacterio)chlorophyll (pufM, bchL/chlL, and bchX genes) and rhodopsins (actinorhodopsin genes), in exposed soils from the Sør Rondane Mountains, East Antarctica. Analysis of pufM genes, encoding a subunit of the type 2 photochemical reaction center found in anoxygenic phototrophic bacteria, revealed a broad diversity, dominated by Roseobacter- and Loktanella-like sequences. The bchL and chlL, involved in (bacterio)chlorophyll synthesis, on the other hand, showed a high relative abundance of either cyanobacterial or green algal trebouxiophyceael chlL reads, depending on the sample, while most bchX sequences belonged mostly to previously unidentified phylotypes. Rhodopsin-containing phototrophic bacteria could not be detected in the samples. Our results, while suggesting that Cyanobacteria and green algae are the main phototrophic groups, show that light-harvesting bacteria are nevertheless very diverse in microbial communities in Antarctic soils. PMID:28066352

  12. Comparative studies of two membrane fractions isolated from chemotrophically and phototrophically grown cells of Rhodopseudomonas capsulata.

    PubMed Central

    Garcia, A F; Drews, G; Reidl, H H

    1981-01-01

    Light and heavy membrane fractions have been isolated by equilibrium sucrose density centrifugation from Rhodopseudomonas capsulata 938 GCM grown aerobically in the dark (chemotrophically) and anaerobically in the light (phototrophically). The densities of the light and heavy fractions from phototrophic cells were 1.1004 to 1.1006 and 1.1478, respectively, and the densities of the light and heavy fractions from chemotrophic cells were 1.0957 to 1.0958 and 1.1315, respectively. Both fractions were active in photochemical and respiratory functions and in electron transport-coupled phosphorylation. The light membrane fraction isolated from chemotrophic cells contained the reaction center and the light-harvesting pigment-protein complex B 870, but not the variable light-harvesting complex B 800-850. A small amount of the complex B 800-850 was present in the light fraction isolated from phototrophically grown cells, but it was not energetically coupled to the photosynthetic apparatus. From inhibitor studies, difference spectroscopy, and measurement of enzyme activities it was tentatively concluded that the light membrane fraction contains only the reduced nicotinamide adenine dinucleotide-oxidizing electron transport chain having a KCN-insensitive, low-potential cytochrome c oxidase, whereas the heavy fraction contains additionally the succinate dehydrogenase and a high-potential cytochrome b terminal oxidase sensitive to KCN. The light membrane fraction was more labile than the heavy fraction in terms of phosphorylating activity. PMID:7204341

  13. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh

    PubMed Central

    Wilbanks, Elizabeth G; Jaekel, Ulrike; Salman, Verena; Humphrey, Parris T; Eisen, Jonathan A; Facciotti, Marc T; Buckley, Daniel H; Zinder, Stephen H; Druschel, Gregory K; Fike, David A; Orphan, Victoria J

    2014-01-01

    Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the ‘pink berry’ consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and 34S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0–500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ34S-sulfide decreased from 6‰ to −31‰ from the exterior to interior of the berry. These values correspond to sulfate–sulfide isotopic fractionations (15–53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria. PMID:24428801

  14. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh.

    PubMed

    Wilbanks, Elizabeth G; Jaekel, Ulrike; Salman, Verena; Humphrey, Parris T; Eisen, Jonathan A; Facciotti, Marc T; Buckley, Daniel H; Zinder, Stephen H; Druschel, Gregory K; Fike, David A; Orphan, Victoria J

    2014-11-01

    Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the 'pink berry' consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and (34) S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0-500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ(34) S-sulfide decreased from 6‰ to -31‰ from the exterior to interior of the berry. These values correspond to sulfate-sulfide isotopic fractionations (15-53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria.

  15. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.

    PubMed

    Johnston, D T; Wolfe-Simon, F; Pearson, A; Knoll, A H

    2009-10-06

    Molecular oxygen (O(2)) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580-550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and sulfidic). Here we illustrate how contributions to primary production by anoxygenic photoautotrophs (including physiologically versatile cyanobacteria) influenced biogeochemical cycling during Earth's middle age, helping to perpetuate our planet's intermediate redox state by tempering O(2) production. Specifically, the ability to generate organic matter (OM) using sulfide as an electron donor enabled a positive biogeochemical feedback that sustained euxinia in the OMZ. On a geologic time scale, pyrite precipitation and burial governed a second feedback that moderated sulfide availability and water column oxygenation. Thus, we argue that the proportional contribution of anoxygenic photosynthesis to overall primary production would have influenced oceanic redox and the Proterozoic O(2) budget. Later Neoproterozoic collapse of widespread euxinia and a concomitant return to ferruginous (anoxic and Fe(2+) rich) subsurface waters set in motion Earth's transition from its prokaryote-dominated middle age, removing a physiological barrier to eukaryotic diversification (sulfide) and establishing, for the first time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved the way for the further oxygenation of the oceans and atmosphere and, ultimately, the evolution of complex multicellular organisms.

  16. Anoxygenic growth of cyanobacteria on Fe(II) and their associated biosignatures: Implications for biotic contributions to Precambrian Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Parenteau, M.; Jahnke, L. L.; Cady, S. L.; Pierson, B.

    2011-12-01

    Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits that accumulated in deep ocean basins or shallow platformal areas with inputs of reduced iron (Fe(II)) and silica from deep ocean hydrothermal activity. There is debate as to whether abiotic or biotic mechanisms were responsible for the oxidation of aqueous Fe(II) and the subsequent accumulation of ferric iron (Fe(III)) mineral assemblages in BIFs. Biotic Fe(II) oxidation could have occurred indirectly as a result of the photosynthetic production of oxygen by cyanobacteria, or could have been directly mediated by anoxygenic phototrophs or chemolithotrophs. The anoxygenic use of Fe(II) as an electron donor for photosynthesis has also been hypothesized in cyanobacteria, representing another biotic mechanism by which Fe(II) could be oxidized in BIFs. This type of photoferrotrophic metabolism may also represent a key step in the evolution of oxygenic photosynthesis. Members of our group have speculated that an intermediate reductant such as Fe(II) could have acted as a transitional electron donor before water. The widespread abundance of Fe(II) in Archean and Neoproterozoic ferruginous oceans would have made it particularly suitable as an electron donor for photosynthesis. We have been searching for modern descendants of such an ancestral "missing link" cyanobacterium in the phototrophic mats at Chocolate Pots, a hot spring in Yellowstone National Park with a constant outflow of anoxic Fe(II)-rich thermal water. Our physiological ecology study of the Synechococcus-Chloroflexi mat using C-14 bicarbonate uptake and autoradiography experiments revealed that the cyanobacteria grow anoxygenically using Fe(II) as an electron donor for photosynthesis in situ. An initial set of similar experiments substituting C-13 bicarbonate as the tracer was used to characterize labeling of the community lipid biomarker signature and confirm the C-14 results. Under light conditions with and without Fe(II), the C

  17. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    NASA Astrophysics Data System (ADS)

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-01

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  18. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    PubMed

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-28

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  19. Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector

    SciTech Connect

    Kuehl, M. ); Joergensen, B.B. )

    1992-12-01

    A diode array detector system for microscale light measurements with fiber-optic microprobes was developed; it measures intensities of 400-900-nm light over >6 orders of magnitude with a spectral resolution of 2-5 nm. Fiber-optic microprobes to measure field radiance or scalar irradiance were coupled to the detector system and used for spectral light measurements in hypersaline microbial mats and in laminated phototrophic communities of coastal sediments. The vertical distribution of major photopigments of microalgae, cyanobacteria, and anoxygenic phototrophic bacteria could be identified from extinction maxima in measured radiance spectra at 430-550 nm (Chl a and carotenoids), 620-625 nm (phycocyanin), 675 nm (Chl a), 745-750 nm (BChl c), 800-810 nm, and 860-880 nm (BChl a). Scalar irradiance spectra exhibited a different spectral composition and a higher light intensity at the sediment surface as compared to incident light. IR light thus reached 200% of incident at the sediment surface. Maximal light penetration was found for IR light, whereas visible light was strongly attenuated in the upper 0-2 mm of the sediment. Measurements of photon scalar irradiance (400-700 nm) were combined with microelectrode measurements of oxygenic photosynthesis in the coastal sediment. With an incident light intensity of 200 [mu]Einst m[sup [minus]2]s[sup [minus]1], photon scalar irradiance reached a maximum of 283 [mu]Einst m[sup [minus]2]s[sup [minus]1] at the sediment surface. The lower boundary of the euphotic zone was 2.2 mm below the surface at a light intensity of 12 [mu]Einst m[sup [minus]2]s[sup [minus]1]. 20 refs., 6 figs.

  20. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    PubMed

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past.

  1. The genetic basis of anoxygenic photosynthetic arsenite oxidation

    USGS Publications Warehouse

    Hernandez-Maldonado, Jamie; Sanchez-Sedillo, Benjamin; Stoneburner, Brendon; Boren, Alison; Miller, Laurence G.; McCann, Shelley; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W.

    2017-01-01

    “Photoarsenotrophy”, the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2S, H2, and NO2-. Photoarsenotrophy was recently identified from Paoha Island's (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling.

  2. Role of Iron in the Preservation of Phototrophic Cells: An Example from a Modern Thermophilic Community at Chocolate Pots Hot Springs in Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    Parenteau, M. N.; Cady, S. L.; Jahnke, L. L.; Pierson, B. K.

    2006-12-01

    Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits, the least metamorphosed of which often contain hematite and magnetite among the major oxide mineral species. Hypotheses developed to explain the origin of BIFs differ with regard to the mechanisms by which Fe2+ would have been oxidized to mixed ferric (Fe3+) mineral assemblages. The classical scenario is that oxidation occurred biotically, albeit indirectly, as a result of the photosynthetic production of oxygen by cyanobacteria. It has also been suggested that Fe2+ oxidation could have occurred by abiotic photochemical oxidation or by direct oxidation via the metabolism of anoxygenic phototrophs and chemolithotrophs. Our prior investigation of a modern iron-depositing thermal spring using microelectrodes indicates that cyanobacterial microbial mats have a significant physiological impact on Fe2+ oxidation via photosynthetic oxygen production and CO2 fixation. Recent compound-specific stable carbon isotope analyses of lipid biomarkers by our group reveals that anoxygenic phototrophs (e.g., Chloroflexus) do not oxidize Fe2+, but that they grow photoheterotrophically utilizing the cyanobacterial photosynthate. Evidence for a microbial role in the deposition of BIFs has been sought in the occurrence of microfossils in these structures. Microfossils are typically found preserved in the chert layers of BIFs. Though it has been argued that iron does not preserve cells well, our conventional TEM examination of iron-mineralized cyanobacterial cells has led us to hypothesize that iron can preserve the cellular fidelity of at least one phototroph and generate carbonaceous microfossils via permineralization. We have also used high resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) to characterize the microfossils and iron oxides located within and on the outside of such cells. Our extensive set of investigations with regard to deciphering the role of

  3. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis

    PubMed Central

    Hanson, Thomas E.; Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Hess, Daniel

    2013-01-01

    Previously, we presented data that indicated microbial sulfide oxidation would out-compete strictly chemical, abiotic sulfide oxidation reactions under nearly all conditions relevant to extant ecosystems (Luther et al., 2011). In particular, we showed how anaerobic microbial sulfide oxidation rates were several orders of magnitude higher than even metal catalyzed aerobic sulfide oxidation processes. The fact that biotic anaerobic sulfide oxidation is kinetically superior to abiotic reactions implies that nearly all anaerobic and sulfidic environments should host microbial populations that oxidize sulfide at appreciable rates. This was likely an important biogeochemical process during long stretches of euxinia in the oceans suggested by the geologic record. In particular, phototrophic sulfide oxidation allows the utilization of carbon dioxide as the electron acceptor suggesting that this process should be particularly widespread rather than relying on the presence of other chemical oxidants. Using the Chesapeake Bay as an example, we argue that phototrophic sulfide oxidation may be more important in many environments than is currently appreciated. Finally, we present methodological considerations to assist other groups that wish to study this process. PMID:24391629

  4. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems.

    PubMed

    Bühring, S I; Sievert, S M; Jonkers, H M; Ertefai, T; Elshahed, M S; Krumholz, L R; Hinrichs, K-U

    2011-03-01

    Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to

  5. Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes.

    PubMed

    Tank, Marcus; Thiel, Vera; Imhoff, Johannes F

    2009-09-01

    The phylogenetic relationship of purple sulfur bacteria (PSB), of the order Chromatiales (class Gammaproteobacteria), was analyzed based on photosynthetic gene sequences of the pufL and pufM genes, and the results compared to phylogenetic trees and groupings of the 16S rRNA gene. Primers for pufL and pufM genes were constructed and successfully used to amplify the pufLM genes of members of 16 genera of Chromatiales. In total, pufLM and 16S rRNA gene sequences of 66 PSB strains were analyzed, including 29 type strains and 28 new isolates. The inferred phylogenetic trees of the pufLM and 16S rRNA genes reflected a largely similar phylogenetic development suggesting coevolution of these essential genes within the PSB. It is concluded that horizontal gene transfer of pufLM genes within the PSB is highly unlikely, in contrast to the situation in other groups of anoxygenic phototrophic bacteria belonging to Alpha- and Betaproteobacteria. The phylogeny of pufLM is therefore in good agreement with the current taxonomic classification of PSB. A phylogenetic classification of PSB to the genus level is possible based on their pufL or pufM sequences, and in many cases even to the species level. In addition, our data support a correlation between Puf protein structure and the type of internal photosynthetic membranes (vesicular, lamellar, or tubular).

  6. Deep-water anoxygenic photosythesis in a ferruginous chemocline.

    PubMed

    Crowe, S A; Maresca, J A; Jones, C; Sturm, A; Henny, C; Fowle, D A; Cox, R P; Delong, E F; Canfield, D E

    2014-07-01

    Ferruginous Lake Matano, Indonesia hosts one of the deepest anoxygenic photosynthetic communities on Earth. This community is dominated by low-light adapted, BChl e-synthesizing green sulfur bacteria (GSB), which comprise ~25% of the microbial community immediately below the oxic-anoxic boundary (OAB; 115-120 m in 2010). The size of this community is dependent on the mixing regime within the lake and the depth of the OAB-at ~117 m, the GSB live near their low-light limit. Slow growth and C-fixation rates suggest that the Lake Matano GSB can be supported by sulfide even though it only accumulates to scarcely detectable (low μm to nm) concentrations. A model laboratory strain (Chlorobaculum tepidum) is indeed able to access HS- for oxidation at nm concentrations. Furthermore, the GSB in Lake Matano possess a full complement of S-oxidizing genes. Together, this physiological and genetic information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea, GSB would have contributed little to global ocean primary production, nutrient cycling, and banded iron formation (BIF) deposition in the Precambrian. Before the proliferation of oxygenic photosynthesis, shallower OABs and lower light absorption in the ocean's surface waters would have permitted greater light availability to GSB, potentially leading to a greater role for GSB in global biogeochemical cycles.

  7. Endolithic phototrophs in built and natural stone.

    PubMed

    Gaylarde, Christine C; Gaylarde, Peter M; Neilan, Brett A

    2012-08-01

    Lichens, algae and cyanobacteria have been detected growing endolithically in natural rock and in stone buildings in various countries of Australasia, Europe and Latin America. Previously these organisms had mainly been described in natural carbonaceous rocks in aquatic environments, with some reports in siliceous rocks, principally from extremophilic regions. Using various culture and microscopy methods, we have detected endoliths in siliceous stone, both natural and cut, in humid temperate and subtropical climates. Such endolithic growth leads to degradation of the stone structure, not only by mechanical means, but also by metabolites liberated by the cells. Using in vitro culture, transmission, optical and fluorescence microscopy, and confocal laser scanning microscopy, both coccoid and filamentous cyanobacteria and algae, including Cyanidiales, have been identified growing endolithically in the facades of historic buildings built from limestone, sandstone, granite, basalt and soapstone, as well as in some natural rocks. Numerically, the most abundant are small, single-celled, colonial cyanobacteria. These small phototrophs are difficult to detect by standard microscope techniques and some of these species have not been previously reported within stone.

  8. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment

    PubMed Central

    Laufer, Katja; Nordhoff, Mark; Røy, Hans; Schmidt, Caroline; Behrens, Sebastian; Jørgensen, Bo Barker

    2015-01-01

    Iron is abundant in sediments, where it can be biogeochemically cycled between its divalent and trivalent redox states. The neutrophilic microbiological Fe cycle involves Fe(III)-reducing and three different physiological groups of Fe(II)-oxidizing microorganisms, i.e., microaerophilic, anoxygenic phototrophic, and nitrate-reducing Fe(II) oxidizers. However, it is unknown whether all three groups coexist in one habitat and how they are spatially distributed in relation to gradients of O2, light, nitrate, and Fe(II). We examined two coastal marine sediments in Aarhus Bay, Denmark, by cultivation and most probable number (MPN) studies for Fe(II) oxidizers and Fe(III) reducers and by quantitative-PCR (qPCR) assays for microaerophilic Fe(II) oxidizers. Our results demonstrate the coexistence of all three metabolic types of Fe(II) oxidizers and Fe(III) reducers. In qPCR, microaerophilic Fe(II) oxidizers (Zetaproteobacteria) were present with up to 3.2 × 106 cells g dry sediment−1. In MPNs, nitrate-reducing Fe(II) oxidizers, anoxygenic phototrophic Fe(II) oxidizers, and Fe(III) reducers reached cell numbers of up to 3.5 × 104, 3.1 × 102, and 4.4 × 104 g dry sediment−1, respectively. O2 and light penetrated only a few millimeters, but the depth distribution of the different iron metabolizers did not correlate with the profile of O2, Fe(II), or light. Instead, abundances were homogeneous within the upper 3 cm of the sediment, probably due to wave-induced sediment reworking and bioturbation. In microaerophilic Fe(II)-oxidizing enrichment cultures, strains belonging to the Zetaproteobacteria were identified. Photoferrotrophic enrichments contained strains related to Chlorobium and Rhodobacter; the nitrate-reducing Fe(II) enrichments contained strains related to Hoeflea and Denitromonas. This study shows the coexistence of all three types of Fe(II) oxidizers in two near-shore marine environments and the potential for competition and interrelationships between them

  9. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment.

    PubMed

    Laufer, Katja; Nordhoff, Mark; Røy, Hans; Schmidt, Caroline; Behrens, Sebastian; Jørgensen, Bo Barker; Kappler, Andreas

    2015-12-18

    Iron is abundant in sediments, where it can be biogeochemically cycled between its divalent and trivalent redox states. The neutrophilic microbiological Fe cycle involves Fe(III)-reducing and three different physiological groups of Fe(II)-oxidizing microorganisms, i.e., microaerophilic, anoxygenic phototrophic, and nitrate-reducing Fe(II) oxidizers. However, it is unknown whether all three groups coexist in one habitat and how they are spatially distributed in relation to gradients of O2, light, nitrate, and Fe(II). We examined two coastal marine sediments in Aarhus Bay, Denmark, by cultivation and most probable number (MPN) studies for Fe(II) oxidizers and Fe(III) reducers and by quantitative-PCR (qPCR) assays for microaerophilic Fe(II) oxidizers. Our results demonstrate the coexistence of all three metabolic types of Fe(II) oxidizers and Fe(III) reducers. In qPCR, microaerophilic Fe(II) oxidizers (Zetaproteobacteria) were present with up to 3.2 × 10(6) cells g dry sediment(-1). In MPNs, nitrate-reducing Fe(II) oxidizers, anoxygenic phototrophic Fe(II) oxidizers, and Fe(III) reducers reached cell numbers of up to 3.5 × 10(4), 3.1 × 10(2), and 4.4 × 10(4) g dry sediment(-1), respectively. O2 and light penetrated only a few millimeters, but the depth distribution of the different iron metabolizers did not correlate with the profile of O2, Fe(II), or light. Instead, abundances were homogeneous within the upper 3 cm of the sediment, probably due to wave-induced sediment reworking and bioturbation. In microaerophilic Fe(II)-oxidizing enrichment cultures, strains belonging to the Zetaproteobacteria were identified. Photoferrotrophic enrichments contained strains related to Chlorobium and Rhodobacter; the nitrate-reducing Fe(II) enrichments contained strains related to Hoeflea and Denitromonas. This study shows the coexistence of all three types of Fe(II) oxidizers in two near-shore marine environments and the potential for competition and interrelationships between

  10. Relationships between 16S-23S rRNA gene internal transcribed spacer DNA and genomic DNA similarities in the taxonomy of phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Hisada, T.; Takata, K.; Hiraishi, A.

    2013-04-01

    Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similarity as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.

  11. Electroactivity of phototrophic river biofilms and constitutive cultivable bacteria.

    PubMed

    Lyautey, Emilie; Cournet, Amandine; Morin, Soizic; Boulêtreau, Stéphanie; Etcheverry, Luc; Charcosset, Jean-Yves; Delmas, François; Bergel, Alain; Garabetian, Frédéric

    2011-08-01

    Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from -0.36 to -0.76 V/SCE, and peak amplitudes ranging from -9.5 to -19.4 μA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions.

  12. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  13. Buoyant densities of phototrophic sulfur bacteria and cyanobacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.

    1985-01-01

    The buoyant densities of bacterial cells are greatly influenced by the accumulation of intracellular reserve material. The buoyant density of phototrophic bacteria that are planktonic is of particular interest, since these organisms must remain in the photic zone of the water column for optimal growth. Separation of cells by their buoyant density may also be of use in separating and identifying organisms from a natural population. The bacteria used were obtained from pure cultures, enrichments, or samples taken directly from the environment.

  14. Beyond the genome: functional studies of phototrophic sulfur oxidation.

    PubMed

    Hanson, Thomas E; Morgan-Kiss, Rachael M; Chan, Leong-Keat; Hiras, Jennifer

    2010-01-01

    The increasing availability of complete genomic sequences for cultured phototrophic bacteria and assembled metagenomes from environments dominated by phototrophs has reinforced the need for a "post-genomic" analytical effort to test models of cellular structure and function proposed from genomic data. Comparative genomics has produced a testable model for pathways of sulfur compound oxidation in the phototrophic bacteria. In the case of sulfide, two enzymes are predicted to oxidize sulfide: sulfide:quinone oxidoreductase and flavocytochrome c sulfide dehydrogenase. However, these models do not predict which enzyme is important under what conditions. In Chlorobaculum tepidum, a model green sulfur bacterium, a combination of genetics and physiological analysis of mutant strains has led to the realization that this organism contains at least two active sulfide:quinone oxidoreductases and that there is significant interaction between sulfide oxidation and light harvesting. In the case of elemental sulfur, an organothiol intermediate of unknown structure has been proposed to activate elemental sulfur for transport into the cytoplasm where it can be oxidized or assimilated, and recent approaches using classical metabolite analysis have begun to shed light on this issue both in C. tepidum and the purple sulfur bacterium Allochromatium vinosum.

  15. A physiological role for HgII during phototrophic growth

    NASA Astrophysics Data System (ADS)

    Grégoire, D. S.; Poulain, A. J.

    2016-02-01

    The bioaccumulation of toxic monomethylmercury is influenced by the redox reactions that determine the amount of mercury (Hg) substrate--HgII or Hg0 (refs ,)--that is available for methylation. Phototrophic microorganisms can reduce HgII to Hg0 (ref. ). This reduction has been linked to a mixotrophic lifestyle, in which microbes gain energy photosynthetically but acquire diverse carbon compounds for biosynthesis from the environment. Photomixotrophs must maintain redox homeostasis to disperse excess reducing power due to the accumulation of reduced enzyme cofactors. Here we report laboratory experiments in which we exposed purple bacteria growing in a bioreactor to HgII and monitored Hg0 concentrations. We show that phototrophs use HgII as an electron sink to maintain redox homeostasis. Hg0 concentrations increased only when bacteria grew phototrophically, and when bacterial enzyme cofactor ratios indicated the presence of an intracellular redox imbalance. Under such conditions, bacterial growth rates increased with increasing HgII concentrations; when alternative electron sinks were added, Hg0 production decreased. We conclude that Hg can fulfil a physiological function in bacteria, and that photomixotrophs can modify the availability of Hg to methylation sites.

  16. Temperature dependence of denitrification in phototrophic river biofilms.

    PubMed

    Boulêtreau, S; Salvo, E; Lyautey, E; Mastrorillo, S; Garabetian, F

    2012-02-01

    Denitrification is an ecosystem service of nitrogen load regulation along the terrestrial-freshwater-marine continuum. The present study documents the short-term temperature sensitivity of denitrification enzyme activity in phototrophic river biofilms as a typical microbial assemblage of this continuum. Denitrification measurements were performed using the acetylene inhibition method at four incubation temperatures: 1.1, 12.1, 21.2 and 30.9°C. For this range of temperature, N(2)O production could be fitted to an exponential function of incubation temperature, yielding mean (±standard error) activation energy of 1.42 (±0.24) eV and Q(10) of 7.0 (±1.4). This first quantification of denitrification enzyme activity temperature dependence in phototrophic river biofilms compares with previous studies performed in soils and sediments. This demonstrates the high temperature dependence of denitrification as compared to other community-level metabolisms such as respiration or photosynthesis. This result suggests that global warming can unbalance natural community metabolisms in phototrophic river biofilms and affect their biogeochemical budget.

  17. Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity.

    PubMed

    Chandra, Rashmi; Venkata Subhash, G; Venkata Mohan, S

    2012-04-01

    Electrogenic activity of photo-bioelectrocatalytic /photo-biological fuel cell (PhFC) was evaluated in a mixotrophic mode under anoxygenic microenvironment using photosynthetic consortia as biocatalyst. An acetate rich wastewater was used as anolyte for harnessing energy along with additional treatment. Mixotrophic operation facilitated good electrogenic activity and wastewater treatment associated with biomass growth. PhFC operation documented feasible microenvironment for the growth of photosynthetic bacteria compared to algae which was supported by pigment (total chlorophyll and bacteriochlorophyll) and diversity analysis. Pigment data also illustrated the association between bacterial and algal species. The synergistic interaction between anoxygenic and oxygenic photosynthesis was found to be suitable for PhFC operation. Light dependent deposition of electrons at electrode was relatively higher compared to dark dependent electron deposition under anoxygenic condition. PhFC documented for good volatile fatty acids removal by utilizing them as electron donor. Bioelectrochemical behavior of PhFC was evaluated by voltammetric and chronoamperometry analysis.

  18. (Anaerobic metabolism of aromatic compounds by phototrophic bacteria: Biochemical aspects)

    SciTech Connect

    Gibson, J.

    1989-01-01

    Two aspects of the work proposed have received major emphasis during the period since the grant was activated: isolation and characterization of transposon insertion mutants of Rhodopseudomonas palusrtis defective in phototrophic growth on aromatic compounds, and attempts to purify and characterize the Coenzyme A ligase enzyme involved in activating 4-hydroxybenzoate. The HPLC apparatus was installed in August, and calibration of columns both for metabolite and for protein separations has been initiated. A start has also been made on synthesis of Coenzyme A thioesters of compounds that are potential intermediates in the anaerobic degradation pathways. 1 tab.

  19. Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives.

    PubMed

    Hubas, Cédric; Jesus, Bruno; Passarelli, Claire; Jeanthon, Christian

    2011-11-01

    Coastal photosynthetic microbial mats are highly structured microbial communities that populate a variety of shallow environments such as estuaries, sheltered sandy beaches, intertidal flats, salt marshes and hypersaline salterns. In soft sediments, most of these microbial mats are formed of vertically stratified, multicolored cohesive thin layers, of several functional groups of microorganisms, such as cyanobacteria, colorless sulfur bacteria, purple sulfur bacteria and sulfate-reducing bacteria, distributed along vertical microgradients of oxygen, sulfide and light. These microbial communities are highly productive and significant contributors to carbon, nitrogen and sulfur cycles and to sediment stability in shallow-water habitats. Many examples of these communities have been cited in the past, but comparatively few microbial mats have been presented for which mass developments of anoxygenic purple bacteria have been observed. Yet, application of molecular approaches has provided fresh insight into the ecology, diversity and evolution of microbial mats. In situ measurements using electrochemical and optical microprobes led to detailed characterization of their physical and chemical environment, whereas reflectance measurements revealed the spatial and temporal heterogeneity of microbial mat surfaces. We hereby report the main discoveries due to introduction of these powerful techniques and we point out the potential insight to be gained from the study of anoxygenic purple bacterial mats.

  20. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival

    PubMed Central

    Duanmu, Deqiang; Casero, David; Dent, Rachel M.; Gallaher, Sean; Yang, Wenqiang; Rockwell, Nathan C.; Martin, Shelley S.; Pellegrini, Matteo; Niyogi, Krishna K.; Merchant, Sabeeha S.; Grossman, Arthur R.; Lagarias, J. Clark

    2013-01-01

    The maintenance of functional chloroplasts in photosynthetic eukaryotes requires real-time coordination of the nuclear and plastid genomes. Tetrapyrroles play a significant role in plastid-to-nucleus retrograde signaling in plants to ensure that nuclear gene expression is attuned to the needs of the chloroplast. Well-known sites of synthesis of chlorophyll for photosynthesis, plant chloroplasts also export heme and heme-derived linear tetrapyrroles (bilins), two critical metabolites respectively required for essential cellular activities and for light sensing by phytochromes. Here we establish that Chlamydomonas reinhardtii, one of many chlorophyte species that lack phytochromes, can synthesize bilins in both plastid and cytosol compartments. Genetic analyses show that both pathways contribute to iron acquisition from extracellular heme, whereas the plastid-localized pathway is essential for light-dependent greening and phototrophic growth. Our discovery of a bilin-dependent nuclear gene network implicates a widespread use of bilins as retrograde signals in oxygenic photosynthetic species. Our studies also suggest that bilins trigger critical metabolic pathways to detoxify molecular oxygen produced by photosynthesis, thereby permitting survival and phototrophic growth during the light period. PMID:23345435

  1. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival.

    PubMed

    Duanmu, Deqiang; Casero, David; Dent, Rachel M; Gallaher, Sean; Yang, Wenqiang; Rockwell, Nathan C; Martin, Shelley S; Pellegrini, Matteo; Niyogi, Krishna K; Merchant, Sabeeha S; Grossman, Arthur R; Lagarias, J Clark

    2013-02-26

    The maintenance of functional chloroplasts in photosynthetic eukaryotes requires real-time coordination of the nuclear and plastid genomes. Tetrapyrroles play a significant role in plastid-to-nucleus retrograde signaling in plants to ensure that nuclear gene expression is attuned to the needs of the chloroplast. Well-known sites of synthesis of chlorophyll for photosynthesis, plant chloroplasts also export heme and heme-derived linear tetrapyrroles (bilins), two critical metabolites respectively required for essential cellular activities and for light sensing by phytochromes. Here we establish that Chlamydomonas reinhardtii, one of many chlorophyte species that lack phytochromes, can synthesize bilins in both plastid and cytosol compartments. Genetic analyses show that both pathways contribute to iron acquisition from extracellular heme, whereas the plastid-localized pathway is essential for light-dependent greening and phototrophic growth. Our discovery of a bilin-dependent nuclear gene network implicates a widespread use of bilins as retrograde signals in oxygenic photosynthetic species. Our studies also suggest that bilins trigger critical metabolic pathways to detoxify molecular oxygen produced by photosynthesis, thereby permitting survival and phototrophic growth during the light period.

  2. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    SciTech Connect

    Nunes da Rocha, Ulisses; Cadillo-Quiroz, Hinsby; Karaoz, Ulas; Rajeev, Lara; Klitgord, Niels; Dunn, Sean; Truong, Viet; Buenrostro, Mayra; Bowen, Benjamin P.; Garcia-Pichel, Ferran; Mukhopadhyay, Aindrila; Northen, Trent R.; Brodie, Eoin L.

    2015-04-14

    Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.

  3. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    DOE PAGES

    Nunes da Rocha, Ulisses; Cadillo-Quiroz, Hinsby; Karaoz, Ulas; ...

    2015-04-14

    Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration ofmore » BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.« less

  4. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    PubMed Central

    Nunes da Rocha, Ulisses; Cadillo-Quiroz, Hinsby; Karaoz, Ulas; Rajeev, Lara; Klitgord, Niels; Dunn, Sean; Truong, Viet; Buenrostro, Mayra; Bowen, Benjamin P.; Garcia-Pichel, Ferran; Mukhopadhyay, Aindrila; Northen, Trent R.; Brodie, Eoin L.

    2015-01-01

    Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures. PMID:25926821

  5. Phototrophic microorganisms in biofilm samples from Vernjika Cave, Serbia

    NASA Astrophysics Data System (ADS)

    Popović, Slađana; Jovanović, Jelena; Predojević, Dragana; Trbojević, Ivana; Blagojević, Ana; Subakov Simić, Gordana

    2016-04-01

    Caves represent specific natural monuments in terms of structure, complexity and beauty which can be found worldwide. Even though they are considered extreme environments, they are still a unique habitat for a large number of organisms that grow and proliferate here. Often can be seen that the cave walls are differently coloured as a consequence of the biofilm development. Biofilms represent complex communities of microorganisms that can develop on different kind of surfaces, including various rock surfaces. Each microbe species play a different role in a community, but their development on stone surfaces can cause substantial damage to the substrates through different mechanisms of biodeterioration and degradation. There is an increased interest in the phototrophic component of biofilms (aerophytic cyanobacteria and algae), especially cyanobacteria, an ancient microorganisms capable to survive the most diverse extreme conditions. These phototrophs can easily be found at cave entrances illuminated by direct or indirect sunlight and areas near artificial lights. Cyanobacteria and algae were investigated in biofilm samples taken from the entrance of Vernjika Cave in Eastern Serbia. Cyanobacteria, Chlorophyta and Bacillariophyta were documented, with Cyanobacteria as a group with the highest number of recorded taxa. Chroococcalean species were the most diverse with the most frequently encountered species from the genus Gloeocapsa. Phormidium and Nostoc species were commonly recorded Oscillatoriales and Nostocles, respectively. Among Oscillatoriales species, it was noticed that one Phormidium species precipitates CaCO3 on it's sheats. Trebouxia sp. and Desmococcus olivaceus were frequently documented Chlorophyta, and representatives of Bacillariophyta were exclusively aerophytic taxa, mostly belonging to the genera Luticola and Humidophila. Measured ecological parameters, temperature and relative humidity, were influenced by the external climatic changes, while light

  6. Light-enhanced bioaccumulation of molybdenum by nitrogen-deprived recombinant anoxygenic photosynthetic bacterium Rhodopseudomonas palustris.

    PubMed

    Naito, Taki; Sachuronggui; Ueki, Masayoshi; Maeda, Isamu

    2016-01-01

    As molybdenum (Mo) is an indispensable metal for plant nitrogen metabolisms, accumulation of dissolved Mo into bacterial cells may connect to the development of bacterial fertilizers that promote plant growth. In order to enhance Mo bioaccumulation, nitrogen removal and light illumination were examined in anoxygenic photosynthetic bacteria (APB) because APB possess Mo nitrogenase whose synthesis is strictly regulated by ammonium ion concentration. In addition, an APB, Rhodopseudomonas palustris, transformed with a gene encoding Mo-responsive transcriptional regulator ModE was constructed. Mo content was most markedly enhanced by the removal of ammonium ion from medium and light illumination while their effects on other metal contents were limited. Increases in contents of trace metals including Mo by the genetic modification were observed. Thus, these results demonstrated an effective way to enrich Mo in the bacterial cells by the culture conditions and genetic modification.

  7. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of

  8. Primary production and biovolume of various phototrophic plankton size fractions in three southeastern United States reservoirs

    SciTech Connect

    Tison, D.; Wilde, E.W.

    1981-04-01

    Plankton size classes of < 3 ..mu..m consisting largely of unicellular cyanobacteria accounted for 15 to 40% of the total primary production and generally represented < 5% of the total phototrophic plankton biovolume in three South Carolina reservoirs.

  9. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  10. Light-Dependent Sulfide Oxidation in the Anoxic Zone of the Chesapeake Bay Can Be Explained by Small Populations of Phototrophic Bacteria

    PubMed Central

    Bennett, Alexa J.; Hanson, Thomas E.; Luther, George W.

    2015-01-01

    Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min−1 (mg protein−1). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone. PMID:26296727

  11. Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria.

    PubMed

    Findlay, Alyssa J; Bennett, Alexa J; Hanson, Thomas E; Luther, George W

    2015-11-01

    Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min(-1) (mg protein(-1)). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone.

  12. Phototrophic pigment diversity and picophytoplankton in permafrost thaw lakes

    NASA Astrophysics Data System (ADS)

    Przytulska, A.; Comte, J.; Crevecoeur, S.; Lovejoy, C.; Laurion, I.; Vincent, W. F.

    2016-01-01

    Permafrost thaw lakes (thermokarst lakes) are widely distributed across the northern landscape, and are known to be biogeochemically active sites that emit large amounts of carbon to the atmosphere as CH4 and CO2. However, the abundance and composition of the photosynthetic communities that fix CO2 have been little explored in this ecosystem type. In order to identify the major groups of phototrophic organisms and their controlling variables, we sampled 12 permafrost thaw lakes along a permafrost degradation gradient in northern Québec, Canada. Additional samples were taken from five rock-basin reference lakes in the region to determine if the thaw lakes differed in limnological properties and phototrophs. Phytoplankton community structure was determined by high-performance liquid chromatography analysis of their photoprotective and photosynthetic pigments, and autotrophic picoplankton concentrations were assessed by flow cytometry. One of the black-colored lakes located in a landscape of rapidly degrading palsas (permafrost mounds) was selected for high-throughput 18S rRNA sequencing to complement conclusions based on the pigment and cytometry analyses. The results showed that the limnological properties of the thaw lakes differed significantly from the reference lakes, and were more highly stratified. However, both waterbody types contained similarly diverse phytoplankton groups, with dominance of the pigment assemblages by fucoxanthin-containing taxa, as well as chlorophytes, cryptophytes and cyanobacteria. Chlorophyll a concentrations (Chl a) were correlated with total phosphorus (TP), and both were significantly higher in the thaw lakes (overall means of 3.3 µg Chl a L-1 and 34 µg TP L-1) relative to the reference lakes (2.0 µg Chl a L-1 and 8.2 µg TP L-1). Stepwise multiple regression of Chl a against the other algal pigments showed that it was largely a function of alloxanthin, fucoxanthin and Chl b (R2 = 0.85). The bottom waters of two of the thaw

  13. Mushroom speleothems: Stromatolites that formed in the absence of phototrophs

    NASA Astrophysics Data System (ADS)

    Bontognali, Tomaso; D'Angeli, Ilenia; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano; Gonzales, Esteban; DeWaele, Jo

    2016-04-01

    Unusual speleothems resembling giant mushrooms occur in Santa Catalina Cave, Cuba. Although these mineral buildups are considered a natural heritage, their composition and formation mechanism remain poorly understood. Here we characterize their morphology and mineralogy and present a model for their genesis. We propose that the mushrooms, which are mainly comprised of calcite and aragonite, formed during four different phases within an evolving cave environment. The stipe of the mushroom is an assemblage of three well-known speleothems: a stalagmite surrounded by calcite rafts that were subsequently encrusted by cave clouds (mammilaries). More peculiar is the cap of the mushroom, which is morphologically similar to cerebroid stromatolites and thrombolites of microbial origin occurring in marine environments. Scanning electron microscopy investigations of this last unit revealed the presence of fossilized extracellular polymeric substances (EPS) - the constituents of biofilms and microbial mats. These organic microstructures are mineralized with Ca-carbonate, suggesting that the mushroom cap formed through a microbially-influenced mineralization process. The existence of cerebroid Ca-carbonate buildups forming in dark caves (i.e., in the absence of phototrophs) has interesting implications for the study of fossil microbialites preserved in ancient rocks, which are today considered as one of the earliest evidence for life on Earth.

  14. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  15. Cultivation of Isochrysis galbana in Phototrophic, Heterotrophic, and Mixotrophic Conditions

    PubMed Central

    Qin, Jian G.

    2013-01-01

    This study compared the growth and biomass production of Isochrysis galbana under hetero-, mixo-, and phototrophic conditions using different organic carbon sources. The growth of I. galbana was inhibited in heterotrophy but was enhanced in mixotrophy compared to that in phototrophy. Subsequently, the influences of organic carbon and environmental factors (light and salinity) on the growth of I. galbana were further investigated. Algal dry weight increased as glycerol concentrations increased from 0 to 200 mmol and the highest algal production occurred at 50 mmol glycerol. At a range of light intensities of 25–200 μmol photons m−2 s−2, the highest algal growth rate occurred at 100 photons μmol m−2 s−2. The growth of I. galbana was significantly affected by photoperiod, and the maximal dry weight was obtained at 12 h light and 12 h dark. In the salinity test, I. galbana could grow in a wide range of salinities from 10 to 65‰, but the 35‰  salinity was optimal. This study suggests that the growth and production of I. galbana can be improved using mixotrophic culture at 50 mmol glycerol in 35‰  salinity. PMID:24386642

  16. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum.

    PubMed

    Hensen, Daniela; Sperling, Detlef; Trüper, Hans G; Brune, Daniel C; Dahl, Christiane

    2006-11-01

    Two different pathways for thiosulphate oxidation are present in the purple sulphur bacterium Allochromatium vinosum: oxidation to tetrathionate and complete oxidation to sulphate with obligatory formation of sulphur globules as intermediates. The tetrathionate:sulphate ratio is strongly pH-dependent with tetrathionate formation being preferred under acidic conditions. Thiosulphate dehydrogenase, a constitutively expressed monomeric 30 kDa c-type cytochrome with a pH optimum at pH 4.2 catalyses tetrathionate formation. A periplasmic thiosulphate-oxidizing multienzyme complex (Sox) has been described to be responsible for formation of sulphate from thiosulphate in chemotrophic and phototrophic sulphur oxidizers that do not form sulphur deposits. In the sulphur-storing A. vinosum we identified five sox genes in two independent loci (soxBXA and soxYZ). For SoxA a thiosulphate-dependent induction of expression, above a low constitutive level, was observed. Three sox-encoded proteins were purified: the heterodimeric c-type cytochrome SoxXA, the monomeric SoxB and the heterodimeric SoxYZ. Gene inactivation and complementation experiments proved these proteins to be indispensable for thiosulphate oxidation to sulphate. The intermediary formation of sulphur globules in A. vinosum appears to be related to the lack of soxCD genes, the products of which are proposed to oxidize SoxY-bound sulphane sulphur. In their absence the latter is instead transferred to growing sulphur globules.

  17. Comprehensive detection of phototrophic sulfur bacteria using PCR primers that target reverse dissimilatory sulfite reductase gene.

    PubMed

    Mori, Yumi; Purdy, Kevin J; Oakley, Brian B; Kondo, Ryuji

    2010-01-01

    A new set of primers for the detection of phototrophic sulfur bacteria in natural environments is described. The primers target the α-subunit of the reverse dissimilatory sulfite reductase gene (dsrA). PCR-amplification resulted in products of the expected size from all the phototrophic strains tested, including purple sulfur and green sulfur bacteria. Seventy-nine clones obtained from environmental DNA using the primers were sequenced and all found to be closely related to the dsrA of purple sulfur bacteria and green sulfur bacteria. This newly developed PCR assay targeting dsrA is rapid and simple for the detection of phototrophic sulfur bacteria in situ and superior to the use of culture-dependent techniques.

  18. Analysis of lipophilic pigments from a phototrophic microbial mat community by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Palmisano, A. C.; Cronin, S. E.; Des Marais, D. J.

    1988-01-01

    As assay for lipophilic pigments in phototrophic microbial mat communities using reverse phase-high performance liquid chromatography was developed which allows the separation of 15 carotenoids and chloropigments in a single 30 min program. Lipophilic pigments in a laminated mat from a commercial salina near Laguna Guerrero Negro, Baja California Sur, Mexico reflected their source organisms. Myxoxanthophyll, echinenone, canthaxanthin, and zeaxanthin were derived from cyanobacteria; chlorophyll c, and fucoxanthin from diatoms; chlorophyll a from cyanobacteria and diatoms; bacteriochlorophylls a and c, bacteriophaeophytin a, and gamma-carotene from Chloroflexus spp.; and beta-carotene from a variety of phototrophs. Sensitivity of detection was 0.6-6.1 ng for carotenoids and 1.7-12 ng for most chloropigments. This assay represents a significant improvement over previous analyses of lipophilic pigments in microbial mats and promises to have a wider application to other types of phototrophic communities.

  19. Genes, Genomes, and Assemblages of Modern Anoxygenic Photosynthetic Cyanobacteria as Proxies for Ancient Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grim, S. L.; Dick, G.

    2015-12-01

    Oxygenic photosynthetic (OP) cyanobacteria were responsible for the production of O2 during the Proterozoic. However, the extent and degree of oxygenation of the atmosphere and oceans varied for over 2 Ga after OP cyanobacteria first appeared in the geologic record. Cyanobacteria capable of anoxygenic photosynthesis (AP) may have altered the trajectory of oxygenation, yet the scope of their role in the Proterozoic is not well known. Modern cyanobacterial populations from Middle Island Sinkhole (MIS), Michigan and a handful of cultured cyanobacterial strains, are capable of OP and AP. With their metabolic versatility, these microbes may approximate ancient cyanobacterial assemblages that mediated Earth's oxygenation. To better characterize the taxonomic and genetic signatures of these modern AP/OP cyanobacteria, we sequenced 16S rRNA genes and conducted 'omics analyses on cultured strains, lab mesocosms, and MIS cyanobacterial mat samples collected over multiple years from May to September. Diversity in the MIS cyanobacterial mat is low, with one member of Oscillatoriales dominating at all times. However, Planktothrix members are more abundant in the cyanobacterial community in late summer and fall. The shift in cyanobacterial community composition may be linked to seasonally changing light intensity. In lab mesocosms of MIS microbial mat, we observed a shift in dominant cyanobacterial groups as well as the emergence of Chlorobium, bacteria that specialize in AP. These shifts in microbial community composition and metabolism are likely in response to changing environmental parameters such as the availability of light and sulfide. Further research is needed to understand the impacts of the changing photosynthetic community on oxygen production and the entire microbial consortium. Our study connects genes and genomes of AP cyanobacteria to their environment, and improves understanding of cyanobacterial metabolic strategies that may have shaped Earth's redox evolution.

  20. Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    NASA Astrophysics Data System (ADS)

    Kurian, S.; Roy, R.; Repeta, D. J.; Gauns, M.; Shenoy, D. M.; Suresh, T.; Sarkar, A.; Narvenkar, G.; Johnson, C. G.; Naqvi, S. W. A.

    2011-12-01

    Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography- mass spectrometry (LCMS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir) was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the periods of anoxia (summer), bacteriochlorophyll (BChl) e isomers and isoreneiratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic) layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll-b containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl-e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the Tillari Reservoir was computed to be 2.4 gC m-2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m-2). These results highlight the importance of anoxygenic photosynthetic biomass in tropical freshwater systems. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl-e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photoautotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl-e isomers was noted at 0.2 % of the surface incident light). This shows that the vertical distribution of photoautotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2S

  1. Initial characterization of the photosynthetic apparatus of "Candidatus Chlorothrix halophila," a filamentous, anoxygenic photoautotroph.

    PubMed

    van de Meene, Allison M L; Le Olson, Tien; Collins, Aaron M; Blankenship, Robert E

    2007-06-01

    "Candidatus Chlorothrix halophila" is a recently described halophilic, filamentous, anoxygenic photoautotroph (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004) that was enriched from the hypersaline microbial mats at Guerrero Negro, Mexico. Analysis of the photosynthetic apparatus by negative staining, spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the photosynthetic apparatus in this organism has similarities to the photosynthetic apparatus in both the Chloroflexi and Chlorobi phyla of green photosynthetic bacteria. The chlorosomes were found to be ellipsoidal and of various sizes, characteristics that are comparable to characteristics of chlorosomes in other species of green photosynthetic bacteria. The absorption spectrum of whole cells was dominated by the chlorosome bacteriochlorophyll c (BChl c) peak at 759 nm, with fluorescence emission at 760 nm. A second fluorescence emission band was observed at 870 nm and was tentatively attributed to a membrane-bound antenna complex. Fluorescence emission spectra obtained at 77 K revealed another complex that fluoresced at 820 nm, which probably resulted from the chlorosome baseplate complex. All of these results suggest that BChl c is present in the chlorosomes of "Ca. Chlorothrix halophila," that BChl a is present in the baseplate, and that there is a membrane-bound antenna complex. Analysis of the proteins in the chlorosomes revealed an approximately 6-kDa band, which was found to be related to the BChl c binding protein CsmA found in other green bacteria. Overall, the absorbance and fluorescence spectra of "Ca. Chlorothrix halophila" revealed an interesting mixture of photosynthetic characteristics that seemed to have properties similar to properties of both phyla of green bacteria when they were compared to the photosynthetic characteristics of Chlorobium tepidum and Chloroflexus aurantiacus.

  2. Technique for Enumeration of Heterotrophic and Phototrophic Nanoplankton, Using Epifluorescence Microscopy, and Comparison with Other Procedures †

    PubMed Central

    Caron, David A.

    1983-01-01

    A new method is described that uses the fluorochrome primulin and epifluorescence microscopy for the enumeration of heterotrophic and phototrophic nanoplankton (2 to 20 μm). Phototrophic microorganisms are distinguished from heterotrophs by the red autofluorescence of chlorophyll a. Separate filter sets are used which allow visualization of the primulin-stained nanoplankton without masking chlorophyll a fluorescence, thus allowing easy recognition of phototrophic cells. Comparison with existing epifluorescence techniques for counting heterotrophic and phototrophic nanoplankton shows that primulin provides more accurate counts of these populations than the fluorescein isothiocyanate or proflavine techniques. Accuracy is comparable to that with the acridine orange technique, but this method requires only one filter preparation for the enumeration of both phototrophic and heterotrophic populations. Images PMID:16346372

  3. Physiological response of BSC phototrophic community to EPS removal

    NASA Astrophysics Data System (ADS)

    Adessi, Alessandra; Cruz de Carvalho, Ricardo; Silvestre, Susana; Rossi, Federico; Mugnai, Gianmarco; Marques da Silva, Jorge; Branquinho, Cristina; De Philippis, Roberto

    2015-04-01

    Biological Soil Crusts (BSCs) are associations between soil particles and varying proportions of cyanobacteria, heterotrophic bacteria, algae, fungi, lichens and mosses. BSCs play a major role in soil stabilization, and in drylands have been well acknowledged for mitigating desertification effects. Amongst the wide diversity of organisms that compose BSCs, cyanobacteria are the first primary producers: they colonize nutrient-limited soils, modifying the micro-environment through the excretion of large amounts of extracellular polymeric substances (EPSs). EPSs represent a huge carbon and nitrogen source for other inhabitants of the crust, are three-dimensionally spread through the first millimeters of the soil, and have a recognized role in influencing the hydrological behavior of the crust. The aim of this study was to investigate the possible role that EPSs play in the physiology of the phototrophic community residing on a light crust (without mosses or lichens, thus mainly inhabited by cyanobacteria and algae). In particular it was investigated whether the three-dimensional matrix in which EPSs are organized allowed light distribution and diffusion inside the crust, thus influencing photosynthesis. Non-invasive techniques were used to extract the polymeric matrix and to analyze photosynthetic performances in native and extracted BSC samples. Preliminary results suggested that the mild extraction protocol allowed to remove a portion of the matrix, and that this treatment revealed highly significant differences in the optical properties of the crusts comparing native and extracted samples. The extraction did not affect cell viability, as samples after the extraction were still photosynthetically active. However, chlorophyll variable fluorescence was significantly lower in the extracted samples than in native ones, and susceptibility to photoinhibition was significantly modified. Evaluating the role of the EPSs in the community is essential to further understand the

  4. Characterization and in situ carbon metabolism of phototrophic consortia.

    PubMed

    Glaeser, Jens; Overmann, Jörg

    2003-07-01

    A dense population of the phototrophic consortium "Pelochromatium roseum" was investigated in the chemocline of a temperate holomictic lake (Lake Dagow, Brandenburg, Germany). Fluorescence in situ hybridization revealed that the brown epibionts of "P. roseum" constituted up to 37% of the total bacterial cell number and up to 88% of all green sulfur bacteria present in the chemocline. Specific amplification of 16S rRNA gene fragments of green sulfur bacteria and denaturing gradient gel electrophoresis fingerprinting yielded a maximum of four different DNA bands depending on the year of study, indicating that the diversity of green sulfur bacteria was low. The 465-bp 16S rRNA gene sequence of the epibiont of "P. roseum" was obtained after sorting of individual consortia by micromanipulation, followed by a highly sensitive PCR. The sequence obtained represents a new phylotype within the radiation of green sulfur bacteria. Maximum light-dependent H(14)CO(3)(-) fixation in the chemocline in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea suggested that there was anaerobic autotrophic growth of the green sulfur bacteria. The metabolism of the epibionts was further studied by determining stable carbon isotope ratios (delta(13)C) of their specific biomarkers. Analysis of photosynthetic pigments by high-performance liquid chromatography revealed the presence of high concentrations of bacteriochlorophyll (BChl) e and smaller amounts of BChl a and d and chlorophyll a in the chemocline. Unexpectedly, isorenieratene and beta-isorenieratene, carotenoids typical of other brown members of the green sulfur bacteria, were absent. Instead, four different esterifying alcohols of BChl e were isolated as biomarkers of green sulfur bacterial epibionts, and their delta(13)C values were determined. Farnesol, tetradecanol, hexadecanol, and hexadecenol all were significantly enriched in (13)C compared to bulk dissolved and particulate organic carbon and compared to the biomarkers of

  5. Physiology and Phylogeny of Green Sulfur Bacteria Forming a Monospecific Phototrophic Assemblage at a Depth of 100 Meters in the Black Sea†

    PubMed Central

    Manske, Ann K.; Glaeser, Jens; Kuypers, Marcel M. M.; Overmann, Jörg

    2005-01-01

    The biomass, phylogenetic composition, and photoautotrophic metabolism of green sulfur bacteria in the Black Sea was assessed in situ and in laboratory enrichments. In the center of the western basin, bacteriochlorophyll e (BChl e) was detected between depths of 90 and 120 m and reached maxima of 54 and 68 ng liter−1. High-pressure liquid chromatography analysis revealed a dominance of farnesyl esters and the presence of four unusual geranyl ester homologs of BChl e. Only traces of BChl e (8 ng liter−1) were found at the northwestern slope of the Black Sea basin, where the chemocline was positioned at a significantly greater depth of 140 m. Stable carbon isotope fractionation values of farnesol indicated an autotrophic growth mode of the green sulfur bacteria. For the first time, light intensities in the Black Sea chemocline were determined employing an integrating quantum meter, which yielded maximum values between 0.0022 and 0.00075 μmol quanta m−2 s−1 at the top of the green sulfur bacterial layer around solar noon in December. These values represent by far the lowest values reported for any habitat of photosynthetic organisms. Only one 16S rRNA gene sequence type was detected in the chemocline using PCR primers specific for green sulfur bacteria. This previously unknown phylotype groups with the marine cluster of the Chlorobiaceae and was successfully enriched in a mineral medium containing sulfide, dithionite, and freshly prepared yeast extract. Under precisely controlled laboratory conditions, the enriched green sulfur bacterium proved to be capable of exploiting light intensities as low as 0.015 μmol quanta m−2 s−1 for photosynthetic 14CO2 fixation. Calculated in situ doubling times of the green sulfur bacterium range between 3.1 and 26 years depending on the season, and anoxygenic photosynthesis contributes only 0.002 to 0.01% to total sulfide oxidation in the chemocline. The stable population of green sulfur bacteria in the Black Sea

  6. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea.

    PubMed

    Manske, Ann K; Glaeser, Jens; Kuypers, Marcel M M; Overmann, Jörg

    2005-12-01

    The biomass, phylogenetic composition, and photoautotrophic metabolism of green sulfur bacteria in the Black Sea was assessed in situ and in laboratory enrichments. In the center of the western basin, bacteriochlorophyll e (BChl e) was detected between depths of 90 and 120 m and reached maxima of 54 and 68 ng liter(-1). High-pressure liquid chromatography analysis revealed a dominance of farnesyl esters and the presence of four unusual geranyl ester homologs of BChl e. Only traces of BChl e (8 ng liter(-1)) were found at the northwestern slope of the Black Sea basin, where the chemocline was positioned at a significantly greater depth of 140 m. Stable carbon isotope fractionation values of farnesol indicated an autotrophic growth mode of the green sulfur bacteria. For the first time, light intensities in the Black Sea chemocline were determined employing an integrating quantum meter, which yielded maximum values between 0.0022 and 0.00075 micromol quanta m(-2) s(-1) at the top of the green sulfur bacterial layer around solar noon in December. These values represent by far the lowest values reported for any habitat of photosynthetic organisms. Only one 16S rRNA gene sequence type was detected in the chemocline using PCR primers specific for green sulfur bacteria. This previously unknown phylotype groups with the marine cluster of the Chlorobiaceae and was successfully enriched in a mineral medium containing sulfide, dithionite, and freshly prepared yeast extract. Under precisely controlled laboratory conditions, the enriched green sulfur bacterium proved to be capable of exploiting light intensities as low as 0.015 micromol quanta m(-2) s(-1) for photosynthetic 14CO2 fixation. Calculated in situ doubling times of the green sulfur bacterium range between 3.1 and 26 years depending on the season, and anoxygenic photosynthesis contributes only 0.002 to 0.01% to total sulfide oxidation in the chemocline. The stable population of green sulfur bacteria in the Black Sea

  7. Physiology and Mechanism of Phototrophic Fe(II) Oxidation by Rhodopseudomonas palustris TIE-1

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Newman, D.

    2007-12-01

    Phototrophic Fe(II)-oxidizing bacteria use electrons from ferrous iron [Fe(II)] and energy from light to drive reductive CO2 fixation. This metabolism is thought to be ancient in origin, and plays an important role in environmental iron cycling. It has been implicated in the deposition of Banded Iron Formations, a class of ancient sedimentary iron deposits. Consistent with this hypothesis, we discovered that hydrogen gas, a thermodynamically favorable electron donor to Fe(II), in an Archean atmosphere would not have inhibited phototrophic Fe(II) oxidation. To understand this physiology and the connection to BIF formation at the molecular level, the mechanisms of phototrophic Fe(II) oxidation were examined in a model organism Rhodopseudomonas palustris TIE-1. Increased expression of a putative decaheme c-type cytochrome, encoded by pioA, was observed when cells were grown under Fe(II)-oxidizing conditions. Two genes located immediately downstream of pioA in the same operon, pioB and pioC, encode a putative outer membrane beta-barrel protein and a putative high potential iron-sulfur protein, respectively. Deletion studies demonstrated that all three genes are involved in phototrophic Fe(II) oxidation. This study provides our first insight into the molecular mechanisms of this metabolism, which will be further characterized by in vitro biochemical studies.

  8. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms.

    PubMed

    Paule, A; Roubeix, V; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L

    2013-11-15

    Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate the sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a prototype rotating annular bioreactor (RAB) with Taylor-Couette type flow under constant operating conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different maturation levels, and then exposed to nominal initial alachlor concentration of 10 μg L(-1) in either intact or recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration - TWAC of 5.52 ± 0.74 μg L(-1)). At the end of the exposure period, alachlor effects were monitored by a combination of biomass descriptors (ash-free dry mass - AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbon utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed on diatom composition or functional and structural properties of the bacterial community regardless of whether they were intact or recolonized. The intact three-dimensional structure of the biofilm did not appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level of 4.4 weeks - intact phototrophic biofilms were significantly influenced by the biofilm maturation processes rather than alachlor exposure. The diatom communities which were largely composed of mobile and colonizer life-form populations were not affected by alachlor. This study showed that the effect of alachlor (at initial concentration of 10 μg L(-1) or mean TWAC of 5.52 ± 0.74 μg L(-1)) is mainly limited to

  9. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  10. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    PubMed

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  11. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures.

    PubMed

    Paule, A; Lauga, B; Ten-Hage, L; Morchain, J; Duran, R; Paul, E; Rols, J L

    2011-11-15

    In their natural environment, the structure and functioning of microbial communities from river phototrophic biofilms are driven by biotic and abiotic factors. An understanding of the mechanisms that mediate the community structure, its dynamics and the biological succession processes during phototrophic biofilm development can be gained using laboratory-scale systems operating with controlled parameters. For this purpose, we present the design and description of a new prototype of a rotating annular bioreactor (RAB) (Taylor-Couette type flow, liquid working volume of 5.04 L) specifically adapted for the cultivation and investigation of phototrophic biofilms. The innovation lies in the presence of a modular source of light inside of the system, with the biofilm colonization and development taking place on the stationary outer cylinder (onto 32 removable polyethylene plates). The biofilm cultures were investigated under controlled turbulent flowing conditions and nutrients were provided using a synthetic medium (tap water supplemented with nitrate, phosphate and silica) to favour the biofilm growth. The hydrodynamic features of the water flow were characterized using a tracer method, showing behaviour corresponding to a completely mixed reactor. Shear stress forces on the surface of plates were also quantified by computer simulations and correlated with the rotational speed of the inner cylinder. Two phototrophic biofilm development experiments were performed for periods of 6.7 and 7 weeks with different inoculation procedures and illumination intensities. For both experiments, biofilm biomasses exhibited linear growth kinetics and produced 4.2 and 2.4 mg cm(-)² of ash-free dry matter. Algal and bacterial community structures were assessed by microscopy and T-RFLP, respectively, and the two experiments were different but revealed similar temporal dynamics. Our study confirmed the performance and multipurpose nature of such an innovative photosynthetic bioreactor

  12. Electroactivity of Phototrophic River Biofilms and Constitutive Cultivable Bacteria ▿ †

    PubMed Central

    Lyautey, Emilie; Cournet, Amandine; Morin, Soizic; Boulêtreau, Stéphanie; Etcheverry, Luc; Charcosset, Jean-Yves; Delmas, François; Bergel, Alain; Garabetian, Frédéric

    2011-01-01

    Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from −0.36 to −0.76 V/SCE, and peak amplitudes ranging from −9.5 to −19.4 μA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions. PMID:21642402

  13. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium.

    PubMed

    Grim, Sharon L; Dick, Gregory J

    2016-01-01

    Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating

  14. Cyanobacteria in Sulfidic Spring Microbial Mats Can Perform Oxygenic and Anoxygenic Photosynthesis Simultaneously during an Entire Diurnal Period

    PubMed Central

    Klatt, Judith M.; de Beer, Dirk; Häusler, Stefan; Polerecky, Lubos

    2016-01-01

    We used microsensors to study the regulation of anoxygenic and oxygenic photosynthesis (AP and OP, respectively) by light and sulfide in a cyanobacterium dominating microbial mats from cold sulfidic springs. Both photosynthetic modes were performed simultaneously over all H2S concentrations (1–2200 μM) and irradiances (4–52 μmol photons m-2 s-1) tested. AP increased with H2S concentration while the sum of oxygenic and anoxygenic photosynthetic rates was constant at each light intensity. Thus, the total photosynthetically driven electron transport rate was solely controlled by the irradiance level. The partitioning between the rates of these two photosynthetic modes was regulated by both light and H2S concentration. The plastoquinone pool (PQ) receives electrons from sulfide:quinone:reductase (SQR) in AP and from photosystem II (PSII) in OP. It is thus the link in the electron transport chain where both pathways intersect, and the compound that controls their partitioning. We fitted our data with a model of the photosynthetic electron transport that includes the kinetics of plastoquinone reduction and oxidation. The model results confirmed that the observed partitioning between photosynthetic modes can be explained by a simple kinetic control based on the affinity of SQR and PSII toward PQ. The SQR enzyme and PSII have similar affinities toward PQ, which explains the concurrent OP and AP over an astonishingly wide range of H2S concentrations and irradiances. The elegant kinetic control of activity makes the cyanobacterium successful in the fluctuating spring environment. We discuss how these specific regulation mechanisms may have played a role in ancient H2S-rich oceans. PMID:28018309

  15. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii.

    PubMed

    Blifernez-Klassen, Olga; Klassen, Viktor; Doebbe, Anja; Kersting, Klaudia; Grimm, Philipp; Wobbe, Lutz; Kruse, Olaf

    2012-01-01

    Plants convert sunlight to biomass, which is primarily composed of lignocellulose, the most abundant natural biopolymer and a potential feedstock for fuel and chemical production. Cellulose assimilation has so far only been described for heterotrophic organisms that rely on photosynthetically active primary producers of organic compounds. Among phototrophs, the unicellular green microalga Chlamydomonas reinhardtii is widely known as one of the best established model organisms. It occupies many habitats, including aquatic and soil ecosystems. This ubiquity underscores the versatile metabolic properties of this microorganism. Here we present yet another paradigm of adaptation for C. reinhardtii, highlighting its photoheterotrophic ability to utilize cellulose for growth in the absence of other carbon sources. When grown under CO(2)-limiting conditions in the light, secretion of endo-β-1,4-glucanases by the cell causes digestion of exogenous cellulose, followed by cellobiose uptake and assimilation. Phototrophic microbes like C. reinhardtii may thus serve as biocatalysts for cellulosic biofuel production.

  16. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  17. Light structures phototroph, bacterial and fungal communities at the soil surface.

    PubMed

    Davies, Lawrence O; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G; Bending, Gary D

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm) and bulk soil (3-12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  18. Long-term population dynamics of phototrophic sulfur bacteria in the chemocline of Lake Cadagno, Switzerland.

    PubMed

    Tonolla, Mauro; Peduzzi, Raffaele; Hahn, Dittmar

    2005-07-01

    Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when they represented between 70 and 95% of the phototrophic sulfur bacteria. All populations of purple sulfur bacteria showed large fluctuations in time with populations belonging to the genus Lamprocystis being numerically much more important than those of the genera Chromatium and Thiocystis. Green sulfur bacteria were initially represented by Chlorobium phaeobacteroides but were replaced by Chlorobium clathratiforme by the end of the study. C. clathratiforme was the only green sulfur bacterium detected during the last 2 years of the analysis, when a shift in dominance from purple sulfur bacteria to green sulfur bacteria was observed in the chemocline. At this time, numbers of purple sulfur bacteria had decreased and those of green sulfur bacteria increased by about 1 order of magnitude and C. clathratiforme represented about 95% of the phototrophic sulfur bacteria. This major change in community structure in the chemocline was accompanied by changes in profiles of turbidity and photosynthetically available radiation, as well as for sulfide concentrations and light intensity. Overall, these findings suggest that a disruption of the chemocline in 2000 may have altered environmental niches and populations in subsequent years.

  19. Gain and Loss of Phototrophic Genes Revealed by Comparison of Two Citromicrobium Bacterial Genomes

    PubMed Central

    Zheng, Qiang; Zhang, Rui; Fogg, Paul C. M.; Beatty, J. Thomas; Wang, Yu; Jiao, Nianzhi

    2012-01-01

    Proteobacteria are thought to have diverged from a phototrophic ancestor, according to the scattered distribution of phototrophy throughout the proteobacterial clade, and so the occurrence of numerous closely related phototrophic and chemotrophic microorganisms may be the result of the loss of genes for phototrophy. A widespread form of bacterial phototrophy is based on the photochemical reaction center, encoded by puf and puh operons that typically are in a ‘photosynthesis gene cluster’ (abbreviated as the PGC) with pigment biosynthesis genes. Comparison of two closely related Citromicrobial genomes (98.1% sequence identity of complete 16S rRNA genes), Citromicrobium sp. JL354, which contains two copies of reaction center genes, and Citromicrobium strain JLT1363, which is chemotrophic, revealed evidence for the loss of phototrophic genes. However, evidence of horizontal gene transfer was found in these two bacterial genomes. An incomplete PGC (pufLMC-puhCBA) in strain JL354 was located within an integrating conjugative element, which indicates a potential mechanism for the horizontal transfer of genes for phototrophy. PMID:22558224

  20. Thiobaca trueperi gen. nov., sp. nov., a phototrophic purple sulfur bacterium isolated from freshwater lake sediment.

    PubMed

    Rees, Gavin N; Harfoot, Christopher G; Janssen, Peter H; Schoenborn, Liesbeth; Kuever, Jan; Lünsdorf, Heinrich

    2002-03-01

    Two strains of a novel species of phototrophic micro-organism were isolated from the sediments of a shallow, freshwater, eutrophic lake. Both strains grew photolithoheterotrophically with sulfide as an electron donor, transiently accumulating intracellular sulfur globules. Photolithoautotrophic growth was not observed. One strain was designated BCH(T) (the type strain) and was studied in most detail. Cells contained bacteriochlorophyll a, and the dominant carotenoid was lycopene. Cell suspensions were brown. The photosynthetic membranes had a vesicular arrangement. Acetate, propionate, pyruvate, succinate and fumarate were each used as electron donors and carbon sources in the presence of sulfide and bicarbonate. In the presence of light, growth did not occur with hydrogen, thiosulfate or iron(II). The optimum temperature for growth was between 25 and 30 degrees C, the maximum being 36 degrees C. The G+C content of the genomic DNA of strain BCH(T) was 63 mol%. Analysis of the 16S RNA genes showed that both strains belonged to the gamma-subclass of the Proteobacteria but were phylogenetically distinct from any described phototrophic organisms within the Chromatiaceae. On the basis of phylogenetic and physiological differences from other phototrophic microorganisms, strain BCH(T) is described as a novel species of a new genus, Thiobaca trueperi gen. nov., sp. nov.

  1. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats.

    PubMed

    Fang, Fang; Lu, Wen-Tao; Shan, Qi; Cao, Jia-Shun

    2014-06-15

    Three different phototrophic biofilms obtained from a natural lake (Sample 1), drinking water plant (Sample 2) and wastewater treatment plant (Sample 3) were investigated. Diatoms and green algae were the dominant algae of three biofilms, and the biomass was highest in biofilm of Sample 2. The three phototrophic biofilms also had variable extracellular polymeric substances (EPS) concentrations and compositions. Total EPS concentration of 14.80 mg/g DW was highest in biofilm of Sample 2, followed by biofilms of Samples 3 and 1 (13.11 and 12.29 mg/g DW). Tightly bound EPS (TB-EPS) were the main fraction, and polysaccharides and protein were the main components of total EPS in all three biofilms. However, the compositions of loosely bound EPS (LB-EPS) and TB-EPS were different in three biofilms. Fourier-transform infrared and fluorescence spectra indicated different structure and compositions of LB-EPS and TB-EPS. These results demonstrated the characteristics of EPS produced by phototrophic biofilms varied and had compact relation to their growth environmental conditions.

  2. Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface

    PubMed Central

    Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406

  3. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments.

    PubMed

    Hegler, Florian; Posth, Nicole R; Jiang, Jie; Kappler, Andreas

    2008-11-01

    Phototrophic iron(II) [Fe(II)]-oxidizing bacteria are present in modern environments and evidence suggests that this metabolism was present already on early earth. We determined Fe(II) oxidation rates depending on pH, temperature, light intensity, and Fe(II) concentration for three phylogenetically different phototrophic Fe(II)-oxidizing strains (purple nonsulfur bacterium Rhodobacter ferrooxidans sp. strain SW2, purple sulfur bacterium Thiodictyon sp. strain F4, and green sulfur bacterium Chlorobium ferrooxidans strain KoFox). While we found the overall highest Fe(II) oxidation rates with strain F4 (4.5 mmol L(-1) day(-1), 800 lux, 20 degrees C), the lowest light saturation values [at which maximum Fe(II) oxidation occurred] were determined for strain KoFox with light saturation already below 50 lux. The oxidation rate per cell was determined for R. ferrooxidans strain SW2 to be 32 pmol Fe(II) h(-1) per cell. No significant toxic effect of Fe(II) was observed at Fe(II) concentrations of up to 30 mM. All three strains are mesophiles with upper temperature limits of c. 30 degrees C. The main pigments were identified to be spheroidene, spheroidenone, OH-spheroidenone (SW2), rhodopinal (F4), and chlorobactene (KoFox). This study will improve our ecophysiological understanding of iron cycling in modern environments and will help to evaluate whether phototrophic iron oxidizers may have contributed to the formation of Fe(III) on early earth.

  4. Phototrophic purple sulfur bacteria as heat engines in the South Andros Black Hole.

    PubMed

    Herbert, Rodney A; Gall, Andrew; Maoka, Takashi; Cogdell, Richard J; Robert, Bruno; Takaichi, Shinichi; Schwabe, Stephanie

    2008-01-01

    Photosynthetic organisms normally endeavor to optimize the efficiency of their light-harvesting apparatus. However, here we describe two bacterial isolates belonging to the genera Allochromatium and Thiocapsa that demonstrate a novel adaptation by optimizing their external growth conditions at the expense of photosynthetic efficiency. In the South Andros Black Hole, Bahamas, a dense l-m thick layer of these anoxygenic purple sulfur bacteria is present at a depth of 17.8 m. In this layer the water temperature increases sharply to 36 degrees C as a consequence of the low-energy transfer efficiency of their carotenoids (ca. 30%). These include spirilloxanthin, and related polyene molecules and a novel chiral carotenoid identified as spirilloxanthin-2-ol, not previously reported in purple bacteria. To our knowledge, this study presents the first evidence of such a bacterial mass significantly increasing the ambient water temperature. The transduction of light to heat energy to excess heat may provide these anoxygenic phototropic bacteria with a competitive advantage over non-thermotolerant species, which would account for their predominance within the microbial layer.

  5. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  6. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  7. Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver.

    PubMed

    González, Aridane G; Mombo, Stéphane; Leflaive, Joséphine; Lamy, Alexandre; Pokrovsky, Oleg S; Rols, Jean-Luc

    2015-06-01

    Due to the significant increase in nanoparticle production and especially that of silver nanoparticles over the past decade, the toxicity of silver in both ionic (Ag(+)) and nanoparticulate (AgNPs) form must be studied in detail in order to understand their impact on natural ecosystems. A comparative study of the effect of AgNPs and ionic silver on two independent phototrophic biofilms was conducted in a rotating annular bioreactor (RAB) operating under constant conditions. The concentration of dissolved silver in the inlet solution was progressively increased every 4 days of exposure, from 0.1 to 100 μg L(-1). In the course of the 40-day experiment, biofilm samples were collected to determine the evolution of biomass, chlorophyll-a, as well as photosynthetic and heterotrophic enzymatic activities in response to silver addition. Analysis of both dissolved and particulate silver allowed quantification of the distribution coefficient and uptake rate constants. The presence of both AgNPs and Ag(+) produced significant changes in the biofilm structure, decreasing the relative percentage of Diatomophyceae and Cyanophyceae and increasing the relative percentage of Chlorophyceae. The accumulation capacity of the phototrophic biofilm with respect to ionic silver and the corresponding distribution coefficients were an order of magnitude higher than those of the phototrophic biofilm with respect to AgNPs. Higher levels of AgNPs decreased the biomass from 8.6 ± 0.2 mg cm(-2) for 0-10 μg L(-1) AgNPs to 6.0 ± 0.1 mg cm(-2) for 100 μg L(-1) added AgNPs, whereas ionic silver did not have any toxic effect on the biofilm growth up to 100 μg L(-1) of added Ag(+). At the same time, AgNPs did not significantly affect the photosynthetic activity of the biofilm surface communities compared to Ag(+). It can thus be hypothesized that negatively charged AgNPs may travel through the biofilm water channels, thereby affecting the whole biofilm structure. In contrast

  8. Air-dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation.

    PubMed

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2012-11-01

    Aquatic and terrestrial associations of phototrophic and heterotrophic microorganisms active in hydrocarbon bioremediation have been described earlier. The question arises: do similar consortia also occur in the atmosphere? Dust samples at the height of 15 m were collected from Kuwait City air, and analyzed microbiologically for phototrophic and heterotrophic hydrocarbon-utilizing microorganisms, which were subsequently characterized according to their 16S rRNA gene sequences. The hydrocarbon utilization potential of the heterotrophs alone, and in association with the phototrophic partners, was measured quantitatively. The chlorophyte Gloeotila sp. and the two cyanobacteria Nostoc commune and Leptolyngbya thermalis were found associated with dust, and (for comparison) the cynobacteria Leptolyngbya sp. and Acaryochloris sp. were isolated from coastal water. All phototrophic cultures harbored oil vapor-utilizing bacteria in the magnitude of 10(5) g(-1). Each phototrophic culture had its unique oil-utilizing bacteria; however, the bacterial composition in Leptolyngbya cultures from air and water was similar. The hydrocarbon-utilizing bacteria were affiliated with Acinetobacter sp., Aeromonas caviae, Alcanivorax jadensis, Bacillus asahii, Bacillus pumilus, Marinobacter aquaeolei, Paenibacillus sp., and Stenotrophomonas maltophilia. The nonaxenic cultures, when used as inocula in batch cultures, attenuated crude oil in light and dark, and in the presence of antibiotics and absence of nitrogenous compounds. Aqueous and diethyl ether extracts from the phototrophic cultures enhanced the growth of the pertinent oil-utilizing bacteria in batch cultures, with oil vapor as a sole carbon source. It was concluded that the airborne microbial associations may be effective in bioremediating atmospheric hydrocarbon pollutants in situ. Like the aquatic and terrestrial habitats, the atmosphere contains dust-borne associations of phototrophic and heterotrophic hydrocarbon

  9. The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, northwest China.

    PubMed

    Li, Ke; Liu, Ruyin; Zhang, Hongxun; Yun, Juanli

    2013-07-01

    Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.

  10. Astrobiological implications of dim light phototrophy in deep-sea red clays

    NASA Astrophysics Data System (ADS)

    Das, Anindita; Singh, Tanya; LokaBharathi, P. A.; Dhakephalkar, Prashant K.; Mallik, Sweta; Kshirsagar, Pranav R.; Khadge, N. H.; Nath, B. Nagender; Bhattacharya, Satadru; Dagar, Aditya Kumar; Kaur, Prabhjot; Ray, Dwijesh; Shukla, Anil D.; Fernandes, Christabelle E. G.; Fernandes, Sheryl O.; Thomas, Tresa Remya A.; Mamatha, s. S.; Mourya, Babu Shashikant; Meena, Ram Murti

    2017-02-01

    Red clays of Central Indian Basin (CIB) under influence of trace of Rodriguez Triple Junction exhibited chemoautotrophy, low temperature hydrothermal alterations and photoautotrophic potential. Seamount flank TVBC-08, hosting such signatures revealed dominance of aerobic anoxygenic phototroph Erythrobacter, with 93% of total 454 pyrosequencing tags. Subsequently, enrichments for both aerobic (Erythrobacter) and anaerobic anoxygenic phototrophs (green and purple sulphur bacteria) under red and white LED light illumination, with average irradiance 30.66 W m-2, were attempted for three red-clay sediment cores. Successful enrichments were obtained after incubation for c.a. 120 days at 4°± 2 °C and 25°± 2 °C, representing ambient psychrophilic and low temperature hydrothermal alteration conditions respectively. During hydrothermal cooling, a microbial succession from anaerobic chemolithotrophy to oxygenic photoautotrophy through anaerobic/aerobic anoxygenic phototrophic microbes is indicated. Spectral absorbance patterns of the methanol extracted cell pellets showed peaks corresponding to metal sulphide precipitations, the Soret band of chlorosome absorbance by photosystem II and absence of peaks at Qy transition band. Dendritic nano-structures of metal sulphides are common in these sediments and are comparable with other sulphidic paleo-marine Martian analogues. Significant blue and redshifts have been observed for the experimental samples relative to the un-inoculated medium. These observations indicate the propensity of metal-sulphide deposits contributing to chemiluminiscence supporting the growth of phototrophs at least partially, in the otherwise dark abyss. The effects of other geothermal heat and light sources are also under further consideration. The potential of phototrophic microbial cells to exhibit Doppler shift in absorbance patterns is significant towards understanding planetary microbial habitability. Planetary desiccation could considerably

  11. Astrobiological implications of dim light phototrophy in deep-sea red clays.

    PubMed

    Das, Anindita; Singh, Tanya; LokaBharathi, P A; Dhakephalkar, Prashant K; Mallik, Sweta; Kshirsagar, Pranav R; Khadge, N H; Nath, B Nagender; Bhattacharya, Satadru; Dagar, Aditya Kumar; Kaur, Prabhjot; Ray, Dwijesh; Shukla, Anil D; Fernandes, Christabelle E G; Fernandes, Sheryl O; Thomas, Tresa Remya A; S S, Mamatha; Mourya, Babu Shashikant; Meena, Ram Murti

    2017-02-01

    Red clays of Central Indian Basin (CIB) under influence of trace of Rodriguez Triple Junction exhibited chemoautotrophy, low temperature hydrothermal alterations and photoautotrophic potential. Seamount flank TVBC-08, hosting such signatures revealed dominance of aerobic anoxygenic phototroph Erythrobacter, with 93% of total 454 pyrosequencing tags. Subsequently, enrichments for both aerobic (Erythrobacter) and anaerobic anoxygenic phototrophs (green and purple sulphur bacteria) under red and white LED light illumination, with average irradiance 30.66Wm(-2), were attempted for three red-clay sediment cores. Successful enrichments were obtained after incubation for c.a. 120 days at 4°± 2°C and 25°± 2°C, representing ambient psychrophilic and low temperature hydrothermal alteration conditions respectively. During hydrothermal cooling, a microbial succession from anaerobic chemolithotrophy to oxygenic photoautotrophy through anaerobic/aerobic anoxygenic phototrophic microbes is indicated. Spectral absorbance patterns of the methanol extracted cell pellets showed peaks corresponding to metal sulphide precipitations, the Soret band of chlorosome absorbance by photosystem II and absence of peaks at Qy transition band. Dendritic nano-structures of metal sulphides are common in these sediments and are comparable with other sulphidic paleo-marine Martian analogues. Significant blue and redshifts have been observed for the experimental samples relative to the un-inoculated medium. These observations indicate the propensity of metal-sulphide deposits contributing to chemiluminiscence supporting the growth of phototrophs at least partially, in the otherwise dark abyss. The effects of other geothermal heat and light sources are also under further consideration. The potential of phototrophic microbial cells to exhibit Doppler shift in absorbance patterns is significant towards understanding planetary microbial habitability. Planetary desiccation could considerably

  12. Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake.

    PubMed

    Hamilton, T L; Bovee, R J; Thiel, V; Sattin, S R; Mohr, W; Schaperdoth, I; Vogl, K; Gilhooly, W P; Lyons, T W; Tomsho, L P; Schuster, S C; Overmann, J; Bryant, D A; Pearson, A; Macalady, J L

    2014-09-01

    Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate--including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data--as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non-phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.

  13. Maleimides (1 H-pyrrole-2,5-diones) as molecular indicators of anoxygenic photosynthesis in ancient water columns

    NASA Astrophysics Data System (ADS)

    Grice, Kliti; Gibbison, Robert; Atkinson, Jane E.; Schwark, Lorenz; Eckardt, Christian B.; Maxwell, James R.

    1996-10-01

    Maleimides (1 H-pyrrole-2,5-diones), degradation products of photosynthetic tetrapyrrole pigments, have been found for the first time in the polar fraction of the solvent extracts of two marine sediments deposited in restricted basins: Kupferschiefer (Permian) and Serpiano shale (Mid-Triassic). GC and GC—MS analyses of the TBDMS ( tertiary-butyldimethylsilyl) derivatives show a simple component distribution, dominated by Me Et maleimide, mainly of planktonic origin; Me n-Pr and Me i-Bu maleimides, present in low abundance, are thought on structural grounds to be derived from the bacteriochlorophylls c, d, or e of Chlorobiaceae (anoxygenic green sulfur bacteria). This is confirmed for Kupferschiefer by isotope ratio monitoring (irm) GCMS which shows them to be enriched in 13C as a result of their photosynthetic carbon assimilation, which takes place by the reversed tricarboxylic acid (TCA) cycle. The structurally more specific Me i-Bu maleimide is, however, slightly more enriched in 13C than Me n-Pr maleimide, suggesting that the latter is derived in part from reduction of the C 3-acid substituent at C-17 of phytoplanktonic chlorophyll. These results provide evidence for the existence in both depositional settings of microbial communities containing Chlorobiaceae. In turn, this indicates that there must have been periods when the water column was highly stratified and anoxia extended into the zone of light penetration.

  14. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  15. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  16. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  17. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  18. Environmental drivers of phototrophic biofilms in an Alpine show cave (SW-Italian Alps).

    PubMed

    Piano, E; Bona, F; Falasco, E; La Morgia, V; Badino, G; Isaia, M

    2015-12-01

    The proliferation of lampenflora is a major threat for the conservation of show caves, since phototrophic organisms cause physical, chemical and aesthetic damage to speleothems. In this paper we examine the environmental factors influencing the presence and the growth of the three main photosynthetic groups composing phototrophic biofilms in the Bossea show cave (SW-Italian Alps). The presence and the primary production of cyanobacteria, diatoms and green algae were detected with BenthoTorch®, an instrument for in situ measurement of chlorophyll a concentration that has never been used before in caves. By means of different techniques of regression analysis, we highlighted the response of the three photosynthetic groups to different environmental factors. Illuminance proved to be the main factor influencing positively both the probability of the presence and the productivity of the three groups. The presence of seeping water on the substrate and the distance from the cave entrance proved to play an important role in determining patterns of colonization. By means of GIS techniques, we provide thematic maps of the cave, providing a representation of pattern of the density of the three examined photosynthetic groups within different areas of the cave. The same approach may apply to other show caves, aiming at providing suggestions for the cave management (i.e. cleaning of the cave walls and positioning of artificial lights) and reduce impact caused by tourism.

  19. Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture.

    PubMed

    Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano

    2014-12-02

    This paper describes the detrimental effect of photosynthetically evolved oxygen on anodic current generation in the presence of riboflavin upon illumination of a mixed phototrophic culture enriched from a freshwater pond at +0.6 V vs standard hydrogen electrode. In the presence of riboflavin, the phototrophic biomass in the anodic compartment produced an electrical current in response to light/dark cycles (12 h/12 h) over 12 months of operation, generating a maximum current density of 17.5 mA x m(-2) during the dark phase, whereas a much lower current of approximately 2 mA x m(-2) was generated during illumination. We found that the low current generation under light exposure was caused by high rates of reoxidation of reduced riboflavin by oxygen produced during photosynthesis. Quantification of biomass by fluorescence in situ hybridization images suggested that green algae were predominant in both the anode-based biofilm (55.1%) and the anolyte suspension (87.9%) with the remaining biovolume accounted for by bacteria. Genus-level sequencing analysis revealed that bacteria were dominated by cyanobacterium Leptolyngbia (∼35%), while the prevailing algae were Dictyosphaerium, Coelastrum, and Auxenochlorella. This study offers a key comprehension of mediator sensitivity to reoxidation by dissolved oxygen for improvement of microbial solar cell performance.

  20. Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Alperin, Marc J.; Bebout, Brad M.; Martens, Christopher S.; Des Marais, David J.

    2002-01-01

    The simple biochemistry of H2 is critical to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. The sensitivity of each of these processes to H2 can be described collectively, through the quantitative language of thermodynamics. A necessary prerequisite is to understand the factors that, in turn, control H2 partial pressures. These factors are assessed for two distinctly different ecosystems. In anoxic sediments from Cape Lookout Bight (North Carolina, USA), H2 partial pressures are strictly maintained at low, steady-state levels by H2-consuming organisms, in a fashion that can be quantitatively predicted by simple thermodynamic calculations. In phototrophic microbial mats from Baja California (Mexico), H2 partial pressures are controlled by the activity of light-sensitive H2-producing organisms, and consequently fluctuate over orders of magnitude on a daily basis. The differences in H2 cycling can subsequently impact any of the H2-sensitive microbial processes in these systems. In one example, methanogenesis in Cape Lookout Bight sediments is completely suppressed through the efficient consumption of H2 by sulfate-reducing bacteria; in contrast, elevated levels of H2 prevail in the producer-controlled phototrophic system, and methanogenesis occurs readily in the presence of 40 mM sulfate.

  1. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    SciTech Connect

    Tabita, F. Robert

    2013-07-30

    In this study, the Principal Investigator, F.R. Tabita has teemed up with J. C. Liao from UCLA. This project's main goal is to manipulate regulatory networks in phototrophic bacteria to affect and maximize the production of large amounts of hydrogen gas under conditions where wild-type organisms are constrained by inherent regulatory mechanisms from allowing this to occur. Unrestrained production of hydrogen has been achieved and this will allow for the potential utilization of waste materials as a feed stock to support hydrogen production. By further understanding the means by which regulatory networks interact, this study will seek to maximize the ability of currently available “unrestrained” organisms to produce hydrogen. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Moreover, due to their great metabolic versatility, such organisms highly regulate these processes in the cell and since virtually all such capabilities are dispensable, excellent experimental systems to study aspects of molecular control and biochemistry/physiology are available.

  2. Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria

    SciTech Connect

    Zeyer, J.; Eicher, P.; Wakeham, S.G.; Schwarzenbach, R.P.

    1987-09-01

    Enrichment cultures of phototrophic purple bacteria rapidly oxidized up to 10 mM dimethyl sulfide (DMS) to dimethyl sulfoxide (DMSO). DMSO was qualitatively identified by proton nuclear magnetic resonance. By using a biological assay, DMSO was always quantitatively recovered from the culture media. DMS oxidation was not detected in cultures incubated in the dark, and it was slow in cultures exposed to full daylight. Under optimal conditions, the second-order rate constant for DMS oxidation was 6 day/sup -1/ mg of protein/sup -1/ ml/sup -1/. The rate constant was reduced in the presence of high concentration of sulfide (>1 mM), but was not affected by the addition of acetate. DMS was also oxidized to DMSO by a pure strain (tentatively identified as a Thiocystis sp.) isolated from the enrichment cultures. DMS supported growth of the enrichment cultures and of the pure strain by serving as an electron source for photosynthesis. A determination of the amount of protein produced in the cultures and an estimation of the electron balance suggested that the two electrons liberated during the oxidation of DMS to DMSO were quantitatively used to reduce carbon dioxide to biomass. The oxidation of DMS by phototrophic purple bacteria may be an important source of DMSO detected in anaerobic ponds and marshes.

  3. Phototrophic phylotypes dominate mesothermal microbial mats associated with hot springs in Yellowstone National Park.

    PubMed

    Ross, Kimberly A; Feazel, Leah M; Robertson, Charles E; Fathepure, Babu Z; Wright, Katherine E; Turk-Macleod, Rebecca M; Chan, Mallory M; Held, Nicole L; Spear, John R; Pace, Norman R

    2012-07-01

    The mesothermal outflow zones (50-65°C) of geothermal springs often support an extensive zone of green and orange laminated microbial mats. In order to identify and compare the microbial inhabitants of morphologically similar green-orange mats from chemically and geographically distinct springs, we generated and analyzed small-subunit ribosomal RNA (rRNA) gene amplicons from six mesothermal mats (four previously unexamined) in Yellowstone National Park. Between three and six bacterial phyla dominated each mat. While many sequences bear the highest identity to previously isolated phototrophic genera belonging to the Cyanobacteria, Chloroflexi, and Chlorobi phyla, there is also frequent representation of uncultured, unclassified members of these groups. Some genus-level representatives of these dominant phyla were found in all mats, while others were unique to a single mat. Other groups detected at high frequencies include candidate divisions (such as the OP candidate clades) with no cultured representatives or complete genomes available. In addition, rRNA genes related to the recently isolated and characterized photosynthetic acidobacterium "Candidatus Chloracidobacterium thermophilum" were detected in most mats. In contrast to microbial mats from well-studied hypersaline environments, the mesothermal mats in this study accrue less biomass and are substantially less diverse, but have a higher proportion of known phototrophic organisms. This study provides sequences appropriate for accurate phylogenetic classification and expands the molecular phylogenetic survey of Yellowstone microbial mats.

  4. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  5. Soil surface colonization by phototrophic indigenous organisms, in two contrasted soils treated by formulated maize herbicide mixtures.

    PubMed

    Joly, Pierre; Misson, Benjamin; Perrière, Fanny; Bonnemoy, Frédérique; Joly, Muriel; Donnadieu-Bernard, Florence; Aguer, Jean-Pierre; Bohatier, Jacques; Mallet, Clarisse

    2014-11-01

    Soil phototrophic microorganisms, contributors to soil health and food webs, share their particular metabolism with plants. Current agricultural practices employ mixtures of pesticides to ensure the crops yields and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of phototrophic microorganisms to pesticide mixtures are scarce. We designed a 3 months microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur(®)), mesotrione (Callisto(®)) and nicosulfuron (Milagro(®)) on phototrophic communities of two soils (Limagne vertisol and Versailles luvisol). The soils presented different colonizing communities, with diatoms and chlorophyceae dominating communities in Limagne soil and cyanobacteria and bryophyta communities in Versailles soil. The results highlighted the strong impairment of Dual Gold Safeneur(®) treated microcosms on the biomass and the composition of both soil phototrophic communities, with no resilience after a delay of 3 months. This study also excluded any significant mixture effect on these organisms for Callisto(®) and Milagro(®) herbicides. We strongly recommend carrying on extensive soil studies on S-metolachlor and its commercial formulations, in order to reconsider its use from an ecotoxicological point of view.

  6. Modeling the habitat range of phototrophs in yellowstone national park: toward the development of a comprehensive fitness landscape.

    PubMed

    Boyd, Eric S; Fecteau, Kristopher M; Havig, Jeff R; Shock, Everett L; Peters, John W

    2012-01-01

    The extent to which geochemical variation shapes the distribution of phototrophic metabolisms was modeled based on 439 observations in geothermal springs in Yellowstone National Park (YNP), Wyoming. Generalized additive models (GAMs) were developed to predict the distribution of phototrophic metabolism as a function of spring temperature, pH, and total sulfide. GAMs comprised of temperature explained 38.8% of the variation in the distribution of phototrophic metabolism, whereas GAMs comprised of sulfide and pH explained 19.6 and 11.2% of the variation, respectively. These results suggest that of the measured variables, temperature is the primary constraint on the distribution of phototrophs in YNP. GAMs comprised of multiple variables explained a larger percentage of the variation in the distribution of phototrophic metabolism, indicating additive interactions among variables. A GAM that combined temperature and sulfide explained the greatest variation in the dataset (53.4%) while minimizing the introduction of degrees of freedom. In an effort to verify the extent to which phototroph distribution reflects constraints on activity, we examined the influence of sulfide and temperature on dissolved inorganic carbon (DIC) uptake rates under both light and dark conditions. Light-driven DIC uptake decreased systematically with increasing concentrations of sulfide in acidic, algal-dominated systems, but was unaffected in alkaline, cyanobacterial-dominated systems. In both alkaline and acidic systems, light-driven DIC uptake was suppressed in cultures incubated at temperatures 10°C greater than their in situ temperature. Collectively, these quantitative results indicate that apart from light availability, the habitat range of phototrophs in YNP springs is defined largely by constraints imposed firstly by temperature and secondly by sulfide on the activity of these populations that inhabit the edges of the habitat range. These findings are consistent with the predictions

  7. Modeling the Habitat Range of Phototrophs in Yellowstone National Park: Toward the Development of a Comprehensive Fitness Landscape

    PubMed Central

    Boyd, Eric S.; Fecteau, Kristopher M.; Havig, Jeff R.; Shock, Everett L.; Peters, John W.

    2012-01-01

    The extent to which geochemical variation shapes the distribution of phototrophic metabolisms was modeled based on 439 observations in geothermal springs in Yellowstone National Park (YNP), Wyoming. Generalized additive models (GAMs) were developed to predict the distribution of phototrophic metabolism as a function of spring temperature, pH, and total sulfide. GAMs comprised of temperature explained 38.8% of the variation in the distribution of phototrophic metabolism, whereas GAMs comprised of sulfide and pH explained 19.6 and 11.2% of the variation, respectively. These results suggest that of the measured variables, temperature is the primary constraint on the distribution of phototrophs in YNP. GAMs comprised of multiple variables explained a larger percentage of the variation in the distribution of phototrophic metabolism, indicating additive interactions among variables. A GAM that combined temperature and sulfide explained the greatest variation in the dataset (53.4%) while minimizing the introduction of degrees of freedom. In an effort to verify the extent to which phototroph distribution reflects constraints on activity, we examined the influence of sulfide and temperature on dissolved inorganic carbon (DIC) uptake rates under both light and dark conditions. Light-driven DIC uptake decreased systematically with increasing concentrations of sulfide in acidic, algal-dominated systems, but was unaffected in alkaline, cyanobacterial-dominated systems. In both alkaline and acidic systems, light-driven DIC uptake was suppressed in cultures incubated at temperatures 10°C greater than their in situ temperature. Collectively, these quantitative results indicate that apart from light availability, the habitat range of phototrophs in YNP springs is defined largely by constraints imposed firstly by temperature and secondly by sulfide on the activity of these populations that inhabit the edges of the habitat range. These findings are consistent with the predictions

  8. Molecular evolution of the nif gene cluster carrying nifI1 and nifI2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum.

    PubMed

    Enkh-Amgalan, Jigjiddorj; Kawasaki, Hiroko; Seki, Tatsuji

    2006-01-01

    A major nif cluster was detected in the strictly anaerobic, Gram-positive phototrophic bacterium Heliobacterium chlorum. The cluster consisted of 11 genes arranged within a 10 kb region in the order nifI1, nifI2, nifH, nifD, nifK, nifE, nifN, nifX, fdx, nifB and nifV. The phylogenetic position of Hbt. chlorum was the same in the NifH, NifD, NifK, NifE and NifN trees; Hbt. chlorum formed a cluster with Desulfitobacterium hafniense, the closest neighbour of heliobacteria based on the 16S rRNA phylogeny, and two species of the genus Geobacter belonging to the Deltaproteobacteria. Two nifI genes, known to occur in the nif clusters of methanogenic archaea between nifH and nifD, were found upstream of the nifH gene of Hbt. chlorum. The organization of the nif operon and the phylogeny of individual and concatenated gene products showed that the Hbt. chlorum nif operon carrying nifI genes upstream of the nifH gene was an intermediate between the nif operon with nifI downstream of nifH (group II and III of the nitrogenase classification) and the nif operon lacking nifI (group I). Thus, the phylogenetic position of Hbt. chlorum nitrogenase may reflect an evolutionary stage of a divergence of the two nitrogenase groups, with group I consisting of the aerobic diazotrophs and group II consisting of strictly anaerobic prokaryotes.

  9. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain.

    PubMed

    Heising, S; Richter, L; Ludwig, W; Schink, B

    1999-08-01

    A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could also be used as sole electron source. Complexed ferric iron was slowly reduced to ferrous iron in the dark, with hydrogen as electron source. Similar to Chlorobium limicola, the phototrophic bacterium contained bacteriochlorophyll c and chlorobactene as photosynthetic pigments, and also resembled representatives of this species morphologically. On the basis of 16S rRNA sequence comparisons, this organism clusters with Chlorobium, Prosthecochloris, and Pelodictyon species within the green sulfur bacteria phylum. Since the phototrophic partner in the coculture KoFox is only moderately related to the other members of the cluster, it is proposed as a new species, Chlorobium ferrooxidans. The chemoheterotrophic partner bacterium, strain KoFum, was isolated in pure culture with fumarate as sole substrate. The strain was identified as a member of the epsilon-subclass of the Proteobacteria closely related to "Geospirillum arsenophilum" on the basis of physiological properties and 16S rRNA sequence comparison. The "Geospirillum" strain was present in the coculture only in low numbers. It fermented fumarate, aspartate, malate, or pyruvate to acetate, succinate, and carbon dioxide, and could reduce nitrate to dinitrogen gas. It was not involved in ferrous iron oxidation but possibly provided a thus far unidentified growth factor to the phototrophic partner.

  10. Ecophysiology of phototrophic sulfur bacteria in lakes: Vertical distribution of planktonic populations

    NASA Technical Reports Server (NTRS)

    Guerrero, R.

    1985-01-01

    The study of purple and green sulfur bacterial populations in nature is of interest for the following reasons: (1) high quantities of biomass, with low species diversity can be collected; (2) study of planktonic life permits one to understand the mechanisms, structural as well as physiological, used to maintain their vertical position without sinking; and (3) they are capable of sulfur oxidations and reductions that act as important intermediates in the global sulfur cycle. Purple and green photosynthetic bacteria, moreover, may be responsible for certain geological deposits. Planktonic phototrophic sulfur bacteria were analyzed in relation to their vertical distribution in the water column. Factors, including competition for light, that determine their sedimentation rates and the numerical changes in species and populations were assessed.

  11. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

    PubMed

    Vázquez-Nion, D; Rodríguez-Castro, J; López-Rodríguez, M C; Fernández-Silva, I; Prieto, B

    2016-07-01

    Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments.

  12. Purple Phototrophic Bacterium Enhances Stevioside Yield by Stevia rebaudiana Bertoni via Foliar Spray and Rhizosphere Irrigation

    PubMed Central

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant -1 by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms. PMID:23825677

  13. Enrichments for phototrophic bacteria and characterization by morphology and pigment analysis

    NASA Technical Reports Server (NTRS)

    Brune, D.

    1985-01-01

    The purpose of this investigation was to examine several sulfide containing environments for the presence of phototrophic bacteria and to obtain enriched cultures of some of the bacteria present. The field sites were Alum Rock State Park, the Palo Alto salt marsh, the bay area salt ponds, and Big Soda Lake (near Fallon, Nevada). Bacteria from these sites were characterized by microscopic examination, measurement of in vitro absorption spectra, and analysis of carotenoid pigments. Field observations at one of the bay area salt ponds, in which the salt concentration was saturating (about 30 percent NaCl) and the sediments along the shore of the pond covered with a gypsum crust, revealed a layer of purple photosynthetic bacteria under a green layer in the gypsum crust. Samples of this gypsum crust were taken to the laboratory to measure light transmission through the crust and to try to identify the purple photosynthetic bacteria present in this extremely saline environment.

  14. Purple phototrophic bacterium enhances stevioside yield by Stevia rebaudiana Bertoni via foliar spray and rhizosphere irrigation.

    PubMed

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant (-1) by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms.

  15. α-Carotene and its derivatives have a sole chirality in phototrophic organisms?

    PubMed

    Takaichi, Shinichi; Murakami, Akio; Mochimaru, Mari; Yokoyama, Akiko

    2012-01-01

    Carotenoids in eukaryotic phototrophic organisms can be classified into two groups; β-carotene and its derivatives, and α-carotene and its derivatives. We re-examined distribution of α-carotene and its derivatives among various taxa of aquatic algae (17 classes) and land plants. α-carotene and its derivatives were found from Rhodophyceae (macrophytic type), Cryptophyceae, Euglenophyceae, Chlorarachniophyceae, Prasinophyceae, Chlorophyceae, Ulvophyceae, Charophyceae, and land plants, while they could not be detected from Glaucophyceae, Rhodophyceae (unicellular type), Chryosophyceae, Raphidophyceae, Bacillariophyceae, Phaeophyceae, Xanthophyceae, Eustigmatophyceae, Haptophyceae, and Dinophyceae. We also analyzed the chirality of α-carotene and/or its derivatives, such as lutein and siphonaxanthin, and found all of them had only (6'R)-type, not (6'S)-type.

  16. Comparative Ecology of H2 Cycling in Organotrophic and Phototrophic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Bebout, Brad M.; Martens, Christopher S.; DesMarais, David J.; DeVincenzi, Don (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is critical to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. The sensitivity of these many processes to H2 can be described quantitatively, at a basic thermodynamic level. This shared dependence on H2 may provide a means for interpreting the ecology and system-level biogeochemistry of widely variant microbial ecosystems on a common (and quantitative) level. Understanding the factors that control H2 itself is a critical prerequisite. Here, we examine two ecosystems that vary widely with respect to H2 cycling. In anoxic, 'organotrophic' sediments from Cape Lookout Bight (North Carolina, USA), H2 partial pressures are strictly maintained at low, steady-state levels by H2-consuming organisms, in a fashion that can be quantitatively predicted by simple thermodynamic calculations. In phototrophic microbial mats from Baja, Mexico, H2 partial pressures are instead controlled by the activity of light-sensitive H2-producing organisms. In consequence, H2 partial pressures within the system fluctuate by orders of magnitude on hour-long time scales. The differences in H2 cycling subsequently impact H2-sensitive microbial processes, such as methanogenesis. For example, the presence of sulfate in the organotrophic system always yielded low levels of H2 that were inhibitory to methanogenesis; however, the elevated levels of H2 in the phototrophic system favored methane production at significant levels, even in the presence of high sulfate concentrations. The myriad of other H2-sensitive microbial processes are expected to exhibit similar behavior.

  17. Magnetic Resonance Imaging of Structure, Diffusivity, and Copper Immobilization in a Phototrophic Biofilm▿

    PubMed Central

    Phoenix, V. R.; Holmes, W. M.

    2008-01-01

    Magnetic resonance imaging (MRI) was used to spatially resolve the structure, water diffusion, and copper transport of a phototrophic biofilm and its fate. MRI was able to resolve considerable structural heterogeneity, ranging from classical laminations ∼500 μm thick to structures with no apparent ordering. Pulsed-field gradient (PFG) analysis spatially resolved water diffusion coefficients which exhibited relatively little or no attenuation (diffusion coefficients ranged from 1.7 × 10−9 m2 s−1 to 2.2 × 10−9 m2 s−1). The biofilm was then reacted with a 10-mg liter−1 Cu2+ solution, and transverse-parameter maps were used to spatially and temporally map copper immobilization within the biofilm. Significantly, a calibration protocol similar to that used in biomedical research successfully quantified copper concentrations throughout the biofilm. Variations in Cu concentrations were controlled by the biofilm structure. Copper immobilization was most rapid (∼5 mg Cu liter−1 h−1) over the first 20 to 30 h and then much slower for the remaining 60 h of the experiment. The transport of metal within the biofilm is controlled by both diffusion and immobilization. This was explored using a Bartlett and Gardner model which examined both diffusion and adsorption through a hypothetical film exhibiting properties similar to those of the phototrophic biofilm. Higher adsorption constants (K) resulted in longer lag times until the onset of immobilization at depth but higher actual adsorption rates. MRI and reaction transport models are versatile tools which can significantly improve our understanding of heavy metal immobilization in naturally occurring biofilms. PMID:18552186

  18. The Epsomitic Phototrophic Microbial Mat of Hot Lake, Washington. Community Structural Responses to Seasonal Cycling

    SciTech Connect

    Lindemann, Stephen R.; Moran, James J.; Stegen, James C.; Renslow, Ryan S.; Hutchison, Janine R.; Cole, Jessica K.; Dohnalkova, Alice; Tremblay, Julien; Singh, Kanwar; Malfatti, Stephanie; Chen, Feng; Tringe, Susannah; Beyenal, Haluk; Fredrickson, Jim K.

    2013-11-13

    Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg2+ and SO2-4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.

  19. Regulation of electron transfer processes affects phototrophic mat structure and activity

    PubMed Central

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  20. The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling

    PubMed Central

    Lindemann, Stephen R.; Moran, James J.; Stegen, James C.; Renslow, Ryan S.; Hutchison, Janine R.; Cole, Jessica K.; Dohnalkova, Alice C.; Tremblay, Julien; Singh, Kanwar; Malfatti, Stephanie A.; Chen, Feng; Tringe, Susannah G.; Beyenal, Haluk; Fredrickson, James K.

    2013-01-01

    Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg2+ and SO2−4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function. PMID:24312082

  1. Arsenite as an Electron Donor for Anoxygenic Photosynthesis: Description of Three Strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada

    PubMed Central

    Hoeft McCann, Shelley; Boren, Alison; Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Saltikov, Chad W.; Stolz, John F.; Oremland, Ronald S.

    2016-01-01

    Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring in Mono Lake, while strain MLW-1 was obtained from Mono Lake sediment, and strain BSL-9 was isolated from Big Soda Lake. Strains PHS-1, MLW-1, and BSL-9 were all capable of As(III)-dependent growth via anoxygenic photosynthesis and contained homologs of arxA, but displayed different phenotypes. Comparisons were made with three related species: Ectothiorhodospira shaposhnikovii DSM 2111, Ectothiorhodospira shaposhnikovii DSM 243T, and Halorhodospira halophila DSM 244. All three type cultures oxidized arsenite to arsenate but did not grow with As(III) as the sole electron donor. DNA–DNA hybridization indicated that strain PHS-1 belongs to the same species as Ect. shaposhnikovii DSM 2111 (81.1% sequence similarity), distinct from Ect. shaposhnikovii DSM 243T (58.1% sequence similarity). These results suggest that the capacity for light-driven As(III) oxidation is a common phenomenon among purple photosynthetic bacteria in soda lakes. However, the use of As(III) as a sole electron donor to sustain growth via anoxygenic photosynthesis is confined to novel isolates that were screened for by this selective cultivation criterion. PMID:28035953

  2. Arsenite as an Electron Donor for Anoxygenic Photosynthesis: Description of Three Strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada.

    PubMed

    Hoeft McCann, Shelley; Boren, Alison; Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Saltikov, Chad W; Stolz, John F; Oremland, Ronald S

    2016-12-26

    Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring in Mono Lake, while strain MLW-1 was obtained from Mono Lake sediment, and strain BSL-9 was isolated from Big Soda Lake. Strains PHS-1, MLW-1, and BSL-9 were all capable of As(III)-dependent growth via anoxygenic photosynthesis and contained homologs of arxA, but displayed different phenotypes. Comparisons were made with three related species: Ectothiorhodospira shaposhnikovii DSM 2111, Ectothiorhodospira shaposhnikovii DSM 243(T), and Halorhodospira halophila DSM 244. All three type cultures oxidized arsenite to arsenate but did not grow with As(III) as the sole electron donor. DNA-DNA hybridization indicated that strain PHS-1 belongs to the same species as Ect. shaposhnikovii DSM 2111 (81.1% sequence similarity), distinct from Ect. shaposhnikovii DSM 243(T) (58.1% sequence similarity). These results suggest that the capacity for light-driven As(III) oxidation is a common phenomenon among purple photosynthetic bacteria in soda lakes. However, the use of As(III) as a sole electron donor to sustain growth via anoxygenic photosynthesis is confined to novel isolates that were screened for by this selective cultivation criterion.

  3. Arsenite as an electron donor for anoxygenic photosynthesis: Description of three strains of Ectothiorhodospria from Mono Lake, California, and Big Soda Lake, Nevada

    USGS Publications Warehouse

    McCann, Shelley; Boren, Alison; Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Saltikov, Chad W; Stolz, John F.; Oremland, Ronald S.

    2017-01-01

    Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring in Mono Lake, while strain MLW-1 was obtained from Mono Lake sediment, and strain BSL-9 was isolated from Big Soda Lake. Strains PHS-1, MLW-1, and BSL-9 were all capable of As(III)-dependent growth via anoxygenic photosynthesis and contained homologs of arxA, but displayed different phenotypes. Comparisons were made with three related species: Ectothiorhodospira shaposhnikovii DSM 2111, Ectothiorhodospira shaposhnikovii DSM 243T, and Halorhodospira halophila DSM 244. All three type cultures oxidized arsenite to arsenate but did not grow with As(III) as the sole electron donor. DNA–DNA hybridization indicated that strain PHS-1 belongs to the same species as Ect. shaposhnikovii DSM 2111 (81.1% sequence similarity), distinct from Ect. shaposhnikovii DSM 243T (58.1% sequence similarity). These results suggest that the capacity for light-driven As(III) oxidation is a common phenomenon among purple photosynthetic bacteria in soda lakes. However, the use of As(III) as a sole electron donor to sustain growth via anoxygenic photosynthesis is confined to novel isolates that were screened for by this selective cultivation criterion.

  4. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica ‘Solar Lake’), a Model Anoxygenic Photosynthetic Cyanobacterium

    PubMed Central

    Grim, Sharon L.; Dick, Gregory J.

    2016-01-01

    Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth’s biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica ‘Solar Lake’, a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with

  5. Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats

    PubMed Central

    Nübel, Ulrich; Garcia-Pichel, Ferran; Kühl, Michael; Muyzer, Gerard

    1999-01-01

    We quantified the diversity of oxygenic phototrophic microorganisms present in eight hypersaline microbial mats on the basis of three cultivation-independent approaches. Morphological diversity was studied by microscopy. The diversity of carotenoids was examined by extraction from mat samples and high-pressure liquid chromatography analysis. The diversity of 16S rRNA genes from oxygenic phototrophic microorganisms was investigated by extraction of total DNA from mat samples, amplification of 16S rRNA gene segments from cyanobacteria and plastids of eukaryotic algae by phylum-specific PCR, and sequence-dependent separation of amplification products by denaturing-gradient gel electrophoresis. A numerical approach was introduced to correct for crowding the results of chromatographic and electrophoretic analyses. Diversity estimates typically varied up to twofold among mats. The congruence of richness estimates and Shannon-Weaver indices based on numbers and proportional abundances of unique morphotypes, 16S rRNA genes, and carotenoids unveiled the underlying diversity of oxygenic phototrophic microorganisms in the eight mat communities studied. PMID:9925563

  6. Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing.

    PubMed

    Boelee, N C; Janssen, M; Temmink, H; Shrestha, R; Buisman, C J N; Wijffels, R H

    2014-01-01

    An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m(2)/day. The areal nitrogen and phosphorus removal rates averaged 0.13 g N/m(2)/day and 0.023 g P/m(2)/day, which are low compared to removal rates achieved in laboratory biofilm reactors. Nutrient removal increased during the day, decreased with decreasing light intensity and no removal occurred during the night. Additional carbon dioxide supply was not requisite as the wastewater was comprised of enough inorganic carbon to sustain microalgal growth. The study was not conclusive for the limiting factor that caused the low nutrient removal rate, possibly the process was limited by light and temperature, in combination with pH increases above pH 9 during the daytime. This pilot-scale study demonstrated that the proposed phototrophic biofilm reactor is not a viable post-treatment of municipal wastewater effluents under Dutch climate conditions. However, the reactor performance may be improved when controlling the pH and the temperatures in the morning. With these adaptations, a phototrophic biofilm reactor could be feasible at lower latitudes with higher irradiance levels.

  7. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils

    NASA Astrophysics Data System (ADS)

    Ge, Tida; Wu, Xiaohong; Chen, Xiaojuan; Yuan, Hongzhao; Zou, Ziying; Li, Baozhen; Zhou, Ping; Liu, Shoulong; Tong, Chengli; Brookes, Phil; Wu, Jinshui

    2013-07-01

    Autotrophic microorganisms, which can fix atmospheric CO2 to synthesize organic carbon, are numerous and widespread in soils. However, the extent and the mechanism of CO2 fixation in soils remain poorly understood. We incubated five upland and five paddy soils from subtropical China in an enclosed, continuously 14CO2-labeled, atmosphere and measured 14CO2 incorporated into soil organic matter (SOC14) and microbial biomass (MBC14) after 110 days. The five upland soils supported dominant crops soils (maize, wheat, sweet potato, and rapeseed) in the region, while all paddy soils were cultivated in a regime consisting of permanently-flooded double-cropping rice cultivation. The upland and paddy soils represented typical soil types (fluvisols and ultisols) and three landforms (upland, hill, and low mountain), ranging in total carbon from low (<10 g kg-1 soil organic carbon) to medium (10-20 g kg-1) to high (>20 g kg-1). Substantial amounts of 14CO2 were fixed into SOC14 (mean 20.1 ± 7.1 mg C kg-1 in upland soil, 121.1 ± 6.4 mg C kg-1 in paddy soil) in illuminated soils (12 h light/12 h dark), whereas no 14C was fixed in soils incubated in continuous darkness. We concluded that the microbial CO2 fixation was almost entirely phototrophic rather than chemotrophic. The rate of SOC14 synthesis was significantly higher in paddy soils than in upland soils. The SOC14 comprised means of 0.15 ± 0.01% (upland) and 0.65 ± 0.03% (paddy) of SOC. The extent of 14C immobilized as MBC14 and that present as dissolved organic C (DOC14) differed between soil types, accounting for 15.69-38.76% and 5.54-18.37% in upland soils and 15.57-40.03% and 3.67-7.17% of SOC14 in paddy soils, respectively. The MBC14/MBC and DOC14/DOC were 1.76-5.70% and 1.69-5.17% in the upland soils and 4.23-28.73% and 5.65-14.30% in the paddy soils, respectively. Thus, the newly-incorporated C stimulated the dynamics of DOC and MBC more than the dynamics of SOC. The SOC14 and MBC14 concentrations were highly

  8. Regulation of electron transfer processes affects phototrophic mat structure and activity

    DOE PAGES

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; ...

    2015-09-03

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system]more » and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that

  9. Regulation of electron transfer processes affects phototrophic mat structure and activity

    SciTech Connect

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-09-03

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested

  10. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  11. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  12. Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory

    PubMed Central

    Yu, Yi; You, Le; Liu, Dianyi; Hollinshead, Whitney; Tang, Yinjie J.; Zhang, Fuzhong

    2013-01-01

    Cyanobacteria (blue-green algae) play profound roles in ecology and biogeochemistry. One model cyanobacterial species is the unicellular cyanobacterium Synechocystis sp. PCC 6803. This species is highly amenable to genetic modification. Its genome has been sequenced and many systems biology and molecular biology tools are available to study this bacterium. Recently, researchers have put significant efforts into understanding and engineering this bacterium to produce chemicals and biofuels from sunlight and CO2. To demonstrate our perspective on the application of this cyanobacterium as a photosynthesis-based chassis, we summarize the recent research on Synechocystis 6803 by focusing on five topics: rate-limiting factors for cell cultivation; molecular tools for genetic modifications; high-throughput system biology for genome wide analysis; metabolic modeling for physiological prediction and rational metabolic engineering; and applications in producing diverse chemicals. We also discuss the particular challenges for systems analysis and engineering applications of this microorganism, including precise characterization of versatile cell metabolism, improvement of product rates and titers, bioprocess scale-up, and product recovery. Although much progress has been achieved in the development of Synechocystis 6803 as a phototrophic cell factory, the biotechnology for “Compounds from Synechocystis” is still significantly lagging behind those for heterotrophic microbes (e.g., Escherichia coli). PMID:23945601

  13. Diversity of extremophilic purple phototrophic bacteria in Soap Lake, a Central Washington (USA) Soda Lake.

    PubMed

    Asao, Marie; Pinkart, Holly C; Madigan, Michael T

    2011-08-01

    Culture-based and culture-independent methods were used to explore the diversity of phototrophic purple bacteria in Soap Lake, a small meromictic soda lake in the western USA. Among soda lakes, Soap Lake is unusual because it consists of distinct upper and lower water bodies of vastly different salinities, and its deep waters contain up to 175 mM sulfide. From Soap Lake water new alkaliphilic purple sulfur bacteria of the families Chromatiaceae and Ectothiorhodospiraceae were cultured, and one purple non-sulfur bacterium was isolated. Comparative sequence analysis of pufM, a gene that encodes a key photosynthetic reaction centre protein universally found in purple bacteria, was used to measure the diversity of purple bacteria in Soap Lake. Denaturing gradient gel electrophoresis and subsequent phylogenetic analyses of pufMs amplified from Soap Lake water revealed that a significant diversity of purple bacteria inhabit this soda lake. Although close relatives of several of the pufM phylotypes obtained from cultured species could also be detected in Soap Lake water, several other more divergent pufM phylotypes were also detected. It is possible that Soap Lake purple bacteria are major contributors of organic matter into the ecosystem of this lake, especially in its extensive anoxic and sulfidic deep waters.

  14. Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides.

    PubMed

    Novak, Ryan T; Gritzer, Rachel F; Leadbetter, Edward R; Godchaux, Walter

    2004-06-01

    Taurine metabolism by two phototrophically grown purple nonsulfur bacteria enrichment isolates has been examined. Rhodopseudomonas palustris (strain Tau1) grows with taurine as a sole electron donor, sulfur and nitrogen source during photoautotrophic growth. Rhodobacter sphaeroides (strain Tau3) grows on the compound as sole electron donor, sulfur and nitrogen source, and partial carbon source, in the presence of CO(2) during photoheterotrophic growth. Both organisms utilize an inducible taurine-pyruvate aminotransferase and a sulfoacetaldehyde acetyltransferase. The products of this metabolism are bisulfite and acetyl phosphate. Bisulfite ultimately was oxidized to sulfate, but this was not an adequate source of electrons for photometabolism. Experiments using either [U-(14)C]taurine or (14)CO(2) demonstrated that Rb. sphaeroides Tau3 assimilated the carbon from approximately equimolar amounts of taurine and exogenous CO(2). The taurine-carbon assimilation was not diminished by excess non-radioactive bicarbonate. Malate synthase (but not isocitrate lyase) was induced in these taurine-grown cells. It is concluded that assimilation of taurine carbon occurs through an intermediate other than CO(2). Similar labelling experiments with Rp. palustris Tau1 determined that taurine is utilized only as an electron donor for the reduction of CO(2), which contributes all the cell carbon. Photoautotrophic metabolism was confirmed in this organism by the absence of either malate synthase or isocitrate lyase in taurine+CO(2)-grown cells. Culture collection strains of these two bacteria did not utilize taurine in these fashions.

  15. Hydrologic variability affects invertebrate grazing on phototrophic biofilms in stream microcosms.

    PubMed

    Ceola, Serena; Hödl, Iris; Adlboller, Martina; Singer, Gabriel; Bertuzzo, Enrico; Mari, Lorenzo; Botter, Gianluca; Waringer, Johann; Battin, Tom J; Rinaldo, Andrea

    2013-01-01

    The temporal variability of streamflow is known to be a key feature structuring and controlling fluvial ecological communities and ecosystem processes. Although alterations of streamflow regime due to habitat fragmentation or other anthropogenic factors are ubiquitous, a quantitative understanding of their implications on ecosystem structure and function is far from complete. Here, by experimenting with two contrasting flow regimes in stream microcosms, we provide a novel mechanistic explanation for how fluctuating flow regimes may affect grazing of phototrophic biofilms (i.e., periphyton) by an invertebrate species (Ecdyonurus sp.). In both flow regimes light availability was manipulated as a control on autotroph biofilm productivity and grazer activity, thereby allowing the test of flow regime effects across various ratios of biofilm biomass to grazing activity. Average grazing rates were significantly enhanced under variable flow conditions and this effect was highest at intermediate light availability. Our results suggest that stochastic flow regimes, characterised by suitable fluctuations and temporal persistence, may offer increased windows of opportunity for grazing under favourable shear stress conditions. This bears important implications for the development of comprehensive schemes for water resources management and for the understanding of trophic carbon transfer in stream food webs.

  16. Hydrologic Variability Affects Invertebrate Grazing on Phototrophic Biofilms in Stream Microcosms

    PubMed Central

    Ceola, Serena; Hödl, Iris; Adlboller, Martina; Singer, Gabriel; Bertuzzo, Enrico; Mari, Lorenzo; Botter, Gianluca; Waringer, Johann; Battin, Tom J.; Rinaldo, Andrea

    2013-01-01

    The temporal variability of streamflow is known to be a key feature structuring and controlling fluvial ecological communities and ecosystem processes. Although alterations of streamflow regime due to habitat fragmentation or other anthropogenic factors are ubiquitous, a quantitative understanding of their implications on ecosystem structure and function is far from complete. Here, by experimenting with two contrasting flow regimes in stream microcosms, we provide a novel mechanistic explanation for how fluctuating flow regimes may affect grazing of phototrophic biofilms (i.e., periphyton) by an invertebrate species (Ecdyonurus sp.). In both flow regimes light availability was manipulated as a control on autotroph biofilm productivity and grazer activity, thereby allowing the test of flow regime effects across various ratios of biofilm biomass to grazing activity. Average grazing rates were significantly enhanced under variable flow conditions and this effect was highest at intermediate light availability. Our results suggest that stochastic flow regimes, characterised by suitable fluctuations and temporal persistence, may offer increased windows of opportunity for grazing under favourable shear stress conditions. This bears important implications for the development of comprehensive schemes for water resources management and for the understanding of trophic carbon transfer in stream food webs. PMID:23613735

  17. Cenoses of phototrophic algae of ultrasaline lakes in the Kulunda steppe (Altai krai, Russian Federation)

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Ph. V.; Kalinina, O. Yu.; Nikitin, M. A.; Samylina, O. S.

    2016-01-01

    In 2012, expeditions of the Institute of Microbiology, Russian Academy of Sciences, delivered samples of algo-bacterial mats from Kulunda steppe alkaline lakes (Petukhovskoe alkaline lake, Tanatar VI, and Gorchina III). The filamentous alga Ctenocladus circinnatus (Chlorophyta) acted as an edificator of the mats. The composition of cenoses algocomponents also included chlorophytes Dunaliella viridis and Picocystis salinarum as well as diatoms Anomeoneis sphaerophora, Brachysira brebissonii, B. zellensis, Mastogloia pusilla var. subcapitata, Nitzschia amphibia, N. cf. communis, and Nitzschia sp. 1. The composition and structure of phototrophic algae cenoses (including diatom taxocenes) were described for the investigated lakes for the first time. For the period from 2011 to 2012, the total mineralization significantly increased in lakes. This involved sensible alterations of cenoses. B. zellensis was the most permanent component of diatom taxocenes in both seasons. In the summer of 2011, it was often accompanied by A. sphaerophora and B. brebissonii. In the summer of 2012, A. sphaerophora was found only singularly in Lake Gorchina III, and some biotopes of Lake Tanatar VI were massively inhabited by N. cf. communis, including colonies that had not been previously described for the species. The genetic analysis of three diatoms, which are markedly different from each other in their appearance and were sampled from different lakes but were all determined as Nitzschia cf. communis, showed their complete similarity to each other with the 18S rRNA gene fragment and the highest similarity of all the three diatoms with the species Nitzschia communis.

  18. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations

    NASA Technical Reports Server (NTRS)

    Madigan, M. T.; Takigiku, R.; Lee, R. G.; Gest, H.; Hayes, J. M.

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.

  19. Comparative evaluation of phototrophic microtiter plate cultivation against laboratory-scale photobioreactors.

    PubMed

    Morschett, Holger; Schiprowski, Danny; Rohde, Jannis; Wiechert, Wolfgang; Oldiges, Marco

    2017-01-18

    Extended cultivation times, rendering phototrophic bioprocess development time inefficient, resulted in the recent development of micro-photobioreactors enabling accelerated process development. However, especially for laboratory photobioreactors, only little is known concerning the influence of design on process performance. Thus, the aim of the present investigation was to evaluate the scalability of a microtiter plate-based parallelized micro-photobioreactor against a representative set of established laboratory photobioreactors. Lipid production by Chlorella vulgaris was used as a model system. During exponential growth, the microtiter plate cultures achieved maximal growth rates of ca. 1.44 ± 0.02 day(-1) being in good agreement with the larger systems. Moreover, cultures in the micro-photobioreactor could be kept in the exponential phase up to the highest biomass concentrations most probably due to the beneficial light supply at this scale. Compared to the shake flask and test tube cultures, microtiter plate cultivation achieved an equivalent biomass yield, lipid content, and lipid fingerprint. In contrast, the flat-panel process resulted only in marginal productivity due to insufficient light supply. Thus, microtiter plates showed good scalability to the investigated laboratory photobioreactors as overall differences were rather small taking the differing scales into account.

  20. The Organellar Genomes of Chromera and Vitrella, the Phototrophic Relatives of Apicomplexan Parasites.

    PubMed

    Oborník, Miroslav; Lukeš, Julius

    2015-01-01

    Apicomplexa are known to contain greatly reduced organellar genomes. Their mitochondrial genome carries only three protein-coding genes, and their plastid genome is reduced to a 35-kb-long circle. The discovery of coral-endosymbiotic algae Chromera velia and Vitrella brassicaformis, which share a common ancestry with Apicomplexa, provided an opportunity to study possibly ancestral forms of organellar genomes, a unique glimpse into the evolutionary history of apicomplexan parasites. The structurally similar mitochondrial genomes of Chromera and Vitrella differ in gene content, which is reflected in the composition of their respiratory chains. Thus, Chromera lacks respiratory complexes I and III, whereas Vitrella and apicomplexan parasites are missing only complex I. Plastid genomes differ substantially between these algae, particularly in structure: The Chromera plastid genome is a linear, 120-kb molecule with large and divergent genes, whereas the plastid genome of Vitrella is a highly compact circle that is only 85 kb long but nonetheless contains more genes than that of Chromera. It appears that organellar genomes have already been reduced in free-living phototrophic ancestors of apicomplexan parasites, and such reduction is not associated with parasitism.

  1. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  2. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum”

    PubMed Central

    2013-01-01

    Background ‘Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium. Results We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described. Conclusions Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships. PMID:24267588

  3. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  4. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  5. Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp.

    PubMed

    Nowicka-Krawczyk, Paulina; Żelazna-Wieczorek, Joanna; Otlewska, Anna; Koziróg, Anna; Rajkowska, Katarzyna; Piotrowska, Małgorzata; Gutarowska, Beata; Żydzik-Białek, Agnieszka

    2014-09-15

    Aerial phototrophs colonize materials of anthropogenic origin, thus contributing to their biodeterioration. Structures preserved at the former Auschwitz II-Birkenau concentration and extermination camp show signs of degradation by cyanobacteria and algae. In order to protect the Auschwitz-Birkenau Memorial Site, diversity of aerial phototrophs growing on the historic buildings has been studied. Analyses of cyanobacterial and algal biofilms growing on various construction substrates were carried out in summer and winter. Multivariate data analyses were used to: characterize the diversity of cyanobacteria and algae growing in brick and wooden camp buildings depending on the research season, indicate preferences of cyanobacteria and algae in colonizing substrates, and to predict the environmental factor that most determines the growth of phototrophs. The biofilms were formed mainly by cyanobacteria, green algae and diatoms. The amount of cyanobacteria and algae in the biofilms was varied, which resulted from changes in climatic conditions, the type of substrate and the height at which the biofilms developed. In the summer, the ratio of cyanobacteria and algae groups was balanced, while in the winter, green algae and diatoms were dominant. Green algae showed a preference for colonizing plaster, wood and concrete, of which the walls and doors of the buildings were made. Their participation was correlated with a height gradient. Cyanobacteria and diatoms grew on bricks and soil on the floor of the buildings and temperature and relative humidity were the factors that modified their amount. Green algae were more cosmopolitan-occurred in dry places, potentially inaccessible to other organisms; therefore, they have been identified as the pioneer group in the prevailing climatic conditions.

  6. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  7. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  8. [Study of phototrophic purple bacterium Rhodobacter sphaeroides cell morphology of wild-type and ipt-transformant by atomic force and electron microscopy].

    PubMed

    Machulin, A V; Smolygina, L D; Suzina, N E; Serdiuk, O P

    2012-01-01

    A comparative study of phototrophic purple bacterium Rhodobacter sphaeroides cell morphology of wild-type and ipt-transformant was done by atomic force and electron microscopy. It was shown that transformation led to a decrease in the number or total disappearance of the flagella, as well as to changes in the structure of the outer membrane of the bacteria cell wall. On the wild-type cell surface phage-like structures were found, and in transformed cells at their places hollows were identified. This study significantly extends an understanding of the changes occurring in the ipt-transformants of phototrophic purple bacterium Rhodobacter sphaeroides. This investigation not only confirmed earlier obtained data about the differences in the wild-type and ipt-transformant phototrophic purple bacteria cell wall, but also showed fine changes in the structure of its outer membrane.

  9. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  10. Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms.

    PubMed

    Pesce, Stéphane; Morin, Soizic; Lissalde, Sophie; Montuelle, Bernard; Mazzella, Nicolas

    2011-03-01

    Polar organic chemical integrative samplers (POCIS) are valuable tools in passive sampling methods for monitoring polar organic pesticides in freshwaters. Pesticides extracted from the environment using such methods can be used to toxicity tests. This study evaluated the acute effects of POCIS extracts on natural phototrophic biofilm communities. Our results demonstrate an effect of POCIS pesticide mixtures on chlorophyll a fluorescence, photosynthetic efficiency and community structure. Nevertheless, the range of biofilm responses differs according to origin of the biofilms tested, revealing spatial variations in the sensitivity of natural communities in the studied stream. Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment.

  11. Spatially-resolved carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Lindemann, S. R.; Cory, A. B.; Courtney, S.; Cole, J. K.; Fredrickson, J.

    2013-12-01

    Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington. Low annual rainfall and high evaporation rates contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate, of which monimolimnion waters may seasonally exceed 2 M concentrations. Induced by its high salinity and meromictic nature, Hot Lake displays an inverse thermal gradient with deep horizons seasonally exceeding 50 °C. Despite extreme conditions, dense benthic microbial mats composed of cyanobacteria, anoxygenic photoheterotrophs, and bacterial heterotroph populations develop in the lake. These mats can exceed 1 cm in thickness and display vertical stratification in color due to bacterial pigmentation. Typical mat stratification includes an orange surface layer underlain by green and purple layers at increasing depth. Carbonates, including aragonite and magnesite, are observed within the mat and their formation is likely induced or influenced by microbial metabolic activities and associated pH excursions. We are exploring the role Hot Lake's microbial mats play in carbon cycling. Cyanobacteria are the dominant CO2-fixing organisms in the mat and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. Secondly, we seek to understand the overall net carbon balance of the mat through a growing season. We are using a stable isotope probing approach for assessing carbon uptake and migration through representative mat samples. We performed a series of ex situ incubations of freshly harvested mat samples in lake water amended with 13C-labeled bicarbonate or substrates commonly consumed by heterotrophs (including acetate and glucose) and using multiple stable isotope techniques to track label uptake, residence time, remineralization, and location within the mat. In addition to bulk isotope

  12. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    SciTech Connect

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  13. Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface

    PubMed Central

    Villa, Federica; Pitts, Betsey; Lauchnor, Ellen; Cappitelli, Francesca; Stewart, Philip S.

    2015-01-01

    Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments. To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network like structure following surface topography; (iii) cooperation between phototrophs and heterotrophs and cross feeding processes; (iv) ability to change the chemical parameters that characterize the microhabitats; (v) survival under desiccation and (vi) biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments. PMID:26635736

  14. Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface.

    PubMed

    Villa, Federica; Pitts, Betsey; Lauchnor, Ellen; Cappitelli, Francesca; Stewart, Philip S

    2015-01-01

    Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments. To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network like structure following surface topography; (iii) cooperation between phototrophs and heterotrophs and cross feeding processes; (iv) ability to change the chemical parameters that characterize the microhabitats; (v) survival under desiccation and (vi) biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments.

  15. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth

    PubMed Central

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-01-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration. PMID:21593797

  16. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  17. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  18. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  19. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  20. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  1. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  2. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    NASA Astrophysics Data System (ADS)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    Carbonate biomineralization is considered as one of the main natural processes controlling CO2 levels in the atmosphere both in the past and at present time. Haloalcaliphilic Rhodovulum sp. A-20s isolated from soda lake in southern Siberia and halophilic neutrophilic Rhodovulum sp. S-1765 isolated from hypersaline water body in Crimea steppe represent a large group of phototrophic bacteria likely to be involved in CaCO3 formation in soda and saline lakes. These bacteria use organic substrates for non-oxygenic photosynthesis and thus may mediate CaCO3 precipitation without CO2 consumption in highly-saline, highly-alkaline, NaHCO3-rich solutions. In order to provide the link between surface properties of bacteria and their ability to precipitate Ca carbonate, we used a combination of electrophoretic mobility measurements, surface titration and Ca ion adsorption using dead (autoclaved), inactivated (NaN3 - treated) and live cells at 25 °C as a unction of pH (3-11) and NaCl concentrations (0.01, 0.1, 0.5 M). Zeta potential of both bacteria is identical for active, NaN3-inactivated and dead cells at high ionic strength (0.5 M NaCl). The pH of isoelectric point is below 3 and zeta-potential decreases or remain negative up to pH 11. However, at lower ionic strength (0.1 M and 0.01 M NaCl) for live cells the potential increases towards positive values in the alkaline solutions (pH of 9 to 10). Similar to previous results on cyanobacteria (Martinez et al., 2009) there is a net increase in zeta-potential towards more positive values at pH = 10.4 for active cells. In order to better understand this phenomenon, experiments with different concentration of Ca2+ and HCO3- ions as well as experiments with live cultures in the darkness have been carried out. The presence in solution of Ca2+ (0.01 and 0.001 M) and the absence of light in experiment do not change significantly the potential of the cells. However, the presence in solution of HCO3- strongly reduces the zeta

  3. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms.

    PubMed

    Knowles, Emily J; Castenholz, Richard W

    2008-11-01

    Two major stresses that threaten rock-inhabiting microbial communities are desiccation and freezing; both result in a loss of liquid water in the cells. The mechanisms necessary to tolerate these extremes may be similar, but are not well understood. In both cases extracellular polysaccharides (EPS) seem to play an important role. This study examines whether the EPS released by a rock-inhabiting phototroph can have a protective effect on other members of similar and neighboring microbial communities. This interaction was modeled by adding EPS isolated from the cryptoendolithic cyanobacterium Nostoc sp. to cells of the cryptoendolithic green alga Chlorella sp. and to cells of the epilithic cyanobacterium Chroococcidiopsis sp. The cells were then subjected to desiccation and freezing and the survival rates were determined by vital staining, using membrane integrity as a measure of viability. The results clearly demonstrate the importance of exogenous EPS in the desiccation tolerance of both species, while mixed results were found for the freezing trials.

  4. Aerobic fitness testing: an update.

    PubMed

    Stevens, N; Sykes, K

    1996-12-01

    This study confirms that all three tests are reliable tools for the assessment of cardiorespiratory fitness and the prediction of aerobic capacity. While this particular study consisted of active, youthful subjects, subsequent studies at University College Chester have found similar findings with larger databases and a wider cross-section of subjects. The Astrand cycle test and Chester step test are submaximal tests with error margins of 5-15 per cent and therefore, not as precise as maximal testing. However, they still give a reasonably accurate reflection of an individual's fitness without the cost, time, effort and risk on the part of the subject. The bleep test is a low-cost maximal test designed for well-motivated, active individuals who are used to running to physical exhaustion. Used on other groups, results will not accurately reflect cardiorespiratory fitness values. While all three tests have inherent advantages and disadvantages, perhaps the most important factors are the knowledge and skills of the tester. Without a sound understanding of the physiological principles underlying these tests, and the ability to conduct an accurate assessment and evaluation of results in a knowledgeable and meaningful way, then the credibility of the tests and the results become suspect. However, used correctly, aerobic capacity tests can provide valuable baseline data about the fitness levels of individuals and data from which exercise programmes may be developed. The tests also enable fitness improvements to be monitored, help to motivate participants by establishing reasonable and achievable goals, assist in risk stratification and facilitate participants' education about the importance of physical fitness for work and for life. Since this study was completed, further tests have been repeated on 140 subjects of a wider age and ability range. This large database confirms the results found in this study.

  5. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  6. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light.

    PubMed

    Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O2, temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, Ek, i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the

  7. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    PubMed Central

    Babauta, Jerome T.; Atci, Erhan; Ha, Phuc T.; Lindemann, Stephen R.; Ewing, Timothy; Call, Douglas R.; Fredrickson, James K.; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1–V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community. PMID:24478768

  8. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light

    PubMed Central

    Lichtenberg, Mads; Brodersen, Kasper E.; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O2, temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, Ek, i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the

  9. Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals.

    PubMed

    Burgos, A; Maldonado, J; De Los Rios, A; Solé, A; Esteve, I

    2013-09-15

    The roles of consortia of phototrophic microorganisms have been investigated in this paper to determine their potential role to tolerate or resist metals and to capture them from polluted cultures. With this purpose, two consortia of microorganisms: on one hand, Geitlerinema sp. DE2011 (Ge) and Scenedesmus sp. DE2009 (Sc) (both identified in this paper by molecular biology methods) isolated from Ebro Delta microbial mats, and on the other, Spirulina sp. PCC 6313 (Sp) and Chroococcus sp. PCC 9106 (Ch), from Pasteur culture collection were polluted with copper and lead. In order to analyze the ability of these consortia to tolerate and capture metals, copper and lead were selected, because both have been detected in Ebro Delta microbial mats. The tolerance-resistance to copper and lead for both consortia was determined in vivo and at cellular level by Confocal Laser Scanning Microscopy (CLSM-λscan function). The results obtained demonstrate that both consortia are highly tolerant-resistant to lead and that the limits between the copper concentration having cytotoxic effect and that having an essential effect are very close in these microorganisms. The capacity of both consortia to capture extra- and intracellular copper and lead was determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) respectively, coupled to an Energy Dispersive X-ray detector (EDX). The results showed that all the microorganisms assayed were able to capture copper extracellularly in the extrapolymeric substances, and lead extra- and intracellularly in polyphosphate inclusions. Moreover, the studied micro-organisms did not exert any inhibitory effect on each other's metal binding capacity. From the results obtained in this paper, it can be concluded that consortia of phototrophic microorganisms could play a very important role in biorepairing sediments polluted by metals, as a result of their ability to tolerate or resist high concentrations of metals and to

  10. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    SciTech Connect

    Babauta, Jerome T.; Atci, Erhan; Ha, Phuc T.; Lindemann, Stephen R.; Ewing, Timothy; Call, Douglas R.; Fredrickson, James K.; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode- associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  11. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  12. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  13. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  14. The rise of oxygen and aerobic biochemistry.

    PubMed

    Saito, Mak A

    2012-01-11

    Analysis of conserved protein folding domains across extant genomes by Kim et al. in this issue of Structure provides insights into the timing of some of the earliest aerobic metabolisms to arise on Earth.

  15. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  16. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  17. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  18. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  19. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  20. Combined stable isotope, proteomic, metabolomics, and spatial specific analysis to track carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Cory, A.; Riha, K. M.; Huang, E. L.; Gritsenko, M. A.; Kim, Y. M.; Metz, T. O.; Lipton, M. S.

    2014-12-01

    Tracking labeled substrates through microbial mat systems can help elucidate carbon dynamics, species interactions, and niche partitioning, but the inherent microbial complexity of these systems makes them difficult to probe with single analytical techniques. Here we use a combination of different tools to track three labeled substrates through a benthic phototrophic mat from Hot Lake. Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington which, despite extreme salinity and seasonal water temperatures (> 55 ˚C), hosts dense, phototrophic benthic microbial mats. Cyanobacteria are the dominant CO2-fixing organisms in the system and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. We performed ex situ incubations over a complete diel cycle with 13C labeled bicarbonate, acetate, and glucose. Traditional elemental analysis IRMS provided an estimate of bulk label uptake to total biomass and showed that both bicarbonate and acetate were incorporated only during daylight while glucose uptake was nearly constant through the cycle. Spatially resolved isotope analysis using laser ablation IRMS showed distinctive patterns between the different substrates with bicarbonate having highest uptake in the top third of the mat, acetate uptake focused near the mat's center, and glucose showing similar uptake at all mat depths. Proteomic analysis showed a longer lag in substrate conversion to protein than to biomass and a distinct spike in the number of labeled peptides in the bicarbonate incubation near the end of the diel cycle. Proteomic analysis confirmed that photosynthetic organisms showed the highest rates of label conversion to protein but heterotrophic organisms also incorporated label into their peptides. Metabolomic analysis demonstrated the high conversion of organic substrates

  1. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  2. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  3. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism.

    PubMed

    Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  4. CO₂ assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria.

    PubMed

    Storelli, Nicola; Peduzzi, Sandro; Saad, Maged M; Frigaard, Niels-Ulrik; Perret, Xavier; Tonolla, Mauro

    2013-05-01

    Lake Cadagno is characterized by a compact chemocline that harbors high concentrations of various phototrophic sulfur bacteria. Four strains representing the numerically most abundant populations in the chemocline were tested in dialysis bags in situ for their ability to fix CO₂. The purple sulfur bacterium Candidatus 'Thiodictyon syntrophicum' strain Cad16(T) had the highest CO₂ assimilation rate in the light of the four strains tested and had a high CO₂ assimilation rate even in the dark. The CO₂ assimilation of the population represented by strain Cad16(T) was estimated to be up to 25% of the total primary production in the chemocline. Pure cultures of strain Cad16(T) exposed to cycles of 12 h of light and 12 h of darkness exhibited the highest CO₂ assimilation during the first 4 h of light. The draft genome sequence of Cad16(T) showed the presence of cbbL and cbbM genes, which encode form I and form II of RuBisCO, respectively. Transcription analyses confirmed that, whereas cbbM remained poorly expressed throughout light and dark exposure, cbbL expression varied during the light-dark cycle and was affected by the available carbon sources. Interestingly, the peaks in cbbL expression did not correlate with the peaks in CO₂ assimilation.

  5. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  6. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms

    PubMed Central

    2013-01-01

    Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus

  7. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  8. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  9. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  10. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  11. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  12. Aerobic exercise in fibromyalgia: a practical review.

    PubMed

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  13. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  14. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  15. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  16. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    D'Amelio, E. D.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    bacteria is not available yet in pure culture, and its taxonomical position cannot be fully established. This organism is suggested to be a new type of gliding, filamentous, purple phototroph.

  17. Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert.

    PubMed

    Vítek, Petr; Ascaso, Carmen; Artieda, Octavio; Wierzchos, Jacek

    2016-06-01

    The Raman imaging method was successfully applied for mapping the distribution of biomolecules (e.g., pigments) associated with cryptoendolithic and hypoendolithic microorganisms, as well as the inorganic host mineral matrix that forms the habitat for the biota. To the best of our knowledge, this is the first comprehensive study in the field of geomicrobiology based on this technique. The studied microbial ecosystem was located nearly 3000 m above sea level within the driest desert on Earth, the Atacama in Chile. Enhancement of carotenoid Raman signal intensity close to the surface was registered at different areas of endolithic colonization dominated by algae, with cyanobacteria present as well. This is interpreted as an adaptation mechanism to the excessive solar irradiation. On the other hand, cyanobacteria synthesize scytonemin as a passive UV-screening pigment (found at both the hypoendolithic and cryptoendolithic positions). The distribution of the scytonemin Raman signal was mapped simultaneously with the surrounding mineral matrix. Thus, mapping was done of the phototrophic microorganisms in their original microhabitat together with the host rock environment. Important information which was resolved from the Raman imaging dataset of the host rock is about the hydration state of Ca-sulfate, demonstrated on the presence of gypsum (CaSO4·2H2O) and the absence of both anhydrite (CaSO4) and bassanite (CaSO4·1/2H2O). Obtaining combined "in situ" simultaneous information from the geological matrix (inorganic) together with the microbial biomolecules (organic) is discussed and concluded as an important advantage of this technique. We discuss how selection of the laser wavelength (785 and 514.5-nm) influences the Raman imaging results.

  18. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    PubMed

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  19. Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels.

    PubMed

    Mukkata, Kanokwan; Kantachote, Duangporn; Wittayaweerasak, Banjong; Techkarnjanaruk, Somkiet; Boonapatcharoen, Nimaradee

    2016-07-01

    This research aimed to study the diversity of purple nonsulfur bacteria (PNSB) and to investigate the effect of Hg concentrations in shrimp ponds on PNSB diversity. Amplification of the pufM gene was detected in 13 and 10 samples of water and sediment collected from 16 shrimp ponds in Southern Thailand. In addition to PNSB, other anoxygenic phototrophic bacteria (APB) were also observed; purple sulfur bacteria (PSB) and aerobic anoxygenic phototrophic bacteria (AAPB) although most of them could not be identified. Among identified groups; AAPB, PSB and PNSB in the samples of water and sediment were 25.71, 11.43 and 8.57%; and 27.78, 11.11 and 22.22%, respectively. In both sample types, Roseobacter denitrificans (AAPB) was the most dominant species followed by Halorhodospira halophila (PSB). In addition two genera, observed most frequently in the sediment samples were a group of PNSB (Rhodovulum kholense, Rhodospirillum centenum and Rhodobium marinum). The UPGMA dendrograms showed 7 and 6 clustered groups in the water and sediment samples, respectively. There was no relationship between the clustered groups and the total Hg (HgT) concentrations in the water and sediment samples used (<0.002-0.03 μg/L and 35.40-391.60 μg/kg dry weight) for studying the biodiversity. It can be concluded that there was no effect of the various Hg levels on the diversity of detected APB species; particularly the PNSB in the shrimp ponds.

  20. Taxonomic and Functional Metagenomic Signature of Turfs in the Abrolhos Reef System (Brazil)

    PubMed Central

    Walter, Juline M.; Tschoeke, Diogo A.; Meirelles, Pedro M.; de Oliveira, Louisi; Leomil, Luciana; Tenório, Márcio; Valle, Rogério; Salomon, Paulo S.; Thompson, Cristiane C.; Thompson, Fabiano L.

    2016-01-01

    Turfs are widespread assemblages (consisting of microbes and algae) that inhabit reef systems. They are the most abundant benthic component in the Abrolhos reef system (Brazil), representing greater than half the coverage of the entire benthic community. Their presence is associated with a reduction in three-dimensional coral reef complexity and decreases the habitats available for reef biodiversity. Despite their importance, the taxonomic and functional diversity of turfs remain unclear. We performed a metagenomics and pigments profile characterization of turfs from the Abrolhos reefs. Turf microbiome primarily encompassed Proteobacteria (mean 40.57% ± s.d. 10.36, N = 1.548,192), Cyanobacteria (mean 35.04% ± s.d. 15.5, N = 1.337,196), and Bacteroidetes (mean 11.12% ± s.d. 4.25, N = 424,185). Oxygenic and anoxygenic phototrophs, chemolithotrophs, and aerobic anoxygenic phototrophic (AANP) bacteria showed a conserved functional trait of the turf microbiomes. Genes associated with oxygenic photosynthesis, AANP, sulfur cycle (S oxidation, and DMSP consumption), and nitrogen metabolism (N2 fixation, ammonia assimilation, dissimilatory nitrate and nitrite ammonification) were found in the turf microbiomes. Principal component analyses of the most abundant taxa and functions showed that turf microbiomes differ from the other major Abrolhos benthic microbiomes (i.e., corals and rhodoliths) and seawater. Taken together, these features suggest that turfs have a homogeneous functional core across the Abrolhos Bank, which holds diverse microbial guilds when comparing with other benthic organisms. PMID:27548380

  1. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  2. Confocal laser scanning microscopy coupled to a spectrofluorometric detector as a rapid tool for determining the in vivo effect of metals on phototrophic bacteria.

    PubMed

    Burnat, Mireia; Diestra, Elia; Esteve, Isabel; Solé, Antonio

    2010-01-01

    In this paper, we determine for the first time the in vivo effect of heavy metals in a phototrophic bacterium. We used Confocal Laser Scanning Microscopy coupled to a spectrofluorometric detector as a rapid technique to measure pigment response to heavy-metal exposure. To this end, we selected lead and copper (toxic and essential metals) and Microcoleus sp. as the phototrophic bacterium because it would be feasible to see this cyanobacterium as a good biomarker, since it covers large extensions of coastal sediments. The results obtained demonstrate that, while cells are still viable, pigment peak decreases whereas metal concentration increases (from 0.1 to 1 mM Pb). Pigments are totally degraded when cultures were polluted with lead and copper at the maximum doses used (25 mM Pb(NO(3))(2) and 10 mM CuSO(4)). The aim of this study was also to identify the place of metal accumulation in Microcoleus cells. Element analysis of this cyanobacterium in the above mentioned conditions determined by Energy Dispersive X-ray microanalysis (EDX) coupled to Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), shows that Pb (but not Cu) accumulates externally and internally in cells.

  3. Weathering of a Roman Mosaic—A Biological and Quantitative Study on In Vitro Colonization of Calcareous Tesserae by Phototrophic Microorganisms

    PubMed Central

    Nocerino, Simona; Pinto, Gabriele; Pollio, Antonino; Trojsi, Giorgio; Natale, Antonino De

    2016-01-01

    The potential impact of cyanobacteria and microalgae on the weathering of calcareous tesserae from a Roman mosaic of the II Century CE has been followed through in vitro experiments. Laboratory tests were carried out by inoculating mosaic tiles with single strains of Cyanobacteria or Chlorophyta to evaluate the roles of pioneer phototrophic microrganism on the resulting architecture of biofilms. The interaction between tesserae and strains was assessed at the whole substratum and micrometer scales, by image analysis and Confocal Laser Scanning (CLS) microscopy, respectively. The biofilm surface coverage on each tessera varied from 19% (Fischerella ambigua) to 97% (Microcoleus autumnalis). Cyanobacteria showed a better growth on calcareous tesserae, whereas the only green alga attaining a superficial coverage higher than 50% was Coelastrella rubescens. CLS microscopy evidenced two different types of spatial arrangement of the phototrophic organisms on the tesserae, that were defined as compact or porous, respectively. In the first one was measured a reduced number of empty spaces between cells or filaments, whereas in the second type, a reticulate texture allowed the presence of numerous empty volumes. The colonization processes observed are an intrinsic characteristic of each strain. We have proposed a colonization index IC as a sensible tool to describe, in a quantitative way, the pioneering attitude of each photosynthetic microorganism to colonize lithic substrates under laboratory conditions. PMID:27783631

  4. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  5. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  6. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  7. [Cardiovascular protection and mechanisms of actions of aerobic exercise].

    PubMed

    Hou, Zuo-Xu; Zhang, Yuan; Gao, Feng

    2014-08-01

    It is well established that aerobic exercise exerts beneficial effect on cardiovascular system, but the underlying mechanisms are yet to be elucidated. Recent studies have shown that aerobic exercise ameliorates insulin resistance, inflammation and mitochondrial dysfunction which play important roles in the development of cardiovascular disease. In this review, we discussed the underlying mechanisms of the cardioprotective role of aerobic exercise, especially the latest progress in this field.

  8. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  9. Aerobic Capacity and Postprandial Flow Mediated Dilation.

    PubMed

    Ballard, Kevin D; Miller, James J; Robinson, James H; Olive, Jennifer L

    The consumption of a high-fat meal induces transient vascular dysfunction. Aerobic exercise enhances vascular function in healthy individuals. Our purpose was to determine if different levels of aerobic capacity impact vascular function, as measured by flow mediated dilation, following a high-fat meal. Flow mediated dilation of the brachial artery was determined before, two- and four-hours postprandial a high-fat meal in young males classified as highly trained (n = 10; VO2max = 74.6 ± 5.2 ml·kg·min(-1)) or moderately active (n = 10; VO2max = 47.3 ± 7.1 ml·kg·min(-1)). Flow mediated dilation was reduced at two- (p < 0.001) and four-hours (p < 0.001) compared to baseline for both groups but was not different between groups at any time point (p = 0.108). Triglycerides and insulin increased at two- (p < 0.001) and four-hours (p < 0.05) in both groups. LDL-C was reduced at four-hours (p = 0.05) in highly trained subjects, and two- and four-hours (p ≤ 0.01) in moderately active subjects. HDL-C decreased at two- (p = 0.024) and four-hours (p = 0.014) in both groups. Glucose increased at two-hours postprandial for both groups (p = 0.003). Our results indicate that a high-fat meal results in reduced endothelium-dependent vasodilation in highly trained and moderately active individuals with no difference between groups. Thus, high aerobic capacity does not protect against transient reductions in vascular function after the ingestion of a single high-fat meal compared to individuals who are moderately active.

  10. Production possibility frontiers in phototroph:heterotroph symbioses: trade-offs in allocating fixed carbon pools and the challenges these alternatives present for understanding the acquisition of intracellular habitats

    PubMed Central

    Hill, Malcolm S.

    2014-01-01

    Intracellular habitats have been invaded by a remarkable diversity of organisms, and strategies employed to successfully reside in another species' cellular space are varied. Common selective pressures may be experienced in symbioses involving phototrophic symbionts and heterotrophic hosts. Here I refine and elaborate the Arrested Phagosome Hypothesis that proposes a mechanism that phototrophs use to gain access to their host's intracellular habitat. I employ the economic concept of production possibility frontiers (PPF) as a useful heuristic to clearly define the trade-offs that an intracellular phototroph is likely to face as it allocates photosynthetically-derived pools of energy. Fixed carbon can fuel basic metabolism/respiration, it can support mitotic division, or it can be translocated to the host. Excess photosynthate can be stored for future use. Thus, gross photosynthetic productivity can be divided among these four general categories, and natural selection will favor phenotypes that best match the demands presented to the symbiont by the host cellular habitat. The PPF highlights trade-offs that exist between investment in growth (i.e., mitosis) or residency (i.e., translocating material to the host). Insights gained from this perspective might help explain phenomena such as coral bleaching because deficits in photosynthetic production are likely to diminish a symbiont's ability to “afford” the costs of intracellular residency. I highlight deficits in our current understanding of host:symbiont interactions at the molecular, genetic, and cellular level, and I also discuss how semantic differences among scientists working with different symbiont systems may diminish the rate of increase in our understanding of phototrophic-based associations. I argue that adopting interdisciplinary (in this case, inter-symbiont-system) perspectives will lead to advances in our general understanding of the phototrophic symbiont's intracellular niche. PMID:25101064

  11. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  12. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  13. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  14. Aerobic treatment of wine-distillery wastewaters

    SciTech Connect

    Sales, D.; Valcarcel, M.J.; Perez, L.; de la Ossa, E.M.

    1987-01-01

    Waste from food-processing and allied industries is largely made up of organic compounds which can be metabolized by aerobic or anaerobic means. However, these wastes present a series of problems to biological depuration plants, such as the need for prior treatment to establish conditions suitable for the development of the microorganisms responsible for the process; and the long retention time of the biomass if acceptable effluents are to be obtained. Again, the seasonal nature of many of these industries makes for very heterogeneous waste. This means that treatment plant must be versatile and are subject to rapid successions of close-down and start-up interspersed with long intervals of inactivity. All these difficulties oblige the industries in the sector to adapt depurative technology to their particular needs. Wine distilleries fall into this general category. Their waste (called vinasses) is acidic, has a high organic content and varies widely according to the raw matter distilled: wine, lies, etc. This paper studies the start-up of digestors for aerobic treatment of vinasses and the establishment of optimum operating conditions for an adequate depurative performance.

  15. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  16. Microbial composition and ecological features of phototrophic biofilms proliferating in the Moidons Caves (France): investigation at the single-cell level.

    PubMed

    Borderie, Fabien; Denis, Michel; Barani, Aude; Alaoui-Sossé, Badr; Aleya, Lotfi

    2016-06-01

    The authors investigated the microbial composition of phototrophic biofilms proliferating in a show cave using flow cytometry for the first time in such a context. Results are based on several biofilms sampled in the Moidons Caves (France) and concern both heterotrophic prokaryotes and autotrophic microorganisms. Heterotrophic microorganisms with low nucleic acid content were dominant in biofilms, as can be expected from the oligotrophic conditions prevailing within the cave. Analysis of the biofilm autotrophic components revealed the presence of several taxa, particularly the unicellular green algae Chlorella minutissima, specifically well adapted to this cave. Relationships between flow cytometry results and environmental variables determined in the cave were established and discussed so as to better understand biofilm proliferation processes in caves.

  17. Novel Genes of the dsr Gene Cluster and Evidence for Close Interaction of Dsr Proteins during Sulfur Oxidation in the Phototrophic Sulfur Bacterium Allochromatium vinosum

    PubMed Central

    Dahl, Christiane; Engels, Sabine; Pott-Sperling, Andrea S.; Schulte, Andrea; Sander, Johannes; Lübbe, Yvonne; Deuster, Oliver; Brune, Daniel C.

    2005-01-01

    Seven new genes designated dsrLJOPNSR were identified immediately downstream of dsrABEFHCMK, completing the dsr gene cluster of the phototrophic sulfur bacterium Allochromatium vinosum D (DSM 180T). Interposon mutagenesis proved an essential role of the encoded proteins for the oxidation of intracellular sulfur, an obligate intermediate during the oxidation of sulfide and thiosulfate. While dsrR and dsrS encode cytoplasmic proteins of unknown function, the other genes encode a predicted NADPH:acceptor oxidoreductase (DsrL), a triheme c-type cytochrome (DsrJ), a periplasmic iron-sulfur protein (DsrO), and an integral membrane protein (DsrP). DsrN resembles cobyrinic acid a,c-diamide synthases and is probably involved in the biosynthesis of siro(heme)amide, the prosthetic group of the dsrAB-encoded sulfite reductase. The presence of most predicted Dsr proteins in A. vinosum was verified by Western blot analysis. With the exception of the constitutively present DsrC, the formation of Dsr gene products was greatly enhanced by sulfide. DsrEFH were purified from the soluble fraction and constitute a soluble α2β2γ2-structured 75-kDa holoprotein. DsrKJO were purified from membranes pointing at the presence of a transmembrane electron-transporting complex consisting of DsrKMJOP. In accordance with the suggestion that related complexes from dissimilatory sulfate reducers transfer electrons to sulfite reductase, the A. vinosum Dsr complex is copurified with sulfite reductase, DsrEFH, and DsrC. We therefore now have an ideal and unique possibility to study the interaction of sulfite reductase with other proteins and to clarify the long-standing problem of electron transport from and to sulfite reductase, not only in phototrophic bacteria but also in sulfate-reducing prokaryotes. PMID:15687204

  18. Aerobic Physical Activity and the Leadership of Principals

    ERIC Educational Resources Information Center

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  19. The Effectiveness of Aerobic Exercise Instruction for Totally Blind Women.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.; And Others

    1992-01-01

    A multifaceted method (involving verbal and hands-on training) was used to teach aerobic exercises to 3 totally blind women (ages 24-37). All three women demonstrated positive gains in their performance, physical fitness, and attitudes toward participating in future mainstream aerobic exercise classes. (DB)

  20. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  1. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  2. p53 aerobics: the major tumor suppressor fuels your workout.

    PubMed

    Kruse, Jan-Philipp; Gu, Wei

    2006-07-01

    In addition to its role as the central regulator of the cellular stress response, p53 can regulate aerobic respiration via the novel transcriptional target SCO2, a critical regulator of the cytochrome c oxidase complex (Matoba et al., 2006). Loss of p53 results in decreased oxygen consumption and aerobic respiration and promotes a switch to glycolysis, thereby reducing endurance during physical exercise.

  3. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  4. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  5. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  6. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  7. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  8. Utilization of solid "elemental" sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge X-ray absorption spectroscopy study.

    PubMed

    Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Modrow, Hartwig; Dahl, Christiane; Prange, Alexander

    2007-04-01

    The purple sulfur bacterium Allochromatium vinosum can use elemental sulfur as an electron donor for anoxygenic photosynthesis. The elemental sulfur is taken up, transformed into intracellular sulfur globules and oxidized to sulfate. Commercially available "elemental" sulfur usually consists of the two species cyclo-octasulfur and polymeric sulfur. The authors investigated whether only one sulfur species is used or at least preferred when Alc. vinosum takes up elemental sulfur and forms globules. To this end, Alc. vinosum was cultivated photolithoautotrophically with two types of elemental sulfur that differed in their cyclo-octasulfur : polymeric sulfur ratio, as well as with pure polymeric sulfur. Sulfur speciation was analysed using X-ray absorption spectroscopy, and sulfate contents were determined by HPLC to quantify the amount of elemental sulfur being taken up and oxidized by Alc. vinosum. The results show that Alc. vinosum uses only the polymeric sulfur (sulfur chain) fraction of elemental sulfur and is probably unable to take up and form sulfur globules from cyclo-octasulfur. Furthermore, direct cell-sulfur contact appears to be necessary for uptake of elemental sulfur by Alc. vinosum.

  9. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  10. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  11. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  12. Magnesium carbonate precipitate strengthened aerobic granules.

    PubMed

    Lee, Duu-Jong; Chen, Yu-You

    2015-05-01

    Aerobic granules were precipitated internally with magnesium carbonate to enhance their structural stability under shear. The strengthened granules were tested in continuous-flow reactors for 220 days at organic loadings of 6-39 kg/m(3)/day, hydraulic retention times of 0.44-19 h, and temperatures of 10 or 28°C. The carbonate salt had markedly improved the granule strength without significant changes in granule morphology or microbial communities (with persistent strains Streptomyces sp., Rhizobium sp., Brevundimonas sp., and Nitratireductor sp.), or sacrifice in biological activity for organic degradation. MgCO3 precipitated granules could be used in continuous-flow reactor for wastewater treatment at low cost and with easy processing efforts.

  13. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  14. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  15. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  16. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  17. Effects of Kettlebell Training on Aerobic Capacity.

    PubMed

    Falatic, J Asher; Plato, Peggy A; Holder, Christopher; Finch, Daryl; Han, Kyungmo; Cisar, Craig J

    2015-07-01

    This study examined the effects of a kettlebell training program on aerobic capacity. Seventeen female National Collegiate Athletic Association Division I collegiate soccer players (age: 19.7 ± 1.0 years, height: 166.1 ± 6.4 cm, weight: 64.2 ± 8.2 kg) completed a graded exercise test to determine maximal oxygen consumption (V̇O2max). Participants were assigned to a kettlebell intervention group (KB) (n = 9) or a circuit weight-training (CWT) control group (n = 8). Participants in the KB group completed a kettlebell snatch test to determine individual snatch repetitions. Both groups trained 3 days a week for 4 weeks in addition to their off-season strength and conditioning program. The KB group performed the 15:15 MVO2 protocol (20 minutes of kettlebell snatching with 15 seconds of work and rest intervals). The CWT group performed multiple free-weight and dynamic body-weight exercises as part of a continuous circuit program for 20 minutes. The 15:15 MVO2 protocol significantly increased V̇O2max in the KB group. The average increase was 2.3 ml·kg⁻¹·min⁻¹, or approximately a 6% gain. There was no significant change in V̇O2max in the CWT control group. Thus, the 4-week 15:15 MVO2 kettlebell protocol, using high-intensity kettlebell snatches, significantly improved aerobic capacity in female intercollegiate soccer players and could be used as an alternative mode to maintain or improve cardiovascular conditioning.

  18. Functional microbiology of soda lakes.

    PubMed

    Sorokin, Dimitry Y; Banciu, Horia L; Muyzer, Gerard

    2015-06-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and sulfur cycling, including oxygenic and anoxygenic phototrophs, aerobic chemolithotrophs, fermenting and respiring anaerobes. The main conclusion from this work is that the soda lakes are very different from other high-salt systems in respect to microbial richness and activity. The reason for this difference is determined by the major physico-chemical features of two dominant salts - NaCl in neutral saline systems and sodium carbonates in soda lakes, that are influencing the amount of energy required for osmotic adaptation.

  19. An alternative to the glyoxylate shunt.

    PubMed

    Schink, Bernhard

    2009-09-01

    A cycle remains a cycle only as long as the spokes of the wheel are not stolen. To keep the citric acid cycle going requires anaplerotic reactions such as the glyoxylate shunt to restore the cycle intermediates that are withdrawn for the biosynthesis of cell constituents, e.g. amino acids and haemin precursors. The article by Erb et al. in this issue of Molecular Microbiology documents an alternative path that replenishes four-carbon intermediates during growth on acetate in the absence of the glyoxylate shunt. The reaction sequence forms malate and succinyl-CoA from three acetyl-CoA, one CO(2) and one HCO(3) in a linear pathway. This new pathway was discovered in phototrophic anoxygenic bacteria and in few aerobic bacteria, but it is probably widespread among many metabolic groups of bacteria.

  20. Seasonal changes of microbial communities in two shallow peat bog lakes.

    PubMed

    Lew, Sylwia; Koblížek, Michal; Lew, Marcin; Medová, Hana; Glińska-Lewczuk, Katarzyna; Owsianny, Paweł Michał

    2015-03-01

    Peat bog lakes represent important ecosystems in temperate and boreal zones. We investigated the seasonal dynamics of the microbial community in two small peat bog lakes, Kuźnik Olsowy and Kuźnik Bagienny, located in western Poland. Fluorescence in situ hybridization analyses revealed that the bacterial community was dominated by Proteobacteria and Actinobacteria, in addition to a substantial number of archaea. An infrared epifluorescence analysis demonstrated that aerobic anoxygenic phototrophs (AAPs) constituted a significant fraction of bacterial plankton (1-19%). All the bacterial groups exhibited large seasonal changes whose course differed between the studied lakes. While chlorophyll had its maximum during winter or early summer, AAPs peaked in summer, when the growth of this group was stimulated by higher irradiance and elevated water temperatures.

  1. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  2. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  3. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  4. Effects of a Rebound Exercise Training Program on Aerobic Capacity and Body Composition.

    ERIC Educational Resources Information Center

    Tomassoni, Teresa L.; And Others

    1985-01-01

    This study was designed to determine if aerobic dancing on rebound exercise equipment (minitrampolines) is an effective way to improve aerobic capacity and body composition. Although aerobic capacity improved, percent body fat did not change. Results were similar to those produced by conventional aerobic dance programs of like intensity. (MT)

  5. Issues of Health, Appearance and Physical Activity in Aerobic Classes for Women

    ERIC Educational Resources Information Center

    D'Abundo, Michelle Lee

    2009-01-01

    The purpose of this research was to explore what appearance-focused messages were conveyed by aerobic instructors in aerobic classes for women. This qualitative research was influenced by the concept of wellness and how feminist pedagogy can be applied to promote individuals' well-being in aerobic classes. The practices of five aerobic instructors…

  6. Prediction of Maximum Aerobic Power in Untrained Females

    ERIC Educational Resources Information Center

    Dolgener, Forrest A.

    1978-01-01

    The author presents an equation for predicting maximum aerobic power in untrained females from values of percent body fat, weight, and submaximal values of heart rate, respiratory quotient, and expired gas. (MJB)

  7. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation.

  8. Concomitant aerobic biodegradation of benzene and thiophene

    SciTech Connect

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1998-05-01

    The concomitant aerobic biodegradation of benzene and thiophene was investigated in microcosm experiments using a groundwater enrichment culture. Benzene was biodegraded within 1 d, whereas thiophene could not be biodegraded as the sole source of carbon and energy. Some interesting phenomena were observed when both benzene and thiophene were present. In most cases, removal of thiophene was observed, and the removal occurred concomitantly with the biodegradation of benzene, suggesting that benzene was used as a primary substrate in the cometabolic biodegradation of thiophene. No biodegradation of the two compounds was observed for some combinations of concentrations, suggesting that thiophene could act as an inhibitor to benzene biodegradation. However, this effect could be overcome if more benzene was added to the microcosm. Residual concentrations of benzene and thiophene were observed in some microcosms and the data indicated that the biodegradation of the two compounds stopped when a critical threshold ratio between the concentrations of thiophene and benzene was reached. This ratio varied between 10 and 20. Results from modeling the biodegradation data suggested that thiophene was cometabolized concomitantly with the biodegradation of benzene and that the biodegradation may be described by a modified model based on a traditional model with an inhibition term incorporated.

  9. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  10. Dancing the aerobics ''hearing loss'' choreography

    NASA Astrophysics Data System (ADS)

    Pinto, Beatriz M.; Carvalho, Antonio P. O.; Gallagher, Sergio

    2002-11-01

    This paper presents an overview of gymnasiums' acoustic problems when used for aerobics exercises classes (and similar) with loud noise levels of amplified music. This type of gymnasium is usually a highly reverberant space, which is a consequence of a large volume surrounded by hard surfaces. A sample of five schools in Portugal was chosen for this survey. Noise levels in each room were measured using a precision sound level meter, and analyzed to calculate the standardized daily personal noise exposure levels (LEP,d). LEP,d values from 79 to 91 dB(A) were found to be typical values in this type of room, inducing a health risk for its occupants. The reverberation time (RT) values were also measured and compared with some European legal requirements (Portugal, France, and Belgium) for nearly similar situations. RT values (1 kHz) from 0.9 s to 2.8 s were found. These reverberation time values clearly differentiate between good and acoustically inadequate rooms. Some noise level and RT limits for this type of environment are given and suggestions for the improvement of the acoustical environment are shown. Significant reductions in reverberation time values and noise levels can be obtained by simple measures.

  11. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  12. Aerobic nitroreduction of dehydrochloramphenicol by bone marrow.

    PubMed

    Isildar, M; Abou-Khalil, W H; Jimenez, J J; Abou-Khalil, S; Yunis, A A

    1988-06-30

    It has been previously demonstrated that dehydrochloramphenicol (DH-CAP), a bacterial metabolite of chloramphenicol, induces DNA single strand breaks in intact cells and is profoundly more cytotoxic than chloramphenicol (CAP). In view of previous observations relating genotoxicity of nitrocompounds to their nitroreduction by the target tissue, we studied the nitroreduction of DH-CAP by human and rabbit bone marrow. Nitroreduction by tissue homogenates was determined by the Bratton Marshall colorimetric assay and by high-performance liquid chromatography (HPLC). Nitroreduction of DH-CAP by bone marrow cell homogenates was observed under aerobic conditions and the reduction was both cell concentration- and time-dependent. The formation of the amino product aminodehydrochloramphenicol was confirmed by HPLC. Reduction by other tissues including human liver, Raji cells, and HL-60 tumors was also observed. These results suggest that genotoxicity of DH-CAP may be related to its nitroreduction by the target tissue with in situ production of toxic intermediates. Together with previous studies, these observations lend support to the thesis that the p-NO2 group may be the structural feature underlying aplastic anemia from CAP.

  13. The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners

    PubMed Central

    GILLEN, ZACHARY M.; WYATT, FRANK B.; WINCHESTER, JASON B.; SMITH, DALTON A.; GHETIA, VIDHI

    2016-01-01

    Research has indicated that combined aerobic and anaerobic training (concurrent training) may improve aerobic performance greater than aerobic training alone. The purpose of this investigation was to establish any associations between aerobic and anaerobic performance. Eleven participants (n = 11, age = 34.1 ± 13 years, VO2max = 58.4 ± 7.8) volunteered for this study. Participants were asked for endurance training experience (4.7 ± 3.7 years) and resistance training experience (4.1 ± 4.6 years). To meet training status, participants were to have a VO2max in the 80th percentile as per ACSM guidelines. The Bruce treadmill test was used to measure aerobic performance. In order to measure anaerobic performance, several tests were completed utilizing a force platform. A Pearson Product R Correlation Coefficient was calculated to determine correlations between variables. The results show significant correlation between VO2max and RFD (r = 0.68). Further analyses utilizing Cohen’s effect size indicated a strong association between VO2max and peak force, as well as running efficiency and peak power, relative peak power, and power endurance. These results indicate an existing possibility that anaerobic performance measures such as RFD may have a positive relationship with aerobic performance measures such as VO2max. Therefore, it may be beneficial to integrate specific training components which focus on improving RFD as a method of improving running performance. PMID:27990224

  14. Aerobic Exercise Preserves Olfaction Function in Individuals with Parkinson's Disease

    PubMed Central

    Rosenfeldt, Anson B.; Dey, Tanujit

    2016-01-01

    Introduction. Based on anecdotal reports of improved olfaction following aerobic exercise, the aim of this study was to evaluate the effects of an 8-week aerobic exercise program on olfaction function in individuals with Parkinson's disease (PD). Methods. Thirty-eight participants with idiopathic PD were randomized to either an aerobic exercise group (n = 23) or a nonexercise control group (n = 15). The aerobic exercise group completed a 60-minute cycling session three times per week for eight weeks while the nonexercise control group received no intervention. All participants completed the University of Pennsylvania Smell Identification Test (UPSIT) at baseline, end of treatment, and a four-week follow up. Results. Change in UPSIT scores between the exercise and nonexercise groups from baseline to EOT (p = 0.01) and from baseline to EOT+4 (p = 0.02) favored the aerobic exercise group. Individuals in the nonexercise group had worsening olfaction function over time, while the exercise group was spared from decline. Discussion. The difference in UPSIT scores suggested that aerobic exercise may be altering central nervous system pathways that regulate the physiologic or cognitive processes controlling olfaction in individuals with PD. While these results provide promising preliminary evidence that exercise may modify the disease process, further systematic evaluation is necessary. PMID:27999706

  15. Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke

    PubMed Central

    Rosenfeldt, Anson B.; Dey, Tanujit; Alberts, Jay L.

    2017-01-01

    OBJECTIVE. To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. METHOD. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. RESULTS. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice–only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. CONCLUSION. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. PMID:28218596

  16. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  17. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  18. Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation.

    PubMed

    Levy, Amalie T; Lee, Kelvin H; Hanson, Thomas E

    2016-11-01

    Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S(0)), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S(0) > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times.

  19. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation.

    PubMed

    Xie, Youping; Ho, Shih-Hsin; Chen, Ching-Nen Nathan; Chen, Chun-Yen; Ng, I-Son; Jing, Ke-Ju; Chang, Jo-Shu; Lu, Yinghua

    2013-09-01

    Four indigenous thermo-tolerant Desmodesmus sp. strains were examined for their ability to produce lutein. Among them, Desmodesmus sp. F51 was the best strain for this purpose. The medium composition, nitrate concentration and light intensity were manipulated to improve the phototrophic growth and lutein production of Desmodesmus sp. F51. It was found that a nitrogen-sufficient condition was required for lutein accumulation, while a high light intensity enhanced cell growth but caused a decrease in the lutein content. The best cell growth and lutein production occurred when the light intensity and initial nitrate concentration were 600 μmol/m(2)/s and 8.8 mM, respectively. The fed-batch cultivation strategy was shown to further improve lutein production. The highest lutein productivity (3.56±0.10 mg/L/d) and content (5.05±0.20 mg/g) were obtained when pulse-feeding of 2.2 mM nitrate was employed. This study demonstrated the potential of using Desmodesmus sp. F51 as a lutein producer in practical applications.

  20. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  1. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  2. Haemoglobin, blood volume, cardiac function, and aerobic power.

    PubMed

    Gledhill, N; Warburton, D; Jamnik, V

    1999-02-01

    Alterations in [Hb], which are mediated through changes in arterial oxygen content, and alterations in BV, which are mediated through changes in cardiac output (Q), have a significant effect on both VO2max and aerobic performance. If BV is held constant, a decrease in [Hb] (anaemia) causes a decrease in VO2max and aerobic performance, while an increase in [Hb] (blood doping) causes an increase in VO2max and aerobic performance. If [Hb] is held constant, an increase in BV can cause and increase in both VO2max and aerobic performance, while a decrease in BV can cause a decrease in VO2max and aerobic performance. In addition, an increase in BV can compensate for moderate reductions in [Hb] through increase in Q, allowing VO2max to remain unchanged or even increase. Also, a large portion of the difference in the enhanced cardiovascular function of endurance athletes is due to their high BV and the resultant enhancement of diastolic function. Hence, optimizing both [Hb] and BV is a very important consideration for endurance performance.

  3. Gender difference in anaerobic capacity: role of aerobic contribution.

    PubMed

    Hill, D W; Smith, J C

    1993-03-01

    The purpose of this study was to evaluate effects of gender on anaerobic and aerobic contributions to high-intensity exercise. A group of 38 subjects (22 women, 16 men) performed modified Wingate tests against resistances of 0.086 kg kg-1 body mass (0.844 N kg-1) for women and 0.095 kg kg-1 body mass (0.932 N kg-1) for men. The aerobic contribution to total work performed was determined from breath-by-breath analyses of expired gases during each test. Total work in 30 s was 30% lower (Student's t test; P < 0.01) in women than men (211 +/- 5 J kg-1 versus 299 +/- 14 J kg-1). Aerobic contribution was only 7% lower (P = 0.12) in women than men (53 +/- 1 J kg-1 versus 57 +/- 2 J kg-1). The anaerobic component of the work performed, determined by subtraction of the aerobic component from total work in 30 s, was 35% lower (P < 0.01) in women than men (158 +/- 5 J kg-1 versus 242 +/- 15 J kg-1). It is concluded that, because women provide a relatively higher (P < 0.01) portion of the energy for a 30-s test aerobically than men (25% versus 20%), total work during a Wingate test actually underestimates the gender difference in anaerobic capacity between women and men.

  4. Mood alterations in mindful versus aerobic exercise modes.

    PubMed

    Netz, Yael; Lidor, Ronnie

    2003-09-01

    The results of most recent studies have generally indicated an improvement in mood after participation in aerobic exercise. However, only a few researchers have compared mindful modes of exercise with aerobic exercise to examine the effect of 1 single session of exercise on mood. In the present study, the authors assessed state anxiety, depressive mood, and subjective well-being prior to and following 1 class of 1 of 4 exercise modes: yoga, Feldenkrais (awareness through movement), aerobic dance, and swimming; a computer class served as a control. Participants were 147 female general curriculum and physical education teachers (mean age = 40.15, SD = 0.2) voluntarily enrolled in a 1-year enrichment program at a physical education college. Analyses of variance for repeated measures revealed mood improvement following Feldenkrais, swimming, and yoga but not following aerobic dance and computer lessons. Mindful low-exertion activities as well as aerobic activities enhanced mood in 1 single session of exercise. The authors suggest that more studies assessing the mood-enhancing benefits of mindful activities such as Feldenkrais and yoga are needed.

  5. Strength and aerobic training in overweight females in Gdansk, Poland

    PubMed Central

    Sawczyn, Stanisław; Mishchenko, Viktor; Moska, Waldemar; Sawczyn, Michał; Jagiełło, Marina; Kuehne, Tatiana; Nowak, Robert; Cięszczyk, Paweł

    2015-01-01

    We compared the effects of 16-week-training on rest metabolic rate, aerobic power, and body fat, and the post-exercise effects upon rest oxygen uptake and respiratory exchange ratio in overweight middle-aged females. Twenty nine overweight women (BMI 29.9 ± 1.2 kg*m−2) participated in training (3 days a week). The subjects were divided onto groups of aerobic (AT) and strength (ST) training. The results showed that the total body mass decrease and VO2 max increase did not differ in both groups. Decrease in waist circumference after 16 weeks was higher in the ST group. In the ST group fat-free mass increased during the first 8 weeks. Rest metabolic rate was increased significantly at 16th week compared to initial value in ST group only. Significant increase in post-exercise resting VO2 and respiratory exchange ratio at 12 and 36 h was observed after the strength training session only. Increase in rest metabolic rate and post-exercise rest energy expenditure occurred after strength training but not after aerobic training despite the similar increase in aerobic power. The effect of 8–16 weeks of strength training on body mass decrease was higher in comparison to aerobic training. PMID:28352690

  6. Effects of 12 weeks of aerobic training on autonomic modulation, mucociliary clearance, and aerobic parameters in patients with COPD

    PubMed Central

    Leite, Marceli Rocha; Ramos, Ercy Mara Cipulo; Kalva-Filho, Carlos Augusto; Freire, Ana Paula Coelho Figueira; de Alencar Silva, Bruna Spolador; Nicolino, Juliana; de Toledo-Arruda, Alessandra Choqueta; Papoti, Marcelo; Vanderlei, Luiz Carlos Marques; Ramos, Dionei

    2015-01-01

    Introduction Patients with chronic obstructive pulmonary disease (COPD) exhibit aerobic function, autonomic nervous system, and mucociliary clearance alterations. These parameters can be attenuated by aerobic training, which can be applied with continuous or interval efforts. However, the possible effects of aerobic training, using progressively both continuous and interval sessions (ie, linear periodization), require further investigation. Aim To analyze the effects of 12-week aerobic training using continuous and interval sessions on autonomic modulation, mucociliary clearance, and aerobic function in patients with COPD. Methods Sixteen patients with COPD were divided into an aerobic (continuous and interval) training group (AT) (n=10) and a control group (CG) (n=6). An incremental test (initial speed of 2.0 km·h−1, constant slope of 3%, and increments of 0.5 km·h−1 every 2 minutes) was performed. The training group underwent training for 4 weeks at 60% of the peak velocity reached in the incremental test (vVO2peak) (50 minutes of continuous effort), followed by 4 weeks of sessions at 75% of vVO2peak (30 minutes of continuous effort), and 4 weeks of interval training (5×3-minute effort at vVO2peak, separated by 1 minute of passive recovery). Intensities were adjusted through an incremental test performed at the end of each period. Results The AT presented an increase in the high frequency index (ms2) (P=0.04), peak oxygen uptake (VO2peak) (P=0.01), vVO2peak (P=0.04), and anaerobic threshold (P=0.02). No significant changes were observed in the CG (P>0.21) group. Neither of the groups presented changes in mucociliary clearance after 12 weeks (AT: P=0.94 and CG: P=0.69). Conclusion Twelve weeks of aerobic training (continuous and interval sessions) positively influenced the autonomic modulation and aerobic parameters in patients with COPD. However, mucociliary clearance was not affected by aerobic training. PMID:26648712

  7. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  8. Anaerobic and aerobic treatment of chlorinated, aliphatic compounds

    SciTech Connect

    Long, J.L.; Stensel, H.D.; Ferguson, J.F.; Strand, S.E.; Ongerth, J.E.

    1993-01-01

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). The anaerobic culture degraded seven of the feed CACs. The specialized aerobic cultures degraded all but three of the highly chlorinated CACs. The sequential system outperformed either of the other systems alone by degrading 10 of the feed CACs: chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,1,1-trichloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, perchloroethylene, and 1,2,3-trichloropropane, plus the anaerobic metabolites: dichloromethane and cis-1,2-dichloroethylene.

  9. High-intensity aerobic interval exercise in chronic heart failure.

    PubMed

    Meyer, Philippe; Gayda, Mathieu; Juneau, Martin; Nigam, Anil

    2013-06-01

    Aerobic exercise training is strongly recommended in patients with heart failure (HF) and reduced left ventricular ejection fraction (LVEF) to improve symptoms and quality of life. Moderate-intensity aerobic continuous exercise (MICE) is the best established training modality in HF patients. For about a decade, however, another training modality, high-intensity aerobic interval exercise (HIIE), has aroused considerable interest in cardiac rehabilitation. Originally used by athletes, HIIE consists of repeated bouts of high-intensity exercise interspersed with recovery periods. The rationale for its use is to increase exercise time spent in high-intensity zones, thereby increasing the training stimulus. Several studies have demonstrated that HIIE is more effective than MICE, notably for improving exercise capacity in patients with HF. The aim of the present review is to describe the general principles of HIIE prescription, the acute physiological effects, the longer-term training effects, and finally the future perspectives of HIIE in patients with HF.

  10. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    PubMed

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.

  11. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  12. Vocal parameters of aerobic instructors with and without voice problems.

    PubMed

    Wolfe, Virginia; Long, Joanne; Youngblood, Heather Conner; Williford, Henry; Olson, Michelle Scharff

    2002-03-01

    Aerobic instructors frequently experience vocal fatigue and are at risk for the development of vocal fold pathology. Six female aerobic instructors, three with self-reported voice problems and three without, served as subjects. Measures of vocal function (perturbation and EGG) were obtained before and after a 30-minute exercise session. Results showed that the group with self-reported voice problems had greater amounts of jitter, lower harmonic-to-noise ratios, and less periodicity in sustained vowels overall, but no significant differences in measures of perturbation and EGG were found before and immediately after instruction. Measures of vocal parameters showed that subjects with self-reported voice problems projected with relatively greater vocal intensity and phonated for a greater percentage of time across beginning, middle, and ending periods of aerobic instruction than subjects with no reported voice problems.

  13. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration

    PubMed Central

    Lopez, Christopher A.; Miller, Brittany M.; Rivera-Chávez, Fabian; Velazquez, Eric; Byndloss, Mariana X.; Chávez-Arroyo, Alfredo; Lokken, Kristen L.; Tsolis, Renée M.; Winter, Sebastian E.; Bäumler, Andreas J.

    2016-01-01

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration. PMID:27634526

  14. General review of maximal aerobic velocity measurement at laboratory. Proposition of a new simplified protocol for maximal aerobic velocity assessment.

    PubMed

    Berthon, P; Fellmann, N

    2002-09-01

    The maximal aerobic velocity concept developed since eighties is considered as either the minimal velocity which elicits the maximal aerobic consumption or as the "velocity associated to maximal oxygen consumption". Different methods for measuring maximal aerobic velocity on treadmill in laboratory conditions have been elaborated, but all these specific protocols measure V(amax) either during a maximal oxygen consumption test or with an association of such a test. An inaccurate method presents a certain number of problems in the subsequent use of the results, for example in the elaboration of training programs, in the study of repeatability or in the determination of individual limit time. This study analyzes 14 different methods to understand their interests and limits in view to propose a general methodology for measuring V(amax). In brief, the test should be progressive and maximal without any rest period and of 17 to 20 min total duration. It should begin with a five min warm-up at 60-70% of the maximal aerobic power of the subjects. The beginning of the trial should be fixed so that four or five steps have to be run. The duration of the steps should be three min with a 1% slope and an increasing speed of 1.5 km x h(-1) until complete exhaustion. The last steps could be reduced at two min for a 1 km x h(-1) increment. The maximal aerobic velocity is adjusted in relation to duration of the last step.

  15. Comparing Acute Effects of a Nano-TiO2 Pigment on Cosmopolitan Freshwater Phototrophic Microbes Using High-Throughput Screening

    PubMed Central

    Binh, Chu Thi Thanh; Peterson, Christopher G.; Tong, Tiezheng; Gray, Kimberly A.; Gaillard, Jean-François; Kelly, John J.

    2015-01-01

    Production of titanium-dioxide nanomaterials (nano-TiO2) is increasing, leading to potential risks associated with unintended release of these materials into aquatic ecosystems. We investigated the acute effects of nano-TiO2 on metabolic activity and viability of algae and cyanobacteria using high-throughput screening. The responses of three diatoms (Surirella angusta, Cocconeis placentula, Achnanthidium lanceolatum), one green alga (Scenedesmus quadricauda), and three cyanobacteria (Microcystis aeruginosa, Gloeocapsa sp., Synechococcus cedrorum) to short-term exposure (15 to 60 min) to a common nano-TiO2 pigment (PW6; average crystallite size 81.5 nm) with simulated solar illumination were assessed. Five concentrations of nano-TiO2 (0.5, 2.5, 5, 10, and 25 mg L-1) were tested and a fluorescent reporter (fluorescein diacetate) was used to assess metabolic activity. Algae were sensitive to nano-TiO2, with all showing decreased metabolic activity after 30-min exposure to the lowest tested concentration. Microscopic observation of algae revealed increased abundance of dead cells with nano-TiO2 exposure. Cyanobacteria were less sensitive to nano-TiO2 than algae, with Gloeocapsa showing no significant decrease in activity with nano-TiO2 exposure and Synechococcus showing an increase in activity. These results suggest that nanomaterial contamination has the potential to alter the distribution of phototrophic microbial taxa within freshwater ecosystems. The higher resistance of cyanobacteria could have significant implications as cyanobacteria represent a less nutritious food source for higher trophic levels and some cyanobacteria can produce toxins and contribute to harmful algal blooms. PMID:25923116

  16. Assessment of Aerobic Exercise Adverse Effects during COPD Exacerbation Hospitalization

    PubMed Central

    Mesquita, Carolina Bonfanti; Caram, Laura M. O.; Dourado, Victor Zuniga; de Godoy, Irma; Tanni, Suzana Erico

    2017-01-01

    Introduction. Aerobic exercise performed after hospital discharge for exacerbated COPD patients is already recommended to improve respiratory and skeletal muscle strength, increase tolerance to activity, and reduce the sensation of dyspnea. Previous studies have shown that anaerobic activity can clinically benefit patients hospitalized with exacerbated COPD. However, there is little information on the feasibility and safety of aerobic physical activity performed by patients with exacerbated COPD during hospitalization. Objective. To evaluate the effects of aerobic exercise on vital signs in hospitalized patients with exacerbated COPD. Patients and Methods. Eleven COPD patients (63% female, FEV1: 34.2 ± 13.9% and age: 65 ± 11 years) agreed to participate. Aerobic exercise was initiated 72 hours after admission on a treadmill; speed was obtained from the distance covered in a 6-minute walk test (6MWT). Vital signs were assessed before and after exercise. Results. During the activity systolic blood pressure increased from 125.2 ± 13.6 to 135.8 ± 15.0 mmHg (p = 0.004) and respiratory rate from 20.9 ± 4.4 to 24.2 ± 4.5 rpm (p = 0.008) and pulse oximetry (SpO2) decreased from 93.8 ± 2.3 to 88.5 ± 5.7% (p < 0.001). Aerobic activity was considered intense, heart rate ranged from 99.2 ± 11.5 to 119.1 ± 11.1 bpm at the end of exercise (p = 0.092), and patients reached on average 76% of maximum heart rate. Conclusion. Aerobic exercise conducted after 72 hours of hospitalization in patients with exacerbated COPD appears to be safe. PMID:28265180

  17. Chemical characterization of some aerobic liquids in CELSS

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1993-01-01

    Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.

  18. Effect of aerobic training and aerobic and resistance training on the inflammatory status of hypertensive older adults.

    PubMed

    Lima, Leandra G; Bonardi, José M T; Campos, Giulliard O; Bertani, Rodrigo F; Scher, Luria M L; Louzada-Junior, Paulo; Moriguti, Júlio C; Ferriolli, Eduardo; Lima, Nereida K C

    2015-08-01

    There is a relationship between high levels of inflammatory markers and low adhesion to the practice of physical activity in the older population. The objective of the present study was to compare the effect of two types of exercise programs, i.e., aerobic training and aerobic plus resistance training on the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) of elderly hypertensive subjects. Hypertensive older volunteers in use of antihypertensive drugs were randomized to three groups: aerobic group (AG), resistance and aerobic group (RAG) and control group (CG). Training lasted 10 weeks, with sessions held three times a week. Blood samples were collected before training and 24 h after completion of the 30 sessions for the determination of serum IL-6 and TNF-α levels. Body mass index was obtained before and after 10 weeks. After intervention, BMI values were lower in AG and RAG compared to CG (p < 0.001), IL-6 was reduced in AG compared to CG (p = 0.04), and TNF-α levels were lower only in RAG compared to CG (p = 0.01). Concluding, both types of training were effective in reducing BMI values in hypertensive older subjects. Aerobic exercise produced the reduction of plasma IL-6 levels. However, the combination of aerobic and resistance exercise, which would be more indicated for the prevention of loss of functionality with aging, showed lower TNF-α mediator after training than control group and a greater fall of TNF-α levels associated to higher BMI reduction.

  19. Helping Adults to Stay Physically Fit: Preventing Relapse Following Aerobic Exercise Training.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; And Others

    1984-01-01

    Long-term adherence to an aerobic exercise regime is a major problem among exercise program graduates. This article discusses the steps involved in developing relapse prevention treatment strategies for aerobic exercise programs. (JMK)

  20. [Population development characteristics of rice crop cultivated on aerobic soil with mulching].

    PubMed

    Sheng, Haijun; Shen, Qirong; Feng, Ke

    2004-01-01

    Field experiments were carried out to study the population development characteristics of rice crop cultivated both on aerobic and waterlogged soil conditions. The results showed that the whole growth duration of rice growing on aerobic soil was one week longer than that on waterlogged soil. Shorter and narrower leaves and smaller LAI of rice population were found on aerobic soil than on waterlogged soil, which resulted in a decreased photosynthesis, smaller amount and lighter weight of rice grains on aerobic soil, compared with those on waterlogged soil. Among the aerobic treatments, more tillers, lower percentage of filled grains and shorter duration of grain forming were found on soils covered with plastic film than on soils covered with semi-decomposed straw or without mulching. The rice grain yield was decreased in the order of waterlogged soil > aerobic soil covered with plastic film > aerobic soil covered with semi-decomposed straw > aerobic soil without mulching.

  1. Ergolytic/ergogenic effects of creatine on aerobic power.

    PubMed

    Smith, A E; Fukuda, D H; Ryan, E D; Kendall, K L; Cramer, J T; Stout, J

    2011-12-01

    This study evaluated the effects of creatine (Cr) loading and sex differences on aerobic running performance. 27 men (mean±SD; age: 22.2±3.1 years, ht: 179.5±8.7 cm, wt: 78.0±9.8 kg) and 28 women (age: 21.2±2.1 years, ht: 166.0±5.8 cm, wt: 63.4±8.9 kg) were randomly assigned to either creatine (Cr, di-creatine citrate; n=27) or a placebo (PL; n=28) group, ingesting 1 packet 4 times daily (total of 20 g/day) for 5 days. Aerobic power (maximal oxygen consumption: VO2max) was assessed before and after supplementation using open circuit spirometry (Parvo-Medics) during graded exercise tests on a treadmill. 4 high-speed runs to exhaustion were conducted at 110, 105, 100, and 90% of peak velocity to determine critical velocity (CV). Distances achieved were plotted over times-to-exhaustion and linear regression was used to determine the slopes (critical velocity, CV) assessing aerobic performance. The results indicated that Cr loading did not positively or negatively influence VO2max, CV, time to exhaustion or body mass (p>0.05). These results suggest Cr supplementation may be used in aerobic running activities without detriments to performance.

  2. Thirty-Three Years of Aerobic Exercise Adherence.

    ERIC Educational Resources Information Center

    Kasch, Frederick W.

    2001-01-01

    Followed 15 middle-aged men for 25-33 years while they participated in an aerobic exercise program. Adherence in the sample was 100 percent. Possible explanations for the adherence include program leadership, peer support, written evaluations and progress reports, emphasis on health, early and continued interest in sport and exercise, recognition…

  3. Aerobic Exercise Equipment Preferences among Older Adults: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Looney, Marilyn A.; Rimmer, James H.

    2003-01-01

    Developed an instrument to measure the aerobic exercise equipment preference of a frail older population and applied many-facet Rasch analysis to study construct validity and equipment preferences. Results for 16 participants show the usefulness of many-facet Rasch analysis in guiding instrument revision. (SLD)

  4. Aerobic and anaerobic cecal bacterial flora of commercially processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in the bacterial flora of aerobic and anaerobic cultures of broiler ceca collected from a commercial poultry processing facility were determined. Bacterial isolates from cecal cultures were selected based on the ability of the bacteria to grow in media supplemented with lactate and succ...

  5. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy

    PubMed Central

    Schadler, Keri L.; Thomas, Nicholas J.; Galie, Peter A.; Bhang, Dong Ha; Roby, Kerry C.; Addai, Prince; Till, Jacob E.; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S.; Ryeom, Sandra

    2016-01-01

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant. PMID:27589843

  6. Group Aquatic Aerobic Exercise for Children with Disabilities

    ERIC Educational Resources Information Center

    Fragala-Pinkham, Maria; Haley, Stephen M.; O'Neill, Margaret E.

    2008-01-01

    The effectiveness and safety of a group aquatic aerobic exercise program on cardiorespiratory endurance for children with disabilities was examined using an A-B study design. Sixteen children (11 males, five females) age range 6 to 11 years (mean age 9y 7mo [SD 1y 4mo]) participated in this twice-per-week program lasting 14 weeks. The children's …

  7. Aerobic Capacity in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Verschuren, Olaf; Takken, Tim

    2010-01-01

    This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…

  8. Is Low-Impact Aerobic Dance an Effective Cardiovascular Workout?

    ERIC Educational Resources Information Center

    Williford, Henry N.; And Others

    1989-01-01

    Presents results of an investigation comparing energy cost and cardiovascular responses of aerobic dance routines performed at different intensity levels in varying amounts of energy expenditure. For low-impact dance to meet minimum guidelines suggested by the American College of Sports Medicine, it should be performed at high intensity. (SM)

  9. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  10. Aerobic Capacities of Early College High School Students

    ERIC Educational Resources Information Center

    Loflin, Jerry W.

    2014-01-01

    The Early College High School Initiative (ECHSI) was introduced in 2002. Since 2002, limited data, especially student physical activity data, have been published pertaining to the ECHSI. The purpose of this study was to examine the aerobic capacities of early college students and compare them to state and national averages. Early college students…

  11. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  12. Aerobic response to exercise of the fastest land crab.

    PubMed

    Full, R J; Herreid, C F

    1983-04-01

    To view the aerobic response to exercise, the ghost crab Ocypode guadichaudii was run in a treadmill respirometer at three velocities (0.13, 0.19, and 0.28 km/h) while oxygen consumption (VO2) was monitored. A steady-state VO2 that increased linearly with velocity was attained. VO2 transient periods at the beginning and end of exercise were extremely rapid with half times from 50 to 150 s. The magnitude of oxygen deficit and debt were small and both showed increases with an increase in velocity. Oxygen debt was measured at each velocity after 4-, 10-, and 20-min exercise bouts. No change in the magnitude of oxygen debt was observed with respect to exercise duration. Maximal VO2 was 11.9 times the average resting VO2. Oxygen uptake kinetics have shown only very sluggish and reduced rates in five other more sedentary crab species previously tested. The aerobic response pattern observed in the present study is more comparable to that of exercising mammals and highly aerobic ectothermic vertebrates. This suggests that the ghost crab meets the energy demand of sustained exercise by aerobic ATP production in contrast to many other crab species.

  13. AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA

    EPA Science Inventory

    MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...

  14. Relative importance of aerobic versus resistance training for healthy aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review will focus on the importance of aerobic and resistance modes of physical activity for healthy aging as supported by findings in 2007. In line with public health recommendations, several studies in 2007 employed an exercise paradigm that combined both modes of physical activity. While a...

  15. Aerobic Capacity and Anaerobic Power Levels of the University Students

    ERIC Educational Resources Information Center

    Taskin, Cengiz

    2016-01-01

    The aim of study was to analyze aerobic capacity and anaerobic power levels of the university students. Total forty university students who is department physical education and department business (age means; 21.15±1.46 years for male and age means; 20.55±1.79 years for female in department physical education), volunteered to participate in this…

  16. Aerobic Fitness for the Severely and Profoundly Mentally Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    The booklet discusses the aerobic fitness capacities of severely/profoundly retarded students and discusses approaches for improving their fitness. An initial section describes a method for determining the student's present fitness level on the basis of computations of height, weight, blood pressure, resting pulse, and Barach Index and Crampton…

  17. Waiting to inhale: HIF-1 modulates aerobic respiration.

    PubMed

    Boutin, Adam T; Johnson, Randall S

    2007-04-06

    The hypoxia-inducible factor HIF-1 is known to promote anaerobic respiration during low oxygen conditions (hypoxia). In this issue, Fukuda et al. (2007) expand the range of HIF-1's functions by showing that it modulates aerobic respiration as well.

  18. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  19. Teaching Aerobic Cell Respiration Using the 5Es

    ERIC Educational Resources Information Center

    Patro, Edward T.

    2008-01-01

    The 5E teaching model provides a five step method for teaching science. While the sequence of the model is strictly linear, it does provide opportunities for the teacher to "revisit" prior learning before moving on. The 5E method is described as it relates to the teaching of aerobic cell respiration.

  20. Identification of serum analytes and metabolites associated with aerobic capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies aimed at identifying serum markers of cellular metabolism (biomarkers) that are associated at baseline with aerobic capacity (V02 max) in young, healthy individuals have yet to be reported. Therefore, the goal of the present study was to use the standard chemistry screen and untargeted mass ...

  1. The medically important aerobic actinomycetes: epidemiology and microbiology.

    PubMed Central

    McNeil, M M; Brown, J M

    1994-01-01

    The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes. Images PMID:7923055

  2. In situ aerobic cometabolism of chlorinated solvents: a review.

    PubMed

    Frascari, Dario; Zanaroli, Giulio; Danko, Anthony S

    2015-01-01

    The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.

  3. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  4. Measurement Agreement between Estimates of Aerobic Fitness in Youth: The Impact of Body Mass Index

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Welk, Gregory J.; Laurson, Kelly R.; Brown, Dale D.

    2014-01-01

    Purpose: The purpose of this study was to examine the impact of body mass index (BMI) on the agreement between aerobic capacity estimates from different Progressive Aerobic Cardiorespiratory Endurance Run (PACER) equations and the Mile Run Test. Method: The agreement between 2 different tests of aerobic capacity was examined on a large data set…

  5. Effects of dominant somatotype on aerobic capacity trainability

    PubMed Central

    Chaouachi, M; Chaouachi, A; Chamari, K; Chtara, M; Feki, Y; Amri, M; Trudeau, F

    2005-01-01

    Purpose: This study examined the association between dominant somatotype and the effect on aerobic capacity variables of individualised aerobic interval training. Methods: Forty one white North African subjects (age 21.4±1.3 years; V·o2max = 52.8±5.7 ml kg–1 min–1) performed three exercise tests 1 week apart (i) an incremental test on a cycle ergometer to determine V·o2max and V·o2 at the second ventilatory threshold (VT2); (ii) a VAM-EVAL track test to determine maximal aerobic speed (vV·o2max); and (iii) an exhaustive constant velocity test to determine time limit performed at 100% vV·o2max (tlim100). Subjects were divided into four somatometric groups: endomorphs-mesomorphs (Endo-meso; n = 9), mesomorphs (Meso; n = 11), mesomorphs-ectomorphs (Meso-ecto; n = 12), and ectomorphs (Ecto; n = 9). Subjects followed a 12 week training program (two sessions/week). Each endurance training session consisted of the maximal number of successive fractions for each subject. Each fraction consisted of one period of exercise at 100% of vV·o2max and one of active recovery at 60% of vV·o2max. The duration of each period was equal to half the individual tlim100 duration (153.6±39.7 s). After the training program, all subjects were re-evaluated for comparison with pre-test results. Results: Pre- and post-training data were grouped by dominant somatotype. Two way ANOVA revealed significant somatotype-aerobic training interaction effects (p<0.001) for improvements in vV·o2max, V·o2max expressed classically and according to allometric scaling, and V·o2 at VT2. There were significant differences among groups post-training: the Meso-ecto and the Meso groups showed the greatest improvements in aerobic capacity. Conclusion: The significant somatotype-aerobic training interaction suggests different trainability with intermittent and individualised aerobic training according to somatotype. PMID:16306506

  6. Aerobic Development of Elite Youth Ice Hockey Players.

    PubMed

    Leiter, Jeff R; Cordingley, Dean M; MacDonald, Peter B

    2015-11-01

    Ice hockey is a physiologically complex sport requiring aerobic and anaerobic energy metabolism. College and professional teams often test aerobic fitness; however, there is a paucity of information regarding aerobic fitness of elite youth players. Without this knowledge, training of youth athletes to meet the standards of older age groups and higher levels of hockey may be random, inefficient, and or effective. Therefore, the purpose of this study was to determine the aerobic fitness of elite youth hockey players. A retrospective database review was performed for 200 male AAA hockey players between the ages of 13 and 17 (age, 14.4 ± 1.2 years; height, 174.3 ± 8.5 cm; body mass, 67.2 ± 11.5 kg; body fat, 9.8 ± 3.5%) before the 2012-13 season. All subjects performed a graded exercise test on a cycle ergometer, whereas expired air was collected by either a Parvo Medics TrueOne 2400 or a CareFusion Oxycon Mobile metabolic cart to determine maximal oxygen consumption (V[Combining Dot Above]O2max). Body mass, absolute V[Combining Dot Above]O2max, and the power output achieved during the last completed stage increased in successive age groups from age 13 to 15 years (p ≤ 0.05). Ventilatory threshold (VT) expressed as a percentage of V[Combining Dot Above]O2max and the heart rate (HR) at which VT occurred decreased between the ages of 13 and 14 years (p ≤ 0.05), whereas the V[Combining Dot Above]O2 at which VT occurred increased from the age of 14-15 years. There were no changes in relative V[Combining Dot Above]O2max or HRmax between any successive age groups. The aerobic fitness levels of elite youth ice hockey players increased as players age and mature physically and physiologically. However, aerobic fitness increased to a lesser extent at older ages. This information has the potential to influence off-season training and maximize the aerobic fitness of elite amateur hockey players, so that these players can meet standards set by advanced elite age groups.

  7. Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial

    PubMed Central

    Van Sciver, Angela; Mahnken, Jonathan D.; Honea, Robyn A.; Brooks, William M.; Billinger, Sandra A.; Swerdlow, Russell H.; Burns, Jeffrey M.

    2017-01-01

    Background There is increasing interest in the role of physical exercise as a therapeutic strategy for individuals with Alzheimer’s disease (AD). We assessed the effect of 26 weeks (6 months) of a supervised aerobic exercise program on memory, executive function, functional ability and depression in early AD. Methods and findings This study was a 26-week randomized controlled trial comparing the effects of 150 minutes per week of aerobic exercise vs. non-aerobic stretching and toning control intervention in individuals with early AD. A total of 76 well-characterized older adults with probable AD (mean age 72.9 [7.7]) were enrolled and 68 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. Neuropsychological tests and surveys were conducted at baseline,13, and 26 weeks to assess memory and executive function composite scores, functional ability (Disability Assessment for Dementia), and depressive symptoms (Cornell Scale for Depression in Dementia). Cardiorespiratory fitness testing and brain MRI was performed at baseline and 26 weeks. Aerobic exercise was associated with a modest gain in functional ability (Disability Assessment for Dementia) compared to individuals in the ST group (X2 = 8.2, p = 0.02). There was no clear effect of intervention on other primary outcome measures of Memory, Executive Function, or depressive symptoms. However, secondary analyses revealed that change in cardiorespiratory fitness was positively correlated with change in memory performance and bilateral hippocampal volume. Conclusions Aerobic exercise in early AD is associated with benefits in functional ability. Exercise-related gains in cardiorespiratory fitness were associated with improved memory performance and reduced hippocampal atrophy, suggesting cardiorespiratory fitness gains may be important in driving brain benefits. Trial registration ClinicalTrials.gov NCT01128361 PMID:28187125

  8. Control of aerobic glycolysis in the brain in vitro.

    PubMed

    Benjamin, A M; Verjee, Z H

    1980-09-01

    Protoveratrine-(5 microM) stimulated aerobic glycolysis of incubated rat brain cortex slices that accompanies the enhanced neuronal influx of Na+ is blocked by tetrodotoxin (3 microM) and the local anesthetics, cocaine (0.1 mM) and lidocaine (0.5 mM). On the other hand, high [K+]-stimulated aerobic glycolysis that accompanies the acetylcholine-sensitive enhanced glial uptakes of Na+ and water is unaffected by acetylcholine (2 mM). Experiments done under a variety of metabolic conditions show that there exists a better correlation between diminished ATP content of the tissue and enhanced aerobic glycolysis than between tissue ATP and the ATP-dependent synthesis of glutamine. Whereas malonate (2 mM) and amino oxyacetate (5 mM) suppress ATP content and O2 uptake, stimulate lactate formation, but have little effect on glutamine levels, fluoroacetate (3 mM) suppresses glutamine synthesis in glia, presumably by suppressing the operation of the citric acid cycle, with little effect on ATP content, O2 uptake, and lactate formation. Exogenous citrate (5 mM), which may be transported and metabolized in glia but not in neurons, inhibits lactate formation by cell free acetone-dried powder extracts of brain cortex but not by brain cortex slices. These results suggest that the neuron is the major site of stimulated aerobic glycolysis in the brain, and that under our experimental conditions glycolysis in glia is under lesser stringent metabolic control than that in the neuron. Stimulation of aerobic glycolysis by protoveratrine occurs due to diminution of the energy charge of the neuron as a result of stimulation of the sodium pump following tetrodotoxin-sensitive influx of Na+; stimulation by high [K+], NH4+, or Ca2+ deprivation occurs partly by direct stimulation of key enzymes of glycolysis and partly by a fall in the tissue ATP concentration.

  9. Acute aerobic exercise modulates primary motor cortex inhibition.

    PubMed

    Mooney, Ronan A; Coxon, James P; Cirillo, John; Glenny, Helen; Gant, Nicholas; Byblow, Winston D

    2016-12-01

    Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABAB-mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.

  10. Effects of Aerobic Exercise Based upon Heart Rate at Aerobic Threshold in Obese Elderly Subjects with Type 2 Diabetes

    PubMed Central

    Donini, Lorenzo Maria

    2015-01-01

    In obese diabetic subjects, a correct life style, including diet and physical activity, is part of a correct intervention protocol. Thus, the aim of this study was to evaluate the effects of aerobic training intervention, based on heart rate at aerobic gas exchange threshold (AerTge), on clinical and physiological parameters in obese elderly subjects with type 2 diabetes (OT2DM). Thirty OT2DM subjects were randomly assigned to an intervention (IG) or control group (CG). The IG performed a supervised aerobic exercise training based on heart rate at AerTge whereas CG maintained their usual lifestyle. Anthropometric measures, blood analysis, peak oxygen consumption (V˙O2peak), metabolic equivalent (METpeak), work rate (WRpeak), and WRAerTge were assessed at baseline and after intervention. After training, patients enrolled in the IG had significantly higher (P < 0.001) V˙O2peak, METpeak, WRpeak, and WRAerTge and significantly lower (P < 0.005) weight, BMI, %FM, and waist circumference than before intervention. Both IG and CG subjects had lower glycated haemoglobin levels after intervention period. No significant differences were found for all the other parameters between pre- and posttraining and between groups. Aerobic exercise prescription based upon HR at AerTge could be a valuable physical intervention tool to improve the fitness level and metabolic equilibrium in OT2DM patients. PMID:26089890

  11. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    PubMed

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  12. Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by puf LM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures.

    PubMed

    Tank, Marcus; Blümel, Martina; Imhoff, Johannes F

    2011-12-01

    Shallow coastal waters, where phototrophic purple sulfur bacteria (PSB) regularly form massive blooms, are subjected to massive diurnal and event-driven changes of physicochemical conditions including temperature and salinity. To analyze the ability of PSB to cope with these environmental factors and to compete in complex communities we have studied changes of the environmental community of PSB of a Baltic Sea lagoon under experimental enrichment conditions with controlled variation of temperature and NaCl concentration. For the first time, changes within a community of PSB were specifically analyzed using the photosynthetic reaction center genes pufL and M by RFLP and cloning experiments. The most abundant PSB phylotypes in the habitat were found along the NaCl gradient from freshwater conditions up to 7.5% NaCl. They were accompanied by smaller numbers of purple nonsulfur bacteria and aerobic anoxygenic phototrophic bacteria. Major components of the PSB community of the brackish lagoon were affiliated to PSB genera and species known as marine, halophilic or salt-tolerant, including species of M arichromatium, H alochromatium, T hiorhodococcus, A llochromatium, T hiocapsa, T hiorhodovibrio, and T hiohalocapsa. A dramatic shift occurred at elevated temperatures of 41 and 44°C when M arichromatium gracile became most prominent which was not detected at lower temperatures.

  13. Bioenergetics of photoheterotrophic bacteria in the oceans.

    PubMed

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems.

  14. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese.

    PubMed

    Graham, Marilynn H; Bush, Jill A; Olvera, Norma; Puyau, Maurice R; Butte, Nancy F

    2014-10-01

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (≥ 95 th body mass index [BMI] percentile) and 16 children who were considered normal weight (<85th BMI percentile) participated in this study. Performance outcomes included test duration (in minutes) and exercise heart rate (HR) (first-stage and peak HR) for each test. Ninety-five percent confidence intervals and independent t-tests were used to assess differences in primary outcomes. Mean PACER test duration was 1.6 ± 0.6 and 3.1 ± 1.3 minutes for children who were obese and normal weight, respectively. Modified PACER duration was higher than 3 minutes for the obese (3.6 ± 0.6 minutes) and normal weight (5.3 ± 1.2 minutes) groups. Children first-stage HR, expressed as a percent of peak HR, was above the predicted anaerobic threshold during the PACER, but below the anaerobic threshold during the MPACER. Relative first-stage HR was not significantly different between groups for the PACER, but they were significantly different between groups for the MPACER. In conclusion, the MPACER was a better alternative than the PACER for assessing aerobic fitness in Hispanic children who were normal weight and obese. When validated, this modified field test could be used to assess aerobic fitness in Hispanic children, particularly those who are overweight or obese. Additionally, the study provides evidence in which physical educators, personal trainers, and others most apt to assess aerobic fitness in children who are obese, should modify tests originally designed for the population who are normal weight.

  15. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    NASA Astrophysics Data System (ADS)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  16. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step

  17. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    SciTech Connect

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  18. Anamet anaerobic-aerobic treatment of concentrated wastewaters

    SciTech Connect

    Frostell, B.

    1982-01-01

    The process, consisting of a closed anaerobic tank reactor with side mounted agitator and electric heaters to control temperature at 35-37 degrees, an external solids separator for recycle of anaerobic sludge, an open aerobic tank reactor with an air sparger at the bottom, and a conical settling clarifier to separate and recycle aerobic sludge, decreased the COD from 3-89 to 0.10-18 and the BOD5 from 1.4-26 to 0.03-0.30 g O2/L in dairy, vegetable cannery, beet sugar, wheat starch, mixed pulp and paper, citric acid, and rum distillery wastewater. Recoveries of CH4-containing gas produced by the process were 69-107% of theory. Total excess sludge production was only 0.05 kg/kg COD added or 0.06 kg/kg COD removed.

  19. Aerobic and microaerophilic actinomycetes of typical agropeat and peat soils

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Gryadunova, A. A.; Pozdnyakov, A. I.; Zvyagintsev, D. G.

    2008-02-01

    A high number (from tens of thousands to millions of CFU/g of soil) of actinomycetes and a high diversity of genera were found in typical peat and agropeat soils. Agricultural use increases the number and diversity of the actinomycete complexes of the peat soils. In the peat soils, the actinomycete complex is represented by eight genera: Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, Saccharopolyspora, Saccharomonospora, and Microtetraspora. A considerable share of sporangial forms in the actinomycete complex of the peat soils not characteristic of the zonal soils was revealed. The number of actinomycetes that develop under aerobic conditions is smaller by 10-100 times than that of aerobic forms in the peat soils. Among the soil actinomycetes of the genera Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, and Microtetraspora, the microaerophilic forms were found; among the Saccharopolyspora and Saccharomonospora, no microaerophilic representatives were revealed.

  20. Aerobic biotransformation and mineralization of 2,4,6-trinitrotoluene

    SciTech Connect

    Bae, B.H.; Autenrieth, R.L.; Bonner, J.S.

    1995-12-31

    Respirometric mineralization studies of 2,4,6-trinitrotoluene (TNT) were conducted with microorganisms isolated from a site contaminated with munitions waste in Illinois. Nine aerobic bacterial species were isolated under a carbon- and nitrogen-limited condition and tentatively identified as: one Pseudomonas species; one Enterobacter species; and seven Alcaligenes species. Experiments were performed using each of the nine organisms individually and with a consortium of all nine bacterial species. The aerobic microorganisms were cultured in a sterile nutrient solution with glucose and 20 mg/L TNT. Mineralization was determined using uniformly ring-labeled {sup 14}C-TNT in a respirometer that trapped the evolved CO{sub 2}. Biodegradation behavior was characterized based on oxygen consumption, distribution of {sup 14}C activity, and high-performance liquid chromatography (HPLC) analysis of TNT and its transformation products.

  1. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females.

    PubMed

    Myers, Terrence R; Schneider, Matthew G; Schmale, Matthew S; Hazell, Tom J

    2015-06-01

    This study aimed to determine whether a time-effective whole-body aerobic resistance training circuit using only body weight exercises is as effective in improving aerobic and anaerobic fitness, as well as muscular strength and endurance as a traditional concurrent style training combining resistance and endurance training. Thirty-four sedentary females (20.9 ± 3.2 years; 167.6 ± 6.4 cm; 65.0 ± 15.2 kg) were assigned to either: (a) a combined resistance and aerobic exercise group (COMBINED; n = 17) or (b) a circuit-based whole-body aerobic resistance training circuit group (CIRCUIT; n = 17). Training was 3 days per week for 5 weeks. Pre- and post-training measures included a (Equation is included in full-text article.)test, anaerobic Wingate cycling test, and muscular strength and endurance tests. After training, (Equation is included in full-text article.)improved with CIRCUIT by 11% (p = 0.015), with no change for COMBINED (p = 0.375). Both relative peak power output and relative average power output improved with CIRCUIT by 5% (p = 0.027) and 3.2% (p = 0.006), respectively, and with COMBINED by 5.3% (p = 0.025) and 5.1% (p = 0.003). Chest and hamstrings 1 repetition maximum (1RM) improved with CIRCUIT by 20.6% (p = 0.011) and 8.3% (p = 0.022) and with COMBINED by 35.6% (p < 0.001) and 10.2% (p = 0.004), respectively. Only the COMBINED group improved back (11.7%; p = 0.017) and quadriceps (9.6%; p = 0.006) 1RM. The COMBINED group performed more repetitions at 60% of their pretraining 1RM for back (10.0%; p = 0.006) and hamstring (23.3%; p = 0.056) vs. CIRCUIT. Our results suggest that a circuit-based whole-body aerobic resistance training program can elicit a greater cardiorespiratory response and similar muscular strength gains with less time commitment compared with a traditional resistance training program combined with aerobic exercise.

  2. Physiological adaptation in noncompetitive rock climbers: good for aerobic fitness?

    PubMed

    Rodio, Angelo; Fattorini, Luigi; Rosponi, Alessandro; Quattrini, Filippo M; Marchetti, Marco

    2008-03-01

    The present investigation aimed to establish whether noncompetitive rock climbing fulfills sports medicine recommendations for maintaining a good level of aerobic fitness. The physiological profile of 13 rock climbers, 8 men (age, 43 +/- 8 years) and 5 women (age, 31 +/- 8 years) was assessed by means of laboratory tests. Maximal aerobic power (VO2peak) and ventilatory threshold (VT) were assessed using a cycloergometer incremental test. During outdoor rock face climbing, VO2 and heart rate (HR) were measured with a portable metabolimeter and the relative steady-state values (VO2 and HR during rock climbing) were computed. Blood lactate was measured during recovery. All data are presented as mean +/- SD. VO2 was 39.1 +/- 4.3 mL.kg.min in men and 39.7 +/- 5 mL.kg.min in women, while VT was 29.4 +/- 3.0 mL.kg.min in men and 28.8 +/- 4.6 mL.kg.min in women. The VO2 during rock climbing was 28.3 +/- 1.5 mL.kg.min in men and 27.5 +/- 3.7 mL.kg.min in women. The HR during rock climbing was 144 +/- 16 b.min in men and 164 +/- 13 b.min in women. The aerobic profile was classified from excellent to superior in accordance with the standards of the American College of Sports Medicine (ACSM). The exercise intensity (VO2 during rock climbing expressed as a percentage of VO2peak) was 70 +/- 6% in men and 72 +/- 8% in women. Moreover, the energy expenditure was 1000-1500 kcal per week. In conclusion, noncompetitive rock climbing has proved to be a typical aerobic activity. The intensity of exercise is comparable to that recommended by the American College of Sports Medicine to maintain good cardiorespiratory fitness.

  3. Aerobic vs anaerobic exercise training effects on the cardiovascular system.

    PubMed

    Patel, Harsh; Alkhawam, Hassan; Madanieh, Raef; Shah, Niel; Kosmas, Constantine E; Vittorio, Timothy J

    2017-02-26

    Physical exercise is one of the most effective methods to help prevent cardiovascular (CV) disease and to promote CV health. Aerobic and anaerobic exercises are two types of exercise that differ based on the intensity, interval and types of muscle fibers incorporated. In this article, we aim to further elaborate on these two categories of physical exercise and to help decipher which provides the most effective means of promoting CV health.

  4. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  5. Aerobic vs anaerobic exercise training effects on the cardiovascular system

    PubMed Central

    Patel, Harsh; Alkhawam, Hassan; Madanieh, Raef; Shah, Niel; Kosmas, Constantine E; Vittorio, Timothy J

    2017-01-01

    Physical exercise is one of the most effective methods to help prevent cardiovascular (CV) disease and to promote CV health. Aerobic and anaerobic exercises are two types of exercise that differ based on the intensity, interval and types of muscle fibers incorporated. In this article, we aim to further elaborate on these two categories of physical exercise and to help decipher which provides the most effective means of promoting CV health. PMID:28289526

  6. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  7. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.

    PubMed

    Gangadharan Puthiya Veetil, Prajeesh; Vijaya Nadaraja, Anupama; Bhasi, Arya; Khan, Sudheer; Bhaskaran, Krishnakumar

    2012-07-01

    Triclosan (2, 4, 4'-trichloro-2'-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

  8. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  9. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  10. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  11. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose.

  12. Concentric left ventricular morphology in aerobically trained kayak canoeists.

    PubMed

    Gates, Phillip E; Campbell, Ian G; George, Keith P

    2004-09-01

    The aim of the present study was to test the hypothesis that upper body aerobically trained athletes (kayak canoeists) would have greater left ventricular wall thickness, but similar left ventricular diastolic chamber dimensions, compared with recreationally active and sedentary men. Ultrasound echocardiography was used to determine cardiac structure and function in highly trained kayak canoeists (n = 10), moderately active (n = 10) and sedentary men (n = 10). The septal and posterior left ventricular walls were approximately 0.2 cm thicker in kayak canoeists (P < 0.05), and left ventricular mass was 51% and 32% greater (P < 0.05) in canoeists than in the sedentary and moderately trained participants, respectively. There were no differences in left ventricular chamber dimension, suggesting that the kayak canoeists had a concentric pattern of left ventricular adaptation to aerobic upper body training. Scaling the data to body composition indices had no effect on the outcome of the statistical analysis. There were no differences in resting Doppler left ventricular diastolic or systolic function among the groups. Ejection fraction was lower in the kayak canoeists, but the magnitude of the difference was within the normal variability for this measurement. Thus aerobically upper body trained athletes demonstrated a concentric pattern of cardiac enlargement, but resting left ventricle function was not different between athletes, moderately active and sedentary individuals.

  13. Echinacea Supplementation: Does it Really Improve Aerobic Fitness?

    PubMed Central

    Baumann, Cory W.; Kwak, Dongmin

    2016-01-01

    [Purpose] Echinacea is an herbal supplement used by endurance athletes for its performance boosting properties. It is thought that Echinacea improves the blood’s oxygen carrying capacity by increasing production of erythropoietin (EPO), a glycoprotein that regulates red blood cell formation. Subsequently, these changes would lead to an overall improvement in maximal oxygen uptake (VO2max) and running economy (RE), two markers of aerobic fitness. The purpose of this review is to briefly discuss the physiological variables associated with distance running performance and how these variables are influenced by Echinacea supplementation. [Methods] To determine Echinacea’s ergogenic potential, human studies that used Echinacea in conjunction to analyzing the blood’s oxygen carrying capacity and/or aerobic fitness were assessed. [Results] Taken together, the majority of the published literature does not support the claim that Echinacea is a beneficial ergogenic aid. With the exception of one study, several independent groups have reported Echinacea supplementation does not increase EPO production, blood markers of oxygen transport, VO2max or RE in healthy untrained or trained subjects. [Conclusion] To date, the published literature does not support the use of Echinacea as an ergogenic aid to improve aerobic fitness in healthy untrained or trained subjects. PMID:27757381

  14. Aerobic fitness and orthostatic tolerance: Evidence against an association

    NASA Technical Reports Server (NTRS)

    Ebert, Thomas J.

    1994-01-01

    This presentation will focus on only one side of the debate as to whether high levels of aerobic fitness have a deleterious effect on tolerance to gravitational stress. This issue was raised in the early 1970's as a result of two research publications. The first work investigated the carotid sinus baroreflex of humans with an airtight chamber that surrounded the head and neck. The steady-state reflex changes in blood pressure that were recorded 3 minutes after application of the head and neck stimuli, were attenuated in an athletic group compared to a sedentary group of volunteers. A second report in the NASA literature indicated that five endurance-trained runners were less tolerant to LBNP than five nonrunners. These early research findings have stimulated a considerable amount of interest that has lead to a growing number of research efforts seeking an association between aerobic fitness and orthostatic tolerance in humans. I will briefly review some of the more pertinent published research information which suggests that there is no relationship between aerobic fitness and orthostatic tolerance in humans.

  15. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  16. Adherence of older women with strength training and aerobic exercise

    PubMed Central

    Picorelli, Alexandra Miranda Assumpção; Pereira, Daniele Sirineu; Felício, Diogo Carvalho; Dos Anjos, Daniela Maria; Pereira, Danielle Aparecida Gomes; Dias, Rosângela Corrêa; Assis, Marcella Guimarães; Pereira, Leani Souza Máximo

    2014-01-01

    Background Participation of older people in a program of regular exercise is an effective strategy to minimize the physical decline associated with age. The purpose of this study was to assess adherence rates in older women enrolled in two different exercise programs (one aerobic exercise and one strength training) and identify any associated clinical or functional factors. Methods This was an exploratory observational study in a sample of 231 elderly women of mean age 70.5 years. We used a structured questionnaire with standardized tests to evaluate the relevant clinical and functional measures. A specific adherence questionnaire was developed by the researchers to determine motivators and barriers to exercise adherence. Results The adherence rate was 49.70% in the aerobic exercise group and 56.20% in the strength training group. Multiple logistic regression models for motivation were significant (P=0.003) for the muscle strengthening group (R2=0.310) and also significant (P=0.008) for the aerobic exercise group (R2=0.154). A third regression model for barriers to exercise was significant (P=0.003) only for the muscle strengthening group (R2=0.236). The present study shows no direct relationship between worsening health status and poor adherence. Conclusion Factors related to adherence with exercise in the elderly are multifactorial. PMID:24600212

  17. Electric motor assisted bicycle as an aerobic exercise machine.

    PubMed

    Nagata, T; Okada, S; Makikawa, M

    2012-01-01

    The goal of this study is to maintain a continuous level of exercise intensity around the aerobic threshold (AT) during riding on an electric motor assisted bicycle using a new control system of electrical motor assistance which uses the efficient pedaling rate of popular bicycles. Five male subjects participated in the experiment, and the oxygen uptake was measured during cycling exercise using this new pedaling rate control system of electrical motor assistance, which could maintain the pedaling rate within a specific range, similar to that in previous type of electrically assisted bicycles. Results showed that this new pedaling rate control system at 65 rpm ensured continuous aerobic exercise intensity around the AT in two subjects, and this intensity level was higher than that observed in previous type. However, certain subjects were unable to maintain the expected exercise intensity because of their particular cycling preferences such as the pedaling rate. It is necessary to adjust the specific pedaling rate range of the electrical motor assist control according to the preferred pedaling rate, so that this system becomes applicable to anyone who want continuous aerobic exercise.

  18. Decomposition of organic waste products under aerobic and anaerobic conditions

    SciTech Connect

    Gale, P.M.

    1988-01-01

    The objectives of this research were to determine the kinetics of C and N mineralization under aerobic and anaerobic conditions. These parameters were then used to verify the simulation model, DECOMPOSITION, for the anaerobic system. Incubation experiments were conducted to compare the aerobic and anaerobic decomposition of alfalfa (Medicago sativa L.), a substrate with a low C:N ratio. Under anaerobic conditions the net mineralization of N occurred more rapidly than that under aerobic conditions. However, the rate of C mineralization as measured by CO{sub 2} evolution was much lower. For the anaerobic decomposition of alfalfa, C mineralization was best described as the sum of the CO{sub 2} and CH{sub 4} evolved plus the water soluble organic C formed. The kinetics of C mineralization, as determined by this approach, were used to successfully predict the rate and amount of N mineralization from alfalfa undergoing anaerobic decomposition. The decomposition of paper mill sludge, a high C:N ratio substrate, was also evaluated.

  19. Aerobic granulation of aggregating consortium X9 isolated from aerobic granules and role of cyclic di-GMP.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Wang, Xin-Yue; Yang, Qiaoli; Pan, Xiangliang

    2014-01-01

    This study monitored the granulation process of an aggregating functional consortium X9 that was consisted of Pseudomonas putida X-1, Acinetobacter sp. X-2, Alcaligenes sp. X-3 and Comamonas testosteroni X-4 in shaken reactors. The growth curve of X9 was fit using logistic model as follows y=1.49/(1+21.3*exp(-0.33x)), the maximum specific cell growth rate for X9 was 0.33 h(-1). Initially X9 consumed polysaccharides (PS) and secreted proteins (PN) to trigger granulation. Then X9 grew in biomass and formed numerous micro-granules, driven by increasing hydrophobicity of cell membranes and of accumulated extracellular polymeric substances (EPS). In later stage the intracellular cyclic diguanylate (c-di-GMP) was at high levels for inhibiting bacteria swarming motility, thereby promotion formation of large aerobic granules. The findings reported herein advise the way to accelerate granule formation and to stabilize operation in aerobic granular reactors.

  20. Aerobic training in persons who have recovered from juvenile dermatomyositis.

    PubMed

    Riisager, M; Mathiesen, P R; Vissing, J; Preisler, N; Ørngreen, M C

    2013-12-01

    A recent study has shown that 36 persons who had recovered from juvenile dermatomyositis (JDM) have on average an 18% decrease in maximal oxygen uptake. The objective of this study was to investigate the effect of a 12-week aerobic training program in this group, and assess whether aerobic training can normalize aerobic capacity to the expected level for age and gender. The patients participating in the study, one male and nine females (16-42 years of age), were in remission from JDM, defined as no clinical or biochemical evidence of disease activity and no medical treatment for 1 year. The patients had a median disease duration of 3.4 years (1.4-10.3), a median treatment duration of 2.4 years (0.4-9.3) and a median duration of remission of 7.0 years (1.2-30.0). Patients trained at home on a cycle ergometer for 12 weeks at a heart rate interval corresponding to 65% of their maximal oxygen uptake (VO(2max)). VO(2max) and maximal workload (W(max)) were determined before and after the 12-week training period through an incremental cycling test to exhaustion. The patients served as their own controls. Eight patients with JDM in remission completed the 12-week exercise program; one patient completed 9 weeks out of the 12-week program and one dropped out of the study. Training increased VO(2max) and W(max) by 26% and 30% (P < 0.001). Creatine kinase (CK) levels were normal pre-training and did not change with training, reflecting no muscle damage. We also found that at a given workload, heart rate was lowered significantly after the 12-week training period, indicating an improvement in cardiovascular fitness. This study shows that 12 weeks of moderate-intensity aerobic training is an effective and safe method to increase oxidative capacity and fitness in persons who have recovered from JDM. The results indicate that the low oxidative capacity in JDM patients in remission is reversible and can be improved. Thus, we recommend frequent aerobic training to be incorporated

  1. δ 13C values of lipids from phototrophic zone microplankton and bathypelagic shrimps at the Azores sector of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Pond, D. W.; Sargent, J. R.; Fallick, A. E.; Allen, C.; Bell, M. V.; Dixon, D. R.

    2000-01-01

    The lipid composition and δ 13C values of phototrophic zone microplankton, and species of bathypelagic shrimp that are not associated with hydrothermal vents, were determined for samples collected from the water column above the Mid-Atlantic Ridge. These analyses were compared with similar previously published data for vent bresiliid shrimp to address the hypothesis that deep-sea hydrothermal vent ecosystems are reliant on specific dietary nutrients produced by photosynthetic organisms. Microplankton (<200 μm) sampled from the surface layer (˜4 m deep) and from the region of maximum light scattering (LSM, 48-75 m deep) were analysed to determine δ 13C values of individual fatty acids in particulate matter. The distributions of fatty acids in total lipid from the surface layer and from the LSM were very similar, with high levels (˜45% of the total) of saturated fatty acids, particularly 14 : 0, 16 : 0 and 18 : 0, and moderate amounts (˜31% of the total) of polyunsaturated fatty acids (PUFA), dominated by 22 : 6(n-3). δ 13C values of fatty acids from the surface layer and LSM were also very similar (mean values of -27.6 and -28.8‰, respectively), with a range of values from -25.0 to -32.2‰ and PUFA being somewhat depleted in 13C relative to saturated and monounsaturated fatty acids. Total lipid of abdominal muscle from three species of bathypelagic decapod shrimp, Ephyrina bidentata, Parapasiphaea sulcatifrons and Sergia japonicus collected from 2000 m contained 18 : 1(n-9), 16 : 0, 22 : 6(n-3) and 20 : 5(n-3) as major fatty acids in all cases. The fatty acids in total lipid from the wax ester-rich hepatopancreas of all three shrimps were dominated (˜50% of the total) by 18 : 1(n-9) and contained substantially lower levels of PUFA than muscle lipid. Total lipids from the hepatopancreas of E. bidentata and S. japonicus contained high levels of 22 : 1 alcohols and 16 : 0 alcohol, respectively, whereas total hepatopancreatic lipid from P. sulcatifrons

  2. Evaluation of the petrifilm aerobic count plate for enumeration of aerobic marine bacteria from seawater and Caulerpa lentillifera.

    PubMed

    Kudaka, Jun; Horii, Toru; Tamanaha, Koji; Itokazu, Kiyomasa; Nakamura, Masaji; Taira, Katsuya; Nidaira, Minoru; Okano, Sho; Kitahara, Akio

    2010-08-01

    The enumeration and evaluation of the activity of marine bacteria are important in the food industry. However, detection of marine bacteria in seawater or seafood has not been easy. The Petrifilm aerobic count plate (ACP) is a ready-to-use alternative to the traditional enumeration media used for bacteria associated with food. The purpose of this study was to evaluate the usefulness of a simple detection and enumeration method utilizing the Petrifilm ACP for enumeration of aerobic marine bacteria from seawater and an edible seaweed, Caulerpa lentillifera. The efficiency of enumeration of total aerobic marine bacteria on Petrifilm ACP was compared with that using the spread plate method on marine agar with 80 seawater and 64 C. lentillifera samples. With sterile seawater as the diluent, a close correlation was observed between the method utilizing Petrifilm ACP and that utilizing the conventional marine agar (r=0.98 for seawater and 0.91 for C. lentillifera). The Petrifilm ACP method was simpler and less time-consuming than the conventional method. These results indicate that Petrifilm ACP is a suitable alternative to conventional marine agar for enumeration of marine microorganisms in seawater and C. lentillifera samples.

  3. β-alanine Supplementation Fails to Increase Peak Aerobic Power or Ventilatory Threshold in Aerobically Trained Males.

    PubMed

    Greer, Beau Kjerulf; Katalinas, Matthew E; Shaholli, Danielle M; Gallo, Paul M

    2016-01-01

    The purpose of the present study was to determine the effect of 30 days of β-alanine supplementation on peak aerobic power and ventilatory threshold (VT) in aerobically fit males. Fourteen males (28.8 ± 9.8 yrs) were assigned to either a β-alanine (SUPP) or placebo (PLAC) group; groups were matched for VT as it was the primary outcome measure. β-alanine supplementation consisted of 3 g/day for 7 days, and 6 g/day for the remaining 23 days. Before and after the supplementation period, subjects performed a continuous, graded cycle ergometry test to determine VO2 peak and VT. Metabolic data were analyzed using a 2 × 2 ANOVA with repeated measures. Thirty days of β-alanine supplementation (SUPP) did not increase VO2 peak (4.05 ± 0.6 vs. 4.14 ± 0.6 L/min) as compared to the placebo (PLAC) group (3.88 ± 0.2 vs. 3.97 ± 0.2 L/min) (p > .05). VT did not significantly improve in either the SUPP (3.21 ± 0.5 vs. 3.33 ± 0.5 L/min) or PLAC (3.19 ± 0.1 vs. 3.20 ± 0.1 L/min) group (p > .05). In conclusion, 30 days of β-alanine supplementation had no effect on VO2 peak or VT in aerobically trained athletes.

  4. Assessing Enhanced Anaerobic and Intrinsic Aerobic Biodegradation of Trichloroethene

    NASA Astrophysics Data System (ADS)

    Sorenson, K. S.; Ely, R. L.; Martin, J. P.; Alvarez-Cohen, L.; Kauffman, M. E.

    2001-12-01

    Biodegradation of chloroethenes can proceed either anaerobically or aerobically; however, the techniques for monitoring the two pathways are quite different. At the Idaho National Engineering and Environmental Laboratory's Test Area North (TAN, a combination of anaerobic and aerobic biodegradation of trichloroethene (TCE) is being employed for restoration of a large plume of contaminated groundwater. During stimulation of anaerobic biodegradation of TCE through lactate addition, several assessment tools have proven effective for various objectives. Monitoring TCE and its lesser chlorinated degradation products provides a straightforward assessment tool for the occurrence of degradation. It does not, however, provide information regarding the potential for reductive dechlorination, nor progress from less suitable to more suitable conditions. A technique for obtaining this information is monitoring redox-sensitive geochemical parameters such as dissolved iron, sulfate, methane, and oxidation-reduction potential. This approach was demonstrated by the strong correlation of steps in the reductive dechlorination pathway to redox conditions at the TAN site. Yet another tool is required to determine adequacy of conditions for efficient dechlorination. Dechlorination efficiency appears to be dependent upon the predominant electron donor utilization (or fermentation) process occurring at any given time, an observation consistent with thermodynamic considerations. Thus, monitoring of added electron donor and intermediate product concentrations can help determine an efficient operations strategy. One final tool demonstrated at the TAN site was monitoring stable carbon isotope ratios. As TCE was dechlorinated, a clear fractionation occurred from cis-dichloroethene to vinyl chloride, and from vinyl chloride to ethene. This fractionation provides a clear signature of reductive dechlorination. Assessment of aerobic biodegradation of chloroethenes at TAN is more challenging because

  5. Isolation and characterization of spirilloid purple phototrophic bacteria forming red layers in microbial mats of Mediterranean salterns: description of Halorhodospira neutriphila sp. nov. and emendation of the genus Halorhodospira.

    PubMed

    Hirschler-Réa, Agnès; Matheron, Robert; Riffaud, Christine; Mouné, Sophie; Eatock, Claire; Herbert, Rodney A; Willison, John C; Caumette, Pierre

    2003-01-01

    Microbial mats developing in the hypersaline lagoons of a commercial saltern in the Salin-de-Giraud (Rhône delta) were found to contain a red layer fully dominated by spirilloid phototrophic purple bacteria underlying a cyanobacterial layer. From this layer four strains of spirilloid purple bacteria were isolated, all of which were extremely halophilic. All strains were isolated by using the same medium under halophilic photolithoheterotrophic conditions. One of them, strain SG 3105 was a purple non-sulfur bacterial strain closely related to Rhodovibrio sodomensis with a 16S rDNA sequence similarity of 98.8%. The three other isolated strains, SG 3301T, SG 3302 and SG 3304, were purple sulfur bacteria and were found to be very similar. The cells were motile by a polar tuft of flagella. Photosynthetic intracytoplasmic membranes of the lamellar stack type contained BChl a and spirilloxanthin as the major carotenoid. Phototrophic growth with sulfide as electron donor was poor; globules of elemental sulfur were present outside the cells. In the presence of sulfide and CO2 good growth occurred with organic substrates. Optimum growth occurred in the presence of 9-12% (w/v) NaCl at neutral pH (optimal pH 6.8-7) and at 30-35 degrees C. The DNA base composition of strains SG 3301T and SG 3304 were 74.5 and 74.1 mol% G + C, respectively. According to the 16S rDNA sequences, strains SG 3301T and SG 3304 belonged to the genus Halorhodospira, but they were sufficiently separated morphologically, physiologically and genetically from other recognized Halorhodospira species to be described as a new species of the genus. They are, therefore, described as Halorhodospira neutriphila sp. nov. with strain SG 3301T as the type strain (=DSM 15116T).

  6. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  7. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.

    PubMed

    Moraitis, Christos; Curran, Brendan P G

    2010-02-01

    We have previously demonstrated that in aerobically-grown cells of the yeast Saccharomyces cerevisiae, hydrogen peroxide (H(2)O(2)) increases and ascorbic acid decreases cellular thermosensitivity, as determined by the inducibility of a heat shock (HS)-reporter gene. In this work, we reveal that the aerobic thermosensitivity of anaerobically-grown yeast cells also increases in the presence of H(2)O(2), albeit differentially between cells with two different lipid profiles. In comparison to aerobically-grown fermenting cells treated with the same H(2)O(2) concentration, both these types of anaerobically-grown cells were found to be considerably less sensitive to aerobic heat shock and considerably more thermotolerant. Paradoxically, and in contrast to ascorbate-pretreated aerobically-grown yeast cells, when anaerobically-grown cells were heat-shocked aerobically in the presence of the same ascorbic acid concentration, they exhibited increased thermosensitivity and decreased intrinsic thermotolerance with respect to their untreated counterparts. These findings are discussed with respect to what is currently known about the redox and physiological status of yeast cells grown aerobically and cells reoxygenated following anoxic growth.

  8. Methyl Anthranilate, an Inhibitor for the Germination of Spores of Aerobic Bacilli

    PubMed Central

    Prasad, Chandan; Srinivasan, V. R.

    1969-01-01

    Methylanthranilate inhibited the germination of spores of aerobic bacilli without affecting growth and sporulation. The inhibition of germination could not be reversed by removal of methylanthranilate. PMID:4979580

  9. Removal of Pesticides and Inorganic Contaminants in Anaerobic and Aerobic Biological Contactors

    EPA Science Inventory

    This presentation contains data on the removal of pesticides (acetochlor, clethodim, dicrotophos), ammonia, nitrate, bromate and perchlorate through aerobic and anaerobic biological treatment processes.

  10. A single aerobic exercise session accelerates movement execution but not central processing.

    PubMed

    Beyer, Kit B; Sage, Michael D; Staines, W Richard; Middleton, Laura E; McIlroy, William E

    2017-03-27

    Previous research has demonstrated that aerobic exercise has disparate effects on speed of processing and movement execution. In simple and choice reaction tasks, aerobic exercise appears to increase speed of movement execution while speed of processing is unaffected. In the flanker task, aerobic exercise has been shown to reduce response time on incongruent trials more than congruent trials, purportedly reflecting a selective influence on speed of processing related to cognitive control. However, it is unclear how changes in speed of processing and movement execution contribute to these exercise-induced changes in response time during the flanker task. This study examined how a single session of aerobic exercise influences speed of processing and movement execution during a flanker task using electromyography to partition response time into reaction time and movement time, respectively. Movement time decreased during aerobic exercise regardless of flanker congruence but returned to pre-exercise levels immediately after exercise. Reaction time during incongruent flanker trials decreased over time in both an aerobic exercise and non-exercise control condition indicating it was not specifically influenced by exercise. This disparate influence of aerobic exercise on movement time and reaction time indicates the importance of partitioning response time when examining the influence of aerobic exercise on speed of processing. The decrease in reaction time over time independent of aerobic exercise indicates that interpreting pre-to-post exercise changes in behavior requires caution.

  11. Aerobic granules: microbial landscape and architecture, stages, and practical implications.

    PubMed

    Gonzalez-Gil, Graciela; Holliger, Christof

    2014-06-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In "old" granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters "rooting" from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation.

  12. Aerobic Granules: Microbial Landscape and Architecture, Stages, and Practical Implications

    PubMed Central

    Holliger, Christof

    2014-01-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In “old” granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters “rooting” from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation. PMID:24657859

  13. Light quality and quantity regulate aerobic methane emissions from plants.

    PubMed

    Martel, Ashley B; Qaderi, Mirwais M

    2017-03-01

    Studies have been mounting in support of the finding that plants release aerobic methane (CH4 ), and that these emissions are increased by both short-term and long-term environmental stress. It remains unknown whether or not they are affected by variation in light quantity and quality, whether emissions change over time, and whether they are influenced by physiological parameters. Light is the primary energy source of plants, and therefore an important regulator of plant growth and development. Both shade-intolerant sunflower and shade-tolerant chrysanthemum were investigated for the release of aerobic CH4 emissions, using either low or high light intensity, and varying light quality, including control, low or normal red:far-red ratio (R:FR), and low or high levels of blue, to discern the relationship between light and CH4 emissions. It was found that low levels of light act as an environmental stress, facilitating CH4 release from both species. R:FR and blue lights increased emissions under low light, but the results varied with species, providing evidence that both light quantity and quality regulate CH4 emissions. Emission rates of 6.79-41.13 ng g(-1) DW h(-1) and 18.53-180.25 ng g(-1) DW h(-1) were observed for sunflower and chrysanthemum, respectively. Moreover, emissions decreased with age as plants acclimated to environmental conditions. Since effects were similar in both species, there may be a common trend among a number of shade-tolerant and shade-intolerant species. Light quantity and quality are influenced by factors including cloud covering, so it is important to know how plants will be affected in the context of aerobic CH4 emissions.

  14. Effects of Aerobic Exercise on Anxiety Disorders: A Systematic Review.

    PubMed

    de Souza Moura, Antonio Marcos; Lamego, Murilo Khede; Paes, Flávia; Ferreira Rocha, Nuno Barbosa; Simoes-Silva, Vitor; Rocha, Susana Almeida; de Sá Filho, Alberto Souza; Rimes, Ridson; Manochio, João; Budde, Henning; Wegner, Mirko; Mura, Gioia; Arias-Carrión, Oscar; Yuan, Ti-Fei; Nardi, Antonio Egidio; Machado, Sergio

    2015-01-01

    Anxiety disorders are the most common psychiatric disorders observed currently. It is a normal adaptive response to stress that allows coping with adverse situations. Nevertheless, when anxiety becomes excessive or disproportional in relation to the situation that evokes it or when there is not any special object directed at it, such as an irrational dread of routine stimuli, it becomes a disabling disorder and is considered to be pathological. The traditional treatment used is medication and cognitive behavioral psychotherapy, however, last years the practice of physical exercise, specifically aerobic exercise, has been investigated as a new non-pharmacological therapy for anxiety disorders. Thus, the aim of this article was to provide information on research results and key chains related to the therapeutic effects of aerobic exercise compared with other types of interventions to treat anxiety, which may become a useful clinical application in a near future. Researches have shown the effectiveness of alternative treatments, such as physical exercise, minimizing high financial costs and minimizing side effects. The sample analyzed, 66.8% was composed of women and 80% with severity of symptoms anxiety as moderate to severe. The data analyzed in this review allows us to claim that alternative therapies like exercise are effective in controlling and reducing symptoms, as 91% of anxiety disorders surveys have shown effective results in treating. However, there is still disagreement regarding the effect of exercise compared to the use of antidepressant symptoms and cognitive function in anxiety, this suggests that there is no consensus on the correct intensity of aerobic exercise as to achieve the best dose-response, with intensities high to moderate or moderate to mild.

  15. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly.

  16. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates

    PubMed Central

    Wang, Hui; Tomasch, Jürgen; Jarek, Michael; Wagner-Döbler, Irene

    2014-01-01

    Some microalgae in nature live in symbiosis with microorganisms that can enhance or inhibit growth, thus influencing the dynamics of phytoplankton blooms. In spite of the great ecological importance of these interactions, very few defined laboratory systems are available to study them in detail. Here we present a co-cultivation system consisting of the toxic phototrophic dinoflagellate Prorocentrum minimum and the photoheterotrophic alphaproteobacterium Dinoroseobacter shibae. In a mineral medium lacking a carbon source, vitamins for the bacterium and the essential vitamin B12 for the dinoflagellate, growth dynamics reproducibly went from a mutualistic phase, where both algae and bacteria grow, to a pathogenic phase, where the algae are killed by the bacteria. The data show a “Jekyll and Hyde” lifestyle that had been proposed but not previously demonstrated. We used RNAseq and microarray analysis to determine which genes of D. shibae are transcribed and differentially expressed in a light dependent way at an early time-point of the co-culture when the bacterium grows very slowly. Enrichment of bacterial mRNA for transcriptome analysis was optimized, but none of the available methods proved capable of removing dinoflagellate ribosomal RNA completely. RNAseq showed that a phasin encoding gene (phaP1) which is part of the polyhydroxyalkanoate (PHA) metabolism operon represented approximately 10% of all transcripts. Five genes for aerobic anoxygenic photosynthesis were down-regulated in the light, indicating that the photosynthesis apparatus was functional. A betaine-choline-carnitine-transporter (BCCT) that may be used for dimethylsulfoniopropionate (DMSP) uptake was the highest up-regulated gene in the light. The data suggest that at this early mutualistic phase of the symbiosis, PHA degradation might be the main carbon and energy source of D. shibae, supplemented in the light by degradation of DMSP and aerobic anoxygenic photosynthesis. PMID:25009539

  17. Degradation of toxaphene in water during anaerobic and aerobic conditions.

    PubMed

    LacayoR, M; van Bavel, B; Mattiasson, B

    2004-08-01

    The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.

  18. New records in aerobic power among octogenarian lifelong endurance athletes

    PubMed Central

    Hayes, Erik; Galpin, Andrew; Kaminsky, Leonard; Jemiolo, Bozena; Fink, William; Trappe, Todd; Jansson, Anna; Gustafsson, Thomas; Tesch, Per

    2013-01-01

    We examined whole body aerobic capacity and myocellular markers of oxidative metabolism in lifelong endurance athletes [n = 9, 81 ± 1 yr, 68 ± 3 kg, body mass index (BMI) = 23 ± 1 kg/m2] and age-matched, healthy, untrained men (n = 6; 82 ± 1 y, 77 ± 5 kg, BMI = 26 ± 1 kg/m2). The endurance athletes were cross-country skiers, including a former Olympic champion and several national/regional champions, with a history of aerobic exercise and participation in endurance events throughout their lives. Each subject performed a maximal cycle test to assess aerobic capacity (V̇o2max). Subjects had a resting vastus lateralis muscle biopsy to assess oxidative enzymes (citrate synthase and βHAD) and molecular (mRNA) targets associated with mitochondrial biogenesis [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and mitochondrial transcription factor A (Tfam)]. The octogenarian athletes had a higher (P < 0.05) absolute (2.6 ± 0.1 vs. 1.6 ± 0.1 l/min) and relative (38 ± 1 vs. 21 ± 1 ml·kg−1·min−1) V̇o2max, ventilation (79 ± 3 vs. 64 ± 7 l/min), heart rate (160 ± 5 vs. 146 ± 8 beats per minute), and final workload (182 ± 4 vs. 131 ± 14 W). Skeletal muscle oxidative enzymes were 54% (citrate synthase) and 42% (βHAD) higher (P < 0.05) in the octogenarian athletes. Likewise, basal PGC-1α and Tfam mRNA were 135% and 80% greater (P < 0.05) in the octogenarian athletes. To our knowledge, the V̇o2max of the lifelong endurance athletes is the highest recorded in humans >80 yr of age and comparable to nonendurance trained men 40 years younger. The superior cardiovascular and skeletal muscle health profile of the octogenarian athletes provides a large functional reserve above the aerobic frailty threshold and is associated with lower risk for disability and mortality. PMID:23065759

  19. Criterion Related Validity of Karate Specific Aerobic Test (KSAT)

    PubMed Central

    Chaabene, Helmi; Hachana, Younes; Franchini, Emerson; Tabben, Montassar; Mkaouer, Bessem; Negra, Yassine; Hammami, Mehrez; Chamari, Karim

    2015-01-01

    Background: Karate is one the most popular combat sports in the world. Physical fitness assessment on a regular manner is important for monitoring the effectiveness of the training program and the readiness of karatekas to compete. Objectives: The aim of this research was to examine the criterion related to validity of the karate specific aerobic test (KSAT) as an indicator of aerobic level of karate practitioners. Patients and Methods: Cardiorespiratory responses, aerobic performance level through both treadmill laboratory test and YoYo intermittent recovery test level 1 (YoYoIRTL1) as well as time to exhaustion in the KSAT test (TE’KSAT) were determined in a total of fifteen healthy international karatekas (i.e. karate practitioners) (means ± SD: age: 22.2 ± 4.3 years; height: 176.4 ± 7.5 cm; body mass: 70.3 ± 9.7 kg and body fat: 13.2 ± 6%). Results: Peak heart rate obtained from KSAT represented ~99% of maximal heart rate registered during the treadmill test showing that KSAT imposes high physiological demands. There was no significant correlation between KSAT’s TE and relative (mL/min kg) treadmill maximal oxygen uptake (r = 0.14; P = 0.69; [small]). On the other hand, there was a significant relationship between KSAT’s TE and the velocity associated with VO2max (vVO2max) (r = 0.67; P = 0.03; [large]) as well as the velocity at VO2 corresponding to the second ventilatory threshold (vVO2 VAT) (r = 0.64; P = 0.04; [large]). Moreover, significant relationship was found between TE’s KSAT and both the total distance covered and parameters of intermittent endurance measured through YoYoIRTL1. Conclusions: The KSAT has not proved to have indirect criterion related validity as no significant correlations have been found between TE’s KSAT and treadmill VO2max. Nevertheless, as correlated to other aerobic fitness variables, KSAT can be considered as an indicator of karate specific endurance. The establishment of the criterion related validity of the KSAT

  20. Biodegradation of Asphalt Cement-20 by Aerobic Bacteria

    PubMed Central

    Pendrys, John P.

    1989-01-01

    Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-degrading bacterium, Acinetobacter calcoaceticus NAV2, excretes an emulsifier which is capable of emulsifying the saturate and naphthene aromatic fractions of asphalt cement-20. This emulsifier is not denatured by phenol. PMID:16347928

  1. Development of a Specific Anaerobic Field Test for Aerobic Gymnastics

    PubMed Central

    Paineli, Vitor de Salles; Azevedo, Rafael de Almeida; Borelli, Claudia Cristine Gomes; Lancha Junior, Antônio Herbert; Gualano, Bruno; Artioli, Guilherme Giannini

    2015-01-01

    The current investigation aimed to develop a valid specific field test to evaluate anaerobic physical performance in Aerobic Gymnastics athletes. We first designed the Specific Aerobic Gymnast Anaerobic Test (SAGAT), which included gymnastics-specific elements performed in maximal repeated sprint fashion, with a total duration of 80-90 s. In order to validate the SAGAT, three independent sub-studies were performed to evaluate the concurrent validity (Study I, n=8), the reliability (Study II, n=10) and the sensitivity (Study III, n=30) of the test in elite female athletes. In Study I, a positive correlation was shown between lower-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.69, CI: -0.94 to 0.03 and Peak power: p = 0.02, r = -0.72, CI: -0.95 to -0.04) and between upper-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.67, CI: -0.94 to 0.02 and Peak power: p = 0.03, r = -0.69, CI: -0.94 to 0.03). Additionally, plasma lactate was similarly increased in response to SAGAT (p = 0.002), lower-body Wingate Test (p = 0.021) and a simulated competition (p = 0.007). In Study II, no differences were found between the time to complete the SAGAT in repeated trials (p = 0.84; Cohen’s d effect size = 0.09; ICC = 0.97, CI: 0.89 to 0.99; MDC95 = 0.12 s). Finally, in Study III the time to complete the SAGAT was significantly lower during the competition cycle when compared to the period before the preparatory cycle (p < 0.001), showing an improvement in SAGAT performance after a specific Aerobic Gymnastics training period. Taken together, these data have demonstrated that SAGAT is a specific, reliable and sensitive measurement of specific anaerobic performance in elite female Aerobic Gymnastics, presenting great potential to be largely applied in training settings. PMID:25876039

  2. Development of a specific anaerobic field test for aerobic gymnastics.

    PubMed

    Alves, Christiano Robles Rodrigues; Borelli, Marcello Tadeu Caetano; Paineli, Vitor de Salles; Azevedo, Rafael de Almeida; Borelli, Claudia Cristine Gomes; Lancha Junior, Antônio Herbert; Gualano, Bruno; Artioli, Guilherme Giannini

    2015-01-01

    The current investigation aimed to develop a valid specific field test to evaluate anaerobic physical performance in Aerobic Gymnastics athletes. We first designed the Specific Aerobic Gymnast Anaerobic Test (SAGAT), which included gymnastics-specific elements performed in maximal repeated sprint fashion, with a total duration of 80-90 s. In order to validate the SAGAT, three independent sub-studies were performed to evaluate the concurrent validity (Study I, n=8), the reliability (Study II, n=10) and the sensitivity (Study III, n=30) of the test in elite female athletes. In Study I, a positive correlation was shown between lower-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.69, CI: -0.94 to 0.03 and Peak power: p = 0.02, r = -0.72, CI: -0.95 to -0.04) and between upper-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.67, CI: -0.94 to 0.02 and Peak power: p = 0.03, r = -0.69, CI: -0.94 to 0.03). Additionally, plasma lactate was similarly increased in response to SAGAT (p = 0.002), lower-body Wingate Test (p = 0.021) and a simulated competition (p = 0.007). In Study II, no differences were found between the time to complete the SAGAT in repeated trials (p = 0.84; Cohen's d effect size = 0.09; ICC = 0.97, CI: 0.89 to 0.99; MDC95 = 0.12 s). Finally, in Study III the time to complete the SAGAT was significantly lower during the competition cycle when compared to the period before the preparatory cycle (p < 0.001), showing an improvement in SAGAT performance after a specific Aerobic Gymnastics training period. Taken together, these data have demonstrated that SAGAT is a specific, reliable and sensitive measurement of specific anaerobic performance in elite female Aerobic Gymnastics, presenting great potential to be largely applied in training settings.

  3. Skin temperature modifies the impact of hypohydration on aerobic performance.

    PubMed

    Kenefick, R W; Cheuvront, S N; Palombo, L J; Ely, B R; Sawka, M N

    2010-07-01

    This study determined the effects of hypohydration on aerobic performance in compensable [evaporative cooling requirement (E(req)) < maximal evaporative cooling (E(max))] conditions of 10 degrees C [7 degrees C wet bulb globe temperature (WBGT)], 20 degrees C (16 degrees C WBGT), 30 degrees C (22 degrees C WBGT), and 40 degrees C (27 degrees C WBGT) ambient temperature (T(a)). Our hypothesis was that 4% hypohydration would impair aerobic performance to a greater extent with increasing heat stress. Thirty-two men [22 +/- 4 yr old, 45 +/- 8 ml.kg(-1).min(-1) peak O(2) uptake (Vo(2 peak))] were divided into four matched cohorts (n = 8) and tested at one of four T(a) in euhydrated (EU) and hypohydrated (HYPO, -4% body mass) conditions. Subjects completed 30 min of preload exercise (cycle ergometer, 50% Vo(2 peak)) followed by a 15 min self-paced time trial. Time-trial performance (total work, change from EU) was -3% (P = 0.1), -5% (P = 0.06), -12% (P < 0.05), and -23% (P < 0.05) in 10 degrees C, 20 degrees C, 30 degrees C, and 40 degrees C T(a), respectively. During preload exercise, skin temperature (T(sk)) increased by approximately 4 degrees C per 10 degrees C T(a), while core (rectal) temperature (T(re)) values were similar within EU and HYPO conditions across all T(a). A significant relationship (P < 0.05, r = 0.61) was found between T(sk) and the percent decrement in time-trial performance. During preload exercise, hypohydration generally blunted the increases in cardiac output and blood pressure while reducing blood volume over time in 30 degrees C and 40 degrees C T(a). Our conclusions are as follows: 1) hypohydration degrades aerobic performance to a greater extent with increasing heat stress; 2) when T(sk) is >29 degrees C, 4% hypohydration degrades aerobic performance by approximately 1.6% for each additional 1 degrees C T(sk); and 3) cardiovascular strain from high skin blood flow requirements combined with blood volume reductions induced by hypohydration

  4. New records in aerobic power among octogenarian lifelong endurance athletes.

    PubMed

    Trappe, Scott; Hayes, Erik; Galpin, Andrew; Kaminsky, Leonard; Jemiolo, Bozena; Fink, William; Trappe, Todd; Jansson, Anna; Gustafsson, Thomas; Tesch, Per

    2013-01-01

    We examined whole body aerobic capacity and myocellular markers of oxidative metabolism in lifelong endurance athletes [n = 9, 81 ± 1 yr, 68 ± 3 kg, body mass index (BMI) = 23 ± 1 kg/m(2)] and age-matched, healthy, untrained men (n = 6; 82 ± 1 y, 77 ± 5 kg, BMI = 26 ± 1 kg/m(2)). The endurance athletes were cross-country skiers, including a former Olympic champion and several national/regional champions, with a history of aerobic exercise and participation in endurance events throughout their lives. Each subject performed a maximal cycle test to assess aerobic capacity (VO(2max)). Subjects had a resting vastus lateralis muscle biopsy to assess oxidative enzymes (citrate synthase and βHAD) and molecular (mRNA) targets associated with mitochondrial biogenesis [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and mitochondrial transcription factor A (Tfam)]. The octogenarian athletes had a higher (P < 0.05) absolute (2.6 ± 0.1 vs. 1.6 ± 0.1 l/min) and relative (38 ± 1 vs. 21 ± 1 ml·kg(-1)·min(-1)) VO(2max), ventilation (79 ± 3 vs. 64 ± 7 l/min), heart rate (160 ± 5 vs. 146 ± 8 beats per minute), and final workload (182 ± 4 vs. 131 ± 14 W). Skeletal muscle oxidative enzymes were 54% (citrate synthase) and 42% (βHAD) higher (P < 0.05) in the octogenarian athletes. Likewise, basal PGC-1α and Tfam mRNA were 135% and 80% greater (P < 0.05) in the octogenarian athletes. To our knowledge, the VO(2max) of the lifelong endurance athletes is the highest recorded in humans >80 yr of age and comparable to nonendurance trained men 40 years younger. The superior cardiovascular and skeletal muscle health profile of the octogenarian athletes provides a large functional reserve above the aerobic frailty threshold and is associated with lower risk for disability and mortality.

  5. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  6. Endurance training and aerobic fitness in young people.

    PubMed

    Baquet, Georges; van Praagh, Emmanuel; Berthoin, Serge

    2003-01-01

    Training-induced adaptations in aerobic fitness have been extensively studied in adults, and some exercise scientists have recommended similar training programmes for young people. However, the subject of the response to aerobic training of children and adolescents is controversial. The effects of exercise training on prepubertal children are particularly debatable. The latter may be partly explained by different training designs, which make comparisons between studies very problematic. We have analysed the procedures applied to protocol design and training methods to highlight the real impact of aerobic training on the peak oxygen uptake (V-dotO2) of healthy children and adolescents. In accordance with previously published reviews on trainability in youngsters, research papers were rejected from the final analysis according to criteria such as the lack of a control group, an unclear training protocol, inappropriate statistical procedures, small sample size, studies with trained or special populations, or with no peak V-dotO2 data. Factors such as maturity, group constitution, consistency between training and testing procedures, drop out rates, or attendance were considered, and possible associations with changes in peak V-dotO2 with training are discussed. From 51 studies reviewed, 22 were finally retained. In most of the studies, there was a considerable lack of research regarding circumpubertal individuals in general, and particularly in girls. The results suggest that methodologically listed parameters will exert a potential influence on the magnitude of peak V-dotO2 improvement. Even if little difference is reported for each parameter, it is suggested that the sum of errors will result in a significant bias in the assessment of training effects. The characteristics of each training protocol were also analysed to establish their respective potential influence on peak V-dotO2 changes. In general, aerobic training leads to a mean improvement of 5-6% in the peak V

  7. [Evaluation of normal aerobic skin flora (author's transl)].

    PubMed

    Crémieux, A; Cazac, J L

    1980-01-01

    This work attempts the quantitative and qualitative evaluation of the bacterial population from two different areas: elbow and groin. Bacteria are recovered using the method of Williamson and Kligman modified by Fleurette and Transy. Aerobic flora is determined from bacterial counts on various media. Results show a density of 475 to 630 bacteria/cm2 for elbow, and 1.9 to 2.4 X 10(5) bacteria/cm2 for groin (geometric and arithmetic mean, respectively). Percentages of different species and types are calculated, and skin population is represented by a circular diagram.

  8. Alteration of dark respiration and reduction of phototrophic growth in a mitochondrial DNA deletion mutant of Chlamydomonas lacking cob, nd4, and the 3' end of nd5.

    PubMed Central

    Duby, F; Matagne, R F

    1999-01-01

    We describe here a new type of mitochondrial mutation (dum24; for dark uniparental minus inheritance) of the unicellular photosynthetic alga Chlamydomonas reinhardtii. The mutant fails to grow under heterotrophic conditions and displays reduced growth under both photoautotrophic and mixotrophic conditions. In reciprocal crosses between mutant and wild-type cells, the meiotic progeny only inherit the phenotype of the mating-type minus parent, indicating that the dum24 mutation exclusively affects the mitochondrial genome. Digestion with various restriction enzymes followed by DNA gel blot hybridizations with specific probes demonstrated that dum24 cells contain four types of altered mitochondrial genomes: deleted monomers lacking cob, nd4, and the 3' end of the nd5 gene; deleted monomers deprived of cob, nd4, nd5, and the 5' end of the cox1 coding sequence; and two types of dimers produced by end-to-end fusions between monomers similarly or differently deleted. Due to these mitochondrial DNA alterations, complex I activity, the cytochrome pathway of respiration, and presumably, the three phosphorylation sites associated with these enzyme activities are lacking in the mutant. The low respiratory rate of the dum24 cells results from the activities of rotenone-resistant NADH dehydrogenase, complex II, and alternative oxidase, with none of these enzymes being coupled to ATP production. To our knowledge, this type of mitochondrial mutation has never been described for photosynthetic organisms or more generally for obligate aerobes. PMID:9878636

  9. Effects of aerobic conditioning in lupus fatigue: a pilot study.

    PubMed

    Robb-Nicholson, L C; Daltroy, L; Eaton, H; Gall, V; Wright, E; Hartley, L H; Schur, P H; Liang, M H

    1989-12-01

    Fatigue, a complex symptom, significantly affects the quality of life in many patients with systemic lupus erythematosus (SLE). To understand this phenomenon, 23 patients with SLE and fatigue were studied. Standardized tests of depression (NIMH), fatigue, exercise tolerance (ETT) on a bicycle ergometer, and SLE activity were obtained. At baseline, SLE patients had significantly lower maximum oxygen consumption (VO2 max) than normals (p less than 0.005). Adjusted for age and sex, SLE patients perform at 54% of their expected maximum VO2, which is similar to published data from patients with rheumatoid arthritis. Depression by NIMH was not correlated with VO2 max or length of time on ETT. Fatigue measured by Profile of Mood States (POMS) was correlated with ETT time (r = 0.476, p less than 0.025) and with VO2 max (r = -0.402, p less than 0.07). After an 8-week aerobic conditioning programme the experimental group increased their aerobic capacity by 19% in contrast to 8% in controls. This change correlated with decreased fatigue as measured by visual analogue scales. Exercise did not exacerbate disease, and only two of 16 experimental subjects experienced transient joint symptoms during exercise.

  10. Biotechnology for aerobic conversion of food waste into organic fertilizer.

    PubMed

    Stabnikova, Olena; Ding, Hong-Bo; Tay, Joo-Hwa; Wang, Jing-Yuan

    2005-02-01

    A biotechnology for aerobic conversion of food waste into organic fertilizer under controlled aeration, stirring, pH and temperature at 55-65 degrees C, is proposed. To maintain neutral pH at the beginning of the bioconversion 5% CaCO3 was added to the total solids of the food waste. The addition of 20% horticultural waste compost as a bulking agent to the food wastes (w.w./w.w.), improved the bioconversion and increased the stability of the final product. No starter culture was needed for aerobic bioconversion of food waste into organic fertilizer for 10 days. The low contents of heavy metals in the raw materials used in the bioconversions ensured the safety of fertilizer from food waste for application in agriculture. The addition of 4% organic fertilizer to the subsoil increased the yield and growth of Ipomoea aquatica (Kang Kong) by 1.5 to 2 times. The addition of phosphorus is required to enhance the positive effect of organic fertilizer on plant growth.

  11. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  12. Microbiological aspects of aerobic thermophilic treatment of swine waste.

    PubMed Central

    Beaudet, R; Gagnon, C; Bisaillon, J G; Ishaque, M

    1990-01-01

    A thermophilic strain (D2) identified as a Bacillus sp. was isolated from an aerobic digestor of swine waste after several months of operation at 55 degrees C. Aerobic thermophilic batch treatment of swine waste inoculated with strain D2 was studied in a 4-liter fixed-bed reactor. Stabilization of the waste was achieved in less than 30 h when the original chemical oxygen demand (COD) was between 15 and 20 g/liter or in less than 48 h when the COD was around 35 g/liter. When the COD was higher than 30 g/liter, the pH of the waste reached 9.2 to 9.5 during the treatment, and periodic adjustment of the pH to 8.5 was necessary to maintain the activity of the biofilm. In this reactor, ammoniacal nitrogen was completely eliminated by desorption in less than 72 h of incubation. The different packing materials used resulted in similar rates of degradation of organic matter. The thermophilic treatment was also efficient in the 75-liter digestor, and stabilization was achieved in approximately 50 h. A bank of 22 thermophilic bacterial strains originating from different environments and adapted to the thermophilic treatment of swine waste was established. This thermophilic treatment allows, in one step, rapid stabilization of the waste, elimination of the bad smell, and complete elimination of ammonia nitrogen by stripping. PMID:2339880

  13. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates

    PubMed Central

    Robrock, Kristin R.; Coelhan, Mehmet; Sedlak, David; Alvarez-Cohen, Lisa

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di- BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation. PMID:19731666

  14. Group aquatic aerobic exercise for children with disabilities.

    PubMed

    Fragala-Pinkham, Maria; Haley, Stephen M; O'Neil, Margaret E

    2008-11-01

    The effectiveness and safety of a group aquatic aerobic exercise program on cardiorespiratory endurance for children with disabilities was examined using an A-B study design. Sixteen children (11 males, five females) age range 6 to 11 years (mean age 9y 7mo [SD 1y 4mo]) participated in this twice-per-week program lasting 14 weeks. The children's diagnoses included autism spectrum disorder, myelomeningocele, cerebral palsy, or other developmental disability. More than half of the children ambulated independently without aids. Children swam laps and participated in relay races and games with a focus of maintaining a defined target heart rate zone. The strengthening component consisted of exercises using bar bells, aquatic noodles, and water resistance. The following outcomes were measured: half-mile walk/run, isometric muscle strength, timed floor to stand 3-meter test, and motor skills. Complaints of pain or injury were systematically collected. Significant improvements in the half-mile walk/run were observed, but not for secondary outcomes of strength or motor skills. The mean program attendance was 80%, and no injury was reported. Children with disabilities may improve their cardiorespiratory endurance after a group aquatic aerobic exercise program with a high adult:child ratio and specific goals to maintain training heart rates.

  15. Progressive hypoxia decouples activity and aerobic performance of skate embryos

    PubMed Central

    Di Santo, Valentina; Tran, Anna H.; Svendsen, Jon C.

    2016-01-01

    Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, Scrit). Below Scrit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation. PMID:27293746

  16. Aerobic granulation with brewery wastewater in a sequencing batch reactor.

    PubMed

    Wang, Shu-Guang; Liu, Xian-Wei; Gong, Wen-Xin; Gao, Bao-Yu; Zhang, Dong-Hua; Yu, Han-Qing

    2007-08-01

    Aerobic granular sludge was cultivated in a sequencing batch reactor fed with brewery wastewater. After nine-week operation, stable granules with sizes of 2-7 mm were obtained. With the granulation, the SVI value decreased from 87.5 to 32 mL/g. The granular sludge had an excellent settling ability with the settling velocity over 91 m/h. Aerobic granular sludge exhibited good performance in the organics and nitrogen removal from brewery wastewater. After granulation, high and stable removal efficiencies of 88.7% COD(t), 88.9% NH(4)(+)-N were achieved at the volumetric exchange ratio of 50% and cycle duration of 6h. The average COD(t) and COD(s) of the effluent were 212 and 134 mg/L, respectively, and the average effluent ammonium concentration was less than 14.4 mg/L. Nitrogen was removed due to nitrification and simultaneous denitrification in the inner core of granules.

  17. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions.

    PubMed

    Bordeleau, Geneviève; Martel, Richard; Bamba, Abraham N'Valoua; Blais, Jean-François; Ampleman, Guy; Thiboutot, Sonia

    2014-10-01

    The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities.

  18. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde.

    PubMed Central

    Slininger, P J; Bothast, R J

    1985-01-01

    When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32 degrees C, although the overall 3-HPA yield increased continuously within the 25 to 37 degrees C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield. PMID:3911907

  19. Improved Aerobic Colony Count Technique for Hydrophobic Grid Membrane Filters

    PubMed Central

    Parrington, Lorna J.; Sharpe, Anthony N.; Peterkin, Pearl I.

    1993-01-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35°C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) solution by simply lifting one corner of the filter while it was still on the agar and adding the reagent. Microbial growths on HGMFs were counted after color had been allowed to develop for 15 min at room temperature. With representative foods, virtually all colonies stained pink to red. Automated electronic counts made by using the MI-100 HGMF Interpreter were easier and more reliable than control HGMF counts made by the AOAC International official action procedure. Manual counting was easier as well because of increased visibility of the microbial growths. Except in the case of dairy products, 24-h TTC counts did not differ significantly from 48-h FGA counts, whereas the FGA counts at 24 h were always significantly lower, indicating that for many food products the HGMF TTC flooding method permits aerobic colony counts to be made after 24 h. PMID:16349033

  20. Improved aerobic colony count technique for hydrophobic grid membrane filters.

    PubMed

    Parrington, L J; Sharpe, A N; Peterkin, P I

    1993-09-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35 degrees C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) solution by simply lifting one corner of the filter while it was still on the agar and adding the reagent. Microbial growths on HGMFs were counted after color had been allowed to develop for 15 min at room temperature. With representative foods, virtually all colonies stained pink to red. Automated electronic counts made by using the MI-100 HGMF Interpreter were easier and more reliable than control HGMF counts made by the AOAC International official action procedure. Manual counting was easier as well because of increased visibility of the microbial growths. Except in the case of dairy products, 24-h TTC counts did not differ significantly from 48-h FGA counts, whereas the FGA counts at 24 h were always significantly lower, indicating that for many food products the HGMF TTC flooding method permits aerobic colony counts to be made after 24 h.

  1. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency.

  2. Aerobic fitness, hippocampal viscoelasticity, and relational memory performance.

    PubMed

    Schwarb, Hillary; Johnson, Curtis L; Daugherty, Ana M; Hillman, Charles H; Kramer, Arthur F; Cohen, Neal J; Barbey, Aron K

    2017-03-30

    The positive relationship between hippocampal structure, aerobic fitness, and memory performance is often observed among children and older adults; but evidence of this relationship among young adults, for whom the hippocampus is neither developing nor atrophying, is less consistent. Studies have typically relied on hippocampal volumetry (a gross proxy of tissue composition) to assess individual differences in hippocampal structure. While volume is not specific to microstructural tissue characteristics, microstructural differences in hippocampal integrity may exist even among healthy young adults when volumetric differences are not diagnostic of tissue health or cognitive function. Magnetic resonance elastography (MRE) is an emerging noninvasive imaging technique for measuring viscoelastic tissue properties and provides quantitative measures of tissue integrity. We have previously demonstrated that individual differences in hippocampal viscoelasticity are related to performance on a relational memory task; however, little is known about health correlates to this novel measure. In the current study, we investigated the relationship between hippocampal viscoelasticity and cardiovascular health, and their mutual effect on relational memory in a group of healthy young adults (N=51). We replicated our previous finding that hippocampal viscoelasticity correlates with relational memory performance. We extend this work by demonstrating that better aerobic fitness, as measured by VO2max, was associated with hippocampal viscoelasticity that mediated the benefits of fitness on memory function. Hippocampal volume, however, did not account for individual differences in memory. Therefore, these data suggest that hippocampal viscoelasticity may provide a more sensitive measure to microstructural tissue organization and its consequences to cognition among healthy young adults.

  3. Cyanide toxicity in hepatocytes under aerobic and anaerobic conditions.

    PubMed

    Aw, T Y; Jones, D P

    1989-09-01

    The effect of cyanide on cell viability and mitochondrial function was studied in hepatocytes exposed to air or argon. Cells were more susceptible to cyanide toxicity under air than under argon. Analysis of the disposition of cyanide showed that the difference in susceptibility to KCN was not due to O2-dependent differences in cyanide metabolism or elimination. Studies of mitochondrial function revealed that cyanide under aerobic conditions resulted in substantial swelling of the mitochondria, which corresponded to a matrix loading of phosphate. In addition, cyanide caused a loss of the mitochondrial protonmotive force. This was in contrast to the results for cells exposed to 30 min of anoxia alone in which there was no loss of mitochondrial delta pH, no detectable change in mitochondrial volume, and little matrix loading of phosphate. These results show that at least some of the protective mechanisms elicited by anoxia (B. S. Andersson, T. Y. Aw, and D. P. Jones. Am. J. Physiol. 252 (Cell Physiol. 21): C349-C355, 1987) are not elicited by cyanide alone. Thus cyanide under aerobic conditions does not provide a completely valid model for simple anoxia. Moreover, the results suggest that the molecular sensor necessary to signal suppression of metabolic and transport functions during neahypoxia is dependent on O2 and is neither stimulated nor antagonized by KCN.

  4. Effects of muscle strengthening versus aerobic exercise program in fibromyalgia.

    PubMed

    Bircan, Ciğdem; Karasel, Seide Alev; Akgün, Berrin; El, Ozlem; Alper, Serap

    2008-04-01

    The purpose of this study was to compare the effects of aerobic training with a muscle-strengthening program in patients with fibromyalgia. Thirty women with fibromyalgia were randomized to either an aerobic exercise (AE) program or a strengthening exercise (SE) program for 8 weeks. Outcome measures included the intensity of fibromyalgia-related symptoms, tender point count, fitness (6-min walk distance), hospital anxiety and depression (HAD) scale, and short-form health survey (SF-36). There were significant improvements in both groups regarding pain, sleep, fatigue, tender point count, and fitness after treatment. HAD-depression scores improved significantly in both groups while no significant change occurred in HAD-anxiety scores. Bodily pain subscale of SF-36 and physical component summary improved significantly in the AE group, whereas seven subscales of SF-36, physical component summary, and mental component summary improved significantly in the SE group. When the groups were compared after treatment, there were no significant differences in pain, sleep, fatigue, tender point count, fitness, HAD scores, and SF-36 scores. AE and SE are similarly effective at improving symptoms, tender point count, fitness, depression, and quality of life in fibromyalgia.

  5. [Stability control of aerobic granules using an innovative reactor].

    PubMed

    Li, Zhi-Hua; Yang, Fan; Li, Sheng; Xie, Lei; Wang, Xiao-Chang

    2012-06-01

    Uncontrolled variation of diameter and density of aerobic granules frequently resulted in instability and thus brought about operation failure. An innovative reactor was therefore developed for the control of diameter and density of aerobic granules. There were two ways to select the sludge, one was the short settling time select the big and dense granules in the reactor, and the other was the hydro cyclone that washed out the big and compact granules preventing big and compact fourthly growth in the reactor. By these means, the diameter of granules could maintained in the range of 300-1 000 microm for a long time, consequently, the long term stability could be obtained. According to the kinetic analysis, it was found that the energy maintenance coefficient was 0.08-0.10, which was much higher than the conventional granular system (0.06), and the ratio of the COD used for maintenance to the influent was higher than the conventional one. Additionally, the removal efficiencies of COD and ammonia were 92% and 60%, respectively.

  6. Butyrate production under aerobic growth conditions by engineered Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Yakushi, Toshiharu; Matsushita, Kazunobu

    2017-01-11

    Butyrate is an important industrial platform chemical. Although several groups have reported butyrate production under oxygen-limited conditions by a native producer, Clostridium tyrobutylicum, and by a metabolically engineered Escherichia coli, efforts to produce butyrate under aerobic growth conditions have met limited success. Here, we constructed a novel butyrate synthetic pathway that functions under aerobic growth conditions in E. coli, by modifying the 1-butanol synthetic pathway reported previously. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, and endogenous thioesterase(s) of E. coli. To evaluate the potential of this pathway for butyrate production, culture conditions, including pH, oxygen supply, and concentration of inorganic nitrogen sources, were optimized in a mini-jar fermentor. Under the optimal conditions, butyrate was produced at a concentration of up to 140 mM (12.3 g/L in terms of butyric acid) after 54 h of fed-batch culture.

  7. Fetal cardiotocography before and after water aerobics during pregnancy

    PubMed Central

    2010-01-01

    Objective To evaluate the effect of moderate aerobic physical activity in water on fetal cardiotocography patterns in sedentary pregnant women. Method In a non-randomized controlled trial, 133 previously sedentary pregnant women participated in multiple regular sessions of water aerobics in a heated swimming pool. Cardiotocography was performed for 20 minutes before and just after the oriented exercise. Cardiotocography patterns were analyzed pre- and post-exercise according to gestational age groups (24-27, 28-31, 32-35 and 36-40 weeks). Student's t and Wilcoxon, and McNemar tests were used, respectively, to analyze numerical and categorical variables. Results No significant variations were found between pre- and post-exercise values of fetal heart rate (FHR), number of fetal body movements (FM) or accelerations (A), FM/A ratio or the presence of decelerations. Variability in FHR was significantly higher following exercise only in pregnancies of 24-27 weeks. Conclusions Moderate physical activity in water was not associated with any significant alterations in fetal cardiotocography patterns, which suggests no adverse effect on the fetus. PMID:20807417

  8. Critical period of weed control in aerobic rice.

    PubMed

    Anwar, M P; Juraimi, A S; Samedani, B; Puteh, A; Man, A

    2012-01-01

    Critical period of weed control is the foundation of integrated weed management and, hence, can be considered the first step to design weed control strategy. To determine critical period of weed control of aerobic rice, field trials were conducted during 2010/2011 at Universiti Putra Malaysia. A quantitative series of treatments comprising two components, (a) increasing duration of weed interference and (b) increasing length of weed-free period, were imposed. Critical period was determined through Logistic and Gompertz equations. Critical period varied between seasons; in main season, it started earlier and lasted longer, as compared to off-season. The onset of the critical period was found relatively stable between seasons, while the end was more variable. Critical period was determined as 7-49 days after seeding in off-season and 7-53 days in main season to achieve 95% of weed-free yield, and 23-40 days in off-season and 21-43 days in main season to achieve 90% of weed-free yield. Since 5% yield loss level is not practical from economic view point, a 10% yield loss may be considered excellent from economic view point. Therefore, aerobic rice should be kept weed-free during 21-43 days for better yield and higher economic return.

  9. Aerobic sugar metabolism in the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Merico, Annamaria; Capitanio, Daniele; Vigentini, Ileana; Ranzi, Bianca Maria; Compagno, Concetta

    2003-12-01

    Despite the importance of some Zygosaccharomyces species as agents causing spoilage of food, the carbon and energy metabolism of most of them is yet largely unknown. This is the case with Zygosaccharomyces bailii. In this study the occurrence of the Crabtree effect in the petite-negative yeast Z. bailii ATCC 36947 was investigated. In this yeast the aerobic ethanol production is strictly dependent on the carbon source utilised. In glucose-limited continuous cultures a very low level of ethanol was produced. In fructose-limited continuous cultures ethanol was produced at a higher level and its production increased with the dilution rate. As a consequence, on fructose the onset of respiro-fermentative metabolism caused a reduction in biomass yield. An immediate aerobic alcoholic fermentation in Z. bailii was observed during the transition from sugar limitation to sugar excess, both on glucose and on fructose. The analysis of some key enzymes of the fermentative metabolism showed a high level of acetyl-CoA synthetase in Z. bailii growing on fructose. At high dilution rates, the activities of glucose- and fructose-phosphorylating enzymes, as well as of pyruvate decarboxylase and alcohol dehydrogenase, were higher in cells during growth on fructose than on glucose.

  10. Aerobic biodegradation of trichloroethylene by microorganisms that degrade aromatic compounds

    SciTech Connect

    Lu, C.J.; Chang, C.Y.; Lee, C.M.

    1995-12-31

    Aerobic biodegradation of trichloroethylene (TCE) at an initial concentration of 80 mg/L with and without the presence of an aromatic compound was conducted with a series of batch reactors. The target aromatic compounds were benzene, toluene, and catechol. The aromatics-acclimated microorganisms were used as the cell source for the batch study. The results indicated that the presence of an aromatic compound was required to initiate the aerobic biodegradation of TCE by the aromatic-utilizing microorganisms. The addition of benzene or toluene initiated the removal of TCE. However, TCE removal was not proportional to the initial concentration of the aromatic compounds. The presence of an aromatic compound at an initial concentration of 5 mg/L resulted in better TCE removal in comparison with that at 1 or 20 mg/L. TCE removal was still significant after the depletion of the aromatic compound, but at a lower rate. The presence of catechol, an intermediate of the biodegradation of an aromatic compound, did not initiate the biodegradation of TCE by the catechol-utilizing microorganisms.

  11. Effect of aerobic exercise on patients with primary fibromyalgia syndrome.

    PubMed

    Salek, A K; Khan, M M; Ahmed, S M; Rashid, M I; Emran, M A; Mamun, M A

    2005-07-01

    Sixty eight adult patients of fibromyalgia were included in this prospective study from the Outpatient Department of Physical Medicine and Rehabilitation of Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka during the period of January 2003 to June 2003. Study samples were assigned into two treatment groups: Group A (n = 38) with exercise by static bicycle and aerobic walking in addition to tricyclic antidepressant and analgesic and Group B (n = 30) was non exercise group, treated with tricyclic antidepressant and analgesic only. The total duration of treatment was 16 weeks. Pre-treatment (week 0) and post treatment (week 16) evaluation was performed in both groups. Evaluation parameters included pain grade, number of trigger points, occurrence of arousal at night, frequency of micturition and global evaluation by the physician. After 16 weeks, mean improvement of exercise group and non exercise group was 48% and 39% respectively but this difference was not statistically significant. Therefore, from this study it was observed that aerobic exercise showed no significant benefit to fibromyalgia patients.

  12. Childhood aerobic fitness predicts cognitive performance one year later.

    PubMed

    Chaddock, Laura; Hillman, Charles H; Pontifex, Matthew B; Johnson, Christopher R; Raine, Lauren B; Kramer, Arthur F

    2012-01-01

    Aerobically fit children outperform less fit peers on cognitive control challenges that involve inhibition, cognitive flexibility, and working memory. The aim of this study was to determine whether, compared with less fit children, more fit 9- and 10-year-old pre-adolescents exhibit superior performance on a modified compatible and incompatible flanker task of cognitive control at the initial time of fitness testing and approximately one year later. We found that more fit children demonstrated increased flanker accuracy at both test sessions, coupled with a superior ability to flexibly allocate strategies during task conditions that required different amounts of cognitive control, relative to less fit children. More fit children also gained a speed benefit at follow-up testing. Structural MRI data were also collected to investigate the relationship between basal ganglia volume and task performance. Bilateral putamen volumes of the dorsal striatum and globus pallidus volumes predicted flanker performance at initial and follow-up testing one year later. The present findings suggest that childhood aerobic fitness and basal ganglia volumes relate to cognitive control at the time of fitness testing and may play a role in cognitive performance in the future. We hope that this research will encourage public health and educational changes that will promote a physically active lifestyle in children.

  13. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates.

    PubMed

    Robrock, Kristin R; Coelhan, Mehmet; Sedlak, David L; Alvarez-Cohent, Lisa

    2009-08-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of the related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di-BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta,- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation.

  14. Aerobic biomineralization of alpha-hexachlorocyclohexane in contaminated soil

    SciTech Connect

    Bachmann, A.; de Bruin, W.; Jumelet, J.C.; Rijnaarts, H.H.; Zehnder, A.J.

    1988-02-01

    The factors identified to be important for the aerobic biodegradation of alpha-hexachlorocyclohexane (alpha-HCH) in a soil slurry are temperature, auxiliary carbon source, substrate concentration, and soil inhomogeneities. Temperatures in the range of 20 to 30/sup 0/C were determined to be most favorable for biodegradation of alpha-HCH. No alpha-HCH biodegradation was detected at temperatures below 4/sup 0/C and above 40/sup 0/C. The addition of auxiliary organic carbon compounds showed repressive effects on alpha-HCH biomineralization. Increased oxygen partial pressures reduced the repressive effects of added auxiliary organic carbon compounds. A linear relationship between alpha-HCH concentration and its conversion rate was found in a Lineweaver-Burk plot. Inhomogeneities such as clumping of alpha-HCH significantly affected its biodegradation. Inhomogeneity as an influence on biodegradation has not drawn sufficient attention in the past, even though it certainly has affected both laboratory studies and the application of biotechnological methods to clean up contaminated sites. On the basis of metabolites detected during degradation experiments, the initial steps of aerobic alpha-HCH bioconversion in a soil slurry are proposed.

  15. Developmental intestinal aerobic microflora in the kori bustard (Ardeotis kori).

    PubMed

    Naldo, J L; Silvanose, C D; Samour, J H; Bailey, T A

    1998-01-01

    A study was carried out to investigate the normal aerobic bacterial flora of developing kori bustard (Ardeotis kori) chicks, captive bred at the National Avian Research Center, Abu Dhabi, United Arab Emirates. Faecal samples were collected from 14 birds at different ages from the first day of hatching until 99 days old and were cultured for aerobic bacteria. Several bacterial species were isolated from the cultures, they included Escherichia coli, Streptococcus viridians, Enterococcus faecalis, Klebsiella oxytoca, Proteus spp., Enterobacter, spp. and Serratia marcescens. Gram-negative bacilli were isolated from all but one of the faecal samples collected. They were also the predominant bacteria, accounting for between 55.6 and 73.4% of the mean colony count of faecal cultures from all age groups. E. coli was the most frequently isolated bacteria, the frequency and mean colony count increased as the birds grew older. Gram-positive cocci were isolated from between 50 and 100% of the faecal samples from all age groups, and they accounted for between 26.6 and 44.4% of the mean colony count. Results from this study indicated that Gram-negative bacilli and Gram-positive cocci can be isolated frequently from the faeces of developing, clinically normal, captive bred kori bustard chicks.

  16. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  17. Sweat Rates During Continuous and Interval Aerobic Exercise: Implications for NASA Multipurpose Crew Vehicle (MPCV) Missions

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Scott, Jessica; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori L.

    2016-01-01

    Aerobic deconditioning is one of the effects spaceflight. Impaired crewmember performance due to loss of aerobic conditioning is one of the risks identified for mitigation by the NASA Human Research Program. Missions longer than 8 days will involve exercise countermeasures including those aimed at preventing the loss of aerobic capacity. The NASA Multipurpose Crew Vehicle (MPCV) will be NASA's centerpiece architecture for human space exploration beyond low Earth orbit. Aerobic exercise within the small habitable volume of the MPCV is expected to challenge the ability of the environmental control systems, especially in terms of moisture control. Exercising humans contribute moisture to the environment by increased respiratory rate (exhaling air at 100% humidity) and sweat. Current acceptable values are based on theoretical models that rely on an "average" crew member working continuously at 75% of their aerobic capacity (Human Systems Integration Requirements Document). Evidence suggests that high intensity interval exercise for much shorter durations are equally effective or better in building and maintaining aerobic capacity. This investigation will examine sweat and respiratory rates for operationally relevant continuous and interval aerobic exercise protocols using a variety of different individuals. The results will directly inform what types of aerobic exercise countermeasures will be feasible to prescribe for crewmembers aboard the MPCV.

  18. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations.

  19. [Isolation and identification of electrochemically active microorganism from micro-aerobic environment].

    PubMed

    Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng

    2014-10-01

    Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.

  20. Noise Levels during Aerobics and the Potential Effects on Distortion Product Otoacoustic Emissions

    ERIC Educational Resources Information Center

    Torre, Peter, III; Howell, Jennifer C.

    2008-01-01

    The purpose of this study was to measure noise levels during aerobics classes and to examine how outer hair cell (OHC) function, using distortion product otoacoustic emissions (DPOAEs), may be affected by this exposure. Fifty individuals (48 women and 2 men, ages 19-41 years) participated in 50-min aerobics classes. Noise levels were measured…

  1. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2014-01-01

    Although it is known that a part of lactic acid bacteria can produce carotenoid, little is known about the regulation of carotenoid production. The objective of this study was to determine whether aerobic growth condition influences carotenoid production in carotenoid-producing Enterococcus gilvus. Enterococcus gilvus was grown under aerobic and anaerobic conditions. Its growth was slower under aerobic than under anaerobic conditions. The decrease in pH levels and production of lactic acid were also lower under aerobic than under anaerobic conditions. In contrast, the amount of carotenoid pigments produced by E. gilvus was significantly higher under aerobic than under anaerobic conditions. Further, real-time quantitative reverse transcription PCR revealed that the expression level of carotenoid biosynthesis genes crtN and crtM when E. gilvus was grown under aerobic conditions was 2.55-5.86-fold higher than when it was grown under anaerobic conditions. Moreover, after exposure to 16- and 32-mM H2O2, the survival rate of E. gilvus grown under aerobic conditions was 61.5- and 72.5-fold higher, respectively, than when it was grown under anaerobic conditions. Aerobic growth conditions significantly induced carotenoid production and the expression of carotenoid biosynthesis genes in E. gilvus, resulting in increased oxidative stress tolerance.

  2. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data are limited on the effects of controlled aerobic exercise programs (without weight loss) on insulin sensitivity and glucose metabolism in children and adolescents. To determine whether a controlled aerobic exercise program (without weight loss) improves peripheral and hepatic insulin sensitivi...

  3. Associations between Attitudes toward Physical Education and Aerobic Capacity in Hungarian High School Students

    ERIC Educational Resources Information Center

    Kaj, Mónika; Saint-Maurice, Pedro F.; Karsai, István; Vass, Zoltán; Csányi, Tamás; Boronyai, Zoltán; Révész, László

    2015-01-01

    Purpose: The purpose of this study was to create a physical education (PE) attitude scale and examine how it is associated with aerobic capacity (AC). Method: Participants (n = 961, aged 15-20 years) were randomly selected from 26 Hungarian high schools. AC was estimated from performance on the Progressive Aerobic Cardiovascular and Endurance Run…

  4. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  5. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation

    NASA Astrophysics Data System (ADS)

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  6. Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice.

    PubMed

    He, Min-Di; Xu, Shang-Cheng; Zhang, Xin; Wang, Yan; Xiong, Jia-Chuan; Zhang, Xiao; Lu, Yong-Hui; Zhang, Lei; Yu, Zheng-Ping; Zhou, Zhou

    2013-09-01

    The oral ingestion of soluble nickel compounds leads to neurological symptoms in humans. Deficiencies in aerobic metabolism induced by neurotoxic stimulus can cause an energy crisis in the brain that results in a variety of neurotoxic effects. In the present study, we focused on the aerobic metabolic states to investigate whether disturbance of aerobic metabolism was involved in nickel-induced neurological effects in mice. Mice were orally administered nickel chloride, and neurobehavioral performance was evaluated using the Morris water maze and open field tests at different time points. Aerobic metabolic states in the cerebral cortex were analyzed at the same time points at which neurobehavioral changes were evident. We found that nickel exposure caused deficits in both spatial memory and exploring activity in mice and that nickel was deposited in their cerebral cortex. Deficient aerobic metabolism manifested as decreased O2 consumption and ATP concentrations, lactate and NADH accumulation, and oxidative stress. Meanwhile, the activity of prototypical iron-sulfur clusters (ISCs) containing enzymes that are known to control aerobic metabolism, including complex I and aconitase, and the expression of ISC assembly scaffold protein (ISCU) were inhibited following nickel deposition. Overall, these data suggest that aerobic metabolic disturbances, which accompanied the neurobehavioral changes, may participate in nickel-induced neurologic effects. The inactivation of ISC containing metabolic enzymes may result in the disturbance of aerobic metabolism. A better understanding of how nickel impacts the energy metabolic processes may provide insight into the prevention of nickel neurotoxicity.

  7. Aerobic Requirements for Moving Handweights through Various Ranges of Motion While Walking.

    ERIC Educational Resources Information Center

    Auble, Thomas E.; And Others

    1987-01-01

    Comparison of the aerobic metabolic requirements of normal walking with and without 1-, 2-, and 3-pound handweights among nine adult males indicated that walking while moving handweights through large ranges of motion provides a combined upper and lower body aerobic stimulus that is sufficient for endurance training for persons with poor to…

  8. Correlations between aerobic capacity, pulmonary and cognitive functioning in the older women.

    PubMed

    Kara, B; Pinar, L; Uğur, F; Oğuz, M

    2005-04-01

    Regular aerobic exercise improves aerobic capacity and increases brain blood flow and oxygenation. Exercise also stimulates the reticular activating system and leads to a centrally excited state thereby makes the brain active and alert. In the present study, an aerobic exercise program consisting of submaximal level calisthenic exercises was devised for relatively healthy women between 60 and 80 years old, attending a solidarity center for the aged for daily activities. The effects of exercise on aerobic fitness, and the correlations between aerobic capacities, pulmonary functions and cognition were evaluated. Following a general health examination, 45 female volunteers fulfilling the international criteria of exercising standards for the aged were included in the program. The rhythmic and entertaining calisthenic exercises were performed by the older women for four months, three days a week, 40 or 50 minutes a day. Tests for aerobic capacities, pulmonary functions, and some neuropsychologic performances were carried out during the sedentary period and after the exercise program. The results revealed significant improvements in aerobic capacity, pulmonary functions, and some of the cognitive functions after the 4-month exercise program. We found strong relationships between aerobic capacities and cognitive functioning. Overall, the subjects expressed their happiness and well being on every occasion, during and after the exercise program.

  9. Active Female Maximal and Anaerobic Threshold Cardiorespiratory Responses to Six Different Water Aerobics Exercises

    ERIC Educational Resources Information Center

    Antunes, Amanda H.; Alberton, Cristine L.; Finatto, Paula; Pinto, Stephanie S.; Cadore, Eduardo L.; Zaffari, Paula; Kruel, Luiz F. M.

    2015-01-01

    Purpose: Maximal tests conducted on land are not suitable for the prescription of aquatic exercises, which makes it difficult to optimize the intensity of water aerobics classes. The aim of the present study was to evaluate the maximal and anaerobic threshold cardiorespiratory responses to 6 water aerobics exercises. Volunteers performed 3 of the…

  10. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation.

    PubMed

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  11. Cardiac Frequency and Caloric Cost of Aerobic Dancing in Young Women.

    ERIC Educational Resources Information Center

    Nelson, Deborah J.; And Others

    1988-01-01

    A study of cardiac frequency during aerobic dancing indicated that it can sustain an elevated cardiac frequency in most cases. The caloric cost of aerobic dancing is approximately 50 percent greater than an equal duration of barre and center-floor exercise by elite ballet dancers. (JD)

  12. Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample

    ERIC Educational Resources Information Center

    Harveson, Andrew T.; Hannon, James C.; Brusseau, Timothy A.; Podlog, Leslie; Papadopoulos, Charilaos; Durrant, Lynne H.; Hall, Morgan S.; Kang, Kyoung-doo

    2016-01-01

    Purpose: The purpose of this study was to determine differences in cognition between acute bouts of resistance exercise, aerobic exercise, and a nonexercise control in an untrained youth sample. Method: Ninety-four participants performed 30 min of aerobic exercise, resistance exercise, or nonexercise separated by 7 days each in a randomized…

  13. Validation of the FAST skating protocol to predict aerobic power in ice hockey players.

    PubMed

    Petrella, Nicholas J; Montelpare, William J; Nystrom, Murray; Plyley, Michael; Faught, Brent E

    2007-08-01

    Few studies have reported a sport-specific protocol to measure the aerobic power of ice hockey players using a predictive process. The purpose of our study was to validate an ice hockey aerobic field test on players of varying ages, abilities, and levels. The Faught Aerobic Skating Test (FAST) uses an on-ice continuous skating protocol on a course measuring 160 feet (48.8 m) using a CD to pace the skater with a beep signal to cross the starting line at each end of the course. The FAST incorporates the principle of increasing workload at measured time intervals during a continuous skating exercise. Step-wise multiple regression modelling was used to determine the estimate of aerobic power. Participants completed a maximal aerobic power test using a modified Bruce incremental treadmill protocol, as well as the on-ice FAST. Normative data were collected on 406 ice hockey players (291 males, 115 females) ranging in age from 9 to 25 y. A regression to predict maximum aerobic power was developed using body mass (kg), height (m), age (y), and maximum completed lengths of the FAST as the significant predictors of skating aerobic power (adjusted R2 = 0.387, SEE = 7.25 mL.kg-1.min-1, p < 0.0001). These results support the application of the FAST in estimating aerobic power among male and female competitive ice hockey players between the ages of 9 and 25 years.

  14. We Huff and Puff: The Parameters and the Program of Aerobics for Children under Five.

    ERIC Educational Resources Information Center

    Eastman, Wayne

    In today's society, young children have few experiences with aerobic activities, a pattern of exercise traditionally reserved for adults. This paper discusses how aerobic exercises can be used in a preschool environment, arguing that such activities are best presented using a thematic approach so that young children can form impressions about…

  15. [Aerobic capacity and quality of life in school children from 8 to 12].

    PubMed

    Gálvez Casas, Arancha; Rodríguez García, Pedro L; García-Cantó, Eliseo; Rosa Guillamón, Andrés; Pérez-Soto, Juan J; Tarraga Marcos, Loreto; Tarraga Lopez, Pedro

    2015-01-01

    Aerobic capacity is a powerful physiological indicator of the overall health status. The objective of this study was to analyse the relationship between aerobic capacity and quality of life in a sample of 298 (159 girls) school children aged 8-12 years. Aerobic capacity was tested using the Course-Navette test. Quality of life was assessed using the KIDSCREEN-10 Index scale. Males showed higher performance in the Course-Navette test and highest values of VO2max (P<.001 for both). ANOVA statistical analysis showed that the quality of life was significantly higher in school children with increased level of aerobic capacity compared to those with a low level (P=.001). Children with high aerobic capacity showed higher quality of life scores in relation to their peers with low scores (P<.001). As for the females, significant differences were found among those with high aerobic capacity level and their peers low levels (P<.031). The results of this study suggest that school children with higher level of aerobic capacity show better results in the quality of life index. Long-term intervention studies are needed to verify if an aerobic capacity development programme may upgrade the quality of life of children and adolescents.

  16. Carbon offsets from improved swine manure management using aerobic treatment technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic treatment of manure is an accepted manure management system under protocols adopted through the United Nations Framework Convention on Climate Change (UNFCCC). Our objectives were to determine greenhouse gas (GHG) emission reductions from replacement of anaerobic lagoons with aerobic treatme...

  17. Effects of anaerobic digestion and aerobic treatment on gaseous emissions from dairy manure storages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages were evaluated in this study. Screened dairy manure containing 3.5% volatile solids (VS) was either anaerobically digested or aerobically treated prior to storage in air-tight vessel...

  18. The Effect of Four Instructional Formats on Aerobic Fitness of Junior-High School Students

    ERIC Educational Resources Information Center

    Wright, Ron W.; Karp, Grace Goc

    2006-01-01

    The low level of fitness in junior-high school students is an area of great concern. An important, but misunderstood, part of the physical education curriculum is the development of aerobic fitness. What is the best way to go about developing aerobic fitness? Four groups of primarily Caucasian (79.9%) Grade 8 and 9 students (n = 144), attending a…

  19. Joint Workshop on Aspects of Halophilism Held in Jerusalem, March 23-28, 1986. Program/Abstracts.

    DTIC Science & Technology

    1986-04-30

    are usually huihly eutrophic due to primary productivity by eukaryotic algae in some cases, or anoxygenic phototrophic bacteria in othes cases...analysis of the pigments produced by strains and the amounts of other cellular isoprenoids is being carried out. The isoprene -based carotenoids represent

  20. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis

    SciTech Connect

    Anson, Colin W.; Ghosh, Soumya; Hammes-Schiffer, Sharon; Stahl, Shannon S.

    2016-03-30

    Macrocyclic metal complexes and p-benzoquinones are commonly used as co-catalytic redox mediators in aerobic oxidation reactions. In an effort to gain insight into the mechanism and energetic efficiency of these reactions, we investigated Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone. Kinetic and spectroscopic data suggest that the catalyst resting-state consists of an equilibrium between a CoII(salophen) complex, a CoIII-superoxide adduct, and a hydrogen-bonded adduct between the hydroquinone and the CoIII–O2 species. The kinetic data, together with density functional theory data, suggest that the turnover-limiting step features proton-coupled electron transfer from a semi-hydroquinone species and a CoIII-hydroperoxide intermediate. Additional experimental and computational data suggest that a coordinated H2O2 intermediate oxidizes a second equivalent of hydroquinone. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The NSF provided partial support for the EPR instrumentation (NSF CHE-0741901).

  1. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418.

    PubMed Central

    Forage, R G; Lin, E C

    1982-01-01

    In Klebsiella pneumoniae NCIB 418, the pathways normally responsible for aerobic growth on glycerol and sn-glycerol 3-phosphate (the glp system) are superrepressed. However, aerobic growth on glycerol can take place by the intervention of the NAD-linked glycerol dehydrogenase and the ATP-dependent dihydroxyacetone kinase of the dha system normally inducible only anaerobically by glycerol or dihydroxyacetone. Conclusive evidence that the dha system is responsible for both aerobic and anaerobic dissimilation of glycerol was provided by a Tn5 insertion mutant lacking dihydroxyacetone kinase. An enzymatically coupled assay specific for this enzyme was devised. Spontaneous reactivation of the glp system was achieved by selection for aerobic growth on sn-glycerol 3-phosphate or on limiting glycerol as the sole carbon and energy source. However, the expression of this system became constitutive. Aerobic operation of the glp system highly represses synthesis of the dha system enzymes by catabolite repression. Images PMID:6284704

  2. Complete remediation of PCE contaminated unsaturated soils by sequential anaerobic-aerobic bioventing.

    PubMed

    Mihopoulos, P G; Suidan, M T; Sayles, G D

    2001-01-01

    Bioventing principles have been applied to completely dechlorinate tetrachloroethylene vapors in the unsaturated zone in a sequential anaerobic-aerobic pattern. The aerobic step yields trans-DCE and VC as PCE reductive dechlorination byproducts, while TCE and cis-DCE are observed as intermediates. The aerobic step results in rapid oxidation of the VC and trans-DCE to carbon dioxide. Hydrogen was delivered in the gas phase as a reducing agent for the anaerobic step at levels of 1%, and oxygen at 4.2% was used as an electron acceptor in the aerobic step. PCE and VC half lives in the anaerobic and aerobic steps respectively, where less than 10 min.

  3. 210Pb and 210Po, manganese and iron cycling across the O2/H2S interface of a permanently anoxic fjord: Framvaren, Norway

    USGS Publications Warehouse

    Swarzenski, Peter W.; McKee, Brent A.; Sorenson, Kai; Todd, James F.

    1999-01-01

    Vertical profiles of dissolved and particulate 201Po and 210Pb were measured across the redox transition zone at Station F1 in Framvaren Fjord, Norway. In this fjord, a sharp decrease in pH above the O2/H2S interface facilitates the aerobic dissolution of MnO2. In contrast, Fe(II) concentrations begin to increase only at the O2/H2S interface depth. Activity profiles reveal that dissolved 210Po and 210Pb are sequestered efficiently by particulates in surface waters. As polonium-210 and lead-210 activities descend down into the aerobic manganese reduction (AMR) zone, they are remobilized during the reductive dissolution of the carrier phase oxyhydroxides. Both 210Po and 210Pb are highly enriched at the O2/H2S interface where an active community of microbes, such as anoxygenic phototrophs (e.g., Chromatium, Chlorobium sp.), thrives. The coincident peaks in 210Po and 210Pb and microbial biomass suggest a strong biological influence on the behavior of these radionuclides. There is a strong covariance between the vertical distribution of Mn and Pb, indicating that their redox cycling is closely coupled and is likely microbially mediated.

  4. 210Pb and 210Po, manganese and iron cycling across the O2/H2S interface of a permanently anoxic fjord: Framvaren, Norway

    USGS Publications Warehouse

    Swarzenski, Peter W.; McKee, Brent A.; Sorensen, Kai; Todd, James F.

    1999-01-01

    Vertical profiles of dissolved and particulate 210Po and 210b were measured across the redox transition zone at Station F1 in Framvaren Fjord, Norway. In this fjord, a sharp decrease in pH above the O2/H2S interface facilitates the aerobic dissolution of MnO2. In contrast, Fe(II) concentrations begin to increase only at the O2/H2S interface depth. Activity profiles reveal that dissolved 210Po and 210Pb are sequestered efficiently by particulates in surface waters. As polonium-210 and lead-210 activities descend down into the aerobic manganese reduction (AMR) zone, they are remobilized during the reductive dissolution of the carrier phase oxyhydroxides. Both 210Po and 210Pb are highly enriched at the O2/H2S interface where an active community of microbes, such as anoxygenic phototrophs (e.g., Chromatium, Chlorobium sp.), thrives. The coincident peaks in 210Po, 210Pb and microbial biomass suggest a strong biological influence on the behavior of these radionuclides. There is a strong covariance between the vertical distribution of Mn and Pb, indicating that their redox cycling is closely coupled and is likely microbially mediated.

  5. Bd oxidase homologue of photosynthetic purple sulfur bacterium Allochromatium vinosum is co-transcribed with a nitrogen fixation related gene.

    PubMed

    Dincturk, H Benan; Demir, Volkan; Aykanat, Tutku

    2011-02-01

    Purple sulfur bacteria, which are known to be the most ancient among anoxygenic phototrophs, play an important role in the global sulfur cycle. Allochromatium vinosum oxidizes reduced sulfur compounds such as hydrogen sulfide, elemental sulfur and thiosulfide. At low oxygen concentrations, A. vinosum can grow chemotrophically using oxygen as the terminal electron acceptor. Being also a nitrogen fixer, A. vinosum is faced with the paradox of co-existence of aerobic metabolism and nitrogen fixation. Due to growth difficulties, only a few studies have dealt with the aerobic metabolism of the organism and, until now, there has been no information about the genes involved in the respiratory metabolism of purple sulfur bacteria. In this article we show the first terminal oxidase gene for A. vinosum. The presence of a Bd type of quinol oxidase is necessary to protect nitrogenases against the inhibitory effects of oxygen. In this case, a nitrogen fixation related gene is part of the cyd operon and this gene is co-transcribed with cydAB genes. Bd oxidase of A. vinosum may be the earliest form of oxidase where the function of the enzyme is to scavenge the contaminant oxygen during nitrogen fixation. This may be an important clue about the early evolution of oxygenic photosynthesis, perhaps as a protective mechanism for nitrogen fixation.

  6. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.

    PubMed

    Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

    2014-08-29

    The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.

  7. Aerobic biological treatment of leachates from municipal solid waste landfill.

    PubMed

    Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M

    2004-01-01

    The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).

  8. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  9. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  10. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  11. Marine oscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts.

    PubMed

    Carpenter, E J; Price, C C

    1976-03-26

    Nitrogen fixation in marine Oscillatoria appears to be associated with differentiated cells located in the center of the colony. These central cells exhibit reduced pigmentation relative to peripherally located cells and do not incorporate 14CO2 in photosynthesis. Central cells apparently do not produce O2 which would deactivate nitrogenase. When central cells are exposed to O2 via disruption of the colonies, N2 fixation (acetylene reduction) decreases sharply even though individual trichomes remain intact. Disruption of colonies in the absence of O2 does not cause reduced nitrogenase activity. In the sea, turbulence from wave action apparently separates trichomes allowing O2 to enter thus decreasing nitrogenase activity. These observations explain how Oscillatoria is able to fix N2 without heterocysts in an aerobic environment and why it blooms virtually always occur in calm seas.

  12. Aerobic Exercise in People with Schizophrenia: Neural and Neurocognitive Benefits.

    PubMed

    Vakhrusheva, Julia; Marino, Brielle; Stroup, T Scott; Kimhy, David

    2016-06-01

    Schizophrenia is characterized by extensive neurocognitive deficits, which are linked to greater disability, poorer functional outcome, and have been suggested to impact daily functioning more than clinical symptoms. Aerobic exercise (AE) has emerged as a potential intervention. This review examines the impact of AE on brain structure and function along with neurocognitive performance in individuals with schizophrenia. Preliminary evidence indicates that AE can increase hippocampal volume and cortical thickness, in addition to exerting a neuroprotective effect against hippocampal volume decrease and cortical thinning. There is also evidence that AE is able to significantly increase serum brain-derived neurotrophic factor (BDNF) levels, which are implicated in neurogenesis, neuroplasticity, and cognitive improvement. Finally, evidence suggests that AE plays a significant role in improving overall cognition, including improvements in processing speed, working memory, and visual learning. The authors discuss the implications of the findings and provide recommendations for future research and areas of inquiry.

  13. The relationship between aerobic exercise and cognition: is movement medicinal?

    PubMed

    Lojovich, Jeanne M

    2010-01-01

    Each year approximately 1.5 million individuals sustain traumatic brain injuries often resulting in difficulties in memory and executive function that limit independence. Aerobic exercise not only has been found to impact cardiovascular systems but has also shown benefits to brain function itself and specifically in the domain of memory and learning. Recent evidence is shedding light on the mechanisms possibly impacting cognitive performance following the participation in exercise. Literature has demonstrated increased hemodynamics within the brain, changes in neurotransmitters, and increasing levels of brain-derived neurotrophic factor that stimulates neurogenesis, and resistance to further injury. This review article explores the current literature and the possibility of exercise acting as an adjunct treatment to enhance the effectiveness of cognitive rehabilitation.

  14. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde

    SciTech Connect

    Slininger, P.J.; Bothast, R.J.

    1985-12-01

    Chemical oxidation of 3-hydroxypropionaldehyde (3-HPA) leads to acrylic acid, an industrially important polymerizable monomer currently derived from petroleum. As the availability of petroleum declines, 3-HPA may become attractive as a product to be obtained through fermentation of glycerol, a renewable resource. When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol