Science.gov

Sample records for aerobic bench scale

  1. Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment.

    PubMed

    Daghio, Matteo; Tatangelo, Valeria; Franzetti, Andrea; Gandolfi, Isabella; Papacchini, Maddalena; Careghini, Alessandro; Sezenna, Elena; Saponaro, Sabrina; Bestetti, Giuseppina

    2015-07-01

    BTEX compounds (benzene, toluene, ethylbenzene and xylenes) and methyl tert-butyl ether (MTBE) are some of the main constituents of gasoline and can be accidentally released in the environment. In this work the effect of bioaugmentation on the microbial communities in a bench scale aerobic biobarrier for gasoline contaminated water treatment was studied by 16S rRNA gene sequencing. Catabolic genes (tmoA and xylM) were quantified by qPCR, in order to estimate the biodegradation potential, and the abundance of total bacteria was estimated by the quantification of the number of copies of the 16S rRNA gene. Hydrocarbon concentration was monitored over time and no difference in the removal efficiency for the tested conditions was observed, either with or without the microbial inoculum. In the column without the inoculum the most abundant genera were Acidovorax, Bdellovibrio, Hydrogenophaga, Pseudoxanthomonas and Serpens at the beginning of the column, while at the end of the column Thauera became dominant. In the inoculated test the microbial inoculum, composed by Rhodococcus sp. CE461, Rhodococcus sp. CT451 and Methylibium petroleiphilum LMG 22953, was outcompeted. Quantitative PCR results showed an increasing in xylM copy number, indicating that hydrocarbon degrading bacteria were selected during the treatment, although only a low increase of the total biomass was observed. However, the bioaugmentation did not lead to an increase in the degradative potential of the microbial communities.

  2. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  3. Modeling a bench-scale alternating aerobic/anoxic activated sludge system for nitrogen removal using a modified ASM1.

    PubMed

    Kim, Hyunook; Noh, Soohong; Colosimo, Mark

    2009-07-01

    The Activated Sludge Model No. 1 (ASM1), developed by The International Association of Water Pollution Research and Control, was applied to model dynamics of NH4+, and NO3- in a bench scale alternating aerobic-anoxic (AAA) activated sludge system for nitrogen removal. The model was modified by eliminating inert soluble COD (S(I)) and inert particulate COD (X(I)) from the model's state variables as these two variables are not involved in any biological reaction and are not readily measurable with conventional routine COD analysis. It was assumed that the soluble COD and particulate COD of wastewater represent readily biodegradable COD (S(S)) and slowly biodegradable (X(S)) in the model, respectively. In addition, alkalinity was also removed from the model, since alkalinity of an AAA system remains stable due to the cyclic modes of the system. Even with the elimination of the three state variables and the assumption made, the model could reasonably predict the NH4+ and NO3- dynamics of the AAA system, and effluent NH4+ and NO3- concentrations with adjustment of only a few kinetic parameters. Compared to the original ASM1, it is expected that the modified ASM1 presented in this study can be more easily utilized by engineers in designing or operating an AAA system in practice, since it requires simple characterization of wastewater COD.

  4. Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments.

    PubMed

    Ballarini, E; Beyer, C; Bauer, R D; Griebler, C; Bauer, S

    2014-06-01

    The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic /anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation.

  5. Bench-scale study of the effect of phosphate on an aerobic iron oxidation plant for mine water treatment.

    PubMed

    Tischler, Judith S; Wiacek, Claudia; Janneck, Eberhard; Schlömann, Michael

    2014-01-01

    At the opencast pit Nochten acidic iron- and sulfate-rich mine waters are treated biotechnologically in a mine-water treatment plant by microbial iron oxidation. Due to the low phosphate concentration in such waters the treatment plant was simulated in bench-scale to investigate the influence of addition of potassium dihydrogen phosphate on chemical and biological parameters of the mine-water treatment. As a result of the phosphate addition the number of cells increased, which resulted in an increase of the iron oxidation rate in the reactor with phosphate addition by a factor of 1.7 compared to a reference approach without phosphate addition. Terminal restriction fragment length polymorphism (T-RFLP) analysis during the cultivation revealed a shift of the microbial community depending on the phosphate addition. While almost exclusively iron-oxidizing bacteria related to "Ferrovum" sp. were detected with phosphate addition, the microbial community was more diverse without phosphate addition. In the latter case, iron-oxidizing bacteria ("Ferrovum" sp., Acidithiobacillus spp.) as well as non-iron-oxidizing bacteria (Acidiphilium sp.) were identified.

  6. SUPERFUND TREATABILITY CLEARINGHOUSE: BENGART AND MEMEL (BENCH-SCALE), GULFPORT (BENCH AND PILOT-SCALE), MONTANA POLE (BENCH-SCALE), AND WESTERN PROCESSING (BENCH-SCALE) TREATABILITY STUDIES

    EPA Science Inventory

    This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...

  7. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall

  8. Bench-scale co-processing

    SciTech Connect

    Piasecki, C.A.; Gatsis, J.G.

    1992-02-19

    The objective of this contract is to extend and optimize UOP's single-stage, slurry-catalyzed co-processing scheme. The particular emphasis is one evaluating alternative and disposable slurry-catalyst systems. During the current quarter, Lloydminster vacuum resid was processed without the presence of coal. The objective of this study was to evaluate the manner in which the resid is upgraded at high-severity conditions to help understand the function of the resid during co-processing. This report coves Bench-Scale Runs 30 to 34. In Runs 30 to 34, Lloydminster vacuum resid was processed without the presence of coal using a 0.05 wt % molybdenum-based catalyst at 465{degrees}C.

  9. Genifuel Hydrothermal Processing Bench Scale Technology ...

    EPA Pesticide Factsheets

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C and 2900 psig on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350◦C and 2900 psig on the HTL aqueous phase product using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. It should be noted that HTL test results for secondary sludge may have been affected by equipment problems. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the product of HTL tests with primary sludge, secondary sludge, and

  10. Development of a bench scale biomass torrefier

    NASA Astrophysics Data System (ADS)

    Mohd Ja'afar, M. N.; Abd Rahman, A.; Shamsuddin, A. H.

    2013-06-01

    Cofiring biomass with coal has become very popular with power utilities to reduce fossil fuel carbon dioxide (CO2) emission. It is relatively easy to implement on most common pulverised coal plants. However, raw biomass is difficult to utilise and requires upgrading to a higher quality fuel to substitute coal. Upgrading by torrefaction can improve the properties of biomass close to low rank coals suitable for cofiring. In this study, a bench scale torrefier was developed to produce torrefied biomass samples for further studies of its properties and combustion behaviour. The torrefier was developed from a domestic 1600W electric oven. Biomass pellets was then torrefied at 250 °C for 1 hour using this torrefier. Proximate analysis and gross calorific value (GCV) of the torrefied biomass were carried out. The results showed that GCV of the torrefied biomass had increased when compared to raw. The moisture content and volatile matter had decreased, and ash content and fixed carbon had increased as expected.

  11. Oxygen-controlled biosurfactant production in a bench scale bioreactor.

    PubMed

    Kronemberger, Frederico de Araujo; Santa Anna, Lidia Maria Melo; Fernandes, Ana Carolina Loureiro Brito; Menezes, Reginaldo Ramos de; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    2008-03-01

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mgO(2)/g(DW) h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mgO(2)/g(DW) h. The carbon source consumption is linear during the whole process.

  12. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    NASA Astrophysics Data System (ADS)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  13. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  14. Bench Scale Saltcake Dissolution Test Report

    SciTech Connect

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-12-06

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.

  15. Is the Polar F6 heart rate monitor less accurate during aerobic bench stepping because of arm movements?

    PubMed

    Lloyd, Lisa K; Crixell, Sylvia H; Price, Larry R

    2014-07-01

    Because of the well-documented linear relationship between heart rate and oxygen consumption (VO2), heart rate is commonly used to estimate energy expenditure during exercise. However, previous research suggests that heart rate increases without a concomitant rise in VO2 when arm movements are added to exercise. If so, this could impact the accuracy of heart rate monitors in estimating energy expenditure during combined arm and leg exercise. This study compared the cardiorespiratory responses to a bench step aerobics routine performed with and without arm movements and evaluated whether the accuracy of the Polar F6 heart rate monitor in predicting energy expenditure was impacted by the inclusion of arm movements. Thirty-two women performed the same routine with and without arm movements while stepping up and down off of a 15.24-cm bench at a cadence of 128 b·min-1. Heart rate and VO2 increased, whereas oxygen pulse (VO2·heart rate-1) decreased when arm movements were added (p < 0.001). However, the differences between the energy expenditure estimated by the Polar F6 heart rate monitor and the energy expenditure measured by indirect calorimetry were similar during the same aerobic bench stepping routine performed with and without arms (Δ∼2 kCal·min-1, p ≥ 0.05). Results confirm that arm movements during aerobic bench stepping elicit a disproportionate rise in heart rate relative to V[Combining Dot Above]O2. However, results do not support that these movements increase the prediction error in energy expenditure, as the Polar F6 heart rate monitor over predicted energy expenditure when arm movements were involved and when they were not involved.

  16. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    SciTech Connect

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-01-01

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  17. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    SciTech Connect

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-12-31

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  18. Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design

    EPA Science Inventory

    The paper discusses the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing media and amendments in larger pilot- or full-scale rain garden installations. The bench-scale study conclude...

  19. 100 Area groundwater biodenitrification bench-scale treatability study procedures

    SciTech Connect

    Peyton, B.M.; Martin, K.R.

    1993-05-01

    This document describes the methodologies and procedures for conducting the bench-scale biodenitrification treatability tests at Pacific Northwest Laboratory{sup a} (PNL). Biodenitrification is the biological conversion of nitrate and nitrite to gaseous nitrogen. The tests will use statistically designed batch studies to determine if biodenitrification can reduce residual nitrate concentrations to 45 mg/L, the current maximum contaminant level (MCL). These tests will be carried out in anaerobic flasks with a carbon source added to demonstrate nitrate removal. At the pilot scale, an incremental amount of additional carbon will be required to remove the small amount of oxygen present in the incoming groundwater. These tests will be conducted under the guidance of Westinghouse Hanford Company (WHC) and the 100-HR-3 Groundwater Treatability Test Plan (DOE/RL-92-73) and the Treatability Study Program Plan (DOE/RL-92-48) using groundwater from 100-HR-3. In addition to the procedures, requirements for safety, quality assurance, reporting, and schedule are given. Appendices include analytical procedures, a Quality Assurance Project Plan, a Health and Safety Plan, and Applicable Material Data Safety Sheets. The procedures contained herein are designed specifically for the 100-HR-3 Groundwater Treatability Test Plan, and while the author believes that the methods described herein are scientifically valid, the procedures should not be construed or mistaken to be generally applicable to any other treatability study.

  20. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous

  1. LBL continuous bench-scale liquefaction unit, operation and results

    SciTech Connect

    Figueroa, C.; Schaleger, L.L.; Davis, H.G.

    1981-12-01

    A bench-scale continuous liquefaction unit (CLU) is now fully operational. The CLU is a flexible system capable of examining feedstocks introduced in slurry form by various liquefying techniques. It is the only continuous biomass liquefaction unit currently in use. Emphasis has been on the liquefaction of aqueous slurries (about 20% organics) of prehydrolyzed Douglas fir wood, without recycle, under the following conditions: 330 to 360/sup 0/C; 3000 to 3400 psig; pH 6 to 9 (Na/sub 2/CO/sub 3/, 5 to 10% of wood); CO-H/sub 2/ ratios in reactant gas 1:0, 1:1, 0:1; and experiment duration 10 to 24 hours. Results show about 30% of feed organics is converted to CO/sub 2/ plus H/sub 2/O, with crude wood oil yields 20 to 35% and water-soluble organic products 20 to 30%. Atom balances and difference calculations indicate that the estimates of oil yield are low. The ratio of water-solubles to oil is higher than in the oil recycle, or PERC process. Direct reduction by CO and usage of feed gas are less than in PERC. A variety of analytical techniques is used to characterize both wood-oil and water-solubles. The SESC technique, developed for coal liquefaction products, combined with size exclusion chromatography, is especially useful for showing effects of process variable changes on product oil.

  2. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    1998-05-01

    The Direct Sulfur Recovery Process (DSRP) is a one- or two-stage catalytic reduction process for efficiently converting to elemental sulfur up to 98 percent or more of the sulfur dioxide (SO{sub 2}) contained in the regeneration offgas streams produced in advanced integrated gasification combined cycle (IGCC) power systems. The DSRP reacts the regeneration offgas with a small slipstream of coal gas to effect the desired reduction. In this project the DSRP was demonstrated with actual coal gas (as opposed to the simulated laboratory mixtures used in previous studies) in a 75-mm, 1-L size fixed-bed reactor. Integrated with this testing, a US Department of Energy/Research Triangle Institute (DOE/RTI) patented zinc titanate-based fluidizable sorbent formulation was tested in a 75-mm (3-in.) diameter fluidized-bed reactor, and the regeneration offgas from that test was treated with the bench-unit DSRP. The testing was conducted at the DOE Federal Energy Technology Center (FETC)-Morgantown in conjunction with test campaigns of the pilot-scale gasifier there. The test apparatus was housed in a mobile laboratory built in a specially equipped office trailer that facilitated moving the equipment from RTI in North Carolina to the West Virginia test site. A long duration test of the DSRP using actual coal gas and simulated regeneration offgas showed no degradation in efficiency of conversion to elemental sulfur after 160 h of catalyst exposure. An additional exposure (200 h) of that same catalyst charge at the General Electric pilot gasifier showed only a small decline in performance. That problem is believed to have been caused by tar and soot deposits on the catalyst, which were caused by the high tar content of the atypical fixed-bed gasifier gas. A six-fold larger, single-stage skid-mounted DSRP apparatus was fabricated for additional, larger-scale slipstream testing.

  3. Bench-scale co-processing economic assessment. Final report

    SciTech Connect

    Gala, H.B.; Marker, T.L.; Miller, E.N.

    1994-11-01

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high-quality synthetic oil. A highly active dispersed catalyst has been developed which enables the operation of the co-processing unit at relatively moderate and high temperatures and relatively high pressure. Under the current contract, a multi-year research program was undertaken to study the technical and economic feasibility of this technology. All the contractual tasks were completed. Autoclave experiments were carried out to evaluate dispersed vanadium catalysts, molybdenum catalysts, and a less costly UOP-proprietary catalyst preparation technique. Autoclave experiments were also carried out in support of the continuous pilot plant unit operation and to study the effects of the process variables (pressure, temperature, and metal loading on the catalyst). A total of 24 continuous pilot plant runs were made. Research and development efforts during the pilot plant operations were concentrated on addressing the cost effectiveness of the UOP single-stage slurry catalyzed co-processing concept based on UOP experience gained in the previous DOE contract. To this end, effect of catalyst metal concentration was studied and a highly-active Mo-based catalyst was developed. This catalyst enabled successful long-term operation (924 hours) of the continuous bench-scale plant at highly severe operating conditions of 3,000 psig, 465{degree}C temperature, and 2:1 resid-to-MAF (moisture- and ash-free) coal ratio with 0.1 wt % active metal. The metal loading of the catalyst was low enough to consider the catalyst as a disposable slurry catalyst. Also, liquid recycle was incorporated in the pilot plant design to increase the, reactor back mixing and to increase the flow of liquid through the reactor (to introduce turbulence in the reactor) and to represent the design of a commercial-scale reactor.

  4. Quenching and stabilization of MIS retorts: Bench-scale experiments

    SciTech Connect

    Barbour, F.A.; Boysen, J.E.

    1991-04-01

    This research was conducted to evaluate in situ retort stabilization methods. The objective of the bench-scale simulations was to evaluate possible post-retorting operations procedures for the optimum cleaning of spent retorts. After simulating conditions of modified in situ (MIS) retorts at the time retorting had ended, procedures to accelerate retort cleanup without using large volumes of water were investigated. Samples from various levels of the retort were used to determine the amount of water-soluble constituents in the spent shale and the rehydration characteristics of the spent shale. The organic material that remained after retorting was most effectively removed from the retort by the use of reverse combustion. The removal of the organic material in this manner cracked the oil on the unretorted shale and removed heat from the bottom of the retort. Both were then transported toward the top of the retort. Unretorted kerogen was coked as it emerged from the shale near the reverse-combustion front. The reverse-combustion technique had an additional benefit in that the carbon deposited on the spent shale in the combusted zone appeared to provide a barrier to rehydration of the shale on introduction of water into the retorts. A hot quench immediately following retorting was also relatively effective in removing organic material from the retort. However, the quench did leave some organic material on the unretorted shale. This material was not readily removed by water leaching during laboratory testing. A deluge of water on a cool retort did not efficiently remove the organic material from the unretorted shale nor did the addition of a biodegradable detergent.

  5. Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale

    NASA Astrophysics Data System (ADS)

    Crook, A. J. L.; Yu, J. G.; Thornton, D. A.

    2010-05-01

    The role of salt in the evolution of the West African continental margin, and in particular its impact on hydrocarbon migration and trap formation, is an important research topic. It has attracted many researchers who have based their research on bench-scale experiments, numerical models and seismic observations. This research has shown that the evolution is very complex. For example, regional analogue bench-scale models of the Angolan margin (Fort et al., 2004) indicate a complex system with an upslope extensional domain with sealed tilted blocks, growth fault and rollover systems and extensional diapers, and a downslope contractional domain with squeezed diapirs, polyharmonic folds and thrust faults, and late-stage folding and thrusting. Numerical models have the potential to provide additional insight into the evolution of these salt driven passive margins. The longer-term aim is to calibrate regional-scale evolution models, and then to evaluate the effect of the depositional history on the current day geomechanical and hydrogeologic state in potential target hydrocarbon reservoir formations adjacent to individual salt bodies. To achieve this goal the burial and deformational history of the sediment must be modelled from initial deposition to the current-day state, while also accounting for the reaction and transport processes occurring in the margin. Accurate forward modeling is, however complex, and necessitates advanced procedures for the prediction of fault formation and evolution, representation of the extreme deformations in the salt, and for coupling the geomechanical, fluid flow and temperature fields. The evolution of the sediment due to a combination of mechanical compaction, chemical compaction and creep relaxation must also be represented. In this paper ongoing research on a computational approach for forward modelling complex structural evolution, with particular reference to passive margins driven by salt tectonics is presented. The approach is an

  6. BENCH-SCALE RECOVERY OF LEAD USING AND ELECTRO- MEMBRANE/CHELATION PROCESS

    EPA Science Inventory

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  7. Technical Approach for In Situ Biological Treatment Research: Bench- Scale Experiments

    DTIC Science & Technology

    1993-08-01

    trations of phenol and PNP used in the experiments were less than 100 mg/I, simulating levels encountered in water treatment plants. The model was able...Program Technical Approach for In Situ Biological Treatment Research: Bench-Scale Experiments by Mark E. Zappi, Douglas Gunnison, Judith Pennington, M...Restoration Technical Report IRRP-93-3 Research Program August 1993 Technical Approach for In Situ Biological Treatment Research: Bench-Scale Experiments by

  8. Verification of Commercial Decontamination Technologies in Bench-Scale Studies Using Bacillus anthracis Spores

    DTIC Science & Technology

    2004-11-17

    12980) • Spore Strips – Bacillus atrophaeus (ATCC 9372) Biological Indicator Spore Strip BUSINESS SENSITIVE Organisms Biological Indicators: SEM Images...BUSINESS SENSITIVE Verification of Commercial Decontamination Technologies in Bench-Scale Studies Using Bacillus anthracis Spores M.L. Taylor, J.V...Commercial Decontamination Technologies in Bench-Scale Studies Using Bacillus anthracis Spores 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  9. Bench-Scale Testing of the Micronized Magnetite Process

    SciTech Connect

    Edward R. Torak; Peter J. Suardini

    1997-11-01

    A recent emphasis of the Department of Energy's (DOE's), Coal Preparation Program has been the development of high-efficiency technologies that offer near-term, low-cost improvements in the ability of coal preparation plants to address problems associated with coal fines. In 1992, three cost-shared contracts were awarded to industry, under the first High-Efficiency Preparation (HEP I) solicitation. All three projects involved bench-scale testing of various emerging technologies, at the Federal Energy Technology Center*s (FETC*s), Process Research Facility (PRF). The first HEP I project, completed in mid-1993, was conducted by Process Technology, Inc., with the objective of developing a computerized, on-line system for monitoring and controlling the operation of a column flotation circuit. The second HEP I project, completed in mid-1994, was conducted by a team led by Virginia Polytechnic Institute to test the Mozely Multi-Gravity Separator in combination with the Microcel Flotation Column, for improved removal of mineral matter and pyritic sulfur from fine coal. The last HEP I project, of which the findings are contained in this report, was conducted by Custom Coals Corporation to evaluate and advance a micronized-magnetite-based, fine-coal cycloning technology. The micronized-magnetite coal cleaning technology, also know as the Micro-Mag process, is based on widely used conventional dense-medium cyclone applications, in that it utilizes a finely ground magnetite/water suspension as a separating medium for cleaning fine coal, by density, in a cyclone. However, the micronized-magnetite cleaning technology differs from conventional systems in several ways: ! It utilizes significantly finer magnetite (about 5 to 10 micron mean particle size), as compared to normal mean particle sizes of 20 microns. ! It can effectively beneficiate coal particles down to 500M in size, as compared to the most advanced, existing conventional systems that are limited to a particle bottom

  10. Electroosmotic dewatering of dredged sediments: bench-scale investigation.

    PubMed

    Reddy, Krishna R; Urbanek, Adam; Khodadoust, Amid P

    2006-01-01

    The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and

  11. Fast Pyrolysis Process Development Unit for Validating Bench Scale Data

    SciTech Connect

    Brown, Robert C.; Jones, Samuel T.

    2010-03-31

    The purpose of this project was to prepare and operate a fast pyrolysis process development unit (PDU) that can validate experimental data generated at the bench scale. In order to do this, a biomass preparation system, a modular fast pyrolysis fluidized bed reactor, modular gas clean-up systems, and modular bio-oil recovery systems were designed and constructed. Instrumentation for centralized data collection and process control were integrated. The bio-oil analysis laboratory was upgraded with the addition of analytical equipment needed to measure C, H, O, N, S, P, K, and Cl. To provide a consistent material for processing through the fluidized bed fast pyrolysis reactor, the existing biomass preparation capabilities of the ISU facility needed to be upgraded. A stationary grinder was installed to reduce biomass from bale form to 5-10 cm lengths. A 25 kg/hr rotary kiln drier was installed. It has the ability to lower moisture content to the desired level of less than 20% wt. An existing forage chopper was upgraded with new screens. It is used to reduce biomass to the desired particle size of 2-25 mm fiber length. To complete the material handling between these pieces of equipment, a bucket elevator and two belt conveyors must be installed. The bucket elevator has been installed. The conveyors are being procured using other funding sources. Fast pyrolysis bio-oil, char and non-condensable gases were produced from an 8 kg/hr fluidized bed reactor. The bio-oil was collected in a fractionating bio-oil collection system that produced multiple fractions of bio-oil. This bio-oil was fractionated through two separate, but equally important, mechanisms within the collection system. The aerosols and vapors were selectively collected by utilizing laminar flow conditions to prevent aerosol collection and electrostatic precipitators to collect the aerosols. The vapors were successfully collected through a selective condensation process. The combination of these two mechanisms

  12. Catalytic Pyrolysis of Oak via Pyroprobe and Bench Scale, Packed Bed Pyrolysis Reactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pyrolytic conversion of oak sawdust at 500°C in flowing He over eight proprietary catalysts is described and compared to the control bed material, quartz sand. The reactions were conducted and compared in two reactors, an analytical, ug-scale pyroprobe reactor and a bench, g-scale packed bed re...

  13. Bench-scale treatability studies for simulated incinerator scrubber blowdown containing radioactive cesium and strontium

    SciTech Connect

    Coroneos, A.C.; Taylor, P.A.; Arnold, W.D. Jr.; Bostick, D.A.; Perona, J.J.

    1994-12-01

    The purpose of this report is to document the results of bench-scale testing completed to remove {sup 137}Cs and {sup 90}Sr from the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator blowdown at the K-25 Site Central Neutralization Facility, a wastewater treatment facility designed to remove heavy metals and uranium from various wastewaters. The report presents results of bench-scale testing using chabazite and clinoptilolite zeolites to remove cesium and strontium; using potassium cobalt ferrocyanide (KCCF) to remove cesium; and using strontium chloride coprecipitation, sodium phosphate coprecipitation, and calcium sulfate coprecipitation to remove strontium. Low-range, average-range, and high-range concentration blowdown surrogates were used to complete the bench-scale testing.

  14. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  15. Bench-Scale Evaluation Of Chemically Bonded Phosphate Ceramic Technology To Stabilize Mercury Waste Mixtures

    EPA Science Inventory

    This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...

  16. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  17. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    EPA Science Inventory

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  18. Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)

    EPA Science Inventory

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...

  19. SOLVENT EXTRACTION AND SOIL WASHING TREATMENT OF CONTAMINATED SOILS FROM WOOD PRESERVING SITES: BENCH SCALE STUDIES

    EPA Science Inventory

    Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...

  20. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  1. COMPARING RBF WITH BENCH-SCALE CONVENTIONAL TREATMENT FOR PRECURSOR REDUCTION

    EPA Science Inventory

    The reduction of disinfection by-product (DBP) precursors upon riverbank filtration (RBF) at three drinking water utilities in the mid-Western United States was compared with that obtained using a bench-scale conventional treatment train on the corresponding river waters. The riv...

  2. MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR

    EPA Science Inventory

    A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...

  3. Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design - slides

    EPA Science Inventory

    The oral presentation will be at the EWRI International LID Conference in San Francisco, on April 11-14, 2010. The slides discuss the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing...

  4. Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water

    EPA Science Inventory

    Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...

  5. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  6. Bench-scale solid phase biotreatment: Benfield Industries Superfund site

    SciTech Connect

    Marlowe, M.W.; Harper, T.R.; Semenak, R.K.

    1995-12-31

    The Benfield Industries, Inc. Superfund site located in Hazelwood, North Carolina has been found to have approximately 15,000 cubic yards of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Risk based clean up goals were specified at the site for eight target PAH compounds including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, naphthalene, and pentachlorophenol. Treatability studies were performed to evaluate solid phase bioremediation, which includes ex-situ and in-situ land treatment processes, for treatment of the site soil. All treatments were conducted using only indigenous microorganisms maintained under aerobic conditions. Two soil samples with different levels of PAH contamination were collected from the site for use in the treatability evaluations. The two soil samples were contaminated with total PAHs at concentrations of approximately 30 milligrams per kilogram (mg/kg) and 6,000 mg/kg, respectively. Three solid phase bioremediation studies were conducted over a one and one half year period using starting concentrations of total PAHs of approximately 30; 600; and 6,000 mg/kg. The objectives of the studies included determining (1) if clean up goals could be achieved, (2) the approximate biodegradation rate of PAHs in the site soils, and (3) the optimum environmental conditions for biodegradation of the PAHs. Some of the environmental parameters which were varied during the testing included moisture levels, soil conditioners, nutrients and pH. The results of the testing indicated that total and target PAHs can be reduced by up to 90 percent in less than 50 days, depending on environmental conditions maintained in the reactors. Clean up goals for all of the target compounds were achieved at some point during the study.

  7. Bench-scale testing of a heat-pipe receiver for solar thermal electric applications

    NASA Astrophysics Data System (ADS)

    Adkins, Douglas R.; Dudley, Vernon

    Electric power generating systems that couple parabolic-dish solar-concentrators with Stirling engines and generators are currently being developed under the Department of Energy's solar thermal electric program. These systems will use liquid metal heat pipes to transfer energy from the focal point of a solar concentrator to the heater tubes of a Stirling engine. The heat-pipe solar-receivers are required to operate in adverse orientations and accept flux levels on the order of 100 W/sq. cm. To explore the operating limits of heat-pipe solar-receivers, a series of bench-scale heat pipe receivers are being designed and tested. Results from the bench-scale tests and their implications on a full-scale heat-pipe solar receiver are presented in this paper.

  8. 100 Area soil washing bench-scale test procedures

    SciTech Connect

    Freeman, H.D.; Gerber, M.A.; Mattigod, S.V.; Serne, R.J.

    1993-03-01

    This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing.

  9. REMOVAL OF METHYL T-BUTYL ETHER (MTBE) FROM WATER BY PERVAPORATION: BENCH-SCALE AND PILOT SCALE EVALUATIONS

    EPA Science Inventory

    The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...

  10. Thermal inactivation of Bacillus anthracis surrogate spores in a bench-scale enclosed landfill gas flare.

    PubMed

    Tufts, Jenia A McBrian; Rosati, Jacky A

    2012-02-01

    A bench-scale landfill flare system was designed and built to test the potential for landfilled biological spores that migrate from the waste into the landfill gas to pass through the flare and exit into the environment as viable. The residence times and temperatures of the flare were characterized and compared to full-scale systems. Geobacillus stearothermophilus and Bacillus atrophaeus, nonpathogenic spores that may serve as surrogates for Bacillus anthracis, the causative agent for anthrax, were investigated to determine whether these organisms would be inactivated or remain viable after passing through a simulated landfill flare. High concentration spore solutions were aerosolized, dried, and sent through a bench-scale system to simulate the fate of biological weapon (BW)-grade spores in a landfill gas flare. Sampling was conducted downstream of the flare using a bioaerosol collection device containing sterile white mineral oil. The samples were cultured, incubated for seven days, and assessed for viability. Results showed that the bench-scale system exhibited good similarity to the real-world conditions of an enclosed standard combustor flare stack with a single orifice, forced-draft diffusion burner. All spores of G. stearothermophilus and B. atrophaeus were inactivated in the flare, indicating that spores that become re-entrained in landfill gas may not escape the landfill as viable, apparently becoming completely inactivated as they exit through a landfill flare.

  11. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  12. Bench-scale studies on gasification of biomass in the presence of catalysts

    SciTech Connect

    Mudge, L.K.; Baker, E.G.; Brown, M.D.; Wilcox, W.A.

    1987-11-01

    This report summarizes the results of bench-scale studies on the development of catalysts for conversion of biomass to specific gas products. The primary objective of these studies was to define operating conditions that allow long lifetimes for secondary catalysts used in biomass gasification. Nickel-based catalysts that were found to be active for conversion of wood to synthesis gases in previous studies were evaluated. These catalysts remained active indefinitely in laboratory studies but lost activity rapidly when evaluated in a process research unit. Bench-scale equipment was designed and installed to resolve the differences between laboratory and PRU results. Primary catalysts (alkali carbonates) were also evaluated for their effectiveness in improving conversion yields from biomass gasification. 21 refs., 27 figs., 19 tabs.

  13. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    EPA Pesticide Factsheets

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  14. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    SciTech Connect

    Melin, Alexander M.; Kisner, Roger A.; Drira, Anis; Reed, Frederick K.

    2015-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  15. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES

    SciTech Connect

    BANNING DL

    2011-02-11

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required. The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.

  16. Optimization of limestone sizing for CFB combustors: Results of pilot plant and bench-scale testing

    SciTech Connect

    Alliston, M.; Edvardsson, C.; Wu, S.; Probst, S.

    1994-12-31

    A grant to study the performance of limestones in a Circulating Fluidized Bed Combustor was obtained in 1991 from the Pennsylvania Energy Development Authority (PEDA) by Tampella Power Corporation (TPC). The overall objective of this PEDA project was to carry out a systematic pilot plant tests at TPC`s pilot plant in Williamsport, Pennsylvania, in systematic order to identify ways of improving sulfur capture and limestone utilization through better control of the size distribution and residence time of the limestone particles in the furnace. It was also an objective to determine if bench scale testing could be of value in predicting CFB sorbent behavior. The pilot plant and bench test results were incorporated into an empirical Correlation which accounts for the size distribution and residence time of solids in CFB boiler.

  17. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production.

  18. Bench-scale development of mild gasification char desulfurization. Technical report, 1 March--31 May 1994

    SciTech Connect

    Knight, R.A.

    1994-09-01

    The goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650--760 C and 7--15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt% sulfur was converted to chars with less than 1.0 wt% sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. This quarter, 2,500 g of mild gasification char was produced from untreated IBC-105 coal in the bench-scale reactor. Half of this char will be subjected to sulfuric acid treatment to enhance subsequent desulfurization. Char-producing runs were also initiated with acid-pretreated coal, which will produce about 1,250 g of char.

  19. Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments

    NASA Astrophysics Data System (ADS)

    Unkuri, J.; Rantanen, A.; Manninen, J.; Esala, V.-P.; Lassila, A.

    2012-09-01

    During construction of a new metrology building for MIKES, a 30 m interferometric bench was designed. The objective was to implement a straight, stable, adjustable and multifunctional 30 m measuring bench for calibrations. Special attention was paid to eliminating the effects of thermal expansion and inevitable concrete shrinkage. The linear guide, situated on top of a monolithic concrete beam, comprises two parallel round shafts with adjustable fixtures every 1 m. A carriage is moved along the rail and its position is followed by a reference interferometer. Depending on the measurement task, one or two retro-reflectors are fixed on the carriage. A microscope with a CCD camera and a monitor can be used to detect line mark positions on different line standards. When calibrating optical distance measuring instruments, various targets can be fixed to the carriage. For the most accurate measurements an online Abbe-error correction based on simultaneous carriage pitch measurement by a separate laser interferometer is applied. The bench is used for calibrations of machinist scales, tapes, circometers, electronic distance meters, total stations and laser trackers. The estimated expanded uncertainty for 30 m displacement for highest accuracy calibrations is 2.6 µm.

  20. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis.

    PubMed

    Hancock, Nathan T; Xu, Pei; Heil, Dean M; Bellona, Christopher; Cath, Tzahi Y

    2011-10-01

    Forward osmosis (FO) is a membrane separation technology that has been studied in recent years for application in water treatment and desalination. It can best be utilized as an advanced pretreatment for desalination processes such as reverse osmosis (RO) and nanofiltration (NF) to protect the membranes from scaling and fouling. In the current study the rejection of trace organic compounds (TOrCs) such as pharmaceuticals, personal care products, plasticizers, and flame-retardants by FO and a hybrid FO-RO system was investigated at both the bench- and pilot-scales. More than 30 compounds were analyzed, of which 23 nonionic and ionic TOrCs were identified and quantified in the studied wastewater effluent. Results revealed that almost all TOrCs were highly rejected by the FO membrane at the pilot scale while rejection at the bench scale was generally lower. Membrane fouling, especially under field conditions when wastewater effluent is the FO feed solution, plays a substantial role in increasing the rejection of TOrCs in FO. The hybrid FO-RO process demonstrated that the dual barrier treatment of impaired water could lead to more than 99% rejection of almost all TOrCs that were identified in reclaimed water.

  1. Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method.

    PubMed

    Fujii, Tatsuya; Murakami, Katsuji; Endo, Takashi; Fujimoto, Shinji; Minowa, Tomoaki; Matsushika, Akinori; Yano, Shinichi; Sawayama, Shigeki

    2014-04-01

    In the bioethanol production process, high solid saccharification and glucose/xylose co-fermentation are important technologies for obtaining increased ethanol concentrations; however, bench-scale studies using combinations of these methods are limited. In this study, we hydrolyzed high solid concentration of milled eucalyptus using commercial enzymes and obtained 138.4 g/L total monomeric sugar concentration. These sugars were fermented to 53.5 g/L of ethanol by a xylose-utilizing recombinant Saccharomyces cerevisiae strain, MA-R4. These experiments were performed in bench scale (using 50 L scale solid mixer and 70 L scale fermenter). The results obtained in this study were comparable to our previous results in laboratory scale, indicating that we successfully achieved an efficient high solid saccharification and glucose/xylose co-fermentation system in bench scale.

  2. Bench-scale simulation of quenching and stabilization of MIS retorts

    SciTech Connect

    Barbour, F.A.; Boysen, J.E.

    1992-06-01

    This research was conducted to evaluate in situ retort stabilization methods. The objective of the bench-scale simulations was to evaluate possible post-retorting operating procedures for the optimum cleaning of spent retorts. After simulating conditions of modified in situ (MIS) retorts at the time retorting had ended, procedures to accelerate retort cleanup without using large volumes of water were investigated. Samples from various levels of the retort were used to determine the amount of water-soluble constituents in the spent shale and the rehydration characteristics of the spent shale.

  3. Bench-scale simulation of quenching and stabilization of MIS retorts

    SciTech Connect

    Barbour, F.A. ); Boysen, J.E. )

    1992-01-01

    This research was conducted to evaluate in situ retort stabilization methods. The objective of the bench-scale simulations was to evaluate possible post-retorting operating procedures for the optimum cleaning of spent retorts. After simulating conditions of modified in situ (MIS) retorts at the time retorting had ended, procedures to accelerate retort cleanup without using large volumes of water were investigated. Samples from various levels of the retort were used to determine the amount of water-soluble constituents in the spent shale and the rehydration characteristics of the spent shale.

  4. Accumulation of uranium, cesium, and radium by microbial cells: bench-scale studies

    SciTech Connect

    Strandberg, G.W.; Shumate, S.E. II

    1982-07-01

    This report describes bench-scale studies on the utilization of microbial cells for the concentration and removal of uranium, radium, and cesium from nuclear processing waste streams. Included are studies aimed at elucidating the basic mechanism of uranium uptake, process development efforts for the use of a combined denitrification-uranium removal process to treat a specific nuclear processing waste stream, and a preliminary investigation of the applicability of microorganisms for the removal of /sup 137/Cs and /sup 226/Ra from existing waste solutions.

  5. Design of Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Wood, Benjamin

    2012-06-30

    The major goal of the project is to design and optimize a bench-scale process for novel silicone CO{sub 2}-capture solvents and establish scalability and potential for commercialization of post-combustion capture of CO{sub 2} from coal-fired power plants. This system should be capable of 90% capture efficiency and demonstrate that less than 35% increase in the cost of energy services can be achieved upon scale-up. Experiments were conducted to obtain data required for design of the major unit operations. The bench-scale system design has been completed, including sizing of major unit operations and the development of a detailed Process and Instrument Diagram (P&ID). The system has been designed to be able to operate over a wide range of process conditions so that the effect of various process variables on performance can be determined. To facilitate flexibility in operation, the absorption column has been designed in a modular manner, so that the height of the column can be varied. The desorber has also been designed to allow for a range of residence times, temperatures, and pressures. The system will be fabricated at Techniserv Inc.

  6. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Wood, Benjamin; Genovese, Sarah; Perry, Robert; Spiry, Irina; Farnum, Rachael; Sing, Surinder; Wilson, Paul; Buckley, Paul; Acharya, Harish; Chen, Wei; McDermott, John; Vipperia, Ravikumar; Yee, Michael; Steele, Ray; Fresia, Megan; Vogt, Kirk

    2013-12-31

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.

  7. Bench- and field-scale evaluation of chromium and cadmium extraction by electrokinetics.

    PubMed

    Gent, David B; Bricka, R Mark; Alshawabkeh, Akram N; Larson, Steven L; Fabian, Gene; Granade, Steve

    2004-07-05

    The results of bench-scale laboratory tests and in situ, pilot-scale demonstration of electrokinetic extraction of chromium and cadmium from contaminated soil are presented. The laboratory tests were conducted using 10 cm long samples under current density of 5A/m(2) for 1200 h. Tests were conducted with and without citric acid amendment at the cathode. The results showed that citric acid improved extraction, especially in the sections near the cathode. However, processing was not enough to result in complete cleanup. The field demo was conducted at the Naval Air Weapon Station (NAWS), Point Mugu, California. Three cathodes were centered between six anodes. The anode-cathode spacing was 4.45 m (15 ft). Constant voltage of 60 V ( approximately 13 V/m) was applied for 20 days and then was reduced to 45 V (10 V/m) for 6 months. Citric acid was used to maintain the cathode pH at 4. After 6 months of treatment, 78% of the soil volume has been cleared of chromium or treated to below natural background levels. The results also indicated that 70% of the soil between the electrodes had been cleared of cadmium contamination. A comparison between the bench-scale and field demo showed that the field process was more effective than the lab tests. This indicated that small sample size will induce a negative effect on the efficiency of the process due to an increased impact of the boundaries on the overall process.

  8. Development of a bench-scale immersed ultrafiltration apparatus for coagulation pretreatment experiments.

    PubMed

    Walsh, Margaret E; Zhao, Na; Gagnon, Graham A

    2011-01-01

    The purpose of this paper is to present results of a project that focused on developing a standardized bench-scale apparatus and operating procedures for immersed ultrafiltration (UF) membrane systems to assess integrated process designs (e.g., coagulation-UF) under controlled laboratory conditions. The integrated test apparatus, termed Immersed Ultrafiltration Enhanced Coagulation (IUEC), was designed using a hollow-fiber, outside-in UF module immersed in a single compartment water preparation and filtration tank equipped with aeration mixing capabilities for coagulation and flocculation process evaluations. Bench-scale experiments were conducted with alum on a low turbidity surface water source to evaluate system performance of the integrated IUEC apparatus compared to a standard jar test unit. The experiments were evaluated by measuring the removal of natural organic matter and zeta-potential analysis from water collected from a conventional mechanically-mixed process with a manual transfer to a UF membrane system and comparing these results to the IUEC system. The results of this study demonstrated that using the single-compartment IUEC apparatus can provide water quality data that is congruent with those obtained through conventional methods that rely on use of standard jar tests.

  9. Electrolytic Reduction of Spent Oxide Fuel – Bench-Scale Test Results

    SciTech Connect

    S. D. Herrmann; S. X. Li; M. F. Simpson

    2005-10-01

    A series of tests were performed to demonstrate the electrolytic reduction of spent light water reactor fuel at bench-scale in a hot cell at the Idaho National Laboratory Materials and Fuels Complex (formerly Argonne National Laboratory - West). The process involves the conversion of oxide fuel to metal by electrolytic means, which would then enable subsequent separation and recovery of actinides via existing electrometallurgical technologies, i.e., electrorefining. Four electrolytic reduction runs were performed at bench scale using ~500 ml of molten LiCl -- 1 wt% Li2O electrolyte at 650 ºC. In each run, ~50 g of crushed spent oxide fuel was loaded into a permeable stainless steel basket and immersed into the electrolyte as the cathode. A spiral wound platinum wire was immersed into the electrolyte as the anode. When a controlled electric current was conducted through the anode and cathode, the oxide fuel was reduced to metal in the basket and oxygen gas was evolved at the anode. Salt samples were extracted before and after each electrolytic reduction run and analyzed for fuel and fission product constituents. The fuel baskets following each run were sectioned and sampled, revealing an extent of uranium oxide reduction in excess of 98%.

  10. Mercury emissions control in coal combustion systems using potassium iodide: bench-scale and pilot-scale studies

    SciTech Connect

    Ying Li; Michael Daukoru; Achariya Suriyawong; Pratim Biswas

    2009-01-15

    Bench- and pilot-scale experiments were conducted using potassium iodide (KI) for capture and removal of Hg in air and coal combustion exhaust. Two bench-scale reactor systems were used: (1) a packed-bed reactor (PBR) packed with granular or powder KI and (2) an aerosol flow reactor (AFR) with injection of KI particles. It was found that a higher temperature, a higher concentration of KI, and a longer gas residence time resulted in a higher Hg removal efficiency. A 100% Hg removal was achieved in the PBR above 300{sup o}C using 0.5 g of powder KI and in the AFR above 500{sup o}C with a KI/Hg molar ratio of 600 at a 5.8 s residence time. The low KI injection ratio relative to Hg indicated that KI is highly effective for Hg removal in air. Formation of I{sub 2} vapor by the oxidation of KI by O{sub 2} at high temperatures, which then reacts with Hg to produce HgI{sub 2}, was identified as the pathway for removal. The pilot-scale experiments were conducted in a 160 kW pulverized coal combustor. KI was introduced in two ways: as a powder mixed with coal and by spraying KI solution droplets into the flue gas. In both cases the Hg removal efficiency increased with an increase in the feed rate of KI. Mixing KI powder with coal was found to be more effective than spraying KI into the flue gas. The Hg removal by KI was less efficient in the pilot-scale tests than in the bench-scale tests probably due to certain flue gas components reacting with KI or I{sub 2}. Hg speciation measurements in both bench- and pilot-scale experiments indicated no oxidized mercury in the gas phase upon introduction of KI, indicating that the oxidation product HgI2 was captured in the particulate phase. This is very beneficial in coal-fired power plants equipped with electrostatic precipitators where particulate-bound Hg can be efficiently removed. 27 refs., 8 figs., 4 tabs.

  11. Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)

    SciTech Connect

    Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.; Peterson, Reid A.

    2009-09-28

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to be performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.

  12. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  13. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    SciTech Connect

    Suardini, P.J.

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  14. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies.

    PubMed

    Hong, Eunyoung; Seagren, Eric A; Davis, Allen P

    2006-02-01

    One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.

  15. Bench-scale co-processing. Quarterly report No. 11, October 1, 1990--December 31, 1990

    SciTech Connect

    Piasecki, C.A.; Gatsis, J.G.

    1992-02-19

    The objective of this contract is to extend and optimize UOP`s single-stage, slurry-catalyzed co-processing scheme. The particular emphasis is one evaluating alternative and disposable slurry-catalyst systems. During the current quarter, Lloydminster vacuum resid was processed without the presence of coal. The objective of this study was to evaluate the manner in which the resid is upgraded at high-severity conditions to help understand the function of the resid during co-processing. This report coves Bench-Scale Runs 30 to 34. In Runs 30 to 34, Lloydminster vacuum resid was processed without the presence of coal using a 0.05 wt % molybdenum-based catalyst at 465{degrees}C.

  16. Bench-scale testing of on-line control of column flotation using a novel analyzer

    SciTech Connect

    Not Available

    1992-01-22

    This document contains the first quarterly technical progress report for PTI's Bench-Scale Testing Project of a circuit integrating PTI's KEN-FLOTETM Column Flotation Technology and PTI's On-Line Quality Monitor Control System. The twelve-month project will involve installation of a 300 lb/hr. bench-scale testing circuit at PETC's Coal Preparation Process Research Facility (CPPRF) and testing of two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan as well as the approach to completing the major tasks within the twelvemonth project. The project is broken down into three phases, which include: Phase I - Preparation: The preparation phase was performed principally at PTI's Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing. Phase II - ET Circuit Installation and Testing: This installation and testing phase of the project will be performed at PETC's CPPRF from January through May, 1993, and will be the major focus of the project. It will involve testing of the continuous 300 lb/hr. circuit. Phase II - Project Finalization: The project finalization phase will occur from June through September, 1993, at PTI's Calumet offices and will involve finalizing analytical work and data evaluation, as well as final project reporting. This quarterly progress report principally summarizes the results from the Phase I preparation work and the plan for the early portions of the Phase 11 installation and commissioning, which will occur in January and the first week of February, 1993.

  17. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    SciTech Connect

    Moreno, J.B.; Moss, T.A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW{sub t} reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz-lamp-heated boilers to screen candidate boiling-stabilization materials and methods at temperatures up to 750{degree}C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot-press-sintered onto the wetted side of the heat-input area. Laser-drilled and electric-discharge-machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  18. Bench-scale development of mild gasification char desulfurization; [Quarterly] report, September 1--November 30, 1993

    SciTech Connect

    Knight, R.A.

    1994-03-01

    This goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650{degree}--760{degree}C and 7-15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt % sulfur was converted to chars with less than 1.0 wt % sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. During the first quarter, 180 lb (82 kg) of IBC-105 coal was obtained and subjected to crushing, and sizing to prepare 49 lb (22 kg) of material for test operation.

  19. Production of Jet Fuels from Coal Derived Liquids. Volume 9. Results of Bench-Scale and Pilot Plant Testing

    DTIC Science & Technology

    1989-06-01

    Amoco Oil Company has conducted bench- and pilot plant-scale experiments to produce jet fuels from the tar oil from the Great Plains Coal ... Gasification Plant in Beulah, North Dakota. Experiments show that the hydroprocessing conditions recommended in Task I are not severe enough to saturate the

  20. Simulating maar-diatreme volcanic systems in bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Andrews, R. G.; White, J. D. L.; Dürig, T.; Zimanowski, B.

    2015-12-01

    Maar-diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar-diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems in order to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar-diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. The individual energies of blasts in multiple-blast series are not possible to infer from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation.

  1. EMERGING TECHNOLOGY REPORT: BENCH-SCALE TESTING OF PHOTOLYSIS, CHEMICAL OXIDATION AND BIODEGRADATION OF PCB CONTAMINATED SOILS AND PHOTOLYSIS OF TCDD CONTAMINATED SOILS

    EPA Science Inventory

    This report presents the results of bench-scale testing on degradation of 2,3,7,8-TCDD using W photolysis, and PCB degradation using UV photolysis, chemical oxidation and biological treatment. Bench-scale tests were conducted to investigate the feasibility of a two-phase detoxifi...

  2. Bench- and pilot-scale sludge electrodewatering in a diaphragm filter press.

    PubMed

    Saveyn, H; Van der Meeren, P; Pauwels, G; Timmerman, R

    2006-01-01

    Electrodewatering is a technique in which pressure dewatering is combined with electrokinetic effects to realize an improved solid/liquid separation and hence increased filter cake dry matter contents. In order to be energy efficient, it is shown that sludge should be dewatered by pressure dewatering to a high extent prior to electric field application, and a sufficient contact time for the electric field must be guaranteed. In order to realize these goals, a bench- and pilot-scale diaphragm filter press suited for electrodewatering were constructed for treatment of sewage and other types of sludges. It was shown that electrodewatering of sludge is a feasible technique, especially for biological sludge types. Other types of sludge are less suited for electrodewatering because of the restricted improvements that can be realized in cake dry matter content and the high electric energy consumption. Furthermore, it was shown in pilot-scale tests that the use of a diaphragm filter press with electrodewatering facilities was very well suited to deliver dry filter cakes of sewage sludge at a moderate energy consumption. Depending on local market prices for investment, operating and sludge disposal costs, this technology may therefore lead to important savings in the sludge management process.

  3. Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer.

    PubMed

    Kato, Yoshiaki; Enomoto, Ryohei; Akazawa, Minami; Kojima, Yasuo

    2016-01-01

    A bench-scale auger reactor was designed for use as a laboratory-scale fast pyrolyzer for producing bio-oil from Japanese cedar. An analytical pyrolysis method was performed simultaneously to determine the distribution of pyrolysis products. The pyrolysis temperature was found to have the greatest influence on the bio-oil characteristics; bio-oil yields increased as the pyrolysis temperature increased from 450 to 550 °C. The concentration of levoglucosan in the bio-oil, however, decreased significantly with increasing pyrolysis temperature, while it increased following analytical pyrolysis. The same results were obtained for 4-vinylguaiacol and E-isoeugenol, which were the major secondary products produced in the present study. Compared to the yields of these major products obtained via analytical pyrolysis, the yields from the auger reactor were very low, indicating that the auger reactor process had a longer vapor residence time than the analytical pyrolysis process, resulting in the acceleration of secondary reactions of the pyrolysates. The pH values and densities of the bio-oils produced in the auger reactor were similar to those reported by researchers using woody biomass, despite their lower viscosities. From these results, it was concluded that the pyrolysis temperature and residence time of the pyrolysates played a significant role in determining the characteristics of the cedar bio-oil.

  4. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    SciTech Connect

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-01-01

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  5. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    SciTech Connect

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-12-31

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  6. A bench scale study of a one-step dissolution process for treating contaminated fiberglass filters

    SciTech Connect

    Policke, T.A.; Ritter, J.A.

    1995-12-01

    High efficiency mist eliminators (HEME) and high efficiency particulate air filters (HEPA) made of High fiberglass will be used at the Savannah River Site (SRS) to remove particulate matter from offgases generated during melter feed preparation and vitrification of high-level radioactive waste (HLW) at the Defense Waste Processing Facility (DWPF). These filters will be contaminated with high-level, radioactive species and also with various high-boiling organic compounds. For this reason, a process was developed at the Savannah River Technology Center (SRTC) that will dissolve the spent filters so that the residues may be recycled to the HLW tanks for eventual vitrification. This process involves boiling the filters sequentially in NaOH, HN0{sub 3} and NaOH, while contained in a stainless steal wire mesh frame assembly. The objective of this communication is to present some of the original preliminary work done by Ritter on the simple one-step dissolution process. The results from six bench-scale experiments are reported for the dissolution of an organically-fouled sample of HEME obtained from the Integrated DWPF Melter (IDMS) offgas filtration system. The preliminary effects of filter packing density, air sparging versus rotating basket agitation, fouling, and adding Triton X-405 as a dispersing agent are reported.

  7. Safety analysis of the CSTR-1 bench-scale coal liquefaction unit

    SciTech Connect

    Hulburt, D.A.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the CSTR-1 bench scale unit located in Building 167 at the Pittsburgh Energy Technology Center. It was apparent that considerable effort was expended in the design and construction of the unit, and in the development of operating procedures, with regard to safety. Exhaust ventilation, H/sub 2/ and H/sub 2/S monitoring, overpressure protection, overtemperature protection, and interlock systems have been provided. Present settings on the pressure and temperature safety systems are too high, however, to insure prevention of vessel deformation or damage in all cases. While the occurrence of catastrophic rupture of a system pressure vessel (e.g., reactor, high pressure separators) is unlikely, the potential consequences to personnel are severe. Feasibility of providing shielding for these components should be considered. A more probable mode of vessel failure in the event of overpressure or overtemperature and failure of the safety system is yielding of the closure bolts followed by high pressure flow across the mating surfaces. As a minimum, shielding should be designed to restrict travel of resultant spray. The requirements for personal protective equipment are presently stated in rather broad and general terms in the operating procedures. Safe practices and procedures would be more assured if specific requirements were stated and included for each operational step. Recommendations were developed for all hazards triggered by the guidelines.

  8. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    SciTech Connect

    Field, J.G.

    1994-06-10

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

  9. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    SciTech Connect

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  10. Bench-scale testing of the multi-gravity separator in combination with microcel. Final report

    SciTech Connect

    Luttrell, G.H.; Venkatraman, P.; Phillips, D.I.; Yoon, Roe-Hoan

    1995-03-01

    It was the purpose of this investigation to test a new fine coal cleaning system, in which a coal is cleaned first by column flotation to remove primarily ash-forming minerals and then by an enhanced gravity separation technique to remove the pyrite remaining in the flotation product. Of the various column flotation technologies developed under the auspices of the US Department of Energy, the Microcel{sup TM} flotation column was chosen because it is being used commercially in the US coal industry, particularly by low-sulfur coal producers. Of the various enhanced gravity separation technologies used in minerals industry, Multi-Gravity Separator (MGS) was chosen because it shows promise for pyrite rejection from fine coal streams containing a wide range of particle sizes. The bench-scale tests were conducted using three different circuit configurations, i.e.; Microcel{sup TM} column alone; MGS alone; and Microcel{sup Tm} and MGS in series. In general, high ash-rejections were achieved using Microcel{sup TM} column and an MGS unit in series, both the ash and pyritic sulfur rejections exceeded what can be achieved using either the Microcel{sup TM} column or the MGS unit alone, demonstrating a synergistic effect.

  11. Dissolved gas exsolution to enhance gas production and transport during bench-scale electrical resistance heating

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2015-05-01

    Condensation of volatile organic compounds in colder zones can be detrimental to the performance of an in situ thermal treatment application for the remediation of chlorinated solvent source zones. A novel method to increase gas production and limit convective heat loss in more permeable, potentially colder, zones involves the injection and liberation of dissolved gas from solution during heating. Bench-scale electrical resistance heating experiments were performed with a dissolved carbon dioxide and sodium chloride solution to investigate exsolved gas saturations and transport regimes at elevated, but sub-boiling, temperatures. At sub-boiling temperatures, maximum exsolved gas saturations of Sg = 0.12 were attained, and could be sustained when the carbon dioxide solution was injected during heating rather than emplaced prior to heating. This gas saturation was estimated to decrease groundwater relative permeability to krw = 0.64. Discontinuous gas transport was observed above saturations of Sg = 0.07, demonstrating the potential of exsolved CO2 to bridge vertical gas transport through colder zones.

  12. Bench-scale demonstration of biological production of ethanol from coal synthesis gas

    SciTech Connect

    Not Available

    1992-01-01

    Culture isolation and selection studies are being performed in order to select the best biological system for bench-scale studies in producing ethanol from syngas components. Three isolates have been found which produce more than 2 g/L ethanol from CO and C0[sub 2]/H[sub 2] in batch culture. These low concentrations are actually quite promising since Clostridium ljungdahlii, strain PETC, performs well in continuous culture but produces only small concentrations of ethanol in batch culture after several weeks of incubation. Two of the isolates have been utilized in the CSTR, where 90 percent CO conversions have been noted, while producing up to 2 g/L ethanol, in preliminary studies. CSTR studies will continue until steady state is reached. An anaerobic bacterium has been isolated from natural sources that converts the components of synthesis gas (CO, H[sub 2],C0[sub 2]) into ethanol. This organism, the only one known at that time to produce ethanol from synthesis gas, has been identified as a new clostridial strain and has been named Clostridium ljungdahlii, strain PETC.

  13. Bench-scale reactor tests of low-temperature, catalytic gasification of wet, industrial wastes

    SciTech Connect

    Elliott, D.C.; Neuenschwander, G.G.; Baker, E.G.; Butner, R.S.; Sealock, L.J.

    1990-04-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2% para-cresol or 5% and 10% lactose in water or cheese whey can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence time is less than 5 min at 360{degree}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40% to 55% methane, 35% to 50% carbon dioxide, and 5% to 10% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD. 9 refs., 1 fig., 4 tabs.

  14. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    EPA Science Inventory

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  15. Pore-scale and continuum modeling of gas flow pattern obtained by high-resolution optical bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Lazik, Detlef; Krauss, Gunnar; Vogel, Hans-JöRg

    2009-04-01

    High-resolution optical bench-scale experiments were conducted in order to investigate local gas flow pattern and integral flow properties caused by point-like gas injection into water-saturated glass beads. The main goal of this study was to test the validity of the continuum approach for two-fluid flow in macroscopic homogeneous media. Analyzing the steady state experimental gas flow pattern that satisfies the necessary coherence condition by image processing and calibrating the optical gas distribution by the gravimetrical gas saturation, it was found that a pulse-like function yields the best fit for the lateral gas saturation profile. This strange behavior of a relatively sharp saturation transition is in contradiction to the widely anticipated picture of a smooth Gaussian-like transition, which is obtained by the continuum approach. This transition is caused by the channelized flow structure, and it turns out that only a narrow range of capillary pressure is realized by the system, whereas the continuum approach assumes that within the representative elementary volume the whole spectrum of capillary pressures can be realized. It was found that the stochastical hypothesis proposed by Selker et al. (2007) that bridges pore scale and continuum scale is supported by the experiments. In order to study channelized gas flow on the pore scale, a variational treatment, which minimizes the free energy of an undulating capillary, was carried out. On the basis of thermodynamical arguments the geometric form of a microcapillary, macrochannel formation and a length-scale-dependent transition in gas flow pattern from coherent to incoherent flow are discussed.

  16. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    SciTech Connect

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  17. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    PubMed

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing.

  18. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    SciTech Connect

    Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S.; Connolly, J.R.

    1996-06-01

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m{sup 3} at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m{sup 2}/s to 6.6 x 10-7 m{sup 2}/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed.

  19. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene.

    PubMed

    Hegele, P R; Mumford, K G

    2014-09-01

    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc=0.233±0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.

  20. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    SciTech Connect

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  1. Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands.

    PubMed

    Herrera-Melián, J A; Martín-Rodríguez, A J; Ortega-Méndez, A; Araña, J; Doña-Rodríguez, J M; Pérez-Peña, J

    2012-08-30

    The degradation and detoxification towards the duckweed Lemna minor of 4-nitrophenol (4NP) was studied by means of bench-scale constructed wetlands (CWs), TiO(2)-photocatalysis and Fenton + photoFenton reactions. The main goal of this work was to compare the three treatment techniques to evaluate their possible combination for the efficient, low cost treatment of 4NP effluents. In CWs, adsorption on the substrate of 4NP was found to achieve 34-45%. Low concentrations (up to 100 ppm) of 4NP were successfully treated by CWs in 8-12 h. The microbial degradation of 4NP started after a lag phase which was longer with higher initial concentrations of the pollutant. The greatest degradation rate was found to occur at initial concentrations of 4NP between 60 and 90 ppm. Solar TiO(2)-photocatalysis was faster than the CWs. The greatest removals in terms of mass of 4NP removed after 6 h of irradiation were found to occur at 4NP concentrations of about 200 ppm. Fenton reaction provided complete 4NP degradation up to 500 ppm in only 30 min but TOC was removed by only about 40%. The resulting toxicities were below 20% for initial 4NP concentrations below 300 ppm. It was the Fenton + photoFenton combination (180 min in total) that provided TOC reductions up to 80% and negative L. minor growth inhibition for almost all the 4NP concentrations tested. The combination of solar TiO(2)-photocatalysis (6 h) with CWs (16 h) was able to completely treat and detoxify 4NP effluents with concentrations as high as 200 ppm of the organic.

  2. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2014-09-01

    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc = 0.233 ± 0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.

  3. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect

    Fresia, Megan; Vogt, Kirk

    2013-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO{sub 2}) from the flue gas of coal-fired power plants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO{sub 2} capture solvent. GE Global Research was contracted by the Department of Energy to test a bench-scale continuous CO{sub 2} absorption/desorption system using a GAP-1m/TEG mixture as the solvent. SiVance LLC was sub-contracted to provide the GAP-1m material and conduct an Environmental, Health, and Safety (EH&S) assessment for a 550 MW coal-fired power plant. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP-1m/SOX salt, and dodecylbenzenesulfonic acid (DDBSA) were also identified for analysis. All of the solvent components and DDBSA are listed on the EPA’s TSCA Inventory allowing companies to manufacture and use the chemicals commercially. The toxicological effects of each component were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. An engineering and control system, including environmental abatement, was described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  4. Measurement of toluene bioconversion during ventilation in a bench-scale soil column

    SciTech Connect

    Malina, G.; Grotenhuis, T.; Cuypers, C.; Rulkens, W.

    1995-12-31

    The ratio between ventilation and biodegradation of toluene in the vadose zone during bioventing was studied by bench-scale soil column experiments, using gas chromatography headspace analysis. Biodegradation batch tests showed that toluene vapor concentrations above 75% of the saturation concentration completely retarded the bioconversion rate. To determine the role of bioconversion and physical removal of toluene from soil, CO{sub 2}-free air and N{sub 2} were used, respectively, as flushing gases, with a flowrate of 1.0 L/h or 39.5 cm{sup 3}/(cm{sup 2}{center_dot}h). In a column with ca. 4 kg of sandy soil, at a water content of 15% w/w, i.e., 75% of field capacity , and temperature 20 C, the initial concentration of toluene, 4,000 mg/kg, was reduced within 11 days to between 0.5 and 0.2 mg/kg during bioventing, and to between 60 and 70 mg/kg when bioconversion was not involved. Soil extraction after 24 days of venting showed a residual toluene concentration of 1.4 mg/kg. Mass balance analysis of toluene and CO{sub 2} indicated that about 90% of toluene was evaporated and 10% was biodegraded. Time constants for volatilization and bioconversion were comparable at the flowrate applied. These results enable determination of the optimum airflow for venting and oxygen supply required for toluene biodegradation, and design of an optimum bioventing strategy for toluene removal.

  5. Bench-scale biofilter for removing ammonia from poultry house exhaust.

    PubMed

    Shah, S B; Basden, T J; Bhumbla, D K

    2003-01-01

    A bench-scale biofilter was evaluated for removing ammonia (NH3) from poultry house exhaust. The biofilter system was equipped with a compost filter to remove NH3 and calcium oxide (CaO) filter to remove carbon dioxide (CO2). Removal of NH3 and CO2 from poultry house exhaust could allow treated air with residual heat to be recirculated back into the poultry house to conserve energy during winter months. Apart from its use as a plant nutrient, NH3 removal from poultry house exhaust could lessen the adverse environmental impacts of NH3 emissions. Ammonia and CO2 were measured daily with gas detector tubes while temperatures in the poultry pen and compost filter were monitored to evaluate the thermal impact of the biofilter on treated air. During the first 37 days of the 54-day study, exhaust air from 33 birds housed in a pen was treated in the biofilter; for the final 17 days, NH3-laden exhaust, obtained by applying urea to the empty pen was treated in the biofilter. The biofilter system provided near-complete attenuation of a maximum short-term NH3 concentration of 73 ppm. During the last 17 days, with a mean influent NH3 concentration of 26 ppm, the biofilter provided 97% attenuation. The CaO filter was effective in attenuating CO2. Compared with a biofilter sized only for NH3 removal, an oversized biofilter would be required to provide supplemental heat to the treated air through exothermic biochemical reactions in the compost. The biofilter could conserve energy in poultry production and capture NH3 for use as plant nutrient. Based on this study, a house for 27,000 broilers would require a compost filter with a volume of approximately 34 m3.

  6. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters.

    PubMed

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2013-10-15

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters.

  7. In-situ Subaqueous Capping of Mercury-Contaminated Sediments in a Fresh-Water Aquatic System, Part I-Bench-Scale Microcosm Study to Assess Methylmercury Production

    EPA Science Inventory

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absenc...

  8. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    SciTech Connect

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi; McCloskey, Pat; Singh, Surinder; Ananthasayanam, Balajee; Howson, Paul; Lee, Julia; Wroczynski, Ron; Stewart, Frederick; Orme, Christopher; Klaehn, John; McNally, Joshua; Rownaghi, Ali; Lu, Liu; Koros, William; Goizueta, Roberto; Sethi, Vijay

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  9. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor.

  10. Use of lysis and recycle to control excess sludge production in activated sludge treatment: bench scale study and effect of chlorinated organic compounds.

    PubMed

    Nolasco, M A; Campos, A L O; Springer, A M; Pires, E C

    2002-01-01

    The most widely used treatment system in the pulp and paper industry--the activated sludge--produces high quantities of sludge which need proper disposal. In this paper a modified activated sludge process is presented. A synthetic wastewater, prepared to simulate the effluent of bleached and unbleached pulp and paper plant wastewater, was submitted to treatment in a bench scale aerobic reactor. The excess sludge was lysed in a mechanical mill--Kaddy mill--and totally recycled to the aeration tank. In the first phase the synthetic wastewater, without the chlorinated compounds, was fed to the reactor. In the second phase increasing dosages of the chlorinated compounds were used. Total recycle of excess sludge after disintegration did not produce adverse effects. During the first phase average COD removal efficiency was 65% for the control unit, which operated in a conventional way, and 63% for the treatment unit, which operated with total recycle. During the second phase the COD removal efficiency increased to 77% in the control unit and 75% in the treatment unit. Chlorinated organics removal was 85% in the treatment unit and 86% for the control unit. These differences are not significant.

  11. EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect

    Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).

  12. Size distribution of chromate paint aerosol generated in a bench-scale spray booth.

    PubMed

    Sabty-Daily, Rania A; Hinds, William C; Froines, John R

    2005-01-01

    Spray painters are potentially exposed to aerosols containing hexavalent chromium [Cr(VI)] via inhalation of chromate-based paint sprays. Evaluating the particle size distribution of a paint spray aerosol, and the variables that may affect this distribution, is necessary to determine the site and degree of respiratory deposition and the damage that may result from inhaled Cr(VI)-containing paint particles. This study examined the effect of spray gun atomization pressure, aerosol generation source and aerosol aging on the size distribution of chromate-based paint overspray aerosols generated in a bench-scale paint spray booth. The study also determined the effect of particle bounce inside a Marple personal cascade impactor on measured size distributions of paint spray aerosols. Marple personal cascade impactors with a modified inlet were used for sample collection. The data indicated that paint particle bounce did not occur inside the cascade impactors sufficiently to affect size distribution when using uncoated stainless steel or PVC substrate sampling media. A decrease in paint aerosol mass median aerodynamic diameter (MMAD) from 8.2 to 7.0 mum was observed as gun atomization pressure increased from 6 to 10 psi. Overspray aerosols were sampled at two locations in the spray booth. A downstream sampling position simulated the exposure of a worker standing between the painted surface and exhaust, a situation encountered in booths with multiple workers. The measured mean MMAD was 7.2 mum. The distance between the painted surface and sampler was varied to sample oversprays of varying ages between 2.8 and 7.7 s. Age was not a significant factor for determining MMAD. Overspray was sampled at a 90 degrees position to simulate a worker standing in front of the surface being painted with air flowing to the worker's side, a common situation in field applications. The resulting overspray MMAD averaged 5.9 mum. Direct-spray aerosols were sampled at ages from 5.3 to 11.7 s

  13. Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality.

    PubMed

    Rahman, M Safiur; Gagnon, Graham A

    2014-01-01

    Discoloration of water resulting from suspended iron particles is one of the main customer complaints received by water suppliers. However, understanding of the mechanisms of discoloration as well as role of materials involved in the process is limited. In this study, an array of bench scale experiments were conducted to evaluate the impact of the most common variables (pH, PO4, Cl2 and DOM) on the properties of iron particles and suspensions derived from the oxygenation of Fe(II) ions in NaHCO3 buffered synthetic water systems. The most important factors as well as their rank influencing iron suspension color and turbidity formation were identified for a range of water quality parameters. This was accomplished using a 2(4) full factorial design approach at a 95% confidence level. The statistical analysis revealed that phosphate was found to be the most significant factor to alter color (contribution: 37.9%) and turbidity (contribution: 45.5%) in an iron-water system. A comprehensive study revealed that phosphate and chlorine produced iron suspension with reduced color and turbidity, made ζ-potential more negative, reduced the average particle size, and increased iron suspension stability. In the presence of DOM, color was observed to increase but a reverse trend was observed to decrease the turbidity and to alter particle size distribution. HPSEC results suggest that higher molecular weight fractions of DOM tend to adsorb onto the surfaces of iron particles at early stages, resulting in alteration of the surface charge of iron particles. This in turn limits particles aggregation and makes iron colloids highly stable. In the presence of a phosphate based corrosion inhibitor, this study demonstrated that color and turbidity resulting from suspended iron were lower at a pH value of 6.5 (compared to pH of 8.5). The same trend was observed in presence of DOM. This study also suggested that iron colloid suspension color and turbidity in chlorinated drinking water

  14. Bench- and pilot-scale thermal desorption treatability studies on pesticide-contaminated soils from Rocky Mountain Arsenal

    SciTech Connect

    Swanstrom, C.P.; Besmer, M.

    1995-03-09

    Thermal desorption is being considered as a potential remediation technology for pesticide-contaminated soils at the Rocky Mountain Arsenal (RMA) in Denver, Colorado. From 1988 through 1992, numerous laboratory- and bench-scale indirect-heated thermal desorption (IHTD) treatability studies have been performed on various soil medium groups from the arsenal. RMA has contracted Argonne National Laboratory to conduct a pilot-scale direct-fired thermal desorption (DFTD) treatability study on pesticide-contaminated RMA soil. The purpose of this treatability study is to evaluate the overall effectiveness of the DFTD technology on contaminated RMA soils and to provide data upon which future conceptual design assumptions and cost estimates for a full-scale system can be made. The equipment used in the DFTD treatability study is of large enough scale to provide good full-scale design parameters and operating conditions. The study will also provide valuable-emissions and materials-handling data. Specifically this program will determine if DFTD can achieve reductions in soil contamination below the RMA preliminary remediation goals (PRGs), define system operating conditions for achieving the PRGs, and determine the fate of arsenic and other hazardous metals at these operating conditions. This paper intends to compare existing data from a bench-scale IHTD treatability study using equipment operated in the batch mode to new data from a pilot-scale DFTD operated in a parallel-flow continuous mode. Delays due to materials-handling problems and permit issues have delayed the start of the pilot-scale DFTD testing. The first pilot-scale test is scheduled for the flat week in January 1995. The available data will be presented March 9, 1995, at the Seventh Annual Gulf Coast Environmental Conference in Houston, Texas.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. A broad-scale comparison of aerobic activity levels in vertebrates: endotherms versus ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V

    2017-02-22

    Differences in the limits and range of aerobic activity levels between endotherms and ectotherms remain poorly understood, though such differences help explain basic differences in species' lifestyles (e.g. movement patterns, feeding modes, and interaction rates). We compare the limits and range of aerobic activity in endotherms (birds and mammals) and ectotherms (fishes, reptiles, and amphibians) by evaluating the body mass-dependence of VO2 max, aerobic scope, and heart mass in a phylogenetic context based on a newly constructed vertebrate supertree. Contrary to previous work, results show no significant differences in the body mass scaling of minimum and maximum oxygen consumption rates with body mass within endotherms or ectotherms. For a given body mass, resting rates and maximum rates were 24-fold and 30-fold lower, respectively, in ectotherms than endotherms. Factorial aerobic scope ranged from five to eight in both groups, with scope in endotherms showing a modest body mass-dependence. Finally, maximum consumption rates and aerobic scope were positively correlated with residual heart mass. Together, these results quantify similarities and differences in the potential for aerobic activity among ectotherms and endotherms from diverse environments. They provide insights into the models and mechanisms that may underlie the body mass-dependence of oxygen consumption.

  17. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    SciTech Connect

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  18. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect

    DUNCAN JB

    2010-08-19

    ) was found to be comparable to immobilized low-activity waste glass waste form in the initial supplemental LAW treatment technology risk assessment (Mann 2003). To confirm this hypothesis, DOE is funding a treatability study where three actual Hanford tank waste samples (containing both {sup 99}Tc and {sup 125}I) will be processed in Savannah River National Laboratory's (SRNL) Bench-Scale Reformer (BSR) to form the mineral product, similar to the granular NAS waste form, that will then be subject to a number of waste form qualification tests. In previous tests, SRNL have demonstrated that the BSR product is chemically and physically equivalent to the FBSR product (Janzen 2005). The objective of this paper is to describe the sample selection, sample preparation, and environmental and regulatory considerations for treatability studies of the FBSR process using Hanford tank waste samples at the SNRL. The SNRL will process samples in its BSR. These samples will be decontaminated in the 222-S Laboratory to remove undissolved solids and selected radioisotopes to comply with Department of Transportation (DOT) shipping regulations and to ensure worker safety by limiting radiation exposure to As Low As Reasonably Achievable (ALARA). These decontamination levels will also meet the Nuclear Regulatory Commission's (NRC's) definition of low activity waste (LAW). After the SNRL has processed the tank samples to a granular mineral form, SRNL and Pacific Northwest National Laboratory (PNNL) will conduct waste form testing on both the granular material and monoliths prepared from the granular material. The tests being performed are outlined in Appendix A.

  19. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  20. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    SciTech Connect

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei; Farnum, Rachael; Perry, Robert; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.

  1. A bench-scale treatability study for in situ bioremediation of pentachlorophenol and oil in soil

    SciTech Connect

    Anderson, M.J.; Doxtader, K.G.; Johnson, J.A.; Reardon, K.F.; Tessari, J.D.

    1994-12-31

    The objective of this study was to determine the extent to which indigenous microorganisms could be induced to degrade a mixture of pentachlorophenol (PCP) and diesel oil in the subsurface at a wood treatment site. A second, and related objective, was to determine the overall rate of degradation for (1) PCP, and (2) the petroleum hydrocarbons, and which factors could be controlled to enhance these processes. Contaminated soil samples were incubated under both aerobic and anaerobic conditions for periods varying from 0 to 180 days. The effect of nutrient (N, P, S, K, Mg) supplementation on the rate and extent of degradation in both aerobic and anaerobic microcosms were studied. At eleven selected time intervals the chemical concentrations remaining in a set of microcosms (duplicate samples plus a sterile control) were determined by extracting and analyzing the soils. Enumeration of bacteria, actinomycetes and fungi by plate counting were performed to obtain specific growth rate data. Aerobic microbial activity, as measured by CO{sub 2} evolution, was also determined. Kinetic models and constants were determined to predict cleanup times under the given experimental conditions. Power (zero and first order) and hyperbolic (Michaelis-Menten and Monod) kinetic models were evaluated.

  2. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media

    PubMed Central

    Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.

    2015-01-01

    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036

  3. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report: July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    The purpose of this report is to present results from culture isolation and selection studies, bench-scale fermentation experiments, and ethanol recovery experiments. Several promising isolates have been obtained in addition to Clostridium ljungdahlii, strain PETC, and are being used in batch and continuous culture comparison studies. C. ljungdahlii is being utilized in two-stage bench-scale reactor studies, aimed at producing ethanol in high concentrations from a stable culture system. Finally, solvent comparison studies have been performed for the economical recovery of ethanol from the fermentation broth.

  4. Evaluation of quicklime incorporation in bench-scale and full-scale lime stabilized biosolids using a flat surface pH electrode.

    PubMed

    Burns, Benjamin; Krach, Kenneth; Cole, Charles; Mangus, Jessica; Butler, Howard; Li, Baikun

    2007-07-01

    Uniform lime incorporation into sewage sludge is critical for biosolid lime stabilization processes. There is no class B biosolids regulation for lime incorporation. The slurry method is currently used to evaluate the pH of limed biosolids, but this method homogenizes the biosolids and potentially masks poor lime mixing. In this study, a flat-surface pH electrode was used in bench-scale and full-scale experiments to measure the pH of lime-stabilized biosolids without creating slurries. The standard deviation of 15 pH measurements at different locations in a biosolid sample was used to assess mixing quality. The bench-scale experimental study showed that well-mixed limed biosolids had consistently high pHs (approximately 12) with low standard deviations (< 0.5 pH units), whereas poorly mixed biosolids had areas with low pH (< 10) and high standard deviations (> 2 pH units). Poorly mixed biosolids exhibited rapid and marked pH reduction, as well as offensive odor generation, whereas well-mixed biosolids resisted pH reduction and offensive odor generation. The full-scale study aimed at improving lime incorporation and biosolids quality confirmed the use of a flat surface pH electrode to capture low pH regions in biosolids that were masked by the current slurry method.

  5. Evaluation of the role of heterogeneities on transverse mixing in bench-scale tank experiments by numerical modeling.

    PubMed

    Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C

    2014-01-01

    In this work, numerical modeling is used to evaluate and interpret a series of detailed and well-controlled two-dimensional bench-scale conservative tracer tank experiments performed to investigate transverse mixing in porous media. The porous medium used consists of a fine matrix and a more permeable lens vertically aligned with the tracer source and the flow direction. A sensitivity analysis shows that the tracer distribution after passing the lens is only slightly sensitive to variations in transverse dispersivity, but strongly sensitive to the contrast of hydraulic conductivities. A unique parameter set could be calibrated to closely fit the experimental observations. On the basis of calibrated and validated model, synthetic experiments with different contrasts in hydraulic conductivity and more complex setups were performed and the efficiency of mixing evaluated. Flux-related dilution indices derived from these simulations show that the contrasts in hydraulic conductivity between matrix and high-permeable lenses as well as the spatial configuration of tracer plumes and lenses dominate mixing, rather than the actual pore scale dispersivities. These results indicate that local material distributions, the magnitude of permeability contrasts, and their spatial and scale relation to solute plumes are more important for macro-scale transverse dispersion than the micro-scale dispersivities of individual materials. Local material characterization by thorough site investigation hence is of utmost importance for the evaluation of mixing-influenced or -governed problems in groundwater, such as tracer test evaluation or an assessment of contaminant natural attenuation.

  6. Filtration of a Hanford Site Tank 241-AN-102 Waste Sample with Alternate Sr/TRU Precipitation Conditions at Bench and Pilot Scales

    SciTech Connect

    ZAMECNIK, JR

    2004-05-27

    In support of the design of the Hanford Waste Treatment Plant, the Savannah River Technology Center has conducted crossflow ultrafiltration tests on the bench scale with both a radioactive sample and simulants and at pilot scale with simulants. The waste tested was from Tank 241-AN-102, which underwent isotopic dilution with strontium nitrate to reduce the soluble (superscript 90)Sr concentration, and sodium permanganate precipitation to remove selected transuranic species. Experimental work validated the use of a simulant by comparison of bench scale simulant filtration data with radioactive filtration test data. Tests on a pilot scale were also conducted and showed that the filtration flux in the pilot unit was consistently lower than in the bench scale unit. An alternative precipitation method resulted in less filterable slurries. Several possible explanations for the differences in flux were proposed, including differences in particle size distribution and slurry viscosity (th e term viscosity will be used, although consistency is more correct for non-Newtonian fluids). The experimental data was also fit to an empirical model and several filtration models. The trends in the data generally followed the predictions of the filtration models. Differences in flux between the bench and pilot scales could not be accounted for by the calculated difference in the average wall shear stress.

  7. Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study.

    PubMed

    Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco

    2016-11-01

    Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans.

  8. Development of a standard bench-scale cell for electrochemical studies on inert anodes. Inert Anode/Cathode Program

    SciTech Connect

    Windisch, C.F. Jr.; Boget, D.I.

    1986-07-01

    Objective of this work was to develop a standard bench-scale cell for performing short-term ac and dc polarization studies on inert anode candidate materials in molten cryolite. Two designs for electrochemical cells were developed and successfully evaluated in short-term experiments. Both cells consisted on the inert anode as a small cylindrical specimen partially sheathed in alumina, an Al/Al/sub 2/O/sub 3/ reference electrode, and a cryolite bath saturated in alumina. The difference between the two cells was in the design of the cathode. One cell used a bare solid metal cathode; the other used an aluminum pad similar to the Hall-Heroult configuration.

  9. Simultaneous bench scale production of dissolving grade pulp and valuable hemicelluloses from softwood kraft pulp by ionic liquid extraction.

    PubMed

    Laine, Christiane; Asikainen, Sari; Talja, Riku; Stépán, Agnes; Sixta, Herbert; Harlin, Ali

    2016-01-20

    Ionic liquid extraction of wood pulp has been highlighted as a highly potential new process for dissolving pulp production. Coproduction with a polymeric hemicellulose fraction was demonstrated in bench scale from softwood kraft pulp using extraction with the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM OAc) and water. In total, the recovered pulp and hemicellulose fraction together yielded 95.5 wt.% of the pulp input. The extracted pulp had a remarkably high purity with an R18-value of 97.8%. The hemicellulose fraction consisted of galactoglucomannan, arabinoxylan and some cellulose and was precipitated from the ionic liquid-water mixture. After hydroxypropylation of the hemicellulose fraction, films were prepared and barrier and strength properties were compared to films from other polysaccharides. Reduced oxygen and water vapor permeation and good strength properties were demonstrated when compared to corresponding films from hydroxypropylated xylan from cold caustic extraction. The films have potential for applications in food packaging and edible films.

  10. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-05-15

    A hydrolysis acidification (HA)-anoxic-oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m(3) h(-1)) was operated with the same parameters. The results showed that the BOD5/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L(-1) for bench scale reactor and 60.9 mg L(-1) for PCWWTP when the influent COD was about 480 mg L(-1) on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC-MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L(-1). There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  11. Quality and Quantity of Leachate in Aerobic Pilot-Scale Landfills

    NASA Astrophysics Data System (ADS)

    Bilgili, Memmet Sinan; Demir, Ahmet; Özkaya, Bestamin

    2006-08-01

    In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl-), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3 --N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl- concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 - concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.

  12. Aerobic sludge granulation in a full-scale sequencing batch reactor.

    PubMed

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m(3) d(-1) for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g(-1), diameter of 0.5 mm, and settling velocity of 42 m h(-1) were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  13. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  14. Crucible melts and bench-scale ISV (in situ vitrification) tests on simulated wastes in INEL (Idaho National Engineering Laboratory) soils

    SciTech Connect

    Farnsworth, R.K.; Oma, K.H.; Reimus, M.A.H.

    1990-05-01

    This report summarizes the results of eight crucible melt tests and three bench-scale in situ vitrification (ISV) test that were performed on simulated metals/soils mixtures containing actual site soils from the Idaho National Engineering Laboratory (INEL). The crucible melt and bench-scale ISV tests are a part of efforts by the Pacific Northwest Laboratory (PNL) to assist the INEL in conducting a treatability study on ISV for application to the mixed waste buried at the INEL subsurface disposal area (SDA). The crucible melt tests were performed to evaluate the effect of various chemical additives and metal oxidation techniques on soil melting temperatures, melt viscosities, metals versus electrode oxidation potentials, and metals incorporation in the glass. The bench-scale ISV tests were performed to supplement the existing ISV data base with information on certain hazardous materials that have not been adequately evaluated in previous ISV tests. These materials included five EP toxicity metals, various volatile organic materials fixed in a cementitious matrix (including carbon tetrachloride (CCl{sub 4}), trichloroethylene (TCE), and tetrachloroethylene (PCE)), and asbestos. In addition, the bench-scale test were used to evaluated the effect of the proposed chemical additive on ISV processing performance and product quality. 8 refs., 24 figs., 19 tabs.

  15. Development of Bench and Full-Scale Temperature and pH Responsive Functionalized PVDF Membranes with Tunable Properties.

    PubMed

    Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar

    2014-05-01

    Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction.

  16. Bench and full-scale studies for odor control from lime stabilized biosolids: the effect of mixing on odor generation.

    PubMed

    Krach, Kenneth R; Li, Baikun; Burns, Benjamin R; Mangus, Jessica; Butler, Howard G; Cole, Charles

    2008-09-01

    Lime stabilization is a means to raise the pH of biosolids to meet specific pathogen requirements. Along with controlling the microbial growth, lime stabilization reduces the potential for offensive odors. Lime stabilized biosolids can be beneficially used as a soil amendment and also for land reclamation. However, if biosolids are not properly incorporated with the lime, there is a potential for microbial growth, which consequently leads to the emanation of offensive odors and growth of pathogens. Proper mixing was found to be an important factor for the reduction of offensive odors in biosolids treatment. To better understand the effects of mixing on odorous products, bench-scale and full-scale tests were conducted to assess the lime stabilization process and investigate mixing quality at a wastewater treatment plant to help reduce odors associated with known odorants. The results of 4-week laboratory bench-scale tests showed that mixing had the largest effect on odor. The hedonic tone test of the control samples with poor mixing showed a hedonic tone of -2.9 initially and then dropped to -7.3 on Day 29. The hedonic tone of the 3.5%, 7%, and 10% lime mixed biosolids had similar hedonic tones (-2.8 to -2.5) on Day 1 and slightly fluctuated over time and ended at -1.6 to -2.7 on Day 29, which was less odorous than the controls. The control sample with poor mixing showed a rapid pH drop from 12.1 on Day 1 to 8.4 on Day 7. The pH of the control sample was considerably lower than the mixed samples and ended up on Day 28 with a pH of 8.0. The pH of the 7% and 10% samples were relatively stable throughout the 4-week period with a pH still higher than 12 on Day 28. The biosolids with better mixing had a less offensive odor and weaker odor strength than the controls collected at the plant with poor mixing. The lime stabilization process in the wastewater treatment plant was modified in a full-scale study by prolonging the mixing time. The samples collected from the

  17. Bench-scale testing and evaluation of the direct sulfur recovery process. Final report, February 1990--March 1994

    SciTech Connect

    Gangwal, S.K.; Chen, D.H.

    1994-05-01

    The Direct Sulfur Recovery Process (DSRP) is a two-stage catalytic reduction process for efficiently recovering up to 99% or higher amounts of elemental sulfur from SO{sub 2}-containing regeneration tail-gas produced in advanced integrated gasification combined cycle (IGCC) power systems by reacting the tail-gas with a small slipstream of coal gas. In this project, the DSRP was demonstrated with simulated gases at bench-scale with 3-in. diameter, 1-L size catalytic reactors. Fundamental kinetic and modeling studies were conducted to explain the significantly higher than thermodynamically expected sulfur recoveries in DSRP and to enable prediction of sulfur recovery in larger reactors. Technology transfer activities to promote the DSRP consisted of publications and discussions with architectural engineering firms and industrial parties especially IGCC system developers. Toward the end of the project, an agreement was signed with an IGCC system developer to scale up the DSRP and test it with actual gases in their 10-MW (thermal) coal gasification pilot-plant under a cooperative R&D agreement with the US Department of Energy.

  18. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1995

    SciTech Connect

    1995-12-31

    The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurization and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-gas from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in coal gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the October 1 through December 31, 1995 is described.

  19. Comparison of mixed liquor filterability measured with bench and pilot-scale membrane bioreactors.

    PubMed

    Nywening, J P; Zhou, H; Husain, H

    2007-01-01

    Parallel experimental tests to measure mixed liquor filterability for submerged membrane bioreactors were conducted over a six month period using three ZW-500 pilot plants and a ZW-10 lab-scale filterability apparatus. Non-air sparged conditions during the tests yielded operation behaviour that was equivalent to dead-end filtration. The fouling resistance increased linearly with the intercepted mass until a critical point was reached at which point significant cake compression was induced and the resistance began to increase exponentially. Although the point of cake compression appears to be dependent on the membrane module design, similar resistance per unit solid mass intercepted per unit area (R(mass)) values were observed when the same mixed liquor was filtered. Coupled with the established correlation between the R(mass) and the critical flux, it is suggested that the filterability test results from a side-stream, lab-scale module may be used to predict fouling potential in a full scale MBR wastewater treatment system without interrupting the full-scale MBR operation.

  20. Appropriate interpretation of aerobic capacity: allometric scaling in adult and young soccer players

    PubMed Central

    Chamari, K; Moussa-Chamari, I; Boussaidi, L; Hachana, Y; Kaouech, F; Wisloff, U

    2005-01-01

    Objective: To compare aerobic capacity of young and adult elite soccer players using appropriate scaling procedures. Methods: Twenty four male adult (mean (SD) age 24 (2) years, weight 75.7 (7.2) kg, VO2MAX 66.6 (5.2) ml/lbm/min, where lbm is lean body mass in kg) and 21 youth (14 (0.4) years, 60.2 (7.3) kg, 66.5 (5.9) ml/lbm/min) elite soccer players took part in the study. Allometric equations were used to determine the relation between maximal and submaximal oxygen cost of running (running economy) and body mass. Results: Maximal and submaximal oxygen uptake increased in proportion to body mass raised to the power of 0.72 (0.04) and 0.60 (0.06) respectively. The VO2MAX of adult players was similar to that of the youth players when expressed in direct proportion to body mass—that is, ml/kg/min—but 5% higher (p<0.05) when expressed using appropriate procedures for scaling. Conversely, compared with seniors, youth players had 13% higher (p<0.001) energy cost of running—that is, poorer running economy—when expressed as ml/kg/min but not when expressed according to the scaling procedures. Conclusions: Compared with the youth soccer players, VO2MAX in the seniors was underestimated and running economy overestimated when expressed traditionally as ml/lbm/min. The study clearly shows the pitfalls in previous studies when aerobic capacity was evaluated in subjects with different body mass. It further shows that the use of scaling procedures can affect the evaluation of, and the resultant training programme to improve, aerobic capacity. PMID:15665205

  1. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells.

    PubMed

    Ullery, Mark L; Logan, Bruce E

    2014-10-01

    A range of wastewaters and substrates were examined using mini microbial electrolysis cells (mini MECs) to see if they could be used to predict the performance of larger-scale cube MECs. COD removals and coulombic efficiencies corresponded well between the two reactor designs for individual samples, with 66-92% of COD removed for all samples. Current generation was consistent between the reactor types for acetate (AC) and fermentation effluent (FE) samples, but less consistent with industrial (IW) and domestic wastewaters (DW). Hydrogen was recovered from all samples in cube MECs, but gas composition and volume varied significantly between samples. Evidence for direct conversion of substrate to methane was observed with two of the industrial wastewater samples (IW-1 and IW-3). Overall, mini MECs provided organic treatment data that corresponded well with larger scale reactor results, and therefore it was concluded that they can be a useful platform for screening wastewater sources.

  2. Biostimulated uranium immobilization within aquifers – from bench scale to field experiments

    SciTech Connect

    Ulrich, Kai-Uwe; Veeramani, Harish; Schofield, Eleanor J.; Sharp, Jonathan O.; Suvorova, Elena; Stubbs, Joanne E.; Lezama Pacheco, Juan S.; Barrows, Charles J.; Cerrato, Jose M.; Campbell, Kate M.; Yabusaki, Steven B.; Long, Philip E.; Bernier-Latmani, Rizlan; Giammar, Daniel E.; Bargar, John R.

    2011-12-29

    In situ bioremediation of uranium-contaminated aquifers through microbially catalyzed reduction of mobile U(VI) species can only be successful if the U(IV) products are immobilized over long time-scales. Although uraninite is known for its low solubility and has been produced in nano-particulate form by several species of metal- and sulfate-reducing bacteria in laboratory studies, little is known about the stability of biogenic U(IV) in the subsurface. Using an up-scaling approach, we investigated the chemical and environmental stability of biogenic UO₂ nano-solids. Our results show that diffusive limitations due to aquifer porosity and microstructure may retard uraninite corrosion. Corrosion was also retarded by adsorption or incorporation of manganese. On the other hand, U(VI) bioreduction in field sediments generated U(IV) that was more labile than biogenic UO₂.

  3. Bench-scale evaluation of aerosol delivery for biostimulation and bioaugmentation in the vadose zone.

    PubMed

    Hall, Richard J; Murdoch, Lawrence C; Freedman, David L; Looney, Brian B; Riha, Brian D

    2015-04-01

    Aerosol delivery was evaluated for distributing biostimulation and bioaugmentation amendments in vadose zones. This technique involves transporting amendments as micron-scale aerosol droplets in injected gas. Microcosm experiments were designed to characterize reductive dechlorination of trichloroethene (TCE) under unsaturated conditions when delivering components as aerosols. Delivering amendments and/or microbes as aqueous aerosols resulted in complete dechlorination of TCE, similar to controls operated under saturated conditions. Reductive dechlorination was achieved with manual injection of a bioaugmentation culture suspended in soybean oil into microcosms. However, aerosol delivery of the culture in soybean oil induced little reductive dechlorination activity. Overall, the results indicate that delivery as aqueous aerosols may be a viable option for delivery of amendments to enhance vadose zone bioremediation at the field-scale.

  4. Process Development of Adenoviral Vector Production in Fixed Bed Bioreactor: From Bench to Commercial Scale.

    PubMed

    Lesch, Hanna P; Heikkilä, Kati M; Lipponen, Eevi M; Valonen, Piia; Müller, Achim; Räsänen, Eva; Tuunanen, Tarja; Hassinen, Minna M; Parker, Nigel; Karhinen, Minna; Shaw, Robert; Ylä-Herttuala, Seppo

    2015-08-01

    Large-scale vector manufacturing for phase III and beyond has proven to be challenging. Upscaling the process with suspension cells is increasingly feasible, but many viral production applications are still applicable only in adherent settings. Scaling up the adherent system has proven to be troublesome. The iCELLis(®) disposable fixed-bed bioreactors offer a possible option for viral vector manufacturing in large quantities in an adherent environment. In this study, we have optimized adenovirus serotype 5 manufacturing using iCELLis Nano with a cultivation area up to 4 m(2). HEK293 cell cultivation, infection, and harvest of the virus (by lysing the cells inside the bioreactor) proved possible, reaching total yield of up to 1.6×10(14) viral particles (vp)/batch. The iCELLis 500 is designed to satisfy demand for large-scale requirements. Inoculating a large quantity of cell mass into the iCELLis 500 was achieved by first expanding the cell mass in suspension. Upscaling the process into an iCELLis 500/100 m(2) cultivation area cassette was practical and produced up to 6.1×10(15) vp. Flask productivity per cm(2) in iCELLis Nano and iCELLis 500 was in the same range. As a conclusion, we showed for the first time that iCELLis 500 equipment has provided an effective way to manufacture large batches of adenoviral vectors.

  5. Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981

    SciTech Connect

    Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O'Keefe, D.R.; Allen, C.L.

    1982-05-01

    The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

  6. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    NASA Astrophysics Data System (ADS)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  7. Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources

    USGS Publications Warehouse

    Mika, K.B.; Imamura, G.; Chang, C.; Conway, V.; Fernandez, G.; Griffith, J.F.; Kampalath, R.A.; Lee, C.M.; Lin, C.-C.; Moreno, R.; Thompson, S.; Whitman, R.L.; Jay, J.A.

    2009-01-01

    Aim: Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Methods and Results: Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0??23 and -1??02 per day, and for enterococci between -0??5 and -1??0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Conclusions: Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Significance and Impact of the Study: Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent. ?? 2009 The Society for Applied Microbiology.

  8. Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent.

    PubMed

    Mackie, Allison L; Walsh, Margaret E

    2012-02-01

    The overall objective of this study was to investigate the potential impact on settled water quality of using cement kiln dust (CKD), a waste by-product, to replace quicklime in the active treatment of acidic mine water. Bench-scale experiments were conducted to evaluate the treatment performance of calcium hydroxide (Ca(OH)(2)) slurries generated using four different CKD samples compared to a control treatment with quicklime (CaO) in terms of reducing acidity and metals concentrations in acid mine drainage (AMD) samples taken from the effluent of a lead/zinc mine in Atlantic Canada. Results of the study showed that all of the CKD samples evaluated were capable of achieving greater than 97% removal of total zinc and iron. The amount of solid alkaline material required to achieve pH targets required for neutralization of the AMD was found to be higher for treatment with the CKD slurries compared to the quicklime slurry control experiments, and varied linearly with the free lime content of the CKD. The results of this study also showed that a potential benefit of treating mine water with CKD could be reduced settled sludge volumes generated in the active treatment process, and further research into the characteristics of the sludge generated from the use of CKD-generated calcium hydroxide slurries is recommended.

  9. Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.

    1995-08-01

    The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

  10. Bench-scale treatment of Lurgi gasifier and H-coal wastewaters by the PACT system

    SciTech Connect

    Randall, T.L.

    1984-11-01

    Laboratory and pilot scale studies were carried out on the feasibility of applying the PACT system (involving addition of powdered activated carbon to the aeration tanks in the activated sludge process, and wet-air oxidation of the sludge to recover carbon) to the treatment of wastewaters from the Lurgi/Mobil M process, which produces synthesis gas, and a coal liquefaction process. The PACT system provided continuous, reliable treatment. A 2-stage process gave the best overall removal of COD and DOC. Both single and 2-stage systems achieved consistent nitrification of the wastewaters, producing effluents containing < 1 mg NH/sub 3//l.

  11. In situ encapsulation bench-scale demonstration report FY-94 (for TTP-ID 142012)

    SciTech Connect

    Weidner, J.R.; Shaw, P.G.

    1995-01-01

    This report describes the test objectives, procedures, and results of the laboratory-scale tests of in situ waste encapsulation of buried waste using a synthetic analogue of natural cement. The products of the reaction FeSO{sub 4} {center_dot} 7H{sub 2}O + Ca(OH){sub 2} = gypsum and iron oxide/hydroxide were examined as a possible waste encapsulation material for application at the Subsurface Disposal Area at the Idaho National Engineering Laboratory. This technique for transuranic waste encapsulation is being pursued by the Buried Waste Integrated Demonstration as a possible candidate containment and stabilization method for geologic time. The data indicate that the iron waste encapsulation materials tested are appropriate choices for the intended purpose. Based on these observations and conclusions, full-scale tests are recommended to determine the performance of the iron waste isolation materials under field conditions and for extended time periods. The viscosity of the reagents indicates that jet grouting is probably an appropriate application method.

  12. EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect

    Rapko, Brian M.; Schonewill, Philip P.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  13. Electrical resistivity tomography as a tool for monitoring CO2 injection: Demonstration of leakage detection during bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Breen, S. J.; Carrigan, C. R.; LaBrecque, D. J.; Detwiler, R. L.

    2011-12-01

    Field-scale studies have shown Electrical Resistivity Tomography (ERT) to be an effective tool for imaging resistivity anomalies and monitoring infiltration events in the near subsurface. ERT also shows potential for monitoring CO2 injections, despite deployment challenges in the deep subsurface. We present results from analog bench-scale experiments aimed at evaluating the ability of ERT to quantify the volume and spatial distribution of a gas injected into a brine-saturated porous medium. We injected measured volumes of gas into translucent chambers filled with quartz sand, lined with electrodes, and saturated with a low resistivity salt solution. Between injections, a CCD camera captured high-resolution images, and an ERT data acquisition system scanned the chamber. Using the CCD images, quantitative visualization techniques resulted in high-resolution measurements of the spatial distribution and saturation of the injected gas. Direct comparison to inverted resistivity fields then provided a quantitative measure of the ability of ERT to estimate the total volume of injected gas and its spatial distribution within the chamber. We present results from two experiments designed to represent different injection scenarios: (A) low injection rate and strong capillary barrier, and (B) high injection rate and weaker capillary barrier. Results show that ERT provides good estimates of the shape, size and location of the primary gas plume, but underestimates gas content and does not detect thin pathways of gas from the injection port or within the overlying capillary barrier. However, ERT measurements did detect a change in saturation within the primary plume caused by leakage through the capillary barrier in (B), demonstrating the potential utility of ERT as a leakage-monitoring tool. Repeated ERT scans during our experiments led to degradation in data quality that corresponded with an increase in measured contact resistance. Decreased data quality over time is clearly a

  14. Mild gasification technology development process: Task 3, Bench-scale char upgrading study, February 1988--November 1990

    SciTech Connect

    Carty, R.H.; Onischak, M.; Babu, S.P.; Knight, R.A.; Wootten, J.M.; Duthie, R.G.

    1990-12-01

    The overall objective of this program is to develop mild gasification technology and co-product utilization. The objective of Task 3 was to investigate the necessary steps for upgrading the mild gasification char into potential high-market-value solid products. Recommendations of the Task 1 market survey section formed the basis for selecting three value-added solid products from mild gasification char: form coke, smokeless fuel, and activated adsorbent char. The formation and testing for the form coke co-product involved an evaluation of its briquette strength and reactivity. The measured tensile strength and reactivity of the form coke sample briquettes were in the range of commercial coke, and development tests on a larger scale are recommended. The reaction rate of the form coke carbon with carbon dioxide at 1825{degree}F was measured using a standard procedure. A smokeless fuel briquette with limestone added to control sulfur can be made from mild gasification char in a simple manner. Test results have shown that briquettes with limestone have a heating value comparable to other solid fuels and the limestone can retain up to 88% of the sulfur during combustion in a simple bench-scale combustion test, almost all of it as a stable calcium sulfate. Adsorbent chars were prepared with a standard steam activation procedure and tested for a variety of pertinent property and performance values. Such adsorbents may be better suited for use in some areas, such as the adsorption of low-molecular-weight substances, because of the smaller pore sizes measured in the char. 5 refs., 17 figs., 6 tabs.

  15. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Not Available

    1994-04-01

    Research Triangle Institute (RTI) with DOE/METC sponsorship has been developing zinc titanate sorbent technology since 1986. In addition, RTI has been developing the Direct Sulfur Recovery Process (DSRP) with DOE/METC sponsorship since 1988. Fluidized-bed zinc titanate desulfurization coupled to the DSRP is currently the most advanced and attractive technology for sulfur removal/recovery for IGCC systems, and it has recently been proposed in a Clean Coal Technology project. The goal of this project is to continue further development of the zinc titanate desulfurization and DSRP technologies by: scaling up the zinc titanate reactor system; developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; testing the integrated system over an extended period with real coal-gas from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in coal gas; developing an engineering database suitable for system scaleup; and designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. During this reporting period the Construction Permit Application was completed and approved by the Process Safety Committee, and a final revised Application has been submitted to DOE/METC. A draft Test Plan for the field test was formulated. Finally, progress was made in the reactor system fabrication with the submission of purchase orders for nearly all major equipment, and with the final design of the trailer (mobile laboratory).

  16. Bench Scale Development and Testing of a Novel Adsorption Process for Post-Combustion CO₂ Capture

    SciTech Connect

    Jain, Ravi

    2015-09-01

    A physical sorption process to produce dry CO₂ at high purity (>98%) and high recovery (>90%) from the flue gas taken before or after the FGD was demonstrated both in the lab and in the field (one ton per day scale). A CO₂ recovery of over 94% and a CO₂ purity of over 99% were obtained in the field tests. The process has a moisture, SOX, and Hg removal stage followed by a CO₂ adsorption stage. Evaluations based on field testing, process simulation and detailed engineering studies indicate that the process has the potential for more than 40% reduction in the capital and more than 40% reduction in parasitic power for CO₂ capture compared to MEA. The process has the potential to provide CO₂ at a cost (<$40/tonne) and quality (<1 ppm H₂O, <1 ppm SOX, <10 ppm O₂) suitable for EOR applications which can make CO₂ capture profitable even in the absence of climate legislation. The process is applicable to power plants without SOX, Hg and NOX removal equipment.

  17. Kinetics experiments and bench-scale system: Background, design, and preliminary experiments

    SciTech Connect

    Rofer, C.K.

    1987-10-01

    The project, Supercritical Water Oxidation of Hazardous Chemical Waste, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to obtain information for use in understanding the basic technology and for scaling up and applying oxidation in supercritical water as a viable process for treating a variety of DOE-DP waste streams. This report gives the background and rationale for kinetics experiments on oxidation in supercritical water being carried out as a part of this HAZWRAP Research and Development task. It discusses supercritical fluid properties and their relevance to applying this process to the destruction of hazardous wastes. An overview is given of the small emerging industry based on applications of supercritical water oxidation. Factors that could lead to additional applications are listed. Modeling studies are described as a basis for the experimental design. The report describes plug flow reactor and batch reactor systems, and presents preliminary results. 28 refs., 4 figs., 5 tabs.

  18. WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008

    SciTech Connect

    Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

    2009-03-20

    The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the grouts for

  19. Laboratory/bench scale testing and evaluation of A. P. T. dry plate scrubber. Sixth quarterly progress report, June 1-August 31, 1981

    SciTech Connect

    Not Available

    1981-09-17

    The objective of this project is to conduct a bench scale experimental evaluation of the dry plate scrubber (DPS) at high temperature and pressure to determine its potential for controlling particulates and alkali vapor emissions from a pressurized fluidized bed combustion (PFBC) process. Progress reports are presented from the following tasks: high temperature and pressure (HTP) experiments; and preliminary alkali experiments on sorbent capacity and efficiency, and sorbent attrition. Some of the highlights are: of the five sorbents (diatomaceous earth MP-94, activated bauxite, dolomite, alumina spheres, and zirconia spheres) evaluated, diatomaceous earth and activated bauxite showed a higher sodium capture efficiency than the other three sorbents; the attrition of diatomaceous earth and activated bauxite is higher at 900/sup 0/C than at ambient temperatures; detailed mechanical design of the HTP DPS system continued; alkali vapor generator and the fly ash particle generator were built; the bench scale DPS was built and installed.

  20. Bench-scale testing of on-line control of column flotation using a novel analyzer. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-16

    This document contains the second quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTE{trademark} Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). The project schedule timeline by task series for the twelve month project, as it was laid out in the initial Project Work Plan. At the present time, all tasks are progressing according to schedule with the exception of the Task 800 Circuit Testing and Sample Prep and Task 1000 Circuit Decommissioning, which have slipped approximately five weeks due to delays incurred within in the project.

  1. Effect of sludge age on the bacterial diversity of bench scale sequencing batch reactors.

    PubMed

    Akarsubasi, Alper Tunga; Eyice, Ozge; Miskin, Ian; Head, Ian M; Curtis, Thomas P

    2009-04-15

    Sludge age or mean cell residence time (MCRT) plays a crucial role in design and operation of wastewater treatment plants. The change in performance, for example micropollutant removal, associated with changes in MCRT is often attributed to changes in microbial diversity. We operated four identical laboratory-scale sequencing batch reactors (two test and two control) in parallel for 212 days. Sludge age was decreased gradually (from 10.4to 2.6 days) in experimental reactors whereas it was kept constant (10.4 days) in control reactors. The reactor performance and biomass changed in a manner consistent with our understanding of the effect of sludge age on a reactors performance: the effluent quality and biomass declined with decreasing MCRT. The composition of the bacterial and ammonia-oxidizing bacterial communities in four reactors was analyzed using denaturing gradient gel electrophoresis (DGGE), and similarities in band patterns were measured using the Dice coefficient. The overall similarity between the communities in reactors run at different sludge ages was indistinguishable from the similarity in communities in reactors run at identical sludge ages. This was true for both the general bacterial communities and putative AOB communities. The number of detectable bands in DGGE profiles was also unaffected by sludge age (p approximately 0.5 in both cases). Initially, the detectable diversity of activated sludge communities in all four reactors clustered with time, regardless of their designation or sludge age; however, these clusters were only weakly supported by bootstrap analysis. However, after 135 days, a sludge age specific clustering was observed in the bacterial community but not the putative ammonia-oxidizing bacterial community. The mean self-similarity of each reactor decreased, variance increased, and the number of detectable bands in DGGE profiles decreased over time in all reactors. The changes observed with time are consistent with ecological drift

  2. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  3. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Fang, Wenkan; Xing, Mingchao; Wu, Deyi

    2017-02-01

    Owing to the easy magnetic separation from water for reuse, magnetic nanoparticles have drawn great interest as adsorbents. Herein hydrous zirconia-coated magnetite nanoparticles (Fe3O4@ZrO2) were created by a facile method and a bench-scale study was undertaken to evaluate its effectiveness and mechanism to remove phosphate at low concentrations. Results indicated that phosphate removal by Fe3O4@ZrO2 was fast (95% of phosphate removal within 10 min) and nearly complete removal could be achieved at the adsorbent dosage >0.6 g/L. In tap water or wastewater where competitive anions coexist, regulation of pH was found to be quite effective to augment the performance of phosphate removal. In pH-lowered adsorption systems, phosphate removal followed a good pattern similarly to pure water, i.e., a continuous high efficiency removal followed by a rapid saturation. Adsorption-desorption-regeneration studies showed that Fe3O4@ZrO2 could be repeatedly used for phosphate removal and adsorbed phosphate could be stripped for recovery. The fractionation of adsorbed phosphorus suggested that NaOH-P fraction was dominant. We also found that the adsorption reaction of phosphate with Fe3O4@ZrO2 shifted the isoelectric point of Fe3O4@ZrO2 from 9.0 to 3.0. FTIR measurements further showed the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. The formation of the monodentate (ZrO)PO2(OH) complex was proposed.

  4. Bench-scale gasification of cedar wood--part II: effect of operational conditions on contaminant release.

    PubMed

    Aljbour, Salah H; Kawamoto, Katsuya

    2013-01-01

    Here, we present the evolution profile of tar in the product gas during cedar biomass gasification. We also discuss the evolution of other contaminants (H(2)S, COS, NH(3), HCN, and HCl). The cedar wood was gasified under various operating conditions in a bench-scale externally heated updraft gasifier; this was followed by thermal reforming. Tar levels in the product gas were significantly affected by the operating conditions used. At a gasification temperature of 923 K, there was no clear relation between the evolution of phenolic tar in the product gas as a function of residence time. The evolution of PAH tar at a low gasification temperature was lower than the evolution of phenolic tar. With increasing temperature, the proportion of PAH tar content became significant. At a gasification temperature of 1223 K, increasing the residence time reduced the content of PAH tar owing to a catalytic effect associated with ash generation at high temperatures. Increasing the steam-to-carbon (S/C) ratio under thermal conditions had a slight effect on PAH conversion. However, increasing the equivalence ratio (ER) effectively reduced the tar levels. The conversion of fuel-sulfur and fuel-nitrogen to volatile-sulfur and volatile-nitrogen, respectively, increased with increasing S/C ratio and ER. The evolutions of COS and HCN gases were much smaller than the evolution of H(2)S and NH(3). The evolution of HCl in the product gas decreased slightly with increasing ER. Increasing the S/C ratio decreased the HCl levels in the product gas. The effect of temperature on contaminant levels could not be fully understood due to limited availability of experimental data at various temperatures. We also compare our findings with data in the literature.

  5. Aerobic bioremediation of 1,2 dichloroethane and vinyl chloride at field scale

    NASA Astrophysics Data System (ADS)

    Davis, Gregory B.; Patterson, Bradley M.; Johnston, Colin D.

    2009-06-01

    Aerobic bioremediation of 1,2 dichloroethane (1,2 DCA) and vinyl chloride (VC) was evaluated at field scale in a layered, silty and fine-sand anaerobic aquifer. Maximum concentrations of 1,2 DCA (2 g/L) and VC (0.75 g/L) in groundwater were within 25% and 70% of pure compound solubility, respectively. Aerobic conditions were induced by injecting air into sparging wells screened 20.5-21.5 m below ground (17-18 m below the water table). Using a cycle of 23 h of air injection followed by three days of no air injection, fifty days of air injection were accumulated over a 12 month period which included some longer periods of operational shutdown. Oxygen and volatile organic compound probes, and multilevel samplers were used to determine changes of the primary contaminants and the associated inorganic chemistry at multiple locations and depths. Air (oxygen) was distributed laterally up to 25 m from the sparge points, with oxygen partial pressures up to 0.7 atmospheres (28-35 mg/L in groundwater) near to the sparge points. The dissolved mass of 1,2 DCA and VC was reduced by greater than 99% over the 590 m 2 trial plot. Significantly, pH declined from nearly 11 to less than 9, and sulfate concentrations increased dramatically, suggesting the occurrence of mineral sulfide (e.g., pyrite) oxidation. Chloride and bicarbonate (aerobic biodegradation by-products) concentration increases were used to estimate that 300-1000 kg of chlorinated hydrocarbons were biodegraded, although the ratio of 1,2 DCA to VC that was biodegraded remained uncertain. The mass biodegraded was comparable but less than the 400-1400 kg of chlorinated compounds removed from the aqueous phase within a 10,000 m 3 volume of the aquifer. Due to the likely presence of non-aqueous phase liquid, the relative proportion of volatilisation compared to biodegradation could not be determined. The aerobic biodegradation rates were greater than those previously estimated from laboratory-based studies.

  6. Bench-Scale Synthetic Optimization of 1,2-bis(2-aminophenylthio)ethane (APO-Link) Used in the Production of APO-BMI Resin

    SciTech Connect

    Hilary Wheeler; Crystal Densmore

    2007-07-31

    The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).

  7. Development of an Intermediate-Scale Aerobic Bioreactor to Regenerate Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Strayer, Richard F.

    1994-01-01

    Three Intermediate-Scale Aerobic Bioreactors were designed, fabricated, and operated. They utilized mixed microbial communities to bio-degrade plant residues. The continuously stirred tank reactors operated at a working volume of 8 L, and the average oxygen mass transfer coefficient, k(sub L)a, was 0.01 s(exp -1). Mixing time was 35 s. An experiment using inedible wheat residues, a replenishment rate of 0.125/day, and a solids loading rate of 20 gdw/day yielded a 48% reduction in biomass. Bioreactor effluent was successfully used to regenerate a wheat hydroponic nutrient solution. Over 80% of available potassium, calcium, and other minerals were recovered and recycled in the 76-day wheat growth experiment.

  8. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  9. The Unified Parkinson's Disease Rating Scale as a predictor of peak aerobic capacity and ambulatory function.

    PubMed

    Ivey, Frederick M; Katzel, Leslie I; Sorkin, John D; Macko, Richard F; Shulman, Lisa M

    2012-01-01

    The Unified Parkinson's Disease Rating Scale (UPDRS) is a widely applied index of disease severity. Our objective was to assess the utility of UPDRS for predicting peak aerobic capacity (VO2 peak) and ambulatory function. Participants (n = 70) underwent evaluation for UPDRS (Total and Motor ratings), VO2 peak, 6-minute walk distance (6MW), and 30-foot self-selected walking speed (SSWS). Using regression, we determined the extent to which the Total and Motor UPDRS scores predicted each functional capacity measure after adjusting for age and sex. We also tested whether adding the Hoehn and Yahr scale (H-Y) to the model changed predictive power of the UPDRS. Adjusted for age and sex, both the Total UPDRS and Motor UPDRS subscale failed to predict VO2 peak. The Total UPDRS did weakly predict 6MW and SSWS (both p < 0.05), but the Motor UPDRS subscale did not predict these ambulatory function tests. After adding H-Y to the model, Total UPDRS was no longer an independent predictor of 6MW but remained a predictor of SSWS. We conclude that Total and Motor UPDRS rating scales do not predict VO2 peak, but that a weak relationship exists between Total UPDRS and measures of ambulatory function.

  10. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-03-25

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH)2. The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH)2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO.

  11. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  12. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-06-01

    This report presents results from the solvent selection, fermentation, and product recovery studies performed thus far in the development of a bench scale unit for the production of ethanol from coal-derived synthesis gas. Several additional solvents have been compared for their ability to extract ethanol from aqueous solutions of ethanol in water and fermentation permeate. The solvent 2,6-dimethyl-4-heptanol still appears to be the solvent of choice. Liquid-liquid equilibrium data have been collected for ethanol and 2,6-dimethyl-4-heptanol.

  13. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  14. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors.

    PubMed

    Morello, Luca; Cossu, Raffaello; Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina

    2016-10-01

    Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste

  15. Techno-economic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant.

    PubMed

    Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero

    2013-04-01

    This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge).

  16. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors.

    PubMed

    Bilgili, M Sinan; Demir, Ahmet; Akkaya, Ebru; Ozkaya, Bestamin

    2008-10-01

    One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits.

  17. The HIA MCAO laboratory bench

    NASA Astrophysics Data System (ADS)

    Andersen, Dave; Correia, Carlos; Herriot, Glen; Goodwill, Jeff; Pazder, John; Lardière, Olivier; Véran, Jean-Pierre

    2011-09-01

    In this paper, we present our current design of an MCAO laboratory bench to support the development of NFIRAOS, the first light MCAO facility for the TMT. This MCAO bench will build on the experience of the existing LGS WFS bench at University of Victoria, which uses a focus ramp induced by a deformable mirror (DM) and source modulation during WFS integration to produce Shack-Hartmann spots with the proper radial profile. The bench will implement a closed-loop MCAO system, with two magnetic DMs, four LGS Shack-Hartmann WFSs, two NGS T/T WFS, one NGS T/T/F WFS and one higher order Truth WFS, making up a scaled down version of NFIRAOS. Turbulence on the bench will be induced by the DMs and by two additional synthetic turbulence plates. The bench will be driven by software in Matlab, at a minimum frame-rate of 1Hz, up to 15Hz. The goals of this bench are to anchor the NFIRAOS end-to-end simulation tools; to exercise real-time LGS tomographic AO in a variety of well controlled conditions, such as faint and poorly corrected NGSs, non-uniformities in the sodium layer and field dependant Non-Common-Path Aberrations (NCPAs); develop and demonstrate calibration procedures, such PSF reconstruction and tomographic reconstruction and correction of field dependant NCPAs; and to validate optimization methods that operates at 10+ second time scales, which is not tractable in a numerical simulation, such as matched filter update and Cn2 estimation using a SLODAR method.

  18. The HIA MCAO laboratory bench

    NASA Astrophysics Data System (ADS)

    Véran, Jean-Pierre; McWeigh, Eric; Andersen, David; Correia, Carlos; Herriot, Glen; Pazder, John

    2012-07-01

    This paper presents an update on the design and deployment of the HIA MCAO laboratory bench. This bench directly supports the development of NFIRAOS, the first light MCAO facility for the Thirty Meter Telescope. The bench implements a closed-loop MCAO system, with two magnetic DMs, four LGS Shack-Hartmann WFSs, two NGS T/T WFS, one NGS T/T/F WFS and one higher order Truth WFS, making up a scaled down version of NFIRAOS. The bench includes several artificial turbulence screens and reproduces realistic LGS spot elongations. It is driven by software in Matlab, frame-rates ranging from 1Hz to 15Hz. The goals of this bench are to anchor the NFIRAOS end-toend simulation tools; to exercise real-time LGS tomographic AO in a variety of well controlled conditions, such as faint and poorly corrected NGSs, non-uniformities in the sodium layer and field dependant Non-Common-Path Aberrations (NCPAs); develop and demonstrate calibration procedures, such as PSF reconstruction and tomographic reconstruction and correction of field dependant NCPAs; and to validate optimization methods that operate at 10+ second time scales, which is not tractable in a numerical simulation, such as matched filter update and Cn2 estimation using a SLODAR method.

  19. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O'Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily

  20. Optimization of culture conditions and bench-scale production of L-asparaginase by submerged fermentation of Aspergillus terreus MTCC 1782.

    PubMed

    Gurunathan, Baskar; Sahadevan, Renganathan

    2012-07-01

    Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.

  1. Design and construction of a medium-scale automated direct measurement respirometric system to assess aerobic biodegradation of polymers

    NASA Astrophysics Data System (ADS)

    Castro Aguirre, Edgar

    A medium-scale automated direct measurement respirometric (DMR) system was designed and built to assess the aerobic biodegradation of up to 30 materials in triplicate simultaneously. Likewise, a computer application was developed for rapid analysis of the data generated. The developed DMR system was able to simulate different testing conditions by varying temperature and relative humidity, which are the major exposure conditions affecting biodegradation. Two complete tests for determining the aerobic biodegradation of polymers under composting conditions were performed to show the efficacy and efficiency of both the DMR system and the DMR data analyzer. In both cases, cellulose reached 70% mineralization at 139 and 45 days. The difference in time for cellulose to reach 70% mineralization was attributed to the composition of the compost and water availability, which highly affect the biodegradation rate. Finally, among the tested materials, at least 60% of the organic carbon content of the biodegradable polymers was converted into carbon dioxide by the end of the test.

  2. Bench-scale testing of on-line control of column flotation using a novel analyzer. Quarterly technical progress report, September 21, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1992-01-22

    This document contains the first quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor Control System. The twelve-month project will involve installation of a 300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) and testing of two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan as well as the approach to completing the major tasks within the twelvemonth project. The project is broken down into three phases, which include: Phase I - Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing. Phase II - ET Circuit Installation and Testing: This installation and testing phase of the project will be performed at PETC`s CPPRF from January through May, 1993, and will be the major focus of the project. It will involve testing of the continuous 300 lb/hr. circuit. Phase II - Project Finalization: The project finalization phase will occur from June through September, 1993, at PTI`s Calumet offices and will involve finalizing analytical work and data evaluation, as well as final project reporting. This quarterly progress report principally summarizes the results from the Phase I preparation work and the plan for the early portions of the Phase 11 installation and commissioning, which will occur in January and the first week of February, 1993.

  3. Bench-scale testing of on-line control of column flotation using a novel analyzer. Third quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-08-24

    This document contains the third quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale flotation circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan, as well as the approach to completing the major tasks within the twelve-month project schedule. The project is broken down into three phases, which include: Phase I -- Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing; Phase II -- ET Circuit Installation and Testing: This installation and testing phase of the project was performed at PETC`s CPPRF from January through June, 1993, and was the major focus of the project. It involved testing of the continuous 200--300 lb/hr. circuit; and Phase III -- Project Finalization: The project finalization phase is occurring from July through September, 1993, at PTI`s Calumet offices and involves finalizing analytical work and data evaluation, as well as final project reporting. This Third Quarterly Technical Progress Report principally summarizes the results from the benchscale testing with the second coal (Pittsburgh No. 8 Seam Coal), which occurred in April through June, 1993. It also contains preliminary economic evaluations that will go into the Final Report, as well as the plan for the final reporting task.

  4. Two engineered approaches for treatment of explosives contaminated soils using both aerobic and anaerobic consortia

    SciTech Connect

    Harvey, S.D.; Fredrickson, H.; Hill, D.O.; Zappi, M.; Stryker, R.; Eng, S.; Harlow, J.

    1996-12-31

    The Naval Weapons Station Yorktown, Yorktown, Virginia (WPNSTA Yorktown) has contaminated soils from past handling, loading, and packing activities involving explosive compounds. Bench scale experiments were undertaken to examine the effectiveness of biological treatment. The experiments were conducted in two different reactor configurations: bioslurry (continuous mixing) and biocell (intermittent mixing). Treatments examined the effects of different cometabolites, bioaugmentation, surfactant enhanced desorption and both aerobic and anaerobic conditions.

  5. Sequential anaerobic and aerobic treatment of pulp and paper mill effluent in pilot scale bioreactor.

    PubMed

    Singh, Pratibha

    2007-01-01

    In the present study sequential anaerobic and aerobic treatment in two step bioreactor was performed for removal of colour in the pulp and paper mill effluent. In anaerobic treatment, colour 50%, lignin 62%, COD 29%, absordable organic halides (AOX) 25% and phenol 29% were reduced in eight days. The anaerobically treated effluent was separately applied in bioreactor in presence of fungal strain, Paecilomyces sp., and bacterial strain, Microbrevis luteum. Data of study indicated reduction in colour 80%, AOX 74%, lignin 81%, COD 93% and phenol 76 per cent by Paecilomyces sp. where as Microbrevis luteum showed removal in colour 59%, lignin 71%, COD 86%, AOX 84% and phenol 88% by day third when 7 days anaerobically treated effluent was further treated by aerobic microorganisms. Change in pH of the effluent and increase in biomass of microorganism's substantiated results of the study, which was concomitant to the treatment method.

  6. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  7. Model-based scale-up methodology for aerobic fed-batch bioprocesses: application to polyhydroxybutyrate (PHB) production.

    PubMed

    Monsalve-Bravo, Gloria Milena; Garelli, Fabricio; Mozumder, Md Salatul Islam; Alvarez, Hernan; De Battista, Hernan

    2015-06-01

    This work presents a general model-based methodology to scale-up fed-batch bioprocesses. The idea behind this approach is to establish a dynamics hierarchy, based on a model of the process, that allows the designer to determine the proper scale factors as well as at which point of the fed-batch the process should be scaled up. Here, concepts and tools of linear control theory, such as the singular value decomposition of the Hankel matrix, are exploited in the context of process design. The proposed scale-up methodology is first described in a bioprocesses general framework highlighting its main features, key variables and parameters. Then, it is applied to a polyhydroxybutyrate (PHB) fed-batch bioreactor and compared with three empirical criteria, that are traditionally employed to determine the scale factors of these processes, showing the usefulness and distinctive features of this proposal. Moreover, this methodology provides theoretical support to a frequently used empirical rule: scale-up aerobic bioreactors at constant volumetric oxygen transfer coefficient. Finally, similar process dynamic behavior and PHB production set at the laboratory scale are predicted at the new operating scale, while it is also determined that is rarely possible to reproduce similar dynamic behavior of the bioreactor using empirical scale-up criteria.

  8. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  9. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  10. Enhanced enzymatic hydrolysis of mild alkali pre-treated rice straw at high-solid loadings using in-house cellulases in a bench scale system.

    PubMed

    Narra, Madhuri; Balasubramanian, Velmurugan; James, Jisha P

    2016-06-01

    In the present study, scale-up systems for cellulase production and enzymatic hydrolysis of pre-treated rice straw at high-solid loadings were designed, fabricated and tested in the laboratory. Cellulase production was carried out using tray fermentation at 45 °C by Aspergillus terreus in a temperature-controlled humidity chamber. Enzymatic hydrolysis studies were performed in a horizontal rotary drum reactor at 50 °C with 25 % (w/v) solid loading and 9 FPU g(-1) substrate enzyme load using in-house as well commercial cellulases. Highly concentrated fermentable sugars up to 20 % were obtained at 40 h with an increased saccharification efficiency of 76 % compared to laboratory findings (69.2 %). These findings demonstrate that we developed a simple and less energy intensive bench scale system for efficient high-solid saccharification. External supplementation of commercial β-glucosidase and hemicellulase ensured better hydrolysis and further increased the saccharification efficiency by 14.5 and 20 %, respectively. An attempt was also made to recover cellulolytic enzymes using ultrafiltration module and nearly 79-84 % of the cellulases and more than 90 % of the sugars were recovered from the saccharification mixture.

  11. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    SciTech Connect

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  12. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  13. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect

    DUNCAN JB; HUBER HJ

    2011-06-08

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  14. LISA Optical Bench Testing

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; d'Arcio, L.; Barke, S.; Bogenstahl, J.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Hennig, J.; Hey, F. G.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2013-01-01

    Each LISA satellite carries optical benches, one for each test mass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. Currently, an elegant bread board of the optical bench is developed for the European Space Agency (ESA) by EADS Astrium, TNO Science and Technology, University of Glasgow and the Albert Einstein Institute. To test the optical bench the two interferometers mentioned above must be completed by an external simulator, the test mass and telescope simulator. We give an overview of the simulator layout and performance predictions.

  15. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-09-01

    Three bacteria, Clostridium ljungdahlii and isolates ERI-8 and 0-52, have been utilized in CSTR studies in order to directly compare the performance of the bacteria in continuous culture in converting synthesis gas components to ethanol. C. ljungdahlii is able to produce higher concentrations of ethanol than the other bacteria, largely because medium development with this bacterium has been ongoing for 2--3 years. However, both of the ERI isolates are quite promising for ethanol production and, therefore, will be studied further in the CSTR. A comparison of the energy costs for various ethanol recovery techniques has been made for use in the bench scale system. The techniques considered include direct distillation, extraction with various solvents followed by distillation, air stripping followed by distillation, pervaporation followed by distillation, reverse osmosis and temperature swing extraction. Extraction with a solvent possessing a relatively high distribution coefficient for ethanol and a high separation factor (relative ability to extract ethanol in favor of water), followed by distillation, is the most desirable technology.

  16. Bench-scale production of acrylamide using the resting cells of Brevibacterium sp. CH2 in a fed-batch reactor.

    PubMed

    Lee, C Y; Choi, S K; Chang, H N

    1993-11-01

    Effects of various organic acids and salts on the stabilization of nitrile hydratase were investigated. The stability of the nitrile hydratase of Brevibacterium CH2 during storage was greatly enhanced by the addition of n-butyric acid. Effects of temperature, pH, and concentrations of acrylonitrile and n-butyric acid on acrylamide production by the resting cells were also investigated. Acrylamide production per unit dry weight of the cells increased 1.33 times by the addition of 0.05% n-butyric acid. A 20% acrylamide solution was successfully produced in a bench-scale reactor (12 l) with only a trace amount of salts after 10 h of hydration reaction under optimum reaction conditions without using an isotonic substrate. The conversion yield was nearly 100%, and acrylic acid as a by-product was not produced. Final acrylamide production of 400 g g-1 cells and productivity of 20 g/(g cells l-1 x h-1) were obtained.

  17. Bacterial community in the biofilm of granular activated carbon (GAC) PreBiofilter in bench-scale pilot plants for surface water pretreatment.

    PubMed

    Wu, Tiehang; Fu, George Yuzhu; Sabula, Michael; Brown, Tommy

    2014-12-01

    Biofilters of granular activated carbon (GAC) are responsible for the removal of organic matters in drinking water treatments. PreBiofilters, which operate as the first unit in a surface water treatment train, are a cost-effective pretreatment for conventional surface water treatment and provide more consistent downstream water quality. This study investigated bacterial communities from the samples of raw surface water, biofilm on the PreBiofilter, and filtrates for surface water pretreatment. A bench-scale pilot plant of PreBiofilter was constructed to pretreat surface water from the Canoochee River, GA, USA. PreBiofilter exhibited a significant reduction of total organic carbon and dissolved organic carbon. The evenness and Shannon diversity of bacterial operational taxonomic units (OTUs) were significantly higher on the biofilm of PreBiofilter than in raw water and filtrates. Similar bacteria communities were observed in the raw water and filtrates using relative abundance of bacterial OTUs. However, the bacterial communities in the filtrates became relatively similar to those in the biofilm using presence/absence of bacterial OTUs. GAC biofilm or raw water and filtrates greatly contributed to the abundance of bacteria; whereas, bacteria sheared from colonized biofilm and entered filtrates. Evenly distributed, diverse and unique bacteria in the biofilm played an important role to remove organic matters from surface water for conventional surface water pretreatment.

  18. Computational fluid dynamics assessment: Volume 2, Isothermal simulations of the METC bench-scale coal-water slurry combustor: Final report

    SciTech Connect

    Celik, I.; Chattree, M.

    1988-09-01

    The isothermal turbulent, swirling flow inside the METC pressurized bench-scale combustor has been simulated using ISOPCGC-2. The effects of the swirl numbers, the momentum ratio of the primary to secondary streams, the annular wall thickness, and the quarl angle on the flow and mixing patterns have been investigated. The results that with the present configuration of the combustor, an annular recirculation zone is present up to secondary swirl number of four. A central (on axis) recirculation zone can be obtained by increasing the momentum of the secondary stream by decreasing the annular area at the reactor inlet. The mixing of the primary (fuel carrier) air with the secondary air improves only slightly due to swirl unless a central recirculation zone is present. Good mixing is achieved in the quarl region when a central recirculation zone is present. A preliminary investigation of the influence of placing flow regulators inside the the combustor shows that they influence the flow field significantly and that there is a potential of obtaining optimum flow conditions using these flow regulators. 58 refs., 47 figs., 12 tabs.

  19. Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidised bed combustor for the production of amorphous rice husk ash.

    PubMed

    Rozainee, M; Ngo, S P; Salema, A A; Tan, K G; Ariffin, M; Zainura, Z N

    2008-03-01

    This study was focused on investigating the optimum fluidising velocity during the combustion of rice husk in a bench-scale fluidised bed combustor (ID 210mm) to obtain low carbon ash in the amorphous form. When all other parameters are held constant, the optimum fluidizing velocity aids in almost complete combustion, thereby releasing the entrapped carbon for further conversion. This results in ash with consistently low carbon content (less than 2wt%). The range of fluidising velocities investigated was from as low as 1.5U(mf) to as high as 8U(mf). It was found that the optimum fluidising velocity was approximately 3.3U(mf) as the mixing of rice husk with the bed was good with a high degree of penetration into the sand bed. The resulting ash retained its amorphous form with low residual carbon content (at 2.88wt%) and minimal sand contamination as shown by the X-ray diffraction analysis.

  20. Bench Scale Process for Low Cost CO2 Capture Using a Phase-Changing Absorbent: Topical Report EH&S Risk Assessment

    SciTech Connect

    Westendorf, Tiffany; Farnum, Rachel; Perry, Robert; Herwig, Mark; Giolando, Salvatore; Green, Dianne; Morall, Donna

    2016-05-11

    GE Global Research was contracted by the Department of Energy to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2 capture solvent (award number DEFE0013687). As part of this program, a technology EH&S assessment (Subtask 5.1) has been completed for a CO2 capture system for a 550 MW coal-fired power plant. The assessment focuses on two chemicals used in the process, the aminosilicone solvent, GAP-0, and dodecylbenzenesulfonic acid (DDBSA), the GAP-0 carbamate formed upon reaction of the GAP-0 with CO2, and two potential byproducts formed in the process, GAP-0/SOx salts and amine-terminated, urea-containing silicone (also referred to as “ureas” in this report). The EH&S assessment identifies and estimates the magnitude of the potential air and water emissions and solid waste generated by the process and reviews the toxicological profiles of the chemicals associated with the process. Details regarding regulatory requirements, engineering controls, and storage and handling procedures are also provided in the following sections.

  1. Rate and reaction probability of the surface reaction between ozone and dihydromyrcenol measured in a bench scale reactor and a room-sized chamber

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Morrison, Glenn C.

    2012-02-01

    Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.

  2. A microdevice assisted approach for the preparation, characterization and selection of continuous aqueous two-phase systems: from micro to bench-scale.

    PubMed

    Vázquez-Villegas, Patricia; Ouellet, Eric; González, Claudia; Ruiz-Ruiz, Federico; Rito-Palomares, Marco; Haynes, Charles A; Aguilar, Oscar

    2016-07-05

    Aqueous two-phase systems (ATPS) have emerged as an alternative strategy for the recovery and purification of a wide variety of biological products. Typical process development requires a large screening of experimental conditions towards industrial adoption where continuous processes are preferred. In this work, it was proved that under certain flow conditions, ATPS could be formed continuously inside a microchannel, starting from stocks of phase components. Staggered herringbone chaotic micromixers included within the device sequentially and rapidly prepare two-phase systems across an entire range of useful phase compositions. Two-phase diagrams (binodal curves) were easily plotted using the cloud-point method for systems of different components and compared with previously reported curves for each system, proving that phase formation inside the device correlated with the previously reported diagrams. A proof of concept for sample partitioning in such a microdevice was performed with two different experimental models: BSA and red blood cells. Finally, the microdevice was employed to obtain information about the recovery and partition coefficient of invertase from a real complex mixture of proteins (yeast extract) to design a process for the recovery of the enzyme selecting a suitable system and composition to perform the process at bench-scale.

  3. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, September 24, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    Culture isolation and selection studies are being performed in order to select the best biological system for bench-scale studies in producing ethanol from syngas components. Three isolates have been found which produce more than 2 g/L ethanol from CO and C0{sub 2}/H{sub 2} in batch culture. These low concentrations are actually quite promising since Clostridium ljungdahlii, strain PETC, performs well in continuous culture but produces only small concentrations of ethanol in batch culture after several weeks of incubation. Two of the isolates have been utilized in the CSTR, where 90 percent CO conversions have been noted, while producing up to 2 g/L ethanol, in preliminary studies. CSTR studies will continue until steady state is reached. An anaerobic bacterium has been isolated from natural sources that converts the components of synthesis gas (CO, H{sub 2},C0{sub 2}) into ethanol. This organism, the only one known at that time to produce ethanol from synthesis gas, has been identified as a new clostridial strain and has been named Clostridium ljungdahlii, strain PETC.

  4. Groundwater remediation by an in situ biobarrier: a bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds.

    PubMed

    Saponaro, Sabrina; Negri, Marco; Sezenna, Elena; Bonomo, Luca; Sorlini, Claudia

    2009-08-15

    Most gasoline contains high percentages of methyl tert-butyl ether (MTBE) as an additive. The physico-chemical properties of this substance (high water solubility, low sorption in soil) result in high mobility and dissolved concentrations in soil. In situ permeable biological barriers (biobarriers, BBs) can remediate MTBE polluted groundwater by allowing pure cultures or microbial consortia to degrade MTBE when aerobic conditions are present, either by direct metabolism or cometabolism. Lab-scale batch and column tests were carried out to assess a selected microbial consortium in biodegrading MTBE and other gasoline compounds (benzene B, toluene T, ethylbenzene E, xylenes X) and to measure the parameters affecting the efficacy of a BB treatment of polluted groundwater. During the aerobic phase of the batch tests, the simultaneous biodegradation of MTBE, tert-butyl alcohol (TBA), B, T, E and o-X was observed. The rapid biodegradation of BTEXs resulted in decreased oxygen availability, but MTBE degradation was nevertheless measured in the presence of BTEXs. Stationary concentrations of MTBE and TBA were measured when anoxic conditions occurred in the systems. Values for a first order kinetic removal process were obtained for MTBE (0.031+/-0.001 d(-1)), B (0.045+/-0.002 d(-1)) and T (0.080+/-0.004 d(-1)) in the inoculated column tests. The estimate of the BB design parameters suggested that inoculation could significantly modify (double) the longitudinal dispersivity value of the biomass support medium. No effect was observed in the retardation factors for MTBE, B and T.

  5. Evaluation of adipic acid addition to a bench-scale Chiyoda Thoroughbred 121 FGD system. Final report

    SciTech Connect

    Behrens, G.P.

    1981-12-01

    An experimental laboratory study testing the effectiveness of adipic acid in the Chiyoda Thoroughbred 121 FGD system has been sponsored by the Electric Power Research Institute. Additionally, economic calculations for the cost effectiveness of usng adipic acid in a commercial scale CT-121 FGD system have been performed. The results of this study indicate that although adipic acid can increase the SO/sub 2/ removal capability of the CT-121 system, it is not an economically attractive process improvement. This result is due to the CT-121 process chemistry which minimizes limestone consumption and sludge volume without the need of adipic acid. These two areas realize major cost savings when adipic is used in a conventional limestone FGD system. The economic evaluation indicates even though a lower gas-side pressue drop is achieved when adipic acid is used, the savings in electrical costs are insufficient to offset the cost of adipic acid.

  6. NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis

    SciTech Connect

    Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.; Moreno, J.B.; Moss, T.A.; Jones, S.A.

    1994-06-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system has been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.

  7. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    PubMed Central

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  8. Development, testing, and demonstration of an optimal fine coal cleaning circuit. Task 5: Evaluation of bench-scale test results and equipment selection for in-plant pilot tests

    SciTech Connect

    1995-12-14

    The overall objective of this research effort is to improve the efficiency of fine coal flotation in preparation plants above that of currently used conventional cells. In addition to evaluating single-stage operation of four selected advanced flotation devices, the project will also evaluate them in two-stage configurations. The project is being implemented in two phases. Phase 1 comprises bench-scale testing of the flotation units, and Phase 2 comprises in-plant, proof-of-concept (POC), pilot-scale testing of selected configurations at the Cyprus Emerald preparation plant. The Task 5 report presents the findings of the Phase 1 bench-scale test results and provides the basis for equipment selection for Phase 2. Four advanced flotation technologies selected for bench-scale testing are: Jameson cell; Outokumpu HG tank cell; packed column; and open column. In addition to testing all four of the cells in single-stage operation, the Jameson and Outokumpu cells were tested as candidate first-stage cells because of their propensity for rapid attachment of coal particles with air bubbles and low capital and operating costs. The column cells were selected as candidate second-stage cells because of their high-efficiency separation of low-ash products from high-ash feed coals. 32 figs., 72 tabs.

  9. Piezoelectric energy harvesting computer controlled test bench

    NASA Astrophysics Data System (ADS)

    Vázquez-Rodriguez, M.; Jiménez, F. J.; de Frutos, J.; Alonso, D.

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  10. Piezoelectric energy harvesting computer controlled test bench.

    PubMed

    Vázquez-Rodriguez, M; Jiménez, F J; de Frutos, J; Alonso, D

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  11. Aerobic thermophilic treatment of sewage sludge at pilot plant scale. 2. Technical solutions and process design.

    PubMed

    Ponti, C; Sonnleitner, B; Fiechter, A

    1995-01-15

    The performance of the ATS process depends essentially on the oxygen transfer efficiency. Improvement of the mass transfer capacity of a bioreactor allowed to reduce the incubation time necessary to attain sludge stabilization. It is important to use equipment with a high aeration efficiency such as an injector aeration system. The ratio between the total oxygen consumption and the organic matter degradation (delta COD) ranged between 0.4 and 0.8 in the pilot plant, whereas 1.23 was found in completely mixed bioreactors (Bomio, 1990). No significant improvement of the bacterial degradation efficiency was attained with a specific power input exceeding 6-8 kW m-3. A mean residence time of less than 1 d allowed organic matter removals up to 40% with specific power consumption of 10 kWh kg-1 COD oxidized. The sludge hygienization is one of the objectives and benefits of the thermophilic treatment: not only temperature but also the total solids content were important factors affecting inactivation of pathogens. The inactivation rate was promoted by the increase of temperature, while the residual colony forming units decreased with reducing the total solids content of sewage sludge. It is concluded that continuous operation mode would not affect the quality of the hygienization but could display the high degradation potential of the aerobic system.

  12. The recovery of ammonia and hydrogen sulfide from ground-level area sources using dynamic isolation flux chambers: bench-scale studies.

    PubMed

    Capareda, Sergio C; Boriack, Cale N; Mukhtar, Saqib; Mutlu, Atilla; Shaw, Bryan W; Lacey, Ronald E; Parnell, Calvin B

    2005-07-01

    Controlled bench-scale laboratory experiments were conducted to evaluate the recovery of ammonia (NH3) and hydrogen sulfide (H2S) from dynamic isolation flux chambers. H2S (80-4000 ppb) and NH3 (5000-40,000 ppb) samples were diffused through the flux chamber to simulate ground level area source emissions while measuring the inlet and outlet flux chamber concentrations simultaneously. Results showed that the recovery of H2S during a 30-min sampling time was almost complete for concentrations >2000 ppb. At the lowest concentration of 80 ppb, 92.55% of the H2S could be recovered during the given sampling period. NH3 emissions exhibited similar behavior between concentrations of 5000-40,000 ppb. Within the 30-min sampling period, 92.62% of the 5000-ppb NH3 sample could be recovered. Complete recovery was achieved for concentrations >40,000 ppb. Predictive equations were developed for gas adsorption. From these equations, the maximum difference between chamber inlet and outlet concentrations of NH3 or H2S was predicted to be 7.5% at the lowest concentration used for either gas. In the calculation of emission factors for NH3 and H2S, no adsorption correction factor is recommended for concentrations >37,500 ppb and 2100 ppb for NH3 and H2S, respectively. The reported differences in outlet and inlet concentration above these ranges are outside the fullscale sensitivity of the gas sensing equipment. The use of 46-90 m of Teflon tubing with the flux chambers has apparently no effect on gas adsorption, because recovery was completed almost instantaneously at the beginning of the tests.

  13. [An investigation of the formation of] polycyclic aromatic hydrocarbon (PAH) emissions when firing pulverized coal in a bench-scale drop tube reactor

    SciTech Connect

    Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W.

    1998-12-31

    The Clean Air Act Amendments (CAAA) of 1990 contain provisions which will set standards for the allowable emissions of 188 analytes designated as hazardous air pollutants (HAPs). This list of HAPs was used to establish an initial list of source categories for which EPA would be required to establish technology-based emission standards, which would result in regulated sources sharply reducing routine emissions of toxic air pollutants. Polycyclic organic matter (POM) has also been referred to as polynuclear or polycyclic aromatic compounds (PACs). Nine major categories of POM have been defined by EPA. The study of organic compounds from coal combustion is complex and the results obtained so far are inconclusive with respect to emission factors. The most common organic compounds in the flue gas of coal-fired power plants are polycyclic aromatic hydrocarbons (PAHs). Furthermore, EPA has specified 16 PAH compounds as priority pollutants. These are naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, and dibenz[ah]anthracene. Penn State`s Combustion Laboratory is equipped to collect and analyze the HAPs in the flue gas from fossil fuels combustion. The overall objective of this study was to examine the effect of unit temperature on PAH emissions. A Modified Method 5 sampling train was used to isokinetically collect samples at desired locations in flue gas streams. The collected sample can be separated into solid, condensed liquid and gaseous phases. The PAHs of interest are extracted from the collected sample, concentrated, then separated and quantified by gas chromatography/mass spectrometry (GC/MS). This study was conducted using a bench-scale drop-tube reactor (DTR). The fuel selected for this study was a Middle Kittanning seam coal pulverized to 80% passing US Standard 200 mesh (commonly

  14. Relating feedstock composition to product slate and composition in catalytic cracking: 1. Bench scale experiments with liquid chromatographic fractions from Wilmington, CA, >650{degree}F resid

    SciTech Connect

    Green, J.B.; Zagula, E.J.; Reynolds, J.W.; Wandke, H.H.; Young, L.L.; Chew, H.

    1993-09-01

    The catalytic cracking behavior of compound types in the >650{degree}F resid from a Wilmington, CA, 14.2{degree} API crude was investigated. Liquid Chromatography (LC) was used to separate the resid into eight fractions. These fractions were used as feedstocks for a bench scale fluidized catalytic cracking (FCC) unit. Gasoline was produced almost exclusively from neutral (65 % of whole resid) components. Acidic and basic types were partially converted to coke plus small amounts of C{sub l} and C{sub 2} gases, with the balance primarily carrying over as heavy liquid products. Gasoline composition depended on the type and quantity of polar compounds present in the feed because both acidic and basic compounds inhibited cracking reactions ({beta}-scission, hydrogen transfer, etc.) to varying degrees. In accordance with prior work, basic nitrogen compounds exhibited the largest inhibitory effect on cracking. Their effect is dependent on concentrations up to a limiting value which may correspond to saturation of susceptible catalyst sites. On an equal weight basis, the effect of high boiling (high molecular weight) bases was less than those occurring in the 650--1000{degree}F distillate range. Partitioning of nitrogen present in acidic (e.g. carbazole) forms in the feed into liquid products was greater than for basic nitrogen. Thiophenic forms of sulfur partitioned more into liquid and less into gaseous (H{sub 2}S) products than sulfide-type sulfur. Coke yield was approximately proportional to microcarbon residue test results for all feeds. Ongoing work with additional feedstocks has indicated behavior similar to that of Wilmington. Selected Wilmington liquid products are undergoing detailed analysis in order to determine relationships between feed versus product composition, particularly with respect to acidic and basic types.

  15. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    SciTech Connect

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin; Jantzen, Carol; Crawford, Charles

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  16. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I-Bench-scale microcosm study to assess methylmercury production.

    PubMed

    Randall, Paul M; Fimmen, Ryan; Lal, Vivek; Darlington, Ramona

    2013-08-01

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37ng/g-sediment dry weight) after only 48h of incubation and reached a maximum sediment concentration of 127ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10ng/L after 2 day, reaching a maximum observed concentration of 32.8ng/L after 14 days, and declining to 10.8ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production.

  17. GraphBench

    SciTech Connect

    Sukumar, Sreenivas R.; Hong, Seokyong; Lee, Sangkeun; Lim, Seung-Hwan

    2016-06-01

    GraphBench is a benchmark suite for graph pattern mining and graph analysis systems. The benchmark suite is a significant addition to conducting apples-apples comparison of graph analysis software (databases, in-memory tools, triple stores, etc.)

  18. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    SciTech Connect

    Randall, Paul M.; Fimmen, Ryan; Lal, Vivek; Darlington, Ramona

    2013-08-15

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, Me

  19. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    SciTech Connect

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha; Farmer, Justin; Mobley, Paul; Tanthana, Jak; Wang, Dongxiang; Wang, Xiaoxing; Song, Chunshan

    2015-12-31

    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  20. Thinking big: towards ideal strains and processes for large-scale aerobic biofuels production

    SciTech Connect

    McMillan, James D.; Beckham, Gregg T.

    2016-12-22

    Global concerns about anthropogenic climate change, energy security and independence, and environmental consequences of continued fossil fuel exploitation are driving significant public and private sector interest and financing to hasten development and deployment of processes to produce renewable fuels, as well as bio-based chemicals and materials, towards scales commensurate with current fossil fuel-based production. Over the past two decades, anaerobic microbial production of ethanol from first-generation hexose sugars derived primarily from sugarcane and starch has reached significant market share worldwide, with fermentation bioreactor sizes often exceeding the million litre scale. More recently, industrial-scale lignocellulosic ethanol plants are emerging that produce ethanol from pentose and hexose sugars using genetically engineered microbes and bioreactor scales similar to first-generation biorefineries.

  1. Optical Bench for LISA-like missions

    NASA Astrophysics Data System (ADS)

    Mueller, Guido

    need for ultra-low expansion glass for the optical bench. We will streamline the design of the bench and explore other materials and assembly techniques to significantly simplify the manufacturing process. Why are we confident that this is possible? One argument is that in early LISA designs the reference cavity was also part of the bench. This cavity drove the requirements to 30 fm/#Hz, a factor 30 more stringent compared to the current requirements. Since the cavity has now been removed from the bench, the requirements have been relaxed. A second argument is that we demonstrated pm/#Hz performance for a number of different materials and structures which are all candidate materials for the telescopes which also have to meet the same requirements over actually a larger distance. Our objective is to take a fresh look at the optical bench. We will redesign core parts of the interferometer bench with a focus on reducing the number and lengths of critical paths and moving non-critical parts away from the core part of the bench and sometimes even into optical fibers. We also propose to use different materials and assembly techniques for the optical bench and strongly believe that they will still meet the pm/#Hz requirement and will also be stable on long time scales. This confidence is based on nearly ten years of experience during which we investigated different materials and structures for the telescopes which we plan to apply now to the optical bench.

  2. Changes in body temperature influence the scaling of VO2max and aerobic scope in mammals.

    PubMed

    Gillooly, James F; Allen, Andrew P

    2007-02-22

    Debate on the mechanism(s) responsible for the scaling of metabolic rate with body size in mammals has focused on why the maximum metabolic rate (VO2max ) appears to scale more steeply with body size than the basal metabolic rate (BMR). Consequently, metabolic scope, defined as VO2max/BMR, systematically increases with body size. These observations have led some to suggest that VO2max, and BMR are controlled by fundamentally different processes, and to discount the generality of models that predict a single power-law scaling exponent for the size dependence of the metabolic rate. We present a model that predicts a steeper size dependence for VO2max than BMR based on the observation that changes in muscle temperature from rest to maximal activity are greater in larger mammals. Empirical data support the model's prediction. This model thus provides a potential theoretical and mechanistic link between BMR and VO2 max.

  3. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  4. Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater.

    PubMed

    Simstich, Benjamin; Beimfohr, Claudia; Horn, Harald

    2012-10-01

    This paper describes the results of laboratory experiments using a thermophilic aerobic MBR (TMBR) at 50 °C. An innovative use of submerged flat-sheet MBR modules to treat circuit wastewater from the paper industry was studied. Two experiments were conducted with a flux of 8-13 L/m(2)/h without chemical membrane cleaning. COD and BOD(5) elimination rates were 83% and 99%, respectively. Calcium was reduced from 110 to 180 mg/L in the inflow to 35-60 mg/L in the permeate. However, only negligible membrane scaling occurred. The observed sludge yield was very low and amounted to 0.07-0.29 g MLSS/g COD(eliminated). Consequently, the nutrient supply of ammonia and phosphate can be lower compared to a mesophilic process. Molecular-biological FISH analysis revealed a likewise high diversity of microorganisms in the TMBR compared to the mesophilic sludge used for start-up. Furthermore, ammonia-oxidising bacteria were detected at thermophilic operation.

  5. Bench-Scale Testing and Process Performance Projections of CO2 Capture by CO2–Binding Organic Liquids (CO2BOLs) With and Without Polarity-Swing-Assisted Regeneration

    SciTech Connect

    Zheng, Feng; Heldebrant, David J.; Mathias, Paul M.; Koech, Phillip K.; Bhakta, Mukund; Freeman, Charles J.; Bearden, Mark D.; Zwoster, Andy

    2016-01-12

    This manuscript provides a detailed analysis of a continuous flow, bench scale study of the CO2BOL solvent platform with and without its Polarity Swing Assisted Regeneration (PSAR). This study encompassed four months of continuous flow testing of a candidate CO2BOL with a thermal regeneration and PSAR regeneration using decane antisolvent. In both regeneration schemes, steady state capture of >90 %CO2 was achieved using simulated flue gas at acceptable L/G ratios. Aspen Plus™ modeling was performed to assess process performance compared to previous equilibrium performance projections. This paper also includes net power projections, and comparisons to DOE’s Case 10 amine baseline.

  6. Leachate/domestic wastewater aerobic co-treatment: A pilot-scale study using multivariate analysis.

    PubMed

    Ferraz, F M; Bruni, A T; Povinelli, J; Vieira, E M

    2016-01-15

    Multivariate analysis was used to identify the variables affecting the performance of pilot-scale activated sludge (AS) reactors treating old leachate from a landfill and from domestic wastewater. Raw leachate was pre-treated using air stripping to partially remove the total ammoniacal nitrogen (TAN). The control AS reactor (AS-0%) was loaded only with domestic wastewater, whereas the other reactor was loaded with mixtures containing leachate at volumetric ratios of 2 and 5%. The best removal efficiencies were obtained for a ratio of 2%, as follows: 70 ± 4% for total suspended solids (TSS), 70 ± 3% for soluble chemical oxygen demand (SCOD), 70 ± 4% for dissolved organic carbon (DOC), and 51 ± 9% for the leachate slowly biodegradable organic matter (SBOM). Fourier transform infrared (FTIR) spectroscopic analysis confirmed that most of the SBOM was removed by partial biodegradation rather than dilution or adsorption of organics in the sludge. Nitrification was approximately 80% in the AS-0% and AS-2% reactors. No significant accumulation of heavy metals was observed for any of the tested volumetric ratios. Principal component analysis (PCA) and partial least squares (PLS) indicated that the data dimension could be reduced and that TAN, SCOD, DOC and nitrification efficiency were the main variables that affected the performance of the AS reactors.

  7. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system.

    PubMed

    Frijters, C T M J; Vos, R H; Scheffer, G; Mulder, R

    2006-03-01

    The wastewater originating from the bleaching and dyeing processes in the textile factory Ten Cate Protect in Nijverdal (the Netherlands) was successfully treated in a sequential anaerobic/aerobic system. In the system, a combination of an anaerobic 70-m3 fluidized bed reactor and a 450-m3 aerobic basin with integrated tilted plate settlers, 80-95% of the color was removed. The color was largely removed in the preacidification basin and the anaerobic reactor. Color, deriving from both reactive as well as disperse, was anaerobically removed, indicating that these type of dyes were reduced to colorless products. Interestingly, the vat dyes, the anthraquinones and indigoids, which were thought to be removed mainly aerobically, were largely anaerobically decolorized. Apparently the anaerobic system is capable of effectively removing the color of both soluble as insoluble dyes. The treated effluent of the sequential anaerobic/aerobic treatment showed no toxicity towards the bioluminescent bacterium Vibrio fisheri (EC20 (95%) > 45%). Partially bypassing the anaerobic stage resulted in increased toxicity (EC20 (95%) of 9% and 14%) in the effluent of the aerobic treatment and caused significant decrease of color removal. The results of this study show a main contribution of anaerobic treatment in decolorizing and detoxifying the textile wastewater in the sequential anaerobic/aerobic system.

  8. Anesthesia for bench surgery.

    PubMed

    Sachin, S; Rajesh, M C; Ramdas, E K

    2016-01-01

    Surgical removal of the kidney tumor outside the body, (ex vivo renal bench surgery) followed by auto transplantation is an emerging and often done procedure to reconstruct the urinary tract. It possesses immense challenges to both the anesthesiologists and the surgeons. The risks are multiplied if you are performing the surgery on a solitary functioning kidney. Here, we are describing the anesthetic management of 70-year-old male post nephrectomy patient undergoing renal auto transplantation by bench surgery. Our primary goals for perioperative management were to maintain a stable hemodynamics throughout the procedure, to reduce fluid overload during the period of extracorporeal surgery, to maintain perfusion for the transplanted solitary kidney, to control bleeding to a minimum, and to provide adequate analgesia for the patient. We made use of a balanced anesthetic technique and stringent monitoring standards to bring forth a successful outcome for the patient. At the end of his hospital stay, patient went home with a healthy, normally functioning kidney.

  9. Shock Bench Enhancements

    NASA Astrophysics Data System (ADS)

    Charvet, B.; Dilhan, D.; Palladino, M.

    2014-06-01

    In 2008 a contract placed by CNES in partnership with ESA has led MECANO ID to develop a shock bench to qualify spacecraft equipment. A spacecraft shall withstand several shocks without degradation: launcher fairing or stages separation, spacecraft separation, the release of appendage (solar arrays, antenna reflectors, booms) and shocks generated when the pyrovalves of the propulsion system are fired.The Shock Response Spectrum (SRS) requirement, to be applied to the equipment, depends on its mass, its size and its location in the satellite. CNES has performed a survey of the pyroshock qualification requirements on CNES and ESA satellites. The outcome of the activity was the input for the bench development (Fig. 1). The design and sizing of the pyroshock bench started with non linear shock analysis with the help of the Dytran software.A lot of solutions have been compared: mono-plate, bi- plate, Hopkinson bar. The bi-plate was chosen thanks to its very rich frequency content. Also, the shock can be generated on one plate with the equipment mounted on the other, to avoid the direct transmission of the shock to the equipment basis.This study led to a 1000 mm x 650 mm steel bi-plate with a 300 mm aluminum cube fitted on one side. The equipment to test is mounted on the cube (Fig. 2 & 3).

  10. LISA Optical Bench Testbed

    NASA Astrophysics Data System (ADS)

    Lieser, M.; d'Arcio, L.; Barke, S.; Bogenstahl, J.; Diekmann, C.; Diepholz, I.; Fitzsimons, E. D.; Gerberding, O.; Henning, J.-S.; Hewitson, M.; Hey, F. G.; Hogenhuis, H.; Killow, C. J.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Taylor, A.; Tröbs, M.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2013-01-01

    The optical bench (OB) is a part of the LISA spacecraft, situated between the telescope and the testmass. For measuring the inter-spacecraft distances there are several interferometers on the OB. The elegant breadboard of the OB for LISA is developed for the European Space Agency (ESA) by EADS Astrium, TNO Science & Industry, University of Glasgow and the Albert Einstein Intitute (AEI), the performance tests then will be done at the AEI. Here we present the testbed that will be used for the performance tests with the focus on the thermal environment and the laser infrastructure.

  11. Anesthesia for bench surgery

    PubMed Central

    Sachin, S.; Rajesh, M. C.; Ramdas, E. K.

    2016-01-01

    Surgical removal of the kidney tumor outside the body, (ex vivo renal bench surgery) followed by auto transplantation is an emerging and often done procedure to reconstruct the urinary tract. It possesses immense challenges to both the anesthesiologists and the surgeons. The risks are multiplied if you are performing the surgery on a solitary functioning kidney. Here, we are describing the anesthetic management of 70-year-old male post nephrectomy patient undergoing renal auto transplantation by bench surgery. Our primary goals for perioperative management were to maintain a stable hemodynamics throughout the procedure, to reduce fluid overload during the period of extracorporeal surgery, to maintain perfusion for the transplanted solitary kidney, to control bleeding to a minimum, and to provide adequate analgesia for the patient. We made use of a balanced anesthetic technique and stringent monitoring standards to bring forth a successful outcome for the patient. At the end of his hospital stay, patient went home with a healthy, normally functioning kidney. PMID:27746573

  12. Scaling matters: incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities.

    PubMed

    Shero, Michelle R; Costa, Daniel P; Burns, Jennifer M

    2015-10-01

    Adult Weddell seals (Leptonychotes weddellii) haul-out on the ice in October/November (austral spring) for the breeding season and reduce foraging activities for ~4 months until their molt in the austral fall (January/February). After these periods, animals are at their leanest and resume actively foraging for the austral winter. In mammals, decreased exercise and hypoxia exposure typically lead to decreased production of O2-carrying proteins and muscle wasting, while endurance training increases aerobic potential. To test whether similar effects were present in marine mammals, this study compared the physiology of 53 post-molt female Weddell seals in the austral fall to 47 pre-breeding females during the spring in McMurdo Sound, Antarctica. Once body mass and condition (lipid) were controlled for, there were no seasonal changes in total body oxygen (TBO2) stores. Within each season, hematocrit and hemoglobin values were negatively correlated with animal size, and larger animals had lower mass-specific TBO2 stores. But because larger seals had lower mass-specific metabolic rates, their calculated aerobic dive limit was similar to smaller seals. Indicators of muscular efficiency, myosin heavy chain composition, myoglobin concentrations, and aerobic enzyme activities (citrate synthase and β-hydroxyacyl CoA dehydrogenase) were likewise maintained across the year. The preservation of aerobic capacity is likely critical to foraging capabilities, so that following the molt Weddell seals can rapidly regain body mass at the start of winter foraging. In contrast, muscle lactate dehydrogenase activity, a marker of anaerobic metabolism, exhibited seasonal plasticity in this diving top predator and was lowest after the summer period of reduced activity.

  13. Astrophysics on the Lab Bench

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2010-01-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a…

  14. The Apennine Bench Formation revisited

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Hawke, B. R.

    1985-01-01

    The Apennine Bench Formation consists of pre-mare light plains materials that crop out south of the crater Archimedes, inside the Imbrium basin. This material was ascribed to either impact or volcanic origins. The characteristics of Apollo 15 KREEP basalts and the Apennine Bench Formation are reviewed to determine whether their characteristics are compatible with a volcanic origin.

  15. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions.

  16. Pharmacogenomics: bench to bedside.

    PubMed

    Weinshilboum, Richard; Wang, Liewei

    2004-09-01

    Pharmacogenetics is the study of the role of inheritance in inter-individual variation in drug response. Since its origins in the mid-twentieth century, a major driving force in pharmacogenetics research has been the promise of individualized drug therapy to maximize drug efficacy and minimize drug toxicity. In recent years, the convergence of advances in pharmacogenetics with rapid developments in human genomics has resulted in the evolution of pharmacogenetics into pharmacogenomics, and led to increasing enthusiasm for the 'translation' of this evolving discipline into clinical practice. Here, we briefly summarize the development of pharmacogenetics and pharmacogenomics, and then discuss the key factors that have had an influence on - and will continue to affect - the translation of pharmacogenomics from the research bench to the bedside, highlighting the challenges that need to be addressed to achieve this goal.

  17. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  18. CFD Study of Full-Scale Aerobic Bioreactors: Evaluation of Dynamic O2 Distribution, Gas-Liquid Mass Transfer and Reaction

    SciTech Connect

    Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael A.; McMillan, Jim

    2016-11-18

    If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economies of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.

  19. The effect of a silage inoculant on silage quality, aerobic stability, and meat production on farm scale.

    PubMed

    Acosta Aragón, Y; Jatkauskas, J; Vrotniakienė, V

    2012-01-01

    The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P < 0.01), a significant increase in the total organic acids concentration (P < 0.05), more lactic acid (P < 0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P < 0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P < 0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P < 0.01) and 1.00 % (P < 0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P < 0.01) and 3.4%.

  20. Influence of Small Scale Permeability Heterogeneity on Aerobic Respiration and Denitrification in the Streambed: A Stochastic Simulation Approach

    NASA Astrophysics Data System (ADS)

    Laube, Gerrit; Fleckenstein, Jan H.; Schmidt, Christian

    2016-04-01

    In streams and rivers, streambed permeability heterogeneity is known to increase hyporheic flux and to decrease hyporheic residence time through preferential flow paths. However, the link between permeability and biogeochemical reactions remains poorly understood. Previous studies have come to contradicting conclusions, likely because of the limited number of heterogeneity scenarios considered. In this study we systematically study the influence of permeability heterogeneity on ripple-induced hyporheic exchange, aerobic respiration and denitrification in the streambed. We simulated and evaluated more than 2000 2D-heterogeneity scenarios by means of Gaussian random fields. The conductivity distributions of those Gaussian fields were transformed to either log-normal or binary distributions with varying variance of hydraulic conductivity in order to investigate both continuous and discrete heterogeneities on a large range of intensities. The results indicate that total aerobic respiration in the domain increases with heterogeneity intensity, expressed as the variance of hydraulic conductivity. In contrast, total denitrification in the domain is minimally influenced by the intensity of heterogeneity, because of the competing effect of increasing solute flux and decreasing reaction time. These results represent the general trends among the entire range of scenarios. The total solute transformation of single realizations revealed strong deviations from these trends whenever special spatial permeability distributions such as clogging layers occurred. The permeability distribution in the uppermost layer of the domain, at the interface between surface water and sediment, was found to strongly influence the extent of deviation from the general trends.

  1. The Effect of a Silage Inoculant on Silage Quality, Aerobic Stability, and Meat Production on Farm Scale

    PubMed Central

    Acosta Aragón, Y.; Jatkauskas, J.; Vrotniakienė, V.

    2012-01-01

    The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P < 0.01), a significant increase in the total organic acids concentration (P < 0.05), more lactic acid (P < 0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P < 0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P < 0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P < 0.01) and 1.00 % (P < 0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P < 0.01) and 3.4%. PMID:23738122

  2. Working Towards the LISA Optical Benches at UF

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Hillsberry, Daniel; Ciani, Giacomo; Conklin, John; Mueller, Guido

    2017-01-01

    The first space-based gravitational wave observatory will likely be a six-link LISA-like observatory with three million km scale arms. LISA aims at detecting gravitational waves from super-massive black hole mergers, compact galactic binaries, and many other exciting sources which emit gravitational waves in the 10 µHz to 1Hz frequency band. LISA will use laser interferometry to measure changes in the distance between free floating test masses at the pm/Hz level. At the core of the interferometry are the optical benches (two on each spacecraft) which receive, manipulate and redirect the different laser beams. The optical bench has been identified as a critical item in the design, manufacturing, and testing phases of this mission. Our group studies different components of the optical bench with the goal to simplify the design and manufacturing process of the optical bench.

  3. Production of stable bispecific IgG1 by controlled Fab-arm exchange: scalability from bench to large-scale manufacturing by application of standard approaches.

    PubMed

    Gramer, Michael J; van den Bremer, Ewald T J; van Kampen, Muriel D; Kundu, Amitava; Kopfmann, Peter; Etter, Eric; Stinehelfer, David; Long, Justin; Lannom, Tom; Noordergraaf, Esther H; Gerritsen, Jolanda; Labrijn, Aran F; Schuurman, Janine; van Berkel, Patrick H C; Parren, Paul W H I

    2013-01-01

    The manufacturing of bispecific antibodies can be challenging for a variety of reasons. For example, protein expression problems, stability issues, or the use of non-standard approaches for manufacturing can result in poor yield or poor facility fit. In this paper, we demonstrate the use of standard antibody platforms for large-scale manufacturing of bispecific IgG1 by controlled Fab-arm exchange. Two parental antibodies that each contain a single matched point mutation in the CH3 region were separately expressed in Chinese hamster ovary cells and manufactured at 1000 L scale using a platform fed-batch and purification process that was designed for standard antibody production. The bispecific antibody was generated by mixing the two parental molecules under controlled reducing conditions, resulting in efficient Fab-arm exchange of>95% at kg scale. The reductant was removed via diafiltration, resulting in spontaneous reoxidation of interchain disulfide bonds. Aside from the bispecific nature of the molecule, extensive characterization demonstrated that the IgG1 structural integrity was maintained, including function and stability. These results demonstrate the suitability of this bispecific IgG1 format for commercial-scale manufacturing using standard antibody manufacturing techniques.

  4. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Manufacturing Plan for Aminosilicone-based CO{sub 2} Absorption Material

    SciTech Connect

    Vogt, Kirkland

    2013-02-01

    A commercially cost effective manufacturing plan was developed for GAP-1m, the aminosilicone-based part of the CO{sub 2} capture solvent described in DE-FE0007502, and the small-scale synthesis of GAP-1m was confirmed. The plan utilizes a current intermediate at SiVance LLC to supply the 2013-2015 needs for GE Global Research. Material from this process was supplied to GE Global Research for evaluation and creation of specifications. GE Global Research has since ordered larger quantities (60 liters) for the larger scale evaluations that start in first quarter, 2013. For GE’s much larger future commercial needs, an improved, more economical pathway to make the product was developed after significant laboratory and literature research. Suppliers were identified for all raw materials.

  5. Installation Restoration General Environmental Technology Development. Task 8. Bench-Scale Investigation of Low Temperature Thermal Removal of TCE (Trichloroethylene) from Soil.

    DTIC Science & Technology

    1985-03-01

    Most of the applicable indus- trial dryer designs subject the treated material to either extensive tumbling or they force purge gas through the...volatilization of TCE from soils. A brief review of chemical and metallurgical processing equipment resulted in industrial dryers being the .* prime...candidate for full-scale operations. A brief survey of dryer manufacturers and vendors was completed. It was evident from discussions with vendors that

  6. Full-scale demonstration of step feed concept for improving an anaerobic/anoxic/aerobic nutrient removal process.

    PubMed

    Ge, Shijian; Zhu, Yunpeng; Lu, Congcong; Wang, Shuying; Peng, Yongzhen

    2012-09-01

    A small wastewater treatment plant (WWTP) failed to meet effluent requirements of the first-A discharge standard in China, with the anaerobic/anoxic/oxic (A/A/O) process treating municipal and partial industrial wastewater. Thus an A/O step feed process (Anoxic/oxic/anoxic/oxic/anoxic/oxic) with floating plastic carriers in aerobic units was proposed to improve nutrient removal within the existing WWTP. Four main reform strategies were applied: (1) the original influent was divided into three streams which led into corresponding anoxic units; (2) floating plastic carriers were placed in the second and third oxic units; (3) nitrified liquid recycling was omitted; (4) channel shapes and sizes were adjusted between adjacent units to prevent backflow. After these modifications were implemented, the total nitrogen and phosphorus concentrations in the effluent were reduced from 20.8 to 14.2mg/L, and from 1.89 to 0.57 mg/L, respectively. Moreover, annual electricity consumption in the WWTP was reduced by 245 MWh as a result of these modifications.

  7. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  8. A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies.

    PubMed

    Loganathan, Kavithaa; Bromley, David; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2015-09-15

    Through sustainable water management, oil sands companies are working to reduce their reliance on fresh water by minimizing the amount of water required for their operations and by recycling water from tailings ponds. This study was the first pilot-scale testing of a hybrid technology consisting of froth flotation combined with filtration through precoated submerged stainless steel membranes used to treat recycle water from an oil sands facility. The results indicated that the most important factor affecting the performance of the hybrid system was the influent water quality. Any rise in the levels of suspended solids or total organic carbon of the feed water resulted in changes of chemical consumption rates, flux rates, and operating cycle durations. The selections of chemical type and dosing rates were critical in achieving optimal performance. In particular, the froth application rate heavily affected the overall recovery of the hybrid system as well as the performance of the flotation process. Optimum surfactant usage to generate froth (per liter of treated water) was 0.25 mL/L at approximately 2000 NTU of influent turbidity and 0.015 mL/L at approximately 200 NTU of influent turbidity. At the tested conditions, the optimal coagulant dose was 80 mg/L (as Al) at approximately 2000 NTU of influent turbidity and <40 mg/L (as Al) at approximately 200 NTU of influent turbidity. Precoat loading per unit membrane surface area tested during the pilot study was approximately 30 g/m(2). The results of this study indicated that this hybrid technology can potentially be considered as a pre-treatment step for reverse osmosis treatment of recycle water.

  9. Astrophysics on the lab bench

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.

    2010-05-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a type II supernova explosion. In another experiment, students roll marbles up and down a double ramp in an attempt to get a marble to enter a tube halfway up the slope, which illustrates quantum tunnelling in stellar cores. The experiments are reasonably low cost to either purchase or manufacture.

  10. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter

    SciTech Connect

    Vince Maio

    2011-08-01

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing

  11. The VORTEX coronagraphic test bench

    NASA Astrophysics Data System (ADS)

    Jolivet, A.; Piron, P.; Huby, E.; Absil, O.; Delacroix, C.; Mawet, D.; Surdej, J.; Habraken, S.

    2014-07-01

    In this paper, we present the infrared coronagraphic test bench of the University of Liège named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also aim to test other pre- and/or post-coronagraphic concepts such as optimal apodization.

  12. N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost.

    PubMed

    Thorn, Kevin A; Pennington, Judith C; Kennedy, Kay R; Cox, Larry G; Hayes, Charolett A; Porter, Beth E

    2008-04-01

    Large-scale aerobic windrow composting has been used to bioremediate washout lagoon soils contaminated with the explosives TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) at several sites within the United States. We previously used 15N NMR to investigate the reduction and binding of T15NT in aerobic bench-scale reactors simulating the conditions of windrow composting. These studies have been extended to 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT), which, as impurities in TNT, are usually presentwherever soils have been contaminated with TNT. Liquid-state 15N NMR analyses of laboratory reactions between 4-methyl-3-nitroaniline-15N, the major monoamine reduction product of 2,4DNT, and the Elliot soil humic acid, both in the presence and absence of horseradish peroxidase, indicated that the amine underwent covalent binding with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and non-heterocyclic condensation products. Liquid-state 15N NMR analyses of the methanol extracts of 20 day aerobic bench-scale composts of 2,4-di-15N-nitrotoluene and 2,6-di-15N-nitrotoluene revealed the presence of nitrite and monoamine, but not diamine, reduction products, indicating the occurrence of both dioxygenase enzyme and reductive degradation pathways. Solid-state CP/MAS 15N NMR analyses of the whole composts, however, suggested that reduction to monoamines followed by covalent binding of the amines to organic matter was the predominant pathway.

  13. N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Kennedy, K.R.; Cox, L.G.; Hayes, C.A.; Porter, B.E.

    2008-01-01

    Large-scale aerobic windrow composting has been used to bioremediate washout lagoon soils contaminated with the explosives TNT (2,4,6- trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) at several sites within the United States. We previously used 15N NMR to investigate the reduction and binding of T15NT in aerobic bench -scale reactors simulating the conditions of windrow composting. These studies have been extended to 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT), which, as impurities in TNT, are usually present wherever soils have been contaminated with TNT. Liquid-state 15N NMR analyses of laboratory reactions between 4-methyl-3-nitroaniline-15N, the major monoamine reduction product of 2,4DNT, and the Elliot soil humic acid, both in the presence and absence of horseradish peroxidase, indicated that the amine underwent covalent binding with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and non-heterocyclic condensation products. Liquid-state 15N NMR analyses of the methanol extracts of 20 day aerobic bench-scale composts of 2,4-di-15N-nitrotoluene and 2,6-di-15N-nitrotoluene revealed the presence of nitrite and monoamine, but not diamine, reduction products, indicating the occurrence of both dioxygenase enzyme and reductive degradation pathways. Solid-state CP/MAS 15N NMR analyses of the whole composts, however, suggested that reduction to monoamines followed by covalent binding of the amines to organic matter was the predominant pathway. ?? 2008 American Chemical Society.

  14. Mercury capture in bench-scale absorbers

    SciTech Connect

    Livengood, C.D.; Huang, H.S.; Mendelsohn, M.H.; Wu, J.M.

    1994-08-01

    This paper gives,a brief overview of research being conducted at Argonne National Laboratory on the capture of mercury by both dry sorbents and wet scrubbers. The emphasis in the research is on development of a better understanding of the key factors that control the capture of mercury. Future work is expected to utilize that information for the development of new or modified process concepts featuring enhanced mercury capture capabilities. The results and conclusions to date from the Argonne -research on dry sorbents can be summarized as follows: lime hydrates, either regular or high-surface-area, are `not effective in removing mercury; mercury removals are enhanced by the addition of activated carbon; mercury removals with activated carbon decrease with increasing temperature, larger particle size, and decreasing mercury concentration in the gas; and chemical pretreatment (e.g., with sulfur or (CaCl{sub 2}) can greatly increase the removal capacity of activated carbon. Preliminary results from the wet scrubbing research include: no removal of elemental mercury is obtained under normal scrubber operating conditions; mercury removal is improved by the addition of packing or production of smaller gas bubbles to increase the gas-liquid contact area; polysulfide solutions do not appear promising for enhancing mercury removal in typical FGC systems; stainless steel packing appears to have beneficial properties for mercury removal and should be investigated further; and other chemical additives may offer greatly enhanced removals.

  15. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  16. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  17. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  18. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  19. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  20. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  1. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage.

    PubMed

    Aqeel, H; Basuvaraj, M; Hall, M; Neufeld, J D; Liss, S N

    2016-01-01

    Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage

  2. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant.

    PubMed

    Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei

    2015-11-01

    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase.

  3. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant

    PubMed Central

    Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei

    2015-01-01

    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase. PMID:25989417

  4. Phylogenetic analysis of the bacterial community in a full scale autothermal thermophilic aerobic digester (ATAD) treating mixed domestic wastewater sludge for land spread.

    PubMed

    Piterina, Anna V; Bartlett, John; Pembroke, J Tony

    2012-05-15

    The bacterial community associated with a full scale autothermal thermophilic aerobic digester (ATAD) treating sludge, originating from domestic wastewater and destined for land spread, was analysed using a number of molecular approaches optimised specifically for this high temperature environment. 16S rDNA genes were amplified directly from sludge with universally conserved and Bacteria-specific rDNA gene primers and a clone library constructed that corresponded to the late thermophilic stage (t = 23 h) of the ATAD process. Sequence analyses revealed various 16S rDNA gene sequence types reflective of high bacterial community diversity. Members of the bacterial community included α- and β-Proteobacteria, Actinobacteria with High G + C content and Gram-Positive bacteria with a prevalence of the Firmicutes (Low G + C) division (class Clostridia and Bacillus). Most of the ATAD clones showed affiliation with bacterial species previously isolated or detected in other elevated temperature environments, at alkaline pH, or in cellulose rich environments. Several phylotypes associated with Fe(III)- and Mn(IV)-reducing anaerobes were also detected. The presence of anaerobes was of interest in such large scale systems where sub-optimal aeration and mixing is often the norm while the presence of large amounts of capnophiles suggest the possibility of limited convection and entrapment of CO(2) within the sludge matrix during digestion. Comparative analysis with organism identified in other ATAD systems revealed significant differences based on optimised techniques. The abundance of thermophilic, alkalophilic and cellulose-degrading phylotypes suggests that these organisms are responsible for maintaining the elevated temperature at the later stages of the ATAD process.

  5. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  6. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    NASA Astrophysics Data System (ADS)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  7. The potential role of aerobic biological waste treatment in regenerative life support systems

    NASA Technical Reports Server (NTRS)

    Shuler, M. L.; Nafis, D.; Sze, E.

    1981-01-01

    The purpose of the paper is to make a preliminary assessment of the feasibility of using aerobic biological waste treatment in closed systems. Issues that are addressed in this paper are: (1) how high a degree of material balance is possible, (2) how much might such a system weigh, and (3) how would system closure and weight be affected if animals were included in the system. A computer model has been developed to calculate for different scenarios the compositions and amounts of the streams entering or leaving the waste treatment system and to estimate the launch weight of such a system. A bench scale apparatus has been built to mimic the proposed waste treatment system; the experiments are used to verify model predictions and to improve model parameter estimations.

  8. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions.

    PubMed

    Molina-Muñoz, M; Poyatos, J M; Sánchez-Peinado, M; Hontoria, E; González-López, J; Rodelas, B

    2009-06-15

    A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community

  9. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  10. Anaerobic/aerobic treatment of selected azo dyes in wastewater

    SciTech Connect

    Seshadri, S.; Bishop, P.L. . Dept. of Civil and Environmental Engineering); Agha, A.M. . Faculty of Civil Engineering)

    1994-01-01

    Azo dyes represent the largest class of dyes in use today. Current environmental concern with these dyes revolves around the potential carcinogenic health risk presented by these dyes or their intermediate biodegradation products when exposed to microflora in the human digestive tract. These dyes may build up in the environment, since many wastewater treatment plants allow these dyes to pass through the system virtually untreated. The initial step in the degradation of these dyes is the cleavage of the Azo bond. This cleavage is often impossible under aerobic conditions, but has been readily demonstrated under anaerobic conditions. The focus of the study was to determine the feasibility of using an anaerobic fluidized-bed reactor to accomplish this cleavage. The effects of typical process variables such as hydraulic retention time (HRT), influent dye concentration levels, and degree of bed fluidization on removal efficiencies were also studied. The four dyes selected for this study were Acid-Orange 7, Acid-Orange 8, Acid-Orange 10, and Acid-Red 14. The effectiveness of using a bench-scale-activated sludge reactor as a sequenced second stage was also examined. Results indicate that nearly complete cleavage of the Azo bond is easily accomplished for each of the four dyes under hydraulic retention times of either 12 or 24 h. Initial results indicate, though, that aromatic amine by-products remain. The sequenced second stage was able to remove the remaining Chemical Oxygen Demand (COD) load to acceptable levels. Work is presently underway to determine the face of the anaerobic by-products in the aerobic second stage.

  11. The upgraded WIYN bench spectrograph

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia M.; Bershady, Matthew A.; Willmarth, Daryl; Glaspey, John; Poczulp, Gary; Blanco, Dan; Britanik, Lana; McDougall, Eugene; Corson, Charles; Liang, Ming; Keyes, Joe; Jacoby, George

    2010-07-01

    We present the as-built design overview and post-installation performance of the upgraded WIYN Bench Spectrograph. This Bench is currently fed by either of the general-use multi-fiber instruments at the WIYN 3.5m telescope on Kitt Peak, the Hydra multi-object positioner, and the SparsePak integral field unit (IFU). It is very versatile, and can be configured to accommodate low-order, echelle, and volume phase holographic gratings. The overarching goal of the upgrade was to increase the average spectrograph throughput by ~60% while minimizing resolution loss (< 20%). In order to accomplish these goals, the project has had three major thrusts: (1) a new CCD was provided with a nearly constant 30% increase is throughput over 320-1000 nm; (2) two Volume Phase Holographic (VPH) gratings were delivered; and (3) installed a new all-refractive collimator that properly matches the output fiber irradiance (EE90) and optimizes pupil placement. Initial analysis of commissioning data indicates that the total throughput of the system has increased 50-70% using the 600 l/mm surface ruled grating, indicating that the upgrade has achieved its goal. Furthermore, it has been demonstrated that overall image resolution meets the requirement of <20% loss.

  12. Anaerobic and aerobic treatment of chlorinated, aliphatic compounds

    SciTech Connect

    Long, J.L.; Stensel, H.D.; Ferguson, J.F.; Strand, S.E.; Ongerth, J.E.

    1993-01-01

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). The anaerobic culture degraded seven of the feed CACs. The specialized aerobic cultures degraded all but three of the highly chlorinated CACs. The sequential system outperformed either of the other systems alone by degrading 10 of the feed CACs: chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,1,1-trichloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, perchloroethylene, and 1,2,3-trichloropropane, plus the anaerobic metabolites: dichloromethane and cis-1,2-dichloroethylene.

  13. The Effect of Active Recovery on Power Performance During the Bench Press Exercise

    PubMed Central

    Lopes, Felipe A. S.; Panissa, Valéria L. G.; Julio, Ursula F.; Menegon, Elton M.; Franchini, Emerson

    2014-01-01

    The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise. PMID:25031684

  14. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light

    NASA Astrophysics Data System (ADS)

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-01

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%. Electronic supplementary information (ESI) available: Experimental procedure, XRD patterns, TEM and HRTEM images, energy-dispersive X-ray spectra, UV-vis spectra, X-ray photoelectron spectroscopy (XPS), and EDS. See DOI: 10.1039/c6nr02949c

  15. Hot-bench simulation of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.

  16. Treatment of high-strength synthetic sewage in a laboratory-scale upflow anaerobic sludge bed (UASB) with aerobic activated sludge (AS) post-treatment.

    PubMed

    Banihani, Qais H; Field, Jim A

    2013-01-01

    Performance of a combined system up-flow anaerobic sludge blanket (UASB) followed by aerobic treatment activated sludge (AS) for removal of carbonaceous and nitrogenous contaminants at an average temperature of 25°C was investigated. The combined system was fed with high strength synthetic sewage having chemical oxygen demand (COD) of 2500 mg L(-1). The organic loading rate (OLR) of the UASB reactor was increased gradually from 1.1 to 3.8 gCOD L(r) (-1) d(-1). At steady state condition, the UASB reactor achieved removal efficiency up to 83.5% of total COD (COD(tot)), 74.0% of volatile fatty acid (VFA) and 94.0% of protein. The combined system performed an excellent organic removal pushing the overall removal efficiency of COD(tot), VFA and protein to 91.0%, 99.9% and 98.2%, respectively. When the OLR of the UASB increased to 4.4 g COD L(r) (-1) d(-1), the UASB was overloaded and; thus, its effluent quality deteriorated. In respect to nitrogen removal, both partial nitrification and complete nitrification took place in aerobic post-treatment. When the dissolved oxygen (DO) concentration was >2.0 mg L(-1), complete nitrification (period B) occurred with an average nitrification efficiency of 96.2%. The partial nitrification occurred due to high OLR to AS during the overloading event (period A) and when DO concentration was <2.0 mg L(-1) (period C). The maximum accumulated nitrite concentration in periods A, B and C were 90.0, 0.9 and 75.8 mg NO(-) (2) -N L(-1), respectively. The nitrogen balance results of periods A and C indicated that there was a discrepancy between the amount of ammonium nitrogen removed and the amount of oxidized nitrogen formed. This suggests the occurrence of simultaneous nitrification/denitrification (SND) in aerobic post-treatment.

  17. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  18. Influence of sludge retention time and temperature on the sludge removal in a submerged membrane bioreactor: comparative study between pure oxygen and air to supply aerobic conditions.

    PubMed

    Rodríguez, F A; Leyva-Díaz, J C; Reboleiro-Rivas, P; González-López, J; Hontoria, E; Poyatos, J M

    2014-01-01

    Performance of a bench-scale wastewater treatment plant, which consisted of a membrane bioreactor, was monitored daily using pure oxygen and air to supply aerobic conditions with the aim of studying the increases of the aeration and sludge removal efficiencies and the effect of the temperature. The results showed the capacity of membrane bioreactor systems for removing organic matter. The alpha-factors of the aeration were determined for six different MLSS concentrations in order to understand the system working when pure oxygen and air were used to supply aerobic conditions in the system. Aeration efficiency was increased between 30.7 and 45.9% when pure oxygen was used in the operation conditions (a hydraulic retention time of 12 h and MLSS concentrations between 4,018 and 11,192 mg/L). Sludge removal efficiency increased incrementally, from 0.2 to 1.5% when pure oxygen was used at low sludge retention time and from 1.5% to 15.4% at medium sludge retention time when temperature conditions were lower than 20°C. Moreover, the difference between calculated and experimental sludge retention time was lesser when pure oxygen was used to provide aerobic conditions, so the influence of the temperature decreased when the pure oxygen was used. These results showed the convenience of using pure oxygen due to the improvement in the performance of the system.

  19. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  20. A do-it-yourself optical bench

    NASA Astrophysics Data System (ADS)

    Dvořák, Leoš

    2011-10-01

    When teaching geometrical optics, especially the parts concerning lenses, there are many experiments that can be done just by holding the lenses in your (or your pupils') hands. But if you want to measure something, for example focal lengths, or combine two lenses to demonstrate the principle of a telescope, then something that can fix the lenses is needed. Of course, we can do such demonstrations and measurements using a commercially available optical bench. But a classical optical bench is usually a large and heavy construction that is not easy to transport. Often only one (or even none) may be available per classroom. In many school experiments something less robust, simpler, and less expensive would perhaps suit the needs better. Here we describe a simple and flexible optical bench that may be constructed by students themselves. Apart from the price of the lenses, the construction is also very cheap. So, if you have some spare lenses available, you can build a small optical bench for 10 or less. Each group of students can then use their own optical bench to do experiments.

  1. Teaching Elliptical Excision Skills to Novice Medical Students: A Randomized Controlled Study Comparing Low- and High-Fidelity Bench Models

    PubMed Central

    Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério

    2014-01-01

    Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims: To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills’ training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs’ skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results: The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills’ training) was considered large (>0.80) in all measurements. Conclusion: The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials. PMID:24700937

  2. DIRECT LIQUEFACTION PROOF-OF-CONCEPT PROGRAM - BENCH RUN PB-10 (HTI 227-109)

    SciTech Connect

    Unknown

    1999-12-30

    This report presents the results of the bench-scale test, PB-10, performed at HTI's facilities under DOE contract (HTI Run No. 227-109). This bench test continues the work that was started in PDU testing 260-007. Previous bench test (PB-09, HTI 227-106) was performed on different seams of Chinese coal (Shenhua Ningtiaota Coal No.2 and No.3). Since another coal, Shangwan coal was selected for the liquefaction plant, PB-10 was made as approved by DOE/COR. The objective of this test was to evaluate the liquefaction performance of Shangwan coal utilizing various backend processing and recycle schemes. Additionally, this test was to collect available process data to allow for the best scale-up process design possible from this particular unit.

  3. Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media.

    PubMed

    Ginn, T R; Murphy, E M; Chilakapati, A; Seeboonruang, U

    2001-03-01

    Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.

  4. Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Murphy, E. M.; Chilakapati, A.; Seeboonruang, U.

    2001-03-01

    Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.

  5. Mathematical Lens: How Much Can You Bench?

    ERIC Educational Resources Information Center

    Bolognese, Chris A.

    2013-01-01

    "How Much Can You Bench?" appears in the "Mathematical Lens" section of "Mathematics Teacher." "Mathematical Lens" uses photographs as a springboard for mathematical inquiry and appears in every issue of "Mathematics Teacher." This month the mathematics behind the photograph includes finding areas…

  6. ESPRESSO optical bench: from mind to reality

    NASA Astrophysics Data System (ADS)

    Tenegi, F.; Santana, S.; Gómez, J.; Rodilla, E.; Hughes, I.; Mégevand, D.; Rebolo, R.; Riva, M.; Luis-Simoes, R.

    2016-07-01

    ESPRESSO [1] is a high-resolution spectrograph under development for the VLT telescope. In general, the Optical Bench (OB) structure can be considered as a 3D one, conformed by welding thin plates of Structural Steel (St-52) with a nickelplated surface treatment, combined for getting maximum stiffness and minimum weight, that will be finally re-machined to get stringent geometrical and dimensional tolerances at I/Fs positions. TIG conventional welding procedure has been selected to minimize the cost and facilitate the own welding process. This solution follows the inheritance from HARPS [2] due to its success to achieve the required performance for the bench. This paper contains an overview of the whole process of designing and manufacturing the Optical Bench of ESPRESSO, from the very first beginning with the specifications to the current status of the bench with its integration on the Spectrograph (including the Finite Element Models and the delivery of the final structure by the supplier) and lessons learned.

  7. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    PubMed

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  8. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  9. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  10. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  11. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  12. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  13. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect

    Sundquist, J.A.; Gillings, J.C.; Sonntag, T.L.; Denault, R.P.

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  14. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor.

    PubMed

    Isanta, Eduardo; Reino, Clara; Carrera, Julián; Pérez, Julio

    2015-09-01

    Partial nitritation for a low-strength wastewater at low temperature was stably achieved in an aerobic granular reactor. A bench-scale granular sludge bioreactor was operated in continuous mode treating an influent of 70 mg N-NH4(+) L(-1) to mimic pretreated municipal nitrogenous wastewater and the temperature was progressively decreased from 30 to 12.5 °C. A suitable effluent nitrite to ammonium concentrations ratio to a subsequent anammox reactor was maintained stable during 300 days at 12.5 °C. The average applied nitrogen loading rate at 12.5 °C was 0.7 ± 0.3 g N L(-1) d(-1), with an effluent nitrate concentration of only 2.5 ± 0.7 mg N-NO3(-) L(-1). The biomass fraction of nitrite-oxidizing bacteria (NOB) in the granular sludge decreased from 19% to only 1% in 6 months of reactor operation at 12.5 °C. Nitrobacter spp. where found as the dominant NOB population, whereas Nitrospira spp. were not detected. Simulations indicated that: (i) NOB would only be effectively repressed when their oxygen half-saturation coefficient was higher than that of ammonia-oxidizing bacteria; and (ii) a lower specific growth rate of NOB was maintained at any point in the biofilm (even at 12.5 °C) due to the bulk ammonium concentration imposed through the control strategy.

  15. Direct liquefaction proof-of-concept program: Final topical report, Bench Run 03 (227-93)

    SciTech Connect

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

    1996-12-01

    This report presents the results of bench-scale work, Bench Run PB-03, conducted under the DOE Proof of Concept--Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-03 was the third of the nine runs planned in the POC Bench Option Contract between the US DOE and Hydrocarbon Technologies, Inc. The Bench Run PB-03 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst loadings and types on the performance of two-stage direct coal liquefaction, the effect of HTI`s new iron catalyst, modified with phosphorus, and the evaluation of the effect of recycle solvent hydrotreatment on the overall process performance. PB-03 employed a close-coupled (no interstage separator) configuration of hydroconversion reactors. Other features of PB-03 included the use of an in-line fixed bed hydrotreater for the net product. No significant effects on process performance was found by changing the loadings of iron and molybdenum in the ranges of 1,000--5,000 ppm for iron and 50--100 ppm for molybdenum. However, the modification of HTI`s iron-based gel catalyst with 100 ppm of phosphorous improved the process performance significantly. A newly tested Mo-Carbon dispersed catalyst was not found to be any better than Molyvan-A, which was used during all but one condition of PB-03. Hydrotreatment of part of the recycle solvent was found to have a positive influence on the overall performance.

  16. Direct liquefaction proof-of-concept program. Finaltopical report, Bench Run 4 (227-95)

    SciTech Connect

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.

    1997-03-01

    This report presents the results of bench-scale work, Bench Run PB-04, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-04 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and Hydrocarbon Technologies, Inc. Bench Run PB-04 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst system on the performance of direct liquefaction of a subbituminous Wyoming Black Thunder mine coal under extinction recycle (454{degrees}C+ recycle) condition; another goal was to investigate the effects of the combined processing of automobile shredder residue (auto-fluff) with coal and other organic waste materials. PB-04 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. The HTI`s newly modified P/Fe catalyst was very effective for direct liquefaction and coprocessing of Black Thunder mine subbituminous coal with Hondo resid and auto-fluff; during `coal-only` liquefaction mode, over 93% maf coal conversion was obtained with about 90% residuum conversion and as high as 67% light distillate (C{sub 4}-975 F) yield, while during `coprocessing` mode of operation, distillate yields varied between 58 and 69%; the residuum conversions varied between 74 and 89% maf. Overall, it is concluded, based upon the yield data available from PB-04, that auto-effective as MSW plastics in improving coal hydroconversion process performance. Auto-fluff did not increase light distillate yields nor decrease light gas make and chemical hydrogen consumption in coal liquefaction, as was observed to occur with MSW plastics.

  17. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  18. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    PubMed

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery.

  19. Effects of the bench shirt on sagittal bar path.

    PubMed

    Silver, Tobin; Fortenbaugh, Dave; Williams, Ryan

    2009-07-01

    Powerlifting, like many sports, uses specialized equipment to enhance performance and decrease the chance of injury. The purpose of this exploratory study was to determine whether wearing a bench press shirt would alter the natural mechanics of the bench press, causing a more efficient lift when pressing the same weight as without the bench shirt. Participants (n = 5) completed 2 series of 1-repetition maximum (1RM) bench press tests, with 1 week of rest in between 1 series without the bench shirt (no-shirt), and 1 series with a bench shirt (bench shirt). Results revealed that the vertical bar path ranges were significantly less in the bench shirt condition (35.7 +/- 4.8 cm) compared with the no-shirt condition (40.2 +/- 7.0 cm) (p < 0.05). Significant differences were found between the bar's optimal (81.4 +/- 14.2 cm) and observed (96.7 +/- 19.1 cm) total distances traveled in the no-shirt condition (p < 0.01), but no significant differences were found between the bar's optimal (71.6 +/- 12.7 cm) and observed (86.3 +/- 10.5 cm) total distances traveled in the bench shirt condition. These findings suggest that the bar path in bench shirt trials is more efficient and consistent than in the no-shirt trials. This pattern demonstrates that a bench shirt can improve load capacity. It is also possible that the bench shirt decreases the forces that act on the shoulder for a given weight and, thus, may decrease the risk of injury.

  20. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  1. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  2. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  3. Driving Torque Control for a Nacelle Test Bench

    NASA Astrophysics Data System (ADS)

    Jassmann, Uwe; Reiter, Matthias; Abel, Dirk

    2014-06-01

    Recently wind industry paid a lot of attention to ground testing facilities in order to improve reliability of wind turbines by undergoing overall system tests at an early stage of development. Some experience has been gained during the last years with drive train test benches, that allow for pure mechanical and electrical tests of the turbine's components. Since the loads occurring inside a wind turbine significantly depend on its control strategy, the natural extension of drive train test benches are so-called nacelle test benches, which also include the wind turbine's controller. The worldwide first nacelle test bench was installed and launched at RWTH Aachen University in 2013. This nacelle test bench was set up as a demonstrator and has a rated power of 1 MW. For the demonstrator test bench a gearbox-based drive train concept, which does not intrinsically meet the high dynamic requirements of the real-time aerodynamics simulation, was chosen. In this paper the mechanical concept is reviewed from a control engineering point of view and a detailed control model is presented and validated using measurement data. In order to minimize the impact this mechanical limitations have and to achieve the dynamics and accuracy required, a driving torque controller is proposed. Due to the communication layout at the nacelle test bench, time delay in data transfer cannot be omitted for controller design. Experiments confirm that the driving torque controller allows to operate a wind turbine at the nacelle test bench and suppresses unrealistic, test bench-related torque dynamics.

  4. Thermal motion of the STIS optical bench

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Taylor, Mary Jane; Shaw, Richard; Robinson, Richard; Hill, Robert S.

    1997-01-01

    Various tests have been done of the Space Telescope Imaging Spectrograph (STIS) using internal wavecals to measure thermal motion of the spectral format on the detectors. In most cases, the spectral format moves less than the specification not to exceed 0.2 pixels per hour. Primary causes of the motion are (1) changes to the thermal design dictated by the warmer Aft Shroud environment and (2) on-orbit power cycling of Multi-Anode Microchannel Arrays (MAMA) electronics to minimize the effects of radiation hits on the MAMA detectors. The rear portion of the STIS optical bench is too warm to be held at a constant temperature by internal heaters. Electronics swing in temperature with an orbital and daily frequency. The thermal drift of the optical formats is not negligible, but is well behaved in most circumstances. The observer is advised to examine the trade-off between the most accurate wavelengths with best spectral/spatial resolutions versus increased overheads that directly affect the observing times. A long term concern is that the Aft Shroud thermal environment is predicted to heat up as much as one Centigrade degree per year. Progressively more of the bench would move out of thermal control. Thus the external cooler for STIS, being considered for the Third Servicing Mission is of major importance to the long term operation of STIS.

  5. The effect of caffeine ingestion on mood state and bench press performance to failure.

    PubMed

    Duncan, Michael J; Oxford, Samuel W

    2011-01-01

    Research has suggested that caffeine enhances aerobic performance. The evidence for high-intensity, short-term exercise, particularly resistance exercise is mixed and has not fully examined the psychological changes that occur after this mode of exercise with caffeine ingestion. This study examined the effect of caffeine (5 mg · kg(-1)) vs. placebo on bench press exercise to failure and the mood state response pre to postexercise. Thirteen moderately trained men (22.7 ± 6.0 years) completed 2 laboratory visits, after determination of 1 repetition maximum (1RM) on the bench press, where they performed bench press repetitions to failure at a load of 60% 1RM. Mood state was assessed 60 minutes pre and immediately post-substance ingestion. Borg's rating of perceived exertion (RPE) and peak blood lactate (PBla) were assessed after each test, and peak heart rate (PHR) was determined using heart rate telemetry. Participants completed significantly more repetitions to failure (p = 0.031) and lifted significantly greater weight (p = 0.027) in the caffeine condition compared to the placebo condition. The PHR (p = 0.0001) and PBla (p = 0.002) were higher after caffeine ingestion. The RPE was not different across conditions (p = 0.082). Mood state scores for vigor were greater (p = 0.001) and fatigue scores lower (p = 0.04) in the presence of caffeine. Fatigue scores were greater postexercise (p = 0.001) compared to scores pre exercise across conditions. Caffeine ingestion enhances performance in short-term, resistance exercise to failure and may favorably change the mood state response to exercise compared to a placebo.

  6. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  7. Bench-Scale Studies with Argentine Ion Exchange Material

    SciTech Connect

    Cicero-Herman, C.A.

    2002-06-28

    The United States Department of Energy (DOE), as well as international atomic energy commission, facilities use ion exchange materials for purification of aqueous streams in the nuclear industry. Unfortunately, the use of the ion exchange materials creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resins often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposable alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces.

  8. Extended Dry Storage Signature Bench Scale Detector Conceptual Design

    SciTech Connect

    Rauch, Eric Benton

    2016-09-02

    This report is the conceptual design of a detector based on research within the Extended Dry Storage Signature Development project under the DOE-­NE MPACT campaign. This is the second year of the project; from this year’s positive results, the next step is building a prototype and testing with real materials .

  9. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    SciTech Connect

    Caime, W.J.; Hoeffner, S.L.

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  10. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-10-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2} TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2} TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn{sub 2} TiO{sub 4} + 2H{sub 2}S {yields} 2ZnS + TiO{sub 2} + 2H{sub 2}O; Regeneration: 2ZnS + TiO{sub 2} + 3O{sub 2} {yields} Zn{sub 2} TiO{sub 4} + 2SO{sub 2} The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  11. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-07-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2}TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  12. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    2000-09-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2}TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

  13. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    SciTech Connect

    Jeffrey W. Portzer; Santosh K. Gangwal

    1998-12-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs.

  14. 69. (Credit JTL) View beneath marble meter bench showing hydraulic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. (Credit JTL) View beneath marble meter bench showing hydraulic lines leading to water valve hydraulic control cylinders from control handles in bench; strings and pulleys activate meters. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  15. BENCH TEST OF A RESIDUAL GAS IONIZATION PROFILE MONITOR (RGIPM)

    SciTech Connect

    W.C. SELLYEY; J.D. GILPATRICK; R. SENIOR

    2001-06-01

    An RGIPM has been designed, constructed and bench tested to verify that all components are functioning properly and that the desired resolution of about 50 {micro}m rms can be achieved. This paper will describe major considerations that went into the bench test and some results.

  16. Alternative Bench Standards: Sample Production Report

    SciTech Connect

    N. R. Mann; T. P. Houghton; M. G. Watrous; J. G. Eisenmenger; R. K. Hague

    2012-09-01

    The INL has prepared four standards representing krypton concentrations of 1.1X, 1.54X, 10X and 100X the reported atmospheric value of 70 dpm 85Kr per cubic centimeter of Kr gas at 25 degrees C (ie. 1.1X is 1.1 x 70, or 77 dpm 85Kr per cubic centimeter of Kr gas at 25 degrees C). A t-zero date and time of January 1, 2012 at 1200 Zulu was used for all standards. The Alternative Bench Standards (ABS) of 1.1X, 1.54X, 10X and 100X, are designated by titles of ABS-A, ABS-B, ABS C and ABS-D, respectively. The concentration of Kr in air is 1.14 ppm.

  17. Imaging Neuroinflammation – from Bench to Bedside

    PubMed Central

    Pulli, Benjamin; Chen, John W

    2014-01-01

    Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.” PMID:25525560

  18. Diesel injector fouling bench test methodology

    NASA Astrophysics Data System (ADS)

    Stavinoha, Leon L.; Yost, Douglas M.; Lestz, Sidney J.

    1992-06-01

    Compared to conventional compression ignition (CI) engine operation with the fuel being delivered at approximately 149 C (300 F), adiabatic engine operation potentially may deliver the fuel at temperatures as high as 260 C (500 F). Hypergolic CI engine combustion systems now in theoretical design stages will deliver fuel at temperatures approaching 427 to 538 C (800 to 1000 F). The ability of a fuel to resist formation of deposits on internal injector system surfaces is a form of thermal oxidative stability for which test methodology will be required. The injector Fouling Bench Test (IFBT) methodology evaluated in this report will assist in defining fuel contribution to injector fouling and control of fuel thermal stability in procurement specifications. The major observations from this project are discussed. Forty-hour cyclic IFB tests employing both Bosch APE 113 and Detroit Diesel (DD) N70 injectors are viable procedures for evaluating fuel effects on injector fouling. Cyclic operation appears to be superior to steady-state operation for both type injectors. Eighty-hour cyclic tests are more discriminating than 40-hour cyclic tests using the Bosch APE 113 injectors. JFTOT tests of fuels provide directional information on thermal stability-related deposits and filter plugging but show limited good correlation with IFBT DD N70 ratings, and none with IFBT Bosch APE 113 injector ratings. Deposition on injector pintles was more realistically rated by optical microscopy and Scanning Electron Microscopy (SEM) than conventional visual and bench rating methods. High-sulfur fuel readily caused sticking of Detroit Diesel injectors. Injector sticking is an important mode of injector fouling.

  19. Innovative technique for in situ treatment of contaminated surface waters and submerged sediments by enhanced aerobic bioremediation

    SciTech Connect

    Di Turo, J.W.; Hurtak, J.J.

    1998-07-01

    The delicate balance of the Earth's fragile aquatic ecosystems is being disturbed at an alarming rate. Industrial, agricultural, and residential effluents enter waterways polluting these systems with a wide range of organic, metallic and inorganic compounds. Current methods of remediating aquatic sediments contaminated with organic pollutants, such as agricultural and residential sewage, fuel oil, PCB's and other industrial chemicals, involve dredging up the sediment, treating it elsewhere, then returning it to the removal site. Surface water treatments, such as the treatment of lakes for alga blooms, require the addition of poisonous chemical herbicides and pesticides. The authors are presently conducting bench-scale and pilot studies to determine the effectiveness of their unique patented method of tablets engineered to enhance the water quality at the water-sediment interface with oxygen and nutrients. This method promotes the growth of aerobic microorganisms that break down the contaminants to non-toxic byproducts. The authors plan to present the results of testing in two areas: alternative to herbicides in lake treatments of algae blooms and treatment of hog manure sludge pits to reduce odor and reduce the amount of waste. The method is designed to provide an environment in which the organisms and the waste are maintained in intimate contact in the presence of oxygen. Greater efficiency of treatment and use for a wide variety of agricultural wastes can be expected when the types of microorganisms responsible for treatment are known and their optimum environmental conditions have been established. With this new methodology, a reduction in the production of odorous and potentially atmospherically damaging gases can be achieved by the use of aerobic rather anaerobic treatments.

  20. Optical bench assembly for the near-infrared camera

    NASA Astrophysics Data System (ADS)

    Nordt, Alison; Edinger, Derek

    2005-08-01

    The Near Infrared Camera is the primary imaging instrument on the James Webb Space Telescope. This instrument operates in the wavelength range of 0.6 to 5 microns and at a temperature of 35K. Two mirror-image optical paths or modules are utilized to provide two adjacent fields of view for science observations and redundancy for the purpose of wavefront sensing. All optical components are supported and aligned by an Optical Bench Assembly consisting of two benches mounted back to back. Each optical bench is a closed back Beryllium structure optimized for mass and stiffness. The closed back structure is achieved by bonding two machined parts together at the midplane of the structure. Each bench half is an open back structure consisting of a facesheet with machined ribs optimized to provide stiffness and to support along primary load paths. The two benches are integrated with optical components separately and are subsequently joined by bolts and pins to form the Optical Bench Assembly. The assembly is then mounted to interface struts, which are used to mount the instrument within the Integrated Science Instrument Module for integration into the JWST observatory. The design of the Optical Bench Assembly is describing including trade studies and analysis results.

  1. Associations between Attitudes toward Physical Education and Aerobic Capacity in Hungarian High School Students

    ERIC Educational Resources Information Center

    Kaj, Mónika; Saint-Maurice, Pedro F.; Karsai, István; Vass, Zoltán; Csányi, Tamás; Boronyai, Zoltán; Révész, László

    2015-01-01

    Purpose: The purpose of this study was to create a physical education (PE) attitude scale and examine how it is associated with aerobic capacity (AC). Method: Participants (n = 961, aged 15-20 years) were randomly selected from 26 Hungarian high schools. AC was estimated from performance on the Progressive Aerobic Cardiovascular and Endurance Run…

  2. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.

    PubMed

    Powell, C L; Nogaro, G; Agrawal, A

    2011-06-01

    The degradation potential of trichloroethene by the aerobic methane- and ammonia-oxidizing microorganisms naturally associated with wetland plant (Carex comosa) roots was examined in this study. In bench-scale microcosm experiments with washed (soil free) Carex comosa roots, the activity of root-associated methane- and ammonia-oxidizing microorganisms, which were naturally present on the root surface and/or embedded within the roots, was investigated. Significant methane and ammonia oxidation were observed reproducibly in batch reactors with washed roots incubated in growth media, where methane oxidation developed faster (2 weeks) compared to ammonia oxidation (4 weeks) in live microcosms. After enrichment, the methane oxidizers demonstrated their ability to degrade 150 μg l(-1) TCE effectively at 1.9 mg l(-1) of aqueous CH(4). In contrast, ammonia oxidizers showed a rapid and complete inhibition of ammonia oxidation with 150 μg l(-1) TCE at 20 mg l(-1) of NH(4)(+)-N, which may be attributed to greater sensitivity of ammonia oxidizers to TCE or its degradation product. No such inhibitory effect of TCE degradation was detected on methane oxidation at the above experimental conditions. The results presented here suggest that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments.

  3. Precision-Deployable, Stable, Optical Benches for Cost-Effective Space Telescopes

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Pellegrino, S.; Dailey, D.; Marks, G.; Bookbinder, J.

    2012-05-01

    To explore the universe at the arcsecond resolution of Chandra, while increasing collecting area by at least an order of magnitude and maintaining affordability, we will need to make creative use of existing and new technology. Precision-deployable, stable, optical benches that fit inside smaller, lower-cost launch vehicles are a prime example of a technology well within current reach that will yield breakthrough benefits for future astrophysics missions. Deployable optical benches for astrophysical applications have a reputation for complexity; however, we are offering an approach, based on techniques used in space for decades, that reduces overall mission cost. Currently, deployable structures are implemented on JAXA’s Astro-H and NASA’s NuStar high-energy astrophysics missions. We believe it is now time to evolve these structures into precision, stable optical benches that are stiff, lightweight, and suitable for space telescopes with focal lengths of 20 meters or more. Such optical benches are required for advanced observatory class missions and can be scaled to Explorer and medium-class missions. To this end, we have formed a partnership between Space Structures Laboratory (SSL) at the California Institute of Technology, Northrop Grumman Aerospace Systems (NGAS), Northrop Grumman Astro Aerospace (Astro), and Smithsonian Astrophysical Observatory (SAO). Combining the expertise and tools from academia and industry is the most effective approach to take this concept to Technology Readiness Level (TRL) 6. We plan to perform small sub-scale demonstrations, functional tests, and analytical modeling in the academic environment. Using results from SSL, larger prototypes will be developed at facilities at NGAS in Redondo Beach and Carpinteria, CA.

  4. WIYN bench upgrade: a revitalized spectrograph

    NASA Astrophysics Data System (ADS)

    Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.

    2008-07-01

    We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.

  5. Detail of a storage and work bench on the north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of a storage and work bench on the north wall at the east end of Motor Room - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  6. 7. INTERIOR VIEW, PATTERN MAKING WORK BENCH AREA WEST WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR VIEW, PATTERN MAKING WORK BENCH AREA WEST WALL LOOKING WEST LATHE ON LEFT DELTA BAND SAW LEFT, DELTA 6' JOINTS AND DELTA TABLE SAW ON RIGHT. - Knight Foundry, 13 Eureka Street, Sutter Creek, Amador County, CA

  7. Room 106, A laboratory with longitudinal arrangement of benches. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 106, A laboratory with longitudinal arrangement of benches. View to west. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  8. Special Ceremony Planned to Unveil Innovative Air Quality Monitoring Bench

    EPA Pesticide Factsheets

    DALLAS - (Nov. 5, 2015) The Oklahoma Department of Environmental Quality (DEQ), the Myriad Botanical Gardens and the U.S. Environmental Protection Agency (EPA) will unveil an innovative air quality monitoring park bench during a special ceremony at

  9. Room 113, chemistry laboratory with benches perpendicular to the long ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 113, chemistry laboratory with benches perpendicular to the long axis of the room. A view to the southwest. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  10. 13. Interior view of individual work benches along west wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Interior view of individual work benches along west wall of north 1922 section of Building 59. Camera pointed NW. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  11. Aerobic Capacity in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Verschuren, Olaf; Takken, Tim

    2010-01-01

    This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…

  12. 13. SOUTHEAST TO SUCKER ROD WORK BENCH AND WOODEN SUCKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SOUTHEAST TO SUCKER ROD WORK BENCH AND WOODEN SUCKER ROD STORAGE RACKS ALONG EAST WALL OF FACTORY INTERIOR. AT THIS BENCH WORKERS RIVETED THREADED WROUGHT IRON CONNECTORS TO THE ENDS OF 20' LONG WOODEN SUCKER RODS (THE RODS WHICH EXTEND DOWNWARD IN THE WELL FROM THE GROUND SURFACE TO PISTON DISPLACEMENT PUMPS WHICH ACTUALLY ELEVATE WATER TO THE SURFACE). ROZNOR HEATER AT THE FAR RIGHT WAS ADDED CIRCA 1960. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  13. Test bench development for the radiation Hard GBTX ASIC

    NASA Astrophysics Data System (ADS)

    Leitao, P.; Feger, S.; Porret, D.; Baron, S.; Wyllie, K.; Barros Marin, M.; Figueiredo, D.; Francisco, R.; Da Silva, J. C.; Grassi, T.; Moreira, P.

    2015-01-01

    This paper presents the development of the GBTX radiation hard ASIC test bench. Developed for the LHC accelerator upgrade programs, the GBTX implements a bidirectional 4.8 Gb/s link between the radiation hard on-detector custom electronics and the off-detector systems. The test bench was used for functional testing of the GBTX and to evaluate its performance in a radiation environment, by conducting Total Ionizing Dose and Single-Event Upsets tests campaigns.

  14. A comparison of force curve profiles between the bench press and ballistic bench throws.

    PubMed

    Clark, Ross A; Bryant, Adam L; Humphries, Brendan

    2008-11-01

    The purpose of this study was to compare the peak force and force curve characteristics during a traditional bench press (BP) and a ballistic bench throw (BT). Eight (age = 21.0 +/- 2.3 years, height = 182.3 +/- 7.4 cm, body mass = 85.9 +/- 5.5 kg) semi-professional rugby league players with resistance and power training experience performed both BP and BT exercises at loads of 55 and 80% of their predicted one-repetition maximum. The force curves for each test were then divided into three intensity levels, set at low to moderate (0-75%), high (75-95%), and near-maximal force (95-100%). These values were obtained by determining the percentage of the range of motion (ROM) in which the force produced during each test was within these thresholds. The BT exercise produced significantly (p < 0.05) higher peak force than BP under both loading conditions. A significantly greater portion of the ROM during the 80% BT was at a high intensity in comparison with the BP. No significant differences were found between force intensity conditions at 55% loads. It can be concluded that performing the BT exercise results in a greater peak force output when compared with the traditional BP movement under both resistance training and maximal power loading conditions. Furthermore, performing the BT exercise with heavy loads results in a more efficient training method for maintaining high force levels throughout the ROM.

  15. Velocity- and power-load relationships of the bench pull vs. bench press exercises.

    PubMed

    Sánchez-Medina, L; González-Badillo, J J; Pérez, C E; Pallarés, J G

    2014-03-01

    This study compared the velocity- and power-load relationships of the antagonistic upper-body exercises of prone bench pull (PBP) and bench press (BP). 75 resistance-trained athletes performed a progressive loading test in each exercise up to the one-repetition maximum (1RM) in random order. Velocity and power output across the 30-100% 1RM were significantly higher for PBP, whereas 1RM strength was greater for BP. A very close relationship was observed between relative load and mean propulsive velocity for both BP (R2=0.97) and PBP (R2=0.94) which enables us to estimate %1RM from velocity using the obtained prediction equations. Important differences in the load that maximizes power output (Pmax) and the power profiles of both exercises were found according to the outcome variable used: mean (MP), peak (PP) or mean propulsive power (MPP). When MP was considered, the Pmax load was higher (56% BP, 70% PBP) than when PP (37% BP, 41% PBP) or MPP (37% BP, 46% PBP) were used. For each variable there was a broad range of loads at which power output was not significantly different. The differing velocity- and power-load relationships between PBP and BP seem attributable to the distinct muscle architecture and moment arm levers involved in these exercises.

  16. Peritoneal dialysis: from bench to bedside

    PubMed Central

    Krediet, Raymond T.

    2013-01-01

    Peritoneal dialysis was first employed in patients with acute renal failure in the 1940s and since the 1960s for those with end-stage renal disease. Its popularity increased enormously after the introduction of continuous ambulatory peritoneal dialysis in the end of 1970s. This stimulated both clinical and basic research. In an ideal situation, this should lead to cross-fertilization between the two. The present review describes two examples of interactions: one where it worked out very well and another where basic science missed the link with clinical findings. Those on fluid transport are examples of how old physiological findings on absorption of saline and glucose solutions were adopted in peritoneal dialysis by the use of glucose as an osmotic agent. The mechanism behind this in patients was first solved mathematically by the assumption of ultrasmall intracellular pores allowing water transport only. At the same time, basic science discovered the water channel aquaporin-1 (AQP-1), and a few years later, studies in transgenic mice confirmed that AQP-1 was the ultrasmall pore. In clinical medicine, this led to its assessment in patients and the notion of its impairment. Drugs for treatment have been developed. Research on biocompatibility is not a success story. Basic science has focussed on dialysis solutions with a low pH and lactate, and effects of glucose degradation products, although the first is irrelevant in patients and effects of continuous exposure to high glucose concentrations were largely neglected. Industry believed the bench more than the bedside, resulting in ‘biocompatible’ dialysis solutions. These solutions have some beneficial effects, but are evidently not the final answer. PMID:26120456

  17. A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2011-09-01

    The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.

  18. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  19. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  20. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  1. Theoretical Rationale of Heating Block for Testing Bench of Aerospace Crafts Thermal Protection Elements

    NASA Astrophysics Data System (ADS)

    Petrova, Anna A.; Reznik, Sergey V.

    2016-02-01

    The theoretical rationale for the structural layout of a testing bench with zirconium dioxide heating elements on the basis of modelling radiative-conductive heat transfer are presented. The numerical simulation of radiative-conductive heat transfer for the two-dimensional scaled model of the testing segment with the finite-element analysis software package Ansys 15.0 are performed. The simulation results showed that for the selected layout of the heaters the temperature non-uniformity along the length of the sample over time will not exceed 3 % even at a temperature of 2000 K.

  2. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  3. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  4. Bioremediation trial on aged PCB-polluted soils--a bench study in Iceland.

    PubMed

    Lehtinen, Taru; Mikkonen, Anu; Sigfusson, Bergur; Ólafsdóttir, Kristín; Ragnarsdóttir, Kristín Vala; Guicharnaud, Rannveig

    2014-02-01

    Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.

  5. In situ aerobic cometabolism of chlorinated solvents: a review.

    PubMed

    Frascari, Dario; Zanaroli, Giulio; Danko, Anthony S

    2015-01-01

    The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.

  6. Model order reduction applied to a hot-bench simulation of an aeroelastic wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Bacon, Barton J.

    1991-01-01

    Simulations of an aeroelastically scaled wind-tunnel model were developed for hot-bench testing of a digital controller. The digital controller provided active flutter-suppression, rolling-maneuver-load alleviation, and plant estimation. To achieve an acceptable time scale for the hot-bench application, the mathematical model of the wind-tunnel model was reduced from 220 states to approximately 130 states while assuring that the required accuracy was preserved for all combinations of 10 inputs and 56 outputs. The reduction was achieved by focussing on a linear, aeroelastic submodel of the full mathematical model and by applying a method based on the internally balanced realization of a dynamic system. The error-bound properties of the internally balanced realization significantly contribute to its utility in the model reduction process. The reduction method and the results achieved are described.

  7. [Aerobic capacity and quality of life in school children from 8 to 12].

    PubMed

    Gálvez Casas, Arancha; Rodríguez García, Pedro L; García-Cantó, Eliseo; Rosa Guillamón, Andrés; Pérez-Soto, Juan J; Tarraga Marcos, Loreto; Tarraga Lopez, Pedro

    2015-01-01

    Aerobic capacity is a powerful physiological indicator of the overall health status. The objective of this study was to analyse the relationship between aerobic capacity and quality of life in a sample of 298 (159 girls) school children aged 8-12 years. Aerobic capacity was tested using the Course-Navette test. Quality of life was assessed using the KIDSCREEN-10 Index scale. Males showed higher performance in the Course-Navette test and highest values of VO2max (P<.001 for both). ANOVA statistical analysis showed that the quality of life was significantly higher in school children with increased level of aerobic capacity compared to those with a low level (P=.001). Children with high aerobic capacity showed higher quality of life scores in relation to their peers with low scores (P<.001). As for the females, significant differences were found among those with high aerobic capacity level and their peers low levels (P<.031). The results of this study suggest that school children with higher level of aerobic capacity show better results in the quality of life index. Long-term intervention studies are needed to verify if an aerobic capacity development programme may upgrade the quality of life of children and adolescents.

  8. Influence of the "Slingshot" bench press training aid on bench press kinematics and neuromuscular activity in competitive powerlifters.

    PubMed

    Dugdale, James H; Hunter, Angus; Di Virgilio, Thomas; Macgregor, Lewis J; Hamilton, D Lee

    2017-02-13

    This study examined the acute effects of the 'Slingshot' on bench-press performance, prime-mover surface electromyographic (sEMG) amplitude, and barbell velocity during maximal and submaximal bench-pressing in competitive male powerlifters. Fifteen male powerlifters (mean ± SD age: 27.05 ± 5.94 years; mass: 94.15kg; 1RM bench-press: 139.7 ± 16.79kg) participated in the study. Bench-press strength, average barbell velocity, and sEMG amplitude of the prime mover muscles (triceps brachii, pectoralis major and anterior deltoid) were measured during two conditions; 'Raw' (without use of any assistance) and 'Slingshot' [using the 'Slingshot' to perform both the weight achieved during 'Raw' 1RM testing (Raw max/SS), and absolute 1RM using the 'Slingshot' (SS)]. The results showed that the 'Slingshot' significantly increased bench press 1RM performance by a mean ± SD of 20.67kg ± 3.4kg. Barbell velocity and stick point analysis indicate that this improvement is likely driven by an increase in peak and pre-stick barbell velocity as triceps RMS was lower throughout all rep max phases with the 'Slingshot'. The 'Slingshot' also caused reductions in RMS, specifically of the triceps at all rep ranges but barbell velocity was better maintained in the last reps of all sets. These data indicate that the 'Slingshot' specifically de-loaded the triceps muscle throughout all rep ranges and provide assistance to maintaining barbell velocity under fatigue during later repetitions of multiple-repetition sets. The 'Slingshot' training aid could therefore be used in de-load phases of bench press training or as an over-reaching and velocity training aid.

  9. Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor using pure oxygen to supply the aerobic conditions.

    PubMed

    Rodríguez, Francisco A; Poyatos, José M; Reboleiro-Rivas, Patricia; Osorio, Francisco; González-López, Jesús; Hontoria, Ernesto

    2011-05-01

    The performance of a wastewater bench-scale ultrafiltration membrane bioreactor (MBR) treatment plant using pure oxygen to supply the aerobic conditions for 95 days was studied. The results showed the capacity of the MBR systems to remove organic material under a hydraulic retention time of 12h and a sludge retention time of 39.91 days. Aeration represents its major power input; this is why the alpha-factor of the aeration and kinetic parameters (design parameters) were determined when the mixed liquid suspended solids (MLSS) was increased from 3420 to 12,600 mg/l in order to understand the system. An alpha-factor in the range 0.462-0.022 and the kinetic parameters measured with the respirometric method (K(M) of 73.954-3.647 mg/l, k(d) of 0.0142-0.104 day(-1), k(H) of 0.1266-0.655 day(-1), and the yield mean coefficient of 0.941) were obtained. Our study suggested significant changes in the behaviour of the biological system when the concentration of MLSS was increased.

  10. Catalytic Two-Stage Liquefaction (CTSL) process bench studies with bituminous coal. Final report, [October 1, 1988--December 31, 1992

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported herein are the details and results of Laboratory and Bench-Scale experiments using bituminous coal concluded at Hydrocarbon Research, Inc., under DOE contract during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with the application of coal cleaning methods and solids separation methods to the Catalytic Two-Stage Liquefaction (CTSL) Process. Additionally a predispersed catalyst was evaluated in a thermal/catalytic configuration, and an alternative nickel molybdenum catalyst was evaluated for the CTSL process. Three coals were evaluated in this program: Bituminous Illinois No. 6 Burning Star and Sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The tests involving the Illinois coal are reported herein, and the tests involving the Wyoming and New Mexico coals are described in Topical Report No. 1. On the laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects are reported in Topical Report No. 3. Other microautoclave tests, such as tests on rejuvenated catalyst, coker liquids, and cleaned coals, are described in the Bench Run sections to which they refer. The microautoclave tests conducted for modelling the CTSL process are described in the CTSL Modelling section of Topical Report No. 3 under this contract.

  11. Effects of a single bout of lower-body aerobic exercise on muscle activation and performance during subsequent lower- and upper-body resistance exercise workouts.

    PubMed

    Tan, Jeremy G; Coburn, Jared W; Brown, Lee E; Judelson, Daniel A

    2014-05-01

    A single bout of lower-body aerobic exercise may negatively affect a subsequent lower-body resistance exercise workout. However, less is known regarding the effects of a lower-body aerobic workout on muscle activation and performance during a subsequent upper-body resistance exercise workout. Therefore, the purpose of this study was to compare muscle activation and performance during lower- and upper-body resistance exercise workouts after a single bout of lower-body aerobic exercise on an elliptical machine. Fourteen men (mean age = 24.1 ± 2.3 years, height = 180.8 ± 6.9 cm, body mass = 91.9 ± 16.4 kg) completed 4 trials in random order. Two trials consisted of 30 minutes on the elliptical machine, using the lower body only, at 70% of age-predicted maximum heart rate before either a back squat or bench press workout, consisting of 3 sets to failure performed at 75% 1 repetition maximum. The other 2 trials consisted of only the back squat or bench press resistance workouts. To quantify muscle activation, bipolar surface electromyography electrodes were placed on the rectus femoris and vastus lateralis or pectoralis major. Acute lower-body aerobic exercise on an elliptical machine significantly reduced the number of repetitions completed for the back squat but not the bench press exercise. There was no significant difference in muscle activation between the elliptical and no elliptical conditions. However, for both exercises and conditions, muscle activation increased significantly between the first and final repetitions for the first 2 sets but not for the third set. These results suggest that to optimize the quality of a lower-body resistance-training workout, the workout should not be preceded by lower-body aerobic exercise.

  12. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  13. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  14. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  15. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  16. GPIIb/IIIa inhibitors: from bench to bedside and back to bench again.

    PubMed

    Armstrong, Paul C; Peter, Karlheinz

    2012-05-01

    From the discovery of the platelet glycoprotein (GP) IIb/IIIa and identification of its central role in haemostasis, the integrin GPIIb/IIIa (αIIbβ3, CD41/CD61) was destined to be an anti-thrombotic target. The subsequent successful development of intravenous ligand-mimetic inhibitors occurred during a time of limited understanding of integrin physiology. Although efficient inhibitors of ligand binding, they also mimic ligand function. In the case of GPIIb/IIIa inhibitors, despite strongly inhibiting platelet aggregation, paradoxical fibrinogen binding and platelet activation can occur. The quick progression to development of small-molecule orally available inhibitors meant that this approach inherited many potential flaws, which together with a short half-life resulted in an increase in mortality and a halt to the numerous pharmaceutical development programs. Limited clinical benefits, together with the success of other anti-thrombotic drugs, in particular P2Y12 ADP receptor blockers, have also led to a restrictive use of intravenous GPIIb/IIIa inhibitors. However, with a greater understanding of this key platelet-specific integrin, GPIIb/IIIa remains a potentially attractive target and future drug developments will be better informed by the lessons learnt from taking the current inhibitors back to the bench. This overview will review the physiology behind the inherent problems of a ligand-based integrin inhibitor design and discuss novel promising approaches for GPIIb/IIIa inhibition.

  17. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  18. 3. RUSTIC BENCH AT THE LADDER CREEK GARDENS NEAR GORGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. RUSTIC BENCH AT THE LADDER CREEK GARDENS NEAR GORGE POWERHOUSE AT NEWHALEM. J.D. ROSS HAD THE GROUNDS LANDSCAPED AND PLANTED WITH EXOTIC FLOWERS AND VEGETATION DURING THE 1930S AS AN ADDITIONAL TOURIST ATTRACTION, 1989. - Skagit Power Development, Skagit River & Newhalem Creek Hydroelectric Project, On Skagit River, Newhalem, Whatcom County, WA

  19. 17. Interior view of courtroom looking towards judge's bench; showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Interior view of courtroom looking towards judge's bench; showing built in linear seating on both ends of room, clerical desk and equipment, through wall air conditioning units, exterior windows and door; north end of west wing on top floor; view to northwest. - Ellsworth Air Force Base, Group Administration & Secure Storage Building, 2372 Westover Avenue, Blackhawk, Meade County, SD

  20. Optimising Microbial Growth with a Bench-Top Bioreactor

    ERIC Educational Resources Information Center

    Baker, A. M. R.; Borin, S. L.; Chooi, K. P.; Huang, S. S.; Newgas, A. J. S.; Sodagar, D.; Ziegler, C. A.; Chan, G. H. T.; Walsh, K. A. P.

    2006-01-01

    The effects of impeller size, agitation and aeration on the rate of yeast growth were investigated using bench-top bioreactors. This exercise, carried out over a six-month period, served as an effective demonstration of the importance of different operating parameters on cell growth and provided a means of determining the optimisation conditions…

  1. Building Benches and Learning Math Standards on Zia Pueblo

    ERIC Educational Resources Information Center

    Rodriguez, Anthony M.

    2009-01-01

    In this article, the author talks about a hands-on, community-supported project that he initiated with a group of middle school students on Zia Pueblo, in which students used measurement and numeracy skills to build benches for the school grounds. He talks about the theoretical framework of this project and the lessons he learned from this project.

  2. 33. BENCH CORE STATION, GREY IRON FOUNDRY CORE ROOM WHERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BENCH CORE STATION, GREY IRON FOUNDRY CORE ROOM WHERE CORE MOLDS WERE HAND FILLED AND OFTEN PNEUMATICALLY COMPRESSED WITH A HAND-HELD RAMMER BEFORE THEY WERE BAKED. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  3. Orbit attitude processor. STS-1 bench program verification test plan

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1980-01-01

    A plan for the static verification of the STS-1 ATT PROC ORBIT software requirements is presented. The orbit version of the SAPIENS bench program is used to generate the verification data. A brief discussion of the simulation software and flight software modules is presented along with a description of the test cases.

  4. Specificity of arm training on aerobic power during swimming and running.

    PubMed

    Gergley, T J; McArdle, W D; DeJesus, P; Toner, M M; Jacobowitz, S; Spina, R J

    1984-08-01

    The specificity of aerobic training for upper-body exercise requiring differing amounts of muscle mass was evaluated in 25 college-aged male recreational swimmers who were randomly assigned to either a non-training control group (N = 9), a 10-wk swim(S)-training group (N = 9), or a group that trained with a standard swim-bench pulley system (SB; N = 7). For all subjects prior to training, tethered-swimming peak VO2 averaged 19% below treadmill values (P less than 0.01), while SB-ergometry peak VO2 was 50% and 39% below running and swimming values, respectively (P less than 0.01). Significant (P less than 0.01) increases of peak VO2 in tethered swimming (11%) and SB (21%) were observed for the SB-trained group, while the S-trained group improved (P less than 0.01) 18% and 19% on the tethered swimming and SB tests, respectively. No changes were observed during treadmill running, and the control subjects remained unchanged on all measures. Comparisons between training groups indicated that although both groups improved to a similar extent when measured on the swim bench, the 0.53 l X min-1 improvement in tethered-swimming peak VO2 for the S-trained group was greater (P less than 0.05) than the 0.32 l X min-1 increase noted for the SB-trained group. The comparisons between SB and S exercise vs treadmill exercise support the specificity of aerobic improvement with training and suggest that local adaptations contribute significantly to improvements in peak VO2. Furthermore, the present data indicate that SB exercise activates a considerable portion of the musculature involved in swimming, and that aerobic improvements with SB training are directly transferred to swimming.

  5. Effects of aerobic training, resistance training, or both on cardiorespiratory and musculoskeletal fitness in adolescents with obesity: the HEARTY trial.

    PubMed

    Alberga, Angela S; Prud'homme, Denis; Sigal, Ronald J; Goldfield, Gary S; Hadjiyannakis, Stasia; Phillips, Penny; Malcolm, Janine; Ma, Jinhui; Doucette, Steve; Gougeon, Rejeanne; Wells, George A; Kenny, Glen P

    2016-03-01

    The purpose of this study was to examine the effects of aerobic, resistance, and combined exercise training on cardiorespiratory and musculoskeletal fitness in postpubertal adolescents with obesity. After a 4-week supervised moderate-intensity exercise run-in, 304 adolescents aged 14-18 years with body mass index ≥85th percentile were randomized to 4 groups for 22 weeks of aerobic training, resistance training, combined training, or a nonexercising control. All participants received dietary counselling with a maximum daily energy deficit of 250 kcal. Cardiorespiratory fitness (peak oxygen consumption) was measured by indirect calorimetry using a graded treadmill exercise test. Musculoskeletal fitness was measured using the 2003 Canadian Physical Activity Fitness and Lifestyle Appraisal tests (hand grip, push-ups, partial curl-ups, sit and reach, and vertical jump). Muscular strength was assessed using an 8-repetition maximum test on the bench press, seated row, and leg press machines. A greater increase in peak oxygen consumption in the aerobic exercise group (30.6 ± 0.6 to 33.4 ± 0.7 mLO2/kg/min) was measured relative to the control group (30.6 ± 0.5 to 30.9 ± 0.7 mLO2/kg/min) (p = 0.002). Similarly, the number of partial curl-ups increased in the aerobic group (19 ± 1 to 23 ± 1) while no differences were measured in the control group (19 ± 1 to 20 ± 1) (p = 0.015). Increases in muscular strength and number of push-ups were greatest in the resistance group versus the control and combined groups versus the aerobic group (p < 0.05). In conclusion, aerobic training had the strongest effect on cardiorespiratory fitness, while resistance and combined training improved both muscular strength and endurance more than control and aerobic training alone, respectively, in adolescents with obesity.

  6. 40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aging a catalyst-oxygen-sensor system on an aging bench which follows the standard bench cycle (SBC... gas for the catalyst. 3. The SBC is a 60-second cycle which is repeated as necessary on the aging bench to conduct aging for the required period of time. The SBC is defined based on the...

  7. 41 CFR 109-27.5005 - Shop, bench, cupboard or site stock.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Shop, bench, cupboard or site stock. 109-27.5005 Section 109-27.5005 Public Contracts and Property Management Federal Property....5005 Shop, bench, cupboard or site stock. Shop, bench, cupboard or site stocks are an accumulation...

  8. Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial

    PubMed Central

    Van Sciver, Angela; Mahnken, Jonathan D.; Honea, Robyn A.; Brooks, William M.; Billinger, Sandra A.; Swerdlow, Russell H.; Burns, Jeffrey M.

    2017-01-01

    Background There is increasing interest in the role of physical exercise as a therapeutic strategy for individuals with Alzheimer’s disease (AD). We assessed the effect of 26 weeks (6 months) of a supervised aerobic exercise program on memory, executive function, functional ability and depression in early AD. Methods and findings This study was a 26-week randomized controlled trial comparing the effects of 150 minutes per week of aerobic exercise vs. non-aerobic stretching and toning control intervention in individuals with early AD. A total of 76 well-characterized older adults with probable AD (mean age 72.9 [7.7]) were enrolled and 68 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. Neuropsychological tests and surveys were conducted at baseline,13, and 26 weeks to assess memory and executive function composite scores, functional ability (Disability Assessment for Dementia), and depressive symptoms (Cornell Scale for Depression in Dementia). Cardiorespiratory fitness testing and brain MRI was performed at baseline and 26 weeks. Aerobic exercise was associated with a modest gain in functional ability (Disability Assessment for Dementia) compared to individuals in the ST group (X2 = 8.2, p = 0.02). There was no clear effect of intervention on other primary outcome measures of Memory, Executive Function, or depressive symptoms. However, secondary analyses revealed that change in cardiorespiratory fitness was positively correlated with change in memory performance and bilateral hippocampal volume. Conclusions Aerobic exercise in early AD is associated with benefits in functional ability. Exercise-related gains in cardiorespiratory fitness were associated with improved memory performance and reduced hippocampal atrophy, suggesting cardiorespiratory fitness gains may be important in driving brain benefits. Trial registration ClinicalTrials.gov NCT01128361 PMID:28187125

  9. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  10. Scales

    ScienceCinema

    Murray Gibson

    2016-07-12

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  11. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  12. Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.

    PubMed

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-07-01

    A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed.

  13. Effects of dominant somatotype on aerobic capacity trainability

    PubMed Central

    Chaouachi, M; Chaouachi, A; Chamari, K; Chtara, M; Feki, Y; Amri, M; Trudeau, F

    2005-01-01

    Purpose: This study examined the association between dominant somatotype and the effect on aerobic capacity variables of individualised aerobic interval training. Methods: Forty one white North African subjects (age 21.4±1.3 years; V·o2max = 52.8±5.7 ml kg–1 min–1) performed three exercise tests 1 week apart (i) an incremental test on a cycle ergometer to determine V·o2max and V·o2 at the second ventilatory threshold (VT2); (ii) a VAM-EVAL track test to determine maximal aerobic speed (vV·o2max); and (iii) an exhaustive constant velocity test to determine time limit performed at 100% vV·o2max (tlim100). Subjects were divided into four somatometric groups: endomorphs-mesomorphs (Endo-meso; n = 9), mesomorphs (Meso; n = 11), mesomorphs-ectomorphs (Meso-ecto; n = 12), and ectomorphs (Ecto; n = 9). Subjects followed a 12 week training program (two sessions/week). Each endurance training session consisted of the maximal number of successive fractions for each subject. Each fraction consisted of one period of exercise at 100% of vV·o2max and one of active recovery at 60% of vV·o2max. The duration of each period was equal to half the individual tlim100 duration (153.6±39.7 s). After the training program, all subjects were re-evaluated for comparison with pre-test results. Results: Pre- and post-training data were grouped by dominant somatotype. Two way ANOVA revealed significant somatotype-aerobic training interaction effects (p<0.001) for improvements in vV·o2max, V·o2max expressed classically and according to allometric scaling, and V·o2 at VT2. There were significant differences among groups post-training: the Meso-ecto and the Meso groups showed the greatest improvements in aerobic capacity. Conclusion: The significant somatotype-aerobic training interaction suggests different trainability with intermittent and individualised aerobic training according to somatotype. PMID:16306506

  14. Thiomers--from bench to market.

    PubMed

    Bonengel, Sonja; Bernkop-Schnürch, Andreas

    2014-12-10

    Thiolated polymers or designated thiomers are obtained by immobilization of sulhydryl bearing ligands on the polymeric backbone of well-established polymers such as poly(acrylates) or chitosans. This functionalization leads to significantly improved mucoadhesive properties compared to the corresponding unmodified polymers, as disulfide bonds between thiol groups of thiomers and cysteine-rich glycoproteins of the mucus gel layer are formed. Furthermore, enzyme- and efflux-pump inhibiting as well as improved permeation-enhancing properties are advantages of thiolization. By the covalent attachment of mercaptonicotinamide substructures via disulfide bonds to thiolated polymers these properties are even substantially further improved and stability towards oxidation even in aqueous media can be provided. Meanwhile, more than 50 research groups worldwide are working on thiolated polymers. For certain thiomers the scale up process for industrial production has already been done and GMP material is available. Furthermore, safety of thiolated poly(acrylic acid), thiolated chitosan and thiolated hyaluronic acid could be demonstrated via orientating studies in human volunteers and via various clinical trials. The first product (Lacrimera® eye drops, Croma-Pharma) containing a chitosan-N-acetylcysteine conjugate for treatment of dry eye syndrome will enter the European market this year. It is the only product providing a sustained protective effect on the ocular surface due to its comparatively much more prolonged residence time worldwide. Various further products utilizing, for instance, thiolated hyaluronic acid in ocular surgery are in the pipeline.

  15. Vapor cell based sodium laser guide star mechanism study lab-bench

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Li, Lihang; Luo, Ruiyao; Li, Lei; Ning, Yu; Xi, Fengjie; Xu, Xiaojun

    2016-07-01

    Sodium laser guide star (LGS) is the key for the success of modern adaptive optics (AO) supported large ground based telescopes, however, for many field applications, Sodium LGS's brightness is still a limited factor. Large amounts of theoretical efforts have been paid to optimize Sodium LGS exciting parameters, that is, to fully discover potential of harsh environment surrounding mesospheric extreme thin sodium atoms under resonant excitation, whether quantum or Monte Carlo based. But till to now, only limited proposals are demonstrated with on-sky test due to the high cost and engineering complexities. To bridge the gap between theoretical modeling and on-sky test, we built a magnetic field controllable sodium cell based lab-bench, which includes a small scale sum-frequency single mode 589nm laser, with added amplitude, polarization, and phase modulators. We could perform quantitative resonant fluorescence study under single, multi-frequency, side-band optical re-pumping exciting with different polarization, also we could perform optical field modulation to study Larmor precession which is considered as one of devils of Sodium LGS, and we have the ability to generate beams contain orbital angular moment. Our preliminary sodium cell based optical re-pumping experiments have shown excellent consistence with Bloch equation predicted results, other experimental results will also be presented in the report, and these results will give a direct support that sodium cell based lab-bench study could help a Sodium LGS scientists a lot before their on-sky test.

  16. Optimal design of a thermally stable composite optical bench

    NASA Technical Reports Server (NTRS)

    Gray, C. E., Jr.

    1985-01-01

    The Lidar Atmospheric Sensing Experiment will be performed aboard an ER-2 aircraft; the lidar system used will be mounted on a lightweight, thermally stable graphite/epoxy optical bench whose design is presently subjected to analytical study and experimental validation. Attention is given to analytical methods for the selection of such expected laminate properties as the thermal expansion coefficient, the apparent in-plane moduli, and ultimate strength. For a symmetric laminate in which one of the lamina angles remains variable, an optimal lamina angle is selected to produce a design laminate with a near-zero coefficient of thermal expansion. Finite elements are used to model the structural concept of the design, with a view to the optical bench's thermal structural response as well as the determination of the degree of success in meeting the experiment's alignment tolerances.

  17. [Soft-ridged bench terrace design in hilly loess region].

    PubMed

    Cao, Shixiong; Chen, Li; Gao, Wangsheng

    2005-08-01

    Reconfiguration of hillside field into terrace is regarded as one of the key techniques for water and soil conservation in mountainous regions. On slopes exceeding 30 degrees, the traditional techniques of terracing are difficult to apply as risers (i.e., backslopes), and if not reinforced, are so abrupt and easy to collapse under gravity alone, thus damaging the terrace. To improve the reconfiguration of hillside field into terrace, holistic techniques of soft-ridged bench terrace engineering, including revegetation, with trees and planting grasses on riser slopes, were tested between 1997 and 2001 in Xiabiangou watershed of Yan' an, Shaanxi Province. A "working with Nature" engineering approach, riser slopes of 45 degrees, similar to the pre-existing slope of 35 degrees, was employed to radically reduce gravity-erosion. Based on the concepts of biodiversity and the principles of landscape ecology, terrace benches, bunds, and risers were planted with trees, shrubs, forage grasses, and crops, serving to generate a diverse array of plants, a semi-forested area, and to stabilize terrace bunds. Soft-ridged bench terrace made it possible to significantly reduce hazards arising from gravity erosion, and reduce the costs of individual bench construction and maintenance by 24.9% and 55.5% of the costs under traditional techniques, respectively. Such a construction allowed an enrichment and concentration of nutrients in the soils of terrace bunds, providing an ideal environment for a range of plants to grow and develop. The terrace riser could be planted with drought-resistant plants ranging from forage grasses to trees, and this riser vegetation would turn the exposed bunds and risers existing under traditional techniques into plant-covered belts, great green ribbons decorating farmland and contributing to the enhancement of the landscape biology.

  18. NanoBench: An Individually Addressable Nanotube Array

    DTIC Science & Technology

    2006-03-25

    fabricate and install hardware to place NanoBench and cells in a vacuum system, and to acquire data/signals from the nanoprobes with an electron beam in a...picosecond temporal resolution (20GHz frequency response).11 9 Rutten, WLC, "Selective electrical interfaces with the nervous system". Ann Rev Biomed Eng., 4...vitro. Thereafter, we will perform cyclic voltammetry using e-beam charging and reading as described earlier. In addition, the CNT nanoelectrodes

  19. Liquid Metal Thermal Electric Converter bench test module

    SciTech Connect

    Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

    1988-04-01

    This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

  20. Validating induced seismicity forecast models—Induced Seismicity Test Bench

    NASA Astrophysics Data System (ADS)

    Király-Proag, Eszter; Zechar, J. Douglas; Gischig, Valentin; Wiemer, Stefan; Karvounis, Dimitrios; Doetsch, Joseph

    2016-08-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. In this study, we propose an Induced Seismicity Test Bench to test and rank such models; this test bench can be used for model development, model selection, and ensemble model building. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models: Shapiro and Smoothed Seismicity (SaSS) and Hydraulics and Seismics (HySei). These models incorporate a different mix of physics-based elements and stochastic representation of the induced sequences. Our results show that neither model is fully superior to the other. Generally, HySei forecasts the seismicity rate better after shut-in but is only mediocre at forecasting the spatial distribution. On the other hand, SaSS forecasts the spatial distribution better and gives better seismicity rate estimates before shut-in. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in.

  1. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks.

  2. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  3. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  4. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  5. Full-Scale and Bench-Scale Studies on the Removal of Strontium from Water (abstract)

    EPA Science Inventory

    Strontium (Sr) is a natural and commonly occurring alkaline earth metal which has an oxidation state of +2 under normal environmental conditions. Stable strontium is suspended in water and is dissolved after water runs through rocks and soil. It behaves very similar to calcium. G...

  6. Mechanical load and physiological responses of four different resistance training methods in bench press exercise.

    PubMed

    Buitrago, Sebastian; Wirtz, Nicolas; Yue, Zengyuan; Kleinöder, Heinz; Mester, Joachim

    2013-04-01

    The purpose of the study was to compare the mechanical impact and the corresponding physiological responses of 4 different and often practically applied resistance training methods (RTMs). Ten healthy male subjects (27.3 ± 3.2 years) experienced in resistance training performed 1 exhausting set of bench press exercise until exhaustion for each of the following RTMs: strength endurance (SE), fast force endurance (FFE), hypertrophy (HYP), and maximum strength (MAX). The RTMs were defined by different lifting masses and different temporal distributions of the contraction modes per repetition. Mean concentric power (P), total concentric work (W), and exercise time (EXTIME) were determined. Oxygen uptake (V[Combining Dot Above]O2) was measured during exercise and for 30 minutes postexercise. Mean V[Combining Dot Above]O2, volume of consumed O2, and excess postexercise oxygen consumption (EPOC) were calculated over 30 minutes of recovery. Maximum blood lactate concentration (LAmax) was also determined postexercise. The P was significantly higher (p < 0.01) for FFE and MAX compared with that for SE and HYP. The W was significantly higher for FFE than for all other RTMs (p < 0.01), and it was also lower for SE than for MAX (p < 0.05). EXTIME for SE was significantly higher (p < 0.01) than for all other RTMs, whereas EXTIME for MAX was significantly lower (p < 0.01) than for all other RTMs. Mean V[Combining Dot Above]O2 was significantly higher during FFE than during all other RTMs (p < 0.01). Consumed O2 was significantly higher (p < 0.05) during SE than for HYP and MAX, and it was also significantly higher for FFE and HYP compared with MAX (p < 0.05). The LAmax was significantly higher after FFE than after MAX (p < 0.05). There were no significant differences in EPOC between all RTMs. The results indicate that FFE and MAX are adequate to train muscular power despite the discrepancy in the external load. Because FFE performance achieves the highest amount in mechanical

  7. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions†

    PubMed Central

    Ye, Xuan; Diao, Tianning

    2010-01-01

    Summary The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O2 in N2) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis. PMID:20694169

  8. Specific Training Effects of Concurrent Aerobic and Strength Exercises Depend on Recovery Duration.

    PubMed

    Robineau, Julien; Babault, Nicolas; Piscione, Julien; Lacome, Mathieu; Bigard, André X

    2016-03-01

    This study aimed to determine whether the duration (0, 6, or 24 hours) of recovery between strength and aerobic sequences influences the responses to a concurrent training program. Fifty-eight amateur rugby players were randomly assigned to control (CONT), concurrent training (C-0h, C-6h, or C-24h), or strength training (STR) groups during a 7-week training period. Two sessions of each quality were proposed each week with strength always performed before aerobic training. Neuromuscular and aerobic measurements were performed before and immediately after the overall training period. Data were assessed for practical significance using magnitude-based inference. Gains in maximal strength for bench press and half squat were lower in C-0h compared with that in C-6h, C-24h, and STR. The maximal voluntary contraction (MVC) during isokinetic knee extension at 60°·s(-1) was likely higher for C-24h compared with C-0h. Changes in MVC at 180°·s(-1) was likely higher in C-24h and STR than in C-0h and C-6h. Training-induced gains in isometric MVC for C-0h, C-6h, C-24h, and STR were unclear. V[Combining Dot Above]O2peak increased in C-0h, C-6h, and C-24h. Training-induced changes in V[Combining Dot Above]O2peak were higher in C-24h than in C-0h and C-6h. Our study emphasized that the interference on strength development depends on the recovery delay between the 2 sequences. Daily training without a recovery period between sessions (C-0h) and, to a lesser extent, training twice a day (C-6h), is not optimal for neuromuscular and aerobic improvements. Fitness coaches should avoid scheduling 2 contradictory qualities, with less than 6-hour recovery between them to obtain full adaptive responses to concurrent training.

  9. Close-coupled Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies. Final report, [October 1, 1988--July 31, 1993

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Popper, G.A.; Stalzer, R.H.; Smith, T.O.

    1993-06-01

    This is the final report of a four year and ten month contract starting on October 1, 1988 to July 31, 1993 with the US Department of Energy to study and improve Close-Coupled Catalytic Two-Stage Direct Liquefaction of coal by producing high yields of distillate with improved quality at lower capital and production costs in comparison to existing technologies. Laboratory, Bench and PDU scale studies on sub-bituminous and bituminous coals are summarized and referenced in this volume. Details are presented in the three topical reports of this contract; CTSL Process Bench Studies and PDU Scale-Up with Sub-Bituminous Coal-DE-88818-TOP-1, CTSL Process Bench Studies with Bituminous Coal-DE-88818-TOP-2, and CTSL Process Laboratory Scale Studies, Modelling and Technical Assessment-DE-88818-TOP-3. Results are summarized on experiments and studies covering several process configurations, cleaned coals, solid separation methods, additives and catalysts both dispersed and supported. Laboratory microautoclave scale experiments, economic analysis and modelling studies are also included along with the PDU-Scale-Up of the CTSL processing of sub-bituminous Black Thunder Mine Wyoming coal. During this DOE/HRI effort, high distillate yields were maintained at higher throughput rates while quality was markedly improved using on-line hydrotreating and cleaned coals. Solid separations options of filtration and delayed coking were evaluated on a Bench-Scale with filtration successfully scaled to a PDU demonstration. Directions for future direct coal liquefaction related work are outlined herein based on the results from this and previous programs.

  10. Aerobic fitness testing: an update.

    PubMed

    Stevens, N; Sykes, K

    1996-12-01

    This study confirms that all three tests are reliable tools for the assessment of cardiorespiratory fitness and the prediction of aerobic capacity. While this particular study consisted of active, youthful subjects, subsequent studies at University College Chester have found similar findings with larger databases and a wider cross-section of subjects. The Astrand cycle test and Chester step test are submaximal tests with error margins of 5-15 per cent and therefore, not as precise as maximal testing. However, they still give a reasonably accurate reflection of an individual's fitness without the cost, time, effort and risk on the part of the subject. The bleep test is a low-cost maximal test designed for well-motivated, active individuals who are used to running to physical exhaustion. Used on other groups, results will not accurately reflect cardiorespiratory fitness values. While all three tests have inherent advantages and disadvantages, perhaps the most important factors are the knowledge and skills of the tester. Without a sound understanding of the physiological principles underlying these tests, and the ability to conduct an accurate assessment and evaluation of results in a knowledgeable and meaningful way, then the credibility of the tests and the results become suspect. However, used correctly, aerobic capacity tests can provide valuable baseline data about the fitness levels of individuals and data from which exercise programmes may be developed. The tests also enable fitness improvements to be monitored, help to motivate participants by establishing reasonable and achievable goals, assist in risk stratification and facilitate participants' education about the importance of physical fitness for work and for life. Since this study was completed, further tests have been repeated on 140 subjects of a wider age and ability range. This large database confirms the results found in this study.

  11. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  12. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step

  13. Studies supporting the use of mechanical mixing in large scale beer fermentations.

    PubMed

    Nienow, Alvin W; McLeod, Georgina; Hewitt, Christopher J

    2010-05-01

    Brewing fermentations have traditionally been undertaken without the use of mechanical agitation, with mixing being provided only by the fluid motion induced by the CO(2) evolved during the batch process. This approach has largely been maintained because of the belief in industry that rotating agitators would damage the yeast. Recent studies have questioned this view. At the bench scale, brewer's yeast is very robust and withstands intense mechanical agitation under aerobic conditions without observable damage as measured by flow cytometry and other parameters. Much less intense mechanical agitation also decreases batch fermentation time for anaerobic beer production by about 25% compared to mixing by CO(2) evolution alone with a small change in the concentration of the different flavour compounds. These changes probably arise for two reasons. Firstly, the agitation increases the relative velocity and the area of contact between the cells and the wort, thereby enhancing the rate of mass transfer to and from the cells. Secondly, the agitation eliminates spatial variations in both yeast concentration and temperature, thus ensuring that the cells are maintained close to the optimum temperature profile during the whole of the fermentation time. These bench scale studies have recently been supported by results at the commercial scale from mixing by an impeller or by a rotary jet head, giving more consistent production without changes in final flavour. It is suggested that this reluctance of the brewing industry to use (adequate) mechanical agitation is another example where the myth of shear damage has had a detrimental effect on the optimal operation of commercial bioprocessing.

  14. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  15. Concentric left ventricular morphology in aerobically trained kayak canoeists.

    PubMed

    Gates, Phillip E; Campbell, Ian G; George, Keith P

    2004-09-01

    The aim of the present study was to test the hypothesis that upper body aerobically trained athletes (kayak canoeists) would have greater left ventricular wall thickness, but similar left ventricular diastolic chamber dimensions, compared with recreationally active and sedentary men. Ultrasound echocardiography was used to determine cardiac structure and function in highly trained kayak canoeists (n = 10), moderately active (n = 10) and sedentary men (n = 10). The septal and posterior left ventricular walls were approximately 0.2 cm thicker in kayak canoeists (P < 0.05), and left ventricular mass was 51% and 32% greater (P < 0.05) in canoeists than in the sedentary and moderately trained participants, respectively. There were no differences in left ventricular chamber dimension, suggesting that the kayak canoeists had a concentric pattern of left ventricular adaptation to aerobic upper body training. Scaling the data to body composition indices had no effect on the outcome of the statistical analysis. There were no differences in resting Doppler left ventricular diastolic or systolic function among the groups. Ejection fraction was lower in the kayak canoeists, but the magnitude of the difference was within the normal variability for this measurement. Thus aerobically upper body trained athletes demonstrated a concentric pattern of cardiac enlargement, but resting left ventricle function was not different between athletes, moderately active and sedentary individuals.

  16. Carnotite resources of San Miguel bench, Montrose County, Colorado

    USGS Publications Warehouse

    Alvord, Donald Clayton

    1955-01-01

    San Miguel bench includes about 4 square miles in the southern part of T. 48 N., R. 17 W., New Mexico principal meridian, Montrose County, Colorado. Production of carnotite ore from the area has been about 15,000 short tons having an estimated average grade of 0.31 percent U3O8 and 1.6 percent V2O5. Nearly all of the carnotite deposits occur in a single continuous sandstone bed near the top of the Salt Wash member of the Jurassic Morrison formation. These deposits consist chiefly of sandstone impregnated with uranium- and vanadium-bearing minerals. They are irregular tabular-shaped masses ranging in size from a few short tons to 30,000 short tons or more of minable carnotite ore. During the period November 27, 1951, to April 17, 1953, the U.S. Geological Survey drilled 309 holes totaling 92,194 feet on the San Miguel bench. Reserves total about 43,000 short tons of material 1 foot or more thick and contain 0.10 percent or More U3O8 or 1.0 percent or more V2O5. Of these reserves 3,300 short tons occur in private land. These reserves are in ten deposits found by Geological Survey drilling. Potential reserves (reserves based on geologic evidence only) are predicted to total about 15,000 short tons, averaging 0.30 percent U3O8 and 1.6 percent V2O5. No additional drilling in the San Miguel bench is planned by the Geological Survey. Some drilling by private enterprise is recommended.

  17. Design of a Test Bench for Intraocular Lens Optical Characterization

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  18. Carnotite resources of the Dolores bench, Montrose County, Colorado

    USGS Publications Warehouse

    Jobin, Daniel Alfred

    1953-01-01

    The Dolores bench is about 2 miles northwest of Uravan, Montrose County, Colo. From 1913 to November 1952 about 95,000 short tons of ore averaging 0.40 percent U3O8 and 2.0 percent V2O5 was mined from the Dolores bench. The production represents three periods of activity--1913-18, 1938-43, and 1948-52. The ore deposits are in broad sandstone lenses near the top of the Salt Wash member of the Jurassic Morrison formation. The deposits are mainly impregnations of sandstone by carnotite and vanadiferous clay minerals. The deposits are irregular tabular layers which occasionally include pod-like masses called “rolls”. The rolls as well as the mineralized areas enclosing them have a poorly defined northeast trend. Between December 4, 1951, and August 1, 1952, the U.S. Geological Survey diamond-drilled 183 holes totaling 53,654 feet. The indicated and inferred reserves of carnotite-bearing material, and the pounds of contained U3O8 and V2O5 area summarized in table 1. At the highest thickness and grade cutoffs (1 foot thick and 0.10 percent U3O8 or 1.0 percent V2O5), indicated and inferred ore reserves total 90,000 short tons, averaging 0.33 percent U3O8 and 2.11 percent V2O5. These reserves include only those discovered by U.S. Geological Survey drilling. Potential reserves, whose existence is based on geologic evidence alone, are estimated to be about 10,000 short tons, averaging about 0.30 percent U3O8 and 2.00 percent V2O5. No additional exploration of the Dolores bench is planned by the Geological Survey. Diamond drilling by claim owners is recommended in several parts of the area.

  19. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  20. Influence of aeration intensity on mature aerobic granules in sequencing batch reactor.

    PubMed

    Gao, Da-Wen; Liu, Lin; Liang, Hong

    2013-05-01

    Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.

  1. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    PubMed

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg(-1) of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min(-1) kg(-1) aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl(-) ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO2 and Ag nanoparticles at concentrations of 100 mg kg(-1) of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  2. STS-57 crewmembers examine stowage locker contents during bench review

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Endeavour, Orbiter Vehicle (OV) 105, crewmembers, wearing clean suits, examine stowage locker contents during their bench review at Boeing's Flight Equipment Processing Facility (FEPF) located near JSC. Pilot Brian J. Duffy pulls equipment from a locker while Commander Ronald J. Grabe (behind him), Mission Specialist 2 (MS2) Nancy J. Sherlock, Payload Commander (PLC) G. David Low (holding checklist), and MS3 Peter J.K. Wisoff discuss checklist procedures. The crewmembers reviewed equipment locations for OV-105 as well as the SPACEHAB-01 (Commercial Middeck Augmentation Module (CMAM)) experiment stowage locations. Photo taken by NASA JSC contract photographer Benny Benavides.

  3. Bench Crater Meteorite: Hydrated Asteroidal Material Delivered to the Moon

    NASA Technical Reports Server (NTRS)

    Joy, K. H.; Messenger, S.; Zolensky, M. E.; Frank, D. R.; Kring, D. A.

    2013-01-01

    D/H measurements from the lunar regolith agglutinates [8] indicate mixing between a low D/H solar implanted component and additional higher D/H sources (e.g., meteoritic/ cometary/volcanic gases). We have determined the range and average D/H ratio of Bench Crater meteorite, which is the first direct D/H analysis of meteoritic material delivered to the lunar surface. This result provides an important ground truth for future investigations of lunar water resources by missions to the Moon.

  4. STS-65 crewmembers participate in bench review at Boeing Building

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Attired in clean suits, STS-65 Payload Commander (PLC) Richard J. Hieb (left) and Payload Specialist Chiaki Mukai examine the contents of a stowage locker during a bench review at Boeing's Flight Equipment Processing Facility (FEPF) near the Johnson Space Center (JSC). In the background, Commander Robert D. Cabana inspects additional equipment to be carried aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, for the scheduled July flight of the second International Microgravity Laboratory (IML-2) mission. Mukai represents Japan's National Space Development Agency (NASDA). Photo taken by NASA JSC contract photographer Scott A. Wickes.

  5. ESA's CCD test bench for the PLATO mission

    NASA Astrophysics Data System (ADS)

    Beaufort, Thierry; Duvet, Ludovic; Bloemmaert, Sander; Lemmel, Frederic; Prod'homme, Thibaut; Verhoeve, Peter; Smit, Hans; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Visser, Ivo

    2016-08-01

    PLATO { PLAnetary Transits and Oscillations of stars { is the third medium-class mission to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. Due for launch in 2025, the payload makes use of a large format (8 cm x 8 cm) Charge-Coupled Devices (CCDs), the e2v CCD270 operated at 4 MHz and at -70 C. To de-risk the PLATO CCD qualification programme initiated in 2014 and support the mission definition process, ESA's Payload Technology Validation section from the Future Missions Office has developed a dedicated test bench.

  6. Dynamic balance abilities of collegiate men for the bench press.

    PubMed

    Piper, Timothy J; Radlo, Steven J; Smith, Thomas J; Woodward, Ryan W

    2012-12-01

    This study investigated the dynamic balance detection ability of college men for the bench press exercise. Thirty-five college men (mean ± SD: age = 22.4 ± 2.76 years, bench press experience = 8.3 ± 2.79 years, and estimated 1RM = 120.1 ± 21.8 kg) completed 1 repetition of the bench press repetitions for each of 3 bar loading arrangements. In a randomized fashion, subjects performed the bench press with a 20-kg barbell loaded with one of the following: a balanced load, one 20-kg plate on each side; an imbalanced asymmetrical load, one 20-kg plate on one side and a 20-kg plate plus a 1.25-kg plate on the other side; or an imbalanced asymmetrical center of mass, 20-kg plate on one side and sixteen 1.25-kg plates on the other side. Subjects were blindfolded and wore ear protection throughout all testing to decrease the ability to otherwise detect loads. Binomial data analysis indicated that subjects correctly detected the imbalance of the imbalanced asymmetrical center of mass condition (p[correct detection] = 0.89, p < 0.01) but did not correctly detect the balanced condition (p[correct detection] = 0.46, p = 0.74) or the imbalanced asymmetrical condition (p[correct detection] = 0.60, p = 0.31). Although it appears that a substantial shift in the center of mass of plates leads to the detection of barbell imbalance, minor changes of the addition of 1.25 kg (2.5 lb) to the asymmetrical condition did not result in consistent detection. Our data indicate that the establishment of a biofeedback loop capable of determining balance detection was only realized under a high degree of imbalance. Although balance detection was not present in either the even or the slightly uneven loading condition, the inclusion of balance training for upper body may be futile if exercises are unable to establish such a feedback loop and thus eliciting an improvement of balance performance.

  7. Applying real-time control for achieving nitrogen removal via nitrite in a lab-scale CAST system.

    PubMed

    Wang, Shaopo; Yu, Jingjie; Wei, Tianlan; Chi, Yongzhi; Sun, Liping; Peng, Yongzhen

    2012-06-01

    In this study, a bench-scale Cyclic Activated Sludge Technology (CAST) reactor (72?L), fed with domestic sewage, was operated in alternating anoxi-aerobic operation mode to investigate the feasibility of achieving short-cut nitrification and denitrification with a real-time control strategy. An online system for controlling the length of the aeration and stirring phases was implemented, based on pH and oxidation-reduction potential signals, to switch between aerobic and anoxic sequences. Results show that the real-time control strategy was successful in achieving a stable nitrogen removal performance. Furthermore, short-cut nitrification can be achieved by controlling aeration length under the modified real-time control strategy. Gradually reducing the energy supply for nitrite-oxidizing bacteria caused the limitation of their growth and, finally, their elimination. When short-cut nitrification was obtained, the nitrite pathway became the primary way for nitrogen removal, and aeration duration was reduced by 28.4%.

  8. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  9. Development of a real time MTF test bench for visible optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Xinhua; Chen, Yuheng; Fan, Jiming; Xiang, Chunchang; Shen, Weimin

    2010-11-01

    A real-time MTF test bench for visible optical systems is presented in this paper. This test bench can perform quick on-axis and off-axis MTF measurement of optical systems whose aperture are less than 200mm in visible wavelength. A high quality off-axis parabolic collimator is used as object generator of this test bench. The image analyzer is a microscopy with CCD camera installed on a multi-axis motion stage. The software of this MTF test bench provides a good interface for the operators to set measurement parameters and control this bench. Validation of this test bench, performed with a 50mm plano-convex audit lens, shows that MTF measurement error of this bench is within 0.04. Besides MTF measurement, this bench can also perform effective focal length (EFL) and back focal length (BFL) without any hardware modification. Transmittance of optical system can also be performed on this bench with an integrating sphere.

  10. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  11. The rise of oxygen and aerobic biochemistry.

    PubMed

    Saito, Mak A

    2012-01-11

    Analysis of conserved protein folding domains across extant genomes by Kim et al. in this issue of Structure provides insights into the timing of some of the earliest aerobic metabolisms to arise on Earth.

  12. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  13. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  14. PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS

    EPA Science Inventory

    Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...

  15. Laboratory bench for the characterization of triboelectric properties of polymers

    NASA Astrophysics Data System (ADS)

    Neagoe, Bogdan; Prawatya, Yopa; Zeghloul, Thami; Souchet, Dominique; Dascalescu, Lucian

    2015-10-01

    The use of polymers as materials for sliding machine components is due to their low cost, ease of manufacturing, as well as appropriate mechanical and thermal properties. The aim of this paper is to present the experimental bench designed for the study of the triboelectric charge generated in sliding conformal contacts between flat polymer materials. The experiments were performed with 4-mm-thick samples of polystyrene and 5-mm-thick samples of poly-vinyl-chloride.The normal contact force can be adjusted using an appropriate control system and measured by a force sensor (± 50 N). The translational back-and-forth motion of the samples is produced by a crank-shaft system that generates a sinusoidal translational speed profile, with amplitudes between 12 and 50 mm/s, for strokes of 36 to 60 mm. The distribution of charge at the surface of the samples is measured by the capacitive probe of an electrostatic voltmeter (± 10 kV). The experiments pointed out that this bench enables the evaluation of the non-uniformity of the electric charge accumulated on the sliding bodies and the study of the correlations that might exists between this charge and the external forces applied to the contact.

  16. A laser guide star wavefront sensor bench demonstrator for TMT.

    PubMed

    Lardiere, Olivier; Conan, Rodolphe; Bradley, Colin; Jackson, Kate; Herriot, Glen

    2008-04-14

    Sodium laser guide stars (LGSs) allow, in theory, Adaptive Optics (AO) systems to reach a full sky coverage, but they have their own limitations. The artificial star is elongated due to the sodium layer thickness, and the temporal and spatial variability of the sodium atom density induces changing errors on wavefront measurements, especially with Extremely Large Telescopes (ELTs) for which the LGS elongation is larger. In the framework of the Thirty-Meter-Telescope project (TMT), the AO-Lab of the University of Victoria (UVic) has built an LGS-simulator test bed in order to assess the performance of new centroiding algorithms for LGS Shack-Hartmann wavefront sensors (SH-WFS). The design of the LGS-bench is presented, as well as laboratory SH-WFS images featuring 29x29 radially elongated spots, simulated for a 30-m pupil. The errors induced by the LGS variations, such as focus and spherical aberrations, are characterized and discussed. This bench is not limited to SH-WFS and can serve as an LGS-simulator test bed to any other LGS-AO projects for which sodium layer fluctuations are an issue.

  17. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  18. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  19. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  20. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    PubMed Central

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  1. Questions of testing rate and flexibility of rocket test benches, discussed on the basis of the test benches of Nitrochemie GMBH in Aschau

    NASA Technical Reports Server (NTRS)

    LEGRAND

    1987-01-01

    The rocket test benches are used to study burnup behavior by various methods. In the first ten months of 1966, 1578 shots were performed to test propellants, and 920 to test 14 thrust and pressure measurement projects.

  2. Biological treatment of high-pH and high-concentration black liquor of cotton pulp by an immediate aerobic-anaerobic-aerobic process.

    PubMed

    Lihong, Miao; Furong, Li; Jinli, Wen

    2009-01-01

    In this study, an immediate aerobic-anaerobic-aerobic (O/A/O) biological process was established for the treatment of black liquor of cotton pulp and was tested by both laboratory-scale batch experiment and pilot-scale continuous experiment. The effects of the hydraulic retention time (HRT) were studied, as were the alkaliphilic bacteria number, the culturing temperature and the concentration of black liquor on COD (chemical oxygen demand) removal. The total COD (COD(tot)) removal rate of the novel O/A/O process, for a black liquor with influent COD(tot) over 8,000 mg/L and pH above 12.8, was 68.7+/-4% which is similar with that of the traditional acidic-anaerobic-aerobic process (64.9+/-3%). The first aerobic stage based on alkaliphilic bacteria was the crucial part of the process, which was responsible for decreasing the influent pH from above 12 to an acceptable level for the following treatment unit. The average generation time of the alkaliphilic bacteria in the black liquor was about 36 minutes at 40 degrees C in a batch aerobic activated sludge system. The efficiency of the first aerobic stage was affected greatly by the temperature. The COD(tot) removal at 55 degrees C was much lower in comparison with the COD(tot) removal at 45 degrees C or 50 degrees C. Both the laboratory-scale batch experiments and the pilot-scale continuous experiment showed that the COD(tot) removal rate could reach about 65% for original black liquor with a pH of about 13.0 and a COD of 18,000-22,000 mg/L by the immediate O/A/O process. The first aerobic stage gave an average COD(tot) removal of 45.5% at 35 degrees C (HRT = 72 h) at a volume loading rate of 3.4 kg COD m(-3) d(-1).

  3. The Impact of Temperature on Anaerobic Biological Perchlorate Removal and Aerobic Polishing of the Effluent - paper

    EPA Science Inventory

    This abstract describes a pilot-scale evaluation of anaerobic biological perchlorate (C1O4) removal followed by aerobic effluent polishing. The anaerobic biological contactor operated for 3.5 years. During that period, two effluent polishing evaluations, lasting 311 an...

  4. The Impact of Temperature on Anaerobic Biological Perchlorate Removal and Aerobic Polishing of the Effluent

    EPA Science Inventory

    This abstract describes a pilot-scale evaluation of anaerobic biological perchlorate (C1O4) removal followed by aerobic effluent polishing. The anaerobic biological contactor operated for 3.5 years. During that period, two effluent polishing evaluations, lasting 311 an...

  5. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  6. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  7. 30 CFR 817.74 - Disposal of excess spoil: Preexisting benches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to a lower preexisting bench by means of gravity transport may be approved by the regulatory authority provided that— (1) The gravity transport courses are determined on a site-specific basis by the..., and downslope of the lower bench should excess spoil accidentally move; (2) All gravity...

  8. 30 CFR 817.74 - Disposal of excess spoil: Preexisting benches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to a lower preexisting bench by means of gravity transport may be approved by the regulatory authority provided that— (1) The gravity transport courses are determined on a site-specific basis by the..., and downslope of the lower bench should excess spoil accidentally move; (2) All gravity...

  9. 30 CFR 816.74 - Disposal of excess spoil: Preexisting benches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to a lower preexisting bench by means of gravity transport may be approved by the regulatory authority provided that— (1) The gravity transport courses are determined on a site-specific basis by the..., and downslope of the lower bench should excess spoil accidentally move; (2) All gravity...

  10. 30 CFR 816.74 - Disposal of excess spoil: Preexisting benches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to a lower preexisting bench by means of gravity transport may be approved by the regulatory authority provided that— (1) The gravity transport courses are determined on a site-specific basis by the..., and downslope of the lower bench should excess spoil accidentally move; (2) All gravity...

  11. 30 CFR 816.74 - Disposal of excess spoil: Preexisting benches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to a lower preexisting bench by means of gravity transport may be approved by the regulatory authority provided that— (1) The gravity transport courses are determined on a site-specific basis by the..., and downslope of the lower bench should excess spoil accidentally move; (2) All gravity...

  12. 30 CFR 817.74 - Disposal of excess spoil: Preexisting benches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to a lower preexisting bench by means of gravity transport may be approved by the regulatory authority provided that— (1) The gravity transport courses are determined on a site-specific basis by the..., and downslope of the lower bench should excess spoil accidentally move; (2) All gravity...

  13. 30 CFR 816.74 - Disposal of excess spoil: Preexisting benches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to a lower preexisting bench by means of gravity transport may be approved by the regulatory authority provided that— (1) The gravity transport courses are determined on a site-specific basis by the..., and downslope of the lower bench should excess spoil accidentally move; (2) All gravity...

  14. 30 CFR 817.74 - Disposal of excess spoil: Preexisting benches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to a lower preexisting bench by means of gravity transport may be approved by the regulatory authority provided that— (1) The gravity transport courses are determined on a site-specific basis by the..., and downslope of the lower bench should excess spoil accidentally move; (2) All gravity...

  15. 41 CFR 109-27.5005 - Shop, bench, cupboard or site stock.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... site stock. 109-27.5005 Section 109-27.5005 Public Contracts and Property Management Federal Property....5005 Shop, bench, cupboard or site stock. Shop, bench, cupboard or site stocks are an accumulation of... at time of issue from controlled stores. However, when stocks of such inventories are not consumed...

  16. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  17. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  18. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  19. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  20. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  1. 29 CFR Appendix B to Subpart P of... - Sloping and Benching

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Sloping and Benching B Appendix B to Subpart P of Part 1926..., App. B Appendix B to Subpart P of Part 1926—Sloping and Benching (a) Scope and application. This... § 1926.652(b)(2). (b) Definitions. Actual slope means the slope to which an excavation face is...

  2. 29 CFR Appendix B to Subpart P of... - Sloping and Benching

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Sloping and Benching B Appendix B to Subpart P of Part 1926..., App. B Appendix B to Subpart P of Part 1926—Sloping and Benching (a) Scope and application. This... § 1926.652(b)(2). (b) Definitions. Actual slope means the slope to which an excavation face is...

  3. Medical immunology: two-way bridge connecting bench and bedside.

    PubMed

    Rijkers, Ger T; Damoiseaux, Jan G M C; Hooijkaas, Herbert

    2014-12-01

    Medical immunology in The Netherlands is a laboratory specialism dealing with immunological analyses as well as pre- and post-analytical consultation to clinicians (clinical immunologists and other specialists) involved in patients with immune mediated diseases. The scope of medical immunology includes immunodeficiencies, autoimmune diseases, allergy, transfusion and transplantation immunology, and lymphoproliferative disorders plus the monitoring of these patients. The training, professional criteria, quality control of procedures and laboratories is well organized. As examples of the bridge function of medical immunology between laboratory (bench) and patient (bedside) the contribution of medical immunologists to diagnosis and treatment of primary immunodeficiency diseases (in particular: humoral immunodeficiencies) as well as autoantibodies (anti-citrullinated proteins in rheumatoid arthritis) are given.

  4. An ion-optical bench for testing ion source lenses

    NASA Astrophysics Data System (ADS)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  5. Development of Stretched wire measurement bench at IDDL, DAVV Indore

    NASA Astrophysics Data System (ADS)

    Gehlot, Mona; Mishra, G.

    2016-10-01

    A stretched wire magnetic measurement bench is under development at IDDL, DAVV, Indore. In this method a multistrend wire consisting of N turns is stretched inside the undulator to measure the field integrals of the undulators. The wire moved with constant velocity of translation measures the first integral of the undulator field. The cross motion of the wire at the undulator ends measures the second field integral. The measurement accuracy depends on the wire conditions and material properties. In this paper we follow an analytical approach to find the voltage fluctuations due to wire vibrations during the field measurement. It is shown that the voltage fluctuations depend on undulator gap, magnitude of the impulse on the wire. The mass density and the length of the wire also cause sizeable voltage fluctuations. The analytical derived expression is analysed to optimize system parameters for minimum errors during the measurement.

  6. Verification of polarising optics for the LISA optical bench.

    PubMed

    Dehne, Marina; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten

    2012-12-03

    The Laser Interferometer Space Antenna (LISA) is a space-based interferometric gravitational wave detector. In the current baseline design for the optical bench, the use of polarising optics is foreseen to separate optical beams. Therefore it is important to investigate the influence of polarising components on the interferometer sensitivity and validate that the required picometre stability in the low-frequency band (1 mHz - 1 Hz) is achievable. This paper discusses the design of the experiment and the implemented stabilisation loops. A displacement readout fulfilling the requirement in the whole frequency band is presented. Alternatively, we demonstrate improvement of the noise performance by implementing various algorithms in data post-processing, which leads to an additional robustness for the LISA mission.

  7. The emergence of Melloni’s optical bench

    NASA Astrophysics Data System (ADS)

    Colombi, Emanuela; Leone, Matteo; Robotti, Nadia

    2017-01-01

    In this paper we address the emergence of one of the most common instruments in 19th century physics laboratories, Melloni’s optical bench, relying on the analysis of the most significant historical documents. This apparatus, devised in 1835 by Macedonio Melloni, a distinguished Italian physicist of that time, enabled the study of the properties of ‘radiant heat’, or thermal radiation as it was then called. This apparatus is present in a large number of physics cabinets of universities and secondary schools. In this paper, we plan to foster the educational use of this device, still relevant for the study of infrared radiation, both by university and secondary school students and by teachers and scholars.

  8. Rheumatoid arthritis therapy: advances from bench to bedside.

    PubMed

    Choi, Soo-In; Brahn, Ernest

    2010-11-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with significant functional disability and morbidity. Treatment with conventional disease-modifying anti-rheumatic drugs has substantial limitations including partial efficacy and poor tolerability. Advances in our understanding of the pathogenesis of RA over the past decade have fostered development of targeted therapies and greatly expanded the available treatment options. Several of the therapeutic targets identified by recent studies have been translated into effective therapeutic agents, and many additional agents are currently under active development. In this article, we review the biologic agents that have made successful transitions from bench to bedside as well as the biologic and small molecule agents that are at various stages of development in human trials.

  9. Design, fabrication, and bench testing of a solar chemical receiver

    NASA Technical Reports Server (NTRS)

    Summers, W. A.; Pierre, J. F.

    1981-01-01

    Solar thermal energy can be effectively collected, transported, stored, and utilized by means of a chemical storage and transport system employing the reversible SO2 oxidation reaction. A solar chemical receiver for SO3 thermal decomposition to SO2 and oxygen was analyzed. Bench tests of a ten foot section of a receiver module were conducted with dissociated sulfuric acid (SO3 and H2O) in an electrical furnace. Measured percent conversion of SO3 was 85% of the equilibrium value. Methods were developed to fabricate and assemble a complete receiver module. These methods included applying an aluminide coating to certain exposed surfaces, assembling concentric tubes with a wire spacer, applying a platinum catalyst to the tubing wall, and coiling the entire assembly into the desired configuration.

  10. A ground-water reconnaissance of the Jacmel-Meyer Bench, Haiti

    USGS Publications Warehouse

    Taylor, George C.

    1949-01-01

    The Jacmel-Meyer bench lies on the south coast of the southern peninsula of Haiti in the Department de l'Ouest. Jacmel, at the west end of the bench, is about 40 kilometers airline southwest of Port-au-Prince. In the early part of January 1949, the writer in company with Mr. Rémy Lemoine made a reconnaissance study of the ground-water conditions of the bench. The object of the reconnaissance was to determine the availability of ground water for irrigation of the bench as well as for the public water supply of Jacmel. Irrigation is practiced on the bench, bu the existing water supplies are insufficient to cover all irrigable lands. Jacmel is at present supplied with water from a pipe line that delivers the flow of several developed springs to the city by gravity. However, this supply is inadequate and probably at times is contaminated.

  11. Development of real-time dual-display handheld and bench-top hybrid-mode SD-OCTs.

    PubMed

    Cho, Nam Hyun; Park, Kibeom; Wijesinghe, Ruchire Eranga; Shin, Yong Seung; Jung, Woonggyu; Kim, Jeehyun

    2014-01-27

    Development of a dual-display handheld optical coherence tomography (OCT) system for retina and optic-nerve-head diagnosis beyond the volunteer motion constraints is reported. The developed system is portable and easily movable, containing the compact portable OCT system that includes the handheld probe and computer. Eye posterior chambers were diagnosed using the handheld probe, and the probe could be fixed to the bench-top cradle depending on the volunteers' physical condition. The images obtained using this handheld probe were displayed in real time on the computer monitor and on a small secondary built-in monitor; the displayed images were saved using the handheld probe's built-in button. Large-scale signal-processing procedures such as k-domain linearization, fast Fourier transform (FFT), and log-scaling signal processing can be rapidly applied using graphics-processing-unit (GPU) accelerated processing rather than central-processing-unit (CPU) processing. The Labview-based system resolution is 1,024 × 512 pixels, and the frame rate is 56 frames/s, useful for real-time display. The 3D images of the posterior chambers including the retina, optic-nerve head, blood vessels, and optic nerve were composed using real-time displayed images with 500 × 500 × 500 pixel resolution. A handheld and bench-top hybrid mode with a dual-display handheld OCT was developed to overcome the drawbacks of the conventional method.

  12. Aspirin Intolerance: Experimental Models for Bed-to-Bench

    PubMed Central

    Yamashita, Masamichi

    2016-01-01

    Aspirin is the oldest non-steroidal anti-inflammatory drug (NSAID), and it sometimes causes asthma-like symptoms known as aspirin-exacerbated respiratory disease (AERD), which can be serious. Unwanted effects of aspirin (aspirin intolerance) are also observed in patients with food-dependent exercise-induced anaphylaxis, a type I allergy disease, and aspirin-induced urticaria (AIU). However the target and the mechanism of the aspirin intolerance are still unknown. There is no animal or cellular model of AERD, because its pathophysiological mechanism is still unknown, but it is thought that inhibition of cyclooxygenase by causative agents leads to an increase of free arachidonic acid, which is metabolized into cysteinyl leukotrienes (cysLTs) that provoke airway smooth muscle constriction and asthma symptoms. As the bed-to-bench approach, to confirm the clinical discussion in experimental cellular models, we have tried to develop a cellular model of AERD using activated RBL-2H3 cells, a rat mast cell like cell line. Indomethacin (another NSAID and also causes AERD), enhances in vitro cysLTs production by RBL-2H3 cells, while there is no induction of cysLTs production in the absence of inflammatory activation. Since this suggests that all inflammatory cells with activation of prostaglandin and cysLT metabolism should respond to NSAIDs, and then I have concluded that aspirin intolerance should be separated from subsequent bronchoconstriction. Evidence about the cellular mechanisms of NSAIDs may be employed for development of in vitro AERD models as the approach from bench-to-bed. PMID:27719658

  13. Effects of a combined aerobic and strength training program in youth patients with acute lymphoblastic leukemia.

    PubMed

    Perondi, Maria Beatriz; Gualano, Bruno; Artioli, Guilherme Gianini; de Salles Painelli, Vítor; Filho, Vicente Odone; Netto, Gabrieli; Muratt, Mavi; Roschel, Hamilton; de Sá Pinto, Ana Lúcia

    2012-01-01

    Cure rates of youth with Acute Lymphoblastic Leukemia (ALL) have increased in the past decades, but survivor's quality of life and physical fitness has become a growing concern. Although previous reports showed that resistance training is feasible and effective, we hypothesized that a more intense exercise program would also be feasible, but more beneficial than low- to moderate-intensity training programs. We aimed to examine the effects of an exercise program combining high-intensity resistance exercises and moderate-intensity aerobic exercises in young patients undergoing treatment for ALL. A quasi-experimental study was conducted. The patients (n = 6; 5-16 years of age) underwent a 12-week intra-hospital training program involving high-intensity strength exercises and aerobic exercise at 70% of the peak oxygen consumption. At baseline and after 12 weeks, we assessed sub-maximal strength (10 repetition-maximum), quality of life and possible adverse effects. A significant improvement was observed in the sub maximal strength for bench press (71%), lat pull down (50%), leg press (73%) and leg extension (64%) as a result of the training (p < 0.01). The parents' evaluations of their children's quality of life revealed an improvement in fatigue and general quality of life, but the children's self-reported quality of life was not changed. No adverse effects occurred. A 12-week in-hospital training program including high-intensity resistance exercises promotes marked strength improvements in patients during the maintenance phase of the treatment for Acute Lymphoblastic Leukemia without side-effects. Parents' evaluations of their children revealed an improvement in the quality of life. Key pointsPatients with ALL present low muscle strength and poor quality of life.High-intensity resistance exercises combined with moderate-intensity aerobic exercise improved muscle strength and quality of life during the maintenance phase of ALL treatment.The exercise training program

  14. Coal-bench architecture as a means of understanding regional changes in coal thickness and quality

    SciTech Connect

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    1996-09-01

    Analysis of the Fire Creek (Westphalian B), Pond Creek (lower Westphalian B), and Stockton (Westphalian B) coals, three of the most heavily mined coals in the Central Appalachian Basin, shows that all have a similar multiple-bench architecture of at least two benches split by a regional clastic parting or durain. Coal benches beneath regionally extensive partings are generally less continuous, thinner, more palynologically variable, higher in ash yield, and higher in sulfur content than coal benches above regional partings in all three coals. Where thick, benches above regional partings tend to exhibit temporal palynological changes from lycopod- to fern-dominant. Where inertinite-rich/fern-dominant benches are overlain by additional benches, the upper benches are limited in extent, variable in thickness, high in sulfur content and ash yield, and split away from the coal. The multiple-bench architecture exhibited by these coals is interpreted to represent a cyclic mire succession that was common in the Middle Pennsylvanian. Peats began as planar mires infilling an irregular topography during rising base level. When the topography was infilled, unconfined flooding was possible and resulted in widespread partings. Ponding above these clay-rich flood deposits led to re-establishment of new planar mires with greater continuity than the underlying mires. The extent of these mires provided buffers to clastic influx and, in many cases, allowed domed conditions to develop. Doming resulted in thick, high-quality coal benches. In some cases, a third stage of planar peats, with similar characteristics to the planar peats at the base of the beds, developed on the unevenly distributed clastics that buried underlying mires during continued base-level rise.

  15. Strontium Removal: Full-Scale Ohio Demonstrations

    EPA Science Inventory

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  16. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment.

    PubMed

    Sangave, Preeti C; Gogate, Parag R; Pandit, Aniruddha B

    2007-05-01

    Laboratory-scale experiments were conducted in order to investigate the effect of ozone as pre-aerobic treatment and post-aerobic treatment for the treatment of the distillery wastewater. The degradation of the pollutants present in distillery spent wash was carried out by ozonation, aerobic biological degradation processes alone and by using the combinations of these two processes to investigate the synergism between the two modes of wastewater treatment and with the aim of reducing the overall treatment costs. Pollutant removal efficiency was followed by means of global parameters directly related to the concentration of organic compounds in those effluents: chemical oxygen demand (COD) and the color removal efficiency in terms of absorbance of the sample at 254 nm. Ozone was found to be effective in bringing down the COD (up to 27%) during the pretreatment step itself. In the combined process, pretreatment of the effluent led to enhanced rates of subsequent biological oxidation step, almost 2.5 times increase in the initial oxidation rate has been observed. Post-aerobic treatment with ozone led to further removal of COD along with the complete discoloration of the effluent. The integrated process (ozone-aerobic oxidation-ozone) achieved approximately 79% COD reduction along with discoloration of the effluent sample as compared to 34.9% COD reduction for non-ozonated sample, over a similar treatment period.

  17. Aerobic Exercise and Neurocognitive Performance: a Meta-Analytic Review of Randomized Controlled Trials

    PubMed Central

    Smith, Patrick J.; Blumenthal, James A.; Hoffman, Benson M.; Cooper, Harris; Strauman, Timothy A.; Welsh-Bohmer, Kathleen; Browndyke, Jeffrey N.; Sherwood, Andrew

    2010-01-01

    Objectives Although the effects of exercise on neurocognition have been the subject of several previous reviews and meta-analyses, they have been hampered by methodological shortcomings and are now outdated as a result of the recent publication of several large-scale randomized controlled trials (RCTs). Methods We conducted a systematic literature review of RCTs examining the association between aerobic exercise training on neurocognitive performance conducted between January, 1966 and July, 2009. Suitable studies were selected for inclusion according to the following criteria: randomized treatment allocation, mean age ≥ 18 years of age, duration of treatment > 1 month, incorporated aerobic exercise components, exercise training was supervised, the presence of a non-aerobic-exercise control group, and sufficient information to derive effect size (ES) data. Results Twenty-nine studies met inclusion criteria and were included in our analyses, representing data from 2,049 participants and 234 effect sizes. Individuals randomly assigned to receive aerobic exercise training demonstrated modest improvements in attention and processing speed (g = .158 [95% CI: .055 to .260], P = .003), executive function (g = .123 [95% CI: .021 to .225], P = .018), and memory (g = .128 [95% CI: .015 - .241], P = .026). Conclusions Aerobic exercise training is associated with modest improvements in attention and processing speed, executive function, and memory, although the effects of exercise on working memory are less consistent. Rigorous RCTs are needed with larger samples, appropriate controls, and longer follow-up periods. PMID:20223924

  18. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  19. Using bench press load to predict upper body exercise loads in physically active individuals.

    PubMed

    Wong, Del P; Ngo, Kwan-Lung; Tse, Michael A; Smith, Andrew W

    2013-01-01

    This study investigated whether loads for assistance exercises of the upper body can be predicted from the loads of the bench press exercise. Twenty-nine physically active collegiate students (age: 22.6 ± 2.5; weight training experience: 2.9 ± 2.1 years; estimated 1RM bench press: 54.31 ± 14.60 kg; 1RM: body weight ratio: 0.80 ± 0.22; BMI: 22.7 ± 2.1 kg·m(-2)) were recruited. The 6RM loads for bench press, barbell bicep curl, overhead dumbbell triceps extension, hammer curl and dumbbell shoulder press were measured. Test-retest reliability for the 5 exercises as determined by Pearson product moment correlation coefficient was very high to nearly perfect (0.82-0.98, p < 0.01). The bench press load was significantly correlated with the loads of the 4 assistance exercises (r ranged from 0.80 to 0.93, p < 0.01). Linear regression revealed that the bench press load was a significant (R(2) range from 0.64 to 0.86, p < 0.01) predictor for the loads of the 4 assistance exercises. The following 6RM prediction equations were determined: (a) Hammer curl = Bench press load (0.28) + 6.30 kg, (b) Barbell biceps curl = Bench press load (0.33) + 6.20 kg, (c) Overhead triceps extension = Bench press load (0.33) - 0.60 kg, and (d) Dumbbell shoulder press = Bench press load (0.42) + 5.84 kg. The difference between the actual load and the predicted load using the four equations ranged between 6.52% and 8.54%, such difference was not significant. Fitness professionals can use the 6RM bench press load as a time effective and accurate method to predict training loads for upper body assistance exercises. Key pointsThe bench press load was significantly correlated with the loads of the 4 assistance exercises.No significant differences were found between the actual load and the predicted load in the four equations.6RM bench press load can be a time effective and accurate method to predict training loads for upper body assistance exercises.

  20. Using Bench Press Load to Predict Upper Body Exercise Loads in Physically Active Individuals

    PubMed Central

    Wong, Del P.; Ngo, Kwan-Lung; Tse, Michael A.; Smith, Andrew W.

    2013-01-01

    This study investigated whether loads for assistance exercises of the upper body can be predicted from the loads of the bench press exercise. Twenty-nine physically active collegiate students (age: 22.6 ± 2.5; weight training experience: 2.9 ± 2.1 years; estimated 1RM bench press: 54.31 ± 14.60 kg; 1RM: body weight ratio: 0.80 ± 0.22; BMI: 22.7 ± 2.1 kg·m-2) were recruited. The 6RM loads for bench press, barbell bicep curl, overhead dumbbell triceps extension, hammer curl and dumbbell shoulder press were measured. Test-retest reliability for the 5 exercises as determined by Pearson product moment correlation coefficient was very high to nearly perfect (0.82-0.98, p < 0.01). The bench press load was significantly correlated with the loads of the 4 assistance exercises (r ranged from 0.80 to 0.93, p < 0.01). Linear regression revealed that the bench press load was a significant (R2 range from 0.64 to 0.86, p < 0.01) predictor for the loads of the 4 assistance exercises. The following 6RM prediction equations were determined: (a) Hammer curl = Bench press load (0.28) + 6.30 kg, (b) Barbell biceps curl = Bench press load (0.33) + 6.20 kg, (c) Overhead triceps extension = Bench press load (0.33) - 0.60 kg, and (d) Dumbbell shoulder press = Bench press load (0.42) + 5.84 kg. The difference between the actual load and the predicted load using the four equations ranged between 6.52% and 8.54%, such difference was not significant. Fitness professionals can use the 6RM bench press load as a time effective and accurate method to predict training loads for upper body assistance exercises. Key points The bench press load was significantly correlated with the loads of the 4 assistance exercises. No significant differences were found between the actual load and the predicted load in the four equations. 6RM bench press load can be a time effective and accurate method to predict training loads for upper body assistance exercises. PMID:24149723

  1. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  2. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  3. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  4. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  5. Aerobic exercise in fibromyalgia: a practical review.

    PubMed

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  6. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  7. Effects of aerobic conditioning in lupus fatigue: a pilot study.

    PubMed

    Robb-Nicholson, L C; Daltroy, L; Eaton, H; Gall, V; Wright, E; Hartley, L H; Schur, P H; Liang, M H

    1989-12-01

    Fatigue, a complex symptom, significantly affects the quality of life in many patients with systemic lupus erythematosus (SLE). To understand this phenomenon, 23 patients with SLE and fatigue were studied. Standardized tests of depression (NIMH), fatigue, exercise tolerance (ETT) on a bicycle ergometer, and SLE activity were obtained. At baseline, SLE patients had significantly lower maximum oxygen consumption (VO2 max) than normals (p less than 0.005). Adjusted for age and sex, SLE patients perform at 54% of their expected maximum VO2, which is similar to published data from patients with rheumatoid arthritis. Depression by NIMH was not correlated with VO2 max or length of time on ETT. Fatigue measured by Profile of Mood States (POMS) was correlated with ETT time (r = 0.476, p less than 0.025) and with VO2 max (r = -0.402, p less than 0.07). After an 8-week aerobic conditioning programme the experimental group increased their aerobic capacity by 19% in contrast to 8% in controls. This change correlated with decreased fatigue as measured by visual analogue scales. Exercise did not exacerbate disease, and only two of 16 experimental subjects experienced transient joint symptoms during exercise.

  8. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  9. Effects of muscle strengthening versus aerobic exercise program in fibromyalgia.

    PubMed

    Bircan, Ciğdem; Karasel, Seide Alev; Akgün, Berrin; El, Ozlem; Alper, Serap

    2008-04-01

    The purpose of this study was to compare the effects of aerobic training with a muscle-strengthening program in patients with fibromyalgia. Thirty women with fibromyalgia were randomized to either an aerobic exercise (AE) program or a strengthening exercise (SE) program for 8 weeks. Outcome measures included the intensity of fibromyalgia-related symptoms, tender point count, fitness (6-min walk distance), hospital anxiety and depression (HAD) scale, and short-form health survey (SF-36). There were significant improvements in both groups regarding pain, sleep, fatigue, tender point count, and fitness after treatment. HAD-depression scores improved significantly in both groups while no significant change occurred in HAD-anxiety scores. Bodily pain subscale of SF-36 and physical component summary improved significantly in the AE group, whereas seven subscales of SF-36, physical component summary, and mental component summary improved significantly in the SE group. When the groups were compared after treatment, there were no significant differences in pain, sleep, fatigue, tender point count, fitness, HAD scores, and SF-36 scores. AE and SE are similarly effective at improving symptoms, tender point count, fitness, depression, and quality of life in fibromyalgia.

  10. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  11. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  12. Fast modulation and dithering on a pyramid wavefront sensor bench

    NASA Astrophysics Data System (ADS)

    van Kooten, Maaike; Bradley, Colin; Veran, Jean-Pierre; Herriot, Glen; Lardiere, Olivier

    2016-07-01

    A pyramid wavefront sensor (PWFS) bench has been setup at NRC-Herzberg (Victoria, Canada) to investigate, first, the feasibility of a double roof prism PWFS, and second, test the proposed pyramid wavefront sensing methodology to be used in NFIRAOS for the Thirty Meter Telescope. Traditional PWFS require shallow angles and strict apex tolerances, making them difficult to manufacture. Roof prisms, on the other hand, are common optical components and can easily be made to the desired specifications. Understanding the differences between a double roof prism PWFS and traditional PWFS will allow for the double roof prism PWFS to become more widely used as an alternative to the standard pyramid, especially in a laboratory setting. In this work, the response of the double roof prism PWFS as the amount of modulation is changed, is compared to an ideal PWFS modelled using the adaptive optics toolbox, OOMAO in MATLAB. The object oriented toolbox uses physical optics to model complete AO systems. Fast modulation and dithering using a PI mirror has been implemented using a micro-controller to drive the mirror and trigger the camera. The various trade offs of this scheme, in a controlled laboratory environment, are studied and reported.

  13. Pattern Generator for Bench Test of Digital Boards

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.; Chu, Anhua J.

    2012-01-01

    All efforts to develop electronic equipment reach a stage where they need a board test station for each board. The SMAP digital system consists of three board types that interact with each other using interfaces with critical timing. Each board needs to be tested individually before combining into the integrated digital electronics system. Each board needs critical timing signals from the others to be able to operate. A bench test system was developed to support test of each board. The test system produces all the outputs of the control and timing unit, and is delivered much earlier than the timing unit. Timing signals are treated as data. A large file is generated containing the state of every timing signal at any instant. This file is streamed out to an IO card, which is wired directly to the device-under-test (DUT) input pins. This provides a flexible test environment that can be adapted to any of the boards required to test in a standalone configuration. The problem of generating the critical timing signals is then transferred from a hardware problem to a software problem where it is more easily dealt with.

  14. Translational research: understanding the continuum from bench to bedside.

    PubMed

    Drolet, Brian C; Lorenzi, Nancy M

    2011-01-01

    The process of translating basic scientific discoveries to clinical applications, and ultimately to public health improvements, has emerged as an important, but difficult, objective in biomedical research. The process is best described as a "translation continuum" because various resources and actions are involved in this progression of knowledge, which advances discoveries from the bench to the bedside. The current model of this continuum focuses primarily on translational research, which is merely one component of the overall translation process. This approach is ineffective. A revised model to address the entire continuum would provide a methodology to identify and describe all translational activities (eg, implementation, adoption translational research, etc) as well their place within the continuum. This manuscript reviews and synthesizes the literature to provide an overview of the current terminology and model for translation. A modification of the existing model is proposed to create a framework called the Biomedical Research Translation Continuum, which defines the translation process and describes the progression of knowledge from laboratory to health gains. This framework clarifies translation for readers who have not followed the evolving and complicated models currently described. Authors and researchers may use the continuum to understand and describe their research better as well as the translational activities within a conceptual framework. Additionally, the framework may increase the advancement of knowledge by refining discussions of translation and allowing more precise identification of barriers to progress.

  15. Bench checkout equipment for spaceborne laser altimeter systems

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Elman, Gregory C.; Christian, Kent D.; Cavanaugh, John F.; Ramos-Izquierdo, Luis; Hopf, Dan E.

    1993-01-01

    This paper addresses the requirements for testing and characterizing spaceborne laser altimeter systems. The Bench Checkout Equipment (BCE) system, test requirements, and flow-down traceability from the instrument system's functional requirements will also be presented. Mars Observer Laser Altimeter (MOLA) and the MOLA BCE are presented as representative of a 'typical' laser altimeter and its corresponding test system. The testing requirements of other or future laser altimeter systems may vary slightly due to the specific spacecraft interface and project requirements. MOLA, the first solid-state interplanetary laser altimeter, was designed to be operational in Mars orbit for two Earth years. MOLA transmits a 7.5 ns pulse at a wavelength of 1.064 microns with a 0.25 mr beam divergence and a pulse repetition rate of 10 Hz. The output energy is specified at 45 mj at the beginning of mapping orbit and 30 mj at the end of one Martian year. MOLA will measure the laser pulse transit time from the spacecraft to the Mars surface and return to a resolution of 1.5 meters.

  16. Bench-to-bedside review: Latest results in hemorrhagic shock

    PubMed Central

    Angele, Martin K; Schneider, Christian P; Chaudry, Irshad H

    2008-01-01

    Hemorrhagic shock is a leading cause of death in trauma patients worldwide. Bleeding control, maintenance of tissue oxygenation with fluid resuscitation, coagulation support, and maintenance of normothermia remain mainstays of therapy for patients with hemorrhagic shock. Although now widely practised as standard in the USA and Europe, shock resuscitation strategies involving blood replacement and fluid volume loading to regain tissue perfusion and oxygenation vary between trauma centers; the primary cause of this is the scarcity of published evidence and lack of randomized controlled clinical trials. Despite enormous efforts to improve outcomes after severe hemorrhage, novel strategies based on experimental data have not resulted in profound changes in treatment philosophy. Recent clinical and experimental studies indicated the important influences of sex and genetics on pathophysiological mechanisms after hemorrhage. Those findings might provide one explanation why several promising experimental approaches have failed in the clinical arena. In this respect, more clinically relevant animal models should be used to investigate pathophysiology and novel treatment approaches. This review points out new therapeutic strategies, namely immunomodulation, cardiovascular maintenance, small volume resuscitation, and so on, that have been introduced in clinics or are in the process of being transferred from bench to bedside. Control of hemorrhage in the earliest phases of care, recognition and monitoring of individual risk factors, and therapeutic modulation of the inflammatory immune response will probably constitute the next generation of therapy in hemorrhagic shock. Further randomized controlled multicenter clinical trials are needed that utilize standardized criteria for enrolling patients, but existing ethical requirements must be maintained. PMID:18638356

  17. DRAGON, the Durham real-time, tomographic adaptive optics test bench: progress and results

    NASA Astrophysics Data System (ADS)

    Reeves, Andrew P.; Myers, Richard M.; Morris, Timothy J.; Basden, Alastair G.; Bharmal, Nazim A.; Rolt, Stephen; Bramall, David G.; Dipper, Nigel A.; Younger, Edward J.

    2014-08-01

    DRAGON is a real-time, tomographic Adaptive Optics test bench currently under development at Durham University. Optical and mechanical design work for DRAGON is now complete, and the system is close to becoming fully operational. DRAGON emulates current 4.2 m and 8 m telescopes, and can also be used to investigate ELT scale issues. The full system features 4 Laser Guide Star (LGS) Wavefront Sensors (WFS), 3 Natural Guide Star (NGS) WFSs and one Truth Sensor, all of which are 31 × 31 sub-aperture Shack-Hartmann WFS. Two Deformable Mirrors (DMs), a Boston MEMS Kilo DM and a Xinetics 97 actuator DM, correct for turbulence induced aberrations and these can be configured to be either open or closed loop of the WFS. A novel method of LGS emulation is implemented which includes the effects of uplink turbulence and elongation in real-time. The atmosphere is emulated by 4 rotating phase screens which can be translated in real-time to replicate altitude evolution of turbulent layers. DRAGON will be used to extensively study tomographic AO algorithms, such as those required for Multi-Object AO. As DRAGON has been designed to be compatible with CANARY, the MOAO demonstrator, results can be compared to those from the CANARY MOAO demonstrator on the 4.2m William Herschel Telescope. We present here an overview of the current status of DRAGON and some early results, including investigations into the validity of the LGS emulation method.

  18. The E-lens test bench for RHIC beam-beam compensation

    SciTech Connect

    Gu X.; Altinbas, F.Z.; Aronson, J.; Beebe, E. et al

    2012-05-20

    To compensate for the beam-beam effects from the proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are fabricating two electron lenses that we plan to install at RHIC IR10. Before installing the e-lenses, we are setting-up the e-lens test bench to test the electron gun, collector, GS1 coil, modulator, partial control system, some instrumentation, and the application software. Some e-lens power supplies, the electronics for current measurement will also be qualified on test bench. The test bench also was designed for measuring the properties of the cathode and the profile of the beam. In this paper, we introduce the layout and elements of the e-lens test bench; and we discuss its present status towards the end of this paper.

  19. 29 CFR Appendix B to Subpart P of... - Sloping and Benching

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... distress. If that situation occurs, the slope shall be cut back to an actual slope which is at least 1/2... appendix contains specifications for sloping and benching when used as methods of protecting...

  20. 29 CFR Appendix B to Subpart P of... - Sloping and Benching

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... distress. If that situation occurs, the slope shall be cut back to an actual slope which is at least 1/2... appendix contains specifications for sloping and benching when used as methods of protecting...

  1. Synthetic Minor NSR Permit: XTO Energy, Inc. - Wild Horse Bench Compressor Station

    EPA Pesticide Factsheets

    This page contains the response to public comments, the final synthetic minor NSR permit, and the administrative record for the XTO Energy, Inc. Wild Horse Bench Compressor Station, located on the Uintah and Ouray Indian Reservation in Uintah County, UT.

  2. Passive Thermal Compensation of the Optical Bench of the Galaxy Evolution Explorer

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Parks, Rick; Coleman, Michelle

    2004-01-01

    The Galaxy Evolution Explorer is an orbiting space telescope that will collect information on star formation by observing galaxies and stars in ultraviolet wavelengths. The optical bench supporting detectors and related optical components used an interesting and unusual passive thermal compensation technique to accommodate thermally-induced focal length changes in the optical system. The proposed paper will describe the optical bench thermal compensation design including concept, analysis, assembly and testing results.

  3. STS-30 clean-suited crewmembers examine locker contents during bench review

    NASA Technical Reports Server (NTRS)

    1989-01-01

    During a bench review, STS-30 crewmembers, wearing clean suits, examine configuration of middeck lockers packed with stowage bags and hygiene supplies. The bay will be used to contain objects not in use while in orbit. From left to right are Mission Specialist (MS) Mark C. Lee, MS Norman E. Thagard, Commander David M. Walker, MS Mary L. Cleave, and Pilot Ronald J. Grabe. Technicians and personnel filming bench review look on. Photo taken by JSC photographer Jack Jacob.

  4. On determining the acoustic properties of main helicopter rotor models on an open test bench

    NASA Astrophysics Data System (ADS)

    Kop'ev, V. F.; Zaitsev, M. Yu.; Ostrikov, N. N.; Denisov, S. L.; Makashov, S. Yu.; Anikin, V. A.; Gromov, V. V.

    2016-11-01

    The paper presents the results of experimental studies on developing a technique to determine the acoustic properties of models of main helicopter rotors on an open test bench. The method of maximum length sequences is used to choose the optimum arrangement of microphones for an open test bench that would minimize the influence of parasitic echo. The results of processing the data of an acoustic experiment with a model rotor are detailed.

  5. Potential controls of alluvial bench deposition and erosion in southern Piedmont streams, Alabama (USA)

    NASA Astrophysics Data System (ADS)

    Haney, Nicholas R.; Davis, Lisa

    2015-07-01

    Benches are bank-attached channel deposits occurring at an elevation between the channel bed and top of banks. Their occurrence in a variety of geologic and hydrologic settings has led to confusion about the mechanisms driving their formation, which in turn contributes to difficulty identifying the active floodplain, bankfull stage, and the determination of environmental flows in some rivers. Hydrodynamic modeling software (River 2D), in combination with sediment particle size analysis and total station topographic surveys, was used to simulate flow conditions needed to erode and deposit the D84, D50, and D15 particle sizes of concave and lateral benches in two rivers (Talladega and Hillabee creeks) in Alabama. Results suggest that bench erosion requires flows at least 150% larger than benchfull stage at the Talladega site, while the Hillabee site experienced erosion at all discharges meeting and exceeding benchfull flow stage, likely owing to its overall smaller sediment particle sizes. At both sites, the presence of vegetation increased the bench area subjected to deposition but, somewhat counterintuitively, also helped influence the location of erosion by limiting flow vectors. In contrast with previous research findings, the occurrence of reverse flow was neither sustained nor widespread at either site. These findings provide new insight into alluvial benches, suggest that the study benches are relatively stable features under the prevailing hydrologic regime, and that in some temperate climate settings, such as the southern Piedmont, localized hydraulic controls on bench formation can be superseded in importance by hydrologic flow regime, even in the case of concave benches and where flow regulation is not a factor.

  6. The effects of the topographic bench on ground motion from mining explosions

    SciTech Connect

    Bonner, J.L.; Blomberg, W.S.; Hopper, H.; Leidig, M.

    2005-07-01

    Understanding the effects of the bench on ground motion can improve the design of cast blasts and achieve improved blast efficiency while remaining below vibration requirements. A new dataset recorded in September 2003 from a coal mine in Arizona has allowed us to examine the excitation of short-period Rayleigh-type surface waves from four simultaneously-detonated explosions in and below a topographic bench of a mine. The explosions were recorded on a network of over 150 seismic sensors, providing an extensive understanding of the ground motion radiation patterns from these explosions. We detonated two separate explosions in the deepest pit of the mine, thus the explosions were shot to solid rock. Within 25 meters of these two explosions, we detonated two additional explosions of similar explosive yields in a bench, thus these explosions were shot to the free face. Radiation patterns and spectral ratios from the explosions show increased amplitudes at azimuths behind the bench relative to the amplitudes in front of the bench. We compared these findings to seismic observations from two {approximately} 1.5 million pound cast blasts at the same mine and found similar radiations patterns. Modeling of these blasts shows that the variations in ground motion are caused by the topographic bench as a result of 1) horizontal spalling of the rock falling into the pit and 2) non-linear scattering near the free-face. Shooting to a buffer also causes the azimuthal variations to be significantly reduced.

  7. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  8. EWB: The Environment WorkBench Version 4.0

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Environment WorkBench EWB is a desktop integrated analysis tool for studying a spacecraft's interactions with its environment. Over 100 environment and analysis models are integrated into the menu-based tool. EWB, which was developed for and under the guidance of the NASA Lewis Research Center, is built atop the Module Integrator and Rule-based Intelligent Analytic Database (MIRIAD) architecture. This allows every module in EWB to communicate information to other modules in a transparent manner from the user's point of view. It removes the tedious and error-prone steps of entering data by hand from one model to another. EWB runs under UNIX operating systems (SGI and SUN workstations) and under MS Windows (3.x, 95, and NT) operating systems. MIRIAD, the unique software that makes up the core of EWB, provides the flexibility to easily modify old models and incorporate new ones as user needs change. The MIRIAD approach separates the computer assisted engineering (CAE) tool into three distinct units: 1) A modern graphical user interface to present information; 2) A data dictionary interpreter to coordinate analysis; and 3) A database for storing system designs and analysis results. The user interface is externally programmable through ASCII data files, which contain the location and type of information to be displayed on the screen. This approach provides great flexibility in tailoring the look and feel of the code to individual user needs. MIRIADbased applications, such as EWB, have utilities for viewing tabulated parametric study data, XY line plots, contour plots, and three-dimensional plots of contour data and system geometries. In addition, a Monte Carlo facility is provided to allow statistical assessments (including uncertainties) in models or data.

  9. Eating disorders: from bench to bedside and back.

    PubMed

    Gaetani, Silvana; Romano, Adele; Provensi, Gustavo; Ricca, Valdo; Lutz, Thomas; Passani, Maria Beatrice

    2016-12-01

    The central nervous system and viscera constitute a functional ensemble, the gut-brain axis, that allows bidirectional information flow that contributes to the control of feeding behavior based not only on the homeostatic, but also on the hedonic aspects of food intake. The prevalence of eating disorders, such as anorexia nervosa, binge eating and obesity, poses an enormous clinical burden, and involves an ever-growing percentage of the population worldwide. Clinical and preclinical research is constantly adding new information to the field and orienting further studies with the aim of providing a foundation for developing more specific and effective treatment approaches to pathological conditions. A recent symposium at the XVI Congress of the Societá Italiana di Neuroscienze (SINS, 2015) 'Eating disorders: from bench to bedside and back' brought together basic scientists and clinicians with the objective of presenting novel perspectives in the neurobiology of eating disorders. Clinical studies presented by V. Ricca illustrated some genetic aspects of the psychopathology of anorexia nervosa. Preclinical studies addressed different issues ranging from the description of animal models that mimic human pathologies such as anorexia nervosa, diet-induced obesity, and binge eating disorders (T. Lutz), to novel interactions between peripheral signals and central circuits that govern food intake, mood and stress (A. Romano and G. Provensi). The gut-brain axis has received increasing attention in the recent years as preclinical studies are demonstrating that the brain and visceral organs such as the liver and guts, but also the microbiota are constantly engaged in processes of reciprocal communication, with unexpected physiological and pathological implications. Eating is controlled by a plethora of factors; genetic predisposition, early life adverse conditions, peripheral gastrointestinal hormones that act directly or indirectly on the central nervous system, all are

  10. Metabolic alterations and hepatitis C: From bench to bedside.

    PubMed

    Chang, Ming-Ling

    2016-01-28

    In addition to causing cirrhosis and hepatocellular carcinoma, hepatitis C virus (HCV) is thought to cause hypolipidemia, hepatic steatosis, insulin resistance, metabolic syndrome, and diabetes. The viral life cycle of HCV depends on cholesterol metabolism in host cells. HCV core protein and nonstructural protein 5A perturb crucial lipid and glucose pathways, such as the sterol regulatory element-binding protein pathway and the protein kinase B/mammalian target of rapamycin/S6 kinase 1 pathway. Although several lines of transgenic mice expressing core or full HCV proteins exhibit hepatic steatosis and/or dyslipidemia, whether they completely reflect the metabolic alterations in humans with HCV infection remains unknown. Many cross-sectional studies have demonstrated increased prevalences of metabolic alterations and cardiovascular events in patients with chronic hepatitis C (CHC); however, conflicting results exist, primarily due to unavoidable individual variations. Utilizing anti-HCV therapy, most longitudinal cohort studies of CHC patients have demonstrated the favorable effects of viral clearance in attenuating metabolic alterations and cardiovascular risks. To determine the risks of HCV-associated metabolic alterations and associated complications in patients with CHC, it is necessary to adjust for crucial confounders, such as HCV genotype and host baseline glucose metabolism, for a long follow-up period after anti-HCV treatment. Adipose tissue is an important endocrine organ due to its release of adipocytokines, which regulate lipid and glucose metabolism. However, most data on HCV infection and adipocytokine alteration are inconclusive. A comprehensive overview of HCV-associated metabolic and adipocytokine alterations, from bench to bedside, is presented in this topic highlight.

  11. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    NASA Astrophysics Data System (ADS)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  12. A new non-exercise-based Vo2max prediction equation for aerobically trained men.

    PubMed

    Malek, Moh H; Housh, Terry J; Berger, Dale E; Coburn, Jared W; Beck, Travis W

    2005-08-01

    The purposes of the present study were to (a) modify previously published Vo(2)max equations using the constant error (CE = mean difference between actual and predicted Vo(2)max) values from Malek et al. (28); (b) cross-validate the modified equations to determine their accuracy for estimating Vo(2)max in aerobically trained men; (c) derive a new non- exercise-based equation for estimating Vo(2)max in aerobically trained men if the modified equations are not found to be accurate; and (d) cross-validate the new Vo(2)max equation using the predicted residual sum of squares (PRESS) statistic and an independent sample of aerobically trained men. One hundred and fifty-two aerobically trained men (Vo(2)max mean +/- SD = 4,154 +/- 629 ml.min(-1)) performed a maximal incremental test on a cycle ergometer to determine actual Vo(2)max. An aerobically trained man was defined as someone who had participated in continuous aerobic exercise 3 or more sessions per week for a minimum of 1 hour per session for at least the past 18 months. Nine previously published Vo(2)max equations were modified for use with aerobically trained men. The predicted Vo(2)max values from the 9 modified equations were compared to actual Vo(2)max by examining the CE, standard error of estimate (SEE), validity coefficient (r), and total error (TE). Cross-validation of the modified non-exercise-based equations on a random subsample of 50 subjects resulted in a %TE > or = 13% of the mean of actual Vo(2)max. Therefore, the following non-exercise-based Vo(2)max equation was derived from a random subsample of 112 subjects: Vo(2)max (ml.min(-1)) = 27.387(weight in kg) + 26.634(height in cm) - 27.572(age in years) + 26.161(h.wk(-1) of training) + 114.904(intensity of training using the Borg 6-20 scale) + 506.752(natural log of years of training) - 4,609.791 (R = 0.82, R(2) adjusted = 0.65, and SEE = 378 ml.min(-1)). Cross-validation of this equation on the remaining sample of 40 subjects resulted in a %TE of 10

  13. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  14. Evacuated optical structure comprising optical bench mounted to sidewall of vacuum chamber in a manner which inhibits deflection and rotation of the optical bench

    DOEpatents

    Bowers, Joel M.

    1994-01-01

    An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz.

  15. Evacuated optical structure comprising optical bench mounted to sidewall of vacuum chamber in a manner which inhibits deflection and rotation of the optical bench

    DOEpatents

    Bowers, J.M.

    1994-04-19

    An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz. 10 figures.

  16. DESIGN, FABRICATION, ASSEMBLY AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Tom Leininger

    2001-03-31

    Reliable measurement of gasifier reaction chamber temperature is important for the proper operation of slagging, entrained-flow gasification processes. Historically, thermocouples have been used as the main measurement technique, with the temperature inferred from syngas methane concentration being used as a backup measurement. While these have been sufficient for plant operation in many cases, both techniques suffer from limitations. The response time of methane measurements is too slow to detect rapid upset conditions, and thermocouples are subject to long-term drift, as well as slag attack, which eventually leads to failure of the thermocouple. Texaco's Montebello Technology Center (MTC) has developed an infrared ratio pyrometer system for measuring gasifier reaction chamber temperature. This system has a faster response time than both methane and thermocouples, and has been demonstrated to provide reliable temperature measurements for longer periods of time when compared to thermocouples installed in the same MTC gasifier. In addition, the system can be applied to commercial gasifiers without any significant scale-up issues. The major equipment items, the purge system, and the safety shutdown system in a commercial plant are essentially identical to the prototypes at MTC. The desired result of this DOE program is ''a bench-scale prototype, either assembled or with critical components (laboratory) tested in a convincing manner.'' The prototype of the pyrometer system (including gasifier optical access port) that was designed, assembled and tested for this program, has had previous prototypes that have been built and successfully tested under actual coal and coke gasification conditions in three pilot units at MTC. It was the intent of the work performed under the auspices of this program to review and update the existing design, and to fabricate and bench test an updated system that can be field tested in one or more commercial gasifiers during a follow on phase

  17. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  18. A comparison of muscle activity in concentric and counter movement maximum bench press.

    PubMed

    van den Tillaar, Roland; Ettema, Gertjan

    2013-01-01

    The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ± 1.7 yrs, body mass 80.7 ± 10.9 kg, body height 1.79 ± 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position.

  19. Treatability study for the bench-scale solidification of nonincinerable LDR low-level mixed waste

    SciTech Connect

    Gering, K. L.

    1993-01-01

    The focus of this report is the solidification of nonincinerable, land disposal restricted (LDR) low-level mixed waste generated at the Idaho National Engineering Laboratory. Benchscale solidification was performed on samples of this mixed waste, which was done under a Resource Conservation and Recovery Act treatability study. Waste forms included liquids, sludges, and solids, and treatment techniques included the use of conventional Portland cement and sulphur polymer cement (SPC). A total of 113 monoliths were made under the experimental design matrix for this study; 8 of these were blank'' monoliths (contained no waste). Thus, 105 monoliths were used to solidify 21.6 kg of mixed waste; 92 were made with Portland cement systems, and 13 were made with SPC. Recipes for all monoliths are given, and suggested recipes (as based on the minimized leaching of toxic components) are summarized. In most cases, the results presented herein indicate that solidification was successful in immobilizing toxic metals, thereby transforming low-level mixed waste into low-level nonhazardous waste. The ultimate goal of this project is to use appropriate solidification techniques, as described in the literature, to transform low-level mixed waste to low-level nonhazardous waste by satisfying pertinent disposal requirements for this waste. Disposal requirements consider the toxicity characteristic leaching procedure tests, a free liquids test, and radiological analyses. This work is meaningful in that it will provide a basis for the disposal of waste that is currently categorized as LDR low-level mixed waste.

  20. BENCH-SCALE STUDIES ON THE FORMATION OF ENDOCRINE DISRUPTING CHEMICALS FROM COMBUSTION SOURCES

    EPA Science Inventory

    The paper discusses the formsation of endocrine disrupting compounds (EDCs) from precursors, such as phenol and chlorobenzens, under various combustion conditions. It gives results of an exploration of the effects of precursor and catalysys composition on homologue production an...