Science.gov

Sample records for aerobic bacterial strain

  1. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    NASA Astrophysics Data System (ADS)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  2. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    PubMed

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater. PMID:25693403

  3. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    PubMed

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater.

  4. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    PubMed

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH. PMID:27148718

  5. Bioremediation of textile azo dyes by aerobic bacterial consortium.

    PubMed

    Senan, Resmi C; Abraham, T Emilia

    2004-08-01

    An aerobic bacterial consortium consisting of two isolated strains (BF1, BF2) and a strain of Pseudomonas putida (MTCC1194) was developed for the aerobic degradation of a mixture of textile azodyes and individual azodyes at alkaline pH (9-10.5) and salinity (0.9-3.68 g/l) at ambient temperature (28 +/- 2 degrees C). The degradation efficiency of the strains in different media (mineral media and in the Simulated textile effluent (STE)) and at different dye concentrations were studied. The presence of a H2O2 independent oxidase-laccase (26.5 IU/ml) was found in the culture filtrate of the organism BF2. The analysis of the degraded products by TLC and HPLC, after the microbial treatment of the dyes showed the absence of amines and the presence of low molecular weight oxidative degradation products. The enzymes present in the crude supernatant was found to be reusable for the dye degradation.

  6. Pattern of elemental release during the granite dissolution can be changed by aerobic heterotrophic bacterial strains isolated from Damma Glacier (central Alps) deglaciated granite sand.

    PubMed

    Lapanje, Aleš; Wimmersberger, Celine; Furrer, Gerhard; Brunner, Ivano; Frey, Beat

    2012-05-01

    Colonisation and weathering of freshly deglaciated granite are key processes in initial soil formation and development. We have obtained 438 isolates from granite sand covering glacial toe, 284 isolates at 22°C and 154 at 4°C incubation temperatures, respectively, to obtain cultures for the investigation of their weathering capabilities under laboratory conditions. The isolation of bacteria from granite sand was performed on rich-, intermediate- and low-nutrient-content solid media. Isolates were identified by 16S rRNA gene sequencing. According to the genera-associated weathering capabilities described in the literature and according to their abundance in our culture collection, we selected eight strains to analyse their effects on the weathering dynamics of granite sand during the batch culture experiment. Analysis of culturable bacteria showed higher species richness among isolates from 22°C than from 4°C incubations. In the R2A and 1/100 Ravan media, we observed the highest species richness of isolates obtained at 22°C and 4°C incubation temperatures, respectively. The obtained 16S rRNA sequences revealed the presence of alpha-, beta- and gamma-proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The most numerous group of isolates was distantly related to Collimonas representatives, and according to the sequences of the 16S rRNA genes, they can form a new genus. Isolates from this group had the capability of causing increased dissolution rates for Fe, W, Ni and Rb. In general, at each sampling during the 30-day experiment, every strain showed a unique weathering profile resulting from differential rates of the dissolution and the precipitation of different minerals in the batch culture. Consequently, the presence of different strains, their growth stage and changes in proportions of strains in the bacterial community can affect further soil development and the successive colonisation by plants.

  7. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  8. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  9. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  10. Communal microaerophilic-aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium.

    PubMed

    Chan, Giek Far; Rashid, Noor Aini Abdul; Chua, Lee Suan; Ab llah, Norzarini; Nasiri, Rozita; Ikubar, Mohamed Roslan Mohamad

    2012-02-01

    A novel bacterial consortium, NAR-2 which consists of Citrobacter freundii A1, Enterococcus casseliflavus C1 and Enterobacter cloacae L17 was investigated for biodegradation of Amaranth azo dye under sequential microaerophilic-aerobic condition. The NAR-2 bacterial consortium with E. casseliflavus C1 as the dominant strain enhanced the decolorization process resulting in reduction of Amaranth in 30 min. Further aerobic biodegradation, which was dominated by C. freundii A1 and E. cloacae L17, allowed biotransformation of azo reduction intermediates and mineralization via metabolic pathways including benzoyl-CoA, protocatechuate, salicylate, gentisate, catechol and cinnamic acid. The presence of autoxidation products which could be metabolized to 2-oxopentenoate was elucidated. The biodegradation mechanism of Amaranth by NAR-2 bacterial consortium was predicted to follow the steps of azo reduction, deamination, desulfonation and aromatic ring cleavage. This is for the first time the comprehensive microaerophilic-aerobic biotransformation pathways of Amaranth dye intermediates by bacterial consortium are being proposed.

  11. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions.

  12. Bacterial Strain Diversity Within Wounds

    PubMed Central

    Kirkup, Benjamin C.

    2015-01-01

    Significance: Rare bacterial taxa (taxa of low relative frequency) are numerous and ubiquitous in virtually any sample—including wound samples. In addition, even the high-frequency genera and species contain multiple strains. These strains, individually, are each only a small fraction of the total bacterial population. Against the view that wounds contain relatively few kinds of bacteria, this newly recognized diversity implies a relatively high rate of migration into the wound and the potential for diversification during infection. Understanding the biological and medical importance of these numerous taxa is an important new element of wound microbiology. Recent Advances: Only recently have these numerous strains been discovered; the technology to detect, identify, and characterize them is still in its infancy. Multiple strains of both gram-negative and gram-positive bacteria have been found in a single wound. In the few cases studied, the distribution of the bacteria suggests microhabitats and biological interactions. Critical Issues: The distribution of the strains, their phenotypic diversity, and their interactions are still largely uncharacterized. The technologies to investigate this level of genomic detail are still developing and have not been largely deployed to investigate wounds. Future Directions: As advanced metagenomics, single-cell genomics, and advanced microscopy develop, the study of wound microbiology will better address the complex interplay of numerous individually rare strains with both the host and each other. PMID:25566411

  13. Aerobic bacterial flora of addled raptor eggs in Saskatchewan.

    PubMed

    Houston, C S; Saunders, J R; Crawford, R D

    1997-04-01

    In south-central Saskatchewan, Canada, in 1986, 1987 and 1989, the aerobic bacterial flora was evaluated from 75 unhatched raptor eggs of three species: 42 of the Swainson's hawk (Buteo Swainsoni), 21 of the ferruginous hawk (Buteo regalis), and 12 of the great horned owl (Bubo virginianus). In addled Swainson's hawk eggs, the most common bacterial genera were Enterobacter (18 eggs), Escherichia (12), and Streptococcus (10). Seven great horned owl eggs and six ferruginous hawk eggs also contained Escherichia coli. Salmonella spp. were not isolated. These bacteria were interpreted as secondary contaminants and not the primary cause of reproductive failure. PMID:9131569

  14. Molecular characterization of bacterial community in aerobic granular sludge stressed by pentachlorophenol.

    PubMed

    Liu, He; Li, Guangwei; Li, Xiufen; Chen, Jian

    2008-01-01

    To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge in sequencing batch reactor (SBR), the web-based terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) techniques were used to explore the bacterial community structure. When PCP increased from 0 to 50 mg/L, the COD removal rate changed little, while the ammonia removal rate dropped from 100% to 64.9%. The results of molecular characterization showed that the quantity of ammonia oxidizing bacteria (AOB) kept constantly, although the number of bacteria species decreased with the increase of PCP concentration. Significant shift in bacterial community structure at different PCP stresses was observed within aerobic granular sludge. When the PCP was absent, there are 69 strains in aerobic granular sludge detected by T-RFLP method. With the increase of PCP, most of bacteria disappeared and only 19 bacteria existed at all five PCP concentrations. These results contributed to comprehensive understanding of the microbial community structure under the PCP stress and its relationship with the performance for wastewater treatment by aerobic granular sludge.

  15. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates.

    PubMed

    Robrock, Kristin R; Coelhan, Mehmet; Sedlak, David L; Alvarez-Cohent, Lisa

    2009-08-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of the related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di-BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta,- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation.

  16. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates

    PubMed Central

    Robrock, Kristin R.; Coelhan, Mehmet; Sedlak, David; Alvarez-Cohen, Lisa

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di- BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation. PMID:19731666

  17. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories.

  18. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  19. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes.

    PubMed

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L(-1) concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn't show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  20. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    PubMed Central

    Weissbrodt, David G.; Neu, Thomas R.; Kuhlicke, Ute; Rappaz, Yoan; Holliger, Christof

    2013-01-01

    Aerobic granular sludge (AGS) is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors (SBR) fed with synthetic wastewater, namely a bubble column (BC-SBR) operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR) and Competibacter (GAO-SBR) operated at steady-state. In the BC-SBR, granules formed within 2 weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37–79%) led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80–100%), nitrogen removal (43–83%), and high but unstable dephosphatation (75–100%) were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5%) were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56 ± 10%) that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37 ± 11%). Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant

  1. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    PubMed Central

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195

  2. Bacteriocins and novel bacterial strains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry is thought to be a significant source of Campylobacter in human disease. We evaluated anti-Campylobacter activity among 365 Bacillus and Paenibacillus isolates from poultry. One novel antagonistic Bacillus circulans and three Paenibacillus polymyxa strains were identified and further studi...

  3. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills.

    PubMed

    Zhang, Wei; Yue, Bo; Wang, Qi; Huang, Zechun; Huang, Qifei; Zhang, Zengqiang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis. In semi-aerobic landfill scenario, the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period. In the scenario of anaerobic landfill, the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage, but it reduced significantly at stable period. Moreover, methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes. However, semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one. Furthermore, according to the sequences and phylogenetic analysis, obvious difference could be detected in bacterial community composition in different scenarios. Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate. To summarize up, different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  4. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  5. Decolorization of the textile dyes by newly isolated bacterial strains.

    PubMed

    Chen, Kuo-Cheng; Wu, Jane-Yii; Liou, Dar-Jen; Hwang, Sz-Chwun John

    2003-02-27

    Six bacterial strains with the capability of degrading textile dyes were isolated from sludge samples and mud lakes. Aeromonas hydrophila was selected and identified because it exhibited the greatest color removal from various dyes. Although A. hydrophila displayed good growth in aerobic or agitation culture (AGI culture), color removal was the best in anoxic or anaerobic culture (ANA culture). For color removal, the most suitable pH and temperature were pH 5.5-10.0 and 20-35 degrees C under anoxic culture (ANO culture). More than 90% of RED RBN was reduced in color within 8 days at a dye concentration of 3,000 mg l(-1). This strain could also decolorize the media containing a mixture of dyes within 2 days of incubation. Nitrogen sources such as yeast extract or peptone could enhance strongly the decolorization efficiency. In contrast to a nitrogen source, glucose inhibited decolorization activity because the consumed glucose was converted to organic acids that might decrease the pH of the culture medium, thus inhibiting the cell growth and decolorization activity. Decolorization appeared to proceed primarily by biological degradation.

  6. Bacterial Diversity in a Nonsaline Alkaline Environment: Heterotrophic Aerobic Populations

    PubMed Central

    Tiago, Igor; Chung, Ana Paula; Veríssimo, António

    2004-01-01

    Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the α-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11. PMID:15574939

  7. Fate of deposited cells in an aerobic binary bacterial biofilm

    SciTech Connect

    Banks, M.K.

    1989-01-01

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period.

  8. Hyper-thermophilic aerobic bacterial ecology for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, T.; Kanazawa, S.; Moriya, T.; Ishikawa, Y.; Hashimoto, H.; Yamashita, M.; Space Agriculture Task Force, J.

    A material recycling is one of core issues in engineering for habitation on extraterrestrial bodies such as Mars A new composting system has been developed in Japan which utilizes some thermophilic bacteria to attain higher temperature than normally expected in the ordinary composting system Dead body of rat was found to be eaten up by the thermophilic bacteria under aerated condition and oxidized to carbon dioxide and few other inorganics within two hours Ecology of these composting bacteria is structured on the intensive symbiotic interactions among various species that participate in various reaction networks in a concert Complexity in the composting bacteria might be based on multiple interaction and interdependency among participating species and organisms Species identification and phylogeny of symbiotic bacteria and understanding of their ecology have been made Those bacterial systems are active and durable under temperature high in a range of 80 to 100 r C Biological combustion release heat and temperature goes up when air is fed through the reaction bed Since microbial activity decreases at exceeding temperature and release of heat decreases as well temperature in the reacting bed itself-regulated in the range Even though it should be verified composting bacteria themselves are presumed to be safe for human agricultural plant and animal species Their activity is restricted only to the condition under elevated temperature Their activities depend greatly on their symbiotic partners and extreme environment created by them The

  9. Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions.

    PubMed

    Li, An-jie; Zhang, Tong; Li, Xiao-yan

    2010-01-01

    Aerobic sludge granulation is an attractive new technology for biological wastewater treatment. However, the instability of aerobic granules caused by fungal growth is still one of the main problems encountered in granular bioreactors. In this study, laboratory experiments were conducted to investigate the fate and transformation of aerobic granules under different organic loading conditions. Bacterial granules (2-3mm) in a poor condition with fungi-like black filamentous growth were seeded into two 1L batch reactors. After more than 100d of cultivation, the small seed granules in the two reactors had grown into two different types of large granules (>20mm) with different and unique morphological features. In reactor R1 with a high organic loading rate of 2.0g COD L(-1)d(-1), the black filaments mostly disappeared from the granules, and the dominance of rod-shaped bacteria was recovered. In contrast, at a low loading of 0.5g COD L(-1)d(-1) in reactor R2, the filaments eventually became dominant in the black fungal granules. The bacteria in R1 granules had a unique web-like structure with large pores of a few hundred microm in size, which would allow for effective substrate and oxygen transport into the interior of the granules. DNA-based molecular analysis indicated the evolution of the bacterial population in R1 and that of the eukaryal community in R2. The experimental results suggest that a high loading rate can be an effective means of helping to control fungal bloom, recover bacterial domination and restore the stability of aerobic granules that suffer from fungal contamination.

  10. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  11. Developmental hazard assessment with FETAX: Aerobic metabolites in bacterial transformation of naphthalene

    SciTech Connect

    Schultz, T.W.; Dawson, D.A.

    1995-05-01

    The underlying principle of bioremediation is the capability of microorganisms to biodegrade pollutants. When a contaminated site is biotreated, it is usually assumed that the disappearance of the pollutant means a reduction in the toxic effects of the contaminants. However, pollutants can undergo partial biodegradation or biotransformation. Microbial-mediated transformations play a critical role in the toxic effects of pollutants, as any alteration in structure can result in a change in physicochemical properties which influence toxicity. Therefore, a relevant question is; what is the toxicity of accumulative metabolites relative to the parent chemical? One class of chemicals that consistently appears at Superfund hazard waste sites is aromatic hydrocarbons. Studies of the aerobic bacterial metabolism of representative compounds, including benzene, naphthalene, and phenanthrene, have revealed similar oxidative pathways. Bacterial degradation of these aromatic hydrocarbons was initiated by the addition of two molecules of oxygen via a dioxygenase enzyme, with the resulting intermediate being converted to a catechol-like compound. From a biotransformation standpoint, one of the more thoroughly studied aromatic hydrocarbons has been naphthalene. Cerniglia (1984) has identified five major intermediates, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylic acid, gentisic acid and catechol in the aerobic bacterial degradation of naphthalene. In vitro test systems such as the Frog Embryo Teratogenesis Assay - Xenopus (FETAX) provide a time- and resource-effective means for assessing developmental toxicity on a preliminary basis. FETAX is a 96-hr static-renewal system that uses early embryos of the frog Xenopus laevis. The purpose of this investigation was to determine the developmental hazard, using FETAX, of exposure to the model aromatic hydrocarbon, naphthalene, and it`s known major aerobic metabolites from bacterial transformation. 18 refs., 2 tabs.

  12. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge.

  13. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.

    PubMed

    Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David

    2013-02-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. PMID:23202642

  14. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.

    PubMed

    Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David

    2013-02-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition.

  15. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils

    PubMed Central

    De Bellis, Palmira; Tristezza, Mariana; Haidukowski, Miriam; Fanelli, Francesca; Sisto, Angelo; Mulè, Giuseppina; Grieco, Francesco

    2015-01-01

    Ochratoxin A (OTA) is a mycotoxin with a main nephrotoxic activity contaminating several foodstuffs. In the present report, five soil samples collected from OTA-contaminated vineyards were screened to isolate microorganisms able to biodegrade OTA. When cultivated in OTA-supplemented medium, OTA was converted in OTα by 225 bacterial isolates. To reveal clonal relationships between isolates, molecular typing by using an automated rep-PCR system was carried out, thus showing the presence of 27 different strains (rep-PCR profiles). The 16S-rRNA gene sequence analysis of an isolate representative of each rep-PCR profiles indicated that they belonged to five bacterial genera, namely Pseudomonas, Leclercia, Pantoea, Enterobacter, and Acinetobacter. However, further evaluation of OTA-degrading activity by the 27 strains revealed that only Acinetobacter calcoaceticus strain 396.1 and Acinetobacter sp. strain neg1, consistently conserved the above property; their further characterization showed that they were able to convert 82% and 91% OTA into OTα in six days at 24 °C, respectively. The presence of OTα, as the unique OTA-degradation product was confirmed by LC-HRMS. This is the first report on OTA biodegradation by bacterial strains isolated from agricultural soils and carried out under aerobic conditions and moderate temperatures. These microorganisms might be used to detoxify OTA-contaminated feed and could be a new source of gene(s) for the development of a novel enzymatic detoxification system. PMID:26633497

  16. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils.

    PubMed

    De Bellis, Palmira; Tristezza, Mariana; Haidukowski, Miriam; Fanelli, Francesca; Sisto, Angelo; Mulè, Giuseppina; Grieco, Francesco

    2015-12-01

    Ochratoxin A (OTA) is a mycotoxin with a main nephrotoxic activity contaminating several foodstuffs. In the present report, five soil samples collected from OTA-contaminated vineyards were screened to isolate microorganisms able to biodegrade OTA. When cultivated in OTA-supplemented medium, OTA was converted in OTα by 225 bacterial isolates. To reveal clonal relationships between isolates, molecular typing by using an automated rep-PCR system was carried out, thus showing the presence of 27 different strains (rep-PCR profiles). The 16S-rRNA gene sequence analysis of an isolate representative of each rep-PCR profiles indicated that they belonged to five bacterial genera, namely Pseudomonas, Leclercia, Pantoea, Enterobacter, and Acinetobacter. However, further evaluation of OTA-degrading activity by the 27 strains revealed that only Acinetobacter calcoaceticus strain 396.1 and Acinetobacter sp. strain neg1, consistently conserved the above property; their further characterization showed that they were able to convert 82% and 91% OTA into OTα in six days at 24 °C, respectively. The presence of OTα, as the unique OTA-degradation product was confirmed by LC-HRMS. This is the first report on OTA biodegradation by bacterial strains isolated from agricultural soils and carried out under aerobic conditions and moderate temperatures. These microorganisms might be used to detoxify OTA-contaminated feed and could be a new source of gene(s) for the development of a novel enzymatic detoxification system. PMID:26633497

  17. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions.

    PubMed

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  18. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions

    PubMed Central

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer’s plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  19. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health.

  20. Characterisation of the aerobic bacterial flora of boid snakes: application of MALDI-TOF mass spectrometry.

    PubMed

    Plenz, Bastian; Schmidt, Volker; Grosse-Herrenthey, Anke; Krüger, Monika; Pees, Michael

    2015-03-14

    The aim of this study was to identify aerobic bacterial isolates from the respiratory tract of boids with matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). From 47 boid snakes, swabs from the oral cavity, tracheal wash samples and, in cases in which postmortem examination was performed, pulmonary tissue samples were taken. Each snake was classified as having inflammation of the respiratory tract and/or oral cavity, or without evidence of inflammation based on combination of clinical, cytological and histopathological findings. Samples collected from the respiratory tract and oral cavity were inoculated onto routine media and bacteria were cultured aerobically. All morphologically distinct individual colonies obtained were analysed using MALDI-TOF MS. Unidentified isolates detected in more than three snakes were selected for further 16S rDNA PCR and sequencing. Among all examined isolates (n=243), 49 per cent (n=119) could be sufficiently speciated using MALDI-TOF MS. Molecular biology revealed several bacterial species that have not been previously described in reptiles. With an average of 6.3 different isolates from the respiratory tract and/or oral cavity, boids with inflammatory disease harboured significantly more bacterial species than boids without inflammatory disease (average 2.8 isolates).

  1. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health. PMID:25380369

  2. Intracellular azo decolorization is coupled with aerobic respiration by a Klebsiella oxytoca strain.

    PubMed

    Yu, Lei; Zhang, Xiao-Yu; Xie, Tian; Hu, Jin-Mei; Wang, Shi; Li, Wen-Wei

    2015-03-01

    Reduction of azo dye methyl red coupled with aerobic respiration by growing cultures of Klebsiella oxytoca GS-4-08 was investigated. In liquid media containing dye and 0.6 % glucose in a mineral salts base, 100 mg l(-1) of the dye are completely removed in 3 h under shaking conditions. The dye cannot be aerobically decolorized by strain GS-4-08 without extra carbon sources, indicating a co-metabolism process. Higher initial dye concentration prolonged the lag phase of the cell growth, but final cell concentrations of each batches reached a same level with range from 6.3 to 7.6 mg l(-1) after the dye adaption period. This strain showed stronger dye tolerance and decolorization ability than many reported strains. Furthermore, a new intracellular oxygen-insensitive azoreductase was isolated from this strain, and the specific activity of enzyme was 0.846 and 0.633 U mg(-1) protein in the presence of NADH and NADPH, respectively. N,N dimethyl-p-phenylenediamine and anthranilic acid were stoichiometrically released from MR dye, indicating the breakage of azo bonds accounts for the intracellular decolorization. Combining the characteristics of azoreductase, the stoichiometry of EMP, and TCA cycle, the electron transfer chain theory of aerobic respiration, and the possible mechanism of aerobic respiration coupled with azo reduction by K. oxytoca GS-4-08 are proposed. This study is expected to provide a sound theoretical basis for the development of the K. oxytoca strain in aerobic process for azo dye containing wastewaters. PMID:25343980

  3. Aerobic hydrogen production by the heterocystous cyanobacteria Anabaena spp. strains CA and 1F.

    PubMed Central

    Zhang, X K; Haskell, J B; Tabita, F R; Van Baalen, C

    1983-01-01

    Aerobic photoproduction of H2 was demonstrated in Anabaena spp. strains CA and 1F when cells were growing under nitrogen-fixing conditions. The rates of production, measured either by the hydrogen electrode or in a flow system by gas chromatography, were 10 to 15% of the rate of photosynthetic O2 evolution or 50 to 80% of the rates of acetylene reduction. Strains CA and 1F differed in several respects. In strain CA, H2 production was immediately partially sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea, whereas strain 1F was not immediately affected. Strain CA also showed a consistently higher rate of H2 production than did strain 1F. H2 production in strain CA was also markedly influenced by the light intensity used for growth, although the growth rates indicated that the light intensities used were essentially saturating. PMID:6417109

  4. Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress.

    PubMed Central

    Barkay, T; Olson, B H

    1986-01-01

    The effects of mercury contamination of lake sediments on the phenotypic and genotypic mercury resistance of the indigenous heterotrophic aerobic bacterial communities were investigated. Strong positive correlations between mercury sediment concentration and the frequency of the gene coding for mercury volatilization (mer) (r = 0.96) or the phenotypic mercury resistance (r = 0.86) of the studied communities suggested that the inheritance via selection or genetic exchange of the mer gene had promoted bacterial adaptation to mercury. Failure to detect the mer gene in one mercury-contaminated sediment where phenotypic expression was low suggested that other mechanisms of resistance may partially determine the presence of mercury-resistant organisms in mercury-contaminated sediment or that the mercury in this particular sediment was very chemically limited in its availability to the microorganisms. PMID:3753001

  5. Bacterial communities associated with aerobic degradation of polybrominated diphenyl ethers from river sediments.

    PubMed

    Yang, Chu-Wen; Huang, Huang-Wen; Chao, Wei-Liang; Chang, Bea-Ven

    2015-03-01

    Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants and have therefore drawn much environmental concern. We aimed to compare aerobic degradation of different PBDE congeners under various treatments and reveal the bacterial community associated with PBDE degradation in sediment. Results of this study indicate that degradation rates of BDE-15 were enhanced 45.1 and 81.3 % with the addition of suspended and microencapsulated Pseudomonas sp., respectively. However, the degradation rates of BDE-28, BDE-47, BDE-99, and BDE-100 did not differ among experimental treatments. Degradation rates of PBDE congeners were in the order of BDE-15 > BDE-28 > BDE-47 > BDE-99 > BDE-100. Using a pyrosequencing-based metagenomic approach, we found that addition of various treatments altered the microbial community composition in the sediment. Twenty-four bacterial genera associated with degradation of PBDEs; six are the core bacterial genera common among PBDE degraders. The diverse bacterial composition among different PBDE congener degradation indicates different combinations of bacteria involved in degradation of different PBDE congeners.

  6. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7.

    PubMed

    Zhang, Qing-Ling; Liu, Ying; Ai, Guo-Min; Miao, Li-Li; Zheng, Hai-Yan; Liu, Zhi-Pei

    2012-03-01

    Bacillus methylotrophicus strain L7, exhibited efficient heterotrophic nitrification-aerobic denitrification ability, with maximum NH(4)(+)-N and NO(2)(-)-N removal rate of 51.58 mg/L/d and 5.81 mg/L/d, respectively. Strain L7 showed different gaseous emitting patterns from those strains ever described. When (15)NH(4)Cl, or Na(15)NO(2), or K(15)NO(3) was used, results of GC-MS indicated that N(2)O was emitted as the intermediate of heterotrophic nitrification or aerobic denitrification, while GC-IRMS results showed that N(2) was produced as end product when nitrite was used. Single factor experiments suggested that the optimal conditions for heterotrophic nitrification were sodium succinate as carbon source, C/N 6, pH 7-8, 0 g/L NaCl, 37 °C and a wide range of NH(4)(+)-N from 80 to 1000 mg/L. Orthogonal tests showed that the optimal conditions for aerobic denitrification were C/N 20, pH 7-8, 10 g/L NaCl and DO 4.82 mg/L (shaking speed 50 r/min) when nitrite was served as substrate.

  7. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

  8. Culture-Independent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation ▿ †

    PubMed Central

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M.; Weightman, Andrew J.; Mahenthiralingam, Eshwar

    2011-01-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386

  9. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  10. Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic western Pacific Ocean.

    PubMed

    Zheng, Qiang; Liu, Yanting; Steindler, Laura; Jiao, Nianzhi

    2015-04-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) represent a widespread functional bacterial group defined by their obligate aerobic and facultative photoheterotrophic abilities. They are an active part of the marine microbial community as revealed by a large number of previous investigations. Here, we made an in-depth comparison of AAPB community structures in the subsurface water and the upper twilight zone of the western Pacific Ocean using high-throughput sequencing based on the pufM gene. Approximately, 100 000 sequences, grouped into 159 OTUs (94% cut-off value), included 44 and 24 OTUs unique to the subsurface and the upper twilight zone, respectively; 92 OTUs were common to both subsurface and twilight zone, and 3 OTUs were found in all samples. Consistent with previous studies, AAPB belonging to the Gammaproteobacteria were the dominant group in the whole water column, followed by the alphaproteobacterial AAPB. Comparing the relative abundance distribution patterns of different clades, an obvious community-structure separation according to deeper or shallower environment could be observed. Sulfitobacter-like, Loktanella-like, Erythrobacter-like, Dinoroseobacter-like and Gamma-HIMB55-like AAPB preferred the high-light subsurface water, while Methylobacterium-like, 'Citromicrobium'-like, Roseovarius-like and Bradyrhizobium-like AAPB, the dim light environment.

  11. Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor.

    PubMed

    Abraham, T Emilia; Senan, Resmi C; Shaffiqu, T S; Roy, Jegan J; Poulose, T P; Thomas, P P

    2003-01-01

    The degradation of an azo dye mixture by an aerobic bacterial consortium was studied in a rotating biological reactor. Laterite pebbles of particle size 850 microm to 1.44 mm were fixed on gramophone records using an epoxy resin on which the developed consortium was immobilized. Rate of degradation, BOD, biomass determination, enzymes involved, and fish bioassay were studied. The RBC has a high efficiency for dye degradation even at high dye concentrations (100 microg/mL) and high flow rate (36 L/h) at alkaline pH and salinity conditions normally encountered in the textile effluents. Bioassays (LD-50) using Thilapia fish in treated effluent showed that the percentage mortality was zero over a period of 96 h, whereas the mortality was 100% in untreated dye water within 26 h. Fish bioassay confirms that the effluent from RBC can be discharged safely to the environment. PMID:12892505

  12. Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor.

    PubMed

    Abraham, T Emilia; Senan, Resmi C; Shaffiqu, T S; Roy, Jegan J; Poulose, T P; Thomas, P P

    2003-01-01

    The degradation of an azo dye mixture by an aerobic bacterial consortium was studied in a rotating biological reactor. Laterite pebbles of particle size 850 microm to 1.44 mm were fixed on gramophone records using an epoxy resin on which the developed consortium was immobilized. Rate of degradation, BOD, biomass determination, enzymes involved, and fish bioassay were studied. The RBC has a high efficiency for dye degradation even at high dye concentrations (100 microg/mL) and high flow rate (36 L/h) at alkaline pH and salinity conditions normally encountered in the textile effluents. Bioassays (LD-50) using Thilapia fish in treated effluent showed that the percentage mortality was zero over a period of 96 h, whereas the mortality was 100% in untreated dye water within 26 h. Fish bioassay confirms that the effluent from RBC can be discharged safely to the environment.

  13. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen.

  14. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms. PMID:20922382

  15. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  16. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  17. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  18. Characterization of Two Efficient Aerobic Denitrifying Strains Isolated from Shallow Aquifers in Suzhou City, China

    NASA Astrophysics Data System (ADS)

    Ruan, X.; Zhu, X.; Sun, H.; Li, M.

    2010-12-01

    Sixty two stains that can utilize nitrate as source of nitrogen under aerobic conditions were isolated from shallow aquifer samples in Suzhou city, China. Two of the strains, XK42 and PJ21, can convert nitrate into nitrogen gas efficiently without obvious accumulation of nitite. According to morphological, biochemical/biophysical and 16S rDNA gene sequence analysis, XK42 and PJ21 were identified as Pseudomonas Stutzeri and Pseudomonas Mendocica, respectively. The generation time, optimum pH value range and optimum growth temperature range were 4.64h, 6.5˜8.0, 25˜35°C for XK42 and 8.39h, 6.5˜8.5, 25˜35°C for PJ21. Under aerobic conditions (DO=6.9˜7.8 mg/L), the nitrate concentrations in the medium inoculated with XK42 and PJ21 decreased to 42.35 mg/L and 35.69 mg/L with initial nitrate concentration of 276.25 mg/L within 12 hours, respectively. The nitrite concentrations reached to 3.06 mg/L and 3.70 mg/L, and their nitrate removal rates reached 18.24 mg/L●h and 17.51 mg/L●h. The total nitrogen loss through denitrification of XK42 and PJ21 were 70.9% and 66.3%, respectively. The nitrate reduction efficiencies within 60 hours was up to 95.13% (strain XK42) and 95.55% (strain PJ21). The results indicate that the isolated strians XK42 and PJ21 are aerobic denitrifiers with high nitrogen removal efficiency, and can be used for in-situ bioremediation of nitrogen-contaminated shallow groundwater and biotreatment of wasterwater.

  19. Identification and characterisation of potential biofertilizer bacterial strains

    NASA Astrophysics Data System (ADS)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  20. [New Strains of an Aerobic Anoxygenic Phototrophic Bacterium Porphyrobacter donghaensis Isolated from a Siberian Thermal Spring and a Low-Mineralization Lake].

    PubMed

    Nuyanzina-Boldareva, E N; Akimova, V N; Takaiche, S; Gorlenko, V M

    2016-01-01

    A strain of aerobic anoxygenic phototrophic bacteria (AAPB) isolated from the surface of a cyano- bacterial mat of an Eastern Siberian thermal spring (40 C) and designated Se 4 was identified as Porphyro- bacter donghaensis according to its 16S rRNA gene sequence. A DNA-DNA hybridization level of 95% was determined between strain Se-4 and the type strain of this species; SW-132@T. The isolate was an obligate aerobe,. forming orange round colonies on solid media, which turn red in the course of growth. The cells were motile rods capable of branching. The cells divided by uniform fission by constriction. Optimal growth was observed at pH 7.5 and NaCl concentrations from 0 to 1 g/L. The pigments present were carotenoids and bacteriochlorophyll a. Another Porphyrobacter donghaensis strain, Noj- 1, isolated from a purple mat developing on the surface of a coastal set-up in a steppe low-mineralization (1.5 g/L) soda lake Nozhii (Eastern Siberia) possessed similar characteristics. Thus, the AAPB species Porphyrobacter donghaensis was shown to-occur, apart from its known habitat, marine environments, in low-mineralization soda lakes and freshwater thermal springs. Description of the species Porphyrobacter donghaensis was amended. PMID:27301129

  1. In vitro antimicrobial activity of marbofloxacin and enrofloxacin against bacterial strains isolated from companion animals.

    PubMed

    Farca, A M; Cavana, P; Robino, P; Nebbia, P

    2007-06-01

    Fluoroquinolones were originally developed for the Gram-negative aerobic spectrum, but the newer generation agents are also highly effective against some Gram-positive pathogens and cause few adverse effects. Owing to these characteristics, fluoroquinolones are often used in first line therapy in small animal practice. However, their widespread use has raised concern over emerging bacterial resistance. In this study we evaluated the in vitro efficacy of two fluoroquinolones, marbofloxacin and enrofloxacin, on field strains isolated from clinical infections between 2002 and 2005. Our data show that most of the isolates are still sensitive to both antimicrobials and marbofloxacin was more effective than enrofloxacin, especially against P. aeruginosa and beta-Streptococci (P < 0.01). beta-Streptococci demonstrated the greatest resistance to the two study drugs.

  2. Carbazole degradation in the soil microcosm by tropical bacterial strains

    PubMed Central

    Salam, Lateef B.; Ilori, Matthew O.; Amund, Olukayode O.

    2015-01-01

    In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g) after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized) soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg), 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg), 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1 h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days) and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments. PMID:26691461

  3. Carbazole degradation in the soil microcosm by tropical bacterial strains.

    PubMed

    Salam, Lateef B; Ilori, Matthew O; Amund, Olukayode O

    2015-01-01

    In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g) after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized) soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg), 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg-1 h-1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg-1 h-1. In native soil amended with carbazole (100 mg/kg), 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg-1 h-1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days) and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.

  4. Characterization of methanotrophic bacterial populations in natural and agricultural aerobic soils of the European Russia

    NASA Astrophysics Data System (ADS)

    Kravchenko, Irina; Sukhacheva, Marina; Kizilova, Anna

    2014-05-01

    Atmospheric methane contributes to about 20% of the total radiative forcing by long-lived greenhouse gases, and microbial methane oxidation in upland soils is the only biological sink of methane. Microbial methane oxidation in aerated upland soils is estimated as 15 - 45 Tg yr-1 or 3-9% of the annual sink. Therefore there is need of extensive research to characterize methanotrophic activity in various ecosystems for possible application to reduce atmospheric methane fluxes and to minimize global climate change. The vast majority of known aerobic methanotrophs belongs to the Proteobacteria and placed in the families Methylococcaceae in the Gammaproteobacteria, and Methylocystaceae and Beijerinckiaceae in the Alphaproteobacteria. Known exceptions include the phylum Verrucomicrobia and uncultured methanotrophs such as Candidatus 'Methylomirabilis oxyfera' affiliated with the 'NC10' phylum. Plenty of studies of aerobic methane oxidation and key players of the process have been performed on various types of soils, and it was found that Methylocystis spp and uncultivated methanotrophs are abundant in upland soils. Two of the uncultured groups are upland soil cluster alphaproteobacteria (USCa) and gammaproteobacteria (USCg), as revealed by cultivation-independent surveys of pmoA diversity. Russia is extremely rich in soil types due to its vast territories, and most of these soils have never been investigated from the aspect of methanotrophy. This study addresses methane oxidation activity and diversity of aerobic methanotrophic bacteria in eight types of natural aerobic soils, four of which also had been under agricultural use. Methane fluxes have been measured by in situ static chamber method and methane oxidation rates in soil samples - by radioisotope tracer (14CH4) technique. Changes in methanotroph diversity and abundance were assessed by cloning and Sanger sequencing, and quantitative real-time PCR of pmoA genes. Methanotrophic population of unmanaged soils turned

  5. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  6. [Aerobic bacterial flora from the digestive tract of the common vampire bat, Desmodus rotundus (Chiroptera: Phyllostomidae)].

    PubMed

    Chaverri, Gloriana

    2006-09-01

    This study addresses the composition of microbial flora in the vampire bat (Desmodus rotundus) primarily because all available data are outdated, and because of the economical significance of this bat species. Twenty-one bats were collected and their aerobic bacteria documented separately for stomach and intestine. Bacteria were identified through the Analytical Profile Index (API), and results analyzed with the APILAB software. A total of thirty bacterial species were isolated from sixteen females and five males. The most common species were Escherichia coli and Staphylococcus aureus, although other bacteria, such as Acinetobacterjohnsonii, Enterobacter sakazakii, Staphylococcus chromogenes, S. hyicus and S. xylosus were also common. The number of species found in the stomach and intestine was significantly different, and the intestine presented a higher diversity compared to the stomach. This has previously been found in other mammals and it is attributed to a reduction of acidity. Most of the species found in this study are considered normal components of the digestive tract of mammals, although other bacteria common in the skin of mammals and from aquatic environments were found. Bacteria from the skin may invade the vampire's stomach and/or intestine when the bat has contact with its prey, and may suggest that the vampire's feeding habit facilitates the invasion of other microbes not common in its digestive tract. The fact that bacteria from aquatic environments were also found suggests that D. rotundus, as previously found by other researchers, drinks free water when available, and water may be another source of microbial invasion.

  7. Effects of an Antibacterial Soap on the Ecology of Aerobic Bacterial Flora of Human Skin

    PubMed Central

    Voss, J. G.

    1975-01-01

    The effects of ad lib use of an antibacterial soap containing 1.0% trichlorocarbanilide and 0.5% trifluoromethyldichlorocarbanilide on the bacterial flora of six skin sites of 132 subjects were measured by comparison with the flora of 93 control subjects who avoided the use of topical antibacterials. Each subject was examined once. The test soap produced significant reductions in geometric mean counts of the total aerobic flora on the back, chest, forearm, calf, and foot; counts were also reduced in the axilla, but not to a significant extent. The overall reduction by the test soap on all sites was 62% (P < 0.001). Neither age nor sex influenced the effect of the soap on the flora. The antibacterial soap also reduced the prevalence of Staphylococcus aureus on the skin, mostly by virtually eliminating it from areas other than the axilla. Partial inhibition of the gram-positive flora was not accompanied by an increase in gram-negative species. The latter were found principally in the axilla; Klebsiella pneumoniae and Enterobacter aerogenes were the species most frequently found. PMID:1103729

  8. Variations in 13C/12C and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation.

    PubMed

    Rosell, Mònica; Barceló, Damià; Rohwerder, Thore; Breuer, Uta; Gehre, Matthias; Richnow, Hans Hermann

    2007-03-15

    Reliable compound-specific isotope enrichment factors are needed for a quantitative assessment of in situ biodegradation in contaminated groundwater. To obtain information on the variability on carbon and hydrogen enrichment factors (epsilonC, epsilonH) the isotope fractionation of methyl tertiary (tert-) butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) upon aerobic degradation was studied with different bacterial isolates. Methylibium sp. R8 showed a carbon and hydrogen isotope enrichment upon MTBE degradation of -2.4 +/- 0.1 and -42 +/- 4 per thousand, respectively, which is in the range of previous studies with pure cultures (Methylibium petroleiphilum PM1) as well as mixed consortia. In contrast, epsilonC of the beta/-proteobacterium L108 (-0.48 +/- 0.05 per thousand) and Rhodococcus ruber IFP 2001 (-0.28 +/- 0.06 per thousand) was much lower and hydrogen isotope fractionation was negligible (epsilonH < or = -0.2 per thousand). The varying isotope fractionation pattern indicates that MTBE is degraded by different mechanisms by the strains R8 and PM1 compared to L108 and IFP 2001. The carbon and hydrogen isotope fractionation of ETBE by L108 (epsilonC = -0.68 +/- 0.06 per thousand and epsilonH = -14 +/- 2 per thousand) and IFP 2001 (epsilonC = -0.8 +/- 0.1 per thousand and epsilonH = -11 +/- 4 per thousand) was very similar and seemed slightly higher than the fractionation observed upon MTBE degradation by the same strains. The low carbon and hydrogen enrichment factors observed during MTBE and ETBE degradation by L108 and IFP 2001 suggest a hydrolysis-like reaction type of the ether bond cleavage compared to oxidation of the alkyl group as suggested for the strains PM1 and R8. The variability of carbon and hydrogen enrichment factors should be taken into account when interpreting isotope pattern of fuel oxygenates with respect to biodegradation in contamination plumes.

  9. Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor.

    PubMed

    Ruiz-Arias, Alfredo; Juárez-Ramírez, Cleotilde; de los Cobos-Vasconcelos, Daniel; Ruiz-Ordaz, Nora; Salmerón-Alcocer, Angélica; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio

    2010-11-01

    A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (eta ( COD )) and 4-ABS (eta ( ABS )) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a-c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.

  10. Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles.

    PubMed

    Jalali, Jihen; Magdich, Salwa; Jarboui, Raja; Loungou, Mouna; Ammar, Emna

    2016-05-01

    Aerobic microorganisms able to grow on phosphogypsum (PG), characterized by heavy metals accumulation and high acidity were investigated by enrichment cultures. The PG was used at different concentrations, varying from 20 to 200 g/L in the enrichment culture medium supplemented with compost and Tamarix roots. This treatment reduced COD and heavy metals PG concentration. An efficient isolated fungus, identified by molecular approach as Trichoderma asperellum, was able to grow on PG as the sole carbon and energy sources at the different experimented concentrations, and to increase the culture media pH of the different PG concentrations used to 8.13. This fact would be the result of alkaline compound released during the fungus PG solubilization. Besides, the heavy metals and COD removal exceeded 52% after 7 days culture. At 200 g/LPG concentration, the experimented strain was able to reduce COD by 52.32% and metals concentrations by 73% for zinc, 63.75% for iron and 50% for cadmium. This exhibited the T. asperellum efficiency for heavy metals accumulation and for phosphogypsum bioremediation. PMID:26855183

  11. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  12. Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10.

    PubMed

    Fukuoka, Kimiko; Ozeki, Yasuhiro; Kanaly, Robert A

    2015-09-01

    3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants. PMID:26126873

  13. Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10.

    PubMed

    Fukuoka, Kimiko; Ozeki, Yasuhiro; Kanaly, Robert A

    2015-09-01

    3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants.

  14. New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media.

    PubMed

    Rtimi, S; Pulgarin, C; Bensimon, M; Kiwi, J

    2016-08-01

    Binary oxide semiconductors TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 (TiO2-ZrO2-Cu) uniform films were sputtered on polyester (PES). These films were irradiated under low intensity solar simulated light and led to bacterial inactivation in aerobic and anaerobic media as evaluated by CFU-plate counting. But bacterial mineralization was only induced by TiO2-ZrO2-Cu in aerobic media. The highly oxidative radicals generated on the films surface under light were identified by the use of appropriate scavengers. The hole generated on the TiO2-ZrO2 films is shown to be the main specie leading to bacterial inactivation. TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 films release Zr and Ti <1ppb and Cu 4.6ppb/cm(2) as determined by inductively coupled plasma mass spectrometry (ICP-MS) This level is far below the citotoxicity permitted level allowed for mammalian cells suggesting that bacterial disinfection proceeds through an oligodynamic effect. By Fourier transform attenuated infrared spectroscopy (ATR-FTIR) the systematic shift of the predominating νs(CH2) vibrational-rotational peak making up most of the bacterial cell-wall content in C was monitored. Based on this evidence a mechanism suggested leading to CH bond stretching followed by cell lysis and cell death. Bacterial inactivation cycling was observed on TiO2-ZrO2-Cu showing the stability of these films leading to bacterial inactivation. PMID:27088192

  15. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    PubMed Central

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A.; Beltrán-Hernández, Rosa I.; Prieto-García, Francisco; Miranda-López, José M.; Franco-Abuín, Carlos M.; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-01-01

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments. PMID:23924881

  16. Pseudomonas sp. strain 273, and aerobic {alpha},{omega}-dichloroalkane-degrading bacterium

    SciTech Connect

    Wischnak, C.; Mueller, R.; Loeffler, F.E. |; Li, J.; Urbance, J.W.

    1998-09-01

    A gram-negative, aerobic bacterium was isolated from soil; this bacterium grew in 50% (vol/vol) suspensions of 1,10-dichlorodecane (1,10-DCD) as the sole source of carbon and energy. Phenotypic and small-subunit ribosomal RNA characterizations identified the organism, designated strain 273, as a member of the genus Pseudomonas. After induction with 1,10-DCD, Pseudomonas sp. strain 273 released stoichiometric amounts of chloride from C{sub 5} to C{sub 12} {alpha},{omega}-dichloroalkanes in the presence of oxygen. No dehalogenation occurred under anaerobic conditions. The best substrates for dehalogenation and growth were C{sub 9} to C{sub 12} chloroalkanes. The isolate also grew with nonhalogenated aliphatic compounds, and decane-grown cells dechlorinated 1,10-DCD without a lag phase. In addition, cells grown on decane dechlorinated 1,10-DCD in the presence of chloramphenicol, indicating that the 1,10-DCD-dechlorinating enzyme system was also induced by decane. Other known alkane-degrading Pseudomonas species did not grow with 1,10-DCD as a carbon source. Dechlorination of 1,10-DCD was demonstrated in cell extracts of Pseudomonas sp. strain 273. Cell-free activity was strictly oxygen dependent, and NADH stimulated dechlorination, whereas EDTA had an inhibitory effect.

  17. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure.

    PubMed

    Qian, Xun; Sun, Wei; Gu, Jie; Wang, Xiao-Juan; Sun, Jia-Jun; Yin, Ya-Nan; Duan, Man-Li

    2016-09-01

    Livestock manure is often subjected to aerobic composting but little is known about the variation in antibiotic resistance genes (ARGs) during the composting process under different concentrations of antibiotics. This study compared the effects of three concentrations of oxytetracycline (OTC; 10, 60, and 200mg/kg) on ARGs and the succession of the bacterial community during composting. Very similar trends were observed in the relative abundances (RAs) of each ARG among the OTC treatments and the control during composting. After composting, the RAs of tetC, tetX, sul1, sul2, and intI1 increased 2-43 times, whereas those of tetQ, tetM, and tetW declined by 44-99%. OTC addition significantly increased the absolute abundances and RAs of tetC and intI1, while 200mg/kg OTC also enhanced those of tetM, tetQ, and drfA7. The bacterial community could be grouped according to the composting time under different treatments. The highest concentration of OTC had a more persistent effect on the bacterial community. In the present study, the succession of the bacterial community appeared to have a greater influence on the variation of ARGs during composting than the presence of antibiotics. Aerobic composting was not effective in reducing most of the ARGs, and thus the compost product should be considered as an important reservoir for ARGs.

  18. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure.

    PubMed

    Qian, Xun; Sun, Wei; Gu, Jie; Wang, Xiao-Juan; Sun, Jia-Jun; Yin, Ya-Nan; Duan, Man-Li

    2016-09-01

    Livestock manure is often subjected to aerobic composting but little is known about the variation in antibiotic resistance genes (ARGs) during the composting process under different concentrations of antibiotics. This study compared the effects of three concentrations of oxytetracycline (OTC; 10, 60, and 200mg/kg) on ARGs and the succession of the bacterial community during composting. Very similar trends were observed in the relative abundances (RAs) of each ARG among the OTC treatments and the control during composting. After composting, the RAs of tetC, tetX, sul1, sul2, and intI1 increased 2-43 times, whereas those of tetQ, tetM, and tetW declined by 44-99%. OTC addition significantly increased the absolute abundances and RAs of tetC and intI1, while 200mg/kg OTC also enhanced those of tetM, tetQ, and drfA7. The bacterial community could be grouped according to the composting time under different treatments. The highest concentration of OTC had a more persistent effect on the bacterial community. In the present study, the succession of the bacterial community appeared to have a greater influence on the variation of ARGs during composting than the presence of antibiotics. Aerobic composting was not effective in reducing most of the ARGs, and thus the compost product should be considered as an important reservoir for ARGs. PMID:27179201

  19. Fate of Escherichia coli O26 in Corn Silage Experimentally Contaminated at Ensiling, at Silo Opening, or after Aerobic Exposure, and Protective Effect of Various Bacterial Inoculants▿

    PubMed Central

    Dunière, Lysiane; Gleizal, Audrey; Chaucheyras-Durand, Frédérique; Chevallier, Isabelle; Thévenot-Sergentet, Delphine

    2011-01-01

    Shiga toxin-producing Escherichia coli (STEC) strains are responsible for human illness. Ruminants are recognized as a major reservoir of STEC, and animal feeds, such as silages, have been pointed out as a possible vehicle for the spread of STEC. The present study aimed to monitor the fate of pathogenic E. coli O26 strains in corn material experimentally inoculated (105 CFU/g) during ensiling, just after silo opening, and after several days of aerobic exposure. The addition of 3 bacterial inoculants, Propionibacterium sp., Lactobacillus buchneri, and Leuconostoc mesenteroides (106 CFU/g), was evaluated for their abilities to control these pathogens. The results showed that E. coli O26 could not survive in corn silage 5 days postensiling, and the 3 inoculants tested did not modify the fate of pathogen survival during ensiling. In the case of direct contamination at silo opening, E. coli O26 could be totally eradicated from corn silage previously inoculated with Leuconostoc mesenteroides. The combination of proper ensiling techniques and the utilization of selected bacterial inoculants appears to represent a good strategy to guarantee nutritional qualities of cattle feed while at the same time limiting the entry of pathogenic E. coli into the epidemiological cycle to improve the microbial safety of the food chain. PMID:21984243

  20. Adaptation of aerobic, ethene-assimilating Mycobacterium strains to vinyl chloride as a growth substrate.

    PubMed

    Jin, Yang Oh; Mattes, Timothy E

    2008-07-01

    Contamination of drinking water source zones by vinyl chloride (VC), a known human carcinogen and common groundwater contaminant, poses a public health risk. Bioremediation applications involving aerobic, VC-assimilating bacteria could be useful in alleviating environmental VC cancer risk, but their evolution and activity in the environment are poorly understood. In this study, adaptation of ethene-assimilating Mycobacterium strains JS622, JS623, JS624, and JS625 to VC as a growth substrate was investigated to test the hypothesis that VC-assimilating bacteria arise from naturally occurring ethene-assimilating bacteria. VC consumption in the absence of microbial growth was initially observed in cultures grown in both ethene and 1/10-strength trypticase soy agar + 1% (w/v) glucose. After extended incubations (55-476 days), all strains commenced growth-coupled VC consumption patterns. VC-adapted cultures grown on 20 mM acetate subsequently retained their ability to assimilate VC. Three independent purity check methods (streak plates, 16S rRNA gene sequencing, and repetitive extragenic palindromic polymerase chain reaction) verified culture purity prior to and following VC adaptation. Overall, our results suggest that ethene-assimilating mycobacteria have a widespread ability to adapt to VC as a growth substrate.

  1. Bacterial vaginosis, aerobic vaginitis, vaginal inflammation and major Pap smear abnormalities.

    PubMed

    Vieira-Baptista, P; Lima-Silva, J; Pinto, C; Saldanha, C; Beires, J; Martinez-de-Oliveira, J; Donders, G

    2016-04-01

    The purpose of this investigation was to evaluate the impact of the vaginal milieu on the presence of abnormal Pap smears and a positive human papilloma virus (HPV) test. A cross-sectional study was conducted between June 2014 and May 2015, evaluating the vaginal discharge by fresh wet mount microscopy and comparing these data with Pap smear findings. Wet mount slides were scored for bacterial vaginosis (BV), aerobic vaginitis (AV), presence of Candida and Trichomonas vaginalis. Cytologic evaluation was done on all Pap smears according to the Bethesda criteria. The cobas© HPV Test (Roche) was performed for HPV detection. A total of 622 cases were evaluated. The mean age of the patients was 41.6 ± 10.65 years (range 21-75). Eighty-three women (13.3 %) had a cytology result worse than low-grade squamous intraepithelial lesion (LSIL). When comparing this group with the one with normal or minor [atypical squamous cells of undetermined significance (ASC-US) or LSIL] Pap smear abnormalities, there were no differences in the presence of Candida (32.5 % vs. 33.2 %, p = 1.0), absence of lactobacilli (38.6 % vs. 32.5 %, p = 0.32) or BV (20.5 % vs. 13.2 %, p = 0.09). On the other hand, moderate or severe inflammation (msI) (41.0 % vs. 28.8 %, p = 0,04), moderate or severe AV (msAV) (16.9 % vs. 7.2 %, p = 0.009) and msAV/BV (37.3 % vs. 20.0 %, p = 0.001) were more common in women with such major cervical abnormalities. No significant association was found between deviations of the vaginal milieu and high-risk HPV infection. The presence of msI or msAV, but not BV, is independently associated with an increased risk of major cervical cytological abnormalities, but not with HPV infection. PMID:26810061

  2. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates

    PubMed Central

    Faron, Matthew L.; Buchan, Blake W.; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L.; Granato, Paul A.; Wilson, Deborah A.; Procop, Gary W.; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A.

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria. PMID:26529504

  3. [Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain Isolated from Marine Environment].

    PubMed

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin

    2016-02-15

    A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater. PMID:27363156

  4. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan.

    PubMed

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  5. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan

    PubMed Central

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  6. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium

    PubMed Central

    Santisi, Santina; Cappello, Simone; Catalfamo, Maurizio; Mancini, Giuseppe; Hassanshahian, Mehdi; Genovese, Lucrezia; Giuliano, Laura; Yakimov, Michail M.

    2015-01-01

    Three bacterial isolates identified as Alcanivorax borkumensis SK2, Rhodococcus erythropolis HS4 and Pseudomonas stutzeri SDM, based on 16S rRNA gene sequences, were isolated from crude oil enrichments of natural seawater. Single strains and four bacterial consortia designed by mixing the single bacterial cultures respectively in the following ratios: (Alcanivorax: Pseudomonas, 1:1), (Alcanivorax: Rhodococcus, 1:1), (Pseudomonas: Rhodococcus, 1:1), and (Alcanivorax: Pseudomonas: Rhodococcus, 1:1:1), were analyzed in order to evaluate their oil degrading capability. All experiments were carried out in microcosms systems containing seawater (with and without addition of inorganic nutrients) and crude oil (unique carbon source). Measures of total and live bacterial abundance, Card-FISH and quali-, quantitative analysis of hydrocarbons (GC-FID) were carried out in order to elucidate the co-operative action of mixed microbial populations in the process of biodegradation of crude oil. All data obtained confirmed the fundamental role of bacteria belonging to Alcanivorax genus in the degradation of linear hydrocarbons in oil polluted environments. PMID:26273252

  7. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    SciTech Connect

    T.C. Onstott

    2005-09-30

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions.

  8. Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission.

    PubMed

    Liu, Ying; Ai, Guo-Min; Miao, Li-Li; Liu, Zhi-Pei

    2016-04-01

    An efficient aerobic denitrification bacterium, strain NNA5, was isolated and identified as Marinobacter sp. NNA5. NNA5 did not perform heterotrophic nitrification. GC/IRMS analysis revealed that (15)N2 was produced from Na(15)NO2 and K(15)NO3. GC/MS and quantitative analyses showed that no N2O emission occurred when nitrite or nitrate was used as substrate. Single factor experiments indicated that optimal conditions for aerobic denitrification were: sodium succinate or sodium pyruvate as carbon source, temperature 35 °C, NaCl concentration 2-4%, C/N ratio 6-8, pH 7.5, rotation speed 150 rpm (giving dissolved oxygen concentration 6.08 mg/L), NO3(-)-N concentration ranging from 140 to 700 mg/L. NNA5 displayed highly efficient aerobic denitrifying ability, with maximal NO3(-)-N removal rate 112.8 mg/L/d. In view of its ability to perform aerobic denitrification with zero N2O emission, NNA5 has great potential for future application in aerobic denitrification processes in industrial and aquaculture wastewater treatment systems. PMID:26836845

  9. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water.

    PubMed

    Ginige, Maneesha P; Kaksonen, Anna H; Morris, Christina; Shackelton, Mark; Patterson, Bradley M

    2013-09-01

    Managed aquifer recharge offers the opportunity to manage groundwater resources by storing water in aquifers when in surplus and thus increase the amount of groundwater available for abstraction during high demand. The Water Corporation of Western Australia (WA) is undertaking a Groundwater Replenishment Trial to evaluate the effects of recharging aerobic recycled water (secondary treated wastewater subjected to ultrafiltration, reverse osmosis, and ultraviolet disinfection) into the anaerobic Leederville aquifer in Perth, WA. Using culture-independent methods, this study showed the presence of Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, Cytophaga, Flavobacteria, Gammaproteobacteria, and Sphingobacteria, and a decrease in microbial diversity with an increase in depth of aquifer. Assessment of physico-chemical and microbiological properties of groundwater before and after recharge revealed that recharging the aquifer with aerobic recycled water resulted in elevated redox potentials in the aquifer and increased bacterial numbers, but reduced microbial diversity. The increase in bacterial numbers and reduced microbial diversity in groundwater could be a reflection of an increased denitrifier and sulfur-oxidizing populations in the aquifer, as a result of the increased availability of nitrate, oxygen, and residual organic matter. This is consistent with the geochemical data that showed pyrite oxidation and denitrification within the aquifer after recycled water recharge commenced.

  10. Assessing carbon and nitrogen removal in a novel anoxic-aerobic cyanobacterial-bacterial photobioreactor configuration with enhanced biomass sedimentation.

    PubMed

    de Godos, I; Vargas, V A; Guzmán, H O; Soto, R; García, B; García, P A; Muñoz, R

    2014-09-15

    The carbon and nitrogen removal potential of an innovative anoxic-aerobic photobioreactor configuration operated with both internal and external recyclings was evaluated under different cyanobacterial-bacterial sludge residence times (9-31 days) during the treatment of wastewaters with low C/N ratios. Under optimal operating conditions, the two-stage photobioreactor was capable of providing organic carbon and nitrogen removals over 95% and 90%, respectively. The continuous biomass recycling from the settler resulted in the enrichment and predominance of rapidly-settling cyanobacterial-bacterial flocs and effluent suspended solid concentrations lower than 35 mg VSS L(-1). These flocs exhibited sedimentation rates of 0.28-0.42 m h(-1) but sludge volumetric indexes of 333-430 ml/g. The decoupling between the hydraulic retention time and sludge retention time mediated by the external recycling also avoided the washout of nitrifying bacteria and supported process operation at biomass concentrations of 1000-1500 mg VSS L(-1). The addition of additional NaHCO3 to the process overcame the CO2 limitation resulting from the intense competition for inorganic carbon between cyanobacteria and nitrifying bacteria in the photobioreactor, which supported the successful implementation of a nitrification-denitrification process. Unexpectedly, this nitrification-denitrification process occurred both simultaneously in the photobioreactor alone (as a result of the negligible dissolved oxygen concentrations) and sequentially in the two-stage anoxic-aerobic configuration with internal NO3(-)/NO2(-) recycling. PMID:24880959

  11. Extremely 'vanadiphilic' multiply metal-resistant and halophilic aerobic anoxygenic phototrophs, strains EG13 and EG8, from hypersaline springs in Canada.

    PubMed

    Csotonyi, J T; Maltman, C; Swiderski, J; Stackebrandt, E; Yurkov, V

    2015-01-01

    Two pinkish peach-colored strains of obligately aerobic phototrophic bacteria, EG13 and EG8, were isolated from a saline spring effluent stream in west central Manitoba, Canada. The strains possessed bacteriochlorophyll a incorporated into a typical purple bacterial light-harvesting complex 1 (870 nm) and reaction center (801 nm). Analysis of 16S rRNA gene sequences indicated 100% identity among the isolates and 99% similarity to Roseovarius tolerans EL-172(T). The strains were physiologically well adapted to high salinity (0-22%), fluctuating pH (7-12) and temperature (7-40 °C) of the exposed hypersaline stream of East German Creek. EG8 and EG13 were also highly resistant to the toxic metal(loid) oxyanions tellurite, selenite and metavanadate (≥1000 μg/ml each). Most intriguingly, growth and pigment production of EG13 on glutamate minimal medium was stimulated by 1000-10000 μg/ml of sodium metavanadate compared to metal-free conditions. Phylogenetic analysis and phenotypic properties such as pigment composition and morphology indicate close relatedness to Roseovarius genus.

  12. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back.

    PubMed

    Melo, Ana M P; Teixeira, Miguel

    2016-03-01

    Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. PMID:26546715

  13. Isolation and characterization of a novel bacterial strain Shewanella marinisediminis sp. nov. from deep-sea sediments.

    PubMed

    Kim, Young Sug; Park, Jin-Soo; Yang, Hyun Ok; Kwon, Hak Cheol

    2013-05-01

    A new bacterial strain designated DH39T was isolated from marine sediment collected from the East Sea, Korea. Phylogenetic analysis using the 16S rRNA gene sequence revealed that strain DH39(T) clustered with the genus Shewanella and is closely related to Shewanella canadensis HAW-EB2(T), S. woodyi MS32(T), and S. sediminis HAW-EB3(T) with 98.1, 97.8, and 97.6% sequence similarities, respectively. The isolated bacterium was Gram-negative, rod-shaped, and aerobic. Its temperature range for growth was 4-30 degrees C. The predominant fatty acids were 16:1omega7, 17:1omega8, 13:0-i, 16:0, and 15:0-i. The DNA G+C content was 45.0 mol%. DNA-DNA hybridization analysis showed that DNA-DNA relatedness values in the 165 rRNA phylogenetic tree of strain DH39(T) and its nearest neighbors S. hanedai and S. sediminis were 52.9 and 58.7%. Phylogenetic evidence and phenotypic characteristics suggest strain DH39(T) constitutes a novel Shewanella species. Therefore, we propose Shewanella marinisediminis sp. nov., with DH39(T) (KCCM 42936(T) = NCCB 100311(T)) as the type strain.

  14. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Quan, Xiang-chun; Tang, Hua; Xiong, Wei-cong; Yang, Zhi-feng

    2010-07-15

    Aerobic sludge granules pre-grown on glucose were bioaugmented with a plasmid pJP4 carrying strain Pseudomonas putida SM1443 in a fed-batch microcosm system and a lab-scale sequencing batch reactor (SBR) to enhance their degradation capacity to 2,4-dichlorophenoxyacetic acid (2,4-D). The fed-batch test results showed that the bioaugmented aerobic granule system gained 2,4-D degradation ability faster and maintained a more stable microbial community than the control in the presence of 2,4-D. 2,4-D at the initial concentration of about 160 mg/L was nearly completely removed by the bioaugmented granule system within 62 h, while the control system only removed 26% within 66 h. In the bioaugmented SBR which had been operated for 90 days, the seeded aerobic granules pre-grown on glucose successfully turned into 2,4-D degrading granules through bioaugmentation and stepwise increase of 2,4-D concentration from 8 to 385 mg/L. The granules showed a compact structure and good settling ability with the mean diameter of about 450 microm. The degradation kinetics of 2,4-D by the aerobic granules can be described with the Haldane kinetics model with V(max)=31.1 mg 2,4-D/gVSS h, K(i)=597.9 mg/L and K(s)=257.3 mg/L, respectively. This study shows that plasmid mediated bioaugmentation is a feasible strategy to cultivate aerobic granules degrading recalcitrant pollutants.

  15. AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics.

    PubMed

    Duarte, Márcia; Jauregui, Ruy; Vilchez-Vargas, Ramiro; Junca, Howard; Pieper, Dietmar H

    2014-01-01

    Understanding prokaryotic transformation of recalcitrant pollutants and the in-situ metabolic nets require the integration of massive amounts of biological data. Decades of biochemical studies together with novel next-generation sequencing data have exponentially increased information on aerobic aromatic degradation pathways. However, the majority of protein sequences in public databases have not been experimentally characterized and homology-based methods are still the most routinely used approach to assign protein function, allowing the propagation of misannotations. AromaDeg is a web-based resource targeting aerobic degradation of aromatics that comprises recently updated (September 2013) and manually curated databases constructed based on a phylogenomic approach. Grounded in phylogenetic analyses of protein sequences of key catabolic protein families and of proteins of documented function, AromaDeg allows query and data mining of novel genomic, metagenomic or metatranscriptomic data sets. Essentially, each query sequence that match a given protein family of AromaDeg is associated to a specific cluster of a given phylogenetic tree and further function annotation and/or substrate specificity may be inferred from the neighboring cluster members with experimentally validated function. This allows a detailed characterization of individual protein superfamilies as well as high-throughput functional classifications. Thus, AromaDeg addresses the deficiencies of homology-based protein function prediction, combining phylogenetic tree construction and integration of experimental data to obtain more accurate annotations of new biological data related to aerobic aromatic biodegradation pathways. We pursue in future the expansion of AromaDeg to other enzyme families involved in aromatic degradation and its regular update. Database URL: http://aromadeg.siona.helmholtz-hzi.de

  16. Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source.

    PubMed

    Carvalho, M F; Ferreira Jorge, R; Pacheco, C C; De Marco, P; Castro, P M L

    2005-02-01

    A pure bacterial strain capable of aerobic biodegradation of fluorobenzene (FB) as the sole carbon and energy source was isolated by selective enrichment from sediments collected from a polluted site. 16S rRNA and fatty acid analyses support that strain F11 belongs to a novel genus within the alpha-2 subgroup of the Proteobacteria, possibly within a new clade related to the order Rhizobiales. In batch cultures, growth of strain F11 on FB led to stoichiometric release of fluoride ion. Maximum experimental growth rate of 0.04 h-1 was obtained at FB concentration of 0.4 mM. Growth kinetics were described by the Luong model. An inhibitory effect with increasing FB concentrations was observed, with no growth occurring at concentrations higher than 3.9 mM. Strain F11 was shown to be able to use a range of other organic compounds, including other fluorinated compounds such as 2-fluorobenzoate, 4-fluorobenzoate and 4-fluorophenol. To our knowledge, this is the first time biodegradation of FB, as the sole carbon and energy source, by a pure bacterium has been reported. PMID:15658996

  17. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.

    PubMed

    He, Da; Zheng, Maosheng; Ma, Tao; Li, Can; Ni, Jinren

    2015-06-01

    Inhibition of efficient denitrification in presence of toxic heavy metals is one of the current problems encountered in municipal wastewater treatment plants. This paper presents how to remove hexavalent chromium (Cr(VI)) and nitrate simultaneously by the novel strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. The capability of strain PCN-2 for Cr(VI) and nitrate reduction was confirmed by PCR analysis of gene ChrR, napA, nirS, cnorB, nosZ, while Cr(VI) reduction was proved via an initial single-electron transfer through Cr(V) detection using electron paramagnetic resonance. Experimental results demonstrated that Cr(VI) and nitrate reduction by strain PCN-2 was much faster at pH 8-9 and higher initial cell concentration. However, increasing Cr(VI) concentration would inhibit aerobic denitrification process and result in an significant delay of nitrate reduction or N2O accumulation, which was attributed to competition between three electron acceptors, i.e., Cr(VI), O2 and nitrate in the electron transport chain.

  18. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment.

    PubMed

    He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai

    2016-09-24

    Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.

  19. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    PubMed Central

    He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai

    2016-01-01

    Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10) and temperatures (20–37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation. PMID:27669304

  20. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment.

    PubMed

    He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai

    2016-01-01

    Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation. PMID:27669304

  1. Aerobic bacterial oral flora of garter snakes: development of normal flora and pathogenic potential for snakes and humans.

    PubMed Central

    Goldstein, E J; Agyare, E O; Vagvolgyi, A E; Halpern, M

    1981-01-01

    Garter snakes that are used for scientific laboratory studies or kept as exotic pets often become ill and die early in captivity. They may also act as reservoirs of potential human pathogens or transmit infection to man. A total of 126 strains of aerobic and facultative bacteria, most potential human and snake pathogens, were isolated from 82 garter snake oropharyngeal cultures. Coagulase-negative Staphylococcus species were the most common species isolated. Acinetobacter calcoaceticus var. anitratus, Hafnia alvei, Arizona hinshawii, Salmonella species, Shigella species, Klebsiella oxytoca, and Pseudomonas aeruginosa were among the potential pathogens isolated. The spectrum of bacteria with potential for causing oral and pulmonary infections in garter snakes is greater than has been previously appreciated. Garter snakes should also be considered reservoirs of human pathogens, and appropriate precautions should be taken by laboratory personnel and pet owners. PMID:7240404

  2. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Lalonde, Stefan V; Planavsky, Noah J; Pecoits, Ernesto; Lyons, Timothy W; Mojzsis, Stephen J; Rouxel, Olivier J; Barley, Mark E; Rosìere, Carlos; Fralick, Phillip W; Kump, Lee R; Bekker, Andrey

    2011-10-20

    The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology. PMID:22012395

  3. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Lalonde, Stefan V; Planavsky, Noah J; Pecoits, Ernesto; Lyons, Timothy W; Mojzsis, Stephen J; Rouxel, Olivier J; Barley, Mark E; Rosìere, Carlos; Fralick, Phillip W; Kump, Lee R; Bekker, Andrey

    2011-10-19

    The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.

  4. Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks.

    PubMed

    Manzoor, S; Moncayo, S; Navarro-Villoslada, F; Ayala, J A; Izquierdo-Hornillos, R; de Villena, F J Manuel; Caceres, J O

    2014-04-01

    Identification and discrimination of bacterial strains of same species exhibiting resistance to antibiotics using laser induced breakdown spectroscopy (LIBS) and neural networks (NN) algorithm is reported. The method has been applied to identify 40 bacterial strains causing hospital acquired infections (HAI), i.e. Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Salmonella pullurum and Salmonella salamae. The strains analyzed included both isolated from clinical samples and constructed in laboratory that differ in mutations as a result of their resistance to one or more antibiotics. Small changes in the atomic composition of the bacterial strains, as a result of their mutations and genetic variations, were detected by the LIBS-NN methodology and led to their identification and classification. This is of utmost importance because solely identification of bacterial species is not sufficient for disease diagnosis and identification of the actual strain is also required. The proposed method was successfully able to discriminate strains of the same bacterial species. The optimized NN models provided reliable bacterial strain identification with an index of spectral correlation higher than 95% for the samples analyzed, showing the potential and effectiveness of the method to address the safety and social-cost HAI-related issue.

  5. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    PubMed Central

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway. PMID:24116023

  6. Biosorption behavior and mechanism of lead (II) from aqueous solution by aerobic granules (AG) and bacterial alginate (BA)

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Yu

    2012-12-01

    Lead (Pb) and its compounds are common pollutants in industrial wastewaters. To develop appropriate Pb2+ treatment technologies, aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions. The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption. In this paper, the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH, contact time, and initial Pb2+ concentration. The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150 mg L-1). The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass). When the initial pH was 5, the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1). During the process of Pb2+ biosorption, K+, Ca2+, and Mg2+ were released. The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA. This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG. At the same optimal pH, AG cultivated with different carbon source has different Pb2+ biosorption capacity. The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.

  7. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C.

    PubMed

    Liang, Rongrong; Yu, Xiaoqiao; Wang, Renhuan; Luo, Xin; Mao, Yanwei; Zhu, Lixian; Zhang, Yimin

    2012-06-01

    This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration.

  8. Aerobic Bacterial Community of American Cockroach Periplaneta americana,a Step toward Finding Suitable Paratransgenesis Candidates

    PubMed Central

    Akbari, Sanaz; Oshaghi, Mohammad Ali; Hashemi-Aghdam, Saedeh Sadat; Hajikhani, Sara; Oshaghi, Ghazaleh; Shirazi, Mohammad Hasan

    2015-01-01

    Background: Cockroaches mechanically spread pathogenic agents, however, little is known about their gut microbiota. Identification of midgut microbial community helps targeting novel biological control strategies such as paratransgenesis. Here the bacterial microbiota of Periplaneta americana midgut, were identified and evaluated for finding proper paratransgenesis candidate. Methods: Midgut of specimens were dissected and cultivated in different media. The bacterial isolates were then identified using the phenotypic and 16S-rRNA sequencing methods. Results: The analytical profile index (API) kit showed presence of 11 bacterial species including: Escherichia coli, Shigella flexineri, Citrobacter freundii, E. vulneris, Enterobacter cloacae, Yersinia pseudotuberculosis, Y. intermedia, Leclericia adecarboxylata, Klebsiella oxytoca, K. planticola, and Rahnella aquatilis in the cockroach midguts. The first three species are potentially symbiotic whereas others are transient. The conventional plating method revealed presence of only four isolates of Salmonella, E. coli, and Proteus which in three cases mismatched with API and 16S-rRNA genotyping. The API correctly identified the four isolates as Shigella flexneri, Citrobacter freundii, and E. coli (n= 2). 16S-rRNA sequence analysis confirmed the API results; however the C. freundii sequence was identical with C. murliniae indicating lack of genetic variation in the gene between these two closely related species. Conclusion: A low number of potentially symbiotic bacteria were found in the American cockroach midguts. Among them Enterobacter cloacae is a potential candidate for paratransgenesis approach whereas other bacteria are pathogens and are not useful for the approach. Data analysis showed that identification levels increase from the conventional to API and to genotyping respectively. PMID:26114142

  9. Aerobic degradation of ibuprofen in batch and continuous reactors by an indigenous bacterial community.

    PubMed

    Fortunato, María Susana; Fuentes Abril, Nancy Piedad; Martinefski, Manuela; Trípodi, Valeria; Papalia, Mariana; Rádice, Marcela; Gutkind, Gabriel; Gallego, Alfredo; Korol, Sonia Edith

    2016-10-01

    Water from six points from the Riachuelo-Matanza basin was analyzed in order to assess ibuprofen biodegradability. In four of them biodegradation of ibuprofen was proved and degrading bacterial communities were isolated. Biodegradation in each point could not be correlated with sewage pollution. The indigenous bacterial community isolated from the point localized in the La Noria Bridge showed the highest degradative capacity and was selected to perform batch and continuous degradation assays. The partial 16S rRNA gene sequence showed that the community consisted of Comamonas aquatica and Bacillus sp. In batch assays the community was capable of degrading 100 mg L(-1) of ibuprofen in 33 h, with a specific growth rate (μ) of 0.21 h(-1). The removal of the compound, as determined by High performance liquid chromatography (HPLC), exceeded 99% of the initial concentration, with a 92.3% removal of Chemical Oxygen Demand (COD). In a down-flow fixed-bed continuous reactor, the community shows a removal efficiency of 95.9% of ibuprofen and 92.3% of COD for an average inlet concentration of 110.4 mg. The reactor was kept in operation for 70 days. The maximal removal rate for the compound was 17.4 g m(-3) d(-1). Scanning electron microscopy was employed to observe biofilm development in the reactor. The ability of the isolated indigenous community can be exploited to improve the treatment of wastewaters containing ibuprofen. PMID:26905769

  10. Aerobic degradation of ibuprofen in batch and continuous reactors by an indigenous bacterial community.

    PubMed

    Fortunato, María Susana; Fuentes Abril, Nancy Piedad; Martinefski, Manuela; Trípodi, Valeria; Papalia, Mariana; Rádice, Marcela; Gutkind, Gabriel; Gallego, Alfredo; Korol, Sonia Edith

    2016-10-01

    Water from six points from the Riachuelo-Matanza basin was analyzed in order to assess ibuprofen biodegradability. In four of them biodegradation of ibuprofen was proved and degrading bacterial communities were isolated. Biodegradation in each point could not be correlated with sewage pollution. The indigenous bacterial community isolated from the point localized in the La Noria Bridge showed the highest degradative capacity and was selected to perform batch and continuous degradation assays. The partial 16S rRNA gene sequence showed that the community consisted of Comamonas aquatica and Bacillus sp. In batch assays the community was capable of degrading 100 mg L(-1) of ibuprofen in 33 h, with a specific growth rate (μ) of 0.21 h(-1). The removal of the compound, as determined by High performance liquid chromatography (HPLC), exceeded 99% of the initial concentration, with a 92.3% removal of Chemical Oxygen Demand (COD). In a down-flow fixed-bed continuous reactor, the community shows a removal efficiency of 95.9% of ibuprofen and 92.3% of COD for an average inlet concentration of 110.4 mg. The reactor was kept in operation for 70 days. The maximal removal rate for the compound was 17.4 g m(-3) d(-1). Scanning electron microscopy was employed to observe biofilm development in the reactor. The ability of the isolated indigenous community can be exploited to improve the treatment of wastewaters containing ibuprofen.

  11. Characterization of a Planctomycetal Organelle: a Novel Bacterial Microcompartment for the Aerobic Degradation of Plant Saccharides

    PubMed Central

    Erbilgin, Onur; McDonald, Kent L.

    2014-01-01

    Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae. PMID:24487526

  12. Complete genome sequence of Japanese erwinia strain ejp617, a bacterial shoot blight pathogen of pear.

    PubMed

    Park, Duck Hwan; Thapa, Shree Prasad; Choi, Beom-Soon; Kim, Won-Sik; Hur, Jang Hyun; Cho, Jun Mo; Lim, Jong-Sung; Choi, Ik-Young; Lim, Chun Keun

    2011-01-01

    The Japanese Erwinia strain Ejp617 is a plant pathogen that causes bacterial shoot blight of pear in Japan. Here, we report the complete genome sequence of strain Ejp617 isolated from Nashi pears in Japan to provide further valuable insight among related Erwinia species.

  13. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Chatha, Mariyam Asghar; Ejaz, Wardah; Janjua, Hussnain Ahmed; Hussain, Irshad

    2014-10-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests.

  14. Closely related protist strains have different grazing impacts on natural bacterial communities.

    PubMed

    Glücksman, Edvard; Bell, Thomas; Griffiths, Robert I; Bass, David

    2010-12-01

    Heterotrophic protists are abundant in most environments and exert a strong top-down control on bacterial communities. However, little is known about how selective most protists are with respect to their bacterial prey. We conducted feeding trials using cercomonad and glissomonad Cercozoa by assaying them on a standardized, diverse bacterial community washed from beech leaf litter. For each of the nine protist strains assayed here, we measured several phenotypic traits (cell volume, speed, plasticity and protist cell density) that we anticipated would be important for their feeding ecology. We also estimated the genetic relatedness of the strains based on the 18S rRNA gene. We found that the nine protist strains had significantly different impacts on both the abundance and the composition of the bacterial communities. Both the phylogenetic distance between protist strains and differences in protist strain traits were important in explaining variation in the bacterial communities. Of the morphological traits that we investigated, protist cell volume and morphological plasticity (the extent to which cells showed amoeboid cell shape flexibility) were most important in determining bacterial community composition. The results demonstrate that closely related and morphologically similar protist species can have different impacts on their prey base.

  15. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    PubMed Central

    2014-01-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests. PMID:25435831

  16. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity.

    PubMed

    Ashraf, Sumaira; Chatha, Mariyam Asghar; Ejaz, Wardah; Janjua, Hussnain Ahmed; Hussain, Irshad

    2014-01-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests. PMID:25435831

  17. Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: characteristics, degradation products, enzyme analysis and phytotoxicity.

    PubMed

    Du, Lin-Na; Wang, Sheng; Li, Gang; Wang, Bing; Jia, Xiao-Ming; Zhao, Yu-Hua; Chen, Yun-Long

    2011-03-01

    Malachite green (MG), a widely-used and recalcitrant dye, has been confirmed to be carcinogenic and mutagenic against many organisms. The main objective of this study is to investigate the capability of Pseudomonas sp. strain DY1 to decolorize MG, and to explore the possible mechanism. The results showed that this strain demonstrated high decolorizing capability (90.3-97.2%) at high concentrations of MG (100-1,000 mg/l) under shaking condition within 24 h. In static conditions, lower but still effective decolorization (78.9-84.3%) was achieved. The optimal pH and temperature for the decolorization was pH 6.6 and 28-30°C, respectively. Mg(2+) and Mn(2+) (1 mM) were observed to significantly enhance the decolorization. The intermediates of the MG degradation under aerobic condition identified by UV-visible, GC-MS and LC-MS analysis included malachite green carbinol, (dimethyl amino-phenyl)-phenyl-methanone, N,N-dimethylaniline, (methyl amino-phenyl)-phenyl-methanone, (amino phenyl)-phenyl methanone and di-benzyl methane. The enzyme analysis indicated that Mn-peroxidase, NADH-DCIP and MG reductase were involved in the biodegradation of MG. Moreover, phytotoxicity of MG and detoxification for MG by the strain were observed. Therefore, this strain could be potentially used for bioremediation of MG.

  18. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    PubMed Central

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  19. Bacterially Induced Dolomite Formation in the Presence of Sulfate Ions under Aerobic Conditions

    NASA Astrophysics Data System (ADS)

    Sanchez-Roman, M.; McKenzie, J. A.; Vasconcelos, C.; Rivadeneyra, M.

    2005-12-01

    The origin of dolomite remains a long-standing enigma in sedimentary geology because, although thermodynamically favorable, precipitation of dolomite from modern seawater does not occur. Experiments conducted at elevated temperatures (200 oC) indicated that the presence of small concentrations of sulfate ions inhibits the transformation of calcite to dolomite [1]. Indeed, sulfate ions appeared to inhibit dolomite formation above 2 mM concentration (versus 28 mM in modern seawater). Recently, culture experiments have demonstrated that sulfate-reducing bacteria mediate the precipitation of dolomite at Earth surface conditions in the presence of sustained sulfate ion concentrations [2,3]. Additionally, in a number of modern hypersaline environments, dolomite forms from solutions with high sulfate ion concentrations (2 to 70 times seawater). These observations suggest that the experimentally observed sulfate-ion inhibition [1] may not apply to all ancient dolomite formation. Here, we report aerobic culture experiments conducted at low temperatures (25 and 35 oC) and variable sulfate ion concentrations (0, 0.5, 1 and 2 x seawater values) using moderately halophilic bacteria, Halomonas meridiana. After an incubation period of 15 days, experiments at 35 oC with variable sulfate ion concentrations (0, 0.5 x and seawater values) contained crystals of Ca-dolomite and stochiometric dolomite. The experiment at 35 oC with 2 x seawater sulfate ion concentration produced dolomite crystals after 20 days of incubation. In a parallel set of experiments at 25 oC, precipitation of dolomite was observed after 25 days of incubation in cultures with variable sulfate ion concentrations (0, 0.5 x and seawater values). In the culture with 2 x seawater sulfate ion concentration, dolomite crystals were observed after 30 days. Our study demonstrates that halophilic bacteria (or heterotrophic microorganisms), which do not require sulfate ions for metabolism, can mediate dolomite precipitation

  20. Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation.

    PubMed

    Miller, Todd R; Franklin, Mark P; Halden, Rolf U

    2007-05-01

    At Department of Energy Site 300, beneficial hydrocarbon cocontaminants and favorable subsurface conditions facilitate sequential reductive dechlorination of trichloroethene (TCE) and rapid oxidation of the resultant cis-dichloroethene (cis-DCE) upon periodic oxygen influx. We assessed the geochemistry and microbial community of groundwater from across the site. Removal of cis-DCE was shown to coincide with oxygen influx in hydrocarbon-containing groundwater near the source area. Principal component analysis of contaminants and inorganic compounds showed that monitoring wells could be differentiated based upon concentrations of TCE, cis-DCE, and nitrate. Structurally similar communities were detected in groundwater from wells containing cis-DCE, high TCE, and low nitrate levels. Bacteria identified by sequencing 16S rRNA genes belonged to seven phylogenetic groups, including Alpha-, Beta-, Gamma- and Deltaproteobacteria, Nitrospira, Firmicutes and Cytophaga-Flexibacter-Bacteroidetes (CFB). Whereas members of the Burkholderiales and CFB group were abundant in all wells (10(4)-10(9) 16S rRNA gene copies L(-1)), quantitative PCR showed that Alphaproteobacteria were elevated (>10(6) L(-1)) only in wells containing hydrocarbon cocontaminants. The study shows that bacterial community structure is related to groundwater geochemistry and that Alphaproteobacteria are enriched in locales where cis-DCE removal occurs.

  1. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.

    PubMed

    Zhang, Hui; Sekiguchi, Yuji; Hanada, Satoshi; Hugenholtz, Philip; Kim, Hongik; Kamagata, Yoichi; Nakamura, Kazunori

    2003-07-01

    A phylogenetically novel aerobic bacterium was isolated from an anaerobic-aerobic sequential batch reactor operated under enhanced biological phosphorus removal conditions for wastewater treatment. The isolation strategy used targeted slowly growing polyphosphate-accumulating bacteria by combining low-speed centrifugations and prolonged incubation on a low-nutrient medium. The isolate, designated strain T-27T, was a gram-negative, rod-shaped aerobe. Cells often appeared to divide by budding replication. Strain T-27T grew at 25-35 degrees C with an optimum growth temperature of 30 degrees C, whilst no growth was observed below 20 degrees C or above 37 degrees C within 20 days incubation. The pH range for growth was 6.5-9.5, with an optimum at pH 7.0. Strain T-27T was able to utilize a limited range of substrates, such as yeast extract, polypepton, succinate, acetate, gelatin and benzoate. Neisser staining was positive and 4,6-diamidino-2-phenylindole-stained cells displayed a yellow fluorescence, indicative of polyphosphate inclusions. Menaquinone 9 was the major respiratory quinone. The cellular fatty acids of the strain were mainly composed of iso-C15:0, C16:1 and C14:0. The G + C content of the genomic DNA was 66 mol%. Comparative analyses of 16S rRNA gene sequences indicated that strain T-27T belongs to candidate division BD (also called KS-B), a phylum-level lineage in the bacterial domain, to date comprised exclusively of environmental 16S rDNA clone sequences. Here, a new genus and species are proposed, Gemmatimonas aurantiaca (type strain T-27T=JCM 11422T=DSM 14586T) gen. nov., sp. nov., the first cultivated representative of the Gemmatimonadetes phyl. nov. Environmental sequence data indicate that this phylum is widespread in nature and has a phylogenetic breadth (19% 16S rDNA sequence divergence) that is greater than well-known phyla such as the Actinobacteria (18% divergence).

  2. Isolation and complementation of mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen

    SciTech Connect

    Wolk, C.P.; Cai, Y.; Cardemil, L.; Flores, E.; Hohn, B.; Murry, M.; Schmetterer, G.; Schrautemeier, B.; Wilson, R.

    1988-03-01

    Mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen were isolated by mutagenesis with UV irradiation, followed by a period of incubation in yellow light and then by penicillin enrichment. A cosmid vector, pRL25C, containing replicons functional in Escherichia coli and in Anabaena species was constructed. DNA from wild-type Anabaena sp. strain PCC 7120 was partially digested with Sau3AI, and size-fractionated fragments about 40 kilobases (kb) in length were ligated into the phosphatase-treated unique BamHI site of pRL25C. A library of 1054 cosmid clones was generated in E. coli DH1 bearing helper plasmid pDS4101. A derivative of conjugative plasmid RP-4 was transferred to this library by conjugation, and the library was replicated to lawns of mutant Anabaena strains with defects in the polysaccharide layer of the envelopes of the heterocysts. Mutant EF116 was complemented by five cosmids, three of which were subjected to detailed restriction mapping; a 2.8-kb fragment of DNA derived from one of the cosmids was found to complement EF116. Mutant EF113 was complemented by a single cosmid, which was also restriction mapped, and was shown to be complemented by a 4.8-kb fragment of DNA derived from this cosmid.

  3. Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains

    PubMed Central

    Harrison, Jesse P.; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L.; Cockell, Charles S.

    2015-01-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division. PMID:26354829

  4. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains.

    PubMed

    Harrison, Jesse P; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L; Cockell, Charles S

    2015-09-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division. PMID:26354829

  5. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains.

    PubMed

    Harrison, Jesse P; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L; Cockell, Charles S

    2015-09-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division.

  6. Permissivity of the biphenyl-specific aerobic bacterial metabolic pathway towards analogues with various steric requirements.

    PubMed

    Overwin, Heike; Standfuß-Gabisch, Christine; González, Myriam; Méndez, Valentina; Seeger, Michael; Reichelt, Joachim; Wray, Victor; Hofer, Bernd

    2015-09-01

    It has repeatedly been shown that aryl-hydroxylating dioxygenases do not possess a very high substrate specificity. To gain more insight into this phenomenon, we examined two powerful biphenyl dioxygenases, the well-known wild-type enzyme from Burkholderia xenovorans LB400 (BphA-LB400) and a hybrid enzyme, based on a dioxygenase from Pseudomonas sp. B4-Magdeburg (BphA-B4h), for their abilities to dioxygenate a selection of eight biphenyl analogues in which the second aromatic ring was replaced by aliphatic as well as aliphatic/aromatic moieties, reflecting a variety of steric requirements. Interestingly, both enzymes were able to catalyse transformation of almost all of these compounds. While the products formed were identical, major differences were observed in transformation rates. In most cases, BphA-B4h proved to be a significantly more powerful catalyst than BphA-LB400. NMR characterization of the reaction products showed that the metabolite obtained from biphenylene underwent angular dioxygenation, whereas all other compounds were subject to lateral dioxygenation at ortho and meta carbons. Subsequent growth studies revealed that both dioxygenase source strains were able to utilize several of the biphenyl analogues as sole sources of carbon and energy. Therefore, prototype BphBCD enzymes of the biphenyl degradative pathway were examined for their ability to further catabolize the lateral dioxygenation products. All of the ortho- and meta-hydroxylated compounds were converted to acids, showing that this pathway is quite permissive, enabling catalysis of the turnover of a fairly wide variety of metabolites. PMID:26297047

  7. Permissivity of the biphenyl-specific aerobic bacterial metabolic pathway towards analogues with various steric requirements.

    PubMed

    Overwin, Heike; Standfuß-Gabisch, Christine; González, Myriam; Méndez, Valentina; Seeger, Michael; Reichelt, Joachim; Wray, Victor; Hofer, Bernd

    2015-09-01

    It has repeatedly been shown that aryl-hydroxylating dioxygenases do not possess a very high substrate specificity. To gain more insight into this phenomenon, we examined two powerful biphenyl dioxygenases, the well-known wild-type enzyme from Burkholderia xenovorans LB400 (BphA-LB400) and a hybrid enzyme, based on a dioxygenase from Pseudomonas sp. B4-Magdeburg (BphA-B4h), for their abilities to dioxygenate a selection of eight biphenyl analogues in which the second aromatic ring was replaced by aliphatic as well as aliphatic/aromatic moieties, reflecting a variety of steric requirements. Interestingly, both enzymes were able to catalyse transformation of almost all of these compounds. While the products formed were identical, major differences were observed in transformation rates. In most cases, BphA-B4h proved to be a significantly more powerful catalyst than BphA-LB400. NMR characterization of the reaction products showed that the metabolite obtained from biphenylene underwent angular dioxygenation, whereas all other compounds were subject to lateral dioxygenation at ortho and meta carbons. Subsequent growth studies revealed that both dioxygenase source strains were able to utilize several of the biphenyl analogues as sole sources of carbon and energy. Therefore, prototype BphBCD enzymes of the biphenyl degradative pathway were examined for their ability to further catabolize the lateral dioxygenation products. All of the ortho- and meta-hydroxylated compounds were converted to acids, showing that this pathway is quite permissive, enabling catalysis of the turnover of a fairly wide variety of metabolites.

  8. Volatile Emissions from Mycobacterium avium subsp. paratuberculosis Mirror Bacterial Growth and Enable Distinction of Different Strains

    PubMed Central

    Trefz, Phillip; Koehler, Heike; Klepik, Klaus; Moebius, Petra; Reinhold, Petra; Schubert, Jochen K.; Miekisch, Wolfram

    2013-01-01

    Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP) emits volatile organic compounds (VOCs). Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold’s egg yolk medium in dilutions of 10-0, 10-2, 10-4 and 10-6. Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME), thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to diagnose MAP

  9. Draft Genome Sequences for Oil-Degrading Bacterial Strains from Beach Sands Impacted by the Deepwater Horizon Oil Spill

    PubMed Central

    Overholt, Will A.; Green, Stefan J.; Marks, Kala P.; Venkatraman, Raghavee; Prakash, Om

    2013-01-01

    We report the draft genome sequences of 10 proteobacterial strains isolated from beach sands contaminated with crude oil discharged from the Deepwater Horizon spill, which were cultivated under aerobic and anaerobic conditions with crude oil as the sole carbon source. All strains contain multiple putative genes belonging to hydrocarbon degradation pathways. PMID:24356826

  10. Specificity of monoclonal antibodies to strains of Dickeya sp. that cause bacterial heart rot of pineapple.

    PubMed

    Peckham, Gabriel D; Kaneshiro, Wendy S; Luu, Van; Berestecky, John M; Alvarez, Anne M

    2010-10-01

    During a severe outbreak of bacterial heart rot that occurred in pineapple plantations on Oahu, Hawaii, in 2003 and years following, 43 bacterial strains were isolated from diseased plants or irrigation water and identified as Erwinia chrysanthemi (now Dickeya sp.) by phenotypic, molecular, and pathogenicity assays. Rep-PCR fingerprint patterns grouped strains from pineapple plants and irrigation water into five genotypes (A-E) that differed from representatives of other Dickeya species, Pectobacterium carotovorum and other enteric saprophytes isolated from pineapple. Monoclonal antibodies produced following immunization of mice with virulent type C Dickeya sp. showed only two specificities. MAb Pine-1 (2D11G1, IgG1 with kappa light chain) reacted to all 43 pineapple/water strains and some reference strains (D. dianthicola, D. chrysanthemi, D. paradisiaca, some D. dadantii, and uncharacterized Dickeya sp.) but did not react to reference strains of D. dieffenbachiae, D. zeae, or one of the two Malaysian pineapple strains. MAb Pine-2 (2A7F2, IgG3 with kappa light chain) reacted to all type B, C, and D strains but not to any A or E strains or any reference strains except Dickeya sp. isolated from Malaysian pineapple. Pathogenicity tests showed that type C strains were more aggressive than type A strains when inoculated during cool months. Therefore, MAb Pine-2 distinguishes the more virulent type C strains from less virulent type A pineapple strains and type E water strains. MAbs with these two specificities enable development of rapid diagnostic tests that will distinguish the systemic heart rot pathogen from opportunistic bacteria associated with rotted tissues. Use of the two MAbs in field assays also permits the monitoring of a known subpopulation and provides additional decision tools for disease containment and management practices.

  11. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent

    PubMed Central

    Wiens, Kirsten E.; Ernst, Joel D.

    2016-01-01

    Type I interferons (including IFNαβ) are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb) infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING) signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS) in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC). We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA) in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ. PMID:27500737

  12. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent.

    PubMed

    Wiens, Kirsten E; Ernst, Joel D

    2016-08-01

    Type I interferons (including IFNαβ) are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb) infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING) signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS) in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC). We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA) in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ. PMID:27500737

  13. Increasing viscosity and yields of bacterial exopolysaccharides by repeatedly exposing strains to ampicillin.

    PubMed

    Li, Ou; Liu, Ao; Lu, Cui; Zheng, Dao-qiong; Qian, Chao-dong; Wang, Pin-Mei; Jiang, Xin-Hang; Wu, Xue-Chang

    2014-09-22

    A universal method to enhance productivity and viscosity of bacterial exopolysaccharides was developed. The technique was based on the principle that ampicillin can inhibit the biosynthesis of peptidoglycan, which shares a common synthetic pathway with that of bacterial exopolysaccharides. Serial passages of three typical representatives of bacterial EPS-producing strains, namely Sphingomonas elodea, Xanthomonas campestris, and Paenibacillus elgii, were subjected to ampicillin, which was used as a stressor and a mutagen. These mutant strains are advantageous over other strains because of two major factors. First, all of the resulting strains were almost mutants with increase in EPS productivity and viscosity. Second, isolated serial strains showed different levels of increase in EPS production and viscosity to satisfy the different requirements of practical applications. No differences were observed in the monosaccharide composition produced by the mutant and parent strains; however, high-viscosity mutant strains exhibited higher molecular weights. The results confirmed that the developed method is a controlled universal one that can improve exopolysaccharides productivity and viscosity.

  14. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  15. Biochemical diversity of the bacterial strains and their biopolymer producing capabilities in wastewater sludge.

    PubMed

    More, T T; Yan, S; John, R P; Tyagi, R D; Surampalli, R Y

    2012-10-01

    The biochemical characterization of 13 extracellular polymeric substances (EPS) producing bacterial strains were carried out by BIOLOG. The bacterial strains were cultured in sterilized sludge for EPS production. Flocculation and dewatering capabilities of produced EPS (broth, crude slime and capsular) were examined using kaolin suspension combined with calcium (150 mg of Ca(2+)/L of kaolin suspension). BIOLOG revealed that there were 9 Bacillus, 2 Serratia and 2 Yersinia species. Most of these bacterial strains had the capability to utilize wide spectrum of carbon and nitrogen sources. EPS concentration of more than 1g/L was produced by most of the bacterial strains. Concentration of EPS produced by different Bacillus strains was higher than that of Serratia and Yersinia. Broth EPS revealed flocculation activity more than 75% for Bacillus sp.7, Bacillus sp.4 and Bacillus sp.6, respectively. Flocculation activity higher than 75% was attained using very low concentrations of broth EPS (1.12-2.70 mg EPS/g SS).

  16. [Isolation, Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain y3 Isolated from Marine Environment].

    PubMed

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin

    2016-03-15

    A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment.

  17. [Isolation, Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain y3 Isolated from Marine Environment].

    PubMed

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin

    2016-03-15

    A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment. PMID:27337905

  18. Risk factors for wound infection in health care facilities in Buea, Cameroon: aerobic bacterial pathogens and antibiogram of isolates

    PubMed Central

    Kihla, Akoachere Jane-Francis Tatah; Ngunde, Palle John; Evelyn, Mbianda Soupsop; Gerard, Nkwelang; Ndip, Roland Ndip

    2014-01-01

    Introduction Wound infection is a significant clinical challenge in hospitals in developing countries where proper healthcare delivery is hampered by limited resources. This study investigated the antibiotic susceptibility pattern of bacteria causing wound infection and risk factors for infection among hospitalized patients in Buea, Cameroon, to generate findings which could drive reformation of policies on infection control. Methods Aerobic bacteria were isolated from 212 swabs collected from patients with clinically diagnosed infected wounds. Risk factors for wound infection were investigated. Antibiotic susceptibility of isolates was determined by disk diffusion technique. The Chi-square test was employed to determine significant differences in isolation and distribution of organisms in various specimens. Differences were considered significant at P < 0.05. Results Twelve bacteria species were isolated from 169 (79.7%) specimens. Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae, the predominant isolates in all wound types exhibited a high preponderance of multidrug resistant strains. High rate of infection was attributed to lack of constant water supply and breakdown of sterilization equipment during the study period. Highest diversity of pathogens occurred in open wounds. There were no significant differences (P>0.05) in isolation of pathogens with respect to age, gender and wound type. Co-existing morbidity increased risk of wound infection. Isolates were susceptible to fluoroquinolones and resistant to oxacillin. Conclusion Wound infection with resistant bacteria constitutes a significant cause of morbidity in the study area. Findings reiterate the need to strengthen infection control and drug dispensing policies, and greater collaboration between microbiologists and medical practioners to stem the spread of resistant bacteria. PMID:25360190

  19. Transport processes and mutual interactions of three bacterial strains in saturated porous media

    NASA Astrophysics Data System (ADS)

    Stumpp, Christine; Lawrence, John R.; Hendry, M. Jim; Maloszewski, Pitor

    2010-05-01

    Transport processes of the bacterial strains Klebsiella oxytoca, Burkholderia cepacia G4PR-1 and Pseudomonas sp #5 were investigated in saturated column experiments to study the differences in transport characteristics and the mutual interactions of these strains during transport. Soil column experiments (114 mm long x 33 mm in diameter) were conducted with constant water velocities (3.9-5.7 cm/h) through a medium to coarse grained silica sand. All experiments were performed in freshly packed columns in quadruplicate. Chloride was used as tracer to determine the mean transit time, dispersivity and flow rate. It was injected as a pulse into the columns together with the bacterial strains suspended in artificial groundwater medium. In the first setup, each strain was investigated alone. In the second setup, transport processes were performed injecting two strains simultaneously. Finally, the transport characteristics were studied in successive experiments when one bacterium was resident on the sand grains prior to the introduction of the second strain. In all experiments the peak C/Co bacterial concentrations were attenuated with respect to the conservative tracer chloride and a well defined tailing was observed. A one dimensional mathematical model for advective-dispersive transport that accounts for irreversible and reversible sorption was used to analyze the bacterial breakthrough curves and tailing patterns. It was shown that the sorption parameters were different for the three strains that can be explained by the properties of the bacteria. For the species Klebsiella oxytoca and Burkholderia cepacia G4PR-the transport parameters were mostly in the same range independent of the experimental setup. However, Pseudomonas sp #5, which is a motile bacterium, showed differences in the breakthrough curves and sorption parameters during the experiments. The simultaneous and successive experiments indicated an influence on the reversible sorption processes when another

  20. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source.

    PubMed

    Li, Hui; Zhang, Shi-yang; Wang, Xiao-li; Yang, Jie; Gu, Ji-dong; Zhu, Rui-li; Wang, Ping; Lin, Kuang-fei; Liu, Yong-di

    2015-01-01

    Trichloroethylene (TCE) and phenol were often found together as co-contaminants in the groundwater of industrial contaminated sites. An effective method to remove TCE was aerobic biodegradation by co-metabolism using phenol as growth substrates. However, the aerobic biodegradation process was easily limited by low concentration of dissolved oxygen (DO) in groundwater, and DO was improved by air blast technique with difficulty. This study enriched a bacterial community using hydrogen peroxide (H2O2) as the sole oxygen source to aerobically degrade TCE by co-metabolism with phenol in groundwater. The enriched cultures were acclimatized to 2-8 mM H2O2 which induced catalase, superoxide dismutase and peroxidase to decompose H2O2 to release O2 and reduce the toxicity. The bacterial community could degrade 120 mg/L TCE within 12 days by using 8 mM H2O2 as the optimum concentration, and the TCE degradation efficiency reached up to 80.6%. 16S rRNA gene cloning and sequencing showed that Bordetella, Stenotrophomonas sp., Sinorhizobium sp., Variovorax sp. and Sphingobium sp. were the dominant species in the enrichments, which were clustered in three phyla: Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Polymerase chain reaction detection proved that phenol hydroxylase (Lph) gene was involved in the co-metabolic degradation of phenol and TCE, which indicated that hydroxylase might catalyse the epoxidation of TCE to form the unstable molecule TCE-epoxide. The findings are significant for understanding the mechanism of biodegradation of TCE and phenol co-contamination and helpful for the potential applications of an aerobic bioremediation in situ the contaminated sites.

  1. [Construction and evaluation of an engineered bacterial strain for producing lipopeptide under anoxic conditions].

    PubMed

    Liang, Xiao-long; Zhao, Feng; Shi, Rong-jiu; Ban, Yun-he; Zhou, Ji-dong; Han, Si-qin; Zhang, Ying

    2015-08-01

    Biosurfactant-facilitated oil recovery is one of the most important aspects of microbial enhanced oil recovery (MEOR). However, the biosurfactant production by biosurfactant-producing microorganisms, most of which are aerobes, is severely suppressed due to the in-situ anoxic conditions within oil reservoirs. In this research, we successfully engineered a strain JD-3, which could grow rapidly and produce lipopeptide under anoxic conditions, by protoplast confusion using a Bacillus amyloliquefaciens strain BQ-2 which produces biosurfactant aerobically, and a facultative anaerobic Pseudomonas stutzeri strain DQ-1 as parent strains. The alignment of 16S rDNA sequence (99% similarity) and comparisons of cell colony morphology showed that fusant JD-3 was closer to the parental strain B. amyloliquefaciens BQ-2. The surface tension of culture broth of fusant JD-3, after 36-hour cultivation under anaerobic conditions, decreased from initially 63.0 to 32.5 mN · m(-1). The results of thin layer chromatography and infrared spectrum analysis demonstrated that the biosurfactant produced by JD-3 was lipopeptide. The surface-active lipopeptide had a low critical micelle concentration (CMC) of 90 mg · L(-1) and presented a good ability to emulsify various hydrocarbons such as crude oil, liquid paraffin, and kerosene. Strain JD-3 could utilize peptone as nitrogen source and sucrose, glucose, glycerin or other common organics as carbon sources for anaerobic lipopeptide synthesis. The subculture of fusant JD-3 showed a stable lipopeptide-producing ability even after ten serial passages. All these results indicated that fusant JD-3 holds a great potential to microbially enhance oil recovery under anoxic conditions. PMID:26685621

  2. Stenotrophomonas maltophilia SeITE02, a New Bacterial Strain Suitable for Bioremediation of Selenite-Contaminated Environmental Matrices▿

    PubMed Central

    Antonioli, Paolo; Lampis, Silvia; Chesini, Irene; Vallini, Giovanni; Rinalducci, Sara; Zolla, Lello; Righetti, Pier Giorgio

    2007-01-01

    Biochemical and proteomic tools have been utilized for investigating the mechanism of action of a new Stenotrophomonas maltophilia strain (SeITE02), a gammaproteobacterium capable of resistance to high concentrations of selenite [SeO32−, Se(IV)], reducing it to nontoxic elemental selenium under aerobic conditions; this strain was previously isolated from a selenite-contaminated mining soil. Biochemical analysis demonstrated that (i) nitrite reductase does not seem to take part in the process of selenite reduction by the bacterial strain SeITE02, although its involvement in this process had been hypothesized in other cases; (ii) nitrite strongly interferes with selenite removal when the two oxyanions (NO2− and SeO32−) are simultaneously present, suggesting that the two reduction/detoxification pathways share a common enzymatic step, probably at the level of cellular transport; (iii) in vitro, selenite reduction does not take place in the membrane or periplasmic fractions but only in the cytoplasm, where maximum activity is exhibited at pH 6.0 in the presence of NADPH; and (iv) glutathione is involved in the selenite reduction mechanism, since inhibition of its synthesis leads to a considerable delay in the onset of reduction. As far as the proteomic findings are concerned, the evidence was reached that 0.2 mM selenite and 16 mM nitrite, when added to the culture medium, caused a significant modulation (ca. 10%, i.e., 96 and 85 protein zones, respectively) of the total proteins visualized in the respective two-dimensional maps. These spots were identified by mass spectrometry analysis and were found to belong to the following functional classes: nucleotide synthesis and metabolism, damaged-protein catabolism, protein and amino acid metabolism, and carbohydrate metabolism along with DNA-related proteins and proteins involved in cell division, oxidative stress, and cell wall synthesis. PMID:17827320

  3. Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4.

    PubMed

    Kong, Lingfen; Zhu, Shaoyuan; Zhu, Lusheng; Xie, Hui; Su, Kunchang; Yan, Tongxiang; Wang, Jun; Wang, Jinhua; Wang, Fenghua; Sun, Fengxia

    2013-11-01

    The recently discovered endosulfan-degrading bacterial strain Alcaligenesfaecalis JBW4 was isolated from activated sludge. This strain is able to use endosulfan as a carbon and energy source. The optimal conditions for the growth of strain JBW4 and for biodegradation by this strain were identified, and the metabolic products of endosulfan degradation were studied in detail. The maximum level of endosulfan biodegradation by strain JBW4 was obtained using broth at an initial pH of 7.0, an incubation temperature of 40 degreeC and an endosulfan concentration of 100 mg/L. The concentration of endosulfan was determined by gas chromatography. Strain JBW4 was able to degrade 87.5% of alpha-endosulfan and 83.9% of beta-endosulfan within 5 days. These degradation rates are much higher than the previously reported bacterial strains. Endosulfan diol and endosulfan lactone were the major metabolites detected by gas chromatography-mass spectrometry; endosulfan sulfate, which is a persistent and toxic metabolite, was not detected. These results suggested that A. faecalis JBW4 degrades endosulfan via a non-oxidative pathway. The biodegradation of endosulfan by A. faecalis is reported for the first time. Additionally, the present study indicates that strain JBW4 may have potential for the biodegradation of endosulfan residues.

  4. Interactions between Closely Related Bacterial Strains Are Revealed by Deep Transcriptome Sequencing

    PubMed Central

    González-Torres, Pedro; Pryszcz, Leszek P.; Santos, Fernando; Martínez-García, Manuel

    2015-01-01

    Comparative genomics, metagenomics, and single-cell technologies have shown that populations of microbial species encompass assemblages of closely related strains. This raises the question of whether individual bacterial lineages respond to the presence of their close relatives by modifying their gene expression or, instead, whether assemblages simply act as the arithmetic addition of their individual components. Here, we took advantage of transcriptome sequencing to address this question. For this, we analyzed the transcriptomes of two closely related strains of the extremely halophilic bacterium Salinibacter ruber grown axenically and in coculture. These organisms dominate bacterial assemblages in hypersaline environments worldwide. The strains used here cooccurred in the natural environment and are 100% identical in their 16S rRNA genes, and each strain harbors an accessory genome representing 10% of its complete genome. Overall, transcriptomic patterns from pure cultures were very similar for both strains. Expression was detected along practically the whole genome albeit with some genes at low levels. A subset of genes was very highly expressed in both strains, including genes coding for the light-driven proton pump xanthorhodopsin, genes involved in the stress response, and genes coding for transcriptional regulators. Expression differences between pure cultures affected mainly genes involved in environmental sensing. When the strains were grown in coculture, there was a modest but significant change in their individual transcription patterns compared to those in pure culture. Each strain sensed the presence of the other and responded in a specific manner, which points to fine intraspecific transcriptomic modulation. PMID:26431969

  5. Cloacal aerobic bacterial flora and absence of viruses in free-living slow worms (Anguis fragilis), grass snakes (Natrix natrix) and European Adders (Vipera berus) from Germany.

    PubMed

    Schmidt, Volker; Mock, Ronja; Burgkhardt, Eileen; Junghanns, Anja; Ortlieb, Falk; Szabo, Istvan; Marschang, Rachel; Blindow, Irmgard; Krautwald-Junghanns, Maria-Elisabeth

    2014-12-01

    Disease problems caused by viral or bacterial pathogens are common in reptiles kept in captivity. There is no information available on the incidence of viral pathogens or the physiological cloacal bacterial flora of common free-living reptiles in Germany. Therefore, 56 free-living reptiles including 23 European adders (Vipera berus), 12 grass snakes (Natrix natrix) and 21 slow worms (Anguis fragilis) were investigated on the island Hiddensee in northeastern Germany. Pharyngeal and cloacal swabs were taken immediately after capture. Bacteriological examination was performed from the cloacal swabs to study the aerobic cloacal flora. Molecular biological examination included amplification of DNA or RNA from adeno-, rana- and ferlaviruses as well as culturing on Russell's viper heart cells for virus isolation. Salmonella spp. were isolated from European adders but not from the other reptiles examined. The minimal inhibitory concentration was determined from the isolated Salmonella spp. However, some potentially human pathogenic bacteria, such as Proteus vulgaris, Aeromonas hydrophila, Klebsiella pneumoniae and Escherichia coli were isolated. Viruses were not detected in any of the examined reptiles. To the authors' best knowledge, the present study is the first survey of viral pathogens in free-living snakes and slow worms in Germany and the first survey of cloacal aerobic bacterial flora of slow worms.

  6. Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1

    SciTech Connect

    Steinle, P.; Stucki, G.; Stettler, R.; Hanselmann, K.W.

    1998-07-01

    A new aerobic bacterium was isolated from the sediment of a freshwater pond close to a contaminated site at Amponville (France). It was enriched in a fixed-bed reactor fed with 2,6-dichlorophenol (2,6-DCP) as the sole carbon and energy source at pH 7.5 and room temperature. The degradation of 2,6-DCP followed Monod kinetics at low initial concentrations. At concentrations above 300 {micro}M, 2,6-DCP increasingly inhibited its own degradation. The base sequence of the 16S ribosomal DNA allowed us to assign the bacterium to the genus Ralstonia (formerly Alcaligenes). The substrate spectrum of the bacterium includes toluene, benzene, chlorobenzene, phenol, and all four ortho- and para-substituted mono- and dichlorophenol isomers. Substituents other than chlorine prevented degradation. The capacity to degrade 2,6-DCP was examined in two fixed-bed reactors. The microbial population grew on and completely mineralized 2,6-DCP at 2,6-DCP concentrations up to 740 {micro}M in continuous reactor culture supplied with H{sub 2}O{sub 2} as an oxygen source. Lack of peroxide completely stopped further degradation of 2,6-DCP. Lowering the acid-neutralizing capacity of the medium to 1/10th the original capacity led to a decrease in the pH of the effluent from 7 to 6 and to a significant reduction in the degradation activity. A second fixed-bed reactor successfully removed low chlorophenol concentrations with hydraulic residence times of 8 to 30 min.

  7. Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10.

    PubMed

    Lee, Kevin C-Y; Dunfield, Peter F; Morgan, Xochitl C; Crowe, Michelle A; Houghton, Karen M; Vyssotski, Mikhail; Ryan, Jason L J; Lagutin, Kirill; McDonald, Ian R; Stott, Matthew B

    2011-10-01

    An aerobic, saccharolytic, obligately thermophilic, motile, non-spore-forming bacterium, strain T49(T), was isolated from geothermally heated soil at Hell's Gate, Tikitere, New Zealand. On the basis of 16S rRNA gene sequence similarity, T49(T) is the first representative of a new class in the newly described phylum Armatimonadetes, formerly known as candidate division OP10. Cells of strain T49(T) stained Gram-negative and were catalase-positive and oxidase-negative. Cells possessed a highly corrugated outer membrane. The major fatty acids were 16 : 0, i17 : 0 and ai17 : 0. The G+C content of the genomic DNA was 54.6 mol%. Strain T49(T) grew at 50-73 °C with an optimum temperature of 68 °C, and at pH 4.7-5.8 with an optimum growth pH of 5.3. A growth rate of 0.012 h(-1) was observed under optimal temperature and pH conditions. The primary respiratory quinone was MK-8. Optimal growth was achieved in the absence of NaCl, although growth was observed at NaCl concentrations as high as 2 % (w/v). Strain T49(T) was able to utilize mono- and disaccharides such as cellobiose, lactose, mannose and glucose, as well as branched or amorphous polysaccharides such as starch, CM-cellulose, xylan and glycogen, but not highly linear polysaccharides such as crystalline cellulose or cotton. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain T49(T) represents a novel bacterial genus and species within the new class Chthonomonadetes classis nov. of the phylum Armatimonadetes. The type strain of Chthonomonas calidirosea gen. nov., sp. nov. is T49(T) ( = DSM 23976(T) = ICMP 18418(T)). PMID:21097641

  8. Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10.

    PubMed

    Lee, Kevin C-Y; Dunfield, Peter F; Morgan, Xochitl C; Crowe, Michelle A; Houghton, Karen M; Vyssotski, Mikhail; Ryan, Jason L J; Lagutin, Kirill; McDonald, Ian R; Stott, Matthew B

    2011-10-01

    An aerobic, saccharolytic, obligately thermophilic, motile, non-spore-forming bacterium, strain T49(T), was isolated from geothermally heated soil at Hell's Gate, Tikitere, New Zealand. On the basis of 16S rRNA gene sequence similarity, T49(T) is the first representative of a new class in the newly described phylum Armatimonadetes, formerly known as candidate division OP10. Cells of strain T49(T) stained Gram-negative and were catalase-positive and oxidase-negative. Cells possessed a highly corrugated outer membrane. The major fatty acids were 16 : 0, i17 : 0 and ai17 : 0. The G+C content of the genomic DNA was 54.6 mol%. Strain T49(T) grew at 50-73 °C with an optimum temperature of 68 °C, and at pH 4.7-5.8 with an optimum growth pH of 5.3. A growth rate of 0.012 h(-1) was observed under optimal temperature and pH conditions. The primary respiratory quinone was MK-8. Optimal growth was achieved in the absence of NaCl, although growth was observed at NaCl concentrations as high as 2 % (w/v). Strain T49(T) was able to utilize mono- and disaccharides such as cellobiose, lactose, mannose and glucose, as well as branched or amorphous polysaccharides such as starch, CM-cellulose, xylan and glycogen, but not highly linear polysaccharides such as crystalline cellulose or cotton. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain T49(T) represents a novel bacterial genus and species within the new class Chthonomonadetes classis nov. of the phylum Armatimonadetes. The type strain of Chthonomonas calidirosea gen. nov., sp. nov. is T49(T) ( = DSM 23976(T) = ICMP 18418(T)).

  9. Draft genome sequence of XANTHOMONAS ARBORICOLA strain 3004, causal agent of bacterial disease on barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here the annotated genome sequence of XANTHOMONAS ARBORICOLA str. 3004, a Gram-negative phytopathogenic bacteria that includes several pathovars characterized by virulence specificity. Strain 3004 was isolated from barley leaves with symptoms of streak (bacterial blight) and also can infec...

  10. Complete Genome Sequence of a Human Cytomegalovirus Strain AD169 Bacterial Artificial Chromosome Clone

    PubMed Central

    Ostermann, Eleonore; Spohn, Michael; Indenbirken, Daniela

    2016-01-01

    The complete sequence of the human cytomegalovirus strain AD169 (variant ATCC) cloned as a bacterial artificial chromosome (AD169-BAC, also known as HB15 or pHB15) was determined. The viral genome has a length of 230,290 bp and shows 52 nucleotide differences compared to a previously sequenced AD169varATCC clone. PMID:27034483

  11. 'Olegusella massiliensis' strain KHD7, a new bacterial genus isolated from the female genital tract.

    PubMed

    Diop, K; Diop, A; Raoult, D; Fournier, P-E; Fenollar, F

    2016-07-01

    We report the main characteristics of 'Olegusella massiliensis' gen. nov., sp. nov., strain KHD7 (= CSUR P2268 = DSM 101849), a new member of the Coriobacteriaceae family isolated from the vaginal flora of a patient with bacterial vaginosis. PMID:27330814

  12. 'Lascolabacter vaginalis' strain KHD1, a new bacterial species cultivated from human female genital tract.

    PubMed

    Diop, K; Mediannikov, O; Fournier, P-E; Raoult, D; Bretelle, F; Fenollar, F

    2016-09-01

    We present the major characteristics of 'Lascolabacter vaginalis' strain KHD1 (= CSUR P0109 = DSM 101752), a new member of the family Prevotellaceae that was cultivated from a vaginal sample of a 33-year-old woman with bacterial vaginosis. PMID:27358744

  13. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus.

    PubMed

    Castro, Cristina; Zuluaga, Robin; Álvarez, Catalina; Putaux, Jean-Luc; Caro, Gloria; Rojas, Orlando J; Mondragon, Iñaki; Gañán, Piedad

    2012-08-01

    A bacterial strain isolated from the fermentation of Colombian homemade vinegar, Gluconacetobacter medellensis, was investigated as a new source of bacterial cellulose (BC). The BC produced from substrate media consisting of various carbon sources at different pH and incubation times was quantified. Hestrin-Schramm (HS) medium modified with glucose led to the highest BC yields followed by sucrose and fructose. Interestingly, the microorganisms are highly tolerant to low pH: an optimum yield of 4.5 g/L was achieved at pH 3.5, which is generally too low for other bacterial species to function. The cellulose microfibrils produced by the new strain were characterized by scanning and transmission electron microscopy, infrared spectroscopy X-ray diffraction and elemental analysis. The morphological, structural and chemical characteristics of the cellulose produced are similar to those expected for BC.

  14. Genome sequence of the aerobic bacterium Bacillus sp. strain FJAT-13831.

    PubMed

    Liu, Guohong; Liu, Bo; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-12-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%.

  15. Genome Sequence of the Aerobic Bacterium Bacillus sp. Strain FJAT-13831

    PubMed Central

    Liu, Guohong; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-01-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%. PMID:23144388

  16. Pyroprinting: a rapid and flexible genotypic fingerprinting method for typing bacterial strains.

    PubMed

    Black, Michael W; VanderKelen, Jennifer; Montana, Aldrin; Dekhtyar, Alexander; Neal, Emily; Goodman, Anya; Kitts, Christopher L

    2014-10-01

    Bacterial strain typing is commonly employed in studies involving epidemiology, population ecology, and microbial source tracking to identify sources of fecal contamination. Methods for differentiating strains generally use either a collection of phenotypic traits or rely on some interrogation of the bacterial genotype. This report introduces pyroprinting, a novel genotypic strain typing method that is rapid, inexpensive, and discriminating compared to the most sensitive methods already in use. Pyroprinting relies on the simultaneous pyrosequencing of polymorphic multicopy loci, such as the intergenic transcribed spacer regions of rRNA operons in bacterial genomes. Data generated by sequencing combinations of variable templates are reproducible and intrinsically digitized. The theory and development of pyroprinting in Escherichia coli, including the selection of similarity thresholds to define matches between isolates, are presented. The pyroprint-based strain differentiation limits and phylogenetic relevance compared to other typing methods are also explored. Pyroprinting is unique in its simplicity and, paradoxically, in its intrinsic complexity. This new approach serves as an excellent alternative to more cumbersome or less phylogenetically relevant strain typing methods.

  17. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    PubMed

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%.

  18. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    PubMed

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. PMID:26725036

  19. Detection of ureolytic activity of bacterial strains isolated from entomopathogenic nematodes using infrared spectroscopy.

    PubMed

    Lechowicz, Lukasz; Chrapek, Magdalena; Czerwonka, Grzegorz; Korzeniowska-Kowal, Agnieszka; Tobiasz, Anna; Urbaniak, Mariusz; Matuska-Lyzwa, Joanna; Kaca, Wieslaw

    2016-08-01

    The pathogenicity of entomopathogenic nematodes (EPNs) depends directly on the presence of bacteria in the nematode digestive tracts. Based on 16S rRNA and MALDI-TOF analyses 20 isolated bacteria were assigned to 10 species with 10 isolates classified as Pseudomonas ssp. Six strains (30%) show ureolytic activity on Christensen medium. Spectroscopic analysis of the strains showed that the ureolytic activity is strongly correlated with the following wavenumbers: 935 cm(-1) in window W4, which carries information about the bacterial cell wall construction and 1158 cm(-1) in window W3 which corresponds to proteins in bacterial cell. A logistic regression model designed on the basis of the selected wavenumbers differentiates ureolytic from non-ureolytic bacterial strains with an accuracy of 100%. Spectroscopic studies and mathematical analyses made it possible to differentiate EPN-associated Pseudomonas sp. strains from clinical Pseudomonas aeruginosa PAO1. These results suggest, that infrared spectra of EPN-associated Pseudomonas sp. strains may reflect its adaptation to the host. PMID:26972384

  20. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions.

    PubMed

    Oh, Euna; McMullen, Lynn; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni, a microaerophilic foodborne pathogen, inescapably faces high oxygen tension during its transmission to humans. Thus, the ability of C. jejuni to survive under oxygen-rich conditions may significantly impact C. jejuni viability in food and food safety as well. In this study, we investigated the impact of oxidative stress resistance on the survival of C. jejuni under aerobic conditions by examining three mutants defective in key antioxidant genes, including ahpC, katA, and sodB. All the three mutants exhibited growth reduction under aerobic conditions compared to the wild-type (WT), and the ahpC mutant showed the most significant growth defect. The CFU reduction in the mutants was recovered to the WT level by complementation. Higher levels of reactive oxygen species were accumulated in C. jejuni under aerobic conditions than microaerobic conditions, and supplementation of culture media with an antioxidant recovered the growth of C. jejuni. The levels of lipid peroxidation and protein oxidation were significantly increased in the mutants compared to WT. Additionally, the mutants exhibited different morphological changes under aerobic conditions. The ahpC and katA mutants developed coccoid morphology by aeration, whereas the sodB mutant established elongated cellular morphology. Compared to microaerobic conditions, interestingly, aerobic culture conditions substantially induced the formation of coccoidal cells, and antioxidant treatment reduced the emergence of coccoid forms under aerobic conditions. The ATP concentrations and PMA-qPCR analysis supported that oxidative stress is a factor that induces the development of a viable-but-non-culturable state in C. jejuni. The findings in this study clearly demonstrated that oxidative stress resistance plays an important role in the survival and morphological changes of C. jejuni under aerobic conditions. PMID:25914692

  1. [Isolation and characteristics of Panax ginseng autotoxin-degrading bacterial strains].

    PubMed

    Zhao, Dong-Yue; Li, Yong; Ding, Wan-Long

    2013-06-01

    In this study, traditional plate culturing method was used to isolate autotoxin-degrading microbial strains, and which were then identified by 16S rDNA homological analysis and morphological characteristics. Furthermore, the growth and autotoxin-degrading efficiency of them were analyzed by liquid culturing method and GC-MS to illustrate their autotoxin-degradation characteristics. As a result, five bacterial strains having autotoxin-degrading activity were isolated from 6-years ginseng nonrhizospheric soil successfully, and which can growth successfully by taking autotoxins added artificially as carbon source in liquid culturing condition. Results indicated that it was feasible to isolate autotoxin-degrading bacteria from ginseng nonrhizospheric soil, and the isolated bacterial strains can be used to degrade autotoxins in soils once planted Panax ginseng.

  2. Isolation of a Bacterial Strain Able To Degrade Branched Nonylphenol

    PubMed Central

    Tanghe, Tom; Dhooge, Willem; Verstraete, Willy

    1999-01-01

    Conventional enrichment of microorganisms on branched nonylphenol (NP) as only carbon and energy source yielded mixed cultures able to grow on the organic compound. However, plating yielded no single colonies capable, alone or in combination with other isolates, of degrading the NP in liquid culture. Therefore, a special approach was used, referred to as “serial dilution-plate resuspension,” to reduce culture complexity. In this way, one isolate, TTNP3, tentatively identified as a Sphingomonas sp., was found to be able to grow on NP in liquid culture. Remarkably, this isolate was able to be filtered through a 0.45-μm-pore-diameter filter. Moreover, isolate TTNP3 did not form visible colonies on mineral medium with NP, and it formed visible colonies on R2A agar only after a prolonged incubation of 1 week. High-performance liquid chromatography and gas chromatography-mass spectroscopy analysis of the culture media indicated that the strain starts the degradation of NP with a fission of the phenol ring and preferably uses the para isomer of NP and not the ortho isomer. No distinct accumulation of an intermediary product could be observed. PMID:9925611

  3. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26.

    PubMed

    Yang, Ying; Jia, Jingjing; Xing, Jianrong; Chen, Jianbing; Lu, Shengmin

    2013-02-15

    A strain producing bacterial cellulose (BC) screened from rotten mandarin fruit was identified as Gluconacetobacter intermedius CIs26 by the examination of general taxonomical characteristics and 16S rDNA sequence analysis. Furthermore, Fourier transform infrared (FT-IR) spectrum showed that pellicle produced by strain CIs26 was composed of glucan, and had the same functional group as a typical BC. X-ray diffractometry (XRD) analysis indicated that the BC was type I in structure with crystallinity index of 75%. BC yields of strain CIs26 in Hestrin-Schramn (HS), citrus waste modified HS (CMHS) and citrus waste solution (CWS) mediums were 2.1 g/L, 5.7 g/L, and 7.2 g/L, respectively. It was shown that citrus waste could stimulate BC production of strain CIs26 efficiently. Based on the ability of utilization of citrus waste, this strain appeared to have potential in BC manufacture on an industrial scale.

  4. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    PubMed

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  5. Variations of both bacterial community and extracellular polymers: the inducements of increase of cell hydrophobicity from biofloc to aerobic granule sludge.

    PubMed

    Guo, Feng; Zhang, Sheng-Hua; Yu, Xin; Wei, Bo

    2011-06-01

    To investigate the inducements of increase of cell hydrophobicity from aerobic biofloc (ABF) and granular sludge (AGS), in this study, as the first time the hydrophilic and hydrophobic bacterial communities were analyzed independently. Meanwhile, the effect of extracellular polymers (EPS) on the cell hydrophobicity is also studied. Few Bacteroidetes were detected (1.35% in ABF and 3.84% in AGS) in hydrophilic bacteria, whereas they are abundant in the hydrophobic cells (47.8% and 43% for ABF and AGS, respectively). The main species of Bacteroidetes changed from class Sphingobacteria to Flavobacteria in AGS. On the other hand, EPS is directly responsible to cell hydrophobicity. For AGS, cell hydrophobicity was sharply decreased after EPS extraction. Both quantity and property of the extracellular protein are related to hydrophobicity. Our results showed the variation of cell hydrophobicity was resulted from variations of both bacterial population and EPS. PMID:21482465

  6. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis.

    PubMed

    de Aguiar, Sílvia Cristina; Zeoula, Lucia Maria; do Prado, Odimari Pricila Pires; Arcuri, Pedro Braga; Forano, Evelyne

    2014-11-01

    Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml(-1). C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.

  7. Aerobic biodegradation of 2,4-Dinitroanisole by Nocardioides sp. strain JS1661.

    PubMed

    Fida, Tekle Tafese; Palamuru, Shannu; Pandey, Gunjan; Spain, Jim C

    2014-12-01

    2,4-Dinitroanisole (DNAN) is an insensitive munition ingredient used in explosive formulations as a replacement for 2,4,6-trinitrotoluene (TNT). Little is known about the environmental behavior of DNAN. There are reports of microbial transformation to dead-end products, but no bacteria with complete biodegradation capability have been reported. Nocardioides sp. strain JS1661 was isolated from activated sludge based on its ability to grow on DNAN as the sole source of carbon and energy. Enzyme assays indicated that the first reaction involves hydrolytic release of methanol to form 2,4-dinitrophenol (2,4-DNP). Growth yield and enzyme assays indicated that 2,4-DNP underwent subsequent degradation by a previously established pathway involving formation of a hydride-Meisenheimer complex and release of nitrite. Identification of the genes encoding the key enzymes suggested recent evolution of the pathway by recruitment of a novel hydrolase to extend the well-characterized 2,4-DNP pathway.

  8. Aerobic Biodegradation of 2,4-Dinitroanisole by Nocardioides sp. Strain JS1661

    PubMed Central

    Fida, Tekle Tafese; Palamuru, Shannu; Pandey, Gunjan

    2014-01-01

    2,4-Dinitroanisole (DNAN) is an insensitive munition ingredient used in explosive formulations as a replacement for 2,4,6-trinitrotoluene (TNT). Little is known about the environmental behavior of DNAN. There are reports of microbial transformation to dead-end products, but no bacteria with complete biodegradation capability have been reported. Nocardioides sp. strain JS1661 was isolated from activated sludge based on its ability to grow on DNAN as the sole source of carbon and energy. Enzyme assays indicated that the first reaction involves hydrolytic release of methanol to form 2,4-dinitrophenol (2,4-DNP). Growth yield and enzyme assays indicated that 2,4-DNP underwent subsequent degradation by a previously established pathway involving formation of a hydride-Meisenheimer complex and release of nitrite. Identification of the genes encoding the key enzymes suggested recent evolution of the pathway by recruitment of a novel hydrolase to extend the well-characterized 2,4-DNP pathway. PMID:25281383

  9. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    PubMed Central

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s−1) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s−1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  10. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics.

    PubMed

    Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  11. The impact of bacterial strain on the products of dissimilatory iron reduction

    NASA Astrophysics Data System (ADS)

    Salas, Everett C.; Berelson, William M.; Hammond, Douglas E.; Kampf, Anthony R.; Nealson, Kenneth H.

    2010-01-01

    Three bacterial strains from the genus Shewanella were used to examine the influence of specific bacteria on the products of dissimilatory iron reduction. Strains CN32, MR-4 and W3-18-1 were incubated with HFO (hydrous ferric oxide) as the terminal electron acceptor and lactate as the organic carbon and energy source. Mineral products of iron reduction were analyzed using X-ray powder diffraction, electron microscopy, coulometry and susceptometry. Under identical nutrient loadings, iron reduction rates for strains CN32 and W3-18-1 were similar, and about twice as fast as MR-4. Qualitative and quantitative assessment of mineralized end products (secondary minerals) indicated that different products were formed during experiments with similar reduction rates but different strains (CN32 and W3-18-1), and similar products were formed during experiments with different iron reduction rates and different strains (CN32 and MR-4). The major product of iron reduction by strains CN32 and MR-4 was magnetite, while for W3-18-1 it was a mixture of magnetite and iron carbonate hydroxide hydrate (green rust), a precursor to fougerite. Another notable difference was that strains CN32 and MR-4 converted all of the starting ferric iron material into magnetite, while W3-18-1 did not convert most of the Fe 3+ into a recognizable crystalline material. Biofilm formation is more robust in W3-18-1 than in the other two strains used in this study. The differences in mineralization may be an indicator that EPS (or another cellular product from W3-18-1) may interfere with the crystallization of magnetite or facilitate formation of green rust. These results suggest that the relative abundance of mineral end products and the relative distribution of these products are strongly dependent on the bacterial species or strain catalyzing iron reduction.

  12. The Impact of Bacterial Strain on the Products of Dissimilatory Iron Reduction

    PubMed Central

    Salas, Everett C.; Berelson, William M.; Hammond, Douglas E.; Kampf, Anthony R.; Nealson, Kenneth H.

    2009-01-01

    Three bacterial strains from the genus Shewanella were used to examine the influence of specific bacteria on the products of dissimilatory iron reduction. Strains CN32, MR-4 and W3-18-1 were incubated with HFO (hydrous ferric oxide) as the terminal electron acceptor and lactate as the organic carbon and energy source. Mineral products of iron reduction were analyzed using X-ray powder diffraction, electron microscopy, coulometry and susceptometry. Under identical nutrient loadings, iron reduction rates for strains CN32 and W3-18-1 were similar, and about twice as fast as MR-4. Qualitative and quantitative assessment of mineralized end products (secondary minerals) indicated that different products were formed during experiments with similar reduction rates but different strains (CN32 and W3-18-1), and similar products were formed during experiments with different iron reduction rates and different strains (CN32 and MR-4). The major product of iron reduction by strains CN32 and MR-4 was magnetite, while for W3-18-1 it was a mixture of magnetite and iron carbonate hydroxide hydrate (green rust), a precursor to fougerite. Another notable difference was that strains CN32 and MR-4 converted all of the starting ferric iron material into magnetite, while W3-18-1 did not convert most of the Fe3+ into a recognizable crystalline material. Biofilm formation is more robust in W3-18-1 than in the other two strains used in this study. The differences in mineralization may be an indicator that EPS (or another cellular product from W3-18-1) may interfere with the crystallization of magnetite or facilitate formation of green rust. These results suggest that the relative abundance of mineral end products and the relative distribution of these products are strongly dependent on the bacterial species or strain catalyzing iron reduction. PMID:20161499

  13. ANItools web: a web tool for fast genome comparison within multiple bacterial strains

    PubMed Central

    Han, Na; Qiang, Yujun; Zhang, Wen

    2016-01-01

    Background: Early classification of prokaryotes was based solely on phenotypic similarities, but modern prokaryote characterization has been strongly influenced by advances in genetic methods. With the fast development of the sequencing technology, the ever increasing number of genomic sequences per species offers the possibility for developing distance determinations based on whole-genome information. The average nucleotide identity (ANI), calculated from pair-wise comparisons of all sequences shared between two given strains, has been proposed as the new metrics for bacterial species definition and classification. Results: In this study, we developed the web version of ANItools (http://ani.mypathogen.cn/), which helps users directly get ANI values from online sources. A database covering ANI values of any two strains in a genus was also included (2773 strains, 1487 species and 668 genera). Importantly, ANItools web can automatically run genome comparison between the input genomic sequence and data sequences (Genus and Species levels), and generate a graphical report for ANI calculation results. Conclusion: ANItools web is useful for defining the relationship between bacterial strains, further contributing to the classification and identification of bacterial species using genome data. Database URL: http://ani.mypathogen.cn/ PMID:27270714

  14. [Characterization of thermophilic strain SY-14 with capability to lyse bacterial cells].

    PubMed

    Song, Yu-dong; Hu, Hong-ying; Xi, Jin-ying

    2007-09-01

    One spore-forming thermophilic bacterial strain SY-14, isolated from sewage sludge compost, showed significant capability to lyse bacterial cells. The strain was identified as Geobacillus sp. based on morphological characteristics and homology identification of 16S rDNA sequence. The optimal temperature and pH for growth were about 60 degrees C and pH 6.0-7.0 respectively. The culture supernatant of SY-14 showed lytic activity against both intact and thermal inactivated bacterial cells, and the cell lysis percentages at 6 hours were 70% and 85% respectively. The lytic activity of the culture supernatant decreased significantly after heat treatment, which inferred the lytic activity mainly derived from extracellular lytic enzymes of SY-14. The lytic activity of the culture supernatants of SY-14 increased significantly during the log phase in the batch culture process, and then decreased quickly after the maximum activity was reached. The culture supernatant of SY-14 showed lytic activity against all the five tested Gram-negative strains and some tested Gram-positive strains.

  15. Reduced aerobic capacity causes leaky ryanodine receptors that trigger arrhythmia in a rat strain artificially selected and bred for low aerobic running capacity

    PubMed Central

    Høydal, MA; Stølen, TO; Johnsen, AB; Alvez, M; Catalucci, D; Condorelli, G; Koch, LG; Britton, SL; Smith, GL; Wisløff, U

    2014-01-01

    Aim Rats selectively bred for inborn Low Capacity of Running (LCR) display a series of poor health indices where as rats selected for High Capacity of Running (HCR) display a healthy profile. We hypothesized that selection of low aerobic capacity over generations leads to a phenotype with increased diastolic Ca2+ leak that trigger arrhythmia. Methods We used rats selected for HCR (N=10) or LCR (N=10) to determine the effect of inborn aerobic capacity on Ca2+ leak and susceptibility of ventricular arrhythmia. We studied isolated FURA2/AM loaded cardiomyocytes to detect Ca2+-handling and function on an inverted epi-fluorescence microscope. To determine arrhythmogenicity we did a final experiment with electrical burst pacing in Langendorff perfused hearts. Results Ca2+-handling was impaired by reduced Ca2+ amplitude, prolonged time to 50% Ca2+ decay, and reduced sarcoplasmic reticulum (SR) Ca2+-content. Impaired Ca2+ removal was influenced by reduced SR Ca2+ ATP-ase 2a (SERCA2a) function and increased sodium/Ca2+-exchanger (NCX) in LCR rats. Diastolic Ca2 leak was 87% higher in LCR rats. The leak was reduced by CaMKII inhibition. Expression levels of phosphorylated theorine-286 CaMKII levels and increased RyR2 phosphorylation at the Serine-2814 site mechanistically support our findings of increased leak in LCR. LCR rats had significantly higher incidence of ventricular fibrillation. Conclusion Selection of inborn low aerobic capacity over generations leads to a phenotype with increased risk of ventricular fibrillation. Increased phosphorylation of CaMKII at serine-2814 at the cardiac ryanodine receptor appears as an important mechanism of impaired Ca2+ handling and diastolic Ca2+ leak that results in increased susceptibility to ventricular fibrillation. PMID:24444142

  16. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater.

    PubMed

    Li, Bing; Huang, Wenli; Zhang, Chao; Feng, Sisi; Zhang, Zhenya; Lei, Zhongfang; Sugiura, Norio

    2015-01-01

    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7.

  17. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  18. Identification of mosquito larvicidal bacterial strains isolated from north Sinai in Egypt

    PubMed Central

    2012-01-01

    In the present study, two of the most toxic bacterial strains of Bacillus sphaericus against mosquito were identified with the most recent genetic techniques. The PCR product profiles indicated the presence of genes encoding Bin A, Bin B and Mtx1 in all analyzed strains; they are consistent with protein profiles. The preliminary bioinformatics analysis of the binary toxin genes sequence revealed that the open reading frames had high similarities when matched with nucleotides sequence in the database of other B. sphaericus strains. The biological activity of B. sphaericus strains varied according to growing medium, and cultivation time. The highest yield of viable counts, spores and larvicidal protein were attained after 5 days. Poly (P) medium achieved the highest yield of growth, sporulation, protein and larvicidal activity for all tested strains compared to the other tested media. The larvicidal protein produced by local strains (B. sphaericus EMCC 1931 and EMCC 1932) in P medium was more lethal against the 3rd instar larvae of Culex pipiens than that of reference strains (B. sphaericus 1593 and B. sphaericus 2297). The obtained results revealed that P medium was the most effective medium and will be used in future work in order to optimize large scale production of biocide by the locally isolated Bacillus sphaericus strains. PMID:22280528

  19. Make Histri: reconstructing the exchange history of bacterial and archaeal type strains.

    PubMed

    Verslyppe, Bert; De Smet, Wim; De Baets, Bernard; De Vos, Paul; Dawyndt, Peter

    2011-07-01

    Each transfer of a microbial strain between a Biological Resource Center (BRC) and an individual researcher or another BRC imposes a risk of contamination or human error. Such artifacts jeopardize the quality of scientific results. In order to trace back possible scientific discrepancies that can be linked to failure of authenticity of the biological material involved, we launched the 'Make Histri' project that aims at reconstructing the exchange history ('Histri') of all bacterial and archaeal type strains as can be deduced from the information contained in BRC online catalogs. A Histri, visualized as a rooted tree, contains all known strain numbers attributed to the various cultures of a given strain, annotated with additional information about each transfer of microbial material. PMID:21514082

  20. Comparison of two multimetal resistant bacterial strains: Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2.

    PubMed

    Holmes, Andrew; Vinayak, Anubhav; Benton, Cherise; Esbenshade, Aaron; Heinselman, Carlisle; Frankland, Daniel; Kulkarni, Samatha; Kurtanich, Adrienne; Caguiat, Jonathan

    2009-11-01

    The Y-12 plant in Oak Ridge, TN, which manufactured nuclear weapons during World War II and the Cold War, contaminated East Fork Poplar Creek with heavy metals. The multimetal resistant bacterial strain, Stenotrophomonas maltophilia Oak Ridge strain O2 (S. maltophilia O2), was isolated from East Fork Poplar Creek. Sequence analysis of 16s rDNA suggested that our working strain of S. maltophilia O2 was a strain of Enterobacter. Phylogenetic tree analysis and biochemical tests confirmed that it belonged to an Enterobacter species. This new strain was named Enterobacter sp. YSU. Using a modified R3A growth medium, R3A-Tris, the Hg(II), Cd(II), Zn(II), Cu(II), Au(III), Cr(VI), Ag(I), As(III), and Se(IV) MICs for a confirmed strain of S. maltophilia O2 were 0.24, 0.33, 5, 5, 0.25, 7, 0.03, 14, and 40 mM, respectively, compared to 0.07, 0.24, 0.8, 3, 0.05, 0.4, 0.08, 14, and 40 mM, respectively, for Enterobacter sp. YSU. Although S. maltophilia O2 was generally more metal resistant than Enterobacter sp. YSU, in comparison to Escherichia coli strain HB101, Enterobacter sp. YSU was resistant to Hg(II), Cd(II), Zn(II), Au(III), Ag(I), As(III), and Se(IV). By studying metal resistances in these two strains, it may be possible to understand what makes one microorganism more metal resistant than another microorganism. This work also provided benchmark MICs that can be used to evaluate the metal resistance properties of other bacterial isolates from East Fork Poplar Creek and other metal contaminated sites.

  1. Comparison of two multimetal resistant bacterial strains: Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2.

    PubMed

    Holmes, Andrew; Vinayak, Anubhav; Benton, Cherise; Esbenshade, Aaron; Heinselman, Carlisle; Frankland, Daniel; Kulkarni, Samatha; Kurtanich, Adrienne; Caguiat, Jonathan

    2009-11-01

    The Y-12 plant in Oak Ridge, TN, which manufactured nuclear weapons during World War II and the Cold War, contaminated East Fork Poplar Creek with heavy metals. The multimetal resistant bacterial strain, Stenotrophomonas maltophilia Oak Ridge strain O2 (S. maltophilia O2), was isolated from East Fork Poplar Creek. Sequence analysis of 16s rDNA suggested that our working strain of S. maltophilia O2 was a strain of Enterobacter. Phylogenetic tree analysis and biochemical tests confirmed that it belonged to an Enterobacter species. This new strain was named Enterobacter sp. YSU. Using a modified R3A growth medium, R3A-Tris, the Hg(II), Cd(II), Zn(II), Cu(II), Au(III), Cr(VI), Ag(I), As(III), and Se(IV) MICs for a confirmed strain of S. maltophilia O2 were 0.24, 0.33, 5, 5, 0.25, 7, 0.03, 14, and 40 mM, respectively, compared to 0.07, 0.24, 0.8, 3, 0.05, 0.4, 0.08, 14, and 40 mM, respectively, for Enterobacter sp. YSU. Although S. maltophilia O2 was generally more metal resistant than Enterobacter sp. YSU, in comparison to Escherichia coli strain HB101, Enterobacter sp. YSU was resistant to Hg(II), Cd(II), Zn(II), Au(III), Ag(I), As(III), and Se(IV). By studying metal resistances in these two strains, it may be possible to understand what makes one microorganism more metal resistant than another microorganism. This work also provided benchmark MICs that can be used to evaluate the metal resistance properties of other bacterial isolates from East Fork Poplar Creek and other metal contaminated sites. PMID:19688378

  2. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products.

    PubMed

    Kongruang, Sasithorn

    2008-03-01

    Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 degrees C in 5-l fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

  3. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products

    NASA Astrophysics Data System (ADS)

    Kongruang, Sasithorn

    Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5-1 fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

  4. Screening of Bacterial Strains for Polygalacturonase Activity: Its Production by Bacillus sphaericus (MTCC 7542).

    PubMed

    Jayani, Ranveer Singh; Shukla, Surendra Kumar; Gupta, Reena

    2010-10-31

    At present almost all the pectinolytic enzymes used for industrial applications are produced by fungi. There are a few reports of pectinase production by bacterial strains. Therefore, in the present study, seventy-four bacterial strains, isolated from soil and rotten vegetable samples, were screened for polygalacturonase production. The strain PG-31, which gave maximum activity, was identified as Bacillus sphaericus (MTCC 7542). Maximal quantities of polygalacturonase were produced when a 16-hours-old inoculum was used at 7.5% (v/v) in production medium and incubated in shaking conditions (160 rpm) for 72 hours. The optimal temperature and pH for bacterial growth and polygalacturonase production were found to be 30°C and 6.8, respectively. Maximum enzyme production resulted when citrus pectin was used as the carbon source at a concentration of 1.25% (w/v), whereas other carbon sources led to a decrease (30%-70%) in enzyme production. Casein hydrolysate and yeast extract used together as organic nitrogen source gave best results, and ammonium chloride was found to be the most suitable inorganic nitrogen source. The supplementation of media with 0.9% (w/v) D-galacturonic acid led to a 23% increase in activity. Bacillus sphaericus, a bacterium isolated from soil, produced good amount of polygalacturonase activity at neutral pH; hence, it would be potentially useful to increase the yield of banana, grape, or apple juice.

  5. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology.

    PubMed

    Salipante, Stephen J; SenGupta, Dhruba J; Cummings, Lisa A; Land, Tyler A; Hoogestraat, Daniel R; Cookson, Brad T

    2015-04-01

    Nosocomial infections pose a significant threat to patient health; however, the gold standard laboratory method for determining bacterial relatedness (pulsed-field gel electrophoresis [PFGE]) remains essentially unchanged 20 years after its introduction. Here, we explored bacterial whole-genome sequencing (WGS) as an alternative approach for molecular strain typing. We compared WGS to PFGE for investigating presumptive outbreaks involving three important pathogens: vancomycin-resistant Enterococcus faecium (n=19), methicillin-resistant Staphylococcus aureus (n=17), and Acinetobacter baumannii (n=15). WGS was highly reproducible (average≤0.39 differences between technical replicates), which enabled a functional, quantitative definition for determining clonality. Strain relatedness data determined by PFGE and WGS roughly correlated, but the resolution of WGS was superior (P=5.6×10(-8) to 0.016). Several discordant results were noted between the methods. A total of 28.9% of isolates which were indistinguishable by PFGE were nonclonal by WGS. For A. baumannii, a species known to undergo rapid horizontal gene transfer, 16.2% of isolate pairs considered nonidentical by PFGE were clonal by WGS. Sequencing whole bacterial genomes with single-nucleotide resolution demonstrates that PFGE is prone to false-positive and false-negative results and suggests the need for a new gold standard approach for molecular epidemiological strain typing.

  6. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology.

    PubMed

    Salipante, Stephen J; SenGupta, Dhruba J; Cummings, Lisa A; Land, Tyler A; Hoogestraat, Daniel R; Cookson, Brad T

    2015-04-01

    Nosocomial infections pose a significant threat to patient health; however, the gold standard laboratory method for determining bacterial relatedness (pulsed-field gel electrophoresis [PFGE]) remains essentially unchanged 20 years after its introduction. Here, we explored bacterial whole-genome sequencing (WGS) as an alternative approach for molecular strain typing. We compared WGS to PFGE for investigating presumptive outbreaks involving three important pathogens: vancomycin-resistant Enterococcus faecium (n=19), methicillin-resistant Staphylococcus aureus (n=17), and Acinetobacter baumannii (n=15). WGS was highly reproducible (average≤0.39 differences between technical replicates), which enabled a functional, quantitative definition for determining clonality. Strain relatedness data determined by PFGE and WGS roughly correlated, but the resolution of WGS was superior (P=5.6×10(-8) to 0.016). Several discordant results were noted between the methods. A total of 28.9% of isolates which were indistinguishable by PFGE were nonclonal by WGS. For A. baumannii, a species known to undergo rapid horizontal gene transfer, 16.2% of isolate pairs considered nonidentical by PFGE were clonal by WGS. Sequencing whole bacterial genomes with single-nucleotide resolution demonstrates that PFGE is prone to false-positive and false-negative results and suggests the need for a new gold standard approach for molecular epidemiological strain typing. PMID:25631811

  7. In Vivo Selection To Identify Bacterial Strains with Enhanced Ecological Performance in Synbiotic Applications

    PubMed Central

    Krumbeck, Janina A.; Maldonado-Gomez, María X.; Martínez, Inés; Frese, Steven A.; Burkey, Thomas E.; Rasineni, Karuna; Ramer-Tait, Amanda E.; Harris, Edward N.; Hutkins, Robert W.

    2015-01-01

    One strategy for enhancing the establishment of probiotic bacteria in the human intestinal tract is via the parallel administration of a prebiotic, which is referred to as a synbiotic. Here we present a novel method that allows a rational selection of putative probiotic strains to be used in synbiotic applications: in vivo selection (IVS). This method consists of isolating candidate probiotic strains from fecal samples following enrichment with the respective prebiotic. To test the potential of IVS, we isolated bifidobacteria from human subjects who consumed increasing doses of galactooligosaccharides (GOS) for 9 weeks. A retrospective analysis of the fecal microbiota of one subject revealed an 8-fold enrichment in Bifidobacterium adolescentis strain IVS-1 during GOS administration. The functionality of GOS to support the establishment of IVS-1 in the gastrointestinal tract was then evaluated in rats administered the bacterial strain alone, the prebiotic alone, or the synbiotic combination. Strain-specific quantitative real-time PCR showed that the addition of GOS increased B. adolescentis IVS-1 abundance in the distal intestine by nearly 2 logs compared to rats receiving only the probiotic. Illumina 16S rRNA sequencing not only confirmed the increased establishment of IVS-1 in the intestine but also revealed that the strain was able to outcompete the resident Bifidobacterium population when provided with GOS. In conclusion, this study demonstrated that IVS can be used to successfully formulate a synergistic synbiotic that can substantially enhance the establishment and competitiveness of a putative probiotic strain in the gastrointestinal tract. PMID:25616794

  8. The Mosaic Genome of Anaeromyxobacter dehalogenans Strain 2CP-C Suggests an Aerobic Common Ancestor to the Delta-Proteobacteria

    PubMed Central

    Thomas, Sara H.; Wagner, Ryan D.; Arakaki, Adrian K.; Skolnick, Jeffrey; Kirby, John R.; Shimkets, Lawrence J.; Sanford, Robert A.; Löffler, Frank E.

    2008-01-01

    Anaeromyxobacter dehalogenans strain 2CP-C is a versaphilic delta-Proteobacterium distributed throughout many diverse soil and sediment environments. 16S rRNA gene phylogenetic analysis groups A. dehalogenans together with the myxobacteria, which have distinguishing characteristics including strictly aerobic metabolism, sporulation, fruiting body formation, and surface motility. Analysis of the 5.01 Mb strain 2CP-C genome substantiated that this organism is a myxobacterium but shares genotypic traits with the anaerobic majority of the delta-Proteobacteria (i.e., the Desulfuromonadales). Reflective of its respiratory versatility, strain 2CP-C possesses 68 genes coding for putative c-type cytochromes, including one gene with 40 heme binding motifs. Consistent with its relatedness to the myxobacteria, surface motility was observed in strain 2CP-C and multiple types of motility genes are present, including 28 genes for gliding, adventurous (A-) motility and 17 genes for type IV pilus-based motility (i.e., social (S-) motility) that all have homologs in Myxococcus xanthus. Although A. dehalogenans shares many metabolic traits with the anaerobic majority of the delta-Proteobacteria, strain 2CP-C grows under microaerophilic conditions and possesses detoxification systems for reactive oxygen species. Accordingly, two gene clusters coding for NADH dehydrogenase subunits and two cytochrome oxidase gene clusters in strain 2CP-C are similar to those in M. xanthus. Remarkably, strain 2CP-C possesses a third NADH dehydrogenase gene cluster and a cytochrome cbb3 oxidase gene cluster, apparently acquired through ancient horizontal gene transfer from a strictly anaerobic green sulfur bacterium. The mosaic nature of the A. dehalogenans strain 2CP-C genome suggests that the metabolically versatile, anaerobic members of the delta-Proteobacteria may have descended from aerobic ancestors with complex lifestyles. PMID:18461135

  9. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.

    PubMed

    Ruka, Dianne R; Sangwan, Parveen; Garvey, Christopher J; Simon, George P; Dean, Katherine M

    2015-08-18

    Poly-3-hydroxybutyrate (PHB) and bacterial cellulose (BC) are both natural polymeric materials that have the potential to replace traditional, nonrenewable polymers. In particular, the nanofibrillar form of bacterial cellulose makes it an effective reinforcement for PHB. Neat PHB, bacterial cellulose, and a composite of PHB/BC produced with 10 wt % cellulose were composted under accelerated aerobic test conditions, with biodegradability measured by the carbon dioxide evolution method, in conjunction with spectroscopic and diffraction methods to assess crystallinity changes during the biodegradation process. The PHB/BC composite biodegraded at a greater rate and extent than that of PHB alone, reaching 80% degradation after 30 days, whereas PHB did not reach this level of degradation until close to 50 days of composting. The relative crystallinity of PHB and PHB in the PHB/BC composite was found to increase in the initial weeks of degradation, with degradation occurring primarily in the amorphous region of the material and some recrystallization of the amorphous PHB. Small angle X-ray scattering indicates that the change in PHB crystallinity is accompanied by a change in morphology of semicrystalline lamellae. The increased rate of biodegradability suggests that these materials could be applicable to single-use applications and could rapidly biodegrade in compost on disposal.

  10. The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge.

    PubMed

    Liu, Changli; Liu, Di; Qi, Yingjie; Zhang, Ying; Liu, Xi; Zhao, Min

    2016-07-01

    The main objective of this work was to investigate the influence of different oxygen supply patterns on poly-β-hydroxybutyrate (PHB) yield and bacterial community diversity. The anaerobic-aerobic (A/O) sequencing batch reactors (SBR1) and feast-famine (F/F) SBR2 were used to cultivate activated sludge to produce PHB. The mixed microbial communities were collected and analyzed after 3 months cultivation. The PHB maximum yield was 64 wt% in SBR1 and 53 wt% in SBR2. Pyrosequencing analysis 16S rRNA gene of two microbial communities indicated there were nine and four bacterial phyla in SBR1 and SBR2, respectively. Specifically, Proteobacteria (36.4 % of the total bacterial community), Actinobacteria (19.7 %), Acidobacteria (14.1 %), Firmicutes (4.4 %), Bacteroidetes (1.7 %), Cyanobacteria/Chloroplast (1.5 %), TM7 (0.8 %), Gemmatimonadetes (0.2 %), and Nitrospirae (0.1 %) were present in SBR1. Proteobacteria (94.2 %), Bacteroidetes (2.9 %), Firmicutes (1.9 %), and Actinobacteria (0.7 %) were present in SBR2. Our results indicated the SBR1 fermentation system was more stable than that of SBR2 for PHB accumulation. PMID:26996908

  11. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds. PMID:27609931

  12. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime

    2016-09-08

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds.

  13. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril.

    PubMed

    Kim, Changyoun; Lv, Guohua; Lee, Jun Sung; Jung, Byung Chul; Masuda-Suzukake, Masami; Hong, Chul-Suk; Valera, Elvira; Lee, He-Jin; Paik, Seung R; Hasegawa, Masato; Masliah, Eliezer; Eliezer, David; Lee, Seung-Jae

    2016-01-01

    A single amyloidogenic protein is implicated in multiple neurological diseases and capable of generating a number of aggregate "strains" with distinct structures. Among the amyloidogenic proteins, α-synuclein generates multiple patterns of proteinopathies in a group of diseases, such as Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, the link between specific conformations and distinct pathologies, the key concept of the strain hypothesis, remains elusive. Here we show that in the presence of bacterial endotoxin, lipopolysaccharide (LPS), α-synuclein generated a self-renewable, structurally distinct fibril strain that consistently induced specific patterns of synucleinopathies in mice. These results suggest that amyloid fibrils with self-renewable structures cause distinct types of proteinopathies despite the identical primary structure and that exposure to exogenous pathogens may contribute to the diversity of synucleinopathies. PMID:27488222

  14. A computational exploration of bacterial metabolic diversity identifying metabolic interactions and growth-efficient strain communities

    PubMed Central

    2011-01-01

    Background Metabolic interactions involve the exchange of metabolic products among microbial species. Most microbes live in communities and usually rely on metabolic interactions to increase their supply for nutrients and better exploit a given environment. Constraint-based models have successfully analyzed cellular metabolism and described genotype-phenotype relations. However, there are only a few studies of genome-scale multi-species interactions. Based on genome-scale approaches, we present a graph-theoretic approach together with a metabolic model in order to explore the metabolic variability among bacterial strains and identify and describe metabolically interacting strain communities in a batch culture consisting of two or more strains. We demonstrate the applicability of our approach to the bacterium E. coli across different single-carbon-source conditions. Results A different diversity graph is constructed for each growth condition. The graph-theoretic properties of the constructed graphs reflect the inherent high metabolic redundancy of the cell to single-gene knockouts, reveal mutant-hubs of unique metabolic capabilities regarding by-production, demonstrate consistent metabolic behaviors across conditions and show an evolutionary difficulty towards the establishment of polymorphism, while suggesting that communities consisting of strains specifically adapted to a given condition are more likely to evolve. We reveal several strain communities of improved growth relative to corresponding monocultures, even though strain communities are not modeled to operate towards a collective goal, such as the community growth and we identify the range of metabolites that are exchanged in these batch co-cultures. Conclusions This study provides a genome-scale description of the metabolic variability regarding by-production among E. coli strains under different conditions and shows how metabolic differences can be used to identify metabolically interacting strain

  15. Antimicrobial Resistance and Plasmid Profile of Bacterial Strains Isolated from the Urbanized Eltsovka-1 River (Russia).

    PubMed

    Lobova, Tatiana I; Yemelyanova, Elena; Andreeva, Irina S; Puchkova, Larisa I; Repin, Vladimir Ye

    2015-08-01

    Antimicrobial resistance and plasmid profile of Gram-positive and Gram-negative bacterial strains isolated from the urbanized Eltsovka-1 River (Russia) were investigated. Sequencing of the 16S rRNA of of G+ strains showed 99-100% identity to that of Bacillus aerophilus, Bacillus altitudinis, Bacillus amyloliquefaciens, Bacillus anthrancis, Bacillus barbaricus, Bacillus cereus, Bacillus flexus, Bacillus indriensis, Bacillus stratosphericus, Bacillus subtilis subsp. subtilis, Bacillus thuringiensis, Streptomyces albidoflavus, Streptomyces albus, Streptomyces exfoliatus, Streptomyces odorifer, and Streptomyces sampsonii. Sequencing of the 16S rRNA of G-strains was similar in 99-100% to that of Aeromonas bestiarum, Aeromonas encheleia, Aeromonas hydrophila, A. hydrophila subsp. anaerogenes, A. hydrophila subsp. dhakensis, Aeromonas media, Aeromonas molluscorum, Aeromonas popoffii, Aeromonas salmonicida subsp. masoucida, A. salmonicida subsp. pectinolytica, A. salmonicida subsp. salmonicida, Aeromonas punctata, Aeromonas sobria, and Shewanella putrefaciens. The highest percentage (88.4%) of strains was resistant to polymyxin B followed by 69% to lincomycin, 61.5% to benzilpenicillin, 57.7% to ampicillin, and 50% to carbenicillin. A low level of resistance (4%) was found to kanamycin (8%), to streptomycin (11.5%), to neomycin and tetracycline, and (15%) to erythromycin. No resistance was found to gentamycin, monomycin, and chloroamphenicol. The majority (80.7%) of strains was multidrug-resistant. Ninety-two percent of all strains carried plasmid DNA of various sizes.

  16. A comprehensive study on the behavior of a novel bacterial strain Acinetobacter guillouiae for bioremediation of divalent copper.

    PubMed

    Majumder, Subhajit; Gangadhar, Gayathri; Raghuvanshi, Smita; Gupta, Suresh

    2015-09-01

    Biological methods have been successfully used to mitigate heavy metal pollution problem in wastewater. The present study was aimed towards isolation of a novel indigenous bacterial strain, Acinetobacter guillouiae from activated sludge and its subsequent application in remediation of copper (Cu(2+)) from aqueous solution. Kinetic study of bioremediation was performed for initial Cu(2+) concentrations ranging from 40 to 150 mg L(-1). Optimum values of nutrient dosage, pH, macronutrients [Nitrogen (N)-Phosphorus (P)-Potassium (K)] dosage, aerobic and facultative anaerobic conditions, temperature, and inoculum volume were determined by conducting separate batch bioremediation studies at 80 mg L(-1) initial concentration of Cu(2+). Kinetic study showed that A. guillouiae removed 98.7 % Cu(2+) for 80 mg L(-1) initial concentration of Cu(2+) after 16 h at an optimum solution pH of 7.0. Results also revealed that A. guillouiae showed maximum growth at double the standard composition of N, P and standard composition of K in nutrient dosage. Experimental data obtained in present study were utilized to validate different growth kinetic models such as Monod, Powell, Haldane, Luong, and Edwards. Growth kinetics of A. guillouiae was better understood by Luong model (R (2) = 0.97). Higher values of coefficient of determination (R (2) = 0.97-0.99) confirmed the suitability of the three-half-order kinetic model for representing the Cu(2+) bioremediation. A. guillouiae showed a robust removal mechanism for the bioremediation of Cu(2+).

  17. Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances.

    PubMed

    Alcántara, Cynthia; Domínguez, Jesús M; García, Dimas; Blanco, Saúl; Pérez, Rebeca; García-Encina, Pedro A; Muñoz, Raúl

    2015-09-01

    Algal-bacterial symbiosis, implemented in an innovative anoxic-aerobic photobioreactor configuration with biomass recycling, supported an efficient removal of total organic carbon (86-90%), inorganic carbon (57-98%) and total nitrogen (68-79%) during synthetic wastewater treatment at a hydraulic and sludge retention times of 2 days and 20 days, respectively. The availability of inorganic carbon in the photobioreactor, determined by its supply in the wastewater and microalgae activity, governed the extent of nitrogen removal by assimilation or nitrification-denitrification. Unexpectedly, nitrate production was negligible despite the high dissolved oxygen concentrations, denitrification being only based on nitrite reduction. Biomass recycling resulted in the enrichment of rapidly settling algal flocs, which supported effluent total suspended solid concentrations below the European Union maximum discharge limits. Finally, the maximum nitrous oxide emissions recorded were far below the emission factors reported for wastewater treatment plants, confirming the environmental sustainability of this innovative photobioreactor in terms of global warming impact.

  18. Genome Sequences of 15 Gardnerella vaginalis Strains Isolated from the Vaginas of Women with and without Bacterial Vaginosis

    PubMed Central

    Robinson, Lloyd S.; Perry, Justin; Lek, Sai; Wollam, Aye; Sodergren, Erica; Weinstock, George

    2016-01-01

    Gardnerella vaginalis is a predominant species in bacterial vaginosis, a dysbiosis of the vagina that is associated with adverse health outcomes, including preterm birth. Here, we present the draft genome sequences of 15 Gardnerella vaginalis strains (now available through BEI Resources) isolated from women with and without bacterial vaginosis. PMID:27688326

  19. Genome Sequences of 15 Gardnerella vaginalis Strains Isolated from the Vaginas of Women with and without Bacterial Vaginosis.

    PubMed

    Robinson, Lloyd S; Perry, Justin; Lek, Sai; Wollam, Aye; Sodergren, Erica; Weinstock, George; Lewis, Warren G; Lewis, Amanda L

    2016-01-01

    Gardnerella vaginalis is a predominant species in bacterial vaginosis, a dysbiosis of the vagina that is associated with adverse health outcomes, including preterm birth. Here, we present the draft genome sequences of 15 Gardnerella vaginalis strains (now available through BEI Resources) isolated from women with and without bacterial vaginosis. PMID:27688326

  20. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia.

    PubMed

    Moges, Feleke; Eshetie, Setegn; Endris, Mengistu; Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections.

  1. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia

    PubMed Central

    Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections. PMID:27340653

  2. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia.

    PubMed

    Moges, Feleke; Eshetie, Setegn; Endris, Mengistu; Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections. PMID:27340653

  3. Bacterial cell wall-induced arthritis: chemical composition and tissue distribution of four Lactobacillus strains.

    PubMed

    Simelyte, E; Rimpiläinen, M; Lehtonen, L; Zhang, X; Toivanen, P

    2000-06-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenic L. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than the L. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall. PMID:10816508

  4. Comparing biocompatibility of gingival fibroblasts and bacterial strains on a different modified titanium discs.

    PubMed

    Franková, Jana; Pivodová, Veronika; Růžička, Filip; Tománková, Kateřina; Šafářová, Klára; Vrbková, Jana; Ulrichová, Jitka

    2013-10-01

    The modification of implant surface situated in the area of peri-implant sulcus has important role in bacterial and cell adhesion. Six different chemically and physically modified titanium discs were prepared: glazed (Tis-MALP), unglazed (Tis-O), unglazed and alkali-etched (Tis-OA), unglazed and coated with ZrN (Tis-OZ), unglazed, sand blasted, and acid etched (Tis-OPAE), and unglazed, sand blasted, acid, and alkali etched (Tis-OPAAE). Analysis of surface topography was determined using scanning electron microscopy and atomic force microscopy (AFM). Biocompatibility of gingival fibroblasts was characterized by the production of tumor necrosis factor alpha, collagen I, matrix metalloproteinase 2 (MMP-2) after 24 and 72 h and expression of α3 β1 integrin and vinculin using enzyme-linked immunosorbent assay (ELISA) or modified ELISA after 6 and 24 h. Microorganism adhesion (five bacterial strains) and biofilm formation was also evaluated. The adhesion of bacteria and gingival fibroblasts was significantly higher on titanium disc Tis-OPAAE and biofilm formation on the same surface for Streptococcus mutans, Streptococcus gordonii, and Streptococcus intermedius. The gingival fibroblasts on Tis-OPAAE disc had also significantly lower production of MMP-2. The collagen production was significantly lower on all surfaces with roughness higher than 0.2 μm. This study confirmed that the titanium disc with the surface roughness 3.39 μm (Tis-OPAAE) supported the adhesion of bacterial strains as well as gingival fibroblasts.

  5. Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario.

    PubMed

    Abbasi, Pervaiz A; Khabbaz, Salah Eddin; Weselowski, Brian; Zhang, Liang

    2015-10-01

    Field strains of tomato bacterial spot pathogen (Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri) were characterized for sensitivity to copper and species composition. A total of 98 strains were isolated from symptomatic leaf and fruit samples collected from 18 tomato fields in Ontario. In greenhouse pathogenicity tests, most of the field strains caused severe (37 strains) to highly severe (23 strains) symptoms on 'Bonny Best' tomato plants, whereas 38 strains caused moderate symptoms. In MGY agar plates amended with various concentrations of copper sulfate, 11 strains were completely sensitive (no growth) and 87 strains were resistant (grew on 1.0 mmol/L or higher copper concentration). PCR analysis of the hrp gene cluster followed by restriction digestion with HaeIII and sequencing identified X. gardneri (35 strains) and X. perforans (26 strains) as predominant species and X. euvesicatoria and X. vesicatoria as less common species in Ontario tomato fields. Separation of field strains into various species was also confirmed with starch hydrolysis activity on agar medium. Moreover, 72 field strains produced shiny greenish-yellow colonies surrounded by a milky zone on xanthomonad differential (Xan-D) medium, and the colonies of 26 strains did not produce a milky zone. Thirty-four strains could not be clustered into any species and 25 of those strains were negative for the hrp gene PCR and also did not produce a milky zone around colonies on Xan-D medium. Our results suggest a widespread existence of copper-resistant strains and an increase in X. perforans strains of bacterial spot pathogen in Ontario. This information on copper resistance and species composition within bacterial spot pathogens in Ontario will be helpful for developing effective disease management strategies, making cultivar selection, and breeding new tomato cultivars. PMID:26308592

  6. Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario.

    PubMed

    Abbasi, Pervaiz A; Khabbaz, Salah Eddin; Weselowski, Brian; Zhang, Liang

    2015-10-01

    Field strains of tomato bacterial spot pathogen (Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri) were characterized for sensitivity to copper and species composition. A total of 98 strains were isolated from symptomatic leaf and fruit samples collected from 18 tomato fields in Ontario. In greenhouse pathogenicity tests, most of the field strains caused severe (37 strains) to highly severe (23 strains) symptoms on 'Bonny Best' tomato plants, whereas 38 strains caused moderate symptoms. In MGY agar plates amended with various concentrations of copper sulfate, 11 strains were completely sensitive (no growth) and 87 strains were resistant (grew on 1.0 mmol/L or higher copper concentration). PCR analysis of the hrp gene cluster followed by restriction digestion with HaeIII and sequencing identified X. gardneri (35 strains) and X. perforans (26 strains) as predominant species and X. euvesicatoria and X. vesicatoria as less common species in Ontario tomato fields. Separation of field strains into various species was also confirmed with starch hydrolysis activity on agar medium. Moreover, 72 field strains produced shiny greenish-yellow colonies surrounded by a milky zone on xanthomonad differential (Xan-D) medium, and the colonies of 26 strains did not produce a milky zone. Thirty-four strains could not be clustered into any species and 25 of those strains were negative for the hrp gene PCR and also did not produce a milky zone around colonies on Xan-D medium. Our results suggest a widespread existence of copper-resistant strains and an increase in X. perforans strains of bacterial spot pathogen in Ontario. This information on copper resistance and species composition within bacterial spot pathogens in Ontario will be helpful for developing effective disease management strategies, making cultivar selection, and breeding new tomato cultivars.

  7. Antimicrobial Activity of Monoramnholipids Produced by Bacterial Strains Isolated from the Ross Sea (Antarctica) †

    PubMed Central

    Tedesco, Pietro; Maida, Isabel; Palma Esposito, Fortunato; Tortorella, Emiliana; Subko, Karolina; Ezeofor, Chidinma Christiana; Zhang, Ying; Tabudravu, Jioji; Jaspars, Marcel; Fani, Renato; de Pascale, Donatella

    2016-01-01

    Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc). Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 μg/mL) and unreported antimicrobial activity against Bcc strains. PMID:27128927

  8. A Catalytic DNA Activated by a Specific Strain of Bacterial Pathogen

    PubMed Central

    Shen, Zhifa; Wu, Zaisheng; Chang, Dingran; Zhang, Wenqing; Tram, Kha; Lee, Christine; Kim, Peter; Salena, Bruno J.

    2015-01-01

    Abstract Pathogenic strains of bacteria are known to cause various infectious diseases and there is a growing demand for molecular probes that can selectively recognize them. Here we report a special DNAzyme (catalytic DNA), RFD‐CD1, that shows exquisite specificity for a pathogenic strain of Clostridium difficile (C. difficile). RFD‐CD1 was derived by an in vitro selection approach where a random‐sequence DNA library was allowed to react with an unpurified molecular mixture derived from this strain of C. difficle, coupled with a subtractive selection strategy to eliminate cross‐reactivities to unintended C. difficile strains and other bacteria species. RFD‐CD1 is activated by a truncated version of TcdC, a transcription factor, that is unique to the targeted strain of C. difficle. Our study demonstrates for the first time that in vitro selection offers an effective approach for deriving functional nucleic acid probes that are capable of achieving strain‐specific recognition of bacterial pathogens. PMID:26676768

  9. Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains.

    PubMed

    Khalid, Azeem; Arshad, Muhammad; Crowley, David E

    2008-02-01

    Wastewater effluents from the textile and other dye-stuff industries contain significant amounts of synthetic dyes that require treatment to prevent groundwater contamination. In research aimed at biotechnology for treatment of azo dyes, this study examined 288 strains of azo-dye degrading bacteria to identify efficient strains and determine incubation times required for decolorization. Initial enrichment cultures were carried out using a mixture of four structurally different dyes (Acid Red 88, Reactive Black 5, Direct Red 81, and Disperse Orange 3) as the sole source of C and N to isolate the bacteria from soil, activated sludge, and natural asphalt. Six strains were selected for further study based on their prolific growth and ability to rapidly decolorize the dyes individually or in mixtures. Treatment times required by the most efficient strain, AS96 (Shewanella putrefaciens) were as short as 4 h for complete decolorization of 100 mg l(-1) of AR-88 and DR-81 dyes under static conditions, and 6 and 8 h, respectively, for complete decolorization of RB-5 and DO-3. To our knowledge, these bacterial strains are the most efficient azo-dye degrading bacteria that have been described and may have practical application for biological treatment of dye-polluted wastewater streams.

  10. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26.

    PubMed

    Yang, Ying; Jia, Jingjing; Xing, Jianrong; Chen, Jianbing; Lu, Shengmin

    2013-02-15

    A strain producing bacterial cellulose (BC) screened from rotten mandarin fruit was identified as Gluconacetobacter intermedius CIs26 by the examination of general taxonomical characteristics and 16S rDNA sequence analysis. Furthermore, Fourier transform infrared (FT-IR) spectrum showed that pellicle produced by strain CIs26 was composed of glucan, and had the same functional group as a typical BC. X-ray diffractometry (XRD) analysis indicated that the BC was type I in structure with crystallinity index of 75%. BC yields of strain CIs26 in Hestrin-Schramn (HS), citrus waste modified HS (CMHS) and citrus waste solution (CWS) mediums were 2.1 g/L, 5.7 g/L, and 7.2 g/L, respectively. It was shown that citrus waste could stimulate BC production of strain CIs26 efficiently. Based on the ability of utilization of citrus waste, this strain appeared to have potential in BC manufacture on an industrial scale. PMID:23399252

  11. Phenotypic and phylogenetic characterization of an abamectin-degrading bacterial strain isolated from a citrus orchard.

    PubMed

    Ali, Shinawar Waseem; Yu, Fang-Bo; Haider, Muhammad Saleem; Yan, Xin; Li, Shun-Peng

    2013-01-01

    Bacterial strain GB-01 was isolated from abamectin-contaminated soils by continuous enrichment culture. The preliminary identification of strain GB-01 as a Burkholderia species was based mainly on simple biochemical and substrate utilization tests; however, these tests alone cannot accurately differentiate all the species within the genus Burkholderia. The strain GB-01 was subjected to taxonomic analysis through a polyphasic approach, in which phenotypic, genotypic, and phylogenetic information was gathered to conclude the classification of this microbe. Phenotypic information comes from basic bacteriological tests and substrate utilization patterns using the Biolog GN2 MicroPlating system and automated miniature biochemical test kits, i.e. API 20 NE, ID 32 GN and API 50 CH, as well as analyzing the whole cell fatty acid profile. Genotypic information was gathered from whole genome DNA base composition (G+C mol%), and DNA-DNA hybridization with its closest species, while phylogenetic information was collected from the comparative analysis of 16S rRNA and recA gene sequences. The results of polyphasic analysis concluded that strain GB-01 is an atypical strain of the Burkholderia diffusa species. PMID:23863292

  12. Electrochemistry of marmatite-carbon paste electrode in the presence of bacterial strains.

    PubMed

    Shi, Shao-yuan; Fang, Zhao-heng; Ni, Jin-ren

    2006-01-01

    The electrochemical behaviors of a marmatite-carbon paste electrode with the chemical leaching of Fe3+ ions, or the microbial leaching using Acidithiobacillus ferrooxidans, were compared. The cyclic voltammograms of the electrode in the presence and absence of bacterial strains showed that the leaching process of marmatite was carried out by the different reactions occurring in the interface of the marmatite electrode-leach liquid. The polarization currents of the electrode under the differently applied potentials suggested that the microbial leaching of marmatite could be accelerated by the applied potential. The SEM observations indicated that the corrosion pits formed in the electrode surface were similar to the attached bacterial cells in shape and size, other than that by the chemical leaching of Fe3+ ions. The contact leaching of the attached cells on the mineral substrate played an important role on the dissolution of marmatite in addition to the chemical leaching of Fe3+ ions.

  13. Efficacy of Aqueous and Methanolic Extracts of Rheum Spiciformis against Pathogenic Bacterial and Fungal Strains

    PubMed Central

    Dar, Khalid Bashir; Bhat, Aashiq Hussain; Amin, Shajrul; Anees, Suhail; Masood, Akbar; Zargar, Mohammed Iqbal

    2016-01-01

    Introduction Rheum spiciformis is a newly identified edible medicinal plant of genus Rheum. The plant is used to treat various diseases on traditional levels in Kashmir Valley, India. Aim To evaluate the phytochemical screening, antibacterial and antifungal potential of aqueous and methanolic extracts of Rheum spiciformis, a traditionally used edible medicinal plant. Materials and Methods Methanolic and aqueous extracts of Rheum spiciformis were tested for their antimicrobial activities against six bacterial strains namely Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris and Escherichia coli and four fungal strains Penicillium chrysogenum, Aspergillus fumigatus, Candida albicans and Saccharomyces cerevisiae. The susceptibility of microbial strains to the two extracts was determined using agar well diffusion method. Phytochemical screening was carried out by using various standard procedures. Results Methanolic extract showed potent antimicrobial activity as compared to aqueous extract at the concentrations of 10, 30, 50, 80 and 100mg/ml. The most susceptible bacterial strains were Staphylococcus aureus with zone of inhibition (25±0.10mm), Klebsiella pneumonia (23±0.25mm), Proteus vulgaris (22±0.10mm) at the concentration of 100mg/ml. Aqueous extracts at the higher concentration were found effective against Proteus vulgaris and Bacillus subtilis with zone of inhibition (17±0.24mm) and (17±0.10mm), respectively. Among fungal strains the most susceptible were Aspergillus fumigatus (21±0.10mm), Saccharomyces cerevisiae (20±0.20mm) and Penicillium Chrysogenum (17±0.15mm) at the concentration of 100mg/ml methanol extract. The zone of inhibition for aqueous extract against fungal strains ranged between 14±0.13mm to 16±0.19mm at the highest concentration of plant extract. Phytochemical analysis revealed the presence of various secondary metabolites like flavonoids, saponins, volatile oils, phenols, steroids

  14. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    PubMed

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-01-01

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis. PMID:27516505

  15. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    PubMed

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis.

  16. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose

    PubMed Central

    Pfeffer, Sarah; Mehta, Kalpa

    2016-01-01

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis. PMID:27516505

  17. Aerobic decolorization and degradation of Acid Orange G (AOG) by suspended growing cells and immobilized cells of a yeast strain Candida tropicalis TL-F1.

    PubMed

    Tan, Liang; Li, Hua; Ning, Shuxiang; Hao, Jia

    2014-10-01

    In this study, aerobic decolorization and degradation of azo dye Acid Orange G (AOG) by both suspended growing cells and immobilized cells of a yeast strain Candida tropicalis TL-F1 were studied. The effects of different parameters on decolorization of AOG by both growing suspended and immobilized strain TL-F1 were investigated. Furthermore, a possible decolorization mechanism of AOG was proposed through analyzing metabolic intermediates using UV-vis and high-performance liquid chromatography-mass spectrometry (HPLC-MS) methods. Strain TL-F1 could decolorize AOG in both liquid and solid mediums through degradation. The optimal conditions for decolorization with suspended growing cells of strain TL-F1 were as follows: 6-10 g/L sucrose, 5-7 g/L urea, ≥6 % (v/v) inoculation size, ≥160 rpm, 35-40 °C, and pH 5.0-6.0; and those for immobilized cells, the conditions were as follows: 4-6 g/L glucose, 0.2-0.4 g/L urea, 6-10 g/L (wet cell pellets) inoculation size, ≥160 rpm, 35-40 °C, and pH 5.0-7.0. Results of UV-vis scanning spectra suggested that AOG was decolorized through biodegradation, and the possible pathway was proposed through the results of HPLC-MS analysis and related literature. This is a systematic research on aerobic decolorization and degradation of AOG by both suspended and immobilized cells of a C. tropicalis strain.

  18. Strain ŽP - the first bacterial conjugation-based "kill"-"anti-kill" antimicrobial system.

    PubMed

    Starčič Erjavec, Marjanca; Petkovšek, Živa; Kuznetsova, Marina V; Maslennikova, Irina L; Žgur-Bertok, Darja

    2015-11-01

    As multidrug resistant bacteria pose one of the greatest risks to human health new alternative antibacterial agents are urgently needed. One possible mechanism that can be used as an alternative to traditional antibiotic therapy is transfer of killing agents via conjugation. Our work was aimed at providing a proof of principle that conjugation-based antimicrobial systems are possible. We constructed a bacterial conjugation-based "kill"-"anti-kill" antimicrobial system employing the well known Escherichia coli probiotic strain Nissle 1917 genetically modified to harbor a conjugative plasmid carrying the "kill" gene (colicin ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). The constructed strain acts as a donor in conjugal transfer and its efficiency was tested in several types of conjugal assays. Our results clearly demonstrate that conjugation-based antimicrobial systems can be highly efficient. PMID:26436830

  19. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril

    PubMed Central

    Kim, Changyoun; Lv, Guohua; Lee, Jun Sung; Jung, Byung Chul; Masuda-Suzukake, Masami; Hong, Chul-Suk; Valera, Elvira; Lee, He-Jin; Paik, Seung R.; Hasegawa, Masato; Masliah, Eliezer; Eliezer, David; Lee, Seung-Jae

    2016-01-01

    A single amyloidogenic protein is implicated in multiple neurological diseases and capable of generating a number of aggregate “strains” with distinct structures. Among the amyloidogenic proteins, α-synuclein generates multiple patterns of proteinopathies in a group of diseases, such as Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, the link between specific conformations and distinct pathologies, the key concept of the strain hypothesis, remains elusive. Here we show that in the presence of bacterial endotoxin, lipopolysaccharide (LPS), α-synuclein generated a self-renewable, structurally distinct fibril strain that consistently induced specific patterns of synucleinopathies in mice. These results suggest that amyloid fibrils with self-renewable structures cause distinct types of proteinopathies despite the identical primary structure and that exposure to exogenous pathogens may contribute to the diversity of synucleinopathies. PMID:27488222

  20. New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity.

    PubMed

    Hadi, Faranak; Mousavi, Amir; Noghabi, Kambiz Akbari; Tabar, Hadi Ghaderi; Salmanian, Ali Hatef

    2013-01-01

    Thirty bacterial strains with various abilities to utilize glyphosate as the sole phosphorus source were isolated from farm soils using the glyphosate enrichment cultivation technique. Among them, a strain showing a remarkable glyphosate-degrading activity was identified by biochemical features and 16S rRNA sequence analysis as Ochrobactrum sp. (GDOS). Herbicide (3 mM) degradation was induced by phosphate starvation, and was completed within 60 h. Aminomethylphosphonic acid was detected in the exhausted medium, suggesting glyphosate oxidoreductase as the enzyme responsible for herbicide breakdown. As it grew even in the presence of glyphosate concentrations as high as 200 mM, Ochrobactrum sp. could be used for bioremediation purposes and treatment of heavily contaminated soils.

  1. Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens.

    PubMed

    Chen, Yi-Wen; Wang, Hong; Hupert, Mateusz; Witek, Makgorzata; Dharmasiri, Udara; Pingle, Maneesh R; Barany, Francis; Soper, Steven A

    2012-09-21

    The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft(3)). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic

  2. Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens.

    PubMed

    Chen, Yi-Wen; Wang, Hong; Hupert, Mateusz; Witek, Makgorzata; Dharmasiri, Udara; Pingle, Maneesh R; Barany, Francis; Soper, Steven A

    2012-09-21

    The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft(3)). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic

  3. Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens†

    PubMed Central

    Chen, Yi-Wen; Wang, Hong; Hupert, Mateusz; Witek, Makgorzata; Dharmasiri, Udara; Pingle, Maneesh R.; Barany, Francis

    2015-01-01

    The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft3). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic system

  4. [Colonization and disease control and fruit preservation functions of endophytic bacterial strains in lychee].

    PubMed

    Cai, Xue-qing; Chen, Wei; Lin, Na; Lin, Tong; Hu, Fang-ping

    2011-08-01

    By spraying the GFP-marked endophytic bacterial strains BS-2-gfp and TB2-gfp, this paper studied their colonization in lychee organs and the functions of the strains in disease control and fruit preservation. The BS-2-gfp and TB2-gfp could colonize and propagate in lychee leaves, flowers, un-matured fruits, and matured fruits, and transfer from the flowers to un-matured fruits. The colonization of BS-2-gfp and TB2-gfp in lychee leaves varied with season and growth stage, being larger in quantity and longer in duration in spring than in autumn. The colonization quantity and duration of the strains also differed in other organs. Both the BS-2-gfp and the TB2-gfp could be isolated and recovered from lychee leaves after 37 d inoculation, the BS-2-gfp could not be isolated from the flowers after inoculation for 10 d, and the BS-2-gfp and TB2-gfp had the largest colonization quantity in matured fruits. The colonization quantity of TB2-gfp in lychee pericarp reached to the maximum (1.90 x 10(6) CFU x g(-1) FM) when the disease index of litchi downy blight had a sharp increase, and, compared with BS-2-gfp, the TB2-gfp had better fruit preservation efficiency, and its colonization quantity in lychee pericarp was also higher. It was suggested that there was a positive correlation between the colonization quantity of test bacterial strains in lychee pericarp and the disease control and fruit preservation effect.

  5. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment.

    PubMed

    Harrison, Alistair; Dubois, Laura G; St John-Williams, Lisa; Moseley, M Arthur; Hardison, Rachael L; Heimlich, Derek R; Stoddard, Alexander; Kerschner, Joseph E; Justice, Sheryl S; Thompson, J Will; Mason, Kevin M

    2016-03-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  6. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment.

    PubMed

    Harrison, Alistair; Dubois, Laura G; St John-Williams, Lisa; Moseley, M Arthur; Hardison, Rachael L; Heimlich, Derek R; Stoddard, Alexander; Kerschner, Joseph E; Justice, Sheryl S; Thompson, J Will; Mason, Kevin M

    2016-03-01

    A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of

  7. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  8. An approach to identifying drug resistance associated mutations in bacterial strains

    PubMed Central

    2012-01-01

    Background Drug resistance in bacterial pathogens is an increasing problem, which stimulates research. However, our understanding of drug resistance mechanisms remains incomplete. Fortunately, the fast-growing number of fully sequenced bacterial strains now enables us to develop new methods to identify mutations associated with drug resistance. Results We present a new comparative approach to identify genes and mutations that are likely to be associated with drug resistance mechanisms. In order to test the approach, we collected genotype and phenotype data of 100 fully sequenced strains of S. aureus and 10 commonly used drugs. Then, applying the method, we re-discovered the most common genetic determinants of drug resistance and identified some novel putative associations. Conclusions Firstly, the collected data may help other researchers to develop and verify similar techniques. Secondly, the proposed method is successful in identifying drug resistance determinants. Thirdly, the in-silico identified genetic mutations, which are putatively involved in drug resistance mechanisms, may increase our understanding of the drug resistance mechanisms. PMID:23281931

  9. CMA manufacture II: Improved bacterial strain for acetate production: Final report

    SciTech Connect

    Ljungdahl, L.G.; Carreira, L.H.; Garrison, R.J.; Rabek, N.E.; Gunter, L.F.; Wiegel, J.

    1986-06-01

    Three homoacetogenic anaerobic thermophilic bacteria, Clostridium thermoaceticum, Clostridium thermoautotrophicum, and Acetogenium kivui, were evaluated for possible use in an industrial fermentative process to manufacture calcium, magnesium acetate (CMA) from hydrolyzed corn starch and dolime. The hydrolyzed corn starch is fermented by the bacteria with a theoretical yield of about 90%. Improved bacterial strains were obtained from the clostridial bacteria but not from A. kivui. In fermentations with improved bacterial strains using dolime to neutralize the produced acetic acid, up to 150 g/liter of CMA was produced, however, the production rate was only about 12 g/liter per 24 hours. Batch fermentation, continuous fermentation with and without cell-recycling and continuous fermentation with a new type of rotating fermentor were tested. Economic evaluation of the results indicate that CMA can be produced for $0.24/lb. The rotating fermentor device was developed at the end of the contract period. With it a production rate of almost 10 g/liter an hour was obtained, however, the concentration of acetate in the harvested fermentation broth was only 1 percent. Further research should lead to the development of an economic fermentation process for CMA. 38 refs., 10 figs., 34 tabs.

  10. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms.

    PubMed

    Yang, Jun; Yang, Yu; Wu, Wei-Min; Zhao, Jiao; Jiang, Lei

    2014-12-01

    Polyethylene (PE) has been considered nonbiodegradable for decades. Although the biodegradation of PE by bacterial cultures has been occasionally described, valid evidence of PE biodegradation has remained limited in the literature. We found that waxworms, or Indian mealmoths (the larvae of Plodia interpunctella), were capable of chewing and eating PE films. Two bacterial strains capable of degrading PE were isolated from this worm's gut, Enterobacter asburiae YT1 and Bacillus sp. YP1. Over a 28-day incubation period of the two strains on PE films, viable biofilms formed, and the PE films' hydrophobicity decreased. Obvious damage, including pits and cavities (0.3-0.4 μm in depth), was observed on the surfaces of the PE films using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The formation of carbonyl groups was verified using X-ray photoelectron spectroscopy (XPS) and microattenuated total reflectance/Fourier transform infrared (micro-ATR/FTIR) imaging microscope. Suspension cultures of YT1 and YP1 (10(8) cells/mL) were able to degrade approximately 6.1 ± 0.3% and 10.7 ± 0.2% of the PE films (100 mg), respectively, over a 60-day incubation period. The molecular weights of the residual PE films were lower, and the release of 12 water-soluble daughter products was also detected. The results demonstrated the presence of PE-degrading bacteria in the guts of waxworms and provided promising evidence for the biodegradation of PE in the environment.

  11. Bacterial virulence, proinflammatory cytokines and host immunity: how to choose the appropriate Salmonella vaccine strain?

    PubMed

    Raupach, B; Kaufmann, S H

    2001-01-01

    Salmonella infection in its mammalian host can be dissected into two main components. The co-ordinate expression of bacterial virulence genes which are designed to evade, subvert or circumvent the host response on the one hand, and the host defence mechanisms which are designed to restrict bacterial survival and replication on the other hand. The outcome of infection is determined by the one which succeeds in disturbing this equilibrium more efficiently. This delicate balance between Salmonella virulence and host immunity/inflammation has important implications for vaccine development or therapeutic intervention. Novel Salmonella vaccine candidates and live carriers for heterologous antigens are attenuated strains with defined genetic modifications of metabolic or virulence functions. Although genetic defects of different gene loci can lead to similar degrees of attenuation, effects on the course of infection may vary, thereby altering the quality of the elicited immune response. Studies with gene-deficient animals indicate that Salmonella typhimurium strains with mutations in aroA, phoP/phoQ or ssrA/ssrB invoke different immune responses and that a differential repertoire of pro-inflammatory cytokines is required for clearance. Consequently, Salmonella mutants defective in distinct virulence functions offer the potential to specifically modulate the immune response for defined medical applications.

  12. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs).

  13. Aflatoxin B1 degradation by liquid cultures and lysates of three bacterial strains.

    PubMed

    Adebo, Oluwafemi Ayodeji; Njobeh, Patrick Berka; Sidu, Sibusiso; Tlou, Matsobane Godfrey; Mavumengwana, Vuyo

    2016-09-16

    Aflatoxin contamination remains a daunting issue to address in food safety. In spite of the efforts geared towards prevention and elimination of this toxin, it still persists in agricultural commodities. This has necessitated the search for other measures such as microbial degradation to combat this hazard. In this study, we investigated the biodegradation of aflatoxin B1 (AFB1), using lysates of three bacterial strains (Pseudomonas anguilliseptica VGF1, Pseudomonas fluorescens and Staphylococcus sp. VGF2) isolated from a gold mine aquifer. The bacterial cells were intermittently lysed in the presence and absence of protease inhibitors to obtain protease free lysates, subsequently incubated with AFB1 for 3, 6, 12, 24, and 48h to investigate whether any possible AFB1 degradation occurred using high performance liquid chromatography (HPLC) for detection. Results obtained revealed that after 6h of incubation, protease inhibited lysates of Staphylococcus sp. VGF2 demonstrated the highest degradation capacity of 100%, whereas P. anguilliseptica VGF1 and P. fluorescens lysates degraded AFB1 by 66.5 and 63%, respectively. After further incubation to 12h, no residual AFB1 was detected for all the lysates. Lower degrading ability was however observed for liquid cultures and uninhibited lysates. Data on cytotoxicity studies against human lymphocytes showed that the degraded products were less toxic than the parent AFB1. From this study, it can thus be deduced that the mechanism of degradation by these bacterial lysates is enzymatic. This study shows the efficacy of crude bacterial lysates for detoxifying AFB1 indicating potential for application in the food and feed industry. PMID:27294556

  14. Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2015-01-01

    The main objective of the investigation was to study the biodegradation of endosulfan isomers and its major metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. The significance of the study is to evaluate the capability of biosurfactant producing bacterial strains in enhancing the bioavailability of endosulfan. Sixty bacterial strains were isolated from the endosulfan degrading bacterial consortium and were screened for endosulfan degradation and biosurfactant production. Among those, two strains Bordetella petrii I GV 34 (Gene bank Accession No KJ02262) and Bordetella petrii II GV 36 (Gene bank Accession No KJ022625) were capable of degrading endosulfan with simultaneous biosurfactant production. Bordetella petrii I degraded 89% of α and 84% of β isomers of endosulfan whereas Bordetella petrii II degraded 82% of both the isomers. Both the strains were able to reduce the surface tension up to 19.6% and 21.4% with a minimum observed surface tension of 45 Dynes/cm and 44 Dynes/cm, respectively. The study revealed that the strains have the potential to enhance the degradation endosulfan residues in contaminated sites and water by biosurfactant production.

  15. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group.

  16. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group. PMID:26378869

  17. Genetic and biochemical diversity of Gardnerella vaginalis strains isolated from women with bacterial vaginosis.

    PubMed

    Pleckaityte, Milda; Janulaitiene, Migle; Lasickiene, Rita; Zvirbliene, Aurelija

    2012-06-01

    Gardnerella vaginalis is considered a substantial player in the progression of bacterial vaginosis (BV). We analysed 17 G. vaginalis strains isolated from the genital tract of women diagnosed with BV to establish a potential link between genotypes/biotypes and the expression of virulence factors, vaginolysin (VLY) and sialidase, which are assumed to play a substantial role in the pathogenesis of BV. Amplified ribosomal DNA restriction analysis revealed two G. vaginalis genotypes. Gardnerella vaginalis isolates of genotype 2 appeared more complex than genotype 1 and were subdivided into three subtypes. Biochemical typing allowed us to distinguish four different biotypes. A great diversity of the level of VLY production among the isolates of G. vaginalis may be related to a different cytotoxicity level of the strains. We did not find any correlation between VLY production level and G. vaginalis genotype/biotype. In contrast, a link between G. vaginalis genotype and sialidase production was established. Our findings on the diversity of VLY expression level in different clinical isolates and linking sialidase activity with the genotype of G. vaginalis could help to evaluate the pathogenic potential of different G. vaginalis strains.

  18. Identification and Quantification of Volatile Chemical Spoilage Indexes Associated with Bacterial Growth Dynamics in Aerobically Stored Chicken.

    PubMed

    Mikš-Krajnik, Marta; Yoon, Yong-Jin; Ukuku, Dike O; Yuk, Hyun-Gyun

    2016-08-01

    Volatile organic compounds (VOCs) as chemical spoilage indexes (CSIs) of raw chicken breast stored aerobically at 4, 10, and 21 °C were identified and quantified using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS). The growth dynamics of total viable count (TVC), psychrotrophs, Pseudomonas spp., lactic acid bacteria (LAB), Brochothrix thermosphacta and H2 S producing bacteria were characterized based on maximum growth rates (μmax ), maximal microbial concentration (Nmax ) and at the moment of microbial shelf life (Svalues ), calculated from Gompertz-fitted growth curves. Pseudomonas spp. was predominant species, while B. thermosphacta was characterized by the highest μmax . The microbiological and sensory shelf lives were estimated based on TVC, Pseudomonas spp., and B. thermosphacta counts and sensory evaluation, respectively. Among 27 VOCs identified by GC-MS in spoiled chicken samples, ethanol (EtOH), 1-butanol-3-methyl (1But-3M), and acetic acid (C2 ) achieved the highest Pearson's correlation coefficients of 0.66, 0.61, and 0.59, respectively, with TVC, regardless of storage temperature. Partial least squares (PLS) regression revealed that the synthesis of 1But-3M and C2 was most likely induced by the metabolic activity of B. thermosphacta and LAB, while EtOH was attributed to Pseudomonas spp. The increase in concentration of selected volatile spoilage markers (EtOH, 1But-3M, and C2 ) in the headspace over spoiled chicken breast was found to be statistically significant (P < 0.05) with TVC growth. These findings highlight the possibility of analyzing the combination of 3 selected spoilage markers: EtOH, 1But-3M, and C2 as rapid evaluation for poultry quality testing using SPME-GC-MS.

  19. Identification and Quantification of Volatile Chemical Spoilage Indexes Associated with Bacterial Growth Dynamics in Aerobically Stored Chicken.

    PubMed

    Mikš-Krajnik, Marta; Yoon, Yong-Jin; Ukuku, Dike O; Yuk, Hyun-Gyun

    2016-08-01

    Volatile organic compounds (VOCs) as chemical spoilage indexes (CSIs) of raw chicken breast stored aerobically at 4, 10, and 21 °C were identified and quantified using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS). The growth dynamics of total viable count (TVC), psychrotrophs, Pseudomonas spp., lactic acid bacteria (LAB), Brochothrix thermosphacta and H2 S producing bacteria were characterized based on maximum growth rates (μmax ), maximal microbial concentration (Nmax ) and at the moment of microbial shelf life (Svalues ), calculated from Gompertz-fitted growth curves. Pseudomonas spp. was predominant species, while B. thermosphacta was characterized by the highest μmax . The microbiological and sensory shelf lives were estimated based on TVC, Pseudomonas spp., and B. thermosphacta counts and sensory evaluation, respectively. Among 27 VOCs identified by GC-MS in spoiled chicken samples, ethanol (EtOH), 1-butanol-3-methyl (1But-3M), and acetic acid (C2 ) achieved the highest Pearson's correlation coefficients of 0.66, 0.61, and 0.59, respectively, with TVC, regardless of storage temperature. Partial least squares (PLS) regression revealed that the synthesis of 1But-3M and C2 was most likely induced by the metabolic activity of B. thermosphacta and LAB, while EtOH was attributed to Pseudomonas spp. The increase in concentration of selected volatile spoilage markers (EtOH, 1But-3M, and C2 ) in the headspace over spoiled chicken breast was found to be statistically significant (P < 0.05) with TVC growth. These findings highlight the possibility of analyzing the combination of 3 selected spoilage markers: EtOH, 1But-3M, and C2 as rapid evaluation for poultry quality testing using SPME-GC-MS. PMID:27332555

  20. Development and application of monoclonal antibodies for in situ detection of indigenous bacterial strains in aquatic ecosystems.

    PubMed Central

    Faude, U C; Höfle, M G

    1997-01-01

    Strain-specific monoclonal antibodies (MAbs) were developed for three different bacterial isolates obtained from a freshwater environment (Lake Plusssee) in the spring of 1990. The three isolates, which were identified by molecular methods, were as follows: Cytophaga johnsonae PX62, Comamonas acidovorans PX54, and Aeromonas hydrophila PU7718. These strains represented three species that were detected in high abundance during a set of mesocosm experiments in Lake Plusssee by the direct analysis of low-molecular-weight RNAs from bacterioplankton. We developed one MAb each for the bacterial isolates PX54 and PU7718 that did not show any cross-reactivity with other bacterial strains by immunofluorescence microscopy. Each MAb recognized the general lipopolysaccharide fraction of the homologous strain. These MAbs were tested successfully for their ability to be used for the in situ detection and counting of bacteria in lake water by immunofluorescence microscopy. During the spring of 1993, A. hydrophila PU7718 showed a depth distribution in Lake Plusssee with a pronounced maximum abundance at 6 m, whereas Comamonas acidovorans PX54 showed a depth distribution with a maximum abundance at the surface. The application of these MAbs to the freshwater samples enabled us to determine the cell morphologies and microhabitats of these strains within their natural environment. The presence of as many as 8,000 cells of these strains per ml in their original habitats 3 years after their initial isolation demonstrated the persistence of individual strains of heterotrophic bacteria over long time spans in pelagic habitats. PMID:9361440

  1. Development and application of monoclonal antibodies for in situ detection of indigenous bacterial strains in aquatic ecosystems.

    PubMed

    Faude, U C; Höfle, M G

    1997-11-01

    Strain-specific monoclonal antibodies (MAbs) were developed for three different bacterial isolates obtained from a freshwater environment (Lake Plusssee) in the spring of 1990. The three isolates, which were identified by molecular methods, were as follows: Cytophaga johnsonae PX62, Comamonas acidovorans PX54, and Aeromonas hydrophila PU7718. These strains represented three species that were detected in high abundance during a set of mesocosm experiments in Lake Plusssee by the direct analysis of low-molecular-weight RNAs from bacterioplankton. We developed one MAb each for the bacterial isolates PX54 and PU7718 that did not show any cross-reactivity with other bacterial strains by immunofluorescence microscopy. Each MAb recognized the general lipopolysaccharide fraction of the homologous strain. These MAbs were tested successfully for their ability to be used for the in situ detection and counting of bacteria in lake water by immunofluorescence microscopy. During the spring of 1993, A. hydrophila PU7718 showed a depth distribution in Lake Plusssee with a pronounced maximum abundance at 6 m, whereas Comamonas acidovorans PX54 showed a depth distribution with a maximum abundance at the surface. The application of these MAbs to the freshwater samples enabled us to determine the cell morphologies and microhabitats of these strains within their natural environment. The presence of as many as 8,000 cells of these strains per ml in their original habitats 3 years after their initial isolation demonstrated the persistence of individual strains of heterotrophic bacteria over long time spans in pelagic habitats. PMID:9361440

  2. Development of amplified fragment length polymorphism-derived functional strain-specific markers to assess the persistence of 10 bacterial strains in soil microcosms.

    PubMed

    Xiang, S-R; Cook, M; Saucier, S; Gillespie, P; Socha, R; Scroggins, R; Beaudette, L A

    2010-11-01

    To augment the information on commercial microbial products, we investigated the persistence patterns of high-priority bacterial strains from the Canadian Domestic Substance List (DSL). Specific DNA markers for each of the 10 DSL bacterial strains were developed using the amplified fragment length polymorphism (AFLP) technique, and the fates of DSL strains introduced in soil were assessed by real-time quantitative PCR (qPCR). The results indicated that all DNA markers had high specificity at the functional strain level and that detection of the target microorganisms was sensitive at a detection limitation range from 1.3 × 10² to 3.25 × 10⁵ CFU/g of dry soil. The results indicated that all introduced strains showed a trend toward a declining persistence in soil and could be categorized into three pattern types. The first type was long-term persistence exemplified by Pseudomonas stutzeri (ATCC 17587) and Pseudomonas denitrificans (ATCC 13867) strains. In the second pattern, represented by Bacillus subtilis (ATCC 6051) and Escherichia hermannii (ATCC 700368), the inoculated strain populations dropped dramatically below the detection threshold after 10 to 21 days, while in the third pattern there was a gradual decrease, with the population falling below the detectable level within the 180-day incubation period. These patterns indicate a selection effect of a microbial community related to the ecological function of microbial strains introduced in soil. As a key finding, the DSL strains can be quantitatively tracked in soil with high sensitivity and specificity at the functional strain level. This provides the basic evidence for further risk assessment of the priority DSL strains.

  3. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing

    PubMed Central

    2009-01-01

    Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights

  4. Selected Bacterial Strains Protect Artemia spp. from the Pathogenic Effects of Vibrio proteolyticus CW8T2

    PubMed Central

    Verschuere, Laurent; Heang, Hanglamong; Criel, Godelieve; Sorgeloos, Patrick; Verstraete, Willy

    2000-01-01

    In this study Vibrio proteolyticus CW8T2 has been identified as a virulent pathogen for Artemia spp. Its infection route has been visualized with transmission electron microscopy. The pathogen affected microvilli and gut epithelial cells, disrupted epithelial cell junctions, and reached the body cavity, where it devastated cells and tissues. In vivo antagonism tests showed that preemptive colonization of the culture water with nine selected bacterial strains protected Artemia juveniles against the pathogenic effects. Two categories of the selected strains could be distinguished: (i) strains providing total protection, as no mortality occurred 2 days after the experimental infection with V. proteolyticus CW8T2, with strain LVS8 as a representative, and (ii) strains providing partial protection, as significant but not total mortality was observed, with strain LVS2 as a representative. The growth of V. proteolyticus CW8T2 in the culture medium was slowed down in the presence of strains LVS2 and LVS8, but growth suppression was distinctly higher with LVS8 than with LVS2. It was striking that the strains that gave only partial protection against the pathogen in the in vivo antagonism test showed also a restricted capability to colonize the Artemia compared to the strains providing total protection. The in vivo antagonism tests and the filtrate experiments showed that probably no extracellular bacterial compounds were involved in the protective action but that the living cells were required to protect Artemia against V. proteolyticus CW8T2. PMID:10698783

  5. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids.

    PubMed

    Vorburger, Christoph; Gehrer, Lukas; Rodriguez, Paula

    2010-02-23

    Aphids commonly harbour facultative bacterial endosymbionts and may benefit from their presence through increased resistance to parasitoids. This has been demonstrated for Hamiltonella defensa and Serratia symbiotica, while a third common endosymbiont, Regiella insecticola, did not provide such protection. However, this symbiont was recently detected in a highly resistant clone of the peach-potato aphid, Myzus persicae, from Australia. To test if resistance was indeed conferred by the endosymbiont, we eliminated it from this clone with antibiotics, and we transferred it to two other clones of the same and one clone of a different aphid species (Aphis fabae). Exposing these lines to the parasitoid Aphidius colemani showed clearly that unlike other strains of this bacterium, this specific isolate of R. insecticola provides strong protection against parasitic wasps, suggesting that the ability to protect their host against natural enemies may evolve readily in multiple species of endosymbiotic bacteria.

  6. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1.

    PubMed

    Arakaki, Atsushi; Webb, John; Matsunaga, Tadashi

    2003-03-01

    Magnetic bacteria synthesize magnetite crystals with species-dependent morphologies. The molecular mechanisms that control nano-sized magnetite crystal formation and the generation of diverse morphologies are not well understood. From the analysis of magnetite crystal-associated proteins, several low molecular mass proteins tightly bound to bacterial magnetite were obtained from Magnetospirillum magneticum strain AMB-1. These proteins showed common features in their amino acid sequences, which contain hydrophobic N-terminal and hydrophilic C-terminal regions. The C-terminal regions in Mms5, Mms6, Mms7, and Mms13 contain dense carboxyl and hydroxyl groups that bind iron ions. Nano-sized magnetic particles similar to those in magnetic bacteria were prepared by chemical synthesis of magnetite in the presence of the acidic protein Mms6. These proteins may be directly involved in biological magnetite crystal formation in magnetic bacteria.

  7. Bacterial phagocytosis by macrophages from lipopolysaccharide responder and nonresponder mouse strains.

    PubMed Central

    Cuffini, A; Carlone, N A; Forni, G

    1980-01-01

    The phagocytic capacity of macrophages from C3H/H3J mice was assessed against lipopolysaccharide-producing (Escherichia coli) and -nonproducing (Staphylococcus aureus) bacteria. Despite their gene-coded unresponsiveness to lipopolysaccharide endotoxin and lymphokines and their defective tumoricidal activity, proteose peptone-induced C3H/HeJ macrophages did not display a defective phagocytic capacity, but rather displayed an enhanced phagocytosis of both bacterial strains compared with macrophages from closely related C3H/HeN mice. Unstimulated peritoneal resident C3H/HeJ macrophages, on the other hand, displayed a normal phagocytic activity toward E. coli and enhanced phagocytosis toward S. aureus. PMID:6995321

  8. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms.

    PubMed

    Yang, Jun; Yang, Yu; Wu, Wei-Min; Zhao, Jiao; Jiang, Lei

    2014-12-01

    Polyethylene (PE) has been considered nonbiodegradable for decades. Although the biodegradation of PE by bacterial cultures has been occasionally described, valid evidence of PE biodegradation has remained limited in the literature. We found that waxworms, or Indian mealmoths (the larvae of Plodia interpunctella), were capable of chewing and eating PE films. Two bacterial strains capable of degrading PE were isolated from this worm's gut, Enterobacter asburiae YT1 and Bacillus sp. YP1. Over a 28-day incubation period of the two strains on PE films, viable biofilms formed, and the PE films' hydrophobicity decreased. Obvious damage, including pits and cavities (0.3-0.4 μm in depth), was observed on the surfaces of the PE films using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The formation of carbonyl groups was verified using X-ray photoelectron spectroscopy (XPS) and microattenuated total reflectance/Fourier transform infrared (micro-ATR/FTIR) imaging microscope. Suspension cultures of YT1 and YP1 (10(8) cells/mL) were able to degrade approximately 6.1 ± 0.3% and 10.7 ± 0.2% of the PE films (100 mg), respectively, over a 60-day incubation period. The molecular weights of the residual PE films were lower, and the release of 12 water-soluble daughter products was also detected. The results demonstrated the presence of PE-degrading bacteria in the guts of waxworms and provided promising evidence for the biodegradation of PE in the environment. PMID:25384056

  9. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    PubMed Central

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-01-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  10. Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.

    PubMed

    Cleary, Brian; Brito, Ilana Lauren; Huang, Katherine; Gevers, Dirk; Shea, Terrance; Young, Sarah; Alm, Eric J

    2015-10-01

    Analyses of metagenomic datasets that are sequenced to a depth of billions or trillions of bases can uncover hundreds of microbial genomes, but naive assembly of these data is computationally intensive, requiring hundreds of gigabytes to terabytes of RAM. We present latent strain analysis (LSA), a scalable, de novo pre-assembly method that separates reads into biologically informed partitions and thereby enables assembly of individual genomes. LSA is implemented with a streaming calculation of unobserved variables that we call eigengenomes. Eigengenomes reflect covariance in the abundance of short, fixed-length sequences, or k-mers. As the abundance of each genome in a sample is reflected in the abundance of each k-mer in that genome, eigengenome analysis can be used to partition reads from different genomes. This partitioning can be done in fixed memory using tens of gigabytes of RAM, which makes assembly and downstream analyses of terabytes of data feasible on commodity hardware. Using LSA, we assemble partial and near-complete genomes of bacterial taxa present at relative abundances as low as 0.00001%. We also show that LSA is sensitive enough to separate reads from several strains of the same species. PMID:26368049

  11. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    PubMed

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.

  12. A bacterial strain with a unique quadruplet codon specifying non-native amino acids.

    PubMed

    Chatterjee, Abhishek; Lajoie, Marc J; Xiao, Han; Church, George M; Schultz, Peter G

    2014-08-18

    The addition of noncanonical amino acids to the genetic code requires unique codons not assigned to the 20 canonical amino acids. Among the 64 triplet codons, only the three nonsense "stop" codons have been used to encode non-native amino acids. Use of quadruplet "frame-shift" suppressor codons provides an abundant alternative but suffers from low suppression efficiency as a result of competing recognition of their first three bases by endogenous host tRNAs or release factors. Deletion of release factor 1 in a genomically recoded strain of E. coli (E. coli C321), in which all endogenous amber stop codons (UAG) are replaced with UAA, abolished UAG mediated translation termination. Here we show that a Methanocaldococcus jannaschii-derived frame-shift suppressor tRNA/aminoacyl-tRNA synthetase pair enhanced UAGN suppression efficiency in this recoded bacterial strain. These results demonstrate that efficient quadruplet codons for encoding non-native amino acids can be generated by eliminating competing triplet codon recognition at the ribosome.

  13. Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning.

    PubMed

    Cleary, Brian; Brito, Ilana Lauren; Huang, Katherine; Gevers, Dirk; Shea, Terrance; Young, Sarah; Alm, Eric J

    2015-10-01

    Analyses of metagenomic datasets that are sequenced to a depth of billions or trillions of bases can uncover hundreds of microbial genomes, but naive assembly of these data is computationally intensive, requiring hundreds of gigabytes to terabytes of RAM. We present latent strain analysis (LSA), a scalable, de novo pre-assembly method that separates reads into biologically informed partitions and thereby enables assembly of individual genomes. LSA is implemented with a streaming calculation of unobserved variables that we call eigengenomes. Eigengenomes reflect covariance in the abundance of short, fixed-length sequences, or k-mers. As the abundance of each genome in a sample is reflected in the abundance of each k-mer in that genome, eigengenome analysis can be used to partition reads from different genomes. This partitioning can be done in fixed memory using tens of gigabytes of RAM, which makes assembly and downstream analyses of terabytes of data feasible on commodity hardware. Using LSA, we assemble partial and near-complete genomes of bacterial taxa present at relative abundances as low as 0.00001%. We also show that LSA is sensitive enough to separate reads from several strains of the same species.

  14. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1.

    PubMed

    Leng, Yifei; Bao, Jianguo; Chang, Gaofeng; Zheng, Han; Li, Xingxing; Du, Jiangkun; Snow, Daniel; Li, Xu

    2016-11-15

    Although several abiotic processes have been reported that can transform antibiotics, little is known about whether and how microbiological processes may degrade antibiotics in the environment. This work isolated one tetracycline degrading bacterial strain, Stenotrophomonas maltophilia strain DT1, and characterized the biotransformation of tetracycline by DT1 under various environmental conditions. The biotransformation rate was the highest when the initial pH was 9 and the reaction temperature was at 30°C, and can be described using the Michaelis-Menten model under different initial tetracycline concentrations. When additional substrate was present, the substrate that caused increased biomass resulted in a decreased biotransformation rate of tetracycline. According to disk diffusion tests, the biotransformation products of tetracycline had lower antibiotic potency than the parent compound. Six possible biotransformation products were identified, and a potential biotransformation pathway was proposed that included sequential removal of N-methyl, carbonyl, and amine function groups. Results from this study can lead to better estimation of the fate and transport of antibiotics in the environment and has the potential to be utilized in designing engineering processes to remove tetracycline from water and soil. PMID:27420384

  15. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    DOE PAGES

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A.; Gilbert, Jack A.; Nagler, Cathryn R.

    2015-09-22

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceaemore » (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. As a result, our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.« less

  16. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    PubMed

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products.

  17. Screening of Lactobacillus strains of domestic goose origin against bacterial poultry pathogens for use as probiotics.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2014-10-01

    Lactobacilli are natural inhabitants of human and animal mucous membranes, including the avian gastrointestinal tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities, among which their antagonistic potential against pathogens plays a key role. A study was conducted to evaluate probiotic properties of Lactobacillus strains isolated from feces or cloacae of domestic geese. Among the 104 examined isolates, previously identified to the species level by whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and analysis of 16S-23S regions of rDNA, dominated Lactobacillus salivarius (35%), followed by Lactobacillus johnsonii (18%) and Lactobacillus ingluviei (11%). All lactobacilli were screened for antimicrobial activity toward Salmonella Enteritidis, Escherichia coli, Clostridium perfringens, Staphylococcus aureus, Pasteurella multocida, and Riemerella anatipestifer using the agar slab method and the well diffusion method. Lactobacillus salivarius and Lactobacillus plantarum exhibited particularly strong antagonism toward all of the indicator strains. In the agar slab method, the highest sensitivity to Lactobacillus was observed in R. anatipestifer and P. multocida, and the lowest in E. coli and S. aureus. The ability to produce H₂O₂was exhibited by 92% of isolates, but there was no correlation between the rate of production of this reactive oxygen species and the antimicrobial activity of Lactobacillus sp. All lactobacilli showed resistance to pH 3.0 and 3.5 and to 2% bile. The data demonstrate that Lactobacillus isolates from geese may have probiotic potential in reducing bacterial infections. The antibacterial activity of the selected lactobacilli is mainly due to lactic acid production by these bacteria. The selected Lactobacillus strains that strongly inhibited the growth of pathogenic bacteria, and were also resistant to low pH and bile salts, can potentially restore the balance

  18. Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device

    PubMed Central

    Ho, Jack Y.; Cira, Nate J.; Crooks, John A.; Baeza, Josue; Weibel, Douglas B.

    2012-01-01

    This article describes Bacteria ID Chips (‘BacChips’): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm2. After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics. PMID:22848451

  19. Screening of Lactobacillus strains of domestic goose origin against bacterial poultry pathogens for use as probiotics.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2014-10-01

    Lactobacilli are natural inhabitants of human and animal mucous membranes, including the avian gastrointestinal tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities, among which their antagonistic potential against pathogens plays a key role. A study was conducted to evaluate probiotic properties of Lactobacillus strains isolated from feces or cloacae of domestic geese. Among the 104 examined isolates, previously identified to the species level by whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and analysis of 16S-23S regions of rDNA, dominated Lactobacillus salivarius (35%), followed by Lactobacillus johnsonii (18%) and Lactobacillus ingluviei (11%). All lactobacilli were screened for antimicrobial activity toward Salmonella Enteritidis, Escherichia coli, Clostridium perfringens, Staphylococcus aureus, Pasteurella multocida, and Riemerella anatipestifer using the agar slab method and the well diffusion method. Lactobacillus salivarius and Lactobacillus plantarum exhibited particularly strong antagonism toward all of the indicator strains. In the agar slab method, the highest sensitivity to Lactobacillus was observed in R. anatipestifer and P. multocida, and the lowest in E. coli and S. aureus. The ability to produce H₂O₂was exhibited by 92% of isolates, but there was no correlation between the rate of production of this reactive oxygen species and the antimicrobial activity of Lactobacillus sp. All lactobacilli showed resistance to pH 3.0 and 3.5 and to 2% bile. The data demonstrate that Lactobacillus isolates from geese may have probiotic potential in reducing bacterial infections. The antibacterial activity of the selected lactobacilli is mainly due to lactic acid production by these bacteria. The selected Lactobacillus strains that strongly inhibited the growth of pathogenic bacteria, and were also resistant to low pH and bile salts, can potentially restore the balance

  20. Enhanced treatment of tannery wastewater in an integrated multistage bioreactor (IMBR) by the predominant bacterial strains enriched from marine sediments.

    PubMed

    Huang, Guangdao; Fan, Guofeng; Liu, Guoguang

    2016-01-01

    An innovative integrated multistage bioreactor (IMBR) system, which was augmented with three predominant bacterial strains (Lactobacillus paracasei CL1107, Pichia jadinii CL1705, and Serratia marcescens CL1502) isolated from marine sediments, was developed to treat real tannery wastewater without performing physicochemical pretreatment, with the potential to reduce the generation of waste sludge and odors. The performance of the IMBR treatment system, with and without the inclusion of the predominant bacterial strains, was compared. The results indicated that the performance of the IMBR system without bioaugmentation by the predominant bacterial strains was poor. However, when in the presence of the predominant bacterial strains, the IMBR system exhibited high removal efficiencies of chemical oxygen demand (COD) (97%), NH4(+)-N (97.7%), and total nitrogen (TN) (90%). In addition, the system had the capacity for the simultaneous removal of organics and nitrogen, heterotrophic nitrification and denitrification being carried out concurrently, thereby avoiding the strong inhibition of high concentrations of COD on nitrification. The system possessed excellent adaptability and ability to resist influent loading fluctuations, and had a good alkalinity balance such that it could achieve a high NH4(+)-N, and TN removal efficiency without a supplement of external alkalinity. In addition, an empirical performance modeling of the IMBR system was analyzed. PMID:26901723

  1. Adherence of gram-positive and gram-negative bacterial strains to human lung fibroblasts in vitro.

    PubMed

    Martin, D; Mathieu, L G; Lecomte, J; deRepentigny, J

    1986-01-01

    The adherence to eukaryotic cells of Escherichia coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis and the yeast Candida albicans was studied by light microscopy with an in vitro micromethod involving different cell lines. The method is inexpensive, consumes little time and material, and is reproducible. It was used to show that the gram-positive Cowan I strain of S. aureus, which naturally forms protein A on its surface, adheres in much larger numbers to human lung fibroblasts than the protein A-free Wood 46 strain, the strain of S. epidermidis, and the encapsulated Smith strain. The presence of a capsule on the latter strain apparently prevented its attachment to the fibroblasts. Among the gram-negative species studied, a piliated clinical isolate of N. gonorrhoeae, displaying the opaque colonial phenotype, adhered in larger numbers than another isolate lacking pili and displaying the transparent phenotype. E. coli K12 attached slightly to the cell line, whereas P. aeruginosa adhered to it moderately. One strain of C. albicans tested did not attach in any detectable numbers. No clear correlation between bacterial cell surface hydrophobicity, as evaluated by the hexadecane assay, and adherence to eukaryotic cells could be demonstrated for these microorganisms. With our method, bacterial attachment proceeded best at 37 degrees C and did not require more than 1 h of contact with the cell monolayer. The method described revealed differences in the adherence to eukaryotic cells, not only among species, but also between strains of the same species.

  2. Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex.

    PubMed

    Lebeau, A; Daunay, M-C; Frary, A; Palloix, A; Wang, J-F; Dintinger, J; Chiroleu, F; Wicker, E; Prior, P

    2011-01-01

    Bacterial wilt, caused by strains belonging to the Ralstonia solanacearum species complex, inflicts severe economic losses in many crops worldwide. Host resistance remains the most effective control strategy against this disease. However, wilt resistance is often overcome due to the considerable variation among pathogen strains. To help breeders circumvent this problem, we assembled a worldwide collection of 30 accessions of tomato, eggplant and pepper (Core-TEP), most of which are commonly used as sources of resistance to R. solanacearum or for mapping quantitative trait loci. The Core-TEP lines were challenged with a core collection of 12 pathogen strains (Core-Rs2) representing the phylogenetic diversity of R. solanacearum. We observed six interaction phenotypes, from highly susceptible to highly resistant. Intermediate phenotypes resulted from the plants' ability to tolerate latent infections (i.e., bacterial colonization of vascular elements with limited or no wilting). The Core-Rs2 strains partitioned into three pathotypes on pepper accessions, five on tomato, and six on eggplant. A "pathoprofile" concept was developed to characterize the strain clusters, which displayed six virulence patterns on the whole set of Core-TEP host accessions. Neither pathotypes nor pathoprofiles were phylotype specific. Pathoprofiles with high aggressiveness were mainly found in strains from phylotypes I, IIB, and III. One pathoprofile included a strain that overcame almost all resistance sources. PMID:20795852

  3. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.

    PubMed

    Guermouche M'rassi, A; Bensalah, F; Gury, J; Duran, R

    2015-10-01

    Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments.

  4. Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain.

    PubMed

    Dejonghe, Winnie; Berteloot, Ellen; Goris, Johan; Boon, Nico; Crul, Katrien; Maertens, Siska; Höfte, Monica; De Vos, Paul; Verstraete, Willy; Top, Eva M

    2003-03-01

    The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture.

  5. Synergistic Degradation of Linuron by a Bacterial Consortium and Isolation of a Single Linuron-Degrading Variovorax Strain

    PubMed Central

    Dejonghe, Winnie; Berteloot, Ellen; Goris, Johan; Boon, Nico; Crul, Katrien; Maertens, Siska; Höfte, Monica; De Vos, Paul; Verstraete, Willy; Top, Eva M.

    2003-01-01

    The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture. PMID:12620840

  6. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  7. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.

    PubMed

    Gangadharan Puthiya Veetil, Prajeesh; Vijaya Nadaraja, Anupama; Bhasi, Arya; Khan, Sudheer; Bhaskaran, Krishnakumar

    2012-07-01

    Triclosan (2, 4, 4'-trichloro-2'-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

  8. Comparison of effects of compost amendment and of single-strain inoculation on root bacterial communities of young cucumber seedlings.

    PubMed

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2009-10-01

    Compost amendment and inoculations with specific microorganisms are fundamentally different soil treatment methods, commonly used in agriculture for the improvement of plant growth and health. Although distinct, both methods affect the rhizosphere and the plant roots. In the present study we used a 16S rRNA gene approach to achieve an overview of early consequences of these treatments on the assemblage of plant root bacterial communities. For this purpose, cucumber seedlings were grown, under controlled conditions, in perlite potting mix amended with biosolid compost or straw compost, or inoculated with Streptomyces spp. A uniform trend of response of root bacterial communities for all treatments was observed. Root bacterial density, measured as bacterial targets per plant tef gene by real-time PCR, was reduced in 31 to 67%. In addition, increased taxonomic diversity accompanied shifts in composition (alpha-diversity). The magnitude of change in these parameters relative to the perlite control varied between the different treatments but not in relation to the treatment method (compost amendments versus inoculations). Similarity between the compositions of root and of potting mix bacterial communities (beta-diversity) was relatively unchanged. The abundance of Oxalobacteraceae was >50% of the total root bacterial community in the untreated perlite. Root domination by this group subsided >10-fold (straw compost) to >600-fold (Streptomyces sp. strain S1) after treatment. Thus, loss of dominance appears to be the major phenomenon underlining the response trend of the root bacterial communities. PMID:19700550

  9. Aerobic secondary utilization of a non-growth and inhibitory substrate 2,4,6-trichlorophenol by Sphingopyxis chilensis S37 and sphingopyxis-like strain S32.

    PubMed

    Aranda, Carlos; Godoy, Félix; Becerra, José; Barra, Ricardo; Martínez, Miguel

    2003-08-01

    This paper reports 2,4,6-trichlorophenol (246TCP) degradation by Sphingopyxis chilensis S37 and Sphingopyxis chilensis-like strain S32, which were unable to use 246TCP as the sole carbon and energy source. In R2A broth, the strains degraded 246TCP up to 0.5 mM. Results with mixtures of different 246TCP and glucose concentrations in mineral salt media demonstrated dependence on glucose to allow bacterial growth and degradation of 246TCP. Strain S32 degraded halophenol up to 0.2 mM when 5.33 mM glucose was simultaneously added, while strain S37 degraded the compound up to 0.1 mM when 1.33 mM glucose was added. These 246TCP concentrations were lethal for inocula in absence of glucose. Stoichiometric releases of chloride and analysis by HPLC, GC-ECD and GC-MS indicated 246TCP mineralisation by both strains. To our knowledge, this is the first report of bacteria able to mineralize a chlorophenol as a non-growth and inhibitory substrate. The concept of secondary utilization instead of cometabolism is proposed for this activity. PMID:12948056

  10. Aerobic secondary utilization of a non-growth and inhibitory substrate 2,4,6-trichlorophenol by Sphingopyxis chilensis S37 and sphingopyxis-like strain S32.

    PubMed

    Aranda, Carlos; Godoy, Félix; Becerra, José; Barra, Ricardo; Martínez, Miguel

    2003-08-01

    This paper reports 2,4,6-trichlorophenol (246TCP) degradation by Sphingopyxis chilensis S37 and Sphingopyxis chilensis-like strain S32, which were unable to use 246TCP as the sole carbon and energy source. In R2A broth, the strains degraded 246TCP up to 0.5 mM. Results with mixtures of different 246TCP and glucose concentrations in mineral salt media demonstrated dependence on glucose to allow bacterial growth and degradation of 246TCP. Strain S32 degraded halophenol up to 0.2 mM when 5.33 mM glucose was simultaneously added, while strain S37 degraded the compound up to 0.1 mM when 1.33 mM glucose was added. These 246TCP concentrations were lethal for inocula in absence of glucose. Stoichiometric releases of chloride and analysis by HPLC, GC-ECD and GC-MS indicated 246TCP mineralisation by both strains. To our knowledge, this is the first report of bacteria able to mineralize a chlorophenol as a non-growth and inhibitory substrate. The concept of secondary utilization instead of cometabolism is proposed for this activity.

  11. Metabolomic characterization of halophilic bacterial isolates reveals strains synthesizing rare diaminoacids under salt stress.

    PubMed

    Joghee, Nidhya Nadarajan; Jayaraman, Gurunathan

    2014-07-01

    Metabolomics-based approaches to study stress responses in bacteria have received much attention in recent years. In the present study, a metabolomic analysis of the representative halophilic bacterial isolates (Halomonas hydrothermalis VITP9, Bacillus aquimaris VITP4, Planococcus maritimus VITP21 and Virgibacillus dokdonensis VITP14) from a saltern region in India was performed using nuclear magnetic resonance spectroscopy. Chemometric analysis of (1)H NMR spectra revealed salt-dependent increase in the levels of metabolites, mainly from the aspartate and glutamate family, that are directed from the glycolytic pathway, pentose phosphate pathway and citric acid cycle. The composition of the metabolites was found to be different with respect to the species and the type of growth medium. Analysis of the two dimensional NMR data revealed accumulation of two rare diaminoacids, Nε-acetyl-α-lysine and Nδ-acetylornithine (by VITP21 and VITP4 strains respectively) apart from other well known solutes such as ectoine, proline, glutamate and glycine betaine. Metabolite profiles of strains capable of synthesizing Nε-acetyl-α-lysine and Nδ-acetylornithine suggested their biosynthesis from lysine and ornithine using aspartate and glutamate as their precursors, respectively. Further, the cells in moderate salinity (5% w/v NaCl) showed an increase in growth rate along with increase in the levels of nucleotides, whereas at higher salinity (10% w/v NaCl), the levels of aromatic and hydrophobic metabolites dropped, accompanied with a decrease in growth rate, rightly suggesting that at any salt-stress condition provided, cellular homeostasis was favored over growth. PMID:24636996

  12. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds.

  13. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds. PMID:25627249

  14. Microbial removal of NOX at high temperature by a novel aerobic strain Chelatococcus daeguensis TAD1 in a biotrickling filter.

    PubMed

    Yang, Yunlong; Huang, Shaobin; Liang, Wei; Zhang, Yongqing; Huang, Huixing; Xu, Fuqian

    2012-02-15

    The removal of NO(X) at high temperature by Chelatococcus daeguensis TAD1 in a biotrickling filter was studied. Media components of the recycling liquid were screened using Plackett-Burman design and then were optimized using response surface methodology, which enhanced the efficiency of nitrate removal by TAD1. The optimal medium was used to perform long-term experiments of NO(X) removal in a biotrickling filter under high concentrations of O(2) and NO in simulated flue gas. Results showed that the biotrickling filter was able to consistently remove 80.2-92.3% NO(X) when the inlet NO concentration was 600ppm under the conditions of oxygen concentration ranging between 2% and 20% and empty bed residence time (EBRT) being 112.5s. Analyses by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) indicated that TAD1 was always predominant in the biofilm under a flue gas environment. Overall, the present study demonstrated that utilizing a biotrickling filter inoculated with the aerobic denitrifier TAD1 to remove NO(X) at high temperature was practically feasible.

  15. [Effect of the inoculant strain Sphingomonas paucimobilis 20006FA on the bacterial composition of a phenanthrene-degrading consortium].

    PubMed

    Madueño, L; Coppotelli, B M; Morelli, I S

    2009-01-01

    The effect of the inoculant strain Sphingomonas paucimobilis 20006FA on the bacterial composition of a phenanthrene-degrading consortium obtained from a pristine soil in sequencing batch cultures was studied. Inoculated (F200+1) and non-inoculated (F200) phenanthrene-degrading consortia, were obtained. Bacterial diversity of consortia was studied at cultivable (phenotype and genotype characterization) and non-cultivable (PCR-DGGE) levels. During the successive cultures, a loss in the phenanthrene-degrading capacity and a decrease in the bacterial diversity were observed in both consortia. Although inoculation did not produce any significant changes in the consortia phenanthrene-degrading capacity (29.9% F200 and 27.6% F200+1), it did produce changes in the bacterial composition, showing a differential structural dynamics in the DGGE profiles of the inoculated consortium. In both consortia, a dominant band placed at the same position as that of the DNA of the inoculant strain in the DGGE gel could be observed. However, isolated cultures from the consortia which had an identical band position to that of S. paucimobilis 20006FA in the PCR-DGGE profile showed low similarity with respect to the inoculant strain (RAPD).

  16. Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response.

    PubMed

    Van Beek, A A; Hoogerland, J A; Belzer, C; De Vos, P; De Vos, W M; Savelkoul, H F J; Leenen, P J M

    2016-01-01

    Probiotics influence the immune system, both at the local and systemic level. Recent findings suggest the relation between microbiota and the immune system alters with age. Our objective was to address direct effects of six bacterial strains on immune cells from young and aged mice: Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, Lactococcus lactis MG1363, Bifidobacterium breve ATCC15700, Bifidobacterium infantis ATCC15697, and Akkermansia muciniphila ATCC BAA-835. We used splenocytes and naïve or interferon-γ-stimulated bone marrow-derived macrophages (BMDM) as responder populations. All tested bacterial strains induced phenotypic and cytokine responses in splenocytes and BMDM. Based on magnitude of the cellular inflammatory response and cytokine profiles, two subgroups of bacteria were identified, i.e. L. plantarum and L. casei versus B. breve, B. infantis, and A. muciniphila. The latter group of bacteria induced high levels of cytokines produced under inflammatory conditions, including tumour necrosis factor (TNF), interleukin (IL)-6 and IL-10. Responses to L. lactis showed features of both subgroups. In addition, we compared responses by splenocytes and BMDM derived from young mice to those of aged mice, and found that splenocytes and BMDM derived from aged mice had an increased IL-10 production and dysregulated IL-6 and TNF production compared to young immune cells. Overall, our study shows differential inflammatory responses to distinct bacterial strains, and profound age-dependent effects. These findings, moreover, support the view that immune environment importantly influences bacterial immune effects. PMID:26689225

  17. Biostimulation of the autochthonous bacterial community and bioaugmentation of selected bacterial strains for the depletion of Polycyclic Aromatic Hydrocarbons in a historically contaminated soil

    NASA Astrophysics Data System (ADS)

    DiGregorio, Simona; Ruffini Castglione, Monica; Gentini, Alessandro; Lorenzi, Roberto

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic contaminants causing hazards to organisms including humans. The objective of the study was (1) to validate the biostimulation of the autochthonous bacterial population by the amendment of lignocellulosic matrices inoculated with white rot fungi, to be exploited for the depletion of PAHs (5687 ppm) in a historical contaminated soil. (2) to validate the isolation of autochthonous bacterial strains capable to use PAHs as sole carbon source and their massive bioaugmentation for PAH depletion in a historical contaminated soil. The validation has been performed at mesocosm and pilot scale (7 tons of soil in a biopile). The two approaches end up with the complete depletion of the PAHs. A genotoxicological assessment of the process and of the soil at the end of the process of decontamination has been performed. The process of soil decontamination showed an increase in the genotoxicity of either the soil and the deriving elutriates. The bioaugmetation of selected bacterial strains determined the complete detoxification of the decontaminated soil after 21 weeks. The microbial ecology of the system during the process of decontamination has been monitored.

  18. Evaluation of the angiogenic potency of a novel exopolysaccharide produced by the MK1 bacterial strain.

    PubMed

    Park, Ji-Yun; Kim, Beom Su; Lee, Jun

    2016-09-01

    Angiogenesis is an essential physiological step in wound healing and other regenerative processes. Here, we evaluated the angiogenic properties of an exopolysaccharide (EPS) secreted by MK1 (MK1-EPS), a novel bacterial strain isolated from Neungee mushrooms. MK1-EPS significantly increased human umbilical vein endothelial cell (HUVEC) proliferation, migration, and vascular tube formation. MK1-EPS enhanced the phosphorylation of extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, which are mitogen-activated protein kinases. In addition, the expression of p21 and intercellular adhesion molecule 1 (ICAM1), and phosphorylation of signal transducer and activator of transcription 3 (STAT3), but not of protein kinase B (AKT), were increased. Specific inhibitors of p38 (SB203580), ERK (PD98059), and JNK (SP600125) inhibited MK1-EPS-induced HUVEC proliferation, tube formation, and cell migration, and partially attenuated MKI-EPS-induced expression of p21 and ICAM1, and STAT3 phosphorylation. After surgical implantation into rabbit calvarial bone defects, new blood vessel formation was significantly higher with MK1-EPS composite bone granules than with granules alone, and new bone formation increased significantly. Therefore, MK1-EPS induces angiogenesis and may have potential for use as a bone regeneration agent in bone tissue engineering applications. PMID:27357535

  19. Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8(T).

    PubMed

    Gentile, G; Bonsignore, M; Santisi, S; Catalfamo, M; Giuliano, L; Genovese, L; Yakimov, M M; Denaro, R; Genovese, M; Cappello, S

    2016-04-15

    The present study is focused on assessing the growth and hydrocarbon-degrading capability of the psychrophilic strain Oleispira antarctica RB-8(T). This study considered six hydrocarbon mixtures that were tested for 22days at two different cultivation temperatures (4 and 15°C). During the incubation period, six sub-aliquots of each culture at different times were processed for total bacterial abundance and GC-FID (gas chromatography-flame ionization detection) hydrocarbon analysis. Results from DNA extraction and DAPI (4',6-diamidino-2-phenylindole) staining showed a linear increase during the first 18days of the experiment in almost all the substrates used; both techniques showed a good match, but the difference in values obtained was approximately one order of magnitude. GC-FID results revealed a substantial hydrocarbon degradation rate in almost all hydrocarbon sources and in particular at 15°C rather than 4°C (for commercial oil engine, oily waste, fuel jet, and crude oil). A more efficient degradation was observed in cultures grown with diesel and bilge water at 4°C. PMID:26912198

  20. Degradation of metal-EDTA complexes by resting cells of the bacterial strain DSM 9103

    SciTech Connect

    Satroutdinov, A.D.; Dedyukhina, E.G.; Chistyakova, T.I.; Witschel, M.; Minkevich, I.G.; Eroshin, V.K.; Egli, T.

    2000-05-01

    Ethylenediaminetetraacetate (EDTA), an industrially important chelating agent, forms very stable complexes with di- and trivalent metal ions, and in both wastewater and natural waters it is normally present in the metal-associated form. Therefore, the influence of EDTA speciation on its utilization by the EDTA-degrading bacterial strain DSM 9103 was investigated. EDTA-grown cells harvested from the exponential phase of a batch culture were incubated with 1 mM of various EDTA species and the EDTA concentration in the assay was monitored as a function of time. Uncomplexed EDTA as well as complexes with low stability constants were found to be readily degraded to completion at a constant rate. For more stable EDTA chelates (i.e., chelates of Co{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, and Pb{sup 2+}) the data suggest that these complexes were not used directly by the cells but that they had to dissociate prior to degradation. The rate of this dissociation step possibly determined the microbial degradation of these complexes. CdEDTA{sup 2{minus}} and Fe(III)EDTA{sup {minus}} were not degraded within 48 h. In case of CdEDTA{sup 2{minus}} the toxicity of freed Cd{sup 2+} ions most likely prevented a significant degradation of the complex, whereas in case of Fe(III)EDTA{sup {minus}} a combination of metal or complex toxicity and the very slow dissociation of the complex might explain the absence of degradation.

  1. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation.

    PubMed

    Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth

    2014-08-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.

  2. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture.

    PubMed

    Nigam, Anshul; Phale, Prashant S; Wangikar, Pramod P

    2012-06-01

    Pseudomonas putida CSV86 utilizes aromatic compounds preferentially over sugars and co-metabolizes aromatics along with organic acids. In the present study, the metabolic capacity and adaptability of strain CSV86 were assessed in a chemostat at benzyl alcohol concentrations ranging from 1 g l(-1) to 3 g l(-1) and in the presence of glucose and succinate by systematically varying the dilution rate. Complete removal of benzyl alcohol was achieved for loadings up to 640 mg l(-1) h(-1) in presence of benzyl alcohol alone. The strain responded within 1 min towards step changes in substrate loading as indicated by an increase in the oxygen uptake rate, presumably as a result of excess metabolic capacity. These results suggest that CSV86 exhibits considerable metabolic elasticity upon increase in substrate load. Metabolic elasticity of the microorganism is an important parameter in wastewater treatment plants due to the changing substrate loads. PMID:22494573

  3. Seasonal variations in bacterial communities and antibiotic-resistant strains associated with green bottle flies (Diptera: Calliphoridae).

    PubMed

    Wei, Ting; Ishida, Ryuichi; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-05-01

    Green bottle flies occur frequently around human environments in Japan. Many species of green bottle flies have been studied with regard to their importance in forensic examinations or clinical therapies, but the bacterial communities associated with this group of flies have not been comprehensively investigated. In this research, 454 pyrosequencing was used to reveal the bacterial communities in green bottle flies collected in different seasons. Meanwhile, the bacteria were screened with selective media and tested for antibiotic susceptibility. Samples collected in three different seasons harbored distinctive bacterial communities. The predominant genera associated with green bottles flies were Staphylococcus in spring, Ignatzschineria in summer, and Vagococcus, Dysgonomonas, and an unclassified Acetobacteraceae in autumn. An upward trend in bacterial community diversity was observed from spring to autumn. Changes in climatic conditions could be the cause of these seasonal variations in fly-associated bacterial communities. The species of isolated antibiotic-resistant bacteria also differed across seasons, but it was difficult to correlate seasonal changes in antibiotic-resistant bacteria with changes in whole communities. A number of multiple-antibiotic-resistant bacteria were isolated, and some of these strains were closely affiliated with pathogens such as Enterococcus faecalis and Enterococcus faecium, which could cause serious threats to public health. Overall, this research provided us with information about the composition and seasonality of bacterial communities in green bottle flies, and highlighted the risks of fly-mediated dissemination of antibiotic-resistant pathogens.

  4. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains.

    PubMed

    Whitman, William B; Woyke, Tanja; Klenk, Hans-Peter; Zhou, Yuguang; Lilburn, Timothy G; Beck, Brian J; De Vos, Paul; Vandamme, Peter; Eisen, Jonathan A; Garrity, George; Hugenholtz, Philip; Kyrpides, Nikos C

    2015-01-01

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Herein, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while they are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity.

  5. Quantification, Distribution, and Possible Source of Bacterial Biofilm in Mouse Automated Watering Systems

    PubMed Central

    Meier, Thomas R; Maute, Carrie J; Cadillac, Joan M; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly MS; Deininger, Rolf A; Dysko, Robert C

    2008-01-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial biofilm development within sections of the manifold. By using standard methods of bacterial identification, the aerobic oral flora of 8 strains and stocks of mice were determined on their arrival at our animal facility. Ten rack manifolds were sampled before, during, and after sanitation and monthly for 6 mo. Manifolds were evaluated for aerobic bacterial growth by culture on R2A and trypticase soy agar, in addition to bacterial ATP quantification by bioluminescence. In addition, 6 racks were sampled at 32 accessible sites for evaluation of biofilm distribution within the watering manifold. The identified aerobic bacteria in the oral flora were inconsistent with the bacteria from the manifold, suggesting that the mice do not contribute to the biofilm bacteria. Bacterial growth in manifolds increased while they were in service, with exponential growth of the biofilm from months 3 to 6 and a significant decrease after sanitization. Bacterial biofilm distribution was not significantly different across location quartiles of the rack manifold, but bacterial levels differed between the shelf pipe and connecting elbow pipes. PMID:18351724

  6. [Algicidal activity against red-tide algaes by marine bacterial strain N3 isolated from a HABs area, southern China].

    PubMed

    Shi, Rong-jun; Huang, Hong-hui; Qi, Zhan-hui; Hu, Wei-an; Tian, Zi-yang; Dai, Ming

    2013-05-01

    A marine algicidal bacterium N3 was isolated from a HABs area in Mirs Bay, a subtropical bay, in southern China. Algicidal activity and algicidal mode against Phaeodactylum tricornutum, Scrippsiella trochoidea, Prorocentrum micans and Skeletonema costatum were observed by the liquid infection method. The results showed that there were no algicidal activities against P. tricornutum and S. costatum. However, when the bacterial volume fractions were 2% and 10% , S. trochoidea and P. micans could be killed, respectively. S. trochoidea cells which were exposed to strain N3 became irregular in shape and the cellular components lost their integrity and were decomposed. While, the P. micans cells became inflated and the cellular components aggregated, followed by cell lysis. Strain N3 killed S. trochoidea and P. micans directly, and the algicidal activities of the bacterial strain N3 was concentration-dependent. To S. trochoidea, 2% (V/V) of bacteria in algae showed the strongest algicidal activity, all of the S. trochoidea cells were killed within 120 h. But the growth rates of cells, in the 1% and 0. 1% treatment groups, were only slightly lower than that in the control group. In all treatment groups, the densities of strain N3 were in declining trends. While, to P. micans, 10% and 5% of bacteria in algae showed strong algicidal activities, 78% and 70% of the S. trochoidea were killed within 120 h, respectively. However, the number of S. trochoidea after exposure to 1% of bacterial cultures still increased up to 5 incubation days. And in the three treatment groups, the densities of strain N3 experienced a decrease process. The isolated strain N3 was identified as Bacillus sp. by morphological observation, physiological and biochemical characterization, and homology comparisons based on 16S rRNA sequences. PMID:23914549

  7. [Algicidal activity against red-tide algaes by marine bacterial strain N3 isolated from a HABs area, southern China].

    PubMed

    Shi, Rong-jun; Huang, Hong-hui; Qi, Zhan-hui; Hu, Wei-an; Tian, Zi-yang; Dai, Ming

    2013-05-01

    A marine algicidal bacterium N3 was isolated from a HABs area in Mirs Bay, a subtropical bay, in southern China. Algicidal activity and algicidal mode against Phaeodactylum tricornutum, Scrippsiella trochoidea, Prorocentrum micans and Skeletonema costatum were observed by the liquid infection method. The results showed that there were no algicidal activities against P. tricornutum and S. costatum. However, when the bacterial volume fractions were 2% and 10% , S. trochoidea and P. micans could be killed, respectively. S. trochoidea cells which were exposed to strain N3 became irregular in shape and the cellular components lost their integrity and were decomposed. While, the P. micans cells became inflated and the cellular components aggregated, followed by cell lysis. Strain N3 killed S. trochoidea and P. micans directly, and the algicidal activities of the bacterial strain N3 was concentration-dependent. To S. trochoidea, 2% (V/V) of bacteria in algae showed the strongest algicidal activity, all of the S. trochoidea cells were killed within 120 h. But the growth rates of cells, in the 1% and 0. 1% treatment groups, were only slightly lower than that in the control group. In all treatment groups, the densities of strain N3 were in declining trends. While, to P. micans, 10% and 5% of bacteria in algae showed strong algicidal activities, 78% and 70% of the S. trochoidea were killed within 120 h, respectively. However, the number of S. trochoidea after exposure to 1% of bacterial cultures still increased up to 5 incubation days. And in the three treatment groups, the densities of strain N3 experienced a decrease process. The isolated strain N3 was identified as Bacillus sp. by morphological observation, physiological and biochemical characterization, and homology comparisons based on 16S rRNA sequences.

  8. Draft Genome Sequence of Criibacterium bergeronii gen. nov., sp. nov., Strain CCRI-22567T, Isolated from a Vaginal Sample from a Woman with Bacterial Vaginosis.

    PubMed

    Maheux, Andrée F; Bérubé, Ève; Boudreau, Dominique K; Raymond, Frédéric; Corbeil, Jacques; Roy, Paul H; Boissinot, Maurice; Omar, Rabeea F

    2016-01-01

    Criibacterium bergeronii gen. nov., sp. nov., CCRI-22567 is the type strain of the new genus Criibacterium The strain was isolated from a woman with bacterial vaginosis. The genome assembly comprised 2,384,460 bp, with 34.4% G+C content. This is the first genome announcement of a strain belonging to the genus Criibacterium. PMID:27587833

  9. Draft Genome Sequence of Criibacterium bergeronii gen. nov., sp. nov., Strain CCRI-22567T, Isolated from a Vaginal Sample from a Woman with Bacterial Vaginosis

    PubMed Central

    Maheux, Andrée F.; Bérubé, Ève; Boudreau, Dominique K.; Raymond, Frédéric; Corbeil, Jacques; Roy, Paul H.

    2016-01-01

    Criibacterium bergeronii gen. nov., sp. nov., CCRI-22567 is the type strain of the new genus Criibacterium. The strain was isolated from a woman with bacterial vaginosis. The genome assembly comprised 2,384,460 bp, with 34.4% G+C content. This is the first genome announcement of a strain belonging to the genus Criibacterium. PMID:27587833

  10. Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase.

    PubMed

    Smeulders, Marjan J; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R M; Hermans, John; Jetten, Mike S M; Op den Camp, Huub J M

    2013-09-01

    Carbon disulfide (CS(2)) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS(2) is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO(2)) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS(2)-polluted airstreams. We report on the mechanism of bacterial CS(2) conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS(2) hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS(2) hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS(2) hydrolases within the β-CA family. Unlike CAs, the CS(2) hydrolases did not hydrate CO(2) but converted CS(2) and COS with H(2)O to H(2)S and CO(2). The CS(2) hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS(2) hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS(2) hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS(2) hydrolases based on the structure of Acidianus strain A1-3 CS(2) hydrolase suggest that the A. thiooxidans strain G8 CS(2) hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation.

  11. Reactivity of sera from sheep immunised with individual outer membrane proteins of Bacteroides nodosus against heterologous bacterial strains.

    PubMed

    Emery, D L

    1984-09-01

    In order to identify those bacterial antigens which might be involved in immunity against ovine footrot, antisera were raised in sheep to 6 proteins in the outer membrane complex (OMC) of one strain of Bacteroides nodosus. Examination of the specificity of these antisera by Western blotting, crossed immunoelectrophoresis (XIEP) and IEP, revealed that they recognized the homologous OMC protein, but did not precipitate either undenatured pili or OMC, nor could they agglutinate the homologous bacteria. In contrast, anti-OMC and anti-pili sera could precipitate OMC or pili respectively, and agglutinate whole bacteria. Subsequent analysis of these sera against 5 strains of B. nodosus from different serogroups revealed that Proteins 1, 3 and 4 had a similar antigenic structure in all strains examined. The reactivity of anti-pili sera was restricted to homologous bacteria whereas anti-pilin sera (raised against denatured pili) also reacted with pilin from 2 of 3 heterologous strains. However, none of the patterns of staining or absorption of any of these sera matched the spectrum of cross-protection afforded by vaccination of sheep with B. nodosus strain 198 cells. The results question the role of individual OMC proteins in cross-protective immunity and may imply that interactions between several bacterial components are involved in the phenomenon. PMID:6208674

  12. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance.

    PubMed

    Bart, Rebecca; Cohn, Megan; Kassen, Andrew; McCallum, Emily J; Shybut, Mikel; Petriello, Annalise; Krasileva, Ksenia; Dahlbeck, Douglas; Medina, Cesar; Alicai, Titus; Kumar, Lava; Moreira, Leandro M; Rodrigues Neto, Júlio; Verdier, Valerie; Santana, María Angélica; Kositcharoenkul, Nuttima; Vanderschuren, Hervé; Gruissem, Wilhelm; Bernal, Adriana; Staskawicz, Brian J

    2012-07-10

    Cassava bacterial blight (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease of cassava, a staple food source for millions of people in developing countries. Here we present a widely applicable strategy for elucidating the virulence components of a pathogen population. We report Illumina-based draft genomes for 65 Xam strains and deduce the phylogenetic relatedness of Xam across the areas where cassava is grown. Using an extensive database of effector proteins from animal and plant pathogens, we identify the effector repertoire for each sequenced strain and use a comparative sequence analysis to deduce the least polymorphic of the conserved effectors. These highly conserved effectors have been maintained over 11 countries, three continents, and 70 y of evolution and as such represent ideal targets for developing resistance strategies. PMID:22699502

  13. Tetrahydroindazole inhibitors of bacterial type II topoisomerases. Part 2: SAR development and potency against multidrug-resistant strains.

    PubMed

    Wiener, John J M; Gomez, Laurent; Venkatesan, Hariharan; Santillán, Alejandro; Allison, Brett D; Schwarz, Kimberly L; Shinde, Shirin; Tang, Liu; Hack, Michael D; Morrow, Brian J; Motley, S Timothy; Goldschmidt, Raul M; Shaw, Karen Joy; Jones, Todd K; Grice, Cheryl A

    2007-05-15

    We have previously reported a novel class of tetrahydroindazoles that display potency against a variety of Gram-positive and Gram-negative bacteria, potentially via interaction with type II bacterial topoisomerases. Herein are reported SAR investigations of this new series. Several compounds possessing broad-spectrum potency were prepared. Further, these compounds exhibit activity against multidrug-resistant Gram-positive microorganisms equivalent to that against susceptible strains.

  14. Genome Sequence of a Copper-Resistant Strain of Acidovorax citrulli Causing Bacterial Fruit Blotch of Melons.

    PubMed

    Wang, Tielin; Yang, Yuwen; Zhao, Tingchang

    2015-04-23

    Bacterial fruit blotch (BFB) of melons is a seed-borne disease caused by Acidovorax citrulli. We determined the draft genome of A. citrulli Tw6. The strain was isolated from a watermelon collected from Beijing, China. The A. citrulli Tw6 genome contains 5,080,614 bp and has a G+C content of 68.7 mol%.

  15. Genome Sequence of a Copper-Resistant Strain of Acidovorax citrulli Causing Bacterial Fruit Blotch of Melons

    PubMed Central

    Wang, Tielin; Yang, Yuwen

    2015-01-01

    Bacterial fruit blotch (BFB) of melons is a seed-borne disease caused by Acidovorax citrulli. We determined the draft genome of A. citrulli Tw6. The strain was isolated from a watermelon collected from Beijing, China. The A. citrulli Tw6 genome contains 5,080,614 bp and has a G+C content of 68.7 mol%. PMID:25908132

  16. Genome Sequence of a Copper-Resistant Strain of Acidovorax citrulli Causing Bacterial Fruit Blotch of Melons.

    PubMed

    Wang, Tielin; Yang, Yuwen; Zhao, Tingchang

    2015-01-01

    Bacterial fruit blotch (BFB) of melons is a seed-borne disease caused by Acidovorax citrulli. We determined the draft genome of A. citrulli Tw6. The strain was isolated from a watermelon collected from Beijing, China. The A. citrulli Tw6 genome contains 5,080,614 bp and has a G+C content of 68.7 mol%. PMID:25908132

  17. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  18. Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3.

    PubMed

    Wang, Hui; Zheng, Xiao-Wei; Su, Jian-Qiang; Tian, Yun; Xiong, Xiao-Jing; Zheng, Tian-Ling

    2009-11-15

    Studies were carried out on the decolorization of the reactive dye Reactive Black 5 by a newly isolated bacterium, EC3. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparisons indicate that this strain belonged to the genus Enterobacter. The optimal conditions for the decolorizing activity of Enterobacter sp. EC3 were anaerobic conditions with glucose supplementation, at pH 7.0, and 37 degrees C. The maximum decolorization efficiency against Reactive Black 5 achieved in this study was 92.56%. Ultra-violet and visible (UV-vis) analyses before and after decolorization and the colorless bacterial biomass after decolorization suggested that decolorization was due to biodegradation, rather than inactive surface adsorption. The bacterial strain also showed a strong ability to decolorize various reactive textile dyes, including both azo and anthraquinone dyes. To our knowledge, it is the first time that a bacterial strain of Enterobacter sp. has been reported with decolorizing ability against both azo and anthraquinone dyes.

  19. Gluconacetobacter hansenii subsp. nov., a high-yield bacterial cellulose producing strain induced by high hydrostatic pressure.

    PubMed

    Ge, Han-Jing; Du, Shuang-Kui; Lin, De-Hui; Zhang, Jun-Na; Xiang, Jin-Le; Li, Zhi-Xi

    2011-12-01

    Strain M(438), deposited as CGMCC3917 and isolated from inoculums of bacterial cellulose (BC) producing strain screened in homemade vinegar and then induced by high hydrostatic pressure treatment (HHP), has strong ability to produce BC more than three times as that of its initial strain. It is the highest yield BC-producing strain ever reported. In this paper, M(438) was identidied as Gluconacetobacter hansenii subsp. nov. on the basis of the results obtained by examining it phylogenetically, phenotypically, and physiologically-biochemically. Furthermore, the genetic diversity of strain M(438) and its initial strain was examined by amplified fragment length polymorphism. The results indicated that strain M(438) was a deletion mutant induced by HHP, and the only deleted sequence showed 99% identity with 24,917-24,723 bp in the genome sequence of Ga. hansenii ATCC23769, and the complement gene sequence was at 24,699-25,019 bp with local tag GXY_15142, which codes small multidrug resistance (SMR) protein. It can be inferred that SMR might be related to inhibiting BC production to a certain extent.

  20. Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy

    PubMed Central

    Weigand, Michael R.; Pena-Gonzalez, Angela; Shirey, Timothy B.; Broeker, Robin G.; Ishaq, Maliha K.; Konstantinidis, Konstantinos T.

    2015-01-01

    Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification. PMID:26048939

  1. Hydrogen production from organic substrates in an aerobic nitrogen-fixing marine unicellular cyanobacterium Synechococcus sp. strain Miami BG 043511

    SciTech Connect

    Luo, Y.H.; Mitsui, A. )

    1994-11-20

    Synechococcus sp. strain Miami BG 043511 exhibits very high H[sub 2] photoproduction from water, but the H[sub 2] photo-production capability is lost rapidly with the age of the batch culture. The decrease of the capability coincides with the decrease of cellular glucose content. However, H[sub 2] photoproduction capability can be restored by the addition of organic substrates. Among 40 organic compounds tested, carbohydrates such as glucose, fructose, maltose, and sucrose were effective electron donors. Among organic acids tested, only pyruvate was an effective electron donor. Among alcohols tested, glycerol was a good electron donor, whereas ethanol was a poor but positive electron donor. These results demonstrate that this unicellular cyanobacterium exhibits a wide substrate specificity for H[sub 2] photoproduction but has a different substrate specificity compared to photosynthetic bacteria. The maximum rates of H[sub 2] photoproduction from a 6-day-old batch culture with 25 mmol of pyruvate, glucose, maltose, sucrose, fructose, and glycerol were 1.11, 0.62, 0.05, 0.47, 0.30, and 0.39 [mu]moles per mg cell dry weight per hour respectively. Therefore, this cyanobacterial strain may have a potential significance in removing organic materials from the wastewater and simultaneously transforming them to H[sub 2] gas, a pollution-free energy. The activity of nitrogenase, which catalyzes hydrogen production, completely disappeared when intracellular glucose was used up, but it could be restored by the addition of organic substrates such as glucose and pyruvate.

  2. Metagenomic characterization of 'Candidatus Defluviicoccus tetraformis strain TFO71', a tetrad-forming organism, predominant in an anaerobic-aerobic membrane bioreactor with deteriorated biological phosphorus removal.

    PubMed

    Nobu, Masaru K; Tamaki, Hideyuki; Kubota, Kengo; Liu, Wen-Tso

    2014-09-01

    In an acetate-fed anaerobic-aerobic membrane bioreactor with deteriorated enhanced biological phosphorus removal (EBPR), Defluviicoccus-related tetrad-forming organisms (DTFO) were observed to predominate in the microbial community. Using metagenomics, a partial genome of the predominant DTFO, 'Candidatus Defluviicoccus tetraformis strain TFO71', was successfully constructed and characterized. Examining the genome confirmed the presence of genes related to the synthesis and degradation of glycogen and polyhydroxyalkanoate (PHA), which function as energy and carbon storage compounds. TFO71 and 'Candidatus Accumulibacter phosphatis' (CAP) UW-1 and CAP UW-2, representative polyphosphate-accumulating organisms (PAO), have PHA metabolism-related genes with high homology, but TFO71 has unique genes for PHA synthesis, gene regulation and granule management. We further discovered genes encoding DTFO polyphosphate (polyP) synthesis, suggesting that TFO71 may synthesize polyP under untested conditions. However, TFO71 may not activate these genes under EBPR conditions because the retrieved genome does not contain all inorganic phosphate transporters that are characteristic of PAOs (CAP UW-1, CAP UW-2, Microlunatus phosphovorus NM-1 and Tetrasphaera species). As a first step in characterizing EBPR-associated DTFO metabolism, this study identifies important differences between DTFO and PAO that may contribute to EBPR community competition and deterioration.

  3. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  4. IDENTIFICATION OF A FLAVOBACTERIUM STRAIN VIRULENT AGAINT GIARDIA LAMBLIA CYSTS

    EPA Science Inventory

    We have isolated a bacterial strain capable of killing the cyst form of Giardia lamblia, from a Kentucky stream. This bacterium, designated Sun4, is a Gram negative, aerobic rod which produces a yellow pigment, but not of the flexirubin-type. Although true gliding motility has no...

  5. Influence of temperature, oxygen and bacterial strain identity on the association of Campylobacter jejuni with Acanthamoeba castellanii.

    PubMed

    Baré, Julie; Sabbe, Koen; Huws, Sharon; Vercauteren, Dries; Braeckmans, Kevin; van Gremberghe, Ineke; Favoreel, Herman; Houf, Kurt

    2010-11-01

    Campylobacteriosis is the most frequently reported foodborne disease in the industrialized world, mainly through consumption of contaminated chicken meat. To date, no information is available on the primary infection sources of poultry. In this study, the ability of five Campylobacter jejuni strains with different invasion potential towards Caco-2 cells to survive and replicate in the protozoan Acanthamoeba castellanii was tested under simulated in situ conditions (i.e. chicken broiler houses). Results indicate that environmental conditions play a crucial role in C. jejuni-A. castellanii interactions. Co-culture in general did not result in an increase of either bacteria or amoebae. However, co-culture with Acanthamoeba did result in a delayed decline and an increased long-term survival of Campylobacter. Bacterial strain-specific effects were observed, with higher survival rates for low-invasive strains. The presence of C. jejuni in general did not affect A. castellanii viability, except at 37 °C under microaerobic conditions, where the presence of the reference and low-invasive Campylobacter strains resulted in a significant decline in amoebal viability. Confocal laser scanning microscopy revealed that intra-amoebal campylobacters were not always colocated with acidic organelles, suggesting potential bacterial interference with digestive processes. As Acanthamoeba enhances the persistence of C. jejuni, the presence of the amoeba in broiler house environments may have important implications for the ecology and epidemiology of this food pathogen. PMID:20722733

  6. Protein Expression Profile of an Environmentally Important Bacterial Strain: the Chromate Response of Arthrobacter Species Strain FB24

    SciTech Connect

    Henne, Kristene L.; Turse, Joshua E.; Nakatsu, C. H.; Konopka, Allan

    2011-05-03

    The global proteomic response of Arthrobacter sp. strain FB24 to different levels of chromate stress was evaluated with both two-dimensional gel electrophoresis (2-DGE) and liquid chromatography coupled to tandem mass spectrometry (LC/LC-MS/MS) [Henne et al. 2009b]. Proteome coverage of 22% and 71% was obtained with 2-DGE and LC/LC-MS/MS, respectively. The strong response of strain FB24 to chromate suggests a condition of sulfur limitation, which could be driven by competition for the sulfate transporter by the structurally similar chromate ion. Additionally, the involvement of genes hypothesized to be directly involved in chromate resistance in strain FB24 was supported at the protein level.

  7. Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms.

    PubMed

    Fujii, Katsuhiko; Ikeda, Kana; Yoshida, Seo

    2012-09-01

    The ability of earthworms to decompose lignocellulose involves the assistance of microorganisms in their digestive system. While many studies have revealed a diverse microbiota in the earthworm gut, including aerobic and anaerobic microorganisms, it remains unclear which of these species contribute to lignocellulose digestion. In this study, aerobic microorganisms with cellulolytic activity isolated from the gut of two endogeic earthworms, Amynthas heteropoda (Megascolecidae) and Eisenia fetida (Lumbricidae) were isolated by solid culture of gut homogenates using filter paper as a carbon source. A total of 48 strains, including four bacterial and four fungal genera, were isolated from two earthworm species. Characterization of these strains using enzyme assays showed that the most representative ones had exocellulase and xylanase activities, while some had weak laccase activity. These findings suggest that earthworms digest lignocellulose by exploiting microbial exocellulase and xylanase besides their own endocellulase. Phylogenetic analysis showed that among the cellulolytic isolates in both earthworm species Burkholderia and Chaetomium were the dominant bacterial and fungal members.

  8. Antibiotic susceptibility of bacterial strains isolated from patients with community-acquired urinary tract infections in France. Multicentre Study Group.

    PubMed

    Goldstein, F W

    2000-02-01

    The aim of this study was to determine the distribution and antibiotic susceptibility patterns of bacterial strains isolated from adults with community-acquired urinary tract infections (UTI) in France. From December 1996 to March 1997, each of 15 private laboratories in France consecutively collected about 80 non-duplicate strains isolated from adult outpatients with UTI, including patients receiving care at home, and tested their susceptibility by the disk diffusion test. A total of 1160 strains were collected: 1031 gram-negative bacilli, including Escherichia coli (n = 865), Proteus mirabilis (n = 68) and Klebsiella spp. (n = 40), and 129 gram-positive cocci, including Staphylococcus aureus (n = 16), other staphylococci (n = 25), group B streptococci (n = 25) and enterococci (n = 63). In the case of 430 bacterial isolates, the patients had either been hospitalised in the last 6 months or received antibiotic treatment in the last 3 months. The antibiotic susceptibility rates for Escherichia coli were: amoxicillin (58.7%), amoxicillin-clavulanic acid (63.3%), ticarcillin (61.4%), cephalothin (66.8%) cefuroxime (77.6%), cefixime (83.6%), cefotaxime (99.8%), ceftazidime (99%), nalidixic acid (91.9%), norfloxacin (96.6%), ofloxacin (96.3%), ciprofloxacin (98.3%), cotrimoxazole (78.2%), fosfomycin (99.1%) and gentamicin (98.4%). Of the Enterobacteriaceae, five strains produced an extended-spectrum beta-lactamase. Methicillin resistance was detected in nine Staphylococcus aureus isolates. The most important findings were two extended-spectrum, beta-lactamase-producing and three methicillin-resistant Staphylococcus aureus strains isolated from patients who had not been hospitalised in the last 6 months or taken antibiotics in the last 3 months. The findings indicate that these strains can spread within the community; therefore, monitoring antibiotic susceptibility of bacteria isolated in the community appears to be mandatory.

  9. Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain.

    PubMed

    Vorbeck, C; Lenke, H; Fischer, P; Knackmuss, H J

    1994-02-01

    A bacterial strain, Mycobacterium sp. strain HL 4-NT-1, enriched with 4-nitrotoluene as its sole source of nitrogen, was able to metabolize 2,4,6-trinitrotoluene under aerobic conditions. The dark red-brown metabolite, which accumulated in the culture fluid, was identified as a hydride-Meisenheimer complex by comparison with an authentic synthetic sample.

  10. Endophytic Colonization of Potato (Solanum tuberosum L.) by a Novel Competent Bacterial Endophyte, Pseudomonas putida Strain P9, and Its Effect on Associated Bacterial Communities▿

    PubMed Central

    Andreote, Fernando Dini; de Araújo, Welington L.; de Azevedo, João L.; van Elsas, Jan Dirk; da Rocha, Ulisses Nunes; van Overbeek, Leonard S.

    2009-01-01

    Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities. PMID:19329656

  11. Appraising bacterial strains for rapid BOD sensing--an empirical test to identify bacterial strains capable of reliably predicting real effluent BODs.

    PubMed

    Webber, Judith B; Noonan, Mike; Pasco, Neil F; Hay, Joanne M

    2011-01-01

    The measured response of rapid biochemical oxygen demand (BOD) biosensors is often not identical to those measured using the conventional 5-day BOD assay. This paper highlights the efficacy of using both glucose-glutamic acid (GGA) and Organisation for Economic Cooperation and Development (OECD) BOD standards as a rapid screen for microorganisms most likely to reliably predict real effluent BODs when used in rapid BOD devices. Using these two synthetic BOD standards, a microorganism was identified that produced comparable BOD response profiles for two assays, the MICREDOX® assay and the conventional 5-day BOD(5) test. A factorial experimental design systematically evaluated the impact of four factors (microbial strain, growth media composition, media strength, and microbial growth phase) on the BOD response profiles using GGA and OECD synthetic standard substrates. An outlier was identified that showed an improved correlation between the MICREDOX® BOD (BOD(sens)) and BOD(5) assays for both the synthetic standards and for real wastewater samples. Microbial strain was the dominant factor influencing BOD(sens) values, with Arthrobacter globiformis single cultures clearly demonstrating superior rapid BOD(sens) response profiles for both synthetic and real waste samples. It was the only microorganism to approach the BOD(5) response for the OECD substrate (171 mg O(2)L(-1)), and also reported BOD values for real waste samples that were comparable to those produced by the BOD(5) test, including discriminating between filtered and unfiltered samples.

  12. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.).

    PubMed

    Kumari, Sarita; Vaishnav, Anukool; Jain, Shekhar; Varma, Ajit; Choudhary, Devendra Kumar

    2016-01-01

    The present study focused on the overproducing mutant of a plant growth promoting rhizobacterium (PGPR) Pseudomonas simiae strain AU (MTCC-12057) for significant drought tolerance in mung bean plants. Five mutants namely AU-M1, AU-M2, AU-M3, AU-M4 and AU-M5 were made after treatment of wild type strain with N-methyl-N-nitro-N-nitrosoguanidine. Mutant strain AU-M4 was recorded for enhanced ACC deaminase (ACC-D) activity, indole acetic acid (IAA) production and inorganic phosphate (Pi) solubilization compared to wild strain and other four mutant strains under drought condition. AU-M4 showed higher phosphate solubilization index (8.17) together with higher ACC-D activity (98 nmol/mg/h) and IAA concentration (69.35 µg/ml) compared with the wild type P. simiae strain AU ACC-D activity (79 nmol/mg/h) and IAA concentration (38.98 µg/ml) respectively. In this report, we investigated the effect of both wild and mutant type bacterial strain on mung bean plants under drought stress. Results showed that mutant AU-M4 and wild type strain AU inoculated plants exhibited superior tolerance against drought stress, as shown by their enhanced plant biomass (fresh weight), higher water content, higher proline accumulation and lower osmotic stress injury. Mutant AU-M4 and wild strain AU inoculated plants reduced the ethylene level by 59 and 45% respectively, compared to the control under stress condition. Furthermore, bacterial inoculated plants showed enhanced induced systemic drought tolerance by reducing stomata size and net photosynthesis resulting higher water content in mung bean plants that may help in survival of plants during drought condition. To mitigate the effects of drought stress, use of PGPR will be needed to ensure sufficient production of food from crop plants. Taking current leads available, concerted future research is needed in this area, particularly on field evaluation with application of potential microorganisms.

  13. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.).

    PubMed

    Kumari, Sarita; Vaishnav, Anukool; Jain, Shekhar; Varma, Ajit; Choudhary, Devendra Kumar

    2016-01-01

    The present study focused on the overproducing mutant of a plant growth promoting rhizobacterium (PGPR) Pseudomonas simiae strain AU (MTCC-12057) for significant drought tolerance in mung bean plants. Five mutants namely AU-M1, AU-M2, AU-M3, AU-M4 and AU-M5 were made after treatment of wild type strain with N-methyl-N-nitro-N-nitrosoguanidine. Mutant strain AU-M4 was recorded for enhanced ACC deaminase (ACC-D) activity, indole acetic acid (IAA) production and inorganic phosphate (Pi) solubilization compared to wild strain and other four mutant strains under drought condition. AU-M4 showed higher phosphate solubilization index (8.17) together with higher ACC-D activity (98 nmol/mg/h) and IAA concentration (69.35 µg/ml) compared with the wild type P. simiae strain AU ACC-D activity (79 nmol/mg/h) and IAA concentration (38.98 µg/ml) respectively. In this report, we investigated the effect of both wild and mutant type bacterial strain on mung bean plants under drought stress. Results showed that mutant AU-M4 and wild type strain AU inoculated plants exhibited superior tolerance against drought stress, as shown by their enhanced plant biomass (fresh weight), higher water content, higher proline accumulation and lower osmotic stress injury. Mutant AU-M4 and wild strain AU inoculated plants reduced the ethylene level by 59 and 45% respectively, compared to the control under stress condition. Furthermore, bacterial inoculated plants showed enhanced induced systemic drought tolerance by reducing stomata size and net photosynthesis resulting higher water content in mung bean plants that may help in survival of plants during drought condition. To mitigate the effects of drought stress, use of PGPR will be needed to ensure sufficient production of food from crop plants. Taking current leads available, concerted future research is needed in this area, particularly on field evaluation with application of potential microorganisms. PMID:26712619

  14. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites.

    PubMed

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-05-01

    Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has various applications in remediation and restoration of a range of building materials. In the present investigation, five ureolytic bacterial isolates capable of inducing calcium carbonate precipitation were isolated from calcareous soils on the basis of production of urease, carbonic anhydrase, extrapolymeric substances, and biofilm. Bacterial isolates were identified as Bacillus megaterium, B. cereus, B. thuringiensis, B. subtilis, and Lysinibacillus fusiformis based on 16S rRNA analysis. The calcium carbonate polymorphs produced by various bacterial isolates were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X ray diffraction, and Fourier transmission infra red spectroscopy. A strainspecific precipitation of calcium carbonate forms was observed from different bacterial isolates. Based on the type of polymorph precipitated, the technology of MICCP can be applied for remediation of various building materials.

  15. [Isolation and identification of a bacterial strain JS018 capable of degrading several kinds of organophosphate pesticides].

    PubMed

    Jiang, Yu-Ji; Deng, You-Jin; Liu, Xin-Rui; Xie, Bao-Gui; Hu, Fang-Ping

    2006-06-01

    Organophosphate pesticides are used widely all over the world and play an important role in plant pest control. However these pesticides are considered as pollutants and harmful to human health. To search for microorganisms that can degrade organophosphate pesticides with high efficiency, a bacterial strain, coded as JS018, was isolated and screened from the soil in the vicinity of Shanming Pesticides Factory, Shanming, Fujian. Laboratory tests showed that the bacterium could degrade several kinds of organophosphate pesticides, such as Parathion-methyl and phoxin. The strain's degrading rates on phoxin, Parathion-methyl, hostathion and dichlorvos in LB liquid fermentation medium for 36 h were 99%, 96%, 80.4% and 69.0% respectively. The bacterial colonies on LB plate appeared shiny and pale-pink in color. The bacteria were Gram-negative coccoids, 0.5 - 0.7 microm in diameter. They grew well at 30 - 38 degrees C and pH 7.0 - 9.0. The optimal temperature and pH for cell growth was 32 degrees C and pH 7.5 - 8.0, respectively. They did not grow in medium containing 6% or more NaCl. The antibiotic susceptibility tests showed that the strain was resistant to ampicillin, penicillin and lincomycin. It was sensitive to kanamycin, tetracycline and gentamicin. Laboratory tests also showed that the strain could ferment D-glucose, trehalose, melezitose and ethanol. It was negative in the production of indole and hydrogen sulfide. It could not liquefy gelatin, utilize citrate, nor ferment L-arabinose, sucrose, D-mannitol, D-xylose, fructose, D-galactose, maltose or lactose. The catalase, urease and nitrate reduction were positive. Based on its morphological, physiological and biochemical properties as well as the 16S rDNA sequence analysis result, the strain was tentatively identified as Roseomonas sp. PMID:16933622

  16. Comparative analysis of bacterial community and antibiotic-resistant strains in different developmental stages of the housefly (Musca domestica).

    PubMed

    Wei, Ting; Hu, Jun; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-02-01

    The housefly (Musca domestica) is an important host for a variety of bacteria, including some pathogenic and antibiotic-resistant strains. To further investigate the relationship between the housefly and the bacteria it harbors, it is necessary to understand the fate of microorganisms during the larval metamorphosis. The major bacterial communities in three developmental stages of the housefly (maggot, pupa, and adult fly) were investigated by a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S rRNA genes. The bacteria that were identified using DGGE analysis spanned phyla Proteobacteria, Firmicutes, and Bacteroidetes. Changes in the predominant genera were observed during the housefly development. Bacteroides, Koukoulia, and Schineria were detected in maggots, Neisseria in pupae, and Macrococcus, Lactococcus, and Kurthia in adult flies. Antibiotic-resistant bacteria were screened using a selective medium and tested for antibiotic susceptibility. Most resistant isolates from maggots and pupae were classified as Proteus spp., while those from adult flies were much more diverse and spanned 12 genera. Among 20 tested strains across the three stages, 18 were resistant to at least two antibiotics. Overall, we demonstrated that there are changes in the major bacterial communities and antibiotic-resistant strains as the housefly develops.

  17. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease.

    PubMed

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production.

  18. Cloning of a very virulent plus, 686 strain of Marek's disease virus as a bacterial artificial chromosome.

    PubMed

    Reddy, Sanjay M; Sun, Aijun; Khan, Owais A; Lee, Lucy F; Lupiani, Blanca

    2013-06-01

    Bacterial artificial chromosome (BAC) vectors were first developed to facilitate propagation and manipulation of large DNA fragments. This technology was later used to clone full-length genomes of large DNA viruses to study viral gene function. Marek's disease virus (MDV) is a highly oncogenic herpesvirus that causes rapid induction of T-cell lymphomas in chickens. Based on the virus's ability to cause disease in vaccinated chickens, MDV strains are classified into pathotypes, with the most virulent strains belonging to the very virulent plus (vv+) pathotype. Here we report the construction of BAC clones of 686 (686-BAC), a vv+ strain of MDV. Transfection of DNA isolated from two independent clones into duck embryo fibroblasts resulted in recovery of infectious virus. Pathogenesis studies showed that the BAC-derived 686 viruses were more virulent than Md5, a vv strain of MDV. With the use of a two-step red-mediated mutagenesis process, both copies of viral interleukin 8 (vIL-8) were deleted from the MDV genome, showing that 686-BACs were amenable to mutagenesis techniques. The generation of BAC clones from a vv+ strain of MDV is a significant step toward understanding molecular basis of MDV pathogenesis.

  19. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    PubMed

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  20. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    PubMed Central

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  1. Inhibitory activity of Salvadora persica extracts against oral bacterial strains associated with periodontitis: An in-vitro study

    PubMed Central

    Amir Alireza, Rasouli Ghahroudi; Afsaneh, Rezaei; Seied Hosein, Mohseni Salehifard; Siamak, Yaghoobee; Afshin, Khorsand; Zeinab, Kadkhoda; Mahvash, Moosavi Jazi; Amir Reza, Rokn

    2014-01-01

    Aims The use of natural plant extracts in pharmacology, medicine and dental hygiene has found a growing interest in modern scientific research. Salvadora persica is a natural tree whose fibrous branches have been approved by the World Health Organization for oral hygiene. Periodontitis is a highly prevalent adult gingival disease that leads to bone destruction and connective tissue attachment loss. The aim of this research was assessment the antimicrobial activities of methanolic extract of Salvadora persica (miswak) on isolated strains from the oral fluid. Methods In practical section, 50 female university students (21.4 ± 1 year) participated in the study. Based on examination by a periodontist, they were grouped into (Group I, n = 21) and (Group II, n = 29) i.e. with and without periodontitis respectively. Their un-stimulated saliva samples were obtained in sterile tubes. While three bacterial genera, Staphylococcus, Streptococcus and Lactobacillus were identified in all subjects, Enterococcus and Escherichia were only detected in Group I. Results A statistically significant difference in colonization levels between the two groups was observed. The effect of methanolic extract of S. persica against oral bacterial strains isolated from saliva was investigated using agar disc diffusion and microdilution methods. Although methanolic extract of S. persica was effective on growth inhibition of all strains, it was significantly more effective on Gram positive bacteria than Gram negative ones. Conclusions Effective substances present in S. persica extracts, exhibit a broad range of antibacterial activity and affect almost all bacterial species regardless of the Gram-staining nature. PMID:25737914

  2. Comparisons of internal behavior after exposure to Flavobacterium psychrophilum between two ayu (Plecoglossus altivelis altivelis) strains showing different cumulative mortality to bacterial cold water disease.

    PubMed

    Kageyama, Tetsushi; Kuwada, Tomonori; Ohara, Kenichi; Nouno, Aya; Umino, Tetsuya; Furusawa, Shuichi

    2013-12-30

    Bacterial cold water disease (BCWD) in ayu (Plecoglossus altivelis altivelis) has a serious impact on aquaculture and fisheries. There is known to be a significant difference among ayu strains with regard to mortality caused by BCWD. In this study, the immune response of different ayu strains against Flavobacterium psychrophilum infection was observed. One strain was resistant to infection by F. psychrophilum, and the other was susceptible to infection by the same bacteria. The number of bacteria in the body was observed in each ayu strain, and the change in bacterial counts was similar. However, there was a significant difference in bacterial count in the spleen between the two strains on days 6, 9, 12 and 15 after exposure. To observe the immune response against F. psychrophilum, agglutination assay using serum was performed. An agglutination reaction in the resistant ayu strain was observed in 4 out of 6 ayu on day 6 after exposure, while no reactions in the susceptible ayu strain were observed in any sampled fish until day 12. However, some reactions in the susceptible ayu strain were observed in surviving ayu. These results indicate that there is a correlation between the presence of bacterial multiplication and agglutination reaction against F. psychrophilum.

  3. Isolation and Characterization of Rhamnolipid-Producing Bacterial Strains from a Biodiesel Facility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel strains of rhamnolipid-producing bacteria were isolated from soils at a biodiesel facility on the basis of their ability to grow on glycerol as a sole carbon source. Strains were identified as Acinetobacter calcoaceticus, Enterobacter asburiae, E. hormaecheii, Pantoea stewartii and Pseudomona...

  4. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  5. Screening of Bifidobacterium strains isolated from human faeces for antagonistic activities against potentially bacterial pathogens.

    PubMed

    Bevilacqua, Lorella; Ovidi, Monia; Di Mattia, Elena; Trovatelli, Luigi Daniele; Canganella, Francesco

    2003-01-01

    As probiotic bacteria, strains belonging to the genus Bifidobacterium colonise the gastro-intestinal tract of humans and animals at the time of birth, and they are found in young as well as in adult individuals in great numbers. Moreover, they can interact with the development of enteric infections by the production of antimicrobial metabolites. In this work 281 strains of bifidobacteria were anaerobically isolated from human faecal samples, supplied by volunteers of different ages (youngs, adults, elders), and preliminarly described by microscopic observation. All strains were screened by the fructose 6-phosphate phosphoketolase (F6PPK) test in order to confirm their classification within the genus Bifidobacterium. Selected strains were used to evaluate their antagonistic activities against Escherichia coli, Salmonella thyphimurium, Staphylococcus lentus, Enterococcus faecalis, Acinetobacter calcoaceticus, Sphingomonas paucimobilis, Listeria monocytogenes, Yersinia enterocolitica, Bacillus cereus, Clostridium sporogenes. Experiments were performed in vitro by different methods based on the observation of growth inhibition in Petri dishes. The strains that showed the highest inhibiting activities were compared by SDS-PAGE for total cell proteins, using type strains of human origin as references. Representative isolates were metabolically characterised by the BIOLOG system; a specific database was created with strains obtained from our collection and a statistical evaluation for metabolic patterns was carried out.

  6. Differential proteome analysis of a selected bacterial strain isolated from a high background radiation area in response to radium stress.

    PubMed

    Zakeri, Farideh; Sadeghizadeh, Majid; Kardan, Mohammad Reza; Shahbani Zahiri, Hossein; Ahmadian, Gholamreza; Masoumi, Fatemeh; Sharafi, Hakimeh; Rigi, Garshasb; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2012-08-01

    The present study describes the response of a bacterial strain, isolated from a hot spring in an area with the highest levels of natural radiation, under radium ((226)Ra) stress. The bacterium has been characterized as a novel and efficient radium biosorbent and identified as a variant of Serratia marcescens by biochemical tests and molecular recognition. In order to gain insights into key cellular events that allow this strain to survive and undergo (226)Ra adaptation and biosorption, the strain was tested under two experimental conditions of 1000 and 6000 Bq (226)Ra stress. A proteomic approach involving two-dimensional polyacrylamide gel electrophoresis and mass spectrometry was used to identify the differentially expressed proteins under (226)Ra stress. Functional assessment of identified proteins with significantly altered expression levels revealed several mechanisms thought to be involved in (226)Ra adaptation and conferring resistant phenotype to the isolate, including general stress adaptation, anti-oxidative stress, protein and nucleic acid synthesis, energy metabolism, efflux and transport proteins. It suggests that this strain through evolution is particularly well adapted to the high background radiation environment and could represent an alternative source to remove (226)Ra from such areas as well as industrial radionuclide polluted wastewaters.

  7. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability.

    PubMed

    Yassour, Moran; Vatanen, Tommi; Siljander, Heli; Hämäläinen, Anu-Maaria; Härkönen, Taina; Ryhänen, Samppa J; Franzosa, Eric A; Vlamakis, Hera; Huttenhower, Curtis; Gevers, Dirk; Lander, Eric S; Knip, Mikael; Xavier, Ramnik J

    2016-06-15

    The gut microbial community is dynamic during the first 3 years of life, before stabilizing to an adult-like state. However, little is known about the impact of environmental factors on the developing human gut microbiome. We report a longitudinal study of the gut microbiome based on DNA sequence analysis of monthly stool samples and clinical information from 39 children, about half of whom received multiple courses of antibiotics during the first 3 years of life. Whereas the gut microbiome of most children born by vaginal delivery was dominated by Bacteroides species, the four children born by cesarean section and about 20% of vaginally born children lacked Bacteroides in the first 6 to 18 months of life. Longitudinal sampling, coupled with whole-genome shotgun sequencing, allowed detection of strain-level variation as well as the abundance of antibiotic resistance genes. The microbiota of antibiotic-treated children was less diverse in terms of both bacterial species and strains, with some species often dominated by single strains. In addition, we observed short-term composition changes between consecutive samples from children treated with antibiotics. Antibiotic resistance genes carried on microbial chromosomes showed a peak in abundance after antibiotic treatment followed by a sharp decline, whereas some genes carried on mobile elements persisted longer after antibiotic therapy ended. Our results highlight the value of high-density longitudinal sampling studies with high-resolution strain profiling for studying the establishment and response to perturbation of the infant gut microbiome.

  8. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability.

    PubMed

    Yassour, Moran; Vatanen, Tommi; Siljander, Heli; Hämäläinen, Anu-Maaria; Härkönen, Taina; Ryhänen, Samppa J; Franzosa, Eric A; Vlamakis, Hera; Huttenhower, Curtis; Gevers, Dirk; Lander, Eric S; Knip, Mikael; Xavier, Ramnik J

    2016-06-15

    The gut microbial community is dynamic during the first 3 years of life, before stabilizing to an adult-like state. However, little is known about the impact of environmental factors on the developing human gut microbiome. We report a longitudinal study of the gut microbiome based on DNA sequence analysis of monthly stool samples and clinical information from 39 children, about half of whom received multiple courses of antibiotics during the first 3 years of life. Whereas the gut microbiome of most children born by vaginal delivery was dominated by Bacteroides species, the four children born by cesarean section and about 20% of vaginally born children lacked Bacteroides in the first 6 to 18 months of life. Longitudinal sampling, coupled with whole-genome shotgun sequencing, allowed detection of strain-level variation as well as the abundance of antibiotic resistance genes. The microbiota of antibiotic-treated children was less diverse in terms of both bacterial species and strains, with some species often dominated by single strains. In addition, we observed short-term composition changes between consecutive samples from children treated with antibiotics. Antibiotic resistance genes carried on microbial chromosomes showed a peak in abundance after antibiotic treatment followed by a sharp decline, whereas some genes carried on mobile elements persisted longer after antibiotic therapy ended. Our results highlight the value of high-density longitudinal sampling studies with high-resolution strain profiling for studying the establishment and response to perturbation of the infant gut microbiome. PMID:27306663

  9. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome

    PubMed Central

    van Opijnen, Tim; Bento, José

    2016-01-01

    The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic’s mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable. PMID:27607357

  10. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    PubMed

    van Opijnen, Tim; Dedrick, Sandra; Bento, José

    2016-09-01

    The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable. PMID:27607357

  11. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  12. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria. PMID:26566932

  13. Molecular characterization of Xanthomonas strains responsible for bacterial leaf spot of tomato in Ethiopia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis, a diverse group of Xanthomonas...

  14. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain.

    PubMed

    Cruz, Andrea Paola Zuluaga; Ferreira, Virginia; Pianzzola, María Julia; Siri, María Inés; Coll, Núria S; Valls, Marc

    2014-03-01

    Several breeding programs are under way to introduce resistance to bacterial wilt caused by Ralstonia solanacearum in solanaceous crops. The lack of screening methods allowing easy measurement of pathogen colonization and the inability to detect latent (i.e., symptomless) infections are major limitations when evaluating resistance to this disease in plant germplasm. We describe a new method to study the interaction between R. solanacearum and potato germplasm that overcomes these restrictions. The R. solanacearum UY031 was genetically modified to constitutively generate light from a synthetic luxCDABE operon stably inserted in its chromosome. Colonization of this reporter strain on different potato accessions was followed using life imaging. Bacterial detection in planta by this nondisruptive system correlated with the development of wilting symptoms. In addition, we demonstrated that quantitative detection of the recombinant strain using a luminometer can identify latent infections on symptomless potato plants. We have developed a novel, unsophisticated, and accurate method for high-throughput evaluation of pathogen colonization in plant populations. We applied this method to compare the behavior of potato accessions with contrasting resistance to R. solanacearum. This new system will be especially useful to detect latency in symptomless parental lines before their inclusion in long-term breeding programs for disease resistance.

  15. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil.

    PubMed

    Coppotelli, B M; Ibarrolaza, A; Del Panno, M T; Morelli, I S

    2008-02-01

    The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.

  16. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-04-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  17. Genome Sequence of Acidovorax citrulli Group 1 Strain pslb65 Causing Bacterial Fruit Blotch of Melons.

    PubMed

    Wang, Tielin; Sun, Baixin; Yang, Yuwen; Zhao, Tingchang

    2015-04-23

    Acidovorax citrulli is typed into two groups, mainly based on the host. We determined the draft genome of A. citrulli group 1 strain pslb65. The strain was isolated from melon collected from Xinjiang province, China. The A. citrulli pslb65 genome contains 4,903,443 bp and has a G+C content of 68.8 mol%.

  18. Genome Sequence of Acidovorax citrulli Group 1 Strain pslb65 Causing Bacterial Fruit Blotch of Melons

    PubMed Central

    Wang, Tielin; Sun, Baixin; Yang, Yuwen

    2015-01-01

    Acidovorax citrulli is typed into two groups, mainly based on the host. We determined the draft genome of A. citrulli group 1 strain pslb65. The strain was isolated from melon collected from Xinjiang province, China. The A. citrulli pslb65 genome contains 4,903,443 bp and has a G+C content of 68.8 mol%. PMID:25908136

  19. Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant.

    PubMed

    Pakuła, A; Bieszkiewicz, E; Boszczyk-Maleszak, H; Mycielski, R

    1999-01-01

    The ability of four strains of bacteria derived from a biological petroleum-refining wastewater purification plant to carry out the biodegradation of phenol was studied. Two of the strains belonging to the genus Pseudomonas were found to be characterised by high effectiveness of the removal of phenol which was used as sole carbon and energy source (the strains were designated P1 and P2). In turn the effect of inoculum size, initial concentration of substrate (500 and 1,000 mg phenol/L) and temperature (10, 20 and 30 degrees C) on the rate of phenol degradation by strains P1, P2 and mixture of both was investigated. It was found that strain P1 which was identified as Pseudomonas fluorescens degraded phenol better than strain P2--Pseudomonas cepacia. The rate of phenol biodegradation was significantly affected by size of inoculum and temperature of incubation. Phenol was removed the fastest with the highest inoculum used. The optimal temperature was about 20 degrees C. At 10 and 30 degrees C the process of biodegradation was visibly inhibited. The rate of phenol utilisation was also found to decrease with increased concentration of substrate.

  20. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species

    PubMed Central

    Bisch, Gaëlle; Ogier, Jean-Claude; Médigue, Claudine; Rouy, Zoé; Vincent, Stéphanie; Tailliez, Patrick; Givaudan, Alain; Gaudriault, Sophie

    2016-01-01

    Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Within Xenorhabdus bovienii species, the X. bovienii CS03 strain (Xb CS03) is nonvirulent when directly injected into lepidopteran insects, and displays a low virulence when associated with its Steinernema symbiont. The genome of Xb CS03 was sequenced and compared with the genome of a virulent strain, X. bovienii SS-2004 (Xb SS-2004). The genome size and content widely differed between the two strains. Indeed, Xb CS03 had a large genome containing several specific loci involved in the inhibition of competitors, including a few NRPS-PKS loci (nonribosomal peptide synthetases and polyketide synthases) producing antimicrobial molecules. Consistently, Xb CS03 had a greater antimicrobial activity than Xb SS-2004. The Xb CS03 strain contained more pseudogenes than Xb SS-2004. Decay of genes involved in the host invasion and exploitation (toxins, invasins, or extracellular enzymes) was particularly important in Xb CS03. This may provide an explanation for the nonvirulence of the strain when injected into an insect host. We suggest that Xb CS03 and Xb SS-2004 followed divergent evolutionary scenarios to cope with their peculiar life cycle. The fitness strategy of Xb CS03 would involve competitor inhibition, whereas Xb SS-2004 would quickly and efficiently kill the insect host. Hence, Xenorhabdus strains would have widely divergent host exploitation strategies, which impact their genome structure. PMID:26769959

  1. Impact on bacterial community in midguts of the Asian corn borer larvae by transgenic Trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain.

    PubMed

    Li, Yingying; Fu, Kehe; Gao, Shigang; Wu, Qiong; Fan, Lili; Li, Yaqian; Chen, Jie

    2013-01-01

    This paper is the first report of the impact on the bacterial community in the midgut of the Asian corn borer (Ostrinia furnacalis) by the chitinase from the transgenic Trichoderma strain. In this study, we detected a change of the bacterial community in the midgut of the fourth instar larvae by using a culture-independent method. Results suggested that Proteobacteria and Firmicutes were the most highly represented phyla, being present in all the midgut bacterial communities. The observed species richness was simple, ranging from four to five of all the 16S rRNA clone libraries. When using Trichoderma fermentation liquids as additives, the percentages of the dominant flora in the total bacterial community in larval midgut changed significantly. The community of the genus Ochrobactrum in the midgut decreased significantly when the larvae were fed with the fermentation liquids of the transgenic Trichoderma strain Mc4. However, the Enterococcus community increased and then occupied the vacated niche of the Ochrobactrum members. Furthermore, the Shannon-Wiener (H) and the Simpson (1-D) indexes of the larval midgut bacterial library treated by feeding fermentation liquids of the transgenic Trichoderma strain Mc4 was the lowest compared with the culture medium, fermentation liquids of the wild type strain T30, and the sterile artificial diet. The Enterococcus sp. strain was isolated and characterized from the healthy larvae midgut of the Asian corn borer. An infection study of the Asian corn borer larvae using Enterococcus sp. ACB-1 revealed that a correlation existed between the increased Enterococcus community in the larval midgut and larval mortality. These results demonstrated that the transgenic Trichoderma strain could affect the composition of the midgut bacterial community. The change of the midgut bacterial community might be viewed as one of the factors resulting in the increased mortality of the Asian corn borer larvae.

  2. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep.

    PubMed

    Newbold, C J; Wallace, R J; Chen, X B; McIntosh, F M

    1995-06-01

    A ruminal simulation device (Rusitec) was used to compare the effects of Saccharomyces cerevisiae strains NCYC 240, NCYC 694, NCYC 1026, NCYC 1088, and Yea-Sacc (a commercial product containing S. cerevisiae) on ruminal fermentation. S. cerevisiae NCYC 240, NCYC 1088, NCYC 1026, and NCYC 694 were grown on malt extract at 30 degrees C in aerated fed-batch culture and harvested along with spent growth medium by freeze-drying. Each vessel received daily 20 g of a basal diet consisting of hay, barley, molasses, fishmeal, and a minerals/vitamins mixture at 500, 299.5, 100, 91, and 9.5 g/kg of DM, respectively. Yeast preparations (500 mg/d) were added along with the feed. S. cerevisiae NCYC 240, NCYC 1026, and Yea-Sacc stimulated total and cellulolytic bacterial numbers, whereas S. cerevisiae NCYC 694 and NCYC 1088 had no effect on the numbers of bacteria. The effects of S. cerevisiae NCYC 240, NCYC 1026, and Yea-Sacc on ruminal fermentation were further investigated in vivo using ruminally cannulated sheep fed 1.5 kg/d of the diet used in Rusitec, supplemented with 2 g/d of yeast culture. All treatments tended to stimulate total and cellulolytic bacterial numbers. However, the stimulation was only statistically significant for S. cerevisiae NCYC 1026 with total bacterial numbers and S. cerevisiae NCYC 240 with cellulolytic bacteria (P < .05). Increased bacterial numbers were associated with an increase in the rate of straw degradation in the rumen and a nonsignificant (P > .05) increase in the excretion of purine derivatives in the urine, measured as an index of microbial nitrogen leaving the rumen.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7673076

  3. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep.

    PubMed

    Newbold, C J; Wallace, R J; Chen, X B; McIntosh, F M

    1995-06-01

    A ruminal simulation device (Rusitec) was used to compare the effects of Saccharomyces cerevisiae strains NCYC 240, NCYC 694, NCYC 1026, NCYC 1088, and Yea-Sacc (a commercial product containing S. cerevisiae) on ruminal fermentation. S. cerevisiae NCYC 240, NCYC 1088, NCYC 1026, and NCYC 694 were grown on malt extract at 30 degrees C in aerated fed-batch culture and harvested along with spent growth medium by freeze-drying. Each vessel received daily 20 g of a basal diet consisting of hay, barley, molasses, fishmeal, and a minerals/vitamins mixture at 500, 299.5, 100, 91, and 9.5 g/kg of DM, respectively. Yeast preparations (500 mg/d) were added along with the feed. S. cerevisiae NCYC 240, NCYC 1026, and Yea-Sacc stimulated total and cellulolytic bacterial numbers, whereas S. cerevisiae NCYC 694 and NCYC 1088 had no effect on the numbers of bacteria. The effects of S. cerevisiae NCYC 240, NCYC 1026, and Yea-Sacc on ruminal fermentation were further investigated in vivo using ruminally cannulated sheep fed 1.5 kg/d of the diet used in Rusitec, supplemented with 2 g/d of yeast culture. All treatments tended to stimulate total and cellulolytic bacterial numbers. However, the stimulation was only statistically significant for S. cerevisiae NCYC 1026 with total bacterial numbers and S. cerevisiae NCYC 240 with cellulolytic bacteria (P < .05). Increased bacterial numbers were associated with an increase in the rate of straw degradation in the rumen and a nonsignificant (P > .05) increase in the excretion of purine derivatives in the urine, measured as an index of microbial nitrogen leaving the rumen.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Competitive Ability and Survival in Soil of Pseudomonas Strain 679-2, a Dominant, Nonobligate Bacterial Predator of Bacteria

    PubMed Central

    Casida, L. E.

    1992-01-01

    A copper-resistant, nonobligate, bacterial predator of bacteria was isolated from soil. It was a Pseudomonas species, designated strain 679-2. It attacked most other nonobligate bacterial predators and hence could control their predatory and other activities in nature. It also inhibited various fungi. It attached to prey cells and produced a toxic, copper-related, growth initiation factor like that produced by Cupriavidus necator. In addition, it produced a second, novel compound that was both antibacterial and antifungal. Strain 679-2 appeared to have only a very limited natural occurrence. It was found only in the soil from one small area in one field. It was absent on the leaves of the plant species that were examined. Regardless of its rarity, however, it was highly competitive in soil. An inoculum consisting of only a few cells added to soil multiplied rapidly to become a major component of the soil microflora within 24 h. A small amount of glutamic acid could be added along with the cells to stimulate production of the toxic compounds noted above, but this was not necessary. After this multiplication, or when large numbers of cells were added to soil, the numbers decreased only slowly during the next several months. Cell survival also was good on plant leaves. The survival in soil and on plant leaves occurred in both laboratory and field experiments. Other than desiccation, the natural mechanism for controlling the numbers or activities of strain 679-2 in soil is not known. The various characteristics of this bacterium, as noted above, are of particular interest because they indicate a possible use of the cells or inhibitor compounds for controlling organisms in soil or on plant surfaces. PMID:16348631

  5. Competitive ability and survival in soil of Pseudomonas strain 679-2, a dominant, nonobligate bacterial predator of bacteria

    SciTech Connect

    Casida, L.E. )

    1992-01-01

    A copper-resistant, nonobligate, bacterial predator of bacteria was isolated from soil. It was a Pseudomonas species, designated strain 679-2. It attacked most other nonobligate bacterial predators and hence could control their predatory and other activities in nature. It also inhibited various fungi. It attached to prey cells and produced a toxic, copper-related, growth initiation factor like that produced by Cupriavidus necator. In addition, it produced a second, novel compound that was both antibacterial and antifungal. Strain 679-2 appeared to have only a very limited natural occurrence. It was found only in the soil from one small area in one field. It was absent on the leaves of the plant species that were examined. An inoculum consisting of only a few cells added to soil multiplied rapidly to become a major component of the soil microflora within 24 h. A small amount of glutamic acid could be added along with the cells to stimulate production of the toxic compounds noted above, but this was not necessary. After this multiplication, or when large numbers of cells were added to soil, the numbers decreased only slowly during the next several months. Cell survival also was good on plant leaves. The survival in soil and on plant leaves occurred in both laboratory and field experiments. Other than desiccation, the natural mechanism for controlling the numbers or activities of strain 679-2 in soil is not known. The various characteristics of this bacterium, as noted above, are of particular interest because they indicate a possible use of the cells or inhibitor compounds for controlling organisms in soil or on plant surfaces.

  6. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains.

    PubMed

    Xiao, Wendan; Wang, Huan; Li, Tingqiang; Zhu, Zhiqiang; Zhang, Jie; He, Zhenli; Yang, Xiaoe

    2013-01-01

    The objective of this study was to develop a bioremediation strategy for cadmium (Cd) and carbendazim co-contaminated soil using a hyperaccumulator plant (Sedum alfredii) combined with carbendazim-degrading bacterial strains (Bacillus subtilis, Paracoccus sp., Flavobacterium and Pseudomonas sp.). A pot experiment was conducted under greenhouse conditions for 180 days with S. alfredii and/or carbendazim-degrading strains grown in soil artificially polluted with two levels of contaminants (low level, 1 mg kg(-1) Cd and 21 mg kg(-1) carbendazim; high level, 6 mg kg(-1) Cd and 117 mg kg(-1) carbendazim). Cd removal efficiencies were 32.3-35.1 % and 7.8-8.2 % for the low and high contaminant level, respectively. Inoculation with carbendazim-degrading bacterial strains significantly (P < 0.05) increased Cd removal efficiencies at the low level. The carbendazim removal efficiencies increased by 32.1-42.5 % by the association of S. alfredii with carbendazim-degrading bacterial strains, as compared to control, regardless of contaminant level. Cultivation with S. alfredii and inoculation of carbendazim-degrading bacterial strains increased soil microbial biomass, dehydrogenase activities and microbial diversities by 46.2-121.3 %, 64.2-143.4 %, and 2.4-24.7 %, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that S. alfredii stimulated the activities of Flavobacteria and Bradyrhizobiaceae. The association of S. alfredii with carbendazim-degrading bacterial strains enhanced the degradation of carbendazim by changing microbial activity and community structure in the soil. The results demonstrated that association of S. alfredii with carbendazim-degrading bacterial strains is promising for remediation of Cd and carbendazim co-contaminated soil. PMID:22529002

  7. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms

    PubMed Central

    Gorby, Yuri A.; Yanina, Svetlana; McLean, Jeffrey S.; Rosso, Kevin M.; Moyles, Dianne; Dohnalkova, Alice; Beveridge, Terry J.; Chang, In Seop; Kim, Byung Hong; Kim, Kyung Shik; Culley, David E.; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad A.; Hill, Eric A.; Shi, Liang; Elias, Dwayne A.; Kennedy, David W.; Pinchuk, Grigoriy; Watanabe, Kazuya; Ishii, Shun’ichi; Logan, Bruce; Nealson, Kenneth H.; Fredrickson, Jim K.

    2006-01-01

    Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type II secretion pathway displayed nanowires that were poorly conductive. These mutants were also deficient in their ability to reduce hydrous ferric oxide and in their ability to generate current in a microbial fuel cell. Nanowires produced by the oxygenic phototrophic cyanobacterium Synechocystis PCC6803 and the thermophilic, fermentative bacterium Pelotomaculum thermopropionicum reveal that electrically conductive appendages are not exclusive to dissimilatory metal-reducing bacteria and may, in fact, represent a common bacterial strategy for efficient electron transfer and energy distribution. PMID:16849424

  8. Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains.

    PubMed

    Singh, Bina; Bhattacharya, Amit; Channashettar, Veeranna A; Jeyaseelan, C Paul; Gupta, Sachin; Sarma, Priyangshu M; Mandal, Ajoy K; Lal, Banwari

    2012-08-01

    Feasibility study carried out at the site prior to the full scale study showed that the introduced bacterial consortium effectively adapted to the local environment of the soil at bioremediation site. The soil samples were collected from the contaminated fields after treatment with bacterial consortium at different time intervals and analyzed by gas chromatography after extraction with hexane and toluene. At time zero (just before initiation of bioremediation), the concentration of total petroleum hydrocarbons in the soil (25-cm horizon) of plot A, B, C and D was 30.90 %, 18.80 %, 25.90 % and 29.90 % respectively, after 360 days of treatment with microbial consortia was reduced to 0.97 %, 1.0 %, 1.0 %, and 1.1 % respectively. Whereas, only 5 % degradation was observed in the control plot after 365 days (microbial consortium not applied).

  9. Data on true tRNA diversity among uncultured and bacterial strains

    PubMed Central

    Rekadwad, Bhagwan N.; Khobragade, Chandrahasya N.

    2016-01-01

    Complete genome sequences of two uncultured archaea (BX649197 and CR937008) and 10 uncultured bacteria (AC160099, FP245538-FP245540, FP312972, FP312974-75, FP312977, FP312985 and NZ_JPJG01000067) were used for creation of digital data of tRNA. tRNAscan-SE and ENDMEMO GC calculating tools were used for detection of tRNA, drawing their structures and calculation of GC percent. Seven archaeal and 48 bacterial tRNA were detected from above 12 sequences. Four archaeal and 30 bacterial tRNA showed cove score more than 20% are called as true tRNA. Three tRNA of uncultured bacteria (AC160099) has the presence of the variable loop. The tRNA of FP245540, FP245575, FP245577 and FP245585 has one variable loop each. The true tRNA of archaea were Alanine, Arginine and Cysteine-type tRNA, while the majority of bacteria true tRNA classified as Alanine, Glutamic acid, Isoleucine, Leucine, Methionine, Phenylalanine, Proline and Valine-type tRNA with cove score ranged from 70% to 97.15%. Archaeal and bacterial have GC content approximately 43% and 34.7–63.3% respectively. Archaeal tRNA has 60.4–64.2% GC content. Similarly, bacterial tRNA contributed 49.3–66.3% GC content to the total GC content. This generated data is useful for studies on diversity of tRNA among prokaryotes. PMID:27222849

  10. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.

    PubMed

    Mohite, Bhavna V; Salunke, Bipinchandra K; Patil, Satish V

    2013-03-01

    Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications.

  11. Single-culture aerobic granules with Acinetobacter calcoaceticus.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong

    2008-03-01

    Aerobic granules are cultivated by a single bacterial strain, Acinetobacter calcoaceticus, in a sequencing batch reactor (SBR). This strain presents as a good phenol reducer and an efficient auto coagulator in the presence of phenol, mediated by heat-sensitive adhesins proteins. Stable 2.3-mm granules were formed in the SBR following a 7-week cultivation. These granules exhibit excellent settling attributes and degrade phenol efficiently at concentrations of 250-2,000 mg l(-1). The corresponding phenol degradation rate reached 993.6 mg phenol g(-1) volatile suspended solids (VSS) day(-1) at 250 mg l(-1) phenol and 519.3 mg phenol g(-1) VSS day(-1) at 2,000 mg l(-1) phenol concentration. Meanwhile, free A. calcoaceticus cells were fully inhibited at phenol>1,500 mg l(-1). Denaturing gradient gel electrophoresis fingerprint profile demonstrated no genetic modification in the strain during aerobic granulation. The present single-strain granules showed long-term structural stability and performed high phenol degrading capacity and high phenol tolerance. The confocal laser scanning microscopic test revealed that live A. calcoaceticus cells principally distributed at 200-250 microm beneath the outer surface, with an extracellular polymeric substance layer covering them to defend phenol toxicity. Autoaggregation assay tests demonstrated the possibly significant role of secreted proteins on the formation of single-culture A. calcoaceticus granules.

  12. Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut

    PubMed Central

    Tidjiani Alou, M.; Rathored, J.; Khelaifia, S.; Michelle, C.; Brah, S.; Diallo, B.A.; Raoult, D.; Lagier, J.-C.

    2015-01-01

    Bacillus rubiinfantis sp. nov. strain mt2T is the type strain of B. rubiinfantis sp. nov., isolated from the fecal flora of a child with kwashiorkor in Niger. It is Gram-positive facultative anaerobic rod belonging to the Bacillaceae family. We describe the features of this organism alongside the complete genome sequence and annotation. The 4 311 083 bp long genome (one chromosome but no plasmid) contains 4028 protein-coding gene and 121 RNA genes including nine rRNA genes. PMID:27076912

  13. New lactic acid bacterial strains from traditional Mongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source.

    PubMed

    Kimoto-Nira, Hiromi; Yamasaki, Seishi; Sasaki, Keisuke; Moriya, Naoko; Takenaka, Akio; Suzuki, Chise

    2015-03-01

    Attachment of lactic acid bacteria to the mucosal surface of the gastrointestinal tract is a major property of probiotics. Here, we examined the ability of 21 lactic acid bacterial strains isolated from traditional fermented milk products in Mongolia to adhere to porcine gastric mucin in vitro. Higher attachment was observed with Lactobacillus delbrueckii subsp. bulgaricus strains 6-8 and 8-1 than with Lactobacillus rhamnosus GG (positive control). Lactococcus lactis subsp. cremoris strain 7-1 adhered to mucin as effectively as did strain GG. Heat inactivation decreased the adhesive ability of strains 6-8 and 8-1 but did not affect strain 7-1. The adhesion of strains 6-8, 7-1 and 8-1 was significantly inhibited when the cells were pretreated with periodate and trypsin, indicating that proteinaceous and carbohydrate-like cell surface compounds are involved in the adhesion of these strains. The adhesion of strain 7-1 was affected by the type of carbohydrate present in the growth medium, being higher with fructose than with lactose, galactose or xylose as the carbon source. The sugar content of 7-1 cells grown on various carbohydrates was negatively correlated with its adhesive ability. We provide new probiotic candidate strains and new information regarding carbohydrate preference that influences lactic acid bacterial adhesion to mucin.

  14. The Genomic Sequence of the Oral Pathobiont Strain NI1060 Reveals Unique Strategies for Bacterial Competition and Pathogenicity

    PubMed Central

    Jiao, Yizu; Hasegawa, Mizuho; Moon, Henry; Núñez, Gabriel; Inohara, Naohiro; Raes, Jeroen

    2016-01-01

    Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is likely to represent a novel species. In addition, we found putative virulence genes involved in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are potentially important for host adaption and for the induction of dysbiosis through bacterial competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an innate immune receptor, but is defective in two peptidoglycan recycling genes due to a frameshift mutation. The in-depth analysis of its genome thus provides critical insights for the development of NI1060 as a prime model system for infectious disease. PMID:27409077

  15. Control Efficacy of an Endophytic Bacillus amyloliquefaciens Strain BZ6-1 against Peanut Bacterial Wilt, Ralstonia solanacearum

    PubMed Central

    Liang, Guobin

    2014-01-01

    We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW) caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (108 cfu mL−1) culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW. PMID:24527448

  16. The Genomic Sequence of the Oral Pathobiont Strain NI1060 Reveals Unique Strategies for Bacterial Competition and Pathogenicity.

    PubMed

    Darzi, Youssef; Jiao, Yizu; Hasegawa, Mizuho; Moon, Henry; Núñez, Gabriel; Inohara, Naohiro; Raes, Jeroen

    2016-01-01

    Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is likely to represent a novel species. In addition, we found putative virulence genes involved in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are potentially important for host adaption and for the induction of dysbiosis through bacterial competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an innate immune receptor, but is defective in two peptidoglycan recycling genes due to a frameshift mutation. The in-depth analysis of its genome thus provides critical insights for the development of NI1060 as a prime model system for infectious disease. PMID:27409077

  17. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs. PMID:27350822

  18. Draft Genome Sequence of the Shellfish Bacterial Pathogen Vibrio sp. Strain B183.

    PubMed

    Schreier, Harold J; Schott, Eric J

    2014-09-18

    We report the draft genome sequence of Vibrio sp. strain B183, a Gram-negative marine bacterium isolated from shellfish that causes mortality in larval mariculture. The availability of this genome sequence will facilitate the study of its virulence mechanisms and add to our knowledge of Vibrio sp. diversity and evolution.

  19. [Processes of plant colonization by Methylobacterium strains and some bacterial properties ].

    PubMed

    Romanovskaia, V A; Stoliar, S M; Malashenko, Iu R; Dodatko, T N

    2001-01-01

    The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacterium are indespensible inhabitants of the plant phyllosphere. Using maize Zea mays as a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicum APR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicum APR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicum cells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicum or M. extorquens did exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas camprestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense, and Agrobacterium tumifaciens). Neither epiphytic and soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, and M. fujisawaense catalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacterium can protect plants against adverse environmental factors. PMID:11386061

  20. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    PubMed

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  1. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  2. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  3. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors

    PubMed Central

    Janek, Daniela; Zipperer, Alexander; Kulik, Andreas; Krismer, Bernhard; Peschel, Andreas

    2016-01-01

    The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. PMID:27490492

  4. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors.

    PubMed

    Janek, Daniela; Zipperer, Alexander; Kulik, Andreas; Krismer, Bernhard; Peschel, Andreas

    2016-08-01

    The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota.

  5. Characterization of bacterial strains capable of desulphurisation in soil and sediment samples from Antarctica.

    PubMed

    Boniek, Douglas; Figueiredo, Débora; Pylro, Victor Satler; Duarte, Gabriela Frois

    2010-09-01

    The presence of sulphur in fossil fuels and the natural environment justifies the study of sulphur-utilising bacterial species and genes involved in the biodesulphurisation process. Technology has been developed based on the natural ability of microorganisms to remove sulphur from polycyclic aromatic hydrocarbon chains. This biotechnology aims to minimise the emission of sulphur oxides into the atmosphere during combustion and prevent the formation of acid rain. In this study, the isolation and characterization of desulphurising microorganisms in rhizosphere and bulk soil samples from Antarctica that were either contaminated with oil or uncontaminated was described. The growth of selected isolates and their capacity to utilise sulphur based on the formation of the terminal product of desulphurisation via the 4S pathway, 2-hydroxybiphenyl, was analysed. DNA was extracted from the isolates and BOX-PCR and DNA sequencing were performed to obtain a genomic diversity profile of cultivable desulphurising bacterial species. Fifty isolates were obtained showing the ability of utilising dibenzothiophene as a substrate and sulphur source for maintenance and growth when plated on selective media. However, only seven genetically diverse isolates tested positive for sulphur removal using the Gibbs assay. DNA sequencing revealed that these isolates were related to the genera Acinetobacter and Pseudomonas.

  6. Selection of bacterial strains efficient in decolorization of remazol black-B.

    PubMed

    Shah, Maulin P; Sebastian, Soniya; Mathukiya, Hemangi M; Darji, A M; Patel, Jigna; Patel, Kavita

    2013-01-01

    Azo dyes are released into wastewater streams without any pretreatment and polluted water and soil environments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of great importance. For this purpose, wastewater samples were collected from dye-contaminated sites of Ankleshwar, Gujarat, India. About 50 bacterial isolates were isolated through enrichment and then tested for their potential to remove Remazol Black-B azo dye in liquid medium. Three bacterial isolates capable of degrading Remazol Black-B azo dye efficiently were screened through experimentation on modified mineral salt medium. Isolate ETL-1 was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h. Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7) and at temperature 35 degrees C. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. The results imply that the isolate ETL-1 could be used for the removal of the reactive dyes from textile effluents.

  7. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors.

    PubMed

    Janek, Daniela; Zipperer, Alexander; Kulik, Andreas; Krismer, Bernhard; Peschel, Andreas

    2016-08-01

    The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. PMID:27490492

  8. Differential fusion expression and purification of a cystatin in two different bacterial strains.

    PubMed

    Gholizadeh, A

    2013-01-01

    To date, the identification of the novel multifunctional properties of cysteine proteinase inhibitors "known as cystatins" is the great of interests for molecular biologists. The efficient production, purification and correctly folded form of these proteins are the most important requirements for their any basic research. To the best of our knowledge, maltose-binding protein (MBP) fusion tags are being used to overcome the impediment to their heterologous recombinant expression in Escherichia coli as insoluble and bio-inactive inclusion bodies. In the present work, to evaluate the expression efficiency of a cystatin molecule in E. coli cells by using MBP tags, the expression of Celosia cystatin was studied in two different strains of this bacterium. The quantitative analysis results based on the one-step purification yield of the fused product showed the excellency of the E. coli TB1 strain in comparison to E. coli DH5alpha for the high-level production of active product.

  9. Degradation of nicosulfuron by a novel isolated bacterial strain Klebsiella sp. Y1: condition optimization, kinetics and degradation pathway.

    PubMed

    Wang, Lin; Zhang, Xiaolin; Li, Yongmei

    2016-01-01

    A novel bacterial strain Klebsiella sp. Y1 was isolated from the soil of a constructed wetland, and it was identified based on the 16S rDNA sequence analysis. The co-metabolic degradation of nicosulfuron with glucose by Klebsiella sp. Y1 was investigated. The response surface methodology analysis indicated that the optimal pH and temperature were 7.0 and 35 °C, respectively, for the degradation of nicosulfuron. Under the optimal conditions, the degradation of nicosulfuron fitted Haldane kinetics model well. The removal of nicosulfuron was triggered by the acidification of glucose, which accelerated the hydrolysis of nicosulfuron. Then, the C-N bond of the sulfonylurea bridge was attacked and cleaved. Finally, the detected intermediate 2-amino-4,6-dimethoxypyrimidine was further biodegraded.

  10. Degradation of nicosulfuron by a novel isolated bacterial strain Klebsiella sp. Y1: condition optimization, kinetics and degradation pathway.

    PubMed

    Wang, Lin; Zhang, Xiaolin; Li, Yongmei

    2016-01-01

    A novel bacterial strain Klebsiella sp. Y1 was isolated from the soil of a constructed wetland, and it was identified based on the 16S rDNA sequence analysis. The co-metabolic degradation of nicosulfuron with glucose by Klebsiella sp. Y1 was investigated. The response surface methodology analysis indicated that the optimal pH and temperature were 7.0 and 35 °C, respectively, for the degradation of nicosulfuron. Under the optimal conditions, the degradation of nicosulfuron fitted Haldane kinetics model well. The removal of nicosulfuron was triggered by the acidification of glucose, which accelerated the hydrolysis of nicosulfuron. Then, the C-N bond of the sulfonylurea bridge was attacked and cleaved. Finally, the detected intermediate 2-amino-4,6-dimethoxypyrimidine was further biodegraded. PMID:27332834

  11. Bacterial Wound Culture

    MedlinePlus

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  12. Cooperative Mn(II) oxidation between two bacterial strains in an aquatic environment.

    PubMed

    Liang, Jinsong; Bai, Yaohui; Hu, Chengzhi; Qu, Jiuhui

    2016-02-01

    In natural or engineered environments, diverse interspecific interactions among two or more microbial taxa may profoundly affect the transformation of organic compounds in the media. Little is known, however, about how these organisms and interactions affect the transformation of heavy metals. Recently, we found an interaction between two non-Mn(II)-oxidizing (when in monoculture) strains, Arthrobacter sp. QXT-31 and Sphingopyxis sp. QXT-31, which, when cultured in combination, resulted in Mn(II)-oxidizing activity in synthetic media. In order to study the occurrence likelihood of cooperative Mn(II) oxidation in natural water and discharged effluent, we initially identified an optimal ratio of the two strains in a combined culture, as well as the impacts of external factors on the cooperative oxidation. Once preferred initial conditions were established, we assessed the degree and rate of Mn(II) oxidation mediated by the combined QXT-31 strains (henceforth referred to as simply 'QXT-31') in three different water types: groundwater, domestic sewage and coking wastewater. Results showed that Mn(II) oxidation only occurred when the two strains were within a specific ratios range. When introduced to the test waters at the preferred ratio, QXT-31 demonstrated high Mn(II)-oxidizing activities, even when relative abundance of QXT-31 was very low (roughly 1.6%, calculated by 454 pyrosequencing events on 16S rcDNA). Interestingly, even under low relative abundance of QXT-31, removal of total organic carbon and total nitrogen in the test waters was significantly higher than the control treatments that were not inoculated with QXT-31. Data from our study indicate that cooperative Mn(II) oxidation is most likely to occur in natural aquatic ecosystems, and also suggests an alternative method to treat wastewater containing high concentrations of Mn(II).

  13. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized.

  14. Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains.

    PubMed

    Callon, Cécile; Arliguie, Céline; Montel, Marie-Christine

    2016-02-01

    Bio-preservation could be a valuable way to control Shigatoxin-producing Escherichia coli (STEC) in cheese. To this end, 41 strains were screened for their inhibitory potential on model cheese curd and on pasteurized and raw milk uncooked pressed cheeses. Strains of Lactococcus lactis, Lactococcus garvieae, Leuconostoc pseudomesenteroides, Leuconostoc citreum, Lactobacillus sp, Carnobacterium mobile, Enterococcus faecalis, Enterococcus faecium, Macrococcus caseolyticus and Hafnia alvei reduced STEC O26:H11 counts by 1.4-2.5 log cfu g(-1) and to a lesser extent STEC O157:H7 counts in pasteurized milk cheeses. Some strains can act in synergy to inhibit STEC in raw milk uncooked pressed cheeses. Inhibitory associations had no adverse effect on the sensory characteristics of these cheeses. The association of H. alvei, Lactobacillus plantarum and Lc. lactis was the most inhibitory: after inoculation of this consortium into milk, STEC O26:H11 and O157:H7, inoculated at 2 log cfu ml(-1), were reduced by up to 3 log cfu g(-1) in ripened cheese. Inhibition in cheese cannot be predicted from H2O2 production in BHI medium, decreased pH or milk reduction. It is not clear what role the rapid decrease in pH during the first 6 h may play in the inhibition. Further studies will be needed to determine the nature of the inhibition.

  15. Towards a tolerance toolkit: Gene expression signatures enabling the emergence of resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Erickson, Keesha; Chatterjee, Anushree

    2014-03-01

    Microbial pathogens are able to rapidly acquire tolerance to chemical toxins. Developing next-generation antibiotics that impede the emergence of resistance will help avoid a world-wide health crisis. Conversely, the ability to induce rapid tolerance gains could lead to high-yielding strains for sustainable production of biofuels and commodity chemicals. Achieving these goals requires an understanding of the general mechanisms allowing microbes to become resistant to diverse toxins. We apply top-down and bottom-up methodologies to identify biological network changes leading to adaptation and tolerance. Using a top-down approach, we perform evolution experiments to isolate resistant strains, collect samples for transcriptomic and proteomic analysis, and use the omics data to inform mathematical gene regulatory models. Using a bottom-up approach, we build and test synthetic genetic devices that enable increased or decreased expression of selected genes. Unique patterns in gene expression are identified in cultures actively gaining resistance, especially in pathways known to be involved with stress response, efflux, and mutagenesis. Genes correlated with tolerance could potentially allow the design of resistance-free antibiotics or robust chemical production strains.

  16. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1

    PubMed Central

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6–12, temperatures of 28–50 °C, and NaCl concentrations of 0–16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. PMID:26887220

  17. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1.

    PubMed

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6-12, temperatures of 28-50°C, and NaCl concentrations of 0-16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications.

  18. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1.

    PubMed

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6-12, temperatures of 28-50°C, and NaCl concentrations of 0-16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. PMID:26887220

  19. Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains.

    PubMed

    Callon, Cécile; Arliguie, Céline; Montel, Marie-Christine

    2016-02-01

    Bio-preservation could be a valuable way to control Shigatoxin-producing Escherichia coli (STEC) in cheese. To this end, 41 strains were screened for their inhibitory potential on model cheese curd and on pasteurized and raw milk uncooked pressed cheeses. Strains of Lactococcus lactis, Lactococcus garvieae, Leuconostoc pseudomesenteroides, Leuconostoc citreum, Lactobacillus sp, Carnobacterium mobile, Enterococcus faecalis, Enterococcus faecium, Macrococcus caseolyticus and Hafnia alvei reduced STEC O26:H11 counts by 1.4-2.5 log cfu g(-1) and to a lesser extent STEC O157:H7 counts in pasteurized milk cheeses. Some strains can act in synergy to inhibit STEC in raw milk uncooked pressed cheeses. Inhibitory associations had no adverse effect on the sensory characteristics of these cheeses. The association of H. alvei, Lactobacillus plantarum and Lc. lactis was the most inhibitory: after inoculation of this consortium into milk, STEC O26:H11 and O157:H7, inoculated at 2 log cfu ml(-1), were reduced by up to 3 log cfu g(-1) in ripened cheese. Inhibition in cheese cannot be predicted from H2O2 production in BHI medium, decreased pH or milk reduction. It is not clear what role the rapid decrease in pH during the first 6 h may play in the inhibition. Further studies will be needed to determine the nature of the inhibition. PMID:26678131

  20. Complete Genome Sequence of Flavobacterium psychrophilum Strain CSF259-93, Used To Select Rainbow Trout for Increased Genetic Resistance against Bacterial Cold Water Disease.

    PubMed

    Wiens, Gregory D; LaPatra, Scott E; Welch, Timothy J; Rexroad, Caird; Call, Douglas R; Cain, Kenneth D; LaFrentz, Benjamin R; Vaisvil, Benjamin; Schmitt, Daniel P; Kapatral, Vinayak

    2014-01-01

    The genome sequence of Flavobacterium psychrophilum strain CSF259-93, isolated from rainbow trout (Oncorhynchus mykiss), consists of a single circular genome of 2,900,735 bp and 2,701 predicted open reading frames (ORFs). Strain CSF259-93 has been used to select a line of rainbow trout with increased genetic resistance against bacterial cold water disease. PMID:25237017

  1. Complete Genome Sequence of Flavobacterium psychrophilum Strain CSF259-93, Used To Select Rainbow Trout for Increased Genetic Resistance against Bacterial Cold Water Disease

    PubMed Central

    LaPatra, Scott E.; Welch, Timothy J.; Rexroad, Caird; Call, Douglas R.; Cain, Kenneth D.; LaFrentz, Benjamin R.; Vaisvil, Benjamin; Schmitt, Daniel P.; Kapatral, Vinayak

    2014-01-01

    The genome sequence of Flavobacterium psychrophilum strain CSF259-93, isolated from rainbow trout (Oncorhynchus mykiss), consists of a single circular genome of 2,900,735 bp and 2,701 predicted open reading frames (ORFs). Strain CSF259-93 has been used to select a line of rainbow trout with increased genetic resistance against bacterial cold water disease. PMID:25237017

  2. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    PubMed

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation. PMID:24532465

  3. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    PubMed

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  4. Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase.

    PubMed

    Talà, Adelfia; Wang, Guojun; Zemanova, Martina; Okamoto, Susumu; Ochi, Kozo; Alifano, Pietro

    2009-02-01

    There is accumulating evidence that the ability of actinomycetes to produce antibiotics and other bioactive secondary metabolites has been underestimated due to the presence of cryptic gene clusters. The activation of dormant genes is therefore one of the most important areas of experimental research for the discovery of drugs in these organisms. The recent observation that several actinomycetes possess two RNA polymerase beta-chain genes (rpoB) has opened up the possibility, explored in this study, of developing a new strategy to activate dormant gene expression in bacteria. Two rpoB paralogs, rpoB(S) and rpoB(R), provide Nonomuraea sp. strain ATCC 39727 with two functionally distinct and developmentally regulated RNA polymerases. The product of rpoB(R), the expression of which increases after transition to stationary phase, is characterized by five amino acid substitutions located within or close to the so-called rifampin resistance clusters that play a key role in fundamental activities of RNA polymerase. Here, we report that rpoB(R) markedly activated antibiotic biosynthesis in the wild-type Streptomyces lividans strain 1326 and also in strain KO-421, a relaxed (rel) mutant unable to produce ppGpp. Site-directed mutagenesis demonstrated that the rpoB(R)-specific missense H426N mutation was essential for the activation of secondary metabolism. Our observations also indicated that mutant-type or duplicated, rpoB often exists in nature among rare actinomycetes and will thus provide a basis for further basic and applied research.

  5. Genome sequencing and systems biology analysis of a lipase-producing bacterial strain.

    PubMed

    Li, N; Li, D D; Zhang, Y Z; Yuan, Y Z; Geng, H; Xiong, L; Liu, D L

    2016-01-01

    Lipase-producing bacteria are naturally-occurring, industrially-relevant microorganisms that produce lipases, which can be used to synthesize biodiesel from waste oils. The efficiency of lipase expression varies between various microbial strains. Therefore, strains that can produce lipases with high efficiency must be screened, and the conditions of lipase metabolism and optimization of the production process in a given environment must be thoroughly studied. A high efficiency lipase-producing strain was isolated from the sediments of Jinsha River, identified by 16S rRNA sequence analysis as Serratia marcescens, and designated as HS-L5. A schematic diagram of the genome sequence was constructed by high-throughput genome sequencing. A series of genes related to lipid degradation were identified by functional gene annotation through sequence homology analysis. A genome-scale metabolic model of HS-ML5 was constructed using systems biology techniques. The model consisted of 1722 genes and 1567 metabolic reactions. The topological graph of the genome-scale metabolic model was compared to that of conventional metabolic pathways using a visualization software and KEGG database. The basic components and boundaries of the tributyrin degradation subnetwork were determined, and its flux balance analyzed using Matlab and COBRA Toolbox to simulate the effects of different conditions on the catalytic efficiency of lipases produced by HS-ML5. We proved that the catalytic activity of microbial lipases was closely related to the carbon metabolic pathway. As production and catalytic efficiency of lipases varied greatly with the environment, the catalytic efficiency and environmental adaptability of microbial lipases can be improved by proper control of the production conditions. PMID:27050954

  6. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A.

    PubMed

    Aydın, Yasar Andelib; Aksoy, Nuran Deveci

    2014-02-01

    In this study, typical niches of acetic acid bacteria were screened for isolation of cellulose producer strains. Hestrin Schramm broth was used as enrichment and production media. Only nine out of 329 isolates formed thick biofilms on liquid surface and were identified as potential cellulose producers. Physiological and biochemical tests proved that all cellulose producers belonged to Gluconacetobacter genus. Most productive and mutation-resistant strain was subjected to 16S rRNA sequence analysis and identified as Gluconacetobacter hansenii P2A due to 99.8 % sequence similarity. X-ray diffraction analysis proved that the biofilm conformed to Cellulose I crystal structure, rich in Iα mass fraction. Static cultivation of G. hansenii P2A in HS medium resulted with 1.89 ± 0.08 g/l of bacterial cellulose production corresponding to 12.0 ± 0.3 % yield in terms of substrate consumption. Shaking and agitation at 120 rpm aided in enhancement of the amount and yield of produced cellulose. Productivity and yield reached up to 3.25 ± 0.11 g/l and 17.20 ± 0.14 % in agitated culture while a slight decrease from 78.7 % to 77.3 % was observed in the crystallinity index. PMID:24190494

  7. Bioconversion of Styrene to Poly(hydroxyalkanoate) (PHA) by the New Bacterial Strain Pseudomonas putida NBUS12

    PubMed Central

    Tan, Giin-Yu Amy; Chen, Chia-Lung; Ge, Liya; Li, Ling; Tan, Swee Ngin; Wang, Jing-Yuan

    2015-01-01

    Styrene is a toxic pollutant commonly found in waste effluents from plastic processing industries. We herein identified and characterized microorganisms for bioconversion of the organic eco-pollutant styrene into a valuable biopolymer medium-chain-length poly(hydroxyalkanoate) (mcl-PHA). Twelve newly-isolated styrene-degrading Pseudomonads were obtained and partial phaC genes were detected by PCR in these isolates. These isolates assimilated styrene to produce mcl-PHA, forming PHA contents between 0.05±0.00 and 23.10±3.25% cell dry mass (% CDM). The best-performing isolate was identified as Pseudomonas putida NBUS12. A genetic analysis of 16S rDNA and phaZ genes revealed P. putida NBUS12 as a genetically-distinct strain from existing phenotypically-similar bacterial strains. This bacterium achieved a final biomass of 1.28±0.10 g L−1 and PHA content of 32.49±2.40% CDM. The extracted polymer was mainly comprised of 3-hydroxyhexanoate (C6 ), 3-hydroxyoctanoate (C8 ), 3-hydroxydecanoate (C10 ), 3-hydroxydodecanoate (C12 ), and 3-hydroxytetradecanoate (C14 ) monomers at a ratio of 2:42:1257:17:1. These results collectively suggested that P. putida NBUS12 is a promising candidate for the biotechnological conversion of styrene into mcl-PHA. PMID:25740622

  8. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A.

    PubMed

    Aydın, Yasar Andelib; Aksoy, Nuran Deveci

    2014-02-01

    In this study, typical niches of acetic acid bacteria were screened for isolation of cellulose producer strains. Hestrin Schramm broth was used as enrichment and production media. Only nine out of 329 isolates formed thick biofilms on liquid surface and were identified as potential cellulose producers. Physiological and biochemical tests proved that all cellulose producers belonged to Gluconacetobacter genus. Most productive and mutation-resistant strain was subjected to 16S rRNA sequence analysis and identified as Gluconacetobacter hansenii P2A due to 99.8 % sequence similarity. X-ray diffraction analysis proved that the biofilm conformed to Cellulose I crystal structure, rich in Iα mass fraction. Static cultivation of G. hansenii P2A in HS medium resulted with 1.89 ± 0.08 g/l of bacterial cellulose production corresponding to 12.0 ± 0.3 % yield in terms of substrate consumption. Shaking and agitation at 120 rpm aided in enhancement of the amount and yield of produced cellulose. Productivity and yield reached up to 3.25 ± 0.11 g/l and 17.20 ± 0.14 % in agitated culture while a slight decrease from 78.7 % to 77.3 % was observed in the crystallinity index.

  9. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil.

    PubMed

    Dahalan, S F A; Yunus, I; Johari, W L W; Shukor, M Y; Halmi, M I E; Shamaan, N A; Syed, M A

    2014-03-01

    A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics.

  10. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil.

    PubMed

    Dahalan, S F A; Yunus, I; Johari, W L W; Shukor, M Y; Halmi, M I E; Shamaan, N A; Syed, M A

    2014-03-01

    A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics. PMID:24665769

  11. Bacterial dehalorespiration with chlorinated benzenes.

    PubMed

    Adrian, L; Szewzyk, U; Wecke, J; Görisch, H

    2000-11-30

    Chlorobenzenes are toxic, highly persistent and ubiquitously distributed environmental contaminants that accumulate in the food chain. The only known microbial transformation of 1,2,3,5-tetrachlorobenzene (TeCB) and higher chlorinated benzenes is the reductive dechlorination to lower chlorinated benzenes under anaerobic conditions observed with mixed bacterial cultures. The lower chlorinated benzenes can subsequently be mineralized by aerobic bacteria. Here we describe the isolation of the oxygen-sensitive strain CBDB1, a pure culture capable of reductive dechlorination of chlorobenzenes. Strain CBDB1 is a highly specialized bacterium that stoichiometrically dechlorinates 1,2,3-trichlorobenzene (TCB), 1,2,4-TCB, 1,2,3,4-TeCB, 1,2,3,5-TeCB and 1,2,4,5-TeCB to dichlorobenzenes or 1,3,5-TCB. The presence of chlorobenzene as an electron acceptor and hydrogen as an electron donor is essential for growth, and indicates that strain CBDB1 meets its energy needs by a dehalorespiratory process. According to their 16S rRNA gene sequences, strain CBDB1, Dehalococcoides ethenogenes and several uncultivated bacteria form a new bacterial cluster, of which strain CBDB1 is the first, so far, to thrive on a purely synthetic medium.

  12. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard

    PubMed Central

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction. PMID:26909087

  13. Draft Genome Sequence of Paracoccus sp. MKU1, a New Bacterial Strain Isolated from an Industrial Effluent with Potential for Bioremediation.

    PubMed

    Nisha, Kamaldeen Nasrin; Sridhar, Jayavel; Varalakshmi, Perumal; Ashokkumar, Balasubramaniem

    2016-01-01

    Paracoccus sp. MKU1, a novel dimethylformamide degrading bacterial strain was originally isolated from an industrial effluent, Tirupur region, Tamil Nadu, India. Here, we report the draft genome sequence of Paracoccus sp. MKU1, which could provide the genetic insights on its evolution and application of this versatile bacterium for effective degradation of xenobiotics and thus in bioremediation. PMID:27326263

  14. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri.

    PubMed

    Timilsina, Sujan; Jibrin, Mustafa O; Potnis, Neha; Minsavage, Gerald V; Kebede, Misrak; Schwartz, Allison; Bart, Rebecca; Staskawicz, Brian; Boyer, Claudine; Vallad, Gary E; Pruvost, Olivier; Jones, Jeffrey B; Goss, Erica M

    2015-02-01

    Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations. PMID:25527544

  15. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin.

    PubMed

    Agbobatinkpo, Pélagie B; Thorsen, Line; Nielsen, Dennis S; Azokpota, Paulin; Akissoe, Noèl; Hounhouigan, Joseph D; Jakobsen, Mogens

    2013-05-15

    Yanyanku and Ikpiru made by the fermentation of Malcavene bean (Hibiscus sabdariffa) are used as functional additives for Parkia biglobosa seed fermentations in Benin. A total of 355 aerobic endospore-forming bacteria (AEFB) isolated from Yanyanku and Ikpiru produced in northern and southern Benin were identified using phenotypic and genotypic methods, including GTG5-PCR, M13-PCR, 16S rRNA, gyrA and gyrB gene sequencing. Generally, the same 5-6 species of the genus Bacillus predominated: Bacillus subtilis (17-41% of isolates), Bacillus cereus (8-39%), Bacillus amyloliquefaciens (9-22%), Bacillus licheniformis (3-26%), Bacillus safensis (8-19%) and Bacillus altitudinis (0-19%). Bacillus aryabhattai, Bacillus flexus, and Bacillus circulans (0-2%), and species of the genera Lysinibacillus (0-14%), Paenibacillus (0-13%), Brevibacillus (0-4%), and Aneurinibacillus (0-3%) occurred sporadically. The diarrheal toxin encoding genes cytK-1, cytK-2, hblA, hblC, and hblD were present in 0%, 91% 15%, 34% and 35% of B. cereus isolates, respectively. 9% of them harbored the emetic toxin genetic determinant, cesB. This study is the first to identify the AEFB of Yanyanku and Ikpiru to species level and perform a safety evaluation based on toxin gene detections. We further suggest, that the gyrA gene can be used for differentiating the closely related species Bacillus pumilus and B. safensis.

  16. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars.

    PubMed

    Huang, Chu-Ning; Lin, Chan-Pin; Hsieh, Feng-Chia; Lee, Sook-Kuan; Cheng, Kuan-Chen; Liu, Chi-Te

    2016-11-01

    Bacillus amyloliquefaciens strain WF02, isolated from soil collected at Wufeng Mountain, Taiwan, has siderophore-producing ability and in vitro antagonistic activity against bacterial wilt pathogen. To determine the impact of plant genotype on biocontrol effectiveness, we treated soil with this strain before infecting susceptible (L390) and moderately resistant (Micro-Tom) tomato cultivars with Ralstonia solanacearum strain Pss4. We also compared the efficacy of this strain with that of commercial Bacillus subtilis strain Y1336. Strain WF02 provided longer lasting protection against R. solanacearum than did strain Y1336 and controlled the development of wilt in both cultivars. To elucidate the genetic responses in these plants under WF02 treatment, we analyzed the temporal expression of defense-related genes in leaves. The salicylic acid pathway-related genes phenylalanine ammonia-lyase and pathogenesis-related protein 1a were up-regulated in both cultivars, whereas expression of the jasmonic acid pathway-related gene lipoxygenase was only elevated in the susceptible tomato cultivar (L390). These results suggest that WF02 can provide protection against bacterial wilt in tomato cultivars with different levels of disease resistance via direct and indirect modes of action. PMID:27646210

  17. [Isolation of a monocrotophos-degrading bacterial strain and characterization of enzymatic degradation].

    PubMed

    Jia, Kai-Zhi; Li, Xiao-Hui; He, Jian; Gu, Li-Feng; Ma, Ji-Ping; Li, Shun-Peng

    2007-04-01

    A monocrotophos [dimethyl (E)-1-2-methylcarbamoylvinylphosphate or MCP] -degrading strain named as M-1 was isolated from sludge collected from the wastewater treatment pool of a pesticide factory and identified as Paracoccus sp. according to its morphology and biochemical properties and 16S rDNA sequence analysis. Using MCP as a sole carbon source, M-1 was able to degrade MCP(100 mg x L(-1)) by 92.47% in 24 h. The key enzyme(s) involved in the initial biodegradation of monocrotophos in M-1 was shown to be constitutively expressed cytosolic proteins and showed the greatest activity at pH 8.0 and 25 degrees C, with its Michaelis-Mentn's constant (K(m)) and maximum degradation rate (V(max)) of 0.29 micromol x mL(-1) and 682.12 micromol (min x mg)(-1) respectively. This degrading enzyme(s) was sensitive to high temperature, but kept high activity under alkaline conditions. PMID:17639959

  18. Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities.

    PubMed

    Inglis, R F; Biernaskie, J M; Gardner, A; Kümmerli, R

    2016-01-13

    Cooperation and diversity abound in nature despite cooperators risking exploitation from defectors and superior competitors displacing weaker ones. Understanding the persistence of cooperation and diversity is therefore a major problem for evolutionary ecology, especially in the context of well-mixed populations, where the potential for exploitation and displacement is greatest. Here, we demonstrate that a 'loner effect', described by economic game theorists, can maintain cooperation and diversity in real-world biological settings. We use mathematical models of public-good-producing bacteria to show that the presence of a loner strain, which produces an independent but relatively inefficient good, can lead to rock-paper-scissor dynamics, whereby cooperators outcompete loners, defectors outcompete cooperators and loners outcompete defectors. These model predictions are supported by our observations of evolutionary dynamics in well-mixed experimental communities of the bacterium Pseudomonas aeruginosa. We find that the coexistence of cooperators and defectors that produce and exploit, respectively, the iron-scavenging siderophore pyoverdine, is stabilized by the presence of loners with an independent iron-uptake mechanism. Our results establish the loner effect as a simple and general driver of cooperation and diversity in environments that would otherwise favour defection and the erosion of diversity.

  19. Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities

    PubMed Central

    Inglis, R. F.; Biernaskie, J. M.; Gardner, A.; Kümmerli, R.

    2016-01-01

    Cooperation and diversity abound in nature despite cooperators risking exploitation from defectors and superior competitors displacing weaker ones. Understanding the persistence of cooperation and diversity is therefore a major problem for evolutionary ecology, especially in the context of well-mixed populations, where the potential for exploitation and displacement is greatest. Here, we demonstrate that a ‘loner effect’, described by economic game theorists, can maintain cooperation and diversity in real-world biological settings. We use mathematical models of public-good-producing bacteria to show that the presence of a loner strain, which produces an independent but relatively inefficient good, can lead to rock–paper–scissor dynamics, whereby cooperators outcompete loners, defectors outcompete cooperators and loners outcompete defectors. These model predictions are supported by our observations of evolutionary dynamics in well-mixed experimental communities of the bacterium Pseudomonas aeruginosa. We find that the coexistence of cooperators and defectors that produce and exploit, respectively, the iron-scavenging siderophore pyoverdine, is stabilized by the presence of loners with an independent iron-uptake mechanism. Our results establish the loner effect as a simple and general driver of cooperation and diversity in environments that would otherwise favour defection and the erosion of diversity. PMID:26763707

  20. Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities.

    PubMed

    Inglis, R F; Biernaskie, J M; Gardner, A; Kümmerli, R

    2016-01-13

    Cooperation and diversity abound in nature despite cooperators risking exploitation from defectors and superior competitors displacing weaker ones. Understanding the persistence of cooperation and diversity is therefore a major problem for evolutionary ecology, especially in the context of well-mixed populations, where the potential for exploitation and displacement is greatest. Here, we demonstrate that a 'loner effect', described by economic game theorists, can maintain cooperation and diversity in real-world biological settings. We use mathematical models of public-good-producing bacteria to show that the presence of a loner strain, which produces an independent but relatively inefficient good, can lead to rock-paper-scissor dynamics, whereby cooperators outcompete loners, defectors outcompete cooperators and loners outcompete defectors. These model predictions are supported by our observations of evolutionary dynamics in well-mixed experimental communities of the bacterium Pseudomonas aeruginosa. We find that the coexistence of cooperators and defectors that produce and exploit, respectively, the iron-scavenging siderophore pyoverdine, is stabilized by the presence of loners with an independent iron-uptake mechanism. Our results establish the loner effect as a simple and general driver of cooperation and diversity in environments that would otherwise favour defection and the erosion of diversity. PMID:26763707

  1. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms.

    PubMed

    Nancharaiah, Y V; Kiran Kumar Reddy, G; Krishna Mohan, T V; Venugopalan, V P

    2015-01-01

    Tributyl phosphate (TBP) is commercially used in large volumes for reprocessing of spent nuclear fuel. TBP is a very stable compound and persistent in natural environments and it is not removed in conventional wastewater treatment plants. In this study, cultivation of aerobic granular biofilms in a sequencing batch reactor was investigated for efficient biodegradation of TBP. Enrichment of TBP-degrading strains resulted in efficient degradation of TBP as sole carbon or along with acetate. Complete biodegradation of 2mM of TBP was achieved within 5h with a degradation rate of 0.4 μmol mL(-1) h(-1). TBP biodegradation was accompanied by release of inorganic phosphate in stoichiometric amounts. n-Butanol, hydrolysed product of TBP was rapidly biodegraded. But, dibutyl phosphate, a putative intermediate of TBP degradation was only partially degraded pointing to an alternative degradation pathway. Phosphatase activity was 22- and 7.5-fold higher in TBP-degrading biofilms as compared to bioflocs and acetate-fed aerobic granules. Community analysis by terminal restriction length polymorphism revealed presence of 30 different bacterial strains. Seven bacterial stains, including Sphingobium sp. a known TBP degrader were isolated. The results show that aerobic granular biofilms are promising for treatment of TBP-bearing wastes or ex situ bioremediation of TBP-contaminated sites. PMID:25464313

  2. Biodecolorization of Reactive Black-5 by a metal and salt tolerant bacterial strain Pseudomonas sp. RA20 isolated from Paharang drain effluents in Pakistan.

    PubMed

    Hussain, Sabir; Maqbool, Zahid; Ali, Shafaqat; Yasmeen, Tahira; Imran, Muhammad; Mahmood, Faisal; Abbas, Farhat

    2013-12-01

    Discharge of untreated azo dyes contaminated textile wastewater into soil and water bodies causes severe contamination. The present study was conducted to isolate dye degrading bacterial strains from a textile industry wastewater carrying drain in the neighborhood of Faisalabad, Pakistan. Seventy six bacterial strains were initially isolated and was screened using liquid mineral salts medium spiked with Reactive Black-5 azo dye. The strain RA20 was found to be the most efficient azo dye degrading bacterial isolate and was identified by amplifying and sequencing its 16S rRNA. Analysis indicated that this strain belonged to genus Pseudomonas and was designated as Pseudomonas sp. RA20. It had the highest decolorization activity at pH 8 and 25 °C incubation temperature under static conditions using yeast extract as an additional C source. This strain was also effective in decolorizing structurally related other reactive dyes including Reactive Orange 16, Reactive Yellow 2 and Reactive Red 120 but with varying efficacy. RA20 decolorized Reactive Black-5 significantly in the presence of up to 30 g L⁻¹ NaCl; however, the decolorization rate was significantly (p≤0.05) reduced beyond this salt concentration. Moreover, this bacterial strain also exhibited moderate tolerance to different heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), lead (Pb) and copper (Cu). RA20 also decolorized Reactive Black-5 in the presence of a mixture of the selected heavy metals depending upon their concentrations. This study highlights the importance of Pseudomonas sp. RA20 as a prospective biological resource for bioremediation of water and soils contaminated with azo dyes.

  3. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN

    PubMed Central

    2012-01-01

    Background Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. Results We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. Conclusions Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions

  4. Plant growth promotion by inoculation with selected bacterial strains versus mineral soil supplements.

    PubMed

    Wernitznig, S; Adlassnig, W; Sprocati, A R; Turnau, K; Neagoe, A; Alisi, C; Sassmann, S; Nicoara, A; Pinto, V; Cremisini, C; Lichtscheidl, I

    2014-01-01

    In the process of remediation of mine sites, the establishment of a vegetation cover is one of the most important tasks. This study tests two different approaches to manipulate soil properties in order to facilitate plant growth. Mine waste from Ingurtosu, Sardinia, Italy rich in silt, clay, and heavy metals like Cd, Cu, and Zn was used in a series of greenhouse experiments. Bacteria with putative beneficial properties for plant growth were isolated from this substrate, propagated and consortia of ten strains were used to inoculate the substrate. Alternatively, sand and volcanic clay were added. On these treated and untreated soils, seeds of Helianthus annuus, of the native Euphorbia pithyusa, and of the grasses Agrostis capillaris, Deschampsia flexuosa and Festuca rubra were germinated, and the growth of the seedlings was monitored. The added bacteria established well under all experimental conditions and reduced the extractability of most metals. In association with H. annuus, E. pithyusa and D. flexuosa bacteria improved microbial activity and functional diversity of the original soil. Their effect on plant growth, however, was ambiguous and usually negative. The addition of sand and volcanic clay, on the other hand, had a positive effect on all plant species except E. pithyusa. Especially the grasses experienced a significant benefit. The effects of a double treatment with both bacteria and sand and volcanic clay were rather negative. It is concluded that the addition of mechanical support has great potential to boost revegetation of mining sites though it is comparatively expensive. The possibilities offered by the inoculation of bacteria, on the other hand, appear rather limited.

  5. Degradation of acid orange 7 in an aerobic biofilm.

    PubMed

    Coughlin, Michael F; Kinkle, Brian K; Bishop, Paul L

    2002-01-01

    A stable microbial biofilm community capable of completely mineralizing the azo dye acid orange 7 (AO7) was established in a laboratory scale rotating drum bioreactor (RDBR) using waste liquor from a sewage treatment plant. A broad range of environmental conditions including pH (5.8-8.2), nitrification (0.0-4.0 mM nitrite), and aeration (0.2-6.2 mg O2 l(-1)) were evaluated for their effects on the biodegradation of AO7. Furthermore the biofilm maintained its biodegradative ability for over a year while the effects of these environmental conditions were evaluated. Reduction of the azo bond followed by degradation of the resulting aromatic amine appears to be the mechanism by which this dye is biodegraded. Complete loss of color, sulfanilic acid, and chemical oxygen demand (COD) indicate that AO7 is mineralized. To our knowledge this is the first reported occurrence of a sulfonated phenylazonaphthol dye being completely mineralized under aerobic conditions. Two bacterial strains (ICX and SAD4i) originally isolated from the RDBR were able to mineralize, in co-culture, up to 90% of added AO7. During mineralization of AO7, strain ICX reduces the azo bond under aerobic conditions and consumes the resulting cleavage product 1-amino-2-naphthol. Strain SAD4i consumes the other cleavage product, sulfanilic acid. The ability of the RDBR biofilm to aerobically mineralize an azo dye without exogenous carbon and nitrogen sources suggests that this approach could be used to remediate industrial wastewater contaminated with spent dye.

  6. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  7. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed

    da Cruz, Georgiana F; de Vasconcellos, Suzan P; Angolini, Célio Ff; Dellagnezze, Bruna M; Garcia, Isabel Ns; de Oliveira, Valéria M; Dos Santos Neto, Eugenio V; Marsaioli, Anita J

    2011-12-23

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses.

  8. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    SciTech Connect

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A.; Gilbert, Jack A.; Nagler, Cathryn R.

    2015-09-22

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. As a result, our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.

  9. Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains.

    PubMed

    Ringø, E; Salinas, I; Olsen, R E; Nyhaug, A; Myklebust, R; Mayhew, T M

    2007-04-01

    Furunculosis and vibriosis are diseases that cause severe economic losses in the fish-farming industry. The foregut of the Atlantic salmon (Salmo salar L.) was exposed in vitro to two fish pathogens, Aeromonas salmonicida (causative agent of furunculosis) and Vibrio anguillarum (causative agent of vibriosis), and to one probiotic strain, Carnobacterium divergens, at 6 x 10(4) or 6 x 10(6) viable bacteria per milliliter. Histological changes following bacterial exposure were assessed by light and electron microscopy. Control samples (foregut exposed to Ringer's solution only) and samples exposed only to C. divergens had a similar appearance to intact intestinal mucosal epithelium, with no signs of damage. However, exposure of the foregut to the pathogenic bacteria resulted in damaged epithelial cells, cell debris in the lumen, and disorganization of the microvilli. Co-incubation of the foregut with a pathogen and C. divergens did not reverse the damaging effects caused by the pathogen, although these were alleviated when probiotic bacteria were used. Based on these results, we suggest that the probiotic bacterium, C. divergens, is able to prevent, to some extent, pathogen-induced damage in the Atlantic salmon foregut. PMID:17120052

  10. Expression of a Heterologous Xylose Transporter in a Saccharomyces cerevisiae Strain Engineered to Utilize Xylose Improves Aerobic Xylose Co-consumption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strains of Saccharomyces cerevisiae have been engineered to utilize xylose by expression of the genes for xylose reductase and xylitol dehydrogenase, or xylose isomerase. These strains are still limited in their ability to efficiently use xylose. Unlike native xylose assimilating yeasts such as Pi...

  11. A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    PubMed Central

    Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

    2012-01-01

    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

  12. Aerobic biodegradation of 4-methylquinoline by a soil bacterium.

    PubMed Central

    Sutton, S D; Pfaller, S L; Shann, J R; Warshawsky, D; Kinkle, B K; Vestal, J R

    1996-01-01

    Methylquinolines and related N-heterocyclic aromatic compounds are common contaminants associated with the use of hydrocarbons in both coal gasification and wood treatment processes. These compounds have been found in groundwater, and many are known mutagens. A stable, five-member bacterial consortium able to degrade 4-methylquinoline was established by selective enrichment using soil collected from an abandoned coal gasification site. The consortium was maintained for 5 years by serial transfer in a medium containing 4-methylquinoline. A gram-negative soil bacterium, strain Lep1, was isolated from the consortium and shown to utilize 4-methylquinoline as a source of carbon and energy during growth in liquid medium. A time course experiment demonstrated that both the isolate Lep1 and the consortium containing Lep1 were able to degrade 4-methylquinoline under aerobic conditions. Complete degradation of 4-methylquinoline by either strain Lep1 alone or the consortium was characterized by the production and eventual disappearance of 2-hydroxy-4-methylquinoline, followed by the appearance and persistence of a second metabolite tentatively identified as a hydroxy-4-methylcoumarin. Currently, there is no indication that 4-methylquinoline degradation proceeds differently in the consortium culture compared with Lep1 alone. This is the first report of 4-methylquinoline biodegradation under aerobic conditions. PMID:8702284

  13. Selection and characterization of Cheonggukjang (fast fermented soybean paste)-originated bacterial strains with a high level of S-adenosyl-L-methionine production and probiotics efficacy.

    PubMed

    Park, Sunhyun; Kim, Min-Jeong; Hong, Jiyoung; Kim, Hyo-Jin; Yi, Sung-Hun; Lee, Myung-Ki

    2014-11-01

    This study was executed to develop probiotics producing S-adenosyl-L-methionine (SAMe), a methyl group donor in the 5-methyltetrahydrofolate methylation reaction in animal cells. SAMe is an essential substance in the synthesis, activation, and metabolism of hormones, neurotransmitters, nucleic acids, phospholipids, and cell membranes of animals. SAMe is also known as a nutritional supplement for improving human brain function. In this study, SAMe-producing strains were identified in six kinds of Cheonggukjang, and strains with excellent SAMe production were identified, with one strain in the Enterococcus genus and six strains in the Bacillus genus. Strains with a large amount of SAMe production included lactic acid bacteria, such as Enterococcus faecium, Enterococcus durans, and Enterococcus sanguinicola, as well as various strains in the Bacillus genus. The SAMe-overproducing strains showed antibacterial activity against some harmful microbes, in addition to weak acid resistance and strong bile resistance, indicating characteristics of probiotics. Cheonggukjang-originated beneficial bacterial strains overproducing SAMe may be commercially useful for manufacturing SAMe-rich foods.

  14. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  15. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits.

    PubMed

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  16. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits.

    PubMed

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola.

  17. Genome sequence of the free-living aerobic spirochete Turneriella parva type strain (HT), and emendation of the species Turneriella parva

    SciTech Connect

    Stackebrandt, Erko; Chertkov, Olga; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Pan, Chongle; Rohde, Manfred; Gronow, Sabine; Goker, Markus; Detter, J. Chris; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Woyke, Tanja; Kyrpides, Nikos C; Klenk, Hans-Peter

    2013-01-01

    Turneriella parva Levett et al. 2005 is the only species of the genus Turneriella which was es- tablished as a result of the reclassification of Leptospira parva Hovind-Hougen et al. 1982. Together with Leptonema and Leptospira, Turneriella constitutes the family Leptospiraceae, within the order Spirochaetales. Here we describe the features of this free-living aerobic spi- rochete together with the complete genome sequence and annotation. This is the first com- plete genome sequence of a member of the genus Turneriella and the 13th member of the family Leptospiraceae for which a complete or draft genome sequence is now available. The 4,409,302 bp long genome with its 4,169 protein-coding and 45 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1(T)) from a deep-sea hydrothermal vent chimney.

    PubMed

    Copeland, Alex; Gu, Wei; Yasawong, Montri; Lapidus, Alla; Lucas, Susan; Deshpande, Shweta; Pagani, Ioanna; Tapia, Roxanne; Cheng, Jan-Fang; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Tindall, Brian J; Sikorski, Johannes; Göker, Markus; Detter, John C; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2012-03-19

    Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1(T) was the first isolate within the phylum "Thermus-Deinococcus" to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1(T) is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1T) from a deep-sea hydrothermal vent chimney

    SciTech Connect

    Copeland, A; Gu, Wei; Yasawong, Montri; Lapidus, Alla L.; Lucas, Susan; Deshpande, Shweta; Pagani, Ioanna; Tapia, Roxanne; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Tindall, Brian; Sikorski, Johannes; Goker, Markus; Detter, J. Chris; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2012-01-01

    Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1 T was the first isolate within the phylum ThermusDeinococcus to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1 T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE).

    PubMed

    Smith, Amanda E; Hristova, Krassimira; Wood, Isaac; Mackay, Doug M; Lory, Ernie; Lorenzana, Dale; Scow, Kate M

    2005-03-01

    Widespread contamination of groundwater by methyl tertiary butyl ether (MTBE) has triggered the exploration of different technologies for in situ removal of the pollutant, including biostimulation of naturally occurring microbial communities or bioaugmentation with specific microbial strains known to biodegrade the oxygenate. After laboratory studies revealed that bacterial strain PM1 rapidly and completely biodegraded MTBE in groundwater sediments, the organism was tested in an in situ field study at Port Hueneme Naval Construction Battalion Center in Oxnard, California. Two pilot test plots (A and B) in groundwater located down-gradient from an MTBE source were intermittently sparged with pure oxygen. Plot B was also inoculated with strain PM1. MTBE concentrations up-gradient from plots A and B initially varied temporally from 1.5 to 6 mg MTBE/L. Six months after treatment began, MTBE concentrations in monitoring wells down-gradient from the injection bed decreased substantially in the shallow zone of the groundwater in plots A and B, thus even in the absence of the inoculated strain PM1. In the deeper zone, downstream MTBE concentrations also decreased in plot A and to a lesser extent in plot B. Difficulties in delivery of oxygen to the deeper zone of plot B, evidenced by low dissolved oxygen concentrations, were likely responsible for low rates of MTBE removal at that location. We measured the survival and movement of strain PM1 in groundwater samples using two methods for detection of DNA sequences specific to strain PM1: TaqMan quantitative polymerase chain reaction, and internal transcribed spacer region analysis. A naturally occurring bacterial strain with > 99% 16S rDNA sequence similarity to strain PM1 was detected in groundwater collected at various locations at Port Hueneme, including outside the plots where the organism was inoculated. Addition of oxygen to naturally occurring microbial populations was sufficient to stimulate MTBE removal at this site

  1. High performance degradation of azo dye Acid Orange 7 and sulfanilic acid in a laboratory scale reactor after seeding with cultured bacterial strains.

    PubMed

    Coughlin, Michael F; Kinkle, Brian K; Bishop, Paul L

    2003-06-01

    Bacterial strains 1CX and SAD4i--previously isolated from the mixed liquor of a municipal sewage treatment plant--are capable of degrading the azo dye Acid Orange 7 (AO7) and sulfanilic acid, respectively. A rotating drum bioreactor (RDBR), operating under continuous flow and nutrient conditions designed to simulate the effluent from a dye manufacturing plant, was seeded with strains 1CX and SAD4i, forming a biofilm capable of degrading AO7 and sulfanilic acid. In addition, an RDBR containing a pre-existing biofilm capable of degrading AO7, but not sulfanilic acid, was seeded with strain SAD4i alone. Strain SAD4i was incorporated into the existing biofilm and degraded the sulfanilic acid resulting from the degradation of AO7 by indigenous members of the biofilm. The ability to seed a bioreactor with bacterial strains capable of degrading azo dyes, and resulting by-products, in a mixed microbial community suggests that this process could have commercial applications.

  2. [Association of the strA-strB genes with plasmids and transposons in the present-day bacteria and in bacterial strains from permafrost].

    PubMed

    Petrova, M A; Gorlenko, Zh M; Soina, V S; Mindlin, S Z

    2008-09-01

    Transposons closely related to the streptomycin resistance transposon of modem bacteria, Tn5393, were detected in the bacterial isolates from permafrost resistant to streptomycin. Many transposons studied were located on the medium-size plasmids with a narrow host range. None of the streptomycin-resistant strains isolated from permafrost contained small plasmids carrying the strA-strB genes and related to the broad host range plasmid RSF1010.

  3. Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09

    SciTech Connect

    Boden, Rich; Cunliffe, Michael; Scanlan, Julie; Moussard, Helene; Kits, K. Dimitri; Klotz, Martin G; Jetten, MSM; Vuilleumier, Stephane; Han, James; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Tapia, Roxanne; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Cheng, Jan-Fang; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Pitluck, Sam; Woyke, Tanja; Stein, Lisa Y.; Murrell, Collin

    2011-01-01

    Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

  4. Genome sequences for three denitrifying bacterial strains isolated from a uranium- and nitrate-contaminated subsurface environment.

    PubMed

    Venkatramanan, Raghavee; Prakash, Om; Woyke, Tanja; Chain, Patrick; Goodwin, Lynne A; Watson, David; Brooks, Scott; Kostka, Joel E; Green, Stefan J

    2013-01-01

    Genome sequences for three strains of denitrifying bacteria (Alphaproteobacteria-Afipia sp. strain 1NLS2 and Hyphomicrobium denitrificans strain 1NES1; Firmicutes-Bacillus sp. strain 1NLA3E) isolated from the nitrate- and uranium-contaminated subsurface of the Oak Ridge Integrated Field Research Challenge (ORIFRC) site, Oak Ridge Reservation, TN, are reported. PMID:23833140

  5. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure.

    PubMed

    Kang, Yijun; Shen, Min; Wang, Huanli; Zhao, Qingxin

    2013-01-01

    According to the traditional view, establishment and maintenance of critical population densities in the rhizosphere was the premise of PGPR to exert growth-promoting effects. In light of the facts that soil bacterial community structures can be changed by some PGPR strains including Bacillus pumilus WP8, we hypothesize that regulation of soil bacterial community structure is one of the plant growth-promoting mechanisms of B. pumilus WP8, rather than depending on high-density cells in soil. In this study, denaturing gradient gel electrophoresis (PCR-DGGE) was performed to evaluate the relationship between changes in soil bacterial community structure and growth-promoting effect on the seedling growth of fava beans (Vicia faba L.) during three successive cultivations. We found that B. pumilus WP8 lacks capacity to reproduce in large enough numbers to survive in bulk soil more than 40 days, yet the bacterial community structures were gradually influenced by inoculation of WP8, especially on dominant populations. Despite WP8 being short-lived, it confers the ability of steadily promoting fava bean seedling growth on soil during the whole growing period for at least 90 days. Pseudomonas chlororaphis RA6, another tested PGPR strain, exists in large numbers for at least 60 days but less than 90 days, whilst giving rise to slight influence on bacterial community structure. In addition, along with the extinction of RA6 cells in bulk soils, the effect of growth promotion disappeared simultaneously. Furthermore, the increment of soil catalase activity from WP8 treatment implied the ability to stimulate soil microbial activity, which may be the reason why the dominant population changed and increased as time passed. Our study suggests that regulation of treated soil bacterial community structure may be another possible action mechanism.

  6. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure.

    PubMed

    Kang, Yijun; Shen, Min; Wang, Huanli; Zhao, Qingxin

    2013-01-01

    According to the traditional view, establishment and maintenance of critical population densities in the rhizosphere was the premise of PGPR to exert growth-promoting effects. In light of the facts that soil bacterial community structures can be changed by some PGPR strains including Bacillus pumilus WP8, we hypothesize that regulation of soil bacterial community structure is one of the plant growth-promoting mechanisms of B. pumilus WP8, rather than depending on high-density cells in soil. In this study, denaturing gradient gel electrophoresis (PCR-DGGE) was performed to evaluate the relationship between changes in soil bacterial community structure and growth-promoting effect on the seedling growth of fava beans (Vicia faba L.) during three successive cultivations. We found that B. pumilus WP8 lacks capacity to reproduce in large enough numbers to survive in bulk soil more than 40 days, yet the bacterial community structures were gradually influenced by inoculation of WP8, especially on dominant populations. Despite WP8 being short-lived, it confers the ability of steadily promoting fava bean seedling growth on soil during the whole growing period for at least 90 days. Pseudomonas chlororaphis RA6, another tested PGPR strain, exists in large numbers for at least 60 days but less than 90 days, whilst giving rise to slight influence on bacterial community structure. In addition, along with the extinction of RA6 cells in bulk soils, the effect of growth promotion disappeared simultaneously. Furthermore, the increment of soil catalase activity from WP8 treatment implied the ability to stimulate soil microbial activity, which may be the reason why the dominant population changed and increased as time passed. Our study suggests that regulation of treated soil bacterial community structure may be another possible action mechanism. PMID:24005176

  7. [Biotypes and antibiotic resistance patterns of Gardnerella vaginalis strains isolated from healthy women and women with bacterial vaginosis].

    PubMed

    Tosun, Ilknur; Alpay Karaoğlu, Sengül; Ciftçi, Hasan; Buruk, Celal Kurtuluş; Aydin, Faruk; Kiliç, Ali Osman; Ertürk, Murat

    2007-01-01

    As Gardnerella vaginalis is accepted as a member of normal vaginal flora, it is one of the dominant species which has been related to bacterial vaginosis (BV). The aim of this study was to determine the isolation rate, biotypes and antibiotic resistance patterns of G.vaginalis from the vaginal swab samples of 408 women who were admitted to the outpatient clinics of Family Planning Center. Hippurate hydrolysis, lipase and beta-galactosidase tests were performed for biotyping the isolates, and agar dilution (for metronidazole) and disk diffusion (for clindamycin) tests were used for the detection of antibiotic resistance patterns. As a result, by Nugent's BV scoring protocol, 122 (29.9%), 20 (29.4%), 137 (33.6%), and 18 (4.4%) of the women were diagnosed as BV, intermediate form, normal vaginal flora (NVF) and mycotic vaginosis, respectively. The overall isolation rate of G.vaginalis was found as 23% (94/408). Of them, 56.4% (53/94) and 8.5% (8/94) were isolated from samples of BV cases and subjects with NVF, respectively, and the difference was statistically significant (p<0.05). The biotyping results showed that the most frequently detected types were biotype 1 (44%), 5 (20%) and 4 (18%). There was no statistically significant difference between the biotype distribution of BV patients and the subjects who have NVF (p=0.687). The results of antibiotic susceptibility tests indicated that 70% and 53% of the isolates were resistant to metronidazole and clindamycin, respectively. It was of interest that MIC values for metronidazole was > or =128 microg/ml in 57% of resistant strains. The data of this study has emphasized that the metronidazole resistance is very high in our population, and the large scale studies are needed to clarify the relationship between BV and G.vaginalis biotypes, which can be found in the normal vaginal flora.

  8. Aerobic bacterial, coliform, Escherichia coli and Staphylococcus aureus counts of raw and processed milk from selected smallholder dairy farms of Zimbabwe.

    PubMed

    Mhone, Tryness A; Matope, Gift; Saidi, Petronella T

    2011-12-01

    A cross sectional study was conducted to enumerate total viable bacteria (TBC), coliforms, Escherichia coli and Staphylococcus aureus in raw (n=120) and processed (n=20) milk from individual farms from three smallholder dairy schemes of Zimbabwe between October, 2009 and February, 2010. Data on management factors were collected using a structured questionnaire. A standard pour plate technique was used to enumerate total viable bacteria, while for coliforms, E. coli and S. aureus, counts were assessed by the spread plate technique. The association of total viable bacterial counts and management factors was assessed using univariable and a linear regression model. The log₁₀ TBC for raw milk differed significantly (P<0.05) amongst the schemes with the lowest (5.6±4.7 log₁₀ cfu/ml) and highest (6.7±5.8 log₁₀ cfu/ml) recorded from Marirangwe and Nharira respectively. The mean log₁₀ of TBC of processed milk (6.6±6.0 log₁₀ cfu/ml) were marginally higher than those of raw milk (6.4±5.6 log₁₀ cfu/ml) but not significant (P>0.05). The coliform, E. coli and S. aureus counts for raw milk significantly differed (P<0.05) amongst the study areas. The variation in TBC, coliforms, E. coli and S. aureus counts amongst the schemes could be attributed to differences in milking hygiene where farms with more access to training and monitoring of microbiological quality of milk had lower counts. Linear regression analysis revealed dairy scheme, delivery time and season of milking as independently associated with increased TBC of raw milk. The high TBC of raw and processed milk generally indicated low levels of milking hygienic practices, and high level of post-processing contamination, respectively. The high TBC, coliform, E. coli and S. aureus counts of both raw and processed milk may present a public health hazard. Thus, educating the farmers on general hygienic practices, quickening the delivery of milk to collection centres, or availing cooling facilities

  9. Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater.

    PubMed

    Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Andaya, Christina; Vainberg, Simon; Michalsen, Mandy M; Crocker, Fiona H; Indest, Karl J; Jung, Carina M; Eaton, Hillary; Istok, Jonathan D

    2015-02-01

    The potential for bioaugmentation with aerobic explosive degrading bacteria to remediate hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated aquifers was demonstrated. Repacked aquifer sediment columns were used to examine the transport and RDX degradation capacity of the known RDX degrading bacterial strains Gordonia sp. KTR9 (modified with a kanamycin resistance gene) Pseudomonas fluorescens I-C, and a kanamycin resistant transconjugate Rhodococcus jostii RHA1 pGKT2:Km+. All three strains were transported through the columns and eluted ahead of the conservative bromide tracer, although the total breakthrough varied by strain. The introduced cells responded to biostimulation with fructose (18 mg L(-1), 0.1 mM) by degrading dissolved RDX (0.5 mg L(-1), 2.3 µM). The strains retained RDX-degrading activity for at least 6 months following periods of starvation when no fructose was supplied to the column. Post-experiment analysis of the soil indicated that the residual cells were distributed along the length of the column. When the strains were grown to densities relevant for field-scale application, the cells remained viable and able to degrade RDX for at least 3 months when stored at 4 °C. These results indicate that bioaugmentation may be a viable option for treating RDX in large dilute aerobic plumes. PMID:25503243

  10. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, M; Frey-Klett, P; Boutin, M; Guillerm-Erckelboudt, A-Y; Martin, F; Guillot, L; Sarniguet, A

    2009-01-01

    In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact. PMID:19121038

  11. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  12. Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits

    PubMed Central

    Eckshtain-Levi, Noam; Shkedy, Dafna; Gershovits, Michael; Da Silva, Gustavo M.; Tamir-Ariel, Dafna; Walcott, Ron; Pupko, Tal; Burdman, Saul

    2016-01-01

    Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35–120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs’ analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between

  13. Risk factors for mortality in patients with bloodstream infections caused by carbapenem-resistant Pseudomonas aeruginosa: clinical impact of bacterial virulence and strains on outcome.

    PubMed

    Jeong, Su Jin; Yoon, Sang Sun; Bae, Il Kwon; Jeong, Seok Hoon; Kim, June Myung; Lee, Kyungwon

    2014-10-01

    The incidence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) bacteremia has increased in recent years, and infections caused by CRPA result in higher mortality than those caused by susceptible strains. This study was performed to evaluate the risk factors for mortality and to study the impact of virulence factors and bacterial strains on clinical outcomes in patients with CRPA bacteremia. Data on 63 episodes of CRPA bacteremia that have occurred between January 1, 2007, and December 31, 2009, in a teaching hospital (2000 beds) in Seoul, Korea, were analyzed. The Acute Physiology and Chronic Health Evaluation II (APACHE II) score at the time of CRPA bacteremia and the capacity of CRPA to form biofilm were independent predictive factors for mortality in patients with CRPA bacteremia. In addition, the biofilm-forming ability and elastase activity of strains were correlated with APACHE II scores to measure the severity of disease and estimate predicted mortality in the patients.

  14. Isolation and characterization of a cold-resistant PCB209-degrading bacterial strain from river sediment and its application in bioremediation of contaminated soil.

    PubMed

    Qiu, Liping; Wang, Hu; Wang, Xuntao

    2016-01-01

    A cold-resistant bacterium (strain QL) that can degrade 2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl (PCB209) was isolated from Wei-he River sediment. Strain QL was identified as a rod-shaped gram-negative bacterial strain, which was further identified as Comamonas testosteroni. C. testosteroni has never been reported to be capable of degrading PCB209 at low temperatures. In this study, the degradation characteristics showed that strain QL could grow with PCB209 as the sole carbon source at low temperatures (10 ± 0.5 °C). More significantly, strain QL of 40% inoculation volume was able to completely degrade PCB209 in 140 h (initial concentration of PCB209 was 100-500 µg L(-1) at 10 ± 0.5 °C and pH 7-8). The degradation process proceeded with zero-order reaction kinetics. Moreover, both laboratory simulation and real-world field experiments demonstrated that strain QL was effective in practical applications of PCB209 biodegradation in contaminated soil.

  15. Exploration and grading of possible genes from 183 bacterial strains by a common protocol to identification of new genes: Gene Trek in Prokaryote Space (GTPS).

    PubMed

    Kosuge, Takehide; Abe, Takashi; Okido, Toshihisa; Tanaka, Naoto; Hirahata, Masaki; Maruyama, Yutaka; Mashima, Jun; Tomiki, Aki; Kurokawa, Motoyoshi; Himeno, Ryutaro; Fukuchi, Satoshi; Miyazaki, Satoru; Gojobori, Takashi; Tateno, Yoshio; Sugawara, Hideaki

    2006-12-31

    A large number of complete microorganism genomes has been sequenced and submitted to the public database and then incorporated into our complete genome database, Genome Information Broker (GIB, http://gib.genes.nig.ac.jp/). However, when comparative genomics is carried out, researchers must be aware that there are protein-coding genes not confirmed by homology or motif search and that reliable protein-coding genes are missing. Therefore, we developed a protocol (Gene Trek in Prokaryote Space, GTPS) for finding possible protein-coding genes in bacterial genomes. GTPS assigns a degree of reliability to predicted protein-coding genes. We first systematically applied the protocol to the complete genomes of all 123 bacterial species and strains that were publicly available as of July 2003, and then to those of 183 species and strains available as of September 2004. We found a number of incorrect genes and several new ones in the genome data in question. We also found a way to estimate the total number of orthologous genes in the bacterial world.

  16. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  17. Thermal resistance of thirty strains of Salmonella in liquid whole egg: are the optimal bacterial strains being used in challenge studies?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Bacterial inactivation studies are conducted to determine the survival of a target pathogen, such as Salmonella, to any number of intervention treatments (e.g., high pressure, antimicrobials, UV light, gamma irradiation, heat, etc.). Resistance of a species of pathogen, such as Salmo...

  18. Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques

    NASA Astrophysics Data System (ADS)

    Raimondi, Valentina; Palombi, Lorenzo; Cecchi, Giovanna; Lognoli, David; Trambusti, Massimo; Gomoiu, Ioana

    2007-05-01

    Remotely sensed laser-induced autofluorescence spectra of pure cultures of fungal strains ( Aureobasidium pullulans, Verticillium sp.) and of bacterial strains ( Bacillus sp., Pseudomonas sp.) are presented. The strains were isolated from samples collected in a Roman archaeological site ( Tropaeum Traiani) near Constanta, Romania. The fluorescence spectra were detected in vivo from a distance of 25 m in the outdoor, using a high spectral resolution fluorescence LIDAR featuring a UV laser (XeCl@308 nm) as an excitation source. All the examined strains, except for the A. pullulans, showed fluorescence features such to allow their characterisation by processing data with multivariate techniques. Both Principal Component Analysis and Cluster Analysis were applied to the data set and compared to discriminate between the examined strains. Results demonstrate the feasibility of fluorescence-based detection and characterisation of fungi and bacteria in the outdoor with a high spectral resolution fluorescence LIDAR. In addition, they show that the proposed processing methods offer a means to discriminate between the fluorescence features due to the investigated samples and that of a fluorescence background of a known spectral shape, as that of the culture medium. This can be exploited for the remote fluorescence mapping of heterotrophic organisms on stone surfaces when the latter show a typical broad fluorescence band.

  19. Opportunistic bacterial infections in breeding colonies of the NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse strain

    PubMed Central

    foreman, Oded; Kavirayani, Anoop M; Griffey, Stephen M; Reader, Rachel; Shultz, Leonard D

    2011-01-01

    Spontaneous morbidity primarily affecting female breeders in three independent breeding colonies of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice prompted an investigation to uncover the cause of disease. Necropsies were performed on 264 (157 female and 107 male) spontaneously sick, experimentally unmanipulated NSG mice. 42 (15.9%) of the mice had acute or chronic renal inflammatory lesions. 12 of the mice with nephritis had concurrent histologic evidence of an ascending urinary tract infection. From 94 kidneys cultured for bacterial organisms, 23 (24.4%) grew Enterococcus species and 19 (20%) grew Klebsiella Oxytoca. Female mice were twice more likely to present with nephritis than males. These findings indicate that bacterial nephritis is a major contributor to morbidity in the NSG strain. PMID:20817888

  20. Comprehensive analysis of aerobic and anaerobic bacteria found on dental bib clips.

    PubMed

    Alt-Holland, Addy; Murphy, Christina M; Powers, Anne; Kublin, Claire L; Jeong, Youjin Natalie; DiMattia, Michelle; Pham, Linh; Park, Angel; Finkelman, Matthew; Lombard, Maureen; Hanley, James B; Paster, Bruce J; Kugel, Gerard

    2013-04-01

    Multiple-use dental bib clips are considered to present relatively low risks for transmitting infections and, thus, are thought to only require disinfection between patient visits. This study was designed to: 1) determine the presence and composition of bacterial contaminants on reusable rubber-faced metal bib clips after dental treatment at the hygiene clinic at Tufts University School of Dental Medicine and 2) evaluate the effectiveness of the disinfection for this clip type. Aerobic and anaerobic bacterial contaminant loads on the surfaces of the clips were investigated immediately after hygiene treatments were rendered and again after clips were disinfected. The species and strains of bacterial isolates were identified using 16S rDNA sequencing and Human Oral Microbe Identification Microarray analyses. The results demonstrated that although the use of disinfection proved to be significantly effective, some clips retained at least one bacterium on their surfaces after disinfection. Although the bacterial species present on disinfected clips were typical skin or environmental isolates, some were oral in origin. In the study's settings, bacterial presence on the clips did not indicate an infectious disease problem. The different bacterial loads on clips suggest that cross-contamination risks may not be the same for all clinics, and that this difference may be related to the type of treatments and services performed.

  1. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis.

    PubMed

    Auffret, Marc D; Yergeau, Etienne; Labbé, Diane; Fayolle-Guichard, Françoise; Greer, Charles W

    2015-03-01

    A bacterial consortium (Mix3) composed of microorganisms originating from different environments (soils and wastewater) was obtained after enrichment in the presence of a mixture of 16 hydrocarbons, gasoline, and diesel oil additives. After addition of the mixture, the development of the microbial composition of Mix3 was monitored at three different times (35, 113, and 222 days) using fingerprinting method and dominant bacterial species were identified. In parallel, 14 bacteria were isolated after 113 days and identified. Degradation capacities for Mix3 and the isolated bacterial strains were characterized and compared. At day 113, we induced the expression of catabolic genes in Mix3 by adding the substrate mixture to resting cells and the metatranscriptome was analyzed. After addition of the substrate mixture, the relative abundance of Actinobacteria increased at day 222 while a shift between Rhodococcus and Mycobacterium was observed after 113 days. Mix3 was able to degrade 13 compounds completely, with partial degradation of isooctane and 2-ethylhexyl nitrate, but tert-butyl alcohol was not degraded. Rhodococcus wratislaviensis strain IFP 2016 isolated from Mix3 showed almost the same degradation capacities as Mix3: these results were not observed with the other isolated strains. Transcriptomic results revealed that Actinobacteria and in particular, Rhodococcus species, were major contributors in terms of total and catabolic gene transcripts while other species were involved in cyclohexane degradation. Not all the microorganisms identified at day 113 were active except R. wratislaviensis IFP 2016 that appeared to be a major player in the degradation activity observed in Mix3.

  2. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sagitova, A.; Yaminsky, I.; Meshkov, G.

    2016-08-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope.

  3. Basic vaginal pH, bacterial vaginosis and aerobic vaginitis: prevalence in early pregnancy and risk of spontaneous preterm delivery, a prospective study in a low socioeconomic and multiethnic South American population

    PubMed Central

    2014-01-01

    Background Bacterial vaginosis (BV) increases the risk of spontaneous preterm deliveries (PD) in developed countries. Its prevalence varies with ethnicity, socioeconomic conditions and gestational age. Aerobic vaginitis (AV) has also been implicated with spontaneous PD. The present study aimed to estimate the prevalence of asymptomatic BV, the accuracy of vaginal pH level to predict BV and to estimate the risk of spontaneous PD <34 and <37 weeks’ gestation of BV and AV. Methods Women attending prenatal public services in Rio de Janeiro were screened to select asymptomatic pregnant women, < 20 weeks’ gestation, with no indication for elective PD and without risk factors of spontaneous PD. Vaginal smears of women with vaginal pH > = 4.5 were collected to determine the Nugent score; a sample of those smears was also classified according to a modified Donders’ score. Primary outcomes were spontaneous PD < 34 and <37 weeks’ gestation and abortion. Results Prevalence of asymptomatic BV was estimated in 28.1% (n = 1699); 42.4% of the smears were collected before 14 weeks’ gestation. After an 8-week follow up, nearly 40% of the initially BV positive women became BV negative. The prevalence of BV among white and black women was 28.1% (95% CI: 24.6%-32.0%) and 32.5% (95% CI: 28.2%-37.2%), respectively. The sensitivity of vaginal pH= > 4.5 and = > 5.0 to predict BV status was 100% and 82%, correspondingly; the 5.0 cutoff value doubled the specificity, from 41% to 84%. The incidence of < 37 weeks’ spontaneous PDs among BV pregnant women with a pH= > 4.5 was 3.8%. The RR of spontaneous PD < 34 and <37 weeks among BV women with pH > =4.5, as compared with those with intermediate state, were 1.24 and 1.86, respectively (Fisher’s exact test, p value = 1; 0.52, respectively, both ns). No spontaneous case of PD or abortion was associated with severe or moderate AV. Conclusions A high prevalence of asymptomatic BV was

  4. Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae

    PubMed Central

    Johnson, Michael D. L.; Kehl-Fie, Thomas E.; Rosch, Jason W.

    2015-01-01

    Copper is universally toxic in excess, a feature exploited by the human immune system to facilitate bacterial clearance. The mechanism of copper intoxication remains unknown for many bacterial species. Here, we demonstrate that copper toxicity in Streptococcus pneumoniae is independent from oxidative stress but, rather, is the result of copper inhibiting the aerobic dNTP biosynthetic pathway. Furthermore, we show that copper-intoxicated S. pneumoniae is rescued by manganese, which is an essential metal in the aerobic nucleotide synthesis pathway. These data provide insight into new targets to enhance copper-mediated toxicity during bacterial clearance. PMID:25730343

  5. Bacterial survival, lymph node pathology, and serological responses of bison (Bison bison) vaccinated with Brucella abortus strain RB51 or strain 19.

    PubMed

    Olsen, S C; Cheville, N F; Kunkle, R A; Palmer, M V; Jensen, A E

    1997-01-01

    From August 1993 to June 1994, 3 month-old bison (Bison bison) were vaccinated with Brucella abortus strain RB51 (SRB51, n = 6), strain 19 (S19, n = 3), or with saline (n = 1) and serologic responses and persistence of vaccine strains within lymph nodes were monitored. Bison vaccinated with S19 had granulomatous lymphadenitis and greater peak numbers of B. abortus than those vaccinated with SRB51. Bison vaccinated with RB51 had similar histological lesions and B. abortus were still present in lymph nodes at 16 weeks. Although antibodies against RB51 were produced, standard tube agglutination test responses of RB51-vaccinates remained negative. The histological lesions of B. abortus infections in bison were similar to those observed in cattle, but bison did not clear SRB51 as rapidly as cattle.

  6. Introduction of mercury resistant bacterial strains to Hg(II) amended soil microcosms increases the resilience of the natural microbial community to mercury stress

    SciTech Connect

    de Lipthay, Julia R.; Rasmussen, Lasse D.; Serensen, Soren J.

    2004-03-17

    Heavy metals are among the most important groups of pollutant compounds, and they are highly persistent in the soil environment. Techniques that can be used for the remediation of heavy metal contaminated environments thus need to be evolved. In the present study we evaluated the effect of introducing a Hg resistance plasmid in subsurface soil communities. This was done in microcosms with DOE subsurface soils amended with 5-10 ppm of HgCl2. Two microcosms were set up. In microcosm A we studied the effect of adding strain S03539 containing either the Hg resistance conjugative plasmid, pJORD 70, or the Hg resistance mobilizable plasmid, pPB117. In microcosm B we studied the effect of adding strain KT2442 with and without pJORD70. For both microcosms, the effect on the resilience of the indigenous bacterial community as well as the effect on the soil concentration of Hg was evaluated.

  7. Comparative Analysis of the Effects of Two Probiotic Bacterial Strains on Metabolism and Innate Immunity in the RAW 264.7 Murine Macrophage Cell Line.

    PubMed

    Pradhan, Biswaranjan; Guha, Dipanjan; Ray, Pratikshya; Das, Debashmita; Aich, Palok

    2016-06-01

    Probiotic and potential probiotic bacterial strains are routinely prescribed and used as supplementary therapy for a variety infectious diseases, including enteric disorders among a wide range of individuals. While there are an increasing number of studies defining the possible mechanisms of probiotic activity, a great deal remains unknown regarding the diverse modes of action attributed to these therapeutic agents. More precise information is required to support the appropriate application of probiotics. To address this objective, we selected two probiotics strains, Lactobacillus acidophilus MTCC-10307 (LA) and Bacillus clausii MTCC-8326 (BC) that are frequently prescribed for the treatment of intestinal disorders and investigated their effects on the RAW 264.7 murine macrophage cell line. Our results reveal that LA and BC are potent activators of both metabolic activity and innate immune responses in these cells. We also observed that LA and BC possessed similar activity in preventing infection simulated in vitro in murine macrophages by Salmonella typhimurium serovar enterica. PMID:27038159

  8. Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam.

    PubMed

    Van-Thuoc, Doan; Huu-Phong, Tran; Thi-Binh, Nguyen; Thi-Tho, Nguyen; Minh-Lam, Duong; Quillaguamán, Jorge

    2012-12-01

    This research article reports halophilic and halotolerant bacteria isolated from mangrove forests located in Northern Vietnam. Several of these bacteria were able to synthesize polyhydroxyalkanoates (PHAs). PHAs are polyesters stored by microorganisms under the presence of considerable amounts of a carbon source and deficiency of other essential nutrient such as nitrogen or phosphorous. Mangrove forests in Northern Vietnam are saline coastal habitats that have not been microbiologically studied. Mangrove ecosystems are, in general, rich in organic matter, but deficient in nutrients such as nitrogen and phosphorus. We have found about 100 microorganisms that have adapted to mangrove forests by accumulating PHAs. The production of polyesters might therefore be an integral part of the carbon cycle in mangrove forests. Three of the strains (ND153, ND97, and QN194) isolated from the Vietnamese forests were identified as Bacillus species, while other five strains (QN187, ND199, ND218, ND240, and QN271) were phylogenetically close related to the α-proteobacterium Yangia pacifica. These strains were found to accumulate PHAs in noticeable amounts. Polymer inclusions and chemical structure were studied by transmission electron microscopy and proton nuclear magnetic resonance (NMR) spectroscopy analyses, respectively. Strains ND153, ND97, QN194, QN187, ND240, and QN271 synthesized poly(3-hydroxybutyrate) (PHB) from glucose, whereas strains ND199 and ND218 synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from this carbohydrate. With the exception of strain QN194, the strains accumulated PHBV when a combination of glucose and propionate was included in the culture medium. The polymer yields and cell growth reached by one Bacillus isolate, strain ND153, and one Gram-negative bacterium, strain QN271, were high and worth to be researched further. For experiments performed in shake flasks, strain ND153 reached a maximum PHBV yield of 71 wt% and a cell dry weight

  9. Biodegradation of furfural by Bacillus subtilis strain DS3.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Lv, Quanxi

    2015-07-01

    An aerobic bacterial strain DS3, capable of growing on furfural as sole carbon source, was isolated from actived sludge of wastewater treatment plant in a diosgenin factory after enrichment. Based on morphological physiological tests as well as 16SrDNA sequence and Biolog analyses it was identified as Bacillus subtilis. The study revealed that strain DS3 utilized furfural, as analyzed by high-performance liquid chromatography (HPLC). Under following conditions: pH 8.0, temperature 35 degrees C, 150 rpm and 10% inoculum, strain DS3 showed 31.2% furfural degradation. Furthermore, DS3 strain was found to tolerate furfural concentration as high as 6000 mg(-1). The ability of Bacillus subtilis strain DS3 to degrade furfural has been demonstrated for the first time in the present study.

  10. Biodegradation of furfural by Bacillus subtilis strain DS3.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Lv, Quanxi

    2015-07-01

    An aerobic bacterial strain DS3, capable of growing on furfural as sole carbon source, was isolated from actived sludge of wastewater treatment plant in a diosgenin factory after enrichment. Based on morphological physiological tests as well as 16SrDNA sequence and Biolog analyses it was identified as Bacillus subtilis. The study revealed that strain DS3 utilized furfural, as analyzed by high-performance liquid chromatography (HPLC). Under following conditions: pH 8.0, temperature 35 degrees C, 150 rpm and 10% inoculum, strain DS3 showed 31.2% furfural degradation. Furthermore, DS3 strain was found to tolerate furfural concentration as high as 6000 mg(-1). The ability of Bacillus subtilis strain DS3 to degrade furfural has been demonstrated for the first time in the present study. PMID:26387346

  11. Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems.

    PubMed

    Sood, Nitu; Lal, Banwari

    2008-02-01

    Paraffin deposition problems, that have plagued the oil industry, are currently remediated by mechanical and chemical means. However, since these methods are problematic, a microbiological approach has been considered. The bacteria, required for the mitigation of paraffin deposition problems, should be able to survive the high temperatures of oil wells and degrade the paraffins under low oxygen and nutrient conditions while sparing the low carbon chain paraffins. In this study, a thermophilic paraffinic wax degrading bacterial strain was isolated from a soil sample contaminated with paraffinic crude oil. The selected strain, Geobacillus TERI NSM, could degrade 600mg of paraffinic wax as the sole carbon source in 1000ml minimal salts medium in 7d at 55 degrees C. This strain was identified as Geobacillus kaustophilus by fatty acid methyl esters analysis and 16S rRNA full gene sequencing. G. kaustophilus TERI NSM showed 97% degradation of eicosane, 85% degradation of pentacosane and 77% degradation of triacontane in 10d when used as the carbon source. The strain TERI NSM could also degrade the paraffins of crude oil collected from oil wells that had a history of paraffin deposition problems.

  12. Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems.

    PubMed

    Sood, Nitu; Lal, Banwari

    2008-02-01

    Paraffin deposition problems, that have plagued the oil industry, are currently remediated by mechanical and chemical means. However, since these methods are problematic, a microbiological approach has been considered. The bacteria, required for the mitigation of paraffin deposition problems, should be able to survive the high temperatures of oil wells and degrade the paraffins under low oxygen and nutrient conditions while sparing the low carbon chain paraffins. In this study, a thermophilic paraffinic wax degrading bacterial strain was isolated from a soil sample contaminated with paraffinic crude oil. The selected strain, Geobacillus TERI NSM, could degrade 600mg of paraffinic wax as the sole carbon source in 1000ml minimal salts medium in 7d at 55 degrees C. This strain was identified as Geobacillus kaustophilus by fatty acid methyl esters analysis and 16S rRNA full gene sequencing. G. kaustophilus TERI NSM showed 97% degradation of eicosane, 85% degradation of pentacosane and 77% degradation of triacontane in 10d when used as the carbon source. The strain TERI NSM could also degrade the paraffins of crude oil collected from oil wells that had a history of paraffin deposition problems. PMID:17942139

  13. Aerobic and anaerobic microbial degradation of crude (4-methylcyclohexyl)methanol in river sediments.

    PubMed

    Yuan, Li; Zhi, Wei; Liu, Yangsheng; Smiley, Elizabeth; Gallagher, Daniel; Chen, Xi; Dietrich, Andrea; Zhang, Husen

    2016-03-15

    Cyclohexane and some of its derivatives have been a major concern because of their significant adverse human health effects and widespread occurrence in the environment. The 2014 West Virginia chemical spill has raised public attention to (4-methylcyclohexyl)methanol (4-MCHM), one cyclohexane derivative, which is widely used in coal processing but largely ignored. In particular, the environmental fate of its primary components, cis- and trans-4-MCHM, remains largely unexplored. This study aimed to investigate the degradation kinetics and mineralization of cis- and trans-4-MCHM by sediment microorganisms under aerobic and anaerobic conditions. We found the removal of cis- and trans-4-MCHM was mainly attributed to biodegradation with little contribution from sorption. A nearly complete aerobic degradation of 4-MCHM occurred within 14 days, whereas the anaerobic degradation was reluctant with residual percentages of 62.6% of cis-4-MCHM and 85.0% of trans-4-MCHM after 16-day incubation. The cis-4-MCHM was degraded faster than the trans under both aerobic and anaerobic conditions, indicating an isomer-specific degradation could occur during the 4-MCHM degradation. Nitrate addition enhanced 4-MCHM mineralization by about 50% under both aerobic and anaerobic conditions. Both cis- and trans-4-MCHM fit well with the first-order kinetic model with respective degradation rates of 0.46-0.52 and 0.19-0.31 day(-)(1) under aerobic condition. Respective degradation rates of 0.041-0.095 and 0.013-0.052 day(-)(1) occurred under anaerobic condition. One bacterial strain capable of effectively degrading 4-MCHM isomers was isolated from river sediments and identified as Bacillus pumilus at the species level based on 16S rRNA gene sequence and 97% identity. Our findings will provide critical information for improving the prediction of the environmental fate of 4-MCHM and other cyclohexane derivatives with similar structure as well as enhancing the development of feasible treatment

  14. Aerobic and anaerobic microbial degradation of crude (4-methylcyclohexyl)methanol in river sediments.

    PubMed

    Yuan, Li; Zhi, Wei; Liu, Yangsheng; Smiley, Elizabeth; Gallagher, Daniel; Chen, Xi; Dietrich, Andrea; Zhang, Husen

    2016-03-15

    Cyclohexane and some of its derivatives have been a major concern because of their significant adverse human health effects and widespread occurrence in the environment. The 2014 West Virginia chemical spill has raised public attention to (4-methylcyclohexyl)methanol (4-MCHM), one cyclohexane derivative, which is widely used in coal processing but largely ignored. In particular, the environmental fate of its primary components, cis- and trans-4-MCHM, remains largely unexplored. This study aimed to investigate the degradation kinetics and mineralization of cis- and trans-4-MCHM by sediment microorganisms under aerobic and anaerobic conditions. We found the removal of cis- and trans-4-MCHM was mainly attributed to biodegradation with little contribution from sorption. A nearly complete aerobic degradation of 4-MCHM occurred within 14 days, whereas the anaerobic degradation was reluctant with residual percentages of 62.6% of cis-4-MCHM and 85.0% of trans-4-MCHM after 16-day incubation. The cis-4-MCHM was degraded faster than the trans under both aerobic and anaerobic conditions, indicating an isomer-specific degradation could occur during the 4-MCHM degradation. Nitrate addition enhanced 4-MCHM mineralization by about 50% under both aerobic and anaerobic conditions. Both cis- and trans-4-MCHM fit well with the first-order kinetic model with respective degradation rates of 0.46-0.52 and 0.19-0.31 day(-)(1) under aerobic condition. Respective degradation rates of 0.041-0.095 and 0.013-0.052 day(-)(1) occurred under anaerobic condition. One bacterial strain capable of effectively degrading 4-MCHM isomers was isolated from river sediments and identified as Bacillus pumilus at the species level based on 16S rRNA gene sequence and 97% identity. Our findings will provide critical information for improving the prediction of the environmental fate of 4-MCHM and other cyclohexane derivatives with similar structure as well as enhancing the development of feasible treatment

  15. Evaluation of assembling methods on determination of whole genome sequence of Xylella fastidiosa blueberry bacterial leaf scorch strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry bacterial leaf scorch (BBLS) disease, a threat to blueberry production in the Southern USA and potentially elsewhere, is caused by Xylella fastidiosa. Efficient control of BBLS requires knowledge of the pathogen. However, this is challenging because Xylella fastidiosa is difficult to cultu...

  16. Cloning of a very virulent plus, 686 strain of Marek’s disease virus as a bacterial artificial chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial artificial chromosome (BAC) vectors were first developed to facilitate propagation and manipulation of large DNA fragments. This technology was later used to clone full-length genomes of large DNA viruses to study viral gene function. Marek’s disease virus (MDV) is a highly oncogenic herpe...

  17. Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity.

    PubMed

    Jalan, Neha; Aritua, Valente; Kumar, Dibyendu; Yu, Fahong; Jones, Jeffrey B; Graham, James H; Setubal, João C; Wang, Nian

    2011-11-01

    Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity.

  18. Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity.

    PubMed

    Jalan, Neha; Aritua, Valente; Kumar, Dibyendu; Yu, Fahong; Jones, Jeffrey B; Graham, James H; Setubal, João C; Wang, Nian

    2011-11-01

    Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity. PMID:21908674

  19. Comparative Genomic Analysis of Xanthomonas axonopodis pv. citrumelo F1, Which Causes Citrus Bacterial Spot Disease, and Related Strains Provides Insights into Virulence and Host Specificity ▿ #

    PubMed Central

    Jalan, Neha; Aritua, Valente; Kumar, Dibyendu; Yu, Fahong; Jones, Jeffrey B.; Graham, James H.; Setubal, João C.; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity. PMID:21908674

  20. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    PubMed

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  1. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    PubMed

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment. PMID:25432342

  2. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce

    PubMed Central

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 106 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  3. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    PubMed

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6) colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  4. Biomimetic Synthesis of Selenium Nanospheres by Bacterial Strain JS-11 and Its Role as a Biosensor for Nanotoxicity Assessment: A Novel Se-Bioassay

    PubMed Central

    Dwivedi, Sourabh; AlKhedhairy, Abdulaziz A.; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO32−) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO32− to insoluble red elemental selenium (Se0) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO32− to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO32− to elemental red Se0, a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO32− bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point. PMID:23483909