Science.gov

Sample records for aerobic capacity vo2

  1. Predicting maximal aerobic capacity (VO2max) from the critical velocity test in female collegiate rowers.

    PubMed

    Kendall, Kristina L; Fukuda, David H; Smith, Abbie E; Cramer, Joel T; Stout, Jeffrey R

    2012-03-01

    The objective of this study was to examine the relationship between the critical velocity (CV) test and maximal oxygen consumption (VO2max) and develop a regression equation to predict VO2max based on the CV test in female collegiate rowers. Thirty-five female (mean ± SD; age, 19.38 ± 1.3 years; height, 170.27 ± 6.07 cm; body mass, 69.58 ± 0.3 1 kg) collegiate rowers performed 2 incremental VO2max tests to volitional exhaustion on a Concept II Model D rowing ergometer to determine VO2max. After a 72-hour rest period, each rower completed 4 time trials at varying distances for the determination of CV and anaerobic rowing capacity (ARC). A positive correlation was observed between CV and absolute VO2max (r = 0.775, p < 0.001) and ARC and absolute VO2max (r = 0.414, p = 0.040). Based on the significant correlation analysis, a linear regression equation was developed to predict the absolute VO2max from CV and ARC (absolute VO2max = 1.579[CV] + 0.008[ARC] - 3.838; standard error of the estimate [SEE] = 0.192 L·min(-1)). Cross validation analyses were performed using an independent sample of 10 rowers. There was no significant difference between the mean predicted VO2max (3.02 L·min(-1)) and the observed VO2max (3.10 L·min(-1)). The constant error, SEE and validity coefficient (r) were 0.076 L·min(-1), 0.144 L·min(-1), and 0.72, respectively. The total error value was 0.155 L·min(-1). The positive relationship between CV, ARC, and VO2max suggests that the CV test may be a practical alternative to measuring the maximal oxygen uptake in the absence of a metabolic cart. Additional studies are needed to validate the regression equation using a larger sample size and different populations (junior- and senior-level female rowers) and to determine the accuracy of the equation in tracking changes after a training intervention.

  2. Bedrest-induced peak VO2 reduction associated with age, gender, and aerobic capacity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1986-01-01

    A study measuring the peak oxygen uptake (V02), heart rate (HR), and exercise tolerance time of 15 men of 55 + or - 2 yr and 17 women of 55 + or - 1 yr after 10 days of continuous bed rest (BR) is presented. The experimental conditions and procedures are described. Following BR a decrease in peak VO2 of 8.4 percent in men and 6.8 percent in women, a reduction in exercise tolerance time by 8.1 percent in men and 7.3 percent in women, and an increse in HR of 4.4 percent and 1.3 percent for men and women, respectively, are observed. These data are compared with data from Convertino et al. (1977) for men 21 + or - 1 yr and women 28 + or - 2yr. It is concluded that BR-induced aerobic deconditioning is independent of age and sex, since the relative decrease in peak V02 in the older and younger subjects and men and women are similar.

  3. Contributions of Astronauts Aerobic Exercise Intensity and Time on Change in VO2peak during Spaceflight

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Buxton, Roxanne; Moore, Alan; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori

    2014-01-01

    There is considerable variability among astronauts with respect to changes in maximal aerobic capacity (VO2peak) during International Space Station (ISS) missions, ranging from a 5% increase to 30% decline. Individual differences may be due to in-flight aerobic exercise time and intensity. PURPOSE: To evaluate the effects of in-flight aerobic exercise time and intensity on change in VO2peak during ISS missions. METHODS: Astronauts (N=11) performed peak cycle tests approx 60 days before flight (L-60), on flight day (FD) approx 14, and every approx 30 days thereafter. Metabolic gas analysis and heart rate (HR) were measured continuously during the test using the portable pulmonary function system. HR and duration of each in-flight cycle ergometer and treadmill (TM) session were recorded and averaged in time segments corresponding to each peak test. Mixed effects linear regression with exercise mode (TM or cycle) as a categorical variable was used to assess the contributions of exercise intensity (%time >70% peak HR or %time >90% peak HR) and time (min/wk), adjusted for body weight, on %change in VO2peak during the mission, and incorporating the repeated-measures experimental design. RESULTS: 110 observations were included in the model (4-6 peak cycle tests per astronaut, 2 exercise devices). VO2peak was reduced from preflight throughout the mission (FD14: 13+/-13% and FD 105: 8+/-10%). Exercise intensity (%peak HR: FD14=66+/-14; FD105=75+/-8) and time (min/wk: FD14=82+/-46; FD105=158+/-40) increased during flight. The models showed main effects for exercise time and intensity with no interactions between time, intensity, and device (70% peak HR: time [z-score=2.39; P=0.017], intensity [z-score=3.51; P=0.000]; 90% peak HR: time [zscore= 3.31; P=0.001], intensity [z-score=2.24; P=0.025]). CONCLUSION: Exercise time and intensity independently contribute to %change in VO2peak during ISS missions, indicating that there are minimal values for exercise time and intensity

  4. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis.

    PubMed

    Sloth, M; Sloth, D; Overgaard, K; Dalgas, U

    2013-12-01

    Recently, several studies have examined whether low-volume sprint interval training (SIT) may improve aerobic and metabolic function. The objective of this study was to systematically review the existing literature regarding the aerobic and metabolic effects of SIT in healthy sedentary or recreationally active adults. A systematic literature search was performed (Bibliotek.dk, SPORTDiscus, Embase, PEDro, SveMed+, and Pubmed). Meta-analytical procedures were applied evaluating effects on maximal oxygen consumption (VO2max). Nineteen unique studies [four randomized controlled trials (RCTs), nine matched-controlled trials and six noncontrolled studies] were identified, evaluating SIT interventions lasting 2-8 weeks. Strong evidence support improvements of aerobic exercise performance and VO2max following SIT. A meta-analysis across 13 studies evaluating effects of SIT on VO2max showed a weighted mean effects size of g = 0.63 95% CI (0.39; 0.87) and VO2max increases of 4.2-13.4%. Solid evidence support peripheral adaptations known to increase the oxidative potential of the muscle following SIT, whereas evidence regarding central adaptations was limited and equivocal. Some evidence indicated changes in substrate oxidation at rest and during exercise as well as improved glycemic control and insulin sensitivity following SIT. In conclusion, strong evidence support improvement of aerobic exercise performance and VO2max following SIT, which coincides with peripheral muscular adaptations. Future RCTs on long-term SIT and underlying mechanisms are warranted.

  5. The aerobic fitness (VO2 peak) and alpha-fibrinogen genetic polymorphism in obese and non-obese Chinese boys.

    PubMed

    He, Z-H; Ma, L-H

    2005-05-01

    The purpose of the study was to compare the aerobic fitness (VO (2) peak) between obese and non-obese boys at pre-puberty and examine the effect of body composition on VO (2) peak in this cohort with reference to TaqI polymorphism at alpha-fibrinogen gene locus. Seventy-seven Chinese boys with similar lifestyle participated in the study. Among them, 47 were diagnosed as obese. VO (2) peak was measured by a treadmill test and body composition was assessed via a combined anthropometrical and bioelectrical impedance analysis method. The alpha-fibrinogen genetic polymorphism was detected through PCR-based digestion with TaqI restriction enzyme. The results indicated that VO (2) peak was significantly lower in obese boys compared with normal weight counterparts when the data were expressed either in conventional ratio unit (ml (-1) . min (-1) . lean body weight [LBW] (-1)) or in allometric unit (ml (-1) . min (-1) . body weight [BW] (-2/3)). LBW, fat mass (FM), and body fat content (BF %) all were correlated with VO (2) peak, while LBW was the strongest predictor. The relationship between body composition and VO (2) peak seemed quite comparable across different alpha-fibrinogen genotypes. Significant difference was observed between obese and non-obese boys in terms of the proportion of genotypes and frequency of alleles. T1T1 homozygotes had higher risk for obesity. We came to the conclusion that prepubertal obese boys exhibited impaired aerobic fitness compared with their normal weight peers. VO (2) peak is closely related to LBW and independent of FM. This relationship remains constant irrespective of the TaqI alpha-fibrinogen genotypes that may be associated with fatness in boys.

  6. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity.

    PubMed

    Boushel, R; Gnaiger, E; Larsen, F J; Helge, J W; González-Alonso, J; Ara, I; Munch-Andersen, T; van Hall, G; Søndergaard, H; Saltin, B; Calbet, J A L

    2015-12-01

    We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy of the vastus lateralis in healthy volunteers (7 male, 2 female) before and after 42 days of skiing at 60% HR max. Peak pulmonary VO2 (3.52 ± 0.18 L.min(-1) pre vs 3.52 ± 0.19 post) and VO2 across the leg (2.8 ± 0.4L.min(-1) pre vs 3.0 ± 0.2 post) were unchanged after the ski journey. Peak leg O2 delivery (3.6 ± 0.2 L.min(-1) pre vs 3.8 ± 0.4 post), O2 extraction (82 ± 1% pre vs 83 ± 1 post), and muscle capillaries per mm(2) (576 ± 17 pre vs 612 ± 28 post) were also unchanged; however, leg muscle mitochondrial OXPHOS capacity was reduced (90 ± 3 pmol.sec(-1) .mg(-1) pre vs 70 ± 2 post, P < 0.05) as was citrate synthase activity (40 ± 3 μmol.min(-1) .g(-1) pre vs 34 ± 3 vs P < 0.05). These findings indicate that peak muscle VO2 can be sustained with a substantial reduction in mitochondrial OXPHOS capacity. This is achieved at a similar O2 delivery and a higher relative ADP-stimulated mitochondrial respiration at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand.

  7. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  8. Aerobic capacity in wild satin bowerbirds: repeatability and effects of age, sex and condition.

    PubMed

    Chappell, Mark A; Savard, Jean-Francois; Siani, Jennifer; Coleman, Seth W; Keagy, Jason; Borgia, Gerald

    2011-10-01

    Individual variation in aerobic capacity has been extensively studied, especially with respect to condition, maturity or pathogen infection, and to gain insights into mechanistic foundations of performance. However, its relationship to mate competition is less well understood, particularly for animals in natural habitats. We examined aerobic capacity [maximum rate of O2 consumption (VO2,max) in forced exercise] in wild satin bowerbirds, an Australian passerine with a non-resource based mating system and strong intermale sexual competition. We tested for repeatability of mass and VO2,max, differences among age and sex classes, and effects of several condition indices. In adult males, we examined interactions between aerobic performance and bower ownership (required for male mating success). There was significant repeatability of mass and VO2,max within and between years, but between-year repeatability was lower than within-year repeatability. VO2,max varied with an overall scaling to mass(0.791), but most variance in VO2,max was not explained by mass. Indicators of condition (tarsus and wing length asymmetry, the ratio of tarsus length to mass) were not correlated to VO2,max. Ectoparasite counts were weakly correlated to VO2,max across all age-sex classes but not within any class. Adult males, the cohort with the most intense levels of mating competition, had higher VO2,max than juvenile birds or adult females. However, there was no difference between the VO2,max of bower-owning males and that of males not known to hold bowers. Thus one major factor determining male reproductive success was not correlated to aerobic performance. PMID:21900466

  9. Comparing the effects of two in-flight aerobic exercise protocols on standing heart rates and VO(2peak) before and after space flight

    NASA Technical Reports Server (NTRS)

    Siconolfi, S. F.; Charles, J. B.; Moore, A. D. Jr; Barrows, L. H.

    1994-01-01

    The effects of regular aerobic exercise on orthostatic tolerance have been the subject of a long-standing controversy that will influence the use of exercise during space flight. To examine these effects, astronauts performed continuous (CE) aerobic exercise (n = 8), interval (IE) aerobic exercise (n = 4), or no (NE) exercise (n = 5) during flights of 7 to 11 days. Heart rate (HR) responses to an orthostatic challenge (stand test) were measured 10 days before flight and on landing day. VO(2peak) (graded treadmill exercise) was measured 7 to 21 days before and 2 days after flight. No significant differences across the groups were observed in standing HRs before or after flight. However, the within-group mean HRs significantly increased in the NE (71-89 beats/min) and CE (60-85 beats/min) groups after space flight. The HRs for the IE group did not significantly increase (75-86 beats/min) after space flight. VO(2peak) decreased (P < .05) in the NE (-9.5%) group, but did not change in the CE (-2.4%) and IE (1%) groups. The relationship (r = 0.237) between the delta HR and delta VO(2peak) was not significant. These preliminary results indicate that: (1) continuous exercise does not affect the orthostatic HR response after space flight; (2) interval exercise may minimize an increase in the postflight orthostatic HR; and (3) both exercise protocols can maintain VO(2peak).

  10. Improved VO2max and time trial performance with more high aerobic intensity interval training and reduced training volume: a case study on an elite national cyclist.

    PubMed

    Støren, Øyvind; Bratland-Sanda, Solfrid; Haave, Marius; Helgerud, Jan

    2012-10-01

    The present study investigated to what extent more high aerobic intensity interval training (HAIT) and reduced training volume would influence maximal oxygen uptake (VO2max) and time trial (TT) performance in an elite national cyclist in the preseason period. The cyclist was tested for VO2max, cycling economy (C(c)), and TT performance on an ergometer cycle during 1 year. Training was continuously logged using heart rate monitor during the entire period. Total monthly training volume was reduced in the 2011 preseason compared with the 2010 preseason, and 2 HAIT blocks (14 sessions in 9 days and 15 sessions in 10 days) were performed as running. Between the HAIT blocks, 3 HAIT sessions per week were performed as cycling. From November 2010 to February 2011, the cyclist reduced total average monthly training volume by 18% and cycling training volume by 60%. The amount of training at 90-95% HRpeak increased by 41%. VO2max increased by 10.3% on ergometer cycle. TT performance improved by 14.9%. C(c) did not change. In conclusion, preseason reduced total training volume but increased amount of HAIT improved VO2max and TT performance without any changes in C(c). These improvements on cycling appeared despite that the HAIT blocks were performed as running. Reduced training time, and training transfer from running into improved cycling form, may be beneficial for cyclists living in cold climate areas.

  11. Effect of alpha 1-adrenoceptor blockade on maximal VO2 and endurance capacity in well-trained athletic hypertensive men.

    PubMed

    Tomten, S E; Kjeldsen, S E; Nilsson, S; Westheim, A S

    1994-07-01

    The effect of alpha 1-adrenoceptor blockade (doxazosin, 4 mg daily) on maximal VO2 and physical endurance capacity in 16 mildly hypertensive, athletic men was investigated in a randomized, placebo-controlled, double-blind, two-period of 4 weeks, cross-over study. The maximal workload obtained during graded bicycle ergometer exercise and the corresponding maximal VO2 were reduced by 16 +/- 3 W (mean +/- SE), (P = .00003) and 3 +/- 1 mL/(kg.min) (P = .0004), respectively, on doxazosin compared with placebo. The running time on a 5000 m track increased by 43 +/- 12 sec on doxazosin (P = .04). Heart rate was unchanged during the running session. Systolic blood pressure was reduced by 9 +/- 4.1 mm Hg (P = .04) immediately after finishing 5000 m. Six subjects reported side effects from doxazosin (headache, fatigue, and leg pain). Thus, antihypertensive treatment with alpha 1-selective adrenoceptor blockade moderately, but significantly, reduces maximal O2 consumption and high intensity physical endurance capacity in mildly hypertensive athletic men. Significantly reduced systolic blood pressure and unchanged heart rate immediately after running, combined with unchanged heart rate during the race may, however, suggest a safer exercise performance.

  12. Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR(-/-) mice: a paradox of preserved V'O2max and exercise capacity despite coronary atherosclerosis.

    PubMed

    Wojewoda, M; Tyrankiewicz, U; Gwozdz, P; Skorka, T; Jablonska, M; Orzylowska, A; Jasinski, K; Jasztal, A; Przyborowski, K; Kostogrys, R B; Zoladz, J A; Chlopicki, S

    2016-01-01

    We assessed exercise performance, coronary blood flow and cardiac reserve of female ApoE/LDLR(-/-) mice with advanced atherosclerosis compared with age-matched, wild-type C57BL6/J mice. Exercise capacity was assessed as whole body maximal oxygen consumption (V'O2max), maximum running velocity (vmax) and maximum distance (DISTmax) during treadmill exercise. Cardiac systolic and diastolic function in basal conditions and in response to dobutamine (mimicking exercise-induced cardiac stress) were assessed by Magnetic Resonance Imaging (MRI) in vivo. Function of coronary circulation was assessed in isolated perfused hearts. In female ApoE/LDLR(-/-) mice V'O2max, vmax and DISTmax were not impaired as compared with C57BL6/J mice. Cardiac function at rest and systolic and diastolic cardiac reserve were also preserved in female ApoE/LDLR(-/-) mice as evidenced by preserved fractional area change and similar fall in systolic and end diastolic area after dobutamine. Moreover, endothelium-dependent responses of coronary circulation induced by bradykinin (Bk) and acetylcholine (ACh) were preserved, while endothelium-independent responses induced by NO-donors were augmented in female ApoE/LDLR(-/-) mice. Basal COX-2-dependent production of 6-keto-PGF1α was increased. Concluding, we suggest that robust compensatory mechanisms in coronary circulation involving PGI2- and NO-pathways may efficiently counterbalance coronary atherosclerosis-induced impairment in V'O2max and exercise capacity. PMID:27108697

  13. Aerobic capacity and anaerobic threshold of wheelchair basketball players.

    PubMed

    Rotstein, A; Sagiv, M; Ben-Sira, D; Werber, G; Hutzler, J; Annenburg, H

    1994-03-01

    This study evaluated the aerobic capacity and anaerobic threshold of national level Israeli wheelchair basketball players. Subjects were tested working on a wheelchair rolling on a motor driven treadmill and on an arm cycle ergometer. Metabolic and cardiopulmonary parameters were measured during graded maximal exercise tests. Blood lactic acid (LA) concentration was measured in the intervals between loads during the test on the wheelchair. Heart rate (HR) and % heart rate reserve (%HRR) corresponding to the anaerobic threshold (4 mM blood LA) were evaluated while working on the wheelchair rolling on a motor driven treadmill. While working on the wheelchair the following peak exercise values were obtained: VO2 = 24.7 ml.kg/min, VE = 92.09 l/min HR = 181.5 b/min and R = 1.22. Values corresponding to the anaerobic threshold were found to be, HR = 139 b/min and %HRR = 57.02. Low correlations were obtained between peak exercise VO2 and VE measured while working on the wheelchair and those measured with arm cycle ergometer (r = 0.57 p = 0.137 and r = 0.4 p = 0.233 respectively). As athletes, subjects in the present study may be classified as having a low aerobic capacity and anaerobic threshold. It is also concluded that the ergometer type may have an important influence on test results.

  14. Elevated energy coupling and aerobic capacity improves exercise performance in endurance-trained elderly subjects.

    PubMed

    Conley, Kevin E; Jubrias, Sharon A; Cress, M Elaine; Esselman, Peter C

    2013-04-01

    Increased maximal oxygen uptake (V(O(2)max)), mitochondrial capacity and energy coupling efficiency are reported after endurance training (ET) in adult subjects. Here we test whether leg exercise performance (power output of the legs, P(max), at V(O(2)max)) reflects these improvements with ET in the elderly. Fifteen male and female subjects were endurance trained for a 6 month programme, with 13 subjects (69.5 ± 1.2 years old, range 65-80 years old; n = 7 males; n = 6 females) completing the study. This training significantly improved P(max) (Δ17%; P = 0.003), V(O(2)max) (Δ5.4%; P = 0.021) and the increment in oxygen uptake (V(O(2))) above resting (ΔV(O(2)m-r) = V(O(2)max) - V(O(2)rest; Δ9%; P < 0.02). In addition, evidence of improved energy coupling came from elevated leg power output per unit V(O(2))at the aerobic capacity [Δ(P(max)/ΔV(O(2)m-r)); P = 0.02] and during submaximal exercise in the ramp test as measured by delta efficiency (ΔP(ex)/ΔV(O(2)); P = 0.04). No change was found in blood lactate, muscle glycolysis or fibre type. The rise in P(max) paralleled the improvement in muscle oxidative phosphorylation capacity (ATP(max)) in these subjects. In addition, the greater exercise energy coupling [Δ(P(max)/ΔV(O(2)m-r)) and delta efficiency] was accompanied by increased mitochondrial energy coupling as measured by elevated ATP production per unit mitochondrial content in these subjects. These results suggest that leg exercise performance benefits from elevations in energy coupling and oxidative phosphorylation capacity at both the whole-body and muscle levels that accompany endurance training in the elderly.

  15. Supplementary Low-Intensity Aerobic Training Improves Aerobic Capacity and Does Not Affect Psychomotor Performance in Professional Female Ballet Dancers

    PubMed Central

    Smol, Ewelina; Fredyk, Artur

    2012-01-01

    We investigated whether 6-week low-intensity aerobic training program used as a supplement to regular dance practice might improve both the aerobic capacity and psychomotor performance in female ballet dancers. To assess their maximal oxygen uptake (VO2max) and anaerobic threshold (AT), the dancers performed a standard graded bicycle ergometer exercise test until volitional exhaustion prior to and after the supplementary training. At both these occasions, the psychomotor performance (assessed as multiple choice reaction time) and number of correct responses to audio-visual stimuli was assessed at rest and immediately after cessation of maximal intensity exercise. The supplementary low-intensity exercise training increased VO2max and markedly shifted AT toward higher absolute workload. Immediately after completion of the graded exercise to volitional exhaustion, the ballerinas’ psychomotor performance remained at the pre-exercise (resting) level. Neither the resting nor the maximal multiple choice reaction time and accuracy of responses were affected by the supplementary aerobic training. The results of this study indicate that addition of low-intensity aerobic training to regular dance practice increases aerobic capacity of ballerinas with no loss of speed and accuracy of their psychomotor reaction. PMID:23485962

  16. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers

    PubMed Central

    Kim, Chul-Ho

    2016-01-01

    Aging is associated with a fall in maximal aerobic capacity as well as with a decline in lean body mass. The purpose of the study was to investigate the influence of aging on the relationship between aerobic capacity and lean body mass in subjects that chronically train both their upper and lower bodies. Eleven older rowers (58±5 yrs) and 11 younger rowers (27±4 yrs) participated in the study. Prior to the VO2max testing, subjects underwent a dual energy X-ray absorptiometry scan to estimate total lean body mass. Subsequently, VO2max was quantified during a maximal exercise test on a rowing ergometer as well as a semi-recumbent cycle ergometer. The test protocol included a pre-exercise stage followed by incremental exercise until VO2max was reached. The order of exercise modes was randomized and there was a wash-out period between the two tests. Oxygen uptake was obtained via a breath-by-breath metabolic cart (Vmax™ Encore, San Diego, CA). Rowing VO2max was higher than cycling VO2max in both groups (p<0.05). Older subjects had less of an increase in VO2max from cycling to rowing (p<0.05). There was a significant relationship between muscle mass and VO2max for both groups (p<0.05). After correcting for muscle mass, the difference in cycling VO2max between groups disappeared (p>0.05), however, older subjects still demonstrated a lower rowing VO2max relative to younger subjects (p<0.05). Muscle mass is associated with the VO2max obtained, however, it appears that VO2max in older subjects may be less influenced by muscle mass than in younger subjects. PMID:27479009

  17. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers.

    PubMed

    Kim, Chul-Ho; Wheatley, Courtney M; Behnia, Mehrdad; Johnson, Bruce D

    2016-01-01

    Aging is associated with a fall in maximal aerobic capacity as well as with a decline in lean body mass. The purpose of the study was to investigate the influence of aging on the relationship between aerobic capacity and lean body mass in subjects that chronically train both their upper and lower bodies. Eleven older rowers (58±5 yrs) and 11 younger rowers (27±4 yrs) participated in the study. Prior to the VO2max testing, subjects underwent a dual energy X-ray absorptiometry scan to estimate total lean body mass. Subsequently, VO2max was quantified during a maximal exercise test on a rowing ergometer as well as a semi-recumbent cycle ergometer. The test protocol included a pre-exercise stage followed by incremental exercise until VO2max was reached. The order of exercise modes was randomized and there was a wash-out period between the two tests. Oxygen uptake was obtained via a breath-by-breath metabolic cart (Vmax™ Encore, San Diego, CA). Rowing VO2max was higher than cycling VO2max in both groups (p<0.05). Older subjects had less of an increase in VO2max from cycling to rowing (p<0.05). There was a significant relationship between muscle mass and VO2max for both groups (p<0.05). After correcting for muscle mass, the difference in cycling VO2max between groups disappeared (p>0.05), however, older subjects still demonstrated a lower rowing VO2max relative to younger subjects (p<0.05). Muscle mass is associated with the VO2max obtained, however, it appears that VO2max in older subjects may be less influenced by muscle mass than in younger subjects. PMID:27479009

  18. [Aerobic capacity and quality of life in school children from 8 to 12].

    PubMed

    Gálvez Casas, Arancha; Rodríguez García, Pedro L; García-Cantó, Eliseo; Rosa Guillamón, Andrés; Pérez-Soto, Juan J; Tarraga Marcos, Loreto; Tarraga Lopez, Pedro

    2015-01-01

    Aerobic capacity is a powerful physiological indicator of the overall health status. The objective of this study was to analyse the relationship between aerobic capacity and quality of life in a sample of 298 (159 girls) school children aged 8-12 years. Aerobic capacity was tested using the Course-Navette test. Quality of life was assessed using the KIDSCREEN-10 Index scale. Males showed higher performance in the Course-Navette test and highest values of VO2max (P<.001 for both). ANOVA statistical analysis showed that the quality of life was significantly higher in school children with increased level of aerobic capacity compared to those with a low level (P=.001). Children with high aerobic capacity showed higher quality of life scores in relation to their peers with low scores (P<.001). As for the females, significant differences were found among those with high aerobic capacity level and their peers low levels (P<.031). The results of this study suggest that school children with higher level of aerobic capacity show better results in the quality of life index. Long-term intervention studies are needed to verify if an aerobic capacity development programme may upgrade the quality of life of children and adolescents.

  19. Predation intensity does not cause microevolutionary change in maximum speed or aerobic capacity in trinidadian guppies (Poecilia reticulata Peters).

    PubMed

    Chappell, Mark; Odell, Jason

    2004-01-01

    We measured maximal oxygen consumption (VO(2max)) and burst speed in populations of Trinidadian guppies (Poecilia reticulata) from contrasting high- and low-predation habitats but reared in "common garden" conditions. We tested two hypothesis: first, that predation, which causes rapid life-history evolution in guppies, also impacts locomotor physiology, and second, that trade-offs would occur between burst and aerobic performance. VO(2max) was higher than predicted from allometry, and resting VO(2) was lower than predicted. There were small interdrainage differences in male VO(2max), but predation did not affect VO(2max) in either sex. Maximum burst speed was correlated with size; absolute burst speed was higher in females, but size-adjusted speed was greater in males. For both sexes, burst speed conformed to allometric predictions. There were differences in burst speed between drainages in females, but predation regime did not affect burst speed in either sex. We did not find a significant correlation between burst speed and VO(2max), suggesting no trade-off between these traits. These results indicate that predation-mediated evolution of guppy life history does not produce concomitant evolution in aerobic capacity and maximum burst speed. However, other aspects of swimming performance (response latencies or acceleration) might show adaptive divergence in contrasting predation regimes.

  20. The association between ace gene variation and aerobic capacity in winter endurance disciplines.

    PubMed

    Orysiak, J; Zmijewski, P; Klusiewicz, A; Kaliszewski, P; Malczewska-Lenczowska, J; Gajewski, J; Pokrywka, A

    2013-12-01

    The aim of the study was to examine the possible relationship between I/D polymorphism of ACE gene and selected indices of aerobic capacity among male and female athletes practising winter endurance sports. Sixty-six well-trained athletes (female n = 26, male n = 40), aged 18.4 ± 2.8 years, representing winter endurance sports (cross-country skiing, n = 48; biathlon, n = 8; Nordic combined, n = 10) participated in the study. Genotyping for ACE I/D polymorphism was performed using polymerase chain reaction. Maximal oxygen consumption (VO2max), maximal running velocity (Vmax) and running velocity at anaerobic threshold (VAT4) were determined in an incremental test to volitional exhaustion on a motorized treadmill. The ACE genotype had no significant effect on absolute VO2max, relative VO2max (divided by body mass or fat free body mass), VAT4 or Vmax. No interaction effect of gender x ACE genotype was found for each of the examined aerobic capacity indices. ACE gene variation was not found to be a determinant of aerobic capacity in either female or male Polish, well-trained endurance athletes participating in winter sports.

  1. Effect of range of motion on aerobic capacity in adults with cerebral palsy.

    PubMed

    You, J; Yamasaki, M

    2015-04-01

    The aim of the study was to examine the relationship between whole body range of motion (ROM) and aerobic capacity based on the fact that motor ability is closely related to ROM in adults with cerebral palsy (CP). The subjects were ambulant adults with CP (N=56). Their age, height, weight, and BMI were 36.4±9.2 years, 162.6±9.5 cm, 58.9±11.0 kg, and 22.2±3.4 kg·m (- 2), respectively. Active ROM (AROM) was measured in this study. Measurements included 25 AROMs of the cervical spine, shoulder, elbow, wrist, hip, knee, and ankle. Peak oxygen uptake (VO2peak) was measured during a maximal treadmill test. Correlation analysis revealed that shoulder abduction and hip abduction were significantly associated with many other AROMs. Many AROMs including the cervical spine (rotation), shoulder (flexion, extension, and abduction), hip (internal rotation, external rotation, abduction and adduction), knee (flexion) and ankle (dorsiflexion and plantarflexion) were significantly correlated with VO2peak (p<0.05). The highest correlation coefficient was observed in the relationship between ankle dorsiflexion and VO2peak (p<0.01). Ankle dorsiflexion and cervical rotation of AROMs were maintained within the regression model of factors associated with VO2peak. The present study demonstrated a strong relationship between ankle dorsiflexion and cervical rotation of AROMs and VO2peak in ambulant adults with CP.

  2. Relationship between Repeated Sprint Ability and Aerobic Capacity in Professional Soccer Players

    PubMed Central

    Jones, Rhys M.; Cook, Christian C.; Kilduff, Liam P.; Milanović, Zoran; James, Nic; Sporiš, Goran; Fiorentini, Bruno; Fiorentini, Fredi; Turner, Anthony; Vučković, Goran

    2013-01-01

    Aim. The aim of the present study was to investigate the relationship between maximal aerobic capacity (VO2 max) and repeated sprint ability (RSA) in a group of professional soccer players. Methods. Forty-one professional soccer players (age 23 ± 4 yrs, height 180.0 ± 5.3 cm, weight 79.6 ± 5.3 kg) were required to perform tests to assess RSA and VO2 max on two separate days with at least 48 hr rest between testing sessions. Each player performed a treadmill test to determine their VO2 max and a test for RSA involving the players completing 6 × 40 m sprints (turn after 20 m) with 20 s active recovery between each sprint. Results. There was a significant negative correlation between body mass normalised VO2 max and mean sprint time (RSAmean) (r = −0.655; P < 0.01) and total sprint time (RSAtotal) (r = −0.591, P < 0.01). Conclusion. Results of the current study indicate that VO2 max is one important factor aiding soccer players in the recovery from repeated sprint type activities. PMID:24198732

  3. Cardiovascular Autonomic Nervous System Function and Aerobic Capacity in Type 1 Diabetes

    PubMed Central

    Hägglund, Harriet; Uusitalo, Arja; Peltonen, Juha E.; Koponen, Anne S.; Aho, Jyrki; Tiinanen, Suvi; Seppänen, Tapio; Tulppo, Mikko; Tikkanen, Heikki O.

    2012-01-01

    Impaired cardiovascular autonomic nervous system (ANS) function has been reported in type 1 diabetes (T1D) patients. ANS function, evaluated by heart rate variability (HRV), systolic blood pressure variability (SBPV), and baroreflex sensitivity (BRS), has been linked to aerobic capacity (VO2peak) in healthy subjects, but this relationship is unknown in T1D. We examined cardiovascular ANS function at rest and during function tests, and its relations to VO2peak in T1D individuals. Ten T1D patients (34 ± 7 years) and 11 healthy control (CON; 31 ± 6 years) age and leisure-time physical activity-matched men were studied. ANS function was recorded at rest and during active standing and handgrip. Determination of VO2peak was obtained with a graded cycle ergometer test. During ANS recordings SBPV, BRS, and resting HRV did not differ between groups, but alpha1 responses to maneuvers in detrended fluctuation analyses were smaller in T1D (active standing; 32%, handgrip; 20%, medians) than in CON (active standing; 71%, handgrip; 54%, p < 0.05). VO2peak was lower in T1D (36 ± 4 ml kg−1 min−1) than in CON (45 ± 9 ml kg−1 min−1, p < 0.05). Resting HRV measures, RMSSD, HF, and SD1 correlated with VO2peak in CON (p < 0.05) and when analyzing groups together. These results suggest that T1D had lower VO2peak, weaker HRV response to maneuvers, but not impaired cardiovascular ANS function at rest compared with CON. Resting parasympathetic cardiac activity correlated with VO2peak in CON but not in T1D. Detrended fluctuation analysis could be a sensitive detector of changes in cardiac ANS function in T1D. PMID:22973238

  4. Aerobic Capacity Following Long Duration International Spaces Station (ISS) Missions: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.

    2010-01-01

    Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting <15 d, but has not been measured following long-duration missions. The purpose of this study is to measure VO2max and maximum work rate (WRmax) data from astronauts following ISS flights (91 to 188 d). Methods: Five astronauts [3 M, 2 F: 47+/-6 yr, 174+/-6 cm, 71.9+/-10.9 kg (mean +/- SD)] have participated in the study. Subjects performed upright cycle exercise tests to symptom-limited maximum. An initial test was done approx.270 d before flight to establish work rates for subsequent tests. Subsequent tests, conducted approx.45 d before flight and repeated on the first or second day (R+1/2) and at approx.10 d (R+10) following landing, consisted of 3 5 min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W(dot)/min increases. VO2, WR, and heart rate (HR) were measured using the ISS Portable Pulmonary Function System [Damec, Odense, DK]. Descriptive statistics are reported. Results: On R+1/2 mean VO2max decreased compared to preflight (Pre: 2.98+/-0.99, R+1/2: 2.63+/-0.56 L(dot)/min); 4 of 5 subjects demonstrated a loss of > 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.

  5. Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions (VO2max) will document changes in maximum oxygen uptake for crewmembers onboard the International Space Station (ISS) on long-duration missions, greater than 90 days. This investigation will establish the characteristics of VO2max during flight and assess the validity of the current methods of tracking aerobic capacity change during and following the ISS missions.

  6. Decreased maximal aerobic capacity with use of a triphasic oral contraceptive in highly active women: a randomised controlled trial

    PubMed Central

    Lebrun, C; Petit, M; McKenzie, D; Taunton, J; Prior, J

    2003-01-01

    Background: Oral contraceptives are commonly used by women athletes. However, their effect on athletic performance is unclear. Objectives: To examine the effects of a moderate dose, triphasic oral contraceptive on measures of athletic performance in highly trained women athletes. Methods: This is a double blind, placebo controlled trial in 14 women with ovulatory menstrual cycles and maximal aerobic capacity (VO2MAX) ≥50 ml/kg/min. Four measures of athletic performance were tested: VO2MAX, anaerobic capacity (anaerobic speed test), aerobic endurance (time to fatigue at 90% of VO2MAX), and isokinetic strength (Cybex II dynamometer). Height, weight, and six skinfold measurements were also recorded. All these observational tests were completed during both the follicular and mid-luteal phases of an ovulatory menstrual cycle. Cycle phases were confirmed by assaying plasma oestradiol and progesterone. Participants were subsequently randomly assigned to either a tricyclic oral contraceptive or placebo and retested in identical fashion (oral contraceptive phase). Results: Absolute and relative changes in VO2MAX from follicular to oral contraceptive phase decreased in the oral contraceptive group by 4.7%, whereas the placebo group showed a slight increase (+1.5%) over the same time period. Two of the women taking oral contraceptive had decreases of 4 and 9 ml/kg/min. In contrast, most women in the placebo group improved or maintained VO2MAX. There was also a significant increase in the sum of skinfolds in women taking oral contraceptive compared with those taking placebo (p<0.01). There were no significant changes in other physiological variables (maximum ventilation, heart rate, respiratory exchange ratio, packed cell volume) or measures of performance (anaerobic speed test, aerobic endurance, isokinetic strength) as a function of oral contraceptive treatment. Conclusions: The decrease in VO2MAX that occurs when oral contraceptive is taken may influence elite sporting

  7. Combined effects of inspired oxygen, carbon dioxide, and carbon monoxide on oxygen transport and aerobic capacity.

    PubMed

    Crocker, George H; Toth, Balazs; Jones, James H

    2013-09-01

    We hypothesized that breathing hypoxic, hypercapnic, and CO-containing gases together reduces maximal aerobic capacity (Vo2max) as the sum of each gas' individual effect on Vo2max. To test this hypothesis, goats breathed combinations of inspired O2 fraction (FiO2) of 0.06-0.21 and inspired CO2 fraction of 0.00 or 0.05, with and without inspired CO that elevated carboxyhemoglobin fraction (FHbCO) to 0.02-0.45, while running on a treadmill at speeds eliciting Vo2max. Individually, hypoxia and elevated FHbCO decreased fractional Vo2max (FVo2max, fraction of a goat's Vo2max breathing air) in linear, dose-dependent manners; hypercapnia did not change Vo2max. Concomitant hypoxia and elevated FHbCO decreased Vo2max less than the individual gas effects summed, indicating their combined effects on Vo2max are attenuated, fitting the following regression: FVo2max = 4.24 FiO2 + 0.519 FHbCO - 8.22 (FiO2 × FHbCO) + 0.117, (R(2) = 0.965, P < 0.001). The FVo2max correlated highly with total cardiopulmonary O2 delivery, not peripheral diffusing capacity, and with arterial O2 concentration (CaO2), not cardiac output. Hypoxia and elevated FHbCO decreased CaO2 by different mechanisms: hypoxia decreased arterial O2 saturation (SaO2), whereas elevated FHbCO decreased O2 capacitance {concentration of hemoglobin (Hb) available to bind O2 ([Hbavail])}. When breathing hypoxic gas (FiO2 0.12), CaO2 did not change with increasing FHbCO up to 0.30 because higher SaO2 of Hbavail offset decreased [Hbavail] due to the following: 1) hyperventilation with hypoxia and/or elevated FHbCO; 2) increased Hb affinity for O2 due to both Bohr and direct carboxyhemoglobin effects; and 3) the sigmoid relationship between O2 saturation and partial pressure elevating SaO2 more with hypoxia than normoxia.

  8. An investigation of factors limiting aerobic capacity in patients with ankylosing spondylitis.

    PubMed

    Carter, R; Riantawan, P; Banham, S W; Sturrock, R D

    1999-10-01

    Ankylosing spondylitis (AS) has been shown to produce exercise limitation and breathlessness. The purpose of this study was to investigate factors which may be responsible for limiting aerobic capacity in patients with AS. Twenty patients with no other cardio-respiratory disease performed integrative cardiopulmonary exercise testing (CPET). The results were compared to 20 age and gender matched healthy controls. Variables that might influence exercise tolerance, including pulmonary function tests (body plethysmography), respiratory muscle strength (MIP, MEP) and endurance (Tlim), AS severity assessment including chest expansion (CE), thoracolumber movement (TL), wall tragus distance and peripheral muscle strength assessed by maximum voluntary contraction of the knee extensors (Qds), hand grip strength and lean body mass (LBM), were measured in the patients with AS and used as explanatory variables against the peak VO2 achieved during CPET. As subjects achieved a lower peak VO2 than controls (25.2 +/- 1.4 vs. 33.1 +/- 1.6 ml kg-1min-1, mean +/- SEM, P = 0.001). When compared with controls, ventilatory response (VE/VCO2) in AS was elevated (P = 0.01); however gas exchange indices, transcutaneous blood gases and breathing reserve were similar to controls. AS subjects developed a higher HR/VO2 response (P < 0.01) on exertion but without associated abnormalities in ECG, blood pressure response or anaerobic threshold. The AS group experienced a greater degree of leg fatigue (P < 0.01) than controls at peak exercise. Although the breathlessness scores (BS) were comparable to controls at peak exercise, the slopes of the relationship between BS and work rate (WR) [AS 0.054 (0.1), Controls 0.043 (0.06); P < 0.05] and BS and % predicted oxygen uptake [AS 0.084 (0.18), Controls 0.045 (0.06); P < 0.01] were steeper in the AS subjects. There was weak association between peak VO2 and vital capacity (r2% 12.0), MIP (11.8) but no association between Tlim, CE, Wall tragus distance

  9. Effect of aerobic capacity on sweat rate and fluid intake during outdoor exercise in the heat.

    PubMed

    Yoshida, T; Nakai, S; Yorimoto, A; Kawabata, T; Morimoto, T

    1995-01-01

    We measured the aerobic capacity, sweat rate and fluid intake of trained athletes during outdoor exercise and examined the relationship between aerobic capacity and thermoregulatory responses at high ambient temperatures. The maximal aerobic capacity (VO2max) of the subjects, nine male baseball players of college age, was determined by maximal exercise tests on a cycle ergometer. The subjects practised baseball regularly without drinking fluids from 1330 to 1530 hours. After 30 min rest, they played a baseball game with free access to a sports drink at 15 degrees C from 1600 to 1830 hours. At a mean ambient temperature of 36.7 (SEM 0.2) degree C, the mean percentage of body mass loss (delta mb) and increase of oral temperature (delta To) from 1330 to 1530 hours was 3.47 (SEM 0.12)% and 0.81 (SEM 0.14) degree C, respectively. The sweat loss from 1330 to 1830 hours was 56.53 (SEM 1.56)ml.kg-1 of body mass (mb) while the mean fluid consumption was 44.78 (SEM 2.39)ml.kg-1 of mb, with recovery of 76.08 (SEM 2.81)% of sweat loss. The VO2max was significantly inversely correlated with delta mb, fluid intake and rehydration amount, but showed no correlation with delta To. These results would suggest that at a given exercise intensity in subjects with a higher aerobic capacity body temperature is maintained with a lower sweating rate than that in subjects with a lower aerobic capacity.

  10. Hybrid Functional Electrical Stimulation Exercise Training Alters the Relationship Between Spinal Cord Injury Level and Aerobic Capacity

    PubMed Central

    Taylor, J. Andrew; Picard, Glen; Porter, Aidan; Morse, Leslie R.; Pronovost, Meghan F.; Deley, Gaelle

    2014-01-01

    Objective To test the hypothesis that hybrid Functional Electrical Stimulation Row Training (FES-RT) would improve aerobic capacity but that it would remain strongly linked to level of spinal cord lesion due to limited maximal ventilation. Design Longitudinal before-after trial of 6 months FES-RT. Setting Exercise for persons with disabilities program. Participants Fourteen volunteers with complete SCI T3_T11, >2 years post-injury, aged 21–63 years. Interventions Six months of FES-RT preceded by a variable period of FES 'strength training.' Main Outcome Measures Peak aerobic capacity, and peak exercise ventilation before and after 6 months of FES-RT Results FES_RT significantly increased VO2peak and Vepeak (both p<0.05). Prior to FES-RT, there was a close relationship between level of spinal cord injury and VO2peak (adj r2=0.40, p=0.009) that was markedly reduced after FES-RT (adj r2=0.15, p=0.10) . In contrast, the relationship between level of injury and VEpeak was comparable before and after FES-RT (adj r2=0.38 vs. adj r2=0.32, both p<0.05). Conclusions The increased aerobic capacity reflects more than increased ventilation; FES_RT effectively circumvents the effect of the spinal cord injury on peak aerobic capacity by engaging more muscle mass for training, independent of level of injury. PMID:25152170

  11. Responses to LBNP in men with varying profiles of strength and aerobic capacity: Implications for flight crews

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Mathes, Karen L.; Lasley, Mary L.; Tomaselli, Clare Marie; Frey, Mary Anne Bassett; Hoffler, G. Wyckliffe

    1993-01-01

    Hemodynamic and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic stress is associated with strength and/or aerobic capacity. Subjects underwent treadmill tests to determine peak oxygen uptake (peak VO2) and isokinetic dynamo meter tests to determine leg strength. Based on predetermined criteria, the subjects were classified into one of four fitness profiles of six subjects each matched for age, height, and weight: (1) low strength/low aerobic fitness; (2) low strength/high aerobic fitness; (3) high strength/low aerobic fitness; and (4) high strength/high aerobic fitness. Following 90 min of 6 degree head-down tilt (HDT), each subject underwent graded LBNP through -50 mmHg or presyncope, with maximal duration 15 min. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences except for catecholamines. Seven subjects, distributed among the four fitness profiles, became presyncopal. Subjects who showed greatest reduction in mean arterial pressure (MAP) during LBNP had greater elevations in vasopressin and lesser increases in heart rate and peripheral resistance. Peak VO2 nor leg strength were correlated with fall in MAP or with syncopal episodes. We conclude that neither aerobic nor strength fitness characteristics are good predictors of responses to LBNP stress.

  12. The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players.

    PubMed

    Czuba, Miłosz; Zając, Adam; Maszczyk, Adam; Roczniok, Robert; Poprzęcki, Stanisław; Garbaciak, Wiesław; Zając, Tomasz

    2013-12-18

    The aim of the present study was to evaluate the efficacy of 3-week high intensity interval training in normobaric hypoxia (IHT) on aerobic capacity in basketball players. Twelve male well trained basketball players, randomly divided into a hypoxia (H) group (n=6; age: 22±1.6 years; VO2max: 52.6±3.9 ml/kg/min; body height - BH: 188.8±6.1 cm; body mass - BM: 83.9±7.2 kg; % of body fat - FAT%: 11.2±3.1%), and a control (C) group (n=6; age: 22±2.4 years; VO2max: 53.0±5.2 ml/kg/min; BH: 194.3 ± 6.6 cm; BM: 99.9±11.1 kg; FAT% 11.0±2.8 %) took part in the study. The training program applied during the study was the same for both groups, but with different environmental conditions during the selected interval training sessions. For 3 weeks, all subjects performed three high intensity interval training sessions per week. During the interval training sessions, the H group trained in a normobaric hypoxic chamber at a simulated altitude of 2500 m, while the group C performed interval training sessions under normoxia conditions also inside the chamber. Each interval running training sessions consisted of four to five 4 min bouts at 90% of VO2max velocity determined in hypoxia (vVO2max-hyp) for the H group and 90% of velocity at VO2max determined in normoxia for the group C. The statistical post-hoc analysis showed that the training in hypoxia caused a significant (p<0.001) increase (10%) in total distance during the ramp test protocol (the speed was increased linearly by 1 km/h per 1min until volitional exhaustion), as well as increased (p<0.01) absolute (4.5%) and relative (6.2%) maximal workload (WRmax). Also, the absolute and relative values of VO2max in this group increased significantly (p<0.001) by 6.5% and 7.8%. Significant, yet minor changes were also observed in the group C, where training in normoxia caused an increase (p<0.05) in relative values of WRmax by 2.8%, as well as an increase (p<0.05) in the absolute (1.3%) and relative (2.1%) values of VO2max

  13. Assessment of Maximum Aerobic Capacity and Anaerobic Threshold of Elite Ballet Dancers.

    PubMed

    Wyon, Matthew A; Allen, Nick; Cloak, Ross; Beck, Sarah; Davies, Paul; Clarke, Frances

    2016-09-01

    An athlete's cardiorespiratory profile, maximal aerobic capacity, and anaerobic threshold is affected by training regimen and competition demands. The present study aimed to ascertain whether there are company rank differences in maximal aerobic capacity and anaerobic threshold in elite classical ballet dancers. Seventy-four volunteers (M 34, F 40) were recruited from two full-time professional classical ballet companies. All participants completed a continuous incremental treadmill protocol with a 1-km/hr speed increase at the end of each 1-min stage until termination criteria had been achieved (e.g., voluntary cessation, respiratory exchange ratio <1.15, HR ±5 bpm of estimated HRmax). Peak VO2 (5-breathe smooth) was recorded and anaerobic threshold calculated using ventilatory curve and ventilatory equivalents methods. Statistical analysis reported between-subject effects for gender (F1,67=35.18, p<0.001) and rank (F1,67=8.67, p<0.001); post hoc tests reported soloists (39.5±5.15 mL/kg/min) as having significantly lower VO2 peak than artists (45.9±5.75 mL/kg/min, p<0.001) and principal dancers (48.07±3.24 mL/kg/min, p<0.001). Significant differences in anaerobic threshold were reported for age (F1,67=7.68, p=0.008) and rank (F1,67=3.56, p=0.034); post hoc tests reported artists (75.8±5.45%) having significantly lower anaerobic threshold than soloists (80.9±5.71, p<0.01) and principals (84.1±4.84%, p<0.001). The observed differences in VO2 peak and anaerobic threshold between the ranks in ballet companies are probably due to the different rehearsal and performance demands.

  14. Assessment of Maximum Aerobic Capacity and Anaerobic Threshold of Elite Ballet Dancers.

    PubMed

    Wyon, Matthew A; Allen, Nick; Cloak, Ross; Beck, Sarah; Davies, Paul; Clarke, Frances

    2016-09-01

    An athlete's cardiorespiratory profile, maximal aerobic capacity, and anaerobic threshold is affected by training regimen and competition demands. The present study aimed to ascertain whether there are company rank differences in maximal aerobic capacity and anaerobic threshold in elite classical ballet dancers. Seventy-four volunteers (M 34, F 40) were recruited from two full-time professional classical ballet companies. All participants completed a continuous incremental treadmill protocol with a 1-km/hr speed increase at the end of each 1-min stage until termination criteria had been achieved (e.g., voluntary cessation, respiratory exchange ratio <1.15, HR ±5 bpm of estimated HRmax). Peak VO2 (5-breathe smooth) was recorded and anaerobic threshold calculated using ventilatory curve and ventilatory equivalents methods. Statistical analysis reported between-subject effects for gender (F1,67=35.18, p<0.001) and rank (F1,67=8.67, p<0.001); post hoc tests reported soloists (39.5±5.15 mL/kg/min) as having significantly lower VO2 peak than artists (45.9±5.75 mL/kg/min, p<0.001) and principal dancers (48.07±3.24 mL/kg/min, p<0.001). Significant differences in anaerobic threshold were reported for age (F1,67=7.68, p=0.008) and rank (F1,67=3.56, p=0.034); post hoc tests reported artists (75.8±5.45%) having significantly lower anaerobic threshold than soloists (80.9±5.71, p<0.01) and principals (84.1±4.84%, p<0.001). The observed differences in VO2 peak and anaerobic threshold between the ranks in ballet companies are probably due to the different rehearsal and performance demands. PMID:27575290

  15. Synthesis and Electrochemical Properties of Nano-VO2 (B).

    PubMed

    Yang, Yun; Lu, Yong; Wang, Wei; Feng, Chuanqi; Yang, Shuijin

    2016-03-01

    The nano-VO2 (B) has been self-assembly synthesized by hydrothermal method using different templates, which may give them some interesting properties. The as-prepared samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the samples were investigated. The results show that the hexadecyltrimethyl ammonium bromide (CTAB) (soft template) was used to obtain the VO2 (B1) nanobelts. The flake graphite (hard template) was taken to get the VO2 (B2) nanosheets. The VO2 (B1) nanobelts have higher initial capacity to compare with VO2 (B2). But the VO2 (B2) nanosheets showed better cycling performance than that of VO2 (B1) nanobelts. The nano VO2 (B2) is a promising anode material for lithium ion battery application. PMID:27455666

  16. The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes – a meta-analysis

    PubMed Central

    Park, Hun-young; Hwang, Hyejung; Park, Jonghoon; Lee, Seongno; Lim, Kiwon

    2016-01-01

    [Purpose] This study was designed as a meta-analysis of randomized controlled trials comparing effectiveness of altitude/hypoxic training (experimental) versus sea-level training (control) on oxygen delivery capacity of the blood and aerobic exercise capacity of elite athletes in Korea. [Methods] Databases (Research Information Service System, Korean studies Information Service System, National Assembly Library) were for randomized controlled trials comparing altitude/hypoxic training versus sea-level training in elite athletes. Studies published in Korea up to December 2015 were eligible for inclusion. Oxygen delivery capacity of the blood was quantified by red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), erythropoietin (EPO); and aerobic exercise capacity was quantified by maximal oxygen consumption (VO2max). RBC, Hb, Hct, VO2max represented heterogeneity and compared post-intervention between altitude/hypoxic training and sea-level training in elite athletes by a random effect model meta-analysis. EPO represented homogeneity and meta-analysis performed by a fixed effect model. Eight independent studies with 156 elite athletes (experimental: n = 82, control: n = 74) were included in the metaanalysis. [Results] RBC (4.499×105 cell/ul, 95 % CI: 2.469 to 6.529), Hb (5.447 g/dl, 95 % CI: 3.028 to 7.866), Hct (3.639 %, 95 % CI: 1.687 to 5.591), EPO (0.711 mU/mL, 95% CI: 0.282 to 1.140), VO2max (1.637 ml/kg/min, 95% CI: 0.599 to 1.400) showed significantly greater increase following altitude/hypoxic training, as compared with sea-level training. [Conclusion] For elite athletes in Korea, altitude/ hypoxic training appears more effective than sea-level training for improvement of oxygen delivery capacity of the blood and aerobic exercise capacity. PMID:27298808

  17. VO2 responses to running speeds above VO2max.

    PubMed

    Duffield, R; Bishop, D

    2008-06-01

    This study compared VO2, heart rate (HR) and electromyographic (iEMG) responses to speeds above the velocity associated with VO2max (v-VO2max). Eight male, middle-distance runners performed a graded exercise test to determine VO2max and v-VO2max and runs to fatigue at 100 % and 110 % v-VO2max. Breath-by-breath VO2 and HR were continuously recorded; lactate [La (-)] measured pre- and post-run and iEMG measures of rectus femoris (RF) and vastus lateralis were recorded during the first and last 20 s of each run. Analysis indicated longer time to fatigue in the 100 % v-VO2max run with no differences between conditions for VO2 or HR amplitudes or post-run [La (-)] (p > 0.05). There were significantly faster tau values (p < 0.05) in the 110 % condition in VO2 and HR. No significant correlations were observed between VO2 or HR tau values and time to fatigue. RF iEMG was significantly larger in 110 % compared to 100 % run in the first 20 s (p < 0.05). While no association between treadmill performance and VO2 response was evident, faster running speeds resulted in faster VO2 and HR responses, with no difference in amplitude or % VO2max attained. This may potentially be as a result of an increased muscle fibre recruitment stimulus during the faster running velocity resulting in faster cardiodynamic responses.

  18. Lung function profiles and aerobic capacity of adult cigarette and hookah smokers after 12 weeks intermittent training

    PubMed Central

    Koubaa, Abdessalem; Triki, Moez; Trabelsi, Hajer; Masmoudi, Liwa; Zeghal, Khaled N.; Sahnoun, Zouhair; Hakim, Ahmed

    2015-01-01

    Introduction Pulmonary function is compromised in most smokers. Yet it is unknown whether exercise training improves pulmonary function and aerobic capacity in cigarette and hookah smokers and whether these smokers respond in a similar way as do non-smokers. Aim To evaluate the effects of an interval exercise training program on pulmonary function and aerobic capacity in cigarette and hookah smokers. Methods Twelve cigarette smokers, 10 hookah smokers, and 11 non-smokers participated in our exercise program. All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject's maximum aerobic capacity (V.O2max). Pulmonary function was measured using spirometry, and maximum aerobic capacity was assessed by maximal exercise testing on a treadmill before the beginning and at the end of the exercise training program. Results As expected, prior to the exercise intervention, the cigarette and hookah smokers had significantly lower pulmonary function than the non-smokers. The 12-week exercise training program did not significantly affect lung function as assessed by spirometry in the non-smoker group. However, it significantly increased both forced expiratory volume in 1 second and peak expiratory flow (PEF) in the cigarette smoker group, and PEF in the hookah smoker group. Our training program had its most notable impact on the cardiopulmonary system of smokers. In the non-smoker and cigarette smoker groups, the training program significantly improved V.O2max (4.4 and 4.7%, respectively), v V.O2max (6.7 and 5.6%, respectively), and the recovery index (7.9 and 10.5%, respectively). Conclusions After 12 weeks of interval training program, the increase of V.O2max and the decrease of recovery index and resting heart rate in the smoking subjects indicated better exercise tolerance. Although the intermittent training program altered pulmonary function only partially, both

  19. The effects of 20 weeks basic military training program on body composition, VO2max and aerobic fitness of obese recruits.

    PubMed

    Lim, C L; Lee, L K

    1994-09-01

    Forty of the most obese recruits going through a 20 weeks Basic Military Training (BMT) program were selected from a cohort of 197 obese recruits. Their TBW, BF, FFW, VO2max, time taken to achieve VT (VTTime) and maximal heart rate (HRmax) were measured before, in the middle, and at the end of the program. The means for each of these variables measured in the 3 occasions were analysed for significant differences with the repeated measures analysis of variance. Variables that achieved significant difference were further analysed for pairwise difference with the post-hoc Tukey test. The critical value was set at p < 0.05. Mean TBW and BF decreased from 108.33 +/- 13.1 kg to 90.82 +/- 12.3 kg (p < 0.001), and 34.3 +/- 1.2% to 23.9 +/- 2.3% (p 0.001) respectively. Mean FW decreased from 37.4 +/- 4.8 kg to 22.0 +/- 4.5 kg (p < 0.001). FFW decreased slightly from a mean of 71.5 +/- 8.6 kg to 69.2 +/- 8.8 kg, which was not significantly different (p > 0.05). Mean VO2max increased from 28.1 +/- 6.3 ml.kg-1.min-1 to 32.1 +/- 5.1 ml.kg-1.min-1 (p < 0.001), and mean VTTime on similar exercise protocol increased from 13.3 +/- 2.7 minutes to 15.8 +/- 3.8 minutes (p < 0.001). Mean HRmax decreased from 183.5 +/- 12.1 beats.min-1 to 177.3 +/- 10.1 beats.min-1 (p < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism.

    PubMed

    Dheyongera, Geoffrey; Grzebyk, Katherine; Rudolf, Agata M; Sadowska, Edyta T; Koteja, Paweł

    2016-04-01

    Agro-chemicals potentially cause adverse effects in non-target organisms. The rate of animal energy metabolism can influence their susceptibility to pesticides by influencing food consumption, biotransformation and elimination rates of toxicants. We used experimental evolution to study the effects of inherent differences in energy metabolism rate and exposure to the organophosphate insecticide, chlorpyrifos (CPF) on thermogenic capacity in a wild rodent, the bank vole (Myodes = Clethrionomys glareolus). The voles were sampled from four replicate lines selected for high swim-induced aerobic metabolism (A) and four unselected control (C) lines. Thermogenic capacity, measured as the maximum cold-induced rate of oxygen consumption (VO2cold), was higher in the A - than C lines, and it decreased after continuous exposure to CPF via food or after a single dose administered via oral gavage, but only when measured shortly after exposure. VO2cold measured 24 h after repeated exposure was not affected. In addition, gavage with a single dose led to decreased food consumption and loss in body mass. Importantly, the adverse effects of CPF did not differ between the selected and control lines. Therefore, exposure to CPF has adverse effects on thermoregulatory performance and energy balance in this species. The effects are short-lived and their magnitude is not associated with the inherent level of energy metabolism. Even without severe symptoms of poisoning, fitness can be compromised under harsh environmental conditions, such as cold and wet weather.

  1. The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism.

    PubMed

    Dheyongera, Geoffrey; Grzebyk, Katherine; Rudolf, Agata M; Sadowska, Edyta T; Koteja, Paweł

    2016-04-01

    Agro-chemicals potentially cause adverse effects in non-target organisms. The rate of animal energy metabolism can influence their susceptibility to pesticides by influencing food consumption, biotransformation and elimination rates of toxicants. We used experimental evolution to study the effects of inherent differences in energy metabolism rate and exposure to the organophosphate insecticide, chlorpyrifos (CPF) on thermogenic capacity in a wild rodent, the bank vole (Myodes = Clethrionomys glareolus). The voles were sampled from four replicate lines selected for high swim-induced aerobic metabolism (A) and four unselected control (C) lines. Thermogenic capacity, measured as the maximum cold-induced rate of oxygen consumption (VO2cold), was higher in the A - than C lines, and it decreased after continuous exposure to CPF via food or after a single dose administered via oral gavage, but only when measured shortly after exposure. VO2cold measured 24 h after repeated exposure was not affected. In addition, gavage with a single dose led to decreased food consumption and loss in body mass. Importantly, the adverse effects of CPF did not differ between the selected and control lines. Therefore, exposure to CPF has adverse effects on thermoregulatory performance and energy balance in this species. The effects are short-lived and their magnitude is not associated with the inherent level of energy metabolism. Even without severe symptoms of poisoning, fitness can be compromised under harsh environmental conditions, such as cold and wet weather. PMID:26878110

  2. Development of an aerobic capacity prediction model from one-mile run/walk performance in adolescents aged 13-16 years.

    PubMed

    Burns, Ryan D; Hannon, James C; Brusseau, Timothy A; Eisenman, Patricia A; Shultz, Barry B; Saint-Maurice, Pedro F; Welk, Gregory J; Mahar, Matthew T

    2016-01-01

    A popular algorithm to predict VO2Peak from the one-mile run/walk test (1MRW) includes body mass index (BMI), which manifests practical issues in school settings. The purpose of this study was to develop an aerobic capacity model from 1MRW in adolescents independent of BMI. Cardiorespiratory endurance data were collected on 90 adolescents aged 13-16 years. The 1MRW was administered on an outside track and a laboratory VO2Peak test was conducted using a maximal treadmill protocol. Multiple linear regression was employed to develop the prediction model. Results yielded the following algorithm: VO2Peak = 7.34 × (1MRW speed in m s(-1)) + 0.23 × (age × sex) + 17.75. The New Model displayed a multiple correlation and prediction error of R = 0.81, standard error of the estimate = 4.78 ml kg(-1) · min(-1), with measured VO2Peak and good criterion-referenced (CR) agreement into FITNESSGRAM's Healthy Fitness Zone (Kappa = 0.62; percentage agreement = 84.4%; Φ = 0.62). The New Model was validated using k-fold cross-validation and showed homoscedastic residuals across the range of predicted scores. The omission of BMI did not compromise accuracy of the model. In conclusion, the New Model displayed good predictive accuracy and good CR agreement with measured VO2Peak in adolescents aged 13-16 years. PMID:25845945

  3. Development of an aerobic capacity prediction model from one-mile run/walk performance in adolescents aged 13-16 years.

    PubMed

    Burns, Ryan D; Hannon, James C; Brusseau, Timothy A; Eisenman, Patricia A; Shultz, Barry B; Saint-Maurice, Pedro F; Welk, Gregory J; Mahar, Matthew T

    2016-01-01

    A popular algorithm to predict VO2Peak from the one-mile run/walk test (1MRW) includes body mass index (BMI), which manifests practical issues in school settings. The purpose of this study was to develop an aerobic capacity model from 1MRW in adolescents independent of BMI. Cardiorespiratory endurance data were collected on 90 adolescents aged 13-16 years. The 1MRW was administered on an outside track and a laboratory VO2Peak test was conducted using a maximal treadmill protocol. Multiple linear regression was employed to develop the prediction model. Results yielded the following algorithm: VO2Peak = 7.34 × (1MRW speed in m s(-1)) + 0.23 × (age × sex) + 17.75. The New Model displayed a multiple correlation and prediction error of R = 0.81, standard error of the estimate = 4.78 ml kg(-1) · min(-1), with measured VO2Peak and good criterion-referenced (CR) agreement into FITNESSGRAM's Healthy Fitness Zone (Kappa = 0.62; percentage agreement = 84.4%; Φ = 0.62). The New Model was validated using k-fold cross-validation and showed homoscedastic residuals across the range of predicted scores. The omission of BMI did not compromise accuracy of the model. In conclusion, the New Model displayed good predictive accuracy and good CR agreement with measured VO2Peak in adolescents aged 13-16 years.

  4. Effect of weight loss on aerobic capacity in patients with severe obesity before and after bariatric surgery.

    PubMed

    de Souza, Shirley Aparecida Fabris; Faintuch, Joel; Sant'anna, Antonio Fernando

    2010-07-01

    Severe obesity has been associated with adverse effects on physical capacity. In a prospective study, the aerobic capacity of severely obese patients was measured in order to observe the physiological response to weight loss from bariatric surgery. Sixty-five consecutive patients (40.4 +/- 8.4 years old; 93.8% female; body mass index = 49.4 +/- 5.4 kg/m(2)) were evaluated before bariatric surgery and then 6 and 12 months after surgery. Aerobic capacity was assessed with a scientific treadmill to measure maximal oxygen consumption (VO(2max)), heart rate, blood pressure, time on the treadmill, and distance walked (modified Bruce test). For the three observational periods, VO(2max) was 25.4 +/- 9.3, 29.8 +/- 8.1, and 36.7 +/- 8.3 ml/kg/min; time on the treadmill was 5.4 +/- 1.4, 6.4 +/- 1.6, and 8.8 +/- 1.0 min; and distance walked was 401.8 +/- 139.1, 513.4 +/- 159.9, and 690.5 +/- 76.2 m. For these variables, significant results (p = 0.0000) were observed for the two postoperative periods in relation to the preoperative period. Severely obese individuals increased their aerobic capacity after successful bariatric surgery. The data also suggests that a positive and progressive relationship between weight loss and improvement in fitness as a moderate loss of weight 6 months after surgery already showed some benefit and an additional reduction in weight was associated with a better performance in the aerobic capacity tests at the 12-month follow-up.

  5. Maximal aerobic capacity at several ambient concentrations of CO at several altitudes

    SciTech Connect

    Horvath, S.M.; Bedi, J.F.; Wagner, J.A.; Agnew, J.

    1988-12-01

    To assess the nature of the combined effect of the hypoxias of altitude (ALT) and CO exposure, 11 men and 12 women nonsmokers served as subjects in a double-blind experiment. The exposure conditions were four ambient CO levels (0, 50, 100, and 150 ppm) at each of four ALT (55, 1,524, 2,134, and 3,048 m). Each subject, after attaining the required ALT and ambient CO level, performed a maximal aerobic capacity test (VO/sub 2/max). Blood samples were obtained before, at 50-W, 100-W, 150-W, and maximum work loads and at the 5th min of recovery. Blood were analyzed for hemoglobin, hematocrit, plasma proteins, lactates, and carboxyhemoglobin (HbCO). VO2max was similar at 55 and 1,524 m and decreased by 4 and 8% from the 55-m value at 2,134 and 3,048 m, respectively. On the basis of all statistical analyses, we concluded that VO2max values measured in men were only slightly diminished due to increased ambient CO. HbCO attained at maximum was highest at 55 m and lowest at 3,048 m. Women's HbCO concentrations were lower than men's. At maximal work loads CO shifted into extravascular spaces and returned to the vascular space within 5 min after exercise stopped. The independence of altitude and CO hypoxias on parameters of the maximum aerobic capacity test and a decrease in the CO to HbCO uptake with increasing altitude were demonstrated and attributed in part to the decrease in driving pressure of CO at altitude.

  6. Impact of Exercise Training in Aerobic Capacity and Pulmonary Function in Children and Adolescents After Congenital Heart Disease Surgery: A Systematic Review with Meta-analysis.

    PubMed

    Gomes-Neto, Mansueto; Saquetto, Micheli Bernardone; da Silva e Silva, Cassio Magalhães; Conceição, Cristiano Sena; Carvalho, Vitor Oliveira

    2016-02-01

    The aim of the study was to examine the effects of exercise training on aerobic capacity and pulmonary function in children and adolescents after congenital heart disease surgery. We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, (from the earliest date available to January 2015) for controlled trials that evaluated the effects of exercise training on aerobic capacity and pulmonary function (forced expiratory volume in 1 s and forced vital capacity) in children and adolescents after congenital heart disease surgery. Weighted mean differences and 95 % confidence intervals (CIs) were calculated,, and heterogeneity was assessed using the I (2) test. Eight trials (n = 292) met the study criteria. The results suggested that exercise training compared with control had a positive impact on peak VO2. Exercise training resulted in improvement in peak VO2 weighted mean difference (3.68 mL kg(-1) min(-1), 95 % CI 1.58-5.78). The improvement in forced expiratory volume in 1 s and forced vital capacity after exercise training was not significant. Exercise training may improve peak VO2 in children and adolescents after congenital heart disease surgery and should be considered for inclusion in cardiac rehabilitation. Further larger randomized controlled trials are urgently needed to investigate different types of exercise and its effects on the quality of life.

  7. Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables.

    PubMed

    Porcari, John P; Probst, Lauren; Forrester, Karlei; Doberstein, Scott; Foster, Carl; Cress, Maria L; Schmidt, Katharina

    2016-06-01

    Altitude training and respiratory muscle training (RMT) have been reported to improve performance in elite and well-trained athletes. Several devices (altitude and RMT) have been developed to help athletes gain the competitive edge. The Elevation Training Mask 2.0 (ETM) purportedly simulates altitude training and has been suggested to increase aerobic capacity (VO2max), endurance performance, and lung function. Twenty-four moderately trained subjects completed 6 weeks of high-intensity cycle ergometer training. Subjects were randomized into a mask (n = 12) or control (n = 12) group. Pre and post-training tests included VO2max, pulmonary function, maximal inspiration pressure, hemoglobin and hematocrit. No significant differences were found in pulmonary function or hematological variables between or within groups. There was a significant improvement in VO2max and PPO in both the control (13.5% and 9.9%) and mask (16.5% and 13.6%) groups. There was no difference in the magnitude of improvement between groups. Only the mask group had significant improvements in ventilatory threshold (VT) (13.9%), power output (PO) at VT (19.3%), respiratory compensation threshold (RCT) (10.2%), and PO at RCT (16.4%) from pre to post-testing. The trends for improvements in VT and PO at VT between groups were similar to improvements in RCT and PO at RCT, but did not reach statistical significance (VT p = 0.06, PO at VT p = 0.170). Wearing the ETM while participating in a 6-week high-intensity cycle ergometer training program does not appear to act as a simulator of altitude, but more like a respiratory muscle training device. Wearing the ETM may improve specific markers of endurance performance beyond the improvements seen with interval training alone. Key pointsWearing the ETM during a 6-week high-intensity cycle ergometer training program may improve performance variables, such as VO2max, PPO, VT, PO at VT, RCT and PO at RCT.Wearing the ETM did not improve lung function, inspiratory

  8. Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables

    PubMed Central

    Porcari, John P.; Probst, Lauren; Forrester, Karlei; Doberstein, Scott; Foster, Carl; Cress, Maria L.; Schmidt, Katharina

    2016-01-01

    Altitude training and respiratory muscle training (RMT) have been reported to improve performance in elite and well-trained athletes. Several devices (altitude and RMT) have been developed to help athletes gain the competitive edge. The Elevation Training Mask 2.0 (ETM) purportedly simulates altitude training and has been suggested to increase aerobic capacity (VO2max), endurance performance, and lung function. Twenty-four moderately trained subjects completed 6 weeks of high-intensity cycle ergometer training. Subjects were randomized into a mask (n = 12) or control (n = 12) group. Pre and post-training tests included VO2max, pulmonary function, maximal inspiration pressure, hemoglobin and hematocrit. No significant differences were found in pulmonary function or hematological variables between or within groups. There was a significant improvement in VO2max and PPO in both the control (13.5% and 9.9%) and mask (16.5% and 13.6%) groups. There was no difference in the magnitude of improvement between groups. Only the mask group had significant improvements in ventilatory threshold (VT) (13.9%), power output (PO) at VT (19.3%), respiratory compensation threshold (RCT) (10.2%), and PO at RCT (16.4%) from pre to post-testing. The trends for improvements in VT and PO at VT between groups were similar to improvements in RCT and PO at RCT, but did not reach statistical significance (VT p = 0.06, PO at VT p = 0.170). Wearing the ETM while participating in a 6-week high-intensity cycle ergometer training program does not appear to act as a simulator of altitude, but more like a respiratory muscle training device. Wearing the ETM may improve specific markers of endurance performance beyond the improvements seen with interval training alone. Key points Wearing the ETM during a 6-week high-intensity cycle ergometer training program may improve performance variables, such as VO2max, PPO, VT, PO at VT, RCT and PO at RCT. Wearing the ETM did not improve lung function, inspiratory

  9. Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables.

    PubMed

    Porcari, John P; Probst, Lauren; Forrester, Karlei; Doberstein, Scott; Foster, Carl; Cress, Maria L; Schmidt, Katharina

    2016-06-01

    Altitude training and respiratory muscle training (RMT) have been reported to improve performance in elite and well-trained athletes. Several devices (altitude and RMT) have been developed to help athletes gain the competitive edge. The Elevation Training Mask 2.0 (ETM) purportedly simulates altitude training and has been suggested to increase aerobic capacity (VO2max), endurance performance, and lung function. Twenty-four moderately trained subjects completed 6 weeks of high-intensity cycle ergometer training. Subjects were randomized into a mask (n = 12) or control (n = 12) group. Pre and post-training tests included VO2max, pulmonary function, maximal inspiration pressure, hemoglobin and hematocrit. No significant differences were found in pulmonary function or hematological variables between or within groups. There was a significant improvement in VO2max and PPO in both the control (13.5% and 9.9%) and mask (16.5% and 13.6%) groups. There was no difference in the magnitude of improvement between groups. Only the mask group had significant improvements in ventilatory threshold (VT) (13.9%), power output (PO) at VT (19.3%), respiratory compensation threshold (RCT) (10.2%), and PO at RCT (16.4%) from pre to post-testing. The trends for improvements in VT and PO at VT between groups were similar to improvements in RCT and PO at RCT, but did not reach statistical significance (VT p = 0.06, PO at VT p = 0.170). Wearing the ETM while participating in a 6-week high-intensity cycle ergometer training program does not appear to act as a simulator of altitude, but more like a respiratory muscle training device. Wearing the ETM may improve specific markers of endurance performance beyond the improvements seen with interval training alone. Key pointsWearing the ETM during a 6-week high-intensity cycle ergometer training program may improve performance variables, such as VO2max, PPO, VT, PO at VT, RCT and PO at RCT.Wearing the ETM did not improve lung function, inspiratory

  10. Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals?

    PubMed

    Dawson, Terence J; Mifsud, Brock; Raad, Matthew C; Webster, Koa N

    2004-07-01

    Marsupials and placentals together comprise the Theria, the advanced mammals, but they have had long independent evolutionary histories, with the last common ancestor occurring more than 125 million years ago. Although in the past the marsupials were considered to be metabolically 'primitive', the red kangaroo Macropus rufus has been reported to have an aerobic capacity (VO2max) comparable to that of the most 'athletic' of placentals such as dogs. However, kangaroos travel at moderate speeds with lower relative cost than quadrupedal placentals. Given the long independent evolution of the two therian groups, and their unusual locomotor energetics, do kangaroos achieve their high aerobic capacity using the same structural and functional mechanisms used by (athletic) placentals? Red kangaroo skeletal muscle morphometry matched closely the general aerobic characteristics of placental mammals. The relationship between total mitochondrial volume in skeletal muscle and VO2max during exercise was identical to that in quadrupedal placentals, and differed from that in bipedal humans. As for placentals generally, red kangaroo mitochondrial oxygen consumption at VO2max was 4.7 ml O2 min(-1) ml(-1) of mitochondria. Also, the inner mitochondrial membrane densities were 35.8 +/- 0.7 m2 ml(-1) of mitochondria, which is the same as for placental mammals, and the same pattern of similarity was seen for capillary densities and volumes. The overall data for kangaroos was equivalent to that seen in athletic placentals such as dogs and pronghorns. Total skeletal muscle mass was high, being around 50% of body mass, and was concentrated around the pelvis and lower back. The majority of the muscles sampled had relatively high mitochondrial volume densities, in the range 8.8-10.6% in the major locomotor muscles. Again, capillary densities and capillary blood volumes followed the pattern seen for mitochondria. Our results indicate that the red kangaroo, despite its locomotion and extreme

  11. WISE-2005: LBNP/Treadmill and Resistive Exercise Countermeasures Maintain Aerobic Capacity during a 60-d Bed Rest

    NASA Technical Reports Server (NTRS)

    Schneider, Suzanne M.; Lee, Stuart M. C.; Watenpaugh, Donald E.; Macias, Brandon R.; Hargens, Alan R.

    2006-01-01

    We have previously documented that supine treadmill exercise within lower body negative pressure (LBNPex) performed 6 sessions (raised dot) wk(sup -1) during 15- and 30-day bed rests (BR) maintained upright aerobic capacity (VO2pk). In the present study, ure are evaluating whether aerobic capacity is maintained during a 60-d BR when the LBNPex frequency is reduced to 2-4 sessions (raised dot) wk(sup -1) and resistance exercise (REX) is added 2-3 sessions (raised dot) wk(sup -1). Eight healthy women (32 plus or minus 4 yrs; 56.4 plus or minus 3.6 kg; 164 plus or minus 8 cm; mean plus or minus SD) performed maximal-exertion, graded treadmill tests before and 3 days after a 60-d, 6 deg. head-down tilt BR. (Earliest day the medical monitors would permit a maximal exercise test post-BR). During BR, four subjects performed no exercise (CON), while four other subjects (EX) performed LBNPex and REX on separate days. The LBNPex countermeasure employed an intermittent (40-80% pre-BR VO2pk), 40-min protocol against an LBNP pressure (-49 plus or minus 3 mmHg) applied to provide a footward force equivalent to 1.0-1.2 body weight. REX consisted of maximal concentric and eccentric supine leg press and heel raise exercises using a gravity-independent flywheel ergometer. Comparisons were performed using paired (within-group) or non-paired (between-group) t-tests. Three days post-BR, VO2pk of the CON group was reduced significantly from pre-BR (Pre:37.2 plus or minus 1.2, Post: 29.4 plus or minus 2 ml (raised dot) kg(sup -1) (raised dot) min(sup -1), P less than 0.05), while the VO2pk of the EX group was not significantly reduced (Pre: 39.6 plus or minus 1.9, Post: 38.0 plus or minus 0.6 ml (raised dot) kg(sup -1) (raised dot) min(sup -1)). Peak heart rate, ventilation, rating of perceived exertion, and respiratory exchange ratio were not significantly different between the two groups pre- and post-BR. These preliminary results suggest that the combined LBNPex and REX

  12. Effects of high intensity training and continuous endurance training on aerobic capacity and body composition in recreationally active runners.

    PubMed

    Hottenrott, Kuno; Ludyga, Sebastian; Schulze, Stephan

    2012-01-01

    The aim of the study was to examine the effects of two different training programs (high-intensity-training vs. continuous endurance training) on aerobic power and body composition in recreationally active men and women and to test whether or not participants were able to complete a half marathon after the intervention period. Thirty-four recreational endurance runners were randomly assigned either to a Weekend-Group (WE, n = 17) or an After-Work- Group (AW, n = 17) for a 12 week-intervention period. WE weekly completed 2 h 30 min of continuous endurance running composed of 2 sessions on the weekend. In contrast, AW performed 4 30 min sessions of high intensity training and an additional 30 min endurance run weekly, always after work. During an exhaustive treadmill test aerobic power was measured and heart rate was continuously recorded. Body composition was assessed using bio-impedance. Following the intervention period all subjects took part in a half-marathon. AW significantly improved peak oxygen uptake (VO2 peak) from 36.8 ± 4.5 to 43.6 ± 6.5 [mL.min(-1).kg(-1)], velocity at lactate threshold (VLT) from 9.7 ± 2.2 to 11.7 ± 1.8 [km.h(-1)] and visceral fat from 5.6 ± 2.2 to 4.7 ± 1.9 In WE VO2 peak signifi-cantly increased from 38.8 ± 5.0 to 41.5 ± 6.0 [mL.min(-1).kg(-1)], VLT from 9.9 ± 1.3 to 11.2 ± 1.7 [km.h(-1)] and visceral fat was reduced from 5.7 ± 2.1 to 5.4 ± 1.9 (p < 0.01). Only the improvements of VO2 peak were significantly greater in AW compared with WE (pre/post group interaction: F=15.4, p = 0.01, η(2) = 0.36). Both groups completed a half marathon with no significant differences in performance (p = 0.63). Short, intensive endurance training sessions of about 30 min are effective in improving aerobic fitness in recreationally active runners. Key pointsContinuous endurance training and high intensity training lead to significant improvements of aerobic capacity and body compositionBoth training methods enable recreationally active

  13. Effects of High Intensity Training and Continuous Endurance Training on Aerobic Capacity and Body Composition in Recreationally Active Runners

    PubMed Central

    Hottenrott, Kuno; Ludyga, Sebastian; Schulze, Stephan

    2012-01-01

    The aim of the study was to examine the effects of two different training programs (high-intensity-training vs. continuous endurance training) on aerobic power and body composition in recreationally active men and women and to test whether or not participants were able to complete a half marathon after the intervention period. Thirty-four recreational endurance runners were randomly assigned either to a Weekend-Group (WE, n = 17) or an After-Work- Group (AW, n = 17) for a 12 week-intervention period. WE weekly completed 2 h 30 min of continuous endurance running composed of 2 sessions on the weekend. In contrast, AW performed 4 30 min sessions of high intensity training and an additional 30 min endurance run weekly, always after work. During an exhaustive treadmill test aerobic power was measured and heart rate was continuously recorded. Body composition was assessed using bio-impedance. Following the intervention period all subjects took part in a half-marathon. AW significantly improved peak oxygen uptake (VO2 peak) from 36.8 ± 4.5 to 43.6 ± 6.5 [mL.min-1.kg-1], velocity at lactate threshold (VLT) from 9.7 ± 2.2 to 11.7 ± 1.8 [km.h-1] and visceral fat from 5.6 ± 2.2 to 4.7 ± 1.9 In WE VO2 peak signifi-cantly increased from 38.8 ± 5.0 to 41.5 ± 6.0 [mL.min-1.kg-1], VLT from 9.9 ± 1.3 to 11.2 ± 1.7 [km.h-1] and visceral fat was reduced from 5.7 ± 2.1 to 5.4 ± 1.9 (p < 0.01). Only the improvements of VO2 peak were significantly greater in AW compared with WE (pre/post group interaction: F=15.4, p = 0.01, η2 = 0.36). Both groups completed a half marathon with no significant differences in performance (p = 0.63). Short, intensive endurance training sessions of about 30 min are effective in improving aerobic fitness in recreationally active runners. Key pointsContinuous endurance training and high intensity training lead to significant improvements of aerobic capacity and body compositionBoth training methods enable recreationally active runners to finish

  14. Physical Activity is Associated with Improved Aerobic Exercise Capacity over Time in Adults with Congenital Heart Disease

    PubMed Central

    Bhatt, Ami B; Landzberg, Michael J; Rhodes, Jonathan

    2013-01-01

    Background Impaired exercise capacity is common in adults with congenital heart disease (ACHD). This impairment is progressive and is associated with increased morbidity and mortality. We studied the influence of the frequency of at least moderately strenuous physical activity (PhysAct) on changes in exercise capacity of ACHD patients over time. Methods We studied ACHD patients ≥21 years old who had repeated maximal (RER≥1.09) cardiopulmonary exercise tests within 6 to 24 months. On the basis of data extracted from each patient’s clinical records, PhysAct frequency was classified as (1) Low: minimal PhysAct, (2) Occasional: moderate PhysAct <2 times/week, or (3) Frequent: moderate PhysAct ≥2 times/week. Results PhysAct frequency could be classified for 146 patients. Those who participated in frequent exercise tended to have improved pVO2 (ΔpVO2=+1.63±2.67 ml/kg/min) compared to those who had low or occasional activity frequency (ΔpVO2=+0.06±2.13 ml/kg/min, p=0.003) over a median follow-up of 13.2 months. This difference was independent of baseline clinical characteristics, time between tests, medication changes, or weight change. Those who engaged in frequent PhysAct were more likely to have an increase of pVO2 of ≥1SD between tests as compared with sedentary patients (multivariable OR=7.4, 95%CI 1.5-35.7). Aerobic exercise capacity also increased for patients who increased activity frequency from baseline to follow-up; 27.3% of those who increased their frequency of moderately strenuous physical activity had a clinically significant (at least +1SD) increase in pVO2 compared to only 11% of those who maintained or decreased activity frequency. Conclusions ACHD patients who engage in frequent physical activity tend to have improved exercise capacity over time. PMID:23962775

  15. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    PubMed Central

    Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.

    2015-01-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271

  16. Field tests for evaluating the aerobic work capacity of firefighters.

    PubMed

    Lindberg, Ann-Sofie; Oksa, Juha; Gavhed, Désirée; Malm, Christer

    2013-01-01

    Working as a firefighter is physically strenuous, and a high level of physical fitness increases a firefighter's ability to cope with the physical stress of their profession. Direct measurements of aerobic capacity, however, are often complicated, time consuming, and expensive. The first aim of the present study was to evaluate the correlations between direct (laboratory) and indirect (field) aerobic capacity tests with common and physically demanding firefighting tasks. The second aim was to give recommendations as to which field tests may be the most useful for evaluating firefighters' aerobic work capacity. A total of 38 subjects (26 men and 12 women) were included. Two aerobic capacity tests, six field tests, and seven firefighting tasks were performed. Lactate threshold and onset of blood lactate accumulation were found to be correlated to the performance of one work task (r(s) = -0.65 and -0.63, p<0.01, respectively). Absolute (mL · min(-1)) and relative (mL · kg(-1) · min(-1)) maximal aerobic capacity was correlated to all but one of the work tasks (r(s) = -0.79 to 0.55 and -0.74 to 0.47, p<0.01, respectively). Aerobic capacity is important for firefighters' work performance, and we have concluded that the time to row 500 m, the time to run 3000 m relative to body weight (s · kg(-1)), and the percent of maximal heart rate achieved during treadmill walking are the most valid field tests for evaluating a firefighter's aerobic work capacity. PMID:23844153

  17. Comparison of V'O2 kinetics in upright and supine position

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Eßfeld, D.; Stegemann, J.; Schütze, H.

    Oxygen uptake (V'O2) kinetics during exercise depends in particular on muscular aerobic capacity and cardio-vascular parameters. The objective of this study was to investigate the influence of body position on the V'O2 kinetics as determined by means of the PRBS technique. 9 healthy male volunteers performed bicycle ergometer exercise in both upright and supine position. No significant changes were seen in normalized gains and phase shifts of the power-V'O2-relationship. It is concluded that the differences in venous blood volume distribution and cardiac output associated with upright and supine position do not have major effects on power-V'O2-gains.

  18. Logistic risk model for the unique effects of inherent aerobic capacity on +Gz tolerance before and after simulated weightlessness.

    PubMed

    Ludwig, D A; Convertino, V A; Goldwater, D J; Sandler, H

    1987-11-01

    Small sample size (n less than 10) and inappropriate analysis of multivariate data have hindered previous attempts to describe which physiologic and demographic variables are most important in determining how long humans can tolerate acceleration. Data from previous centrifuge studies conducted at NASA/Ames Research Center, utilizing a 7-14 d bed rest protocol to simulate weightlessness, were included in the current investigation. After review, data on 25 women and 22 men were available for analysis. Study variables included gender, age, weight, height, percent body fat, resting heart rate, mean arterial pressure, VO2max, and plasma volume. Since the dependent variable was time to greyout (failure), two contemporary biostatistical modeling procedures (proportional hazard and logistic discriminant function) were used to estimate risk, given a particular subject's profile. After adjusting for pre-bed-rest tolerance time, none of the profile variables remained in the risk equation for post-bed-rest tolerance greyout. However, prior to bed rest, risk of greyout could be predicted with 91% accuracy. All of the profile variables except weight, MAP, and those related to inherent aerobic capacity (VO2max, percent body fat, resting heart rate) entered the risk equation for pre-bed-rest greyout. A cross-validation using 24 new subjects indicated a very stable model for risk prediction, accurate within 5% of the original equation. The result for the inherent fitness variables is significant in that a consensus as to whether an increased aerobic capacity is beneficial or detrimental has not been satisfactorily established. We conclude that tolerance to +Gz acceleration before and after simulated weightlessness is independent of inherent aerobic fitness. PMID:3689269

  19. Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis

    PubMed Central

    2013-01-01

    Introduction This randomized, controlled study on patients with polymyositis or dermatomyositis was based on three hypotheses: patients display impaired endurance due to reduced aerobic capacity and muscle weakness, endurance training improves their exercise performance by increasing the aerobic capacity, and endurance training has general beneficial effects on their health status. Methods In the first part of this study, we compared 23 patients with polymyositis or dermatomyositis with 12 age- and gender-matched healthy controls. A subgroup of patients were randomized to perform a 12-week endurance training program (exercise group, n = 9) or to a non-exercising control group (n = 6). We measured maximal oxygen uptake (VO2 max) and the associated power output during a progressive cycling test. Endurance was assessed as the cycling time to exhaustion at 65% of VO2 max. Lactate levels in the vastus lateralis muscle were measured with microdialysis. Mitochondrial function was assessed by measuring citrate synthase (CS) and β-hydroxyacyl-CoA dehydrogenase (β-HAD) activities in muscle biopsies. Clinical improvement was assessed according to the International Myositis Assessment and Clinical Studies Group (IMACS) improvement criteria. All assessors were blinded to the type of intervention (that is, training or control). Results Exercise performance and aerobic capacity were lower in patients than in healthy controls, whereas lactate levels at exhaustion were similar. Patients in the exercise group increased their cycling time, aerobic capacity and CS and β-HAD activities, whereas lactate levels at exhaustion decreased. Six of nine patients in the exercise group met the IMACS improvement criteria. Patients in the control group did not show any consistent changes during the 12-week study. Conclusions Polymyositis and dermatomyositis patients have impaired endurance, which could be improved by 12 weeks of endurance training. The clinical improvement corresponds to

  20. Evaluation of Maximal Oxygen Uptake (V02max) and Submaximal Estimates of VO2max Before, During and After Long Duration ISS Missions

    NASA Technical Reports Server (NTRS)

    Moore, Alan; Evetts, Simon; Feiveson, Alan; Lee, Stuart; McCleary, Frank; Platts, Steven

    2009-01-01

    NASA's Human Research Program Integrated Research Plan (HRP-47065) serves as a road-map identifying critically needed information for future space flight operations (Lunar, Martian). VO2max (often termed aerobic capacity) reflects the maximum rate at which oxygen can be taken up and utilized by the body during exercise. Lack of in-flight and immediate postflight VO2max measurements was one area identified as a concern. The risk associated with not knowing this information is: Unnecessary Operational Limitations due to Inaccurate Assessment of Cardiovascular Performance (HRP-47065).

  1. Identification of serum analytes and metabolites associated with aerobic capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies aimed at identifying serum markers of cellular metabolism (biomarkers) that are associated at baseline with aerobic capacity (V02 max) in young, healthy individuals have yet to be reported. Therefore, the goal of the present study was to use the standard chemistry screen and untargeted mass ...

  2. Aerobic Capacities of Early College High School Students

    ERIC Educational Resources Information Center

    Loflin, Jerry W.

    2014-01-01

    The Early College High School Initiative (ECHSI) was introduced in 2002. Since 2002, limited data, especially student physical activity data, have been published pertaining to the ECHSI. The purpose of this study was to examine the aerobic capacities of early college students and compare them to state and national averages. Early college students…

  3. Aerobic Capacity and Anaerobic Power Levels of the University Students

    ERIC Educational Resources Information Center

    Taskin, Cengiz

    2016-01-01

    The aim of study was to analyze aerobic capacity and anaerobic power levels of the university students. Total forty university students who is department physical education and department business (age means; 21.15±1.46 years for male and age means; 20.55±1.79 years for female in department physical education), volunteered to participate in this…

  4. Aerobic Capacity in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Verschuren, Olaf; Takken, Tim

    2010-01-01

    This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…

  5. Effects of Sodium Phosphate Loading on Aerobic Power and Capacity in off Road Cyclists.

    PubMed

    Czuba, Milosz; Zajac, Adam; Poprzecki, Stanislaw; Cholewa, Jaroslaw; Woska, Scott

    2009-01-01

    The main aim of this paper was to evaluate the effects of short- term (6 days) phosphate loading, as well as prolonged (21 days) intake of sodium phosphate on aerobic capacity in off-road cyclists. Nineteen well-trained cyclists were randomly divided into a supplemental (S) and control group (C). Group S was supplemented for 6 days with tri-sodium phosphate, in a dose of 50 mg·kg(-1) of FFM/d, while a placebo was provided for the C group. Additionally, group S was further subjected to a 3-week supplementation of 25 mg·kg(-1) FFM/d, while group C received 2g of glucose. The results indicate a significant (p < 0.05) increase in VO2max, VEmax, and O2/HR, due to sodium phosphate intake over 6 days. Also a significant (p < 0.05) decrease in HRrest and HRmax occurred. The supplementation procedure caused a significant increase (p < 0.05) in Pmax and a shift of VAT towards higher loads. There were no significant changes in the concentration of 2,3-DPG, acid-base balance and lactate concentration, due to phosphate salt intake. Key pointsStudies on bone acute biochemical response to loading have yielded unequivocal results.There is a paucity of research on the biochemical bone response to high impact exercise.An increase in bone turnover was observed one to two days post exercise.

  6. Aerobic capacity correlates to self-assessed physical function but not to overall disease activity or organ damage in women with systemic lupus erythematosus with low-to-moderate disease activity and organ damage.

    PubMed

    Boström, C; Dupré, B; Tengvar, P; Jansson, E; Opava, C H; Lundberg, I E

    2008-02-01

    The present aim is to investigate the relationships between aerobic capacity and disease activity, organ damage, health-related quality of life (HRQL) and physical activity in 34 women with systemic lupus erythematosus (SLE) with low-to-moderate disease activity and organ damage. Mean age was 51 (SD 10) years, disease duration 17 (SD 11) years. Aerobic capacity (maximal oxygen uptake/VO2 max) was measured with a bicycle ergometer exercise test. Overall disease activity was assessed with Systemic Lupus Activity Measure (SLAM) and the modified Systemic Lupus Erythematosus-Disease Activity Index (modified SLE-DAI), overall organ damage with the Systemic Lupus International Collaboration Clinics/American College of Rheumatology-Damage Index, [SLICC/(ACR)-DI], HRQL with the 36-item Short-form health-survey (SF-36) and physical activity with a self-assessed question. The women who were low-to-moderately physically active had 89-92% (P < or = 0.001) of VO2 max predicted for sedentary women. Maximal oxygen uptake (L/min, mL/min/kg) correlated to SF-36 physical function (rs = 0.49, rs = 0.72) (P < or = 0.01), but not (rs < or = 0.25) to other HRQL scales, overall disease activity or organ damage or physical activity. The correlation between aerobic capacity and physical function and the absence of correlation between aerobic capacity and physical activity, suggest a possible disease-related factor behind the low aerobic capacity. However, with no correlation between aerobic capacity and overall disease activity and organ damage, low physical activity may contribute to the low aerobic capacity in our sample.

  7. Effects of Combined Aerobic and Resistance Exercise on Exercise Capacity, Muscle Strength and Quality of Life in HIV-Infected Patients: A Systematic Review and Meta-Analysis

    PubMed Central

    Gomes Neto, Mansueto; Conceição, Cristiano Sena; Carvalho, Vitor Oliveira; Brites, Carlos

    2015-01-01

    Background Many HIV-infected patients demonstrate disability and lower aerobic capacity. The inclusion of resistance training combined with aerobic exercise in a single program is known as combined aerobic and resistance exercise (CARE) and seems to be an effective strategy to improve muscle weakness, as well as aerobic capacity in HIV-infected patients. We performed a meta-analysis to investigate the effects of CARE in HIV-infected patients. Methods We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, CINAHL (from the earliest date available to august 2014) for controlled trials that evaluated the effects of CARE in HIV-infected patients. Weighted mean differences (WMD) and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed using the I2 test. Results Seven studies met the study criteria. CARE resulted in improvement in Peak VO2 WMD (4.48 mL·kg-1·min-1 95% CI: 2.95 to 6.0), muscle strength of the knee extensors WMD (25.06 Kg 95% CI: 10.46 to 39.66) and elbow flexors WMD (4.44 Kg 95% CI: 1.22 to 7.67) compared with no exercise group. The meta-analyses also showed significant improvement in Health status, Energy/Vitality and physical function domains of quality of life for participants in the CARE group compared with no exercise group. A nonsignificant improvement in social function domain of quality of life was found for participants in the CARE group compared with no exercise group. Conclusions Combined aerobic and resistance exercise may improve peak VO2, muscle strength and health status, energy and physical function domains of quality of life and should be considered as a component of care of HIV-infected individuals. PMID:26378794

  8. Effect of Pharmacologically-Induced Hypovolemia on Aerobic Capacity

    NASA Technical Reports Server (NTRS)

    Everett, Meghan E.; Lee, S. M. C.; Platts, S. H.

    2009-01-01

    Decreased peak oxygen consumption (VO2pk) and an elevated exercise heart rate (HR) response are associated with a reduction in plasma volume (PV) after space flight and bed rest, a space flight analog. Reduced VO2pk and submaximal exercise tolerance would negatively impact an astronaut s ability to perform near maximal work that would be required in the event of an emergency. We previously have administered IV furosemide followed by a low salt diet to model PV loss and orthostatic intolerance observed after spaceflight. Purpose: To determine whether a pharmacologically-induced reduction in PV results in decreased VO2pk and elevated exercise HR response. Methods: Six subjects (5M, 1F) performed two graded peak cycle tests (work rate increased by 35 or 50 W every 3 min), once while normovolemic and once while hypovolemic. HR and expired respiratory gases were continuously measured. To induce hypovolemia, subjects were administered a single dose of IV furosemide (0.5 mg.kg-1) 30 hr before exercise testing and then consumed a low-salt diet (10 mEq.d(sup -1)). PV was measured using carbon monoxide rebreathing. Exercise HR and VO2 responses were quantified as the area under the curve (AUC) calculated over each quartile of the peak test, based on test time in the hypovolemia condition. Paired t-tests were used to test for differences in PV, VO2pk, and peak HR between conditions. Repeated-measures ANOVAs were used to test for differences in AUC between conditions. Results: PV (3.32+/-0.12 vs. 2.77+/-0.16 L, p<0.05) and VO2pk (3.30+/-0.67 vs. 2.90+/-0.57 L.min(sup -1), p<0.05) were lower during hypovolemia than during normovolemia, but peak HR was not different (187+/-5 vs. 187+/-5 bpm). The AUC for VO2 and HR was different (p<0.05) between conditions only in the highest quartile: HR was 4% higher and VO2 was 5% lower during the hypovolemia condition. Conclusion: The mean difference in VO2pk (-12%) between normovolemia and hypovolemia was similar to the mean difference in

  9. Determinants of maximal oxygen uptake (VO2 max) in fire fighter testing.

    PubMed

    Vandersmissen, G J M; Verhoogen, R A J R; Van Cauwenbergh, A F M; Godderis, L

    2014-07-01

    The aim of this study was to evaluate current daily practice of aerobic capacity testing in Belgian fire fighters. The impact of personal and test-related parameters on the outcome has been evaluated. Maximal oxygen uptake (VO2 max) results of 605 male fire fighters gathered between 1999 and 2010 were analysed. The maximal cardio respiratory exercise tests were performed at 22 different centres using different types of tests (tread mill or bicycle), different exercise protocols and measuring equipment. Mean VO2 max was 43.3 (SD = 9.8) ml/kg.min. Besides waist circumference and age, the type of test, the degree of performance of the test and the test centre were statistically significant determinants of maximal oxygen uptake. Test-related parameters have to be taken into account when interpreting and comparing maximal oxygen uptake tests of fire fighters. It highlights the need for standardization of aerobic capacity testing in the medical evaluation of fire fighters. PMID:24456897

  10. Aerobic work capacity in high school students in Israel.

    PubMed

    Shoenfeld, Y; Shapiro, Y; Mechtiger, A; Kovatz, S; Shapiro, A; Portugeeze, D

    1977-03-01

    Maximal oxygen uptake (Vo2max) was predicted in 1,951 high school students aged 14 to 19 years--1,061 girls and 890 boys--from five different types of high school. The schools represented most of the ethnic groups. The mean Vo2max in the boys was 41.3 +/- 9.4 (SD), and in the girls, 34.7 +/- 10.1 ml - kg-1 - min-1; it was highest at the age of 16 in the boys, and at ages 14 and 15 in the girls. Significant ethnic differences in Vo2max were recorded; Vo2max was highest in students of Middle Eastern and North African origin [boys 42.7 +/- 9.3 (SD), girls 35.9 +/- 14.5], and lowest in the subjects of European and North American origin (boys 39.8 +/- 9.2, girls 33.2 +/- 9.3). Israel-born students showed average values (boys 40.7 +/- 9.6, girls 35.2 +/- 10.9). Significant differences in mean Vo2max values were observed in the general and agricultural high schools, and the lowest values in boys were oberved in the heshiva (parochial) high school, and in girls in the state religous high school. The differences in Vo2max in the various subpopulations in Israel can be attributed mainly to different patterns of physical activity and in part to ethnic origin. PMID:856763

  11. Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2pk)

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan

    2016-01-01

    Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.

  12. Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2peak)

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan

    2016-01-01

    Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.

  13. Maximal and functional aerobic capacity as assessed by two graduated field methods in comparison to laboratory exercise testing in moderately trained subjects.

    PubMed

    Ahmaidi, S; Collomp, K; Caillaud, C; Préfaut, C

    1992-04-01

    This study was undertaken to determine which of the two commonly used field tests, the 20-meter shuttle run test (20-MST) or the University of Montreal track test (UM-TT), provides the most accurate assessment of maximal and functional aerobic capacity in moderately trained athletes. Eleven male subjects aged from 18 to 30 years were studied in triple incremental and continuous running tests carried out until exhaustion both in laboratory and field conditions. They underwent a laboratory treadmill test and completed the outdoor 20-MST and UM-TT. During the three randomly assigned tests, maximal velocity (Vmax), maximal oxygen uptake (VO2max), maximal heart rate (HRmax), and post-exercise peak blood lactate (P[La]) measurements were made. The results indicate a significant difference in the mean Vmax (F = 9.26, p less than 0.001). Vmax determined by the 20-MST revealed a lower value than by treadmill (16.3%) and the UM-TT (19.3%). In contrast, there was no difference with regard to VO2max (F = 2.95, p = 0.06), HRmax (F = 2.72, p = 0.08), and P[La] (F = 2.79, p = 0.07). These results confirm that the UM-TT is a valid field test of maximal and functional aerobic capacity in moderately trained subjects and suggest that it can be additionally used for exercise prescription.

  14. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise.

    PubMed

    Bellar, D; Hatchett, A; Judge, L W; Breaux, M E; Marcus, L

    2015-11-01

    CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time) with age, group (naïve or CrossFit athlete), VO2max and anaerobic power, which were all significant predictors (p < 0.05) in the model. The second workout (repetitions), when examined similarly using regression, only resulted in CrossFit experience as a significant predictor (p < 0.05). The results of the study suggest that a history of participation in CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success.

  15. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise.

    PubMed

    Bellar, D; Hatchett, A; Judge, L W; Breaux, M E; Marcus, L

    2015-11-01

    CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time) with age, group (naïve or CrossFit athlete), VO2max and anaerobic power, which were all significant predictors (p < 0.05) in the model. The second workout (repetitions), when examined similarly using regression, only resulted in CrossFit experience as a significant predictor (p < 0.05). The results of the study suggest that a history of participation in CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success. PMID:26681834

  16. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise

    PubMed Central

    Hatchett, A; Judge, LW; Breaux, ME; Marcus, L

    2015-01-01

    CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time) with age, group (naïve or CrossFit athlete), VO2max and anaerobic power, which were all significant predictors (p < 0.05) in the model. The second workout (repetitions), when examined similarly using regression, only resulted in CrossFit experience as a significant predictor (p < 0.05). The results of the study suggest that a history of participation in CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success. PMID:26681834

  17. Effects of a carbohydrate-, protein-, and ribose-containing repletion drink during 8 weeks of endurance training on aerobic capacity, endurance performance, and body composition.

    PubMed

    Cramer, Joel T; Housh, Terry J; Johnson, Glen O; Coburn, Jared W; Stout, Jeffrey R

    2012-08-01

    This study compared a carbohydrate-, protein-, and ribose-containing repletion drink vs. carbohydrates alone during 8 weeks of aerobic training. Thirty-two men (age, mean ± SD = 23 ± 3 years) performed tests for aerobic capacity (V(O2)peak), time to exhaustion (TTE) at 90% V(O2)peak, and percent body fat (%fat), and fat-free mass (FFM). Testing was conducted at pre-training (PRE), mid-training at 3 weeks (MID3), mid-training at 6 weeks (MID6), and post-training (POST). Cycle ergometry training was performed at 70% V(O2)peak for 1 hours per day, 5 days per week for 8 weeks. Participants were assigned to a test drink (TEST; 370 kcal, 76 g carbohydrate, 14 g protein, 2.2 g d-ribose; n = 15) or control drink (CON; 370 kcal, 93 g carbohydrate; n = 17) ingested immediately after training. Body weight (BW; 1.8% decrease CON; 1.3% decrease TEST from PRE to POST), %fat (5.5% decrease CON; 3.9% decrease TEST), and FFM (0.1% decrease CON; 0.6% decrease TEST) decreased (p ≤ 0.05), whereas V(O2)peak (19.1% increase CON; 15.8% increase TEST) and TTE (239.1% increase CON; 377.3% increase TEST) increased (p ≤ 0.05) throughout the 8 weeks of training. Percent decreases in %fat from PRE to MID3 and percent increases in FFM from PRE to MID3 and MID6 were greater (p ≤ 0.05) for TEST than CON. Overall, even though the TEST drink did not augment BW, V(O2)peak, or TTE beyond carbohydrates alone, it did improve body composition (%fat and FFM) within the first 3-6 weeks of supplementation, which may be helpful for practitioners to understand how carbohydrate-protein recovery drinks can and cannot improve performance in their athletes.

  18. Development of a walking aerobic capacity test for structural firefighters.

    PubMed

    Moore, Karlie J; Penry, Jason T; Gunter, Katherine B

    2014-08-01

    Firefighting requires high fitness to perform job tasks and minimize risk of job-related cardiac death. To reduce this risk, the International Association of Firefighters has recommended firefighters possess a VO2max ≥ 42 ml·kg-1·min-1. This recommendation is not universally applied because existing screening tests require costly equipment and do not accommodate firefighters unable to run. The purpose of this study was to develop a walking test to predict VO2max in firefighters using a standard treadmill. Thirty-eight male firefighters wore a vest weighing 20% of their body weight and performed a walking VO2max test on a standard treadmill. Walking speed was dependent on leg length and ranged from 3.6 to 4.3 mph. The test began with a 3-minute warm-up, after which the speed was increased to test speed. Every minute thereafter, the grade increased 1% until participants reached exhaustion. For cross-validation, 13 firefighters also performed a running VO2max test. The average test time was 16.95 ± 2.57 minutes (including warm-up) and ranged between 8 and 22 minutes. Average VO2max was 48.4 ± 6.5 ml·kg-1·min-1. Stepwise linear regression included time as the only significant independent variable explaining 76% of the variance in VO2max (p < 0.001). The standard error of the estimate was 3.2 ml·kg-1·min-1. The equation derived is: VO2max (ml·kg·min-1) = 11.373 + time (minute) × 2.184. On average, VO2max values measured while walking were 4.62 ± 5.86 ml·kg-1·min-1, lower than running values. This test has good potential for predicting VO2max among structural firefighters, and minimal equipment needs make it feasible for fire departments to administer. PMID:24552804

  19. Accuracy of peak VO2 assessments in career firefighters

    PubMed Central

    2011-01-01

    Background Sudden cardiac death is the leading cause of on-duty death in United States firefighters. Accurately assessing cardiopulmonary capacity is critical to preventing, or reducing, cardiovascular events in this population. Methods A total of 83 male firefighters performed Wellness-Fitness Initiative (WFI) maximal exercise treadmill tests and direct peak VO2 assessments to volitional fatigue. Of the 83, 63 completed WFI sub-maximal exercise treadmill tests for comparison to directly measured peak VO2 and historical estimations. Results Maximal heart rates were overestimated by the traditional 220-age equation by about 5 beats per minute (p < .001). Peak VO2 was overestimated by the WFI maximal exercise treadmill and the historical WFI sub-maximal estimation by ~ 1MET and ~ 2 METs, respectively (p < 0.001). The revised 2008 WFI sub-maximal treadmill estimation was found to accurately estimate peak VO2 when compared to directly measured peak VO2. Conclusion Accurate assessment of cardiopulmonary capacity is critical in determining appropriate duty assignments, and identification of potential cardiovascular problems, for firefighters. Estimation of cardiopulmonary fitness improves using the revised 2008 WFI sub-maximal equation. PMID:21943154

  20. The Effect of Habitual Smoking on VO2max

    NASA Technical Reports Server (NTRS)

    Wier, Larry T.; Suminski, Richard R.; Poston, Walker S.; Randles, Anthony M.; Arenare, Brian; Jackson, Andrew S.

    2008-01-01

    VO2max is associated with many factors, including age, gender, physical activity, and body composition. It is popularly believed that habitual smoking lowers aerobic fitness. PURPOSE: to determine the effect of habitual smoking on VO2max after controlling for age, gender, activity and BMI. METHODS: 2374 men and 375 women employed at the NASA/Johnson Space Center were measured for VO2max by indirect calorimetry (RER>=1.1), activity by the 11 point (0-10) NASA Physical Activity Status Scale (PASS), BMI and smoking pack-yrs (packs day*y of smoking). Age was recorded in years and gender was coded as M=1, W=0. Pack.y was made a categorical variable consisting of four levels as follows: Never Smoked (0), Light (1-10), Regular (11-20), Heavy (>20). Group differences were verified by ANOVA. A General Linear Models (GLM) was used to develop two models to examine the relationship of smoking behavior on VO2max. GLM #1(without smoking) determined the combined effects of age, gender, PASS and BMI on VO2max. GLM #2 (with smoking) determined the added effects of smoking (pack.y groupings) on VO2max after controlling for age, gender, PASS and BMI. Constant errors (CE) were calculated to compare the accuracy of the two models for estimating the VO2max of the smoking subgroups. RESULTS: ANOVA affirmed the mean VO2max of each pack.y grouping decreased significantly (p<0.01) as the level of smoking exposure increased. GLM #1 showed that age, gender, PASS and BMI were independently related with VO2max (R2 = 0.642, SEE = 4.90, p<0.001). The added pack.y variables in GLM #2 were statistically significant (R2 change = 0.7%, p<0.01). Post hoc analysis showed that compared to Never Smoked, the effects on VO2max from Light and Regular smoking habits were -0.83 and -0.85 ml.kg- 1.min-1 respectively (p<0.05). The effect of Heavy smoking on VO2max was -2.56 ml.kg- 1.min-1 (p<0.001). The CE s of each smoking group in GLM #2 was smaller than the CE s of the smoking group counterparts in GLM #1

  1. The effect of 6 days of sodium phosphate supplementation on appetite, energy intake, and aerobic capacity in trained men and women.

    PubMed

    West, Jessica S; Ayton, Tom; Wallman, Karen E; Guelfi, Kym J

    2012-12-01

    Ingestion of an acute dose of phosphate has been shown to attenuate energy intake in the subsequent meal. This raises the question of whether the practice of phosphate supplementation over a number of days by athletes to enhance performance also influences energy intake. This study investigated the effect of 6 d of phosphate supplementation on appetite and energy intake, as well as aerobic capacity, in trained individuals. Twenty participants completed two 6-d phases of supplementation with either sodium phosphate (50 mg/kg of fat-free mass per day) or a placebo in a double-blinded, counterbalanced design. On Days 1, 2, and 6 of supplementation, a laboratory meal was provided to assess appetite and ad libitum energy intake. All other food and drink consumed during each supplementation phase were recorded in a food diary. After the 6 d of supplementation, peak aerobic capacity (VO(2peak)) was assessed. There was no difference in energy intake at the laboratory meal after an acute dose (i.e., on Day 1; placebo 2,471 ± 919 kJ, phosphate 2,353 ± 987 kJ; p = .385) or prolonged supplementation with sodium phosphate (p = .581) compared with placebo. Likewise, there was no difference in VO(2peak) with phosphate supplementation (placebo 52.6 ± 5.2 ml · kg(-1) · min(-1), phosphate 53.3 ± 6.1 ml · kg(-1) · min(-1); p = .483). In summary, 6 d of sodium phosphate supplementation does not appear to influence energy intake. Therefore, athletes supplementing with sodium phosphate can do so without hindering their nutritional status. However, given that phosphate supplementation failed to improve aerobic capacity, the ergogenic benefit of this supplement remains questionable.

  2. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  3. Time to Exhaustion at the VO2max Velocity in Swimming: A Review

    PubMed Central

    Fernandes, Ricardo J.; Vilas-Boas, J. Paulo

    2012-01-01

    The aim of this study was to present a review on the time to exhaustion at the minimum swimming velocity corresponding to maximal oxygen consumption (TLim-vVO2max). This parameter is critical both for the aerobic power and the lactate tolerance bioenergetical training intensity zones, being fundamental to characterize it, and to point out its main determinants. The few number of studies conducted in this topic observed that swimmers were able to maintain an exercise intensity corresponding to maximal aerobic power during 215 to 260 s (elite swimmers), 230 to 260 s (high level swimmers) and 310 to 325 s (low level swimmers), and no differences between genders were reported. TLim-vVO2max main bioenergetic and functional determinants were swimming economy and VO2 slow component (direct relationship), and vVO2max, velocity at anaerobic threshold and blood lactate production (inverse relationship); when more homogeneous groups of swimmers were analysed, the inverse correlation value between TLim-vVO2max and vVO2max was not so evident. In general, TLim-vVO2max was not related to VO2max. TLim-vVO2max seems also to be influenced by stroking parameters, with a direct relationship to stroke length and stroke index, and an inverse correlation with stroke rate. Assessing TLim-vVO2max, together with the anaerobic threshold and the biomechanical general parameters, will allow a larger spectrum of testing protocols application, helping to build more objective and efficient training programs. PMID:23486651

  4. Myocardial performance and aortic elastic properties in elite basketball and soccer players: relationship with aerobic and anaerobic capacity.

    PubMed

    Akova, Bedrettin; Yesilbursa, Dilek; Sekir, Ufuk; Gür, Hakan; Serdar, Akin

    2005-06-01

    The aims of the present study were to examine the myocardial performance index and aortic elastic properties of athletes engaged in ball sports and to determine their relationships with aerobic and anaerobic characteristics. Standard M-mode and Doppler echocardiography, maximal oxygen uptake and 30 sec Wingate tests were performed for 32 elite male athletes (12 basketball and 20 soccer players) and 12 healthy sedentary volunteers. Data were analyzed by ANOVA and partial correlation coefficient tests. Absolute values of left ventricular internal diameter, left ventricular posterior wall and interventricular septum thicknesses in diastole were significantly (p < 0.05-0.01) greater in athletes than in controls. The left ventricular internal diameter corrected by body surface area was also greater (p < 0.05-0.01) in the athletes compared with the controls. Absolute and body surface area corrected left ventricular mass were significantly greater (p < 0.05-0.001) in athletes than in controls. Isovolumetric relaxation time was higher (p < 0.01) in soccer players than in controls. There were no significant differences among the groups for myocardial performance index and aortic elastic properties. Left ventricular mass index was poorly correlated (p < 0.01) with VO2max (r = 0.410), peak power (r = 0.439) and average power (r = 0.464) in the athletes. Poor correlations (r = 0.333-0.350, p < 0.05) were also observed between aortic elastic properties and average power in athletes. Myocardial performance index and aortic elastic properties are not different in athletes involved in this study compared with sedentary subjects. Aerobic and anaerobic capacities of the athletes used in this study are poorly explained by these resting echocardiographic findings. Key PointsLeft ventricular internal diameter, left ventricular posterior wall and interventricular septum thicknesses in diastole, and left ventricular mass were significantly greater in athletes than in controls.There were

  5. Circulating microRNAs as potential biomarkers of aerobic exercise capacity.

    PubMed

    Mooren, Frank C; Viereck, Janika; Krüger, Karsten; Thum, Thomas

    2014-02-15

    Purpose microRNAs (miRs) are crucial intracellular mediators of various biological processes, also affecting the cardiovascular system. Recently, it has been shown that miRs circulate extracellularly in the bloodstream and that such circulating miRs change in response to physical activity. Therefore, the purpose of the current study was to investigate heart/muscle specific and inflammation related miRs in plasma of individuals before, directly after, and 24 h after a marathon run and to analyze their relation to conventional biochemical, cardiovascular, and performance indexes. Male endurance athletes (n =14) were recruited for the study after performing a battery of cardiac functional tests. Blood samples were collected before, directly after, and 24 h after a public marathon run. miR-1, miR-133, miR-206, miR-499, miR-208b, miR-21, and miR-155 were measured using individual Taqman assays and normalized to Caenorhabditis elegans miR-39 (cel-39) spike-in control. Moreover, soluble cardiac, inflammatory, and muscle damage markers were determined. As a result, skeletal- and heart muscle-specific miRs showed a significant increase after the marathon. The strongest increase was observed for miR-206. Twenty-four hours after the run, only miR-499 and miR-208b were returned to preexercise levels, whereas the others were still enhanced. In contrast, miR-21 and -155 were not affected by exercise. miR-1, -133a, and -206 correlated to aerobic performance parameters such as maximum oxygen uptake (VO(2max)) and running speed at individual anaerobic lactate threshold (VIAS). miR-1 showed a moderate negative correlation with fractional shortening, whereas miR-133a was positively related to the thickness of intraventricular septum. None of the miRs correlated with cardiac injury markers such as troponin T, troponin I, and pro-brain natriuretic peptide. In conclusion, these findings suggest a potential role for muscle- and heart-specific miRs in cardiovascular adaptation processes

  6. LBNP exercise protects aerobic capacity and sprint speed of female twins during 30 days of bed rest.

    PubMed

    Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Watenpaugh, Donald E; Macias, Brandon R; Meyer, R Scott; Hargens, Alan R

    2009-03-01

    We have shown previously that treadmill exercise within lower body negative pressure (LBNPex) maintains upright exercise capacity (peak oxygen consumption, Vo(2peak)) in men after 5, 15, and 30 days of bed rest (BR). We hypothesized that LBNPex protects treadmill Vo(2peak) and sprint speed in women during a 30-day BR. Seven sets of female monozygous twins volunteered to participate. Within each twin set, one was randomly assigned to a control group (Con) and performed no countermeasures, and the other was assigned to an exercise group (Ex) and performed a 40-min interval (40-80% pre-BR Vo(2peak)) LBNPex (51 +/- 5 mmHg) protocol, plus 5 min of static LBNP, 6 days per week. Before and immediately after BR, subjects completed a 30.5-m sprint test and an upright graded treadmill test to volitional fatigue. These results in women were compared with previously reported reductions in Vo(2peak) and sprint speed in male twins after BR. In women, sprint speed (-8 +/- 2%) and Vo(2peak) (-6 +/- 2%) were not different after BR in the Ex group. In contrast, both sprint speed (-24 +/- 5%) and Vo(2peak) (-16 +/- 3%) were significantly less after BR in the Con group. The effect of BR on sprint speed and Vo(2peak) after BR was not different between women and men. We conclude that treadmill exercise within LBNP protects against BR-induced reductions in Vo(2peak) and sprint speed in women and should prove effective during long-duration spaceflight.

  7. Tunable VO2/Au hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Prayakarao, S.; Mendoza, B.; Devine, A.; Kyaw, C.; van Dover, R. B.; Liberman, V.; Noginov, M. A.

    2016-08-01

    Vanadium dioxide (VO2) is known to have a semiconductor-to-metal phase transition at ˜68 °C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial studied in this work is composed of subwavelength VO2 and Au layers and is designed to undergo a temperature controlled transition from the optical hyperbolic phase to the metallic phase. VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in electrical conductivity and optical (transmission and reflection) experiments. The observed temperature-dependent changes in the reflection and transmission spectra of the metamaterials and VO2 thin films are in a good qualitative agreement with theoretical predictions. The demonstrated optical hyperbolic-to-metallic phase transition is a unique physical phenomenon with the potential to enable advanced control of light-matter interactions.

  8. Determination of VO2-Intensity Relationship and MAOD in Tethered Swimming.

    PubMed

    Kalva-Filho, C A; Araújo, M Y C; Silva, A; Gobatto, C A; Zagatto, A M; Gobbi, R B; Papoti, M

    2016-08-01

    This study aimed to test the reproducibility of the maximal accumulated oxygen deficit (MAOD) values and VO2-intensity relationship parameters as measured during tethered swimming. 9 swimmers performed an incremental test to determine the maximal aerobic force (MAF), 6 submaximal efforts to develop VO2-intensity relationship, and an exhaustive effort to determine MAOD. The tests were performed twice. The reproducibility of the measurements was tested using intraclass correlation (ICC), typical error (TE) and coefficient of variation (CV). High levels of reproducibility were observed for MAF (TE=2.6 N; CV=4.3%; ICC=0.98) and VO2-intensity relationship parameters, as intercept (TE=0.01 L.min(-1); CV=11.4%; ICC=0.97), slope (TE=0.002 L.min(-1).N(-1); CV=3.1%; ICC=0.97) and coefficient of determination (TE=0.02; CV=1.8%; ICC=0.47). The MAOD values measured during the test (2.9±1.1 L and 45.3±14.0 mL.Kg(-1)) and retests (2.9±1.1 L and 45.2±12.6 mL.Kg(-1)) were highly correlated (absolute values: ICC=0.93; relative to body mass values: ICC=0.89) and presented low values of TE (0.3 L and 4.3 mL.Kg(-1)) and CV (9.5% for absolute and 9.6% for relative to body mass values). Thus, we demonstrated the potential use of tethered swimming to assess anaerobic capacity in an aquatic environment. PMID:27176891

  9. Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals.

    PubMed

    Keeler, L K; Finkelstein, L H; Miller, W; Fernhall, B

    2001-08-01

    We performed a randomized exercise training study to assess the effects of traditional Nautilus-style (TR) or superslow (SS) strength training on muscular strength, body composition, aerobic capacity, and cardiovascular endurance. Subjects were 14 healthy, sedentary women, 19-45 years of age (mean +/- SD age, 32.7 +/- 8.9 years), randomized to either the SS or TR training protocols and trained 3 times per week for 10 weeks. Measurements were taken both before and after training, which included a maximal incremental exercise test on a cycle ergometer, body composition, and 1 repetition maximum (1RM) tests on 8 Nautilus machines. Both groups increased their strength significantly on all 8 exercises, whereas the TR group increased significantly more than the SS group on bench press (34% vs. 11%), torso arm (anterior lateral pull-down) (27% vs. 12%), leg press (33% vs. 7%), leg extension (56% vs. 24%), and leg curl (40% vs. 15%). Thus, the TR group's improvement in total exercise weight lifted was significantly greater than that of the SS group after testing (39% vs. 15%). Exercise duration on the cycle ergometer and work rate significantly improved for both groups, but there was no group-by-training interaction. No significant differences were found for body composition or additional aerobic variables measured. Both strength training protocols produced a significant improvement in strength during a 10-week training period, but the TR protocol produced better gains in the absence of changes in percentage of body fat, body mass index, lean body mass, and body weight. In addition, strength training alone did not improve Vo2max, yet short-term endurance increased.

  10. Respiratory physiology of the Oniscidea: aerobic capacity and the significance of pleopodal lungs.

    PubMed

    Wright, Jonathan C; Ting, Kevin

    2006-10-01

    The radiation of the terrestrial isopods (sub-order Oniscidea) has been accompanied by evolution of pleopodal lungs in the sections Tylida and Crinocheta. To understand the significance of such lungs for aerobic respiration, comparative studies were conducted using 6 species. Ligia occidentalis, lacking lungs, behaved as a metabolic conformer in reduced PO(2), and showed decreased V(.-)O(2) in low humidity and following dehydration. In species possessing lungs, metabolism was insensitive to dehydration. However, lung development did not show a clear relationship to metabolic regulation: Porcellio dilatatus was a metabolic conformer while Tylos punctatus and Armadillidium vulgare were efficient regulators. The metabolic conformers did not accumulate lactate during moderate hypoxia (10% O(2)), indicating that reduced V(.-)O(2) is not compensated with anaerobic glycolysis. In contrast, Alloniscus perconvexus, a littoral species with limited metabolic regulation, showed the largest lactate accumulation during hypoxia and also possessed the highest tissue LDH activity. It is hypothesized that these are adaptations to periodic hypoxia in sand burrows and the high metabolic cost of burrowing. Differences in lactate accumulation during immersion were curious, with the largest increases occurring in L. occidentalis and A. perconvexus that tolerate prolonged immersion in seawater. Possible functions of this lactate accumulation may include modulation of hemocyanin oxygen affinity. PMID:16875858

  11. Magnetic Irreversibility in VO2/Ni Bilayers

    NASA Astrophysics Data System (ADS)

    de La Venta, Jose; Lauzier, Josh; Sutton, Logan

    The temperature dependence of the coercivity and magnetization of VO2/Ni bilayers was studied. VO2 exhibits a well-known Structural Phase Transition (SPT) at 330-340 K, from a low temperature monoclinic (M) to a high temperature rutile (R) structure. The SPT of VO2 induces an inverse magnetoelastic effect that strongly modifies the coercivity and magnetization of the Ni films. In addition, the growth conditions allow tuning of the magnetic properties. Ni films deposited on top of VO2 (M) show an irreversible change in the coercivity after the first cycle through the high temperature phase, with a corresponding change in the surface morphology of VO2. On the other hand, the Ni films grown on top of VO2 (R) do not show this irreversibility. These results indicate that properties of magnetic films are strongly affected by the strain induced by materials that undergo SPT and that it is possible to control the magnetic properties by tuning the growth conditions.

  12. Test-retest repeatability of strength capacity, aerobic power and pericranial tenderness of neck and shoulder muscles in children - relevant for tension-type headache

    PubMed Central

    Tornøe, Birte; Andersen, Lars L; Skotte, Jørgen H; Jensen, Rigmor; Gard, Gunvor; Skov, Liselotte; Hallström, Inger

    2013-01-01

    Background Frequent or chronic tension-type headache in children is a prevalent and debilitating condition for the child, often leading to medication overuse. To explore the relationship between physical factors and tension-type headache in children, the quality of repeated measures was examined. The aim of the present study was to determine the test-retest repeatability of parameters determining isometric neck and shoulder strength and stability, aerobic power, and pericranial tenderness in children. Methods Twenty-five healthy children, 9 to 18 years of age, participated in test-retest procedures within a 1-week interval. A computerized padded force transducer was used for testing. The tests included the isometric maximal voluntary contraction and force steadiness of neck flexion and extension, and the isometric maximal voluntary contraction and rate of force of the dominant shoulder. Pericranial tenderness was recorded by means of standardized manual palpation, and a submaximal cycle ergometer test predicted maximal oxygen uptake (VO2 max). The measurements were evaluated in steps, using the intraclass correlation coefficient (ICC); changes in the mean between the two test occasions; the levels of agreement, visualized in Bland-Altman Plots; and by quantifying the variability. Results The results showed an acceptable test-retest repeatability of isometric maximal voluntary contraction (ICC 0.90–0.97). The force steadiness measurements revealed a trend of systematic changes in the direction of neck flexion and need further examination in both healthy and ill children. The rate of force development, Total Tenderness Score, and prediction of VO2 max showed repeatability, with ICC 0.80–0.87. Conclusion The measurements of strength capacity, aerobic power, and tenderness provide acceptable repeatability, suitable for research in children. PMID:24039446

  13. Assessing the Value of BMI and Aerobic Capacity as Surrogate Markers for the Severity of Left Ventricular Diastolic Dysfunction in Patients with Type 2 Diabetes Who Are Obese.

    PubMed

    Smith, Cassandra; Asrar Ul Haq, Muhammad; Jerums, George; Hanson, Erik; Hayes, Alan; Allen, Jason D; Sbaraglia, Melissa; Selig, Steve; Wong, Chiew; Hare, David L; Levinger, Itamar

    2016-01-01

    Left ventricular diastolic dysfunction (LVDD) is one of the earliest signs for abnormal cardiac function in patients with type 2 diabetes (T2DM). It is important to explore the risk factors that will assist in identifying the severity of the LVDD in this population. We examined the influences of fitness and fatness on the level of left ventricular (LV) impairment in patients with T2DM. Twenty-five patients (age: 64.0 ± 2.5 years, body mass index [BMI] = 36.0 ± 1.5 kg/m(2), mean ± standard error of measurement) with T2DM and preserved systolic function, but impaired diastolic function, mitral valve (MV) E/e', participated in the study. LV function was assessed using a stress echocardiograph, aerobic power was assessed with a sign- and symptom-limited graded exercise test, and the fatness level was assessed using Dual-energy X-ray absorptiometry and BMI. Patients in the higher 50% of BMI had higher lateral and septal MV E/e' (∼34% and ∼25%, respectively, both P < 0.001), compared to those in the lower 50% of BMI, with no difference in LV ejection fraction (LVEF) (P > 0.05). In addition, a higher BMI correlated with a higher lateral (r = 0.62, P < 0.001) and septal (r = 0.56, P < 0.01) E/e'. There was no such relationship for VO2peak. BMI and VO2peak were not correlated with LV systolic function (ejection fraction). In individuals with T2DM and diastolic dysfunction, a higher BMI was associated with worsening diastolic function independent of their aerobic capacity. The data provide a simple and practical approach for clinicians to assist in the early identification and diagnostics of functional changes in the heart diastolic function in this population.

  14. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes.

    PubMed

    Liao, Yi-Hung; Sung, Yu-Chi; Chou, Chun-Chung; Chen, Chung-Yu

    2016-01-01

    Changes in an athlete's physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD) athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females) participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition) and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S), and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004), increased insulin/cortisol ratio (+59.9%, p = 0.004), reduced aerobic power (-2.43%, p = 0.043), increased body fat accumulation (body fat%: +21.3%, p < 0.001), decreased muscle mass (muscle mass%: -4.04%, p < 0.001), and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006). The neutrophil-to-lymphocyte ratio (NLR), a systemic inflammatory index, increased by 48.2% (p = 0.005). The change in aerobic capacity was correlated with the increased fat mass (r = -0.429, p = 0.049) but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044) and aerobic capacity (r = -0.439, p = 0.045). We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle loss, insulin

  15. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes

    PubMed Central

    Liao, Yi-Hung; Sung, Yu-Chi

    2016-01-01

    Changes in an athlete’s physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD) athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females) participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition) and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S), and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004), increased insulin/cortisol ratio (+59.9%, p = 0.004), reduced aerobic power (–2.43%, p = 0.043), increased body fat accumulation (body fat%: +21.3%, p < 0.001), decreased muscle mass (muscle mass%: –4.04%, p < 0.001), and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006). The neutrophil-to-lymphocyte ratio (NLR), a systemic inflammatory index, increased by 48.2% (p = 0.005). The change in aerobic capacity was correlated with the increased fat mass (r = –0.429, p = 0.049) but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044) and aerobic capacity (r = –0.439, p = 0.045). We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle

  16. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes.

    PubMed

    Liao, Yi-Hung; Sung, Yu-Chi; Chou, Chun-Chung; Chen, Chung-Yu

    2016-01-01

    Changes in an athlete's physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD) athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females) participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition) and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S), and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004), increased insulin/cortisol ratio (+59.9%, p = 0.004), reduced aerobic power (-2.43%, p = 0.043), increased body fat accumulation (body fat%: +21.3%, p < 0.001), decreased muscle mass (muscle mass%: -4.04%, p < 0.001), and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006). The neutrophil-to-lymphocyte ratio (NLR), a systemic inflammatory index, increased by 48.2% (p = 0.005). The change in aerobic capacity was correlated with the increased fat mass (r = -0.429, p = 0.049) but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044) and aerobic capacity (r = -0.439, p = 0.045). We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle loss, insulin

  17. Associations between Attitudes toward Physical Education and Aerobic Capacity in Hungarian High School Students

    ERIC Educational Resources Information Center

    Kaj, Mónika; Saint-Maurice, Pedro F.; Karsai, István; Vass, Zoltán; Csányi, Tamás; Boronyai, Zoltán; Révész, László

    2015-01-01

    Purpose: The purpose of this study was to create a physical education (PE) attitude scale and examine how it is associated with aerobic capacity (AC). Method: Participants (n = 961, aged 15-20 years) were randomly selected from 26 Hungarian high schools. AC was estimated from performance on the Progressive Aerobic Cardiovascular and Endurance Run…

  18. VO2max during successive maximal efforts.

    PubMed

    Foster, Carl; Kuffel, Erin; Bradley, Nicole; Battista, Rebecca A; Wright, Glenn; Porcari, John P; Lucia, Alejandro; deKoning, Jos J

    2007-12-01

    The concept of VO(2)max has been a defining paradigm in exercise physiology for >75 years. Within the last decade, this concept has been both challenged and defended. The purpose of this study was to test the concept of VO(2)max by comparing VO(2) during a second exercise bout following a preliminary maximal effort exercise bout. The study had two parts. In Study #1, physically active non-athletes performed incremental cycle exercise. After 1-min recovery, a second bout was performed at a higher power output. In Study #2, competitive runners performed incremental treadmill exercise and, after 3-min recovery, a second bout at a higher speed. In Study #1 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (3.95 +/- 0.75 vs. 4.06 +/- 0.75 l min(-1)). Maximal heart rate was not different (179 +/- 14 vs. 180 +/- 13 bpm) although maximal V(E) was higher in the second bout (141 +/- 36 vs. 151 +/- 34 l min(-1)). In Study #2 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (4.09 +/- 0.97 vs. 4.03 +/- 1.16 l min(-1)), nor was maximal heart rate (184 + 6 vs. 181 +/- 10 bpm) or maximal V(E) (126 +/- 29 vs. 126 +/- 34 l min(-1)). The results support the concept that the highest VO(2) during a maximal incremental exercise bout is unlikely to change during a subsequent exercise bout, despite higher muscular power output. As such, the results support the "classical" view of VO(2)max. PMID:17891414

  19. VO2max during successive maximal efforts.

    PubMed

    Foster, Carl; Kuffel, Erin; Bradley, Nicole; Battista, Rebecca A; Wright, Glenn; Porcari, John P; Lucia, Alejandro; deKoning, Jos J

    2007-12-01

    The concept of VO(2)max has been a defining paradigm in exercise physiology for >75 years. Within the last decade, this concept has been both challenged and defended. The purpose of this study was to test the concept of VO(2)max by comparing VO(2) during a second exercise bout following a preliminary maximal effort exercise bout. The study had two parts. In Study #1, physically active non-athletes performed incremental cycle exercise. After 1-min recovery, a second bout was performed at a higher power output. In Study #2, competitive runners performed incremental treadmill exercise and, after 3-min recovery, a second bout at a higher speed. In Study #1 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (3.95 +/- 0.75 vs. 4.06 +/- 0.75 l min(-1)). Maximal heart rate was not different (179 +/- 14 vs. 180 +/- 13 bpm) although maximal V(E) was higher in the second bout (141 +/- 36 vs. 151 +/- 34 l min(-1)). In Study #2 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (4.09 +/- 0.97 vs. 4.03 +/- 1.16 l min(-1)), nor was maximal heart rate (184 + 6 vs. 181 +/- 10 bpm) or maximal V(E) (126 +/- 29 vs. 126 +/- 34 l min(-1)). The results support the concept that the highest VO(2) during a maximal incremental exercise bout is unlikely to change during a subsequent exercise bout, despite higher muscular power output. As such, the results support the "classical" view of VO(2)max.

  20. Comparison of VO2max in obese and non-obese young Indian population.

    PubMed

    Patkar, Kshitija Umesh; Joshi, Anjali S

    2011-01-01

    Incidence of obesity in early life is increasing nowadays because of faulty food habits and lack of exercise. This study was aimed to find out whether obesity affects cardiorespiratory efficiency of young adults. As VO2max is the most accepted indicator of cardiorespiratory efficiency it was compared in 30 obese and 30 non-obese subjects aged around 18-20 years. VO2mx was estimated by Queen's college step test. Various other parameters measured and calculated are weight, height, BMI, skin fold thickness, percentage body fat, lean body mass, fat mass. The results showed that cardiorespiratory efficiency (absolute VO2max & VO2max/kg lean body mass) was not affected (P > 0.05) in obese group in both sexes. Ability to do exhausting work (VO2max/kg body weight) was less in obese group (P = 0.001) compared to non-obese group & in obese males (P < 0.01) as compared to non-obese males. Percentage body fat (r = -0.416), triceps skin fold thickness (r = -0.427) and calf skin fold thickness (r = -0.381) strongly correlate to VO2max/kg body weight. Therefore the exercise programs can be best designed to increase caloric expenditure and thus to decrease body fat rather than to improve aerobic fitness.

  1. Systemic Oxidative Stress Is Associated With Lower Aerobic Capacity and Impaired Skeletal Muscle Energy Metabolism in Patients With Metabolic Syndrome

    PubMed Central

    Yokota, Takashi; Kinugawa, Shintaro; Yamato, Mayumi; Hirabayashi, Kagami; Suga, Tadashi; Takada, Shingo; Harada, Kuniaki; Morita, Noriteru; Oyama-Manabe, Noriko; Kikuchi, Yasuka; Okita, Koichi; Tsutsui, Hiroyuki

    2013-01-01

    OBJECTIVE Systemic oxidative stress is associated with insulin resistance and obesity. We tested the hypothesis that systemic oxidative stress is linked to lower aerobic capacity and skeletal muscle dysfunction in metabolic syndrome (MetS). RESEARCH DESIGN AND METHODS The incremental exercise testing with cycle ergometer was performed in 14 male patients with MetS and 13 age-, sex-, and activity-matched healthy subjects. Systemic lipid peroxidation was assessed by serum thiobarbituric acid reactive substances (TBARS), and systemic antioxidant defense capacity was assessed by serum total thiols and enzymatic activity of superoxide dismutase (SOD). To assess skeletal muscle energy metabolism, we measured high-energy phosphates in the calf muscle during plantar flexion exercise and intramyocellular lipid (IMCL) in the resting leg muscle, using 31P- and 1proton-magnetic resonance spectroscopy, respectively. RESULTS Serum TBARS were elevated (12.4 ± 7.1 vs. 3.7 ± 1.1 μmol/L; P < 0.01), and serum total thiols and SOD activity were decreased (290.8 ± 51.2 vs. 398.7 ± 105.2 μmol/L, P < 0.01; and 22.2 ± 8.4 vs. 31.5 ± 8.5 units/L, P < 0.05, respectively) in patients with MetS compared with healthy subjects. Peak VO2 and anaerobic threshold normalized to body weight were significantly lower in MetS patients by 25 and 31%, respectively, and inversely correlated with serum TBARS (r = −0.49 and r = −0.50, respectively). Moreover, muscle phosphocreatine loss during exercise was 1.4-fold greater in patients with MetS (P < 0.05), and IMCL content was 2.9-fold higher in patients with MetS (P < 0.01), indicating impaired skeletal muscle energy metabolism, and these indices positively correlated with serum TBARS (r = 0.45 and r = 0.63, respectively). CONCLUSIONS Systemic oxidative stress was associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in patients with MetS. PMID:23393211

  2. Which are the best VO2 sampling intervals to characterize low to severe swimming intensities?

    PubMed

    de Jesus, K; Guidetti, L; de Jesus, K; Vilas-Boas, J P; Baldari, C; Fernandes, R J

    2014-11-01

    Cardiorespiratory response in swimming has been used to better understand aerobic performance, especially by assessing oxygen uptake (VO2). The current study aimed to compare different VO2 time-averaging intervals throughout low to severe swimming intensities, hypothesizing that VO2 values are similar for different time averages at low to moderate and heavy swimming intensities, but not for the severe domain. 20 male trained swimmers completed an incremental protocol of 7×200 m until exhaustion (0.05 m/s increments and 30 s intervals). VO2 was measured by a portable gas analyser connected to a snorkel system. 6 time average intervals (breath-by-breath, 5, 10, 15, 20 and 30 s) were compared for all the protocol steps. Breath-by-breath and 5 s average exhibited higher VO2 values than averages≥10 s for all swimming intensities (P≤0.02; partial η(2)≤0.28). VO2 values did not differ between 10, 15, 20 and 30 s averages throughout the incremental protocol (P>0.05; partial η(2)≤0.05). Furthermore, 10 and 15 s averages showed the lowest VO2 mean difference (0.19 mL( · )kg(-1 · )min(-1)). For the 6 time average intervals analysed, 10 and 15 s averages were those that showed the lowest changes on VO2 values. We recommended the use of 10 and 15 s time averaging intervals to determine relevant respiratory gas exchange parameters along a large spectrum of swimming intensities. PMID:24892654

  3. Which are the best VO2 sampling intervals to characterize low to severe swimming intensities?

    PubMed

    de Jesus, K; Guidetti, L; de Jesus, K; Vilas-Boas, J P; Baldari, C; Fernandes, R J

    2014-11-01

    Cardiorespiratory response in swimming has been used to better understand aerobic performance, especially by assessing oxygen uptake (VO2). The current study aimed to compare different VO2 time-averaging intervals throughout low to severe swimming intensities, hypothesizing that VO2 values are similar for different time averages at low to moderate and heavy swimming intensities, but not for the severe domain. 20 male trained swimmers completed an incremental protocol of 7×200 m until exhaustion (0.05 m/s increments and 30 s intervals). VO2 was measured by a portable gas analyser connected to a snorkel system. 6 time average intervals (breath-by-breath, 5, 10, 15, 20 and 30 s) were compared for all the protocol steps. Breath-by-breath and 5 s average exhibited higher VO2 values than averages≥10 s for all swimming intensities (P≤0.02; partial η(2)≤0.28). VO2 values did not differ between 10, 15, 20 and 30 s averages throughout the incremental protocol (P>0.05; partial η(2)≤0.05). Furthermore, 10 and 15 s averages showed the lowest VO2 mean difference (0.19 mL( · )kg(-1 · )min(-1)). For the 6 time average intervals analysed, 10 and 15 s averages were those that showed the lowest changes on VO2 values. We recommended the use of 10 and 15 s time averaging intervals to determine relevant respiratory gas exchange parameters along a large spectrum of swimming intensities.

  4. Effects of training on muscle O2 transport at VO2max

    NASA Technical Reports Server (NTRS)

    Roca, J.; Agusti, A. G.; Alonso, A.; Poole, D. C.; Viegas, C.; Barbera, J. A.; Rodriguez-Roisin, R.; Ferrer, A.; Wagner, P. D.

    1992-01-01

    To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.

  5. Are H-reflex and M-wave recruitment curve parameters related to aerobic capacity?

    PubMed

    Piscione, Julien; Grosset, Jean-François; Gamet, Didier; Pérot, Chantal

    2012-10-01

    Soleus Hoffmann reflex (H-reflex) amplitude is affected by a training period and type and level of training are also well known to modify aerobic capacities. Previously, paired changes in H-reflex and aerobic capacity have been evidenced after endurance training. The aim of this study was to investigate possible links between H- and M-recruitment curve parameters and aerobic capacity collected on a cohort of subjects (56 young men) that were not involved in regular physical training. Maximal H-reflex normalized with respect to maximal M-wave (H(max)/M(max)) was measured as well as other parameters of the H- or M-recruitment curves that provide information about the reflex or direct excitability of the motoneuron pool, such as thresholds of stimulus intensity to obtain H or M response (H(th) and M(th)), the ascending slope of H-reflex, or M-wave recruitment curves (H(slp) and M(slp)) and their ratio (H(slp)/M(slp)). Aerobic capacity, i.e., maximal oxygen consumption and maximal aerobic power (MAP) were, respectively, estimated from a running field test and from an incremental test on a cycle ergometer. Maximal oxygen consumption was only correlated with M(slp), an indicator of muscle fiber heterogeneity (p < 0.05), whereas MAP was not correlated with any of the tested parameters (p > 0.05). Although higher H-reflex are often described for subjects with a high aerobic capacity because of endurance training, at a basic level (i.e., without training period context) no correlation was observed between maximal H-reflex and aerobic capacity. Thus, none of the H-reflex or M-wave recruitment curve parameters, except M(slp), was related to the aerobic capacity of young, untrained male subjects.

  6. Physical Activity, Aerobic Capacity, and Total Antioxidant Capacity in Healthy Men and in Men with Coronary Heart Disease

    PubMed Central

    Gawron-Skarbek, Anna; Chrzczanowicz, Jacek; Kostka, Joanna; Nowak, Dariusz; Drygas, Wojciech; Jegier, Anna; Kostka, Tomasz

    2015-01-01

    Objective. The purpose of the study was to assess total antioxidant capacity (TAC) of blood serum in relation with habitual leisure time physical activity (LTPA) and aerobic capacity in a group of 90 men with coronary heart disease (CHD) aged 34.8–77.0 years and in 90 age-matched peers without CHD. Methods. Two spectrophotometric methods were applied to assess TAC: Ferric Reducing Ability of Serum (TAC-FRAS) and 2.2-diphenyl-1-picryl-hydrazyl (TAC-DPPH) tests. Aerobic capacity was expressed as physical working capacity at 85% of the maximal heart rate (PWC85%HRmax). Results. CHD patients had higher values of TACFRAS (1.37 ± 0.28 versus 1.27 ± 0.23 mmol FeCl2·L−1; P < 0.05) but there were no group differences for TAC-DPPH and for uric acid (UA). Negative correlation was found between LTPA (also when calculated per kg of body mass) and TAC-DPPH in CHD patients. In CHD patients, TAC-FRAS and UA were lower in subjects with higher aerobic capacity expressed as PWC85%HRmax/kg. Those associations were not found in healthy men. Conclusions. We conclude that TAC of blood serum is moderately adversely related to LTPA and aerobic capacity in patients with CHD. UA, as the main determinant of serum TAC, may be partially responsible for those associations. PMID:26451234

  7. Aerobic and anaerobic exercise capacities in obstructive sleep apnea and associations with subcutaneous fat distributions.

    PubMed

    Ucok, Kagan; Aycicek, Abdullah; Sezer, Murat; Genc, Abdurrahman; Akkaya, Muzaffer; Caglar, Veli; Fidan, Fatma; Unlu, Mehmet

    2009-01-01

    Obesity is a strong risk factor for the development and progression of sleep apnea. Responses to exercise by patients with obstructive sleep apnea syndrome (OSAS) are clinically relevant to reducing body weight and cardiovascular risk factors. This study aimed to clarify the aerobic and anaerobic exercise capacities and their possible relationships with other findings in patients with OSAS. Forty patients (30 males, 10 females) and 40 controls (30 males, 10 females) were enrolled in this study. Questionnaires (excessive daytime sleepiness, daytime tiredness, morning headache, waking unrefreshed, and imbalance), overnight polysomnography, indirect laryngoscopy, and aerobic and anaerobic exercise tests were performed. Triceps, subscapular, abdomen, and thigh skinfold thicknesses were measured. Subcutaneous abdominal fat (abdomen skinfold) was significantly higher in OSAS patients than in controls. Maximal anaerobic power and anaerobic capacity were not different significantly between the patients and controls. We found that aerobic capacity was significantly lower in OSAS patients than in controls. Aerobic capacity was negatively correlated with upper-body subcutaneous fat (triceps and subscapular skinfolds) but not correlated with subcutaneous abdominal fat in OSAS patients. In multivariate analyses using all patients, the apnea-hypopnea index remained a significant independent predictor of aerobic capacity after controlling for a variety of potential confounders including body mass index. Our data confirm that central obesity (subcutaneous abdominal fat) is prominent in patients with OSAS. Our results suggest that lower aerobic exercise capacity in patients with OSAS might be due to daily physical activity that is restricted by OSA itself. This study also suggests that the degree of subcutaneous abdominal fat cannot be used for predicting aerobic capacity level. We think that upper-body subcutaneous fat might be suitable for determining the physical fitness of

  8. Aerobic capacity as a mediator of the influence of birth weight and school performance.

    PubMed

    García-Hermoso, A

    2016-08-01

    Low birth weight is associated with cognitive impairments persisting into adolescence and early adulthood. The purposes of this study was two-fold: to analyse the association between birth weight (BW) and school performance, and to determine the influence of adolescent aerobic capacity and muscular strength on the association between BW and school performance in children at 12-13 years. The study included 395 children (50.4% boys, aged 12-13 years). Self-reported BW was evaluated. We measured school performance (mean of the grades obtained in language and mathematics) and two physical fitness tests (aerobic capacity and muscular strength). Analysis of variance was used to analyse the differences in school performance according to BW categories (⩽2500, 2500-3500 and ⩾3500 g). Linear regression models fitted for mediation analyses examined whether the association between BW and school performance was mediated by aerobic capacity and/or muscular strength. Higher BW was associated with better school performance independent of current body mass index. These differences disappeared after controlling for aerobic capacity, which also mediated the association between BW and school performance (13.4%). The relationship between BW and school performance seems to be dependent on aerobic capacity fitness. Our results are of importance because the consequences of BW tend to continue into childhood, and current physical fitness of the children may potentially be modified to improve school performance. PMID:27020122

  9. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese.

    PubMed

    Graham, Marilynn H; Bush, Jill A; Olvera, Norma; Puyau, Maurice R; Butte, Nancy F

    2014-10-01

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (≥ 95 th body mass index [BMI] percentile) and 16 children who were considered normal weight (<85th BMI percentile) participated in this study. Performance outcomes included test duration (in minutes) and exercise heart rate (HR) (first-stage and peak HR) for each test. Ninety-five percent confidence intervals and independent t-tests were used to assess differences in primary outcomes. Mean PACER test duration was 1.6 ± 0.6 and 3.1 ± 1.3 minutes for children who were obese and normal weight, respectively. Modified PACER duration was higher than 3 minutes for the obese (3.6 ± 0.6 minutes) and normal weight (5.3 ± 1.2 minutes) groups. Children first-stage HR, expressed as a percent of peak HR, was above the predicted anaerobic threshold during the PACER, but below the anaerobic threshold during the MPACER. Relative first-stage HR was not significantly different between groups for the PACER, but they were significantly different between groups for the MPACER. In conclusion, the MPACER was a better alternative than the PACER for assessing aerobic fitness in Hispanic children who were normal weight and obese. When validated, this modified field test could be used to assess aerobic fitness in Hispanic children, particularly those who are overweight or obese. Additionally, the study provides evidence in which physical educators, personal trainers, and others most apt to assess aerobic fitness in children who are obese, should modify tests originally designed for the population who are normal weight.

  10. Individual Variability in Aerobic Fitness Adaptations to 70-d of Bed Rest and Exercise Training

    NASA Technical Reports Server (NTRS)

    Downs, Meghan; Buxton, Roxanne; Goetchius, Elizabeth; DeWitt, John; Ploutz-Snyder, Lori

    2016-01-01

    Change in maximal aerobic capacity (VO2pk) in response to exercise training and disuse is highly variable among individuals. Factors that could contribute to the observed variability (lean mass, daily activity, diet, sleep, stress) are not routinely controlled in studies. The NASA bed rest (BR) studies use a highly controlled hospital based model as an analog of spaceflight. In this study, diet, hydration, physical activity and light/dark cycles were precisely controlled and provided the opportunity to investigate individual variability. PURPOSE. Evaluate the contribution of exercise intensity and lean mass on change in VO2pk during 70-d of BR or BR + exercise. METHODS. Subjects completed 70-d of BR alone (CON, N=9) or BR + exercise (EX, N=17). The exercise prescription included 6 d/wk of aerobic exercise at 70 - 100% of max and 3 d/wk of lower body resistance exercise. Subjects were monitored 24 hr/d. VO2pk and lean mass (iDXA) were measured pre and post BR. ANOVA was used to evaluate changes in VO2pk pre to post BR. Subjects were retrospectively divided into high and low responders based on change in VO2pk (CON > 20% loss, n=5; EX >10% loss, n=4, or 5% gain, n=4) to further understand individual variability. RESULTS. VO2pk decreased from pre to post BR in CON (P<0.05) and was maintained in EX; however, significant individual variability was observed (CON: -22%, range: -39% to -.5%; EX: -1.8%, range: -16% to 12.6%). The overlap in ranges between groups included 3 CON who experienced smaller reduction in VO2pk (<16%) than the worst responding EX subjects. Individual variability was maintained when VO2pk was normalized to lean mass (range, CON: -33.7% to -5.7%; EX: -15.8% to 11%), and the overlap included 5 CON with smaller reductions in VO2pk than the worst responding EX subjects. High responders to disuse also lost the most lean mass; however, this relationship was not maintained in EX (i.e. the largest gains/losses in lean mass were observed in both high and low

  11. Effects of exercise on functional aerobic capacity in lower limb osteoarthritis: a systematic review.

    PubMed

    Escalante, Y; García-Hermoso, A; Saavedra, J M

    2011-05-01

    Osteoarthritis (OA) is a degenerative joint disease. The reduced aerobic capacity of patients with lower limb osteoarthritis affects their independence in performing everyday activities. The purpose of this systematic review was to summarize evidence for the effectiveness and structure of exercise programs on functional aerobic capacity (ability to perform activities of daily living that require sustained aerobic metabolism) in patients with hip and knee osteoarthritis. A computerized search was made of seven databases. Effect sizes (ES) and 95% confidence intervals (CI) were calculated, and the heterogeneity of the studies was assessed using Cochran's Q statistic applied to the ES means. The 20 studies that satisfied the inclusion criteria were selected for analysis. These studies were grouped into five categories according to the characteristics of the exercise program: land-based interventions (strength programs, tai chi, aerobic programs, mixed exercise programs) and aquatic intervention (hydrotherapy). The functional aerobic capacity improved in tai chi programs (ES=0.66; 95% CI, 0.23-1.09), aerobic programs (ES=0.90; 95% CI, 0.70-1.10), and mixed programs (ES=0.47; 95% CI, -0.38-0.39). The conclusions were: (i) despite recommendations for the use of exercise programs for aerobic fitness in patients with hip and knee osteoarthritis, few randomized clinical trials have been conducted; (ii) the structure of the exercise programs (program content and duration, and session frequency and duration) is very heterogeneous; (iii) overall, exercise programs based on tai chi, aerobic, and mixed exercise seem to give better results than hydrotherapy programs, but without the differences being altogether clear.

  12. VO2 max in an Indian population: a study to understand the role of factors determining VO2 max.

    PubMed

    Nitin, Y M; Sucharita, S; Madhura, M; Thomas, T; Sandhya, T A

    2013-01-01

    VO2 max is the maximum amount of oxygen a person can consume and the value does not change despite an increase in workload. There is lack of data evaluating the impact of factors, which could affect VO2 max measurement, particularly in Indian population. The objectives of the present study were (i) to estimate VO2 max in a young healthy Indian population and to compare it with available prediction equations for Indian population (ii) to correlate time to achieve VO2 max with the relative VO2 max (iii) to assess the factors affecting the time to achieve VO2 max measurement (body composition and physical activity level). Twenty healthy adult males (18-30 years) underwent detailed anthropometry, physical activity level and modified Bruce protocol for VO2 max assessment. Breath by breath VO2, VCO2, oxygen saturation, heart rate, blood pressure were measured continuously and following exercise protocol. There was an internal validity between the estimated VO2 max and the maximum heart rate (MHR) (r = 0.51, P < 0.05). Respiratory rate and tidal volume significantly correlated with VO2 max P < 0.01). Linear regression analysis indicated physical activity level (PAL) was a strong predictor of time to reach VO2 max. Out of the 3 prediction equations computed to estimate VO2 max, 2 equations significantly overestimated VO2 max. In Conclusion, physical activity level emerged to be a strong predictor of time to VO2 max. Time to achieve VO2 max is an important factor to be considered when determining VO2 max. There was an overestimation in the VO2 max values derived from predicted equations. PMID:24617157

  13. Aerobic Fitness Is Disproportionately Low in Adult Burn Survivors Years After Injury.

    PubMed

    Ganio, Matthew S; Pearson, James; Schlader, Zachary J; Brothers, Robert Matthew; Lucas, Rebekah A I; Rivas, Eric; Kowalske, Karen J; Crandall, Craig G

    2015-01-01

    A maximal aerobic capacity below the 20th percentile is associated with an increased risk of all-cause mortality (Blair 1995). Adult Adult burn survivors have a lower aerobic capacity compared with nonburned adults when evaluated 38 ± 23 days postinjury (deLateur 2007). However, it is unknown whether burn survivors with well-healed skin grafts (ie, multiple years postinjury) also have low aerobic capacity. This project tested the hypothesis that aerobic fitness, as measured by maximal aerobic capacity (VO2max), is reduced in well-healed adult burn survivors when compared with normative values from nonburned individuals. Twenty-five burn survivors (36 ± 12 years old; 13 females) with well-healed split-thickness grafts (median, 16 years postinjury; range, 1-51 years) covering at least 17% of their BSA (mean, 40 ± 16%; range, 17-75%) performed a graded cycle ergometry exercise to test volitional fatigue. Expired gases and minute ventilation were measured via a metabolic cart for the determination of VO2max. Each subject's VO2max was compared with sex- and age-matched normative values from population data published by the American College of Sports Medicine, the American Heart Association, and recent epidemiological data (Aspenes 2011). Subjects had a VO2max of 29.4 ± 10.1 ml O2/kg body mass/min (median, 27.5; range, 15.9-53.3). The use of American College of Sports Medicine normative values showed that mean VO2max of the subjects was in the lower 24th percentile (median, 10th percentile). A total of 88% of the subjects had a VO2max below American Heart Association age-adjusted normative values. Similarly, 20 of the 25 subjects had a VO2max in the lower 25% percentile of recent epidemiological data. Relative to nongrafted subjects, 80 to 88% of the evaluated skin-graft subjects had a very low aerobic capacity. On the basis of these findings, adult burn survivors are disproportionally unfit relative to the general U.S. population, and this puts

  14. Reduced aerobic capacity causes leaky ryanodine receptors that trigger arrhythmia in a rat strain artificially selected and bred for low aerobic running capacity

    PubMed Central

    Høydal, MA; Stølen, TO; Johnsen, AB; Alvez, M; Catalucci, D; Condorelli, G; Koch, LG; Britton, SL; Smith, GL; Wisløff, U

    2014-01-01

    Aim Rats selectively bred for inborn Low Capacity of Running (LCR) display a series of poor health indices where as rats selected for High Capacity of Running (HCR) display a healthy profile. We hypothesized that selection of low aerobic capacity over generations leads to a phenotype with increased diastolic Ca2+ leak that trigger arrhythmia. Methods We used rats selected for HCR (N=10) or LCR (N=10) to determine the effect of inborn aerobic capacity on Ca2+ leak and susceptibility of ventricular arrhythmia. We studied isolated FURA2/AM loaded cardiomyocytes to detect Ca2+-handling and function on an inverted epi-fluorescence microscope. To determine arrhythmogenicity we did a final experiment with electrical burst pacing in Langendorff perfused hearts. Results Ca2+-handling was impaired by reduced Ca2+ amplitude, prolonged time to 50% Ca2+ decay, and reduced sarcoplasmic reticulum (SR) Ca2+-content. Impaired Ca2+ removal was influenced by reduced SR Ca2+ ATP-ase 2a (SERCA2a) function and increased sodium/Ca2+-exchanger (NCX) in LCR rats. Diastolic Ca2 leak was 87% higher in LCR rats. The leak was reduced by CaMKII inhibition. Expression levels of phosphorylated theorine-286 CaMKII levels and increased RyR2 phosphorylation at the Serine-2814 site mechanistically support our findings of increased leak in LCR. LCR rats had significantly higher incidence of ventricular fibrillation. Conclusion Selection of inborn low aerobic capacity over generations leads to a phenotype with increased risk of ventricular fibrillation. Increased phosphorylation of CaMKII at serine-2814 at the cardiac ryanodine receptor appears as an important mechanism of impaired Ca2+ handling and diastolic Ca2+ leak that results in increased susceptibility to ventricular fibrillation. PMID:24444142

  15. Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction

    PubMed Central

    Sollanek, Kurt J.; Smuder, Ashley J.; Wiggs, Michael P.; Morton, Aaron B.; Koch, Lauren G.; Britton, Steven L.

    2015-01-01

    Prolonged mechanical ventilation (MV) leads to rapid diaphragmatic atrophy and contractile dysfunction, which is collectively termed “ventilator-induced diaphragm dysfunction” (VIDD). Interestingly, endurance exercise training prior to MV has been shown to protect against VIDD. Further, recent evidence reveals that sedentary animals selectively bred to possess a high aerobic capacity possess a similar skeletal muscle phenotype to muscles from endurance trained animals. Therefore, we tested the hypothesis that animals with a high intrinsic aerobic capacity would naturally be afforded protection against VIDD. To this end, animals were selectively bred over 33 generations to create two divergent strains, differing in aerobic capacity: high-capacity runners (HCR) and low-capacity runners (LCR). Both groups of animals were subjected to 12 h of MV and compared with nonventilated control animals within the same strains. As expected, contrasted to LCR animals, the diaphragm muscle from the HCR animals contained higher levels of oxidative enzymes (e.g., citrate synthase) and antioxidant enzymes (e.g., superoxide dismutase and catalase). Nonetheless, compared with nonventilated controls, prolonged MV resulted in significant diaphragmatic atrophy and impaired diaphragm contractile function in both the HCR and LCR animals, and the magnitude of VIDD did not differ between strains. In conclusion, these data demonstrate that possession of a high intrinsic aerobic capacity alone does not afford protection against VIDD. Importantly, these results suggest that endurance exercise training differentially alters the diaphragm phenotype to resist VIDD. Interestingly, levels of heat shock protein 72 did not differ between strains, thus potentially representing an important area of difference between animals with intrinsically high aerobic capacity and exercise-trained animals. PMID:25571991

  16. Aerobic and anaerobic performances in tethered swimming.

    PubMed

    Papoti, M; da Silva, A S R; Araujo, G G; Santiago, V; Martins, L E B; Cunha, S A; Gobatto, C A

    2013-08-01

    The purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake ( ˙VO2MAX) and force associated with the ˙VO2MAX (i ˙VO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ˙VO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ˙VO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; P<0.05) and i ˙VO2MAX (r=0.74; P<0.05). On the other hand, AIC (286.19±54.91 N.s) and ANF (116.10±13.66 N) were significantly correlated (r=0.81, p<0.05). In addition, CritF and AIC presented significant correlations with all time-trials. In summary, this study demonstrates that CritF and AIC can be used to evaluate AnTLAC and ANF and to predict 100, 200, and 400-m free swimming.

  17. Effects of 6-week specific low-intensity training on selected aerobic capacity parameters and HSPA1A, HSPB1, and LDHb gene expression in high-level rowers.

    PubMed

    Jastrzębski, Z; Żychowska, M

    2015-07-06

    The aim of this study was to demonstrate the effects of 6-week low-intensity training on changes in indicators of aerobic capacity and on HSPA1A, HSPB1, and LDHb expression in white blood cells in high level rowers. We hypothesized that the type of training would have an impact not only on the adaptation of athletes to the aerobic nature of the exercises, but also on the expression of genes, designated during exercises "until refusal". Nine Polish lightweight male rowers (21.8 ± 3.77 years of age, 74.2 ± 1.7 6 kg, 184.8 ± 4.58 cm) of high level participated in the experiment. To determine the anaerobic threshold (AnT) and peak oxygen uptake (VO2max) at the beginning and end of the 6-week training period, the subjects performed the test "till exhaustion", with increasing load. Directly before and after the test, blood samples were collected from the ulnar vein for isolation of RNA. Consecutively, reverse transcription and real time polymerase chain reaction amplification was performed. A significant influence of applied training on physiological parameters such as VO2max (P = 0.0001), AnT (W/AT) (P = 0.0007), and maximal acid lactate concentration (P = 0.018) as well as on HSPA1A expression (P = 0.0129) in rowers were detected. The 6-week low-intensity aerobic training significantly affected the physiological parameters and HSPA1A expression in the rowers. Therefore, we suggest that the response of leukocytes by activating HSPA1A was dependent on the type of training. The 6-week period proved sufficiently long to of adapting leukocytes in athletes to high intensity exercises.

  18. Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients.

    PubMed

    Veves, A; Saouaf, R; Donaghue, V M; Mullooly, C A; Kistler, J A; Giurini, J M; Horton, E S; Fielding, R A

    1997-11-01

    (91 +/- 49 vs. 122 +/- 41% flux increase over baseline; P < 0.05). In contrast, no differences existed among the three diabetic groups or between the two control groups. Similarly, in macrocirculation, a reduced response during reactive hyperemia was observed in the diabetic patients compared with control subjects (7.0 +/- 4.5 vs. 11.2 +/- 6.6% diameter increase; P < 0.05), whereas again no difference existed among the three diabetic groups or between the two control groups. These data suggest that diabetes per se does not affect aerobic exercise capacity (VO2max) in physically active individuals, but is reduced in the presence of neuropathy. In addition, regular exercise training involving the lower extremities does not improve the endothelial function in the micro- and macrocirculation of the nonexercised upper extremity in type 1 diabetic patients. PMID:9356035

  19. Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis

    PubMed Central

    Matthew Morris, E.; Jackman, Matthew R.; Johnson, Ginger C.; Liu, Tzu-Wen; Lopez, Jordan L.; Kearney, Monica L.; Fletcher, Justin A.; Meers, Grace M. E.; Koch, Lauren G.; Britton, Stephen L.; Scott Rector, R.; Ibdah, Jamal A.; MacLean, Paul S.

    2014-01-01

    Aerobic capacity/fitness significantly impacts susceptibility for fatty liver and diabetes, but the mechanisms remain unknown. Herein, we utilized rats selectively bred for high (HCR) and low (LCR) intrinsic aerobic capacity to examine the mechanisms by which aerobic capacity impacts metabolic vulnerability for fatty liver following a 3-day high-fat diet (HFD). Indirect calorimetry assessment of energy metabolism combined with radiolabeled dietary food was employed to examine systemic metabolism in combination with ex vivo measurements of hepatic lipid oxidation. The LCR, but not HCR, displayed increased hepatic lipid accumulation in response to the HFD despite both groups increasing energy intake. However, LCR rats had a greater increase in energy intake and demonstrated greater daily weight gain and percent body fat due to HFD compared with HCR. Additionally, total energy expenditure was higher in the larger LCR. However, controlling for the difference in body weight, the LCR has lower resting energy expenditure compared with HCR. Importantly, respiratory quotient was significantly higher during the HFD in the LCR compared with HCR, suggesting reduced whole body lipid utilization in the LCR. This was confirmed by the observed lower whole body dietary fatty acid oxidation in LCR compared with HCR. Furthermore, LCR liver homogenate and isolated mitochondria showed lower complete fatty acid oxidation compared with HCR. We conclude that rats bred for low intrinsic aerobic capacity show greater susceptibility for dietary-induced hepatic steatosis, which is associated with a lower energy expenditure and reduced whole body and hepatic mitochondrial lipid oxidation. PMID:24961240

  20. The Relationship between Aerobic Capacity and Physical Activity in Blind and Sighted Adolescents.

    ERIC Educational Resources Information Center

    Kobberling, G.; And Others

    1991-01-01

    This study investigated the relationship between habitual physical activity and aerobic capacity in 30 blind and 30 sighted adolescents. Both physical activity and maximal oxygen consumption were significantly higher among the sighted adolescents. A minimum of 30 minutes of daily activity at a minimal oxygen consumption of 8 METs (resting…

  1. Anthropometric and Cardio-Respiratory Indices and Aerobic Capacity of Male and Female Students

    ERIC Educational Resources Information Center

    Czajkowska, Anna; Mazurek, Krzysztof; Lutoslawska, Grazyna; Zmijewski, Piotr

    2009-01-01

    Study aim: To assess the relations between anthropometric and cardio-respiratory indices, and aerobic capacity of students, differing in the level of physical activity, under resting and exercise conditions. Material and methods: A group of 87 male and 75 female students volunteered to participate in the study. Their physical activity was…

  2. Beneficial effects of exercise on aerobic capacity and body composition in adults with Prader-Willi syndrome.

    PubMed

    Silverthorn, K H; Hornak, J E

    1993-05-01

    Adults with Prader Willi syndrome were subdivided into an experimental group (n = 6) and a control group (n = 5) to determine the effects of an aerobic exercise program. Their resting heart rate, aerobic capacity, body fat percentage, body weight, and somatotype were determined. Participants in a 6-month walking program showed statistically significant differences in all variables measuring aerobic capacity and a significant variation in weight loss over the 6-month program compared to the control group.

  3. Epitaxial stabilization and phase instability of VO2 polymorphs

    DOE PAGES

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-20

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. Bymore » investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.« less

  4. Epitaxial stabilization and phase instability of VO2 polymorphs

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.

  5. Epitaxial stabilization and phase instability of VO2 polymorphs

    PubMed Central

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  6. Effect of aerobic capacity on Lower Body Negative Pressure (LBNP) tolerance in females

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Fortney, Suzanne M.; Siconolfi, Steven F.

    1993-01-01

    This investigation determined whether a relationship exists in females between: (1) aerobic capacity and Lower Body Negative Pressure (LBNP); and (2) aerobic capacity and change in LBNP tolerance induced by bed rest. Nine females, age 27-47 (34.6 plus or minus 6.0 (Mean plus or minus SD)), completed a treadmill-graded exercise test to establish aerobic capacity. A presyncopal-limited LBNP test was performed prior to and after 13 days of bed rest at a 6 deg head-down tilt. LBNP tolerance was quantified as: (1) the absolute level of negative pressure (NP) tolerated for greater than or equal to 60 sec; and (2) Luft's Cumulative Stress Index (CSI). Aerobic capacity was 33.3 plus or minus 5.0 mL/kg/min and ranged from 25.7 to 38.7. Bed rest was associated with a decrease in NP tolerance (-9.04 1.6 kPa(-67.8 plus or minus 12.0 mmHg) versus -7.7 1.1 kPa(-57.8 plus or minus 8.33 mmHg); p = 0.028) and in CSI (99.4 27.4 kPa min(745.7 plus or minus 205.4 mmHg min) versus 77.0 16.9 kPa min (577.3 plus or minus mmHg min); p = 0.008). The correlation between aerobic capacity and absolute NP or CSI pre-bed rest did not differ significantly from zero (r = -0.56, p = 0.11 for NP; and r = -0.52, p = 0.16 for CSI). Also, no significant correlation was observed between aerobic and pre- to post-rest change for absolute NP tolerance (r = -0.35, p = 0.35) or CSI (r = -0.32, p = 0.40). Therefore, a significant relationship does not exist between aerobic capacity and orthostatic function or change in orthostatic function induced by bed rest.

  7. Effects of electrical stimulation on VO2 kinetics and delta efficiency in healthy young men

    PubMed Central

    Perez, M; Lucia, A; Santalla, A; Chicharro, J

    2003-01-01

    Objective: To determine the effects of electrical stimulation (ES) on oxygen uptake (VO2) kinetics and delta efficiency (DE) during gradual exercise. The hypothesis was that ES would attenuate the VO2-workload relation and improve DE. Methods: Fifteen healthy, untrained men (mean (SD) age 22 (5) years) were selected. Ten were electrostimulated on both quadriceps muscles with a frequency of 45–60 Hz, with 12 seconds of stimulation followed by eight seconds recovery for a total of 30 minutes a day, three days a week for six weeks. The remaining five subjects were assigned to a control group. A standardised exercise test on a cycle ergometer (ramp protocol, workload increases of 20 W/min) was performed by each subject before and after the experimental period. The slope of the VO2-power output (W) relation (ΔVO2/ΔW) and DE were calculated in each subject at moderate to high intensities (above the ventilatory threshold—that is, from 50–60% to 100% VO2max). Results: The mean (SEM) values for ΔVO2/ΔW and DE had significantly decreased and increased respectively after the six week ES programme (p<0.05; 9.8 (0.2) v 8.6 (0.5) ml O2/W/min respectively and 27.7 (0.9) v 31.5 (1.4)% respectively). Conclusions: ES could be used as a supplementary tool to improve two of the main determinants of endurance capacity, namely VO2 kinetics and work efficiency. PMID:12663356

  8. Comparative Study of Aerobic Performance Between Football and Judo Groups in Prepubertal Boys

    PubMed Central

    Triki, Moez; Rebai, Haithem; Shamssain, Mohammed; Masmoudi, Kaouthar; Fellmann, Nicole; Zouari, Hela; Zouari, Nouri; Tabka, Zouhair

    2013-01-01

    Purpose The aim of this study was to compare the impact of the practice of football and judo on lung function and aerobic performance of prepubertal boys. Methods A total of ninety six prepubertal boys were studied. They assessed a measure of body composition using the skin folds method. They performed lung plethysmography at rest, followed by an incremental exercise test. Results There was no significant difference in baseline spirometry between all groups (P>0.05). The maximal oxygen uptake [VO2max] and the VO2 at the ventilatory threshold [VT] were similar between all groups (P>0.05). The maximal minute ventilation [VEmax] of judokas was significantly higher than footballers (P<0.01) and similar at the [VT]. The Heart rate [HR] at [VT] of footballers and judokas was similar and significantly higher than control group (P<0.01). VO2max was significantly related to LM and negatively associated with FM. At the [VT] there was a significant relationship between P[VT] and LM and mainly with VE to VO2 [VT], P[VT] and HR[VT] in all groups. Conclusion Training in football and judo does not affect lung volumes and capacities, VO2max and VO2 at the [VT]. PMID:24427474

  9. Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity

    PubMed Central

    Choi, Joungil; Chandrasekaran, Krish; Demarest, Tyler G; Kristian, Tibor; Xu, Su; Vijaykumar, Kadambari; Dsouza, Kevin Geoffrey; Qi, Nathan R; Yarowsky, Paul J; Gallipoli, Rao; Koch, Lauren G; Fiskum, Gary M; Britton, Steven L; Russell, James W

    2014-01-01

    Objectives Diabetes leads to cognitive impairment and is associated with age-related neurodegenerative diseases including Alzheimer's disease (AD). Thus, understanding diabetes-induced alterations in brain function is important for developing early interventions for neurodegeneration. Low-capacity runner (LCR) rats are obese and manifest metabolic risk factors resembling human “impaired glucose tolerance” or metabolic syndrome. We examined hippocampal function in aged LCR rats compared to their high-capacity runner (HCR) rat counterparts. Methods Hippocampal function was examined using proton magnetic resonance spectroscopy and imaging, unbiased stereology analysis, and a Y maze. Changes in the mitochondrial respiratory chain function and levels of hyperphosphorylated tau and mitochondrial transcriptional regulators were examined. Results The levels of glutamate, myo-inositol, taurine, and choline-containing compounds were significantly increased in the aged LCR rats. We observed a significant loss of hippocampal neurons and impaired cognitive function in aged LCR rats. Respiratory chain function and activity were significantly decreased in the aged LCR rats. Hyperphosphorylated tau was accumulated within mitochondria and peroxisome proliferator-activated receptor-gamma coactivator 1α, the NAD+-dependent protein deacetylase sirtuin 1, and mitochondrial transcription factor A were downregulated in the aged LCR rat hippocampus. Interpretation These data provide evidence of a neurodegenerative process in the hippocampus of aged LCR rats, consistent with those seen in aged-related dementing illnesses such as AD in humans. The metabolic and mitochondrial abnormalities observed in LCR rat hippocampus are similar to well-described mechanisms that lead to diabetic neuropathy and may provide an important link between cognitive and metabolic dysfunction. PMID:25356430

  10. Reduced swim performance and aerobic capacity in adult zebrafish exposed to waterborne selenite.

    PubMed

    Massé, Anita J; Thomas, Jith K; Janz, David M

    2013-04-01

    Although dietary exposure of adult fish to organoselenium in contaminated aquatic ecosystems has been reported to bioaccumulate and cause larval deformities in offspring, subtle physiological effects produced through low level waterborne selenium exposure in fish such as swim performance and aerobic capacity have not been investigated. To evaluate potential effects of selenite on these responses, adult zebrafish (Danio rerio) were exposed to nominal aqueous concentrations of 0, 10 or 100 μg/L sodium selenite for 14 days. Upon completion of the exposure period, fish underwent two successive swim trials in a swim tunnel respirometer to determine critical swim speed (Ucrit), oxygen consumption (MO2), standard and active metabolic rates, aerobic scope (AS) and cost of transport (COT) followed by analysis of whole body triglyceride and glycogen concentrations. Selenite exposure had a significant negative effect on Ucrit and aerobic capacity. Active metabolic rates and AS significantly decreased in both selenite exposure groups after the second swim trial. No significant effect was observed in MO2, standard metabolic rate, COT, triglyceride and glycogen levels, or condition factor between groups. These results suggest that aqueous selenite exposure at environmentally relevant concentrations produces adverse effects on aerobic capacity that can diminish endurance and maximum swim speeds, which may lower fish survivability.

  11. A new submaximal cycle ergometer test for prediction of VO2max.

    PubMed

    Ekblom-Bak, E; Björkman, F; Hellenius, M-L; Ekblom, B

    2014-04-01

    Maximal oxygen uptake (VO2max) is an important, independent predictor of cardiovascular health and mortality. Despite this, it is rarely measured in clinical practice. The aim of this study was to create and evaluate a submaximal cycle ergometry test based on change in heart rate (HR) between a lower standard work rate and an individually chosen higher work rate. In a mixed population (n = 143) with regard to sex (55% women), age (21-65 years), and activity status (inactive to highly active), a model included change in HR per unit change in power, sex, and age for the best estimate of VO2max. The association between estimated and observed VO2max for the mixed sample was r = 0.91, standard error of estimate = 0.302 L/min, and mean measured VO2max = 3.23 L/min. The corresponding coefficient of variation was 9.3%, a significantly improved precision compared with one of the most commonly used submaximal exercise tests, the Åstrand test, which in the present study was estimated to be 18.1%. Test-retest reliability analysis over 1 week revealed no mean difference in the estimated VO2max (-0.02 L/min, 95% confidence interval: -0.07-0.03). The new test is low-risk, easily administered, and valid for a wide capacity range, and is therefore suitable in situations as health evaluations in the general population.

  12. Microwave-assisted synthesis and electrochemical evaluation of VO2 (B) nanostructures

    SciTech Connect

    Ashton, Thomas E.; Borras, David Hevia; Iadecola, Antonella; Wiaderek, Kamila Magdalena; Chapman, Karena W.; Corr, Serena A.

    2015-12-01

    Abstract Understanding how intercalation materials change during electrochemical operation is paramount to optimising their behaviour and function and in situ characterisation methods allow us to observe these changes without sample destruction. Here, we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave assisted route which exhibits a larger electrochemical capacity (232 mAh g-1) compared to VO2 (B) prepared by a solvothermal route (197 mAh g-1). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during battery operation.

  13. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    PubMed Central

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-01-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm−2 (~548 F g−1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors. PMID:26531072

  14. Excess VO2 during ramp exercise is positively correlated to intercostal muscles deoxyhemoglobin levels above the gas exchange threshold in young trained cyclists.

    PubMed

    Oueslati, Ferid; Girard, Olivier; Tabka, Zouhair; Ahmaidi, Said

    2016-07-01

    We assessed respiratory muscles oxygenation responses during a ramp exercise to exhaustion and further explored their relationship with the non-linear increase of VO2 (VO2 excess) observed above the gas-exchange threshold. Ten male cyclists completed a ramp exercise to exhaustion on an electromagnetically braked cycle-ergometer with a rate of increment of 30Wmin(-1) with continuous monitoring of expired gases (breath-by-breath) and oxygenation status of intercostal muscles. Maximal inspiratory and expiratory pressure measurements were taken at rest and at exhaustion. The VO2 excess represents the difference between VO2max observed and VO2max expected using linear equation between the VO2 and the intensity before gas-exchange threshold. The deoxyhemoglobin remained unchanged until 60% of maximal aerobic power (MAP) and thereafter increased significantly by 37±18% and 40±22% at 80% and 100% of MAP, respectively. Additionally, the amplitude of deoxyhemoglobin increase between 60 and 100% of MAP positively correlated with the VO2 excess (r=0.69, p<0.05). Compared to exercise start, the oxygen tissue saturation index decreased from 80% of MAP (-4.8±3.2%, p<0.05) onwards. At exhaustion, maximal inspiratory and expiratory pressures declined by 7.8±16% and 12.6±10% (both p<0.05), respectively. In summary, our results suggest a significant contribution of respiratory muscles to the VO2 excess phenomenon.

  15. Analysis of Reaction Times and Aerobic Capacities of Soccer Players According to Their Playing Positions

    ERIC Educational Resources Information Center

    Taskin, Cengiz; Karakoc, Onder; Taskin, Mine; Dural, Murat

    2016-01-01

    70 soccer players in Gaziantep amateur league voluntarily participated in this study, (average of their ages 19,17±1,34years, average of their heights 181,28±5,06 cm, average of their body weights 76,75±4,43 kg and average of their sports experiences 3,78±0,95 years) to analyze visual and auditory reaction times and aerobic capacities of amateur…

  16. Cardiovagal Modulation and Efficacy of Aerobic Exercise Training in Obese Individuals

    PubMed Central

    Baynard, Tracy; Goulopoulou, Styliani; Sosnoff, Ruth F.; Fernhall, Bo; Kanaley, Jill A.

    2013-01-01

    Type 2 diabetes is associated with poor exercise tolerance and peak aerobic capacity (VO2peak) even when compared to obese non-diabetic peers. Exercise training studies have demonstrated improvements in VO2peak among T2D, yet there is a large amount of variability in this response. Recent evidence suggests that cardiac autonomic modulation may be an important factor when considering improvements in aerobic capacity. Purpose To determine the effects of a 16 wk aerobic exercise program on VO2peak in obese individuals, with and without T2D, who were classified as having either high or low cardiovagal modulation (HCVM or LCVM) at baseline. Methods Obese individuals (38 women/19 men; BMI = 36.1 kg/m2) were studied in the fasted state. ECG recordings were obtained while seated for 3 min, prior to and after 4 mo of exercise training (4 d/wk, 65% VO2peak). The ECG recording was analyzed for HRV in the spectral domain. Groups were split on a marker of CVM (normalized high frequency (HFnu)) at the 50th percentile, as either high (H) or low (L) CVM. Results VO2peak only increased with exercise training among those classified as having HCVM, regardless of diabetes status (T2D: HCVM 20.3 to 22.5 mL/kg/min, LCVM 24.3 to 25.0 mL/kg/min; Obese non-diabetics: HCVM 24.5 to 26.3 mL/kg/min, LCVM 23.1 to 23.7 mL/kg/min) (p<0.05). No change in VO2peak was observed for the LCVM group. Changes in weight do not explain the change in VO2peak among the HCVM group. Glucose tolerance only improved among the LCVM group with T2D. Conclusion Obese individuals, with or without T2D, when classified as having relatively HCVM prior to exercise training, have a greater propensity to improve VO2peak following a 16-week aerobic training program. PMID:23899888

  17. Pedometers and aerobic capacity: evaluating an elementary after-school running program.

    PubMed

    Wanless, Elizabeth; Judge, Lawrence W; Dieringer, Shannon T; Bellar, David; Johnson, James; Plummer, Sheli

    2014-01-01

    Childhood obesity affects 1 of every 6 youth in the United States. One contributing factor to this statistic is a lack of physical activity (PA). Demands related to accountability which are placed on educators to demonstrate academic achievement often result in resistance to allocating time during the school day for PA. One possible solution is to consider utilizing time after school to integrate PA programs. The purpose of this study was to assess the impact of a 12-week after-school pedometer-focused PA program on aerobic capacity and to examine the relationship between step count and aerobic capacity in elementary school aged children. A group of elementary students (n = 24; 9.5 ± 0.9 years) participated in a 12-week pedometer-focused PA program that included pretraining and posttraining fitness testing via the 20-meter version of the PACER test. Paired sample t-tests revealed significant differences between the pretest (M = 21.0 laps, SD = 9.9) and posttest (M = 25.2 laps, SD = 12.2) scores (t = 4.04, P ≤ 0.001). A Pearson correlation revealed no significant relationship between individual step count and the difference between PACER pre- and posttest (r = 0.318, P = 0.130). The program improved aerobic capacity, but an increase in pedometer-calculated step count was not a predictor.

  18. Impact of early fructose intake on metabolic profile and aerobic capacity of rats

    PubMed Central

    2011-01-01

    Background Metabolic syndrome is a disease that today affects millions of people around the world. Therefore, it is of great interest to implement more effective procedures for preventing and treating this disease. In search of a suitable experimental model to study the role of exercise in prevention and treatment of metabolic syndrome, this study examined the metabolic profile and the aerobic capacity of rats kept early in life on a fructose-rich diet, a substrate that has been associated with metabolic syndrome. Methods We used adult female Wistar rats fed during pregnancy and lactation with two diets: balanced or fructose-rich 60%. During breastfeeding, the pups were distributed in small (4/mother) or adequate (8/mother) litters. At 90 days of age, they were analyzed with respect to: glucose tolerance, peripheral insulin sensitivity, aerobic capacity and serum glucose, insulin, triglycerides, total cholesterol, LDL cholesterol and HDL cholesterol concentrations as well as measures of glycogen synthesis and glucose oxidation by the soleus muscle. Results It was found that the fructose rich diet led the animals to insulin resistance. The fructose fed rats kept in small litters also showed dyslipidemia, with increased serum concentrations of total cholesterol and triglycerides. Conclusion Neither the aerobic capacity nor the glucose oxidation rates by the skeletal muscle were altered by fructose-rich diet, indicating that the animal model evaluated is potentially interesting for the study of the role of exercise in metabolic syndrome. PMID:21223589

  19. Effects of F(I)O2 on leg VO2 during cycle ergometry in sedentary subjects.

    PubMed

    Cardús, J; Marrades, R M; Roca, J; Barberà, J A; Diaz, O; Masclans, J R; Rodriguez-Roisin, R; Wagner, P D

    1998-05-01

    In a recent study of completely sedentary normal young subjects, leg VO2max was reduced by hypoxia in proportion to mean capillary PO2 as F(I)O2 was reduced from 0.15 to 0.12. However, the increase in VO2max from F(I)O2 = 0.15 to 0.21 was less than expected for the increase in mean capillary PO2. This finding has led us to hypothesize that in sedentary subjects breathing room air, VO2max is not limited by O2 supply but rather by oxidative capacity of mitochondria. The present study sought to obtain further evidence for or against this hypothesis in sedentary subjects by assessing leg VO2max (VO2leg) breathing 100% O2, as well as in normoxia and hypoxia. Data from 18 subjects studied at F(I)O2 = 0.12, 0.15, and 0.21 and from six more studied at 0.12, 0.15, and 1.00 were analyzed. In all 24 we measured VO2leg by arterial and venous blood sampling and thermodilution leg blood flow during maximal cycle ergometry at each F(I)O2. VO2leg was not increased by room air or 100% O2 breathing relative to that observed at F(I)O2 = 0.15, but it was reduced while breathing 12% O2. The data at F(I)O2 = 0.12 and 0.15 conformed to the predictions of O2 supply limitation of maximal VO2 as previously. These results confirm and extend our prior observations that in sedentary, as opposed to trained subjects, muscle VO2max is O2 supply limited only in hypoxia. PMID:9588611

  20. Childhood Fitness and Academic Performance: An Investigation into the Effect of Aerobic Capacity on Academic Test Scores

    ERIC Educational Resources Information Center

    Hobbs, Mark

    2014-01-01

    The purpose of this quantitate ve study was to determine whether or not students in fifth grade who meet the healthy fitness zone (HFZ) for aerobic capacity on the fall 2013 FITNESSGRAM® Test scored higher on the math portion of the 2013 fall Measures of Academic Progress (MAP) test, than students that failed to reach the HFZ for aerobic capacity…

  1. Study of Thermal properties of VO2 and multilayer VO2 thin films for application in Thermal Switches

    NASA Astrophysics Data System (ADS)

    Zhu, Gaohua

    Ultrafast nature of the phase transition near room temperature in VO2 makes it attractive material for applications in electronics and optical devices however utilization of corresponding drastic change in thermo-physical properties are rarely reported. In this study we investigate thermal and electronic properties of VO2 thin films on various substrates across the transition temperature to seek possibility of utilizing VO2 based thermal switches for applications in thermal devices. In addition, the interfacial heat transfer in VO2/metal multilayer thin film is mediated by phonons at low temperature, and when temperature is elevated beyond phase transition temperature, the interface thermal conductance is mediated mainly by both phons and electrons. VO2-multilayers approach is studied to utilize the switching interface thermal conductance in order to obtain higher thermal conductivity switch ratio than what can be achieved in intrinsic VO2. Thermal conductivities and interface thermal conductance of VO2 and VO2 multilayer thin films are measured using the time-domain thermoreflectance (TDTR) method. We will discuss interplay of phononic and electronic component to thermal conductivity in the light of Wiedemann-Franz law across the metal to insulator state of VO2 films.

  2. VO2 kinetics during heavy and severe exercise in swimming.

    PubMed

    Pessoa Filho, D M; Alves, F B; Reis, J F; Greco, C C; Denadai, B S

    2012-09-01

    The purpose of this study was to describe the VO2 kinetics above and below respiratory compensation point (RCP) during swimming. After determination of the gas-exchange threshold (GET), RCP and VO(2max), 9 well-trained swimmers (21.0 ± 7.1 year, VO(2max)=57.9 ± 5.1 ml.kg (- 1).min (- 1)), completed a series of "square-wave" swimming transitions to a speed corresponding to 2.5% below (S - 2.5%) and 2.5% above (S+2.5%) the speed observed at RCP for the determination of pulmonary VO2 kinetics. The trial below (~2.7%) and above RCP (~2%) was performed at 1.28 ± 0.05 m.s (- 1) (76.5 ± 6.3% VO(2max)) and 1.34 0.05 m.s (- 1) (91.3 ± 4.0% VO(2max)), respectively. The time constant of the primary component was not different between the trials below (17.8 ± 5.9 s) and above RCP (16.5 ± 5.1 s). The amplitude of the VO(2)slow component was similar between the exercise intensities performed around RCP (S - 2.5%=329.2 ± 152.6 ml.min (- 1) vs. S+2.5%=313.7 ± 285.2 ml.min (- 1)), but VO(2max) was attained only during trial performed above RCP (S-2.5%=91.4 ± 5.9% VO(2max) vs. S+2.5%=103.0 ± 8.2% VO(2max)). Thus, similar to the critical power during cycling exercise, the RCP appears to represent a physiological boundary that dictates whether VO(2) kinetics is characteristic of heavy- or severe-intensity exercise during swimming.

  3. The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals.

    PubMed

    Kanatous, S B; Hawke, T J; Trumble, S J; Pearson, L E; Watson, R R; Garry, D J; Williams, T M; Davis, R W

    2008-08-01

    Our objective was to determine the ontogenetic changes in the skeletal muscles of Weddell seals that transform a non-diving pup into an elite diving adult. Muscle biopsies were collected from pups, juveniles and adults and analyzed for changes in fiber type, mitochondrial density, myoglobin concentrations and aerobic, lipolytic and anaerobic enzyme activities. The fiber type results demonstrated a decrease in slow-twitch oxidative (Type I) fibers and a significant increase in fast-twitch oxidative (Type IIA) fibers as the animals mature. In addition, the volume density of mitochondria and the activity of lipolytic enzymes significantly decreased as the seals matured. To our knowledge, this is the first quantitative account describing a decrease in aerobic fibers shifting towards an increase in fast-twitch oxidative fibers with a significant decrease in mitochondrial density as animals mature. These differences in the muscle physiology of Weddell seals are potentially due to their three very distinct stages of life history: non-diving pup, novice diving juvenile, and elite deep diving adult. During the first few weeks of life, pups are a non-diving terrestrial mammal that must rely on lanugo (natal fur) for thermoregulation in the harsh conditions of Antarctica. The increased aerobic capacity of pups, associated with increased mitochondrial volumes, acts to provide additional thermogenesis. As these future elite divers mature, their skeletal muscles transform to a more sedentary state in order to maintain the low levels of aerobic metabolism associated with long-duration diving.

  4. Effects of Aerobic Capacity on Thrombin-Induced Hydrocephalus and White Matter Injury.

    PubMed

    Ni, Wei; Gao, Feng; Zheng, Mingzhe; Koch, Lauren G; Britton, Steven L; Keep, Richard F; Xi, Guohua; Hua, Ya

    2016-01-01

    We have previously shown that intracerebral hemorrhage-induced brain injury is less in rats bred for high aerobic capacity (high capacity runners; HCR) compared with those bred for low aerobic capacity (low capacity runners; LCRs). Thrombin, an essential component in the coagulation cascade, is produced after cerebral hemorrhage. Intraventricular injection of thrombin causes significant hydrocephalus and white matter damage. In the present study, we examined the effect of exercise capacity on thrombin-induced hydrocephalus and white matter damage. Mid-aged (13-month-old) female LCRs (n = 13) and HCRs (n = 12) rats were used in this study. Rats received an intraventricular injection of thrombin (3 U, 50 μl). All rats underwent magnetic resonance imaging (MRI) at 24 h and were then euthanized for brain histology and Western blot. The mortalities were 20 % in LCRs and 33 % in HCRs after thrombin injection (p > 0.05). No rats died after saline injection. Intraventricular thrombin injection resulted in hydrocephalus and periventricular white matter damage as determined on MRI. In LCR rats, thrombin induced significant ventricle enlargement (23.0 ± 2.3 vs12.8 ± 1.9 mm(3) in LCR saline group; p < 0.01) and white matter lesion (9.3 ± 7.6 vs 0.6 ± 0.5 mm(3) in LCR saline group, p < 0.05). In comparison, in HCR rats thrombin induced less ventricular enlargement (17.3 ± 3.9 vs 23.0 ± 2.3 mm(3) in LCRs, p < 0.01) and smaller white matter lesions (2.6 ± 1.2 mm(3) vs 9.3 ± 7.6 mm(3) in LCRs, p < 0.05). In LCR rats, there was also upregulation of heat shock protein-32, a stress marker, and microglial activation in the periventricular white matter. These changes were significantly reduced in HCR rats. Intraventricular injection of thrombin caused more white matter damage and hydrocephalus in rats with low aerobic capacity. A differential effect of thrombin may contribute to differences in the effects of cerebral

  5. Maximal aerobic capacity at several ambient concentrations of carbon monoxide at several altitudes. Research report, April 1984-January 1988

    SciTech Connect

    Horvath, S.M.; Agnew, J.W.; Wagner, J.A.; Bedi, J.F.

    1988-12-01

    To assess the combined effects of altitude and acute carbon monoxide exposure, 11 male and 12 female subjects, all nonsmokers in good health, were given incremental maximal aerobic-capacity tests. Each subject, after attaining the required altitude and ambient carbon monoxide level, performed the maximal aerobic capacity test. Blood samples were drawn at several points in the aerobic capacity test protocol, and analyzed for hemoglobin, hematocrit, plasma proteins, lactates, and carboxyhemoglobin. Carbon-monoxide-carboxyhemoglobin uptake rates were derived from the submaximal workloads. Despite increases in carboxyhemoglobin, no additional significant decreases in maximal aerobic capacity were observed. Immediately prior to and at maximal workloads, carbon monoxide shifted into extravascular spaces and returned to the vascular space within five minutes after exercise stopped.

  6. Flexible thermochromic window based on hybridized VO2/graphene.

    PubMed

    Kim, Hyeongkeun; Kim, Yena; Kim, Keun Soo; Jeong, Hu Young; Jang, A-Rang; Han, Seung Ho; Yoon, Dae Ho; Suh, Kwang S; Shin, Hyeon Suk; Kim, TaeYoung; Yang, Woo Seok

    2013-07-23

    Large-scale integration of vanadium dioxide (VO2) on mechanically flexible substrates is critical to the realization of flexible smart window films that can respond to environmental temperatures to modulate light transmittance. Until now, the formation of highly crystalline and stoichiometric VO2 on flexible substrate has not been demonstrated due to the high-temperature condition for VO2 growth. Here, we demonstrate a VO2-based thermochromic film with unprecedented mechanical flexibility by employing graphene as a versatile platform for VO2. The graphene effectively functions as an atomically thin, flexible, yet robust support which enables the formation of stoichiometric VO2 crystals with temperature-driven phase transition characteristics. The graphene-supported VO2 was capable of being transferred to a plastic substrate, forming a new type of flexible thermochromic film. The flexible VO2 films were then integrated into the mock-up house, exhibiting its efficient operation to reduce the in-house temperature under infrared irradiation. These results provide important progress for the fabrication of flexible thermochromic films for energy-saving windows.

  7. Flexible thermochromic window based on hybridized VO2/graphene.

    PubMed

    Kim, Hyeongkeun; Kim, Yena; Kim, Keun Soo; Jeong, Hu Young; Jang, A-Rang; Han, Seung Ho; Yoon, Dae Ho; Suh, Kwang S; Shin, Hyeon Suk; Kim, TaeYoung; Yang, Woo Seok

    2013-07-23

    Large-scale integration of vanadium dioxide (VO2) on mechanically flexible substrates is critical to the realization of flexible smart window films that can respond to environmental temperatures to modulate light transmittance. Until now, the formation of highly crystalline and stoichiometric VO2 on flexible substrate has not been demonstrated due to the high-temperature condition for VO2 growth. Here, we demonstrate a VO2-based thermochromic film with unprecedented mechanical flexibility by employing graphene as a versatile platform for VO2. The graphene effectively functions as an atomically thin, flexible, yet robust support which enables the formation of stoichiometric VO2 crystals with temperature-driven phase transition characteristics. The graphene-supported VO2 was capable of being transferred to a plastic substrate, forming a new type of flexible thermochromic film. The flexible VO2 films were then integrated into the mock-up house, exhibiting its efficient operation to reduce the in-house temperature under infrared irradiation. These results provide important progress for the fabrication of flexible thermochromic films for energy-saving windows. PMID:23758656

  8. Microstructures and thermochromic characteristics of VO2/AZO composite films

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Li, Yi; Yuan, Wenrui; Fang, Baoying; Wang, Xiaohua; Hao, Rulong; Wu, Zhengyi; Xu, Tingting; Jiang, Wei; Chen, Peizu

    2016-05-01

    A vanadium dioxide (VO2) thin film was fabricated on a ZnO doped with Al (AZO) conductive glass by magnetron sputtering at room temperature followed by annealing under air atmosphere. The microstructures and optical properties of the thin film were studied. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. Compared to the VO2 film fabricated on soda-lime glass substrate through the same process and condition, the phase transition temperature of the VO2/AZO composite film was decreased by about 25 °C, thermal hysteresis width narrowed to 6 °C, the visible light transmittance was over 50%, the infrared transmittances before and after phase transition were 21% and 55%, respectively at 1500 nm.

  9. The relationship between human skeletal muscle pyruvate dehydrogenase phosphatase activity and muscle aerobic capacity.

    PubMed

    Love, Lorenzo K; LeBlanc, Paul J; Inglis, J Greig; Bradley, Nicolette S; Choptiany, Jon; Heigenhauser, George J F; Peters, Sandra J

    2011-08-01

    Pyruvate dehydrogenase (PDH) is a mitochondrial enzyme responsible for regulating the conversion of pyruvate to acetyl-CoA for use in the tricarboxylic acid cycle. PDH is regulated through phosphorylation and inactivation by PDH kinase (PDK) and dephosphorylation and activation by PDH phosphatase (PDP). The effect of endurance training on PDK in humans has been investigated; however, to date no study has examined the effect of endurance training on PDP in humans. Therefore, the purpose of this study was to examine differences in PDP activity and PDP1 protein content in human skeletal muscle across a range of muscle aerobic capacities. This association is important as higher PDP activity and protein content will allow for increased activation of PDH, and carbohydrate oxidation. The main findings of this study were that 1) PDP activity (r(2) = 0.399, P = 0.001) and PDP1 protein expression (r(2) = 0.153, P = 0.039) were positively correlated with citrate synthase (CS) activity as a marker for muscle aerobic capacity; 2) E1α (r(2) = 0.310, P = 0.002) and PDK2 protein (r(2) = 0.229, P =0.012) are positively correlated with muscle CS activity; and 3) although it is the most abundant isoform, PDP1 protein content only explained ∼ 18% of the variance in PDP activity (r(2) = 0.184, P = 0.033). In addition, PDP1 in combination with E1α explained ∼ 38% of the variance in PDP activity (r(2) = 0.383, P = 0.005), suggesting that there may be alternative regulatory mechanisms of this enzyme other than protein content. These data suggest that with higher muscle aerobic capacity (CS activity) there is a greater capacity for carbohydrate oxidation (E1α), in concert with higher potential for PDH activation (PDP activity). PMID:21596918

  10. Supine Treadmill Exercise in Lower Body Negative Pressure Combined with Resistive Exercise Counteracts Bone Loss, Reduced Aerobic Upright Exercise Capacity and Reduced Muscle Strength

    NASA Technical Reports Server (NTRS)

    Meuche, Sabine; Schneider, S. M.; Lee, S. M. C.; Macias, B. R.; Smith, S. M.; Watenpaugh, D. E.; Hargens, A. R.

    2006-01-01

    Long-term exposure to weightlessness leads to cardiovascular and musculoskeletal deconditioning. In this report, the effectiveness of combined supine treadmill exercise in a lower body negative pressure chamber (LBNPex) and flywheel resistive exercise (Rex) countermeasures was determined to prevent bone loss, reduced aerobic upright exercise capacity and reduced muscle strength. We hypothesized that exercise subjects would show less decrease in bone mineral density (BMD), peak oxygen consumption (VO2pk) and knee extensor strength (KES) than control subjects. Sixteen healthy female subjects participated in a 60-d 6(sup 0) head-down tilt bed rest (BR) study after providing written informed consent. Subjects were assigned to one of two groups: a non-exercising control group CON or an exercise group EX performing LBNPex 2-4 d/wk and Rex every 3rd-d. VO2pk was measured with a maximal, graded, upright treadmill test performed pre-BR and on 3-d after BR. BMD was assessed before and 3-d after BR. Isokinetic KES was measured before and 5-d after BR. Two-way repeated measures ANOVA were performed. Statistical significance was set at p less than 0.05. CON experienced a significant decrease in BMD in the trochanter (PRE: 0.670 plus or minus 0.045; POST: 0.646 plus or minus 0.352 g (raised dot) per square centimeter) and in the whole hip (PRE=0.894 plus or minus 0.059; POST: 0.858 plus or minus 0.057 g (raised dot) per square centimeter). BMD also decreased significantly in EX in the trochanter (PRE: 0.753 plus or minus 0.0617; POST: 0.741 plus or minus 0.061 g (raised dot) per square centimeter) and whole hip (PRE: 0.954 plus or minus 0.067; POST: 0.935 plus or minus 0.069 g (raised dot) per square centimeter). BMD losses were significantly less in EX than in CON subjects. VO2pk was significantly decreased in the CON after BR (PRE: 38.0 plus or minus 4.8; POST: 29.9 plus or minus 4.2 ml (raised dot) per kilogram per minute), but not in the EX (PRE: 39.0 plus or minus 2.0; POST

  11. Muscle strength, endurance, and aerobic capacity in rheumatoid arthritis: a comparative study with healthy subjects.

    PubMed

    Ekdahl, C; Broman, G

    1992-01-01

    Isometric/isokinetic muscle strength and isokinetic endurance of the lower extremities as well as aerobic capacity were evaluated in 67 patients (43 female, 24 male; mean age 53 years, range 23-65) with classical/definite rheumatoid arthritis (RA) of functional class II. Results obtained were compared with those of a healthy reference group matched for age and sex. Disease characteristics of the group with RA were registered and lifestyle characteristics, such as work load, exercise, diet, smoking, and alcohol habits, were reported by both groups. Generally, results showed that the group with RA had decreased functional capacity. Isometric hip and knee muscle strength of the rheumatoid group was reduced to about 75% of normal function, isokinetic knee muscle strength at the velocities of 60 and 180 degrees/s to about 65% and 75% of normal function respectively, isokinetic endurance of the knee muscle groups to about 45%, and aerobic capacity to about 80% of the results obtained for the healthy reference group. Analyses of variance showed that the rheumatoid group, compared with the healthy group, had significantly reduced function on all isometric and isokinetic tests of the extensors and flexors of the knee. Results for isometric hip muscle strength were similar--all tests but one yielding highly significant differences. To avoid unnecessary functional deficits it seems important to include muscular training in rehabilitation programmes for patients with RA.

  12. Achievement of peak VO2 during a 90-s maximal intensity cycle sprint in adolescents.

    PubMed

    Williams, Craig A; Ratel, Sébastien; Armstrong, Neil

    2005-04-01

    The aim of this study was to determine whether peak oxygen uptake (PVO2) attained in a 90-s maximal intensity cycle sprint is comparable to that from a conventional ramp test. Sixteen participants (13 boys and 3 girls, 14.6 +/- 0.4 yr) volunteered for the study. On Day 1 they completed a PVO2 test to exhaustion using a 25 W x min(-1) ramp protocol beginning at 50 W. Peak VO2 was defined as the highest VO2 value achieved, and aerobic power (Wmax) as the power output of the final 30 s. On Day 2 the participants completed two 90-s maximal sprints (S1 and S2). A 45-min recovery period separated each sprint. Mean oxygen uptake over the last 10 s of each sprint was determined as PVO2, and minimum power (MinP-30 s) as the mechanical power attained in the final 30 s. A one-way ANOVA was used to analyse differences between S1, S2, and the ramp test for PVO2 and MinP-30 s. Peak VO2 was not significantly different between the ramp, S1, or S2 (2.64 +/- 0.5, 2.49 +/- 0.5, and 2.53 +/- 0.5 L x min(-1), respectively, p > 0.68). The S1 and S2 PVO2 scores represented 91 +/- 10% and 92 +/- 10% of the ramp aerobic test. The MinP-30 s for S1 and S2 were significantly lower than the Wmax of the ramp test, p < 0.05. Hence, for researchers solely interested in PVO2 values, a shorter but more intensive protocol provides an alternative method to the traditional ramp aerobic test. PMID:15981785

  13. Epitaxial Ni/VO2 heterostructures on Si (001)

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Foley, Gabrielle; Prater, John; Narayan, Jay

    VO2 is a strongly correlated oxide, undergoes a first order metal-insulator (MIT) well above the room temperature 340K. Previous works have shown that the stress associated with structural changes across MIT, VO2 can produce significant changes in magnetic properties of over layer ferromagnetic films such as Ni. This control of the magnetic properties could be very important to many technological applications. However, the current use of r-sapphire as substrate can be restrictive in the microelectronics industry. The previous works focused their studies on polycrystalline Ni and VO2 films, which do not allow the precise controlling of the associated properties due to poor reproducibility of polycrystalline films. We have investigated the magnetic and electronic properties of Ni/VO2 films when epitaxially integrated on Si (001) by pulsed laser deposition using domain matching epitaxy paradigm. Ni was grown both in nanoscale islands and layered form. The XRD results showed that the Ni, VO2and YSZ layers were grown epitaxially in single out of plane orientations. We found that the hysteresis in resistance vs. temperature curves in VO2 thin films was retained even when it is in close proximity with the Ni layer which helped confirm that VO2 layer preserves its characteristic features, revealed the fingerprint magnetic features of Ni layer. We will present and discuss our comprehensive experimental findings.

  14. Validity of VO(2 max) in predicting blood volume: implications for the effect of fitness on aging

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Ludwig, D. A.

    2000-01-01

    A multiple regression model was constructed to investigate the premise that blood volume (BV) could be predicted using several anthropometric variables, age, and maximal oxygen uptake (VO(2 max)). To test this hypothesis, age, calculated body surface area (height/weight composite), percent body fat (hydrostatic weight), and VO(2 max) were regressed on to BV using data obtained from 66 normal healthy men. Results from the evaluation of the full model indicated that the most parsimonious result was obtained when age and VO(2 max) were regressed on BV expressed per kilogram body weight. The full model accounted for 52% of the total variance in BV per kilogram body weight. Both age and VO(2 max) were related to BV in the positive direction. Percent body fat contributed <1% to the explained variance in BV when expressed in absolute BV (ml) or as BV per kilogram body weight. When the model was cross validated on 41 new subjects and BV per kilogram body weight was reexpressed as raw BV, the results indicated that the statistical model would be stable under cross validation (e.g., predictive applications) with an accuracy of +/- 1,200 ml at 95% confidence. Our results support the hypothesis that BV is an increasing function of aerobic fitness and to a lesser extent the age of the subject. The results may have implication as to a mechanism by which aerobic fitness and activity may be protective against reduced BV associated with aging.

  15. Validity of VO(2 max) in predicting blood volume: implications for the effect of fitness on aging.

    PubMed

    Convertino, V A; Ludwig, D A

    2000-09-01

    A multiple regression model was constructed to investigate the premise that blood volume (BV) could be predicted using several anthropometric variables, age, and maximal oxygen uptake (VO(2 max)). To test this hypothesis, age, calculated body surface area (height/weight composite), percent body fat (hydrostatic weight), and VO(2 max) were regressed on to BV using data obtained from 66 normal healthy men. Results from the evaluation of the full model indicated that the most parsimonious result was obtained when age and VO(2 max) were regressed on BV expressed per kilogram body weight. The full model accounted for 52% of the total variance in BV per kilogram body weight. Both age and VO(2 max) were related to BV in the positive direction. Percent body fat contributed <1% to the explained variance in BV when expressed in absolute BV (ml) or as BV per kilogram body weight. When the model was cross validated on 41 new subjects and BV per kilogram body weight was reexpressed as raw BV, the results indicated that the statistical model would be stable under cross validation (e.g., predictive applications) with an accuracy of +/- 1,200 ml at 95% confidence. Our results support the hypothesis that BV is an increasing function of aerobic fitness and to a lesser extent the age of the subject. The results may have implication as to a mechanism by which aerobic fitness and activity may be protective against reduced BV associated with aging. PMID:10956267

  16. Aerobic fitness in women and responses to lower body negative pressure.

    PubMed

    Frey, M A; Mathes, K L; Hoffler, G W

    1987-12-01

    High aerobic fitness may be associated with impaired responsiveness to orthostatic challenge. This could be detrimental to astronauts returning from spaceflight. Thus, we examined the cardiovascular responses of a group of 45 healthy women to graded lower body negative pressure (LBNP) through 5 min at -50 mm Hg or until they become presyncopal. The ages (range = 23-43 years, mean = 30.4) and peak aerobic capacities (range = 23.0-55.3 ml.kg-1.min-1, mean = 37.8) of these subjects paralleled those of the women astronauts. We monitored heart rate, stroke volume, cardiac output, Heather index of contractility, arterial pressure, peripheral resistance, change in calf circumference, and thoracic impedance (ZO)--a measure of fluid in the chest. The women in this study exhibited the same response pattern to LBNP as previously reported for male subjects. VO2peak of the six subjects who became presyncopal was not different from VO2peak of the tolerant subjects. At rest, only systolic and mean arterial pressures were significantly correlated with VO2peak. Percent changes in calf circumference (i.e. fluid accumulation in the legs) at -30 and -40 mm Hg were the only responses to LBNP significantly related to VO2peak. The greater pooling of blood in the legs during LBNP by women with higher aerobic fitness, and lower percent body fat may be related to more muscle tissue and vasculature in the legs of the more fit subjects. These data indicated that orthostatic tolerance is not related to aerobic capacity in women, and orthostatic tolerance need not be a concern to aerobically fit women astronauts. PMID:3426487

  17. Aerobic capacity influences the spatial position of individuals within fish schools.

    PubMed

    Killen, Shaun S; Marras, Stefano; Steffensen, John F; McKenzie, David J

    2012-01-22

    The schooling behaviour of fish is of great biological importance, playing a crucial role in the foraging and predator avoidance of numerous species. The extent to which physiological performance traits affect the spatial positioning of individual fish within schools is completely unknown. Schools of juvenile mullet Liza aurata were filmed at three swim speeds in a swim tunnel, with one focal fish from each school then also measured for standard metabolic rate (SMR), maximal metabolic rate (MMR), aerobic scope (AS) and maximum aerobic swim speed. At faster speeds, fish with lower MMR and AS swam near the rear of schools. These trailing fish required fewer tail beats to swim at the same speed as individuals at the front of schools, indicating that posterior positions provide hydrodynamic benefits that reduce swimming costs. Conversely, fish with high aerobic capacity can withstand increased drag at the leading edge of schools, where they could maximize food intake while possibly retaining sufficient AS for other physiological functions. SMR was never related to position, suggesting that high maintenance costs do not necessarily motivate individuals to occupy frontal positions. In the wild, shifting of individuals to optimal spatial positions during changing conditions could influence structure or movement of entire schools.

  18. Exercise training reverses impaired skeletal muscle metabolism induced by artificial selection for low aerobic capacity.

    PubMed

    Lessard, Sarah J; Rivas, Donato A; Stephenson, Erin J; Yaspelkis, Ben B; Koch, Lauren G; Britton, Steven L; Hawley, John A

    2011-01-01

    We have used a novel model of genetically imparted endurance exercise capacity and metabolic health to study the genetic and environmental contributions to skeletal muscle glucose and lipid metabolism. We hypothesized that metabolic abnormalities associated with low intrinsic running capacity would be ameliorated by exercise training. Selective breeding for 22 generations resulted in rat models with a fivefold difference in intrinsic aerobic capacity. Low (LCR)- and high (HCR)-capacity runners remained sedentary (SED) or underwent 6 wk of exercise training (EXT). Insulin-stimulated glucose transport, insulin signal transduction, and rates of palmitate oxidation were lower in LCR SED vs. HCR SED (P < 0.05). Decreases in glucose and lipid metabolism were associated with decreased β₂-adrenergic receptor (β₂-AR), and reduced expression of Nur77 target proteins that are critical regulators of muscle glucose and lipid metabolism [uncoupling protein-3 (UCP3), fatty acid transporter (FAT)/CD36; P < 0.01 and P < 0.05, respectively]. EXT reversed the impairments to glucose and lipid metabolism observed in the skeletal muscle of LCR, while increasing the expression of β₂-AR, Nur77, GLUT4, UCP3, and FAT/CD36 (P < 0.05) in this tissue. However, no metabolic improvements were observed following exercise training in HCR. Our results demonstrate that metabolic impairments resulting from genetic factors (low intrinsic aerobic capacity) can be overcome by an environmental intervention (exercise training). Furthermore, we identify Nur77 as a potential mechanism for improved skeletal muscle metabolism in response to EXT.

  19. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  20. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  1. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  2. Multivariate statistical assessment of predictors of firefighters' muscular and aerobic work capacity.

    PubMed

    Lindberg, Ann-Sofie; Oksa, Juha; Antti, Henrik; Malm, Christer

    2015-01-01

    Physical capacity has previously been deemed important for firefighters physical work capacity, and aerobic fitness, muscular strength, and muscular endurance are the most frequently investigated parameters of importance. Traditionally, bivariate and multivariate linear regression statistics have been used to study relationships between physical capacities and work capacities among firefighters. An alternative way to handle datasets consisting of numerous correlated variables is to use multivariate projection analyses, such as Orthogonal Projection to Latent Structures. The first aim of the present study was to evaluate the prediction and predictive power of field and laboratory tests, respectively, on firefighters' physical work capacity on selected work tasks. Also, to study if valid predictions could be achieved without anthropometric data. The second aim was to externally validate selected models. The third aim was to validate selected models on firefighters' and on civilians'. A total of 38 (26 men and 12 women) + 90 (38 men and 52 women) subjects were included in the models and the external validation, respectively. The best prediction (R2) and predictive power (Q2) of Stairs, Pulling, Demolition, Terrain, and Rescue work capacities included field tests (R2 = 0.73 to 0.84, Q2 = 0.68 to 0.82). The best external validation was for Stairs work capacity (R2 = 0.80) and worst for Demolition work capacity (R2 = 0.40). In conclusion, field and laboratory tests could equally well predict physical work capacities for firefighting work tasks, and models excluding anthropometric data were valid. The predictive power was satisfactory for all included work tasks except Demolition. PMID:25775243

  3. Multivariate Statistical Assessment of Predictors of Firefighters’ Muscular and Aerobic Work Capacity

    PubMed Central

    Lindberg, Ann-Sofie; Oksa, Juha; Antti, Henrik; Malm, Christer

    2015-01-01

    Physical capacity has previously been deemed important for firefighters physical work capacity, and aerobic fitness, muscular strength, and muscular endurance are the most frequently investigated parameters of importance. Traditionally, bivariate and multivariate linear regression statistics have been used to study relationships between physical capacities and work capacities among firefighters. An alternative way to handle datasets consisting of numerous correlated variables is to use multivariate projection analyses, such as Orthogonal Projection to Latent Structures. The first aim of the present study was to evaluate the prediction and predictive power of field and laboratory tests, respectively, on firefighters’ physical work capacity on selected work tasks. Also, to study if valid predictions could be achieved without anthropometric data. The second aim was to externally validate selected models. The third aim was to validate selected models on firefighters’ and on civilians’. A total of 38 (26 men and 12 women) + 90 (38 men and 52 women) subjects were included in the models and the external validation, respectively. The best prediction (R2) and predictive power (Q2) of Stairs, Pulling, Demolition, Terrain, and Rescue work capacities included field tests (R2 = 0.73 to 0.84, Q2 = 0.68 to 0.82). The best external validation was for Stairs work capacity (R2 = 0.80) and worst for Demolition work capacity (R2 = 0.40). In conclusion, field and laboratory tests could equally well predict physical work capacities for firefighting work tasks, and models excluding anthropometric data were valid. The predictive power was satisfactory for all included work tasks except Demolition. PMID:25775243

  4. Differences in the Aerobic Capacity of Flight Muscles between Butterfly Populations and Species with Dissimilar Flight Abilities

    PubMed Central

    Rauhamäki, Virve; Wolfram, Joy; Jokitalo, Eija; Hanski, Ilkka; Dahlhoff, Elizabeth P.

    2014-01-01

    Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary. PMID:24416122

  5. Differences in the aerobic capacity of flight muscles between butterfly populations and species with dissimilar flight abilities.

    PubMed

    Rauhamäki, Virve; Wolfram, Joy; Jokitalo, Eija; Hanski, Ilkka; Dahlhoff, Elizabeth P

    2014-01-01

    Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary.

  6. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity

    PubMed Central

    Chtara, M; Chamari, K; Chaouachi, M; Chaouachi, A; Koubaa, D; Feki, Y; Millet, G; Amri, M

    2005-01-01

    Aim: To examine the effects of the sequencing order of individualised intermittent endurance training combined with muscular strengthening on aerobic performance and capacity. Methods: Forty eight male sport students (mean (SD) age 21.4 (1.3) years) were divided into five homogeneous groups according to their maximal aerobic speeds (vV·O2MAX). Four groups participated in various training programmes for 12 weeks (two sessions a week) as follows: E (n = 10), running endurance training; S (n = 9), strength circuit training; E+S (n = 10) and S+E (n = 10) combined the two programmes in a different order during the same training session. Group C (n = 9) served as a control. All the subjects were evaluated before (T0) and after (T1) the training period using four tests: (1) a 4 km time trial running test; (2) an incremental track test to estimate vV·O2MAX; (3) a time to exhaustion test (tlim) at 100% vV·O2MAX; (4) a maximal cycling laboratory test to assess V·O2MAX. Results: Training produced significant improvements in performance and aerobic capacity in the 4 km time trial with interaction effect (p<0.001). The improvements were significantly higher for the E+S group than for the E, S+E, and S groups: 8.6%, 5.7%, 4.7%, and 2.5% for the 4 km test (p<0.05); 10.4%, 8.3%, 8.2%, and 1.6% for vV·O2MAX (p<0.01); 13.7%, 10.1%, 11.0%, and 6.4% for V·O2MAX (ml/kg0.75/min) (p<0.05) respectively. Similar significant results were observed for tlim and the second ventilatory threshold (%V·O2MAX). Conclusions: Circuit training immediately after individualised endurance training in the same session (E+S) produced greater improvement in the 4 km time trial and aerobic capacity than the opposite order or each of the training programmes performed separately. PMID:16046343

  7. Obesity negatively impacts aerobic capacity improvements both acutely and 1-year following cardiac rehabilitation.

    PubMed

    Martin, Billie-Jean; Aggarwal, Sandeep G; Stone, James A; Hauer, Trina; Austford, Leslie D; Knudtson, Merril; Arena, Ross

    2012-12-01

    Cardiac rehabilitation (CR) produces a host of health benefits related to modifiable cardiovascular risk factors. The purpose of the present investigation was to determine the influence of body weight, assessed through BMI, on acute and long-term improvements in aerobic capacity following completion of CR. Three thousand nine hundred and ninety seven subjects with coronary artery disease (CAD) participated in a 12-week multidisciplinary CR program. Subjects underwent an exercise test to determine peak estimated metabolic equivalents (eMETs) and BMI assessment at baseline, immediately following CR completion and at 1-year follow-up. Normal weight subjects at 1-year follow-up demonstrated the greatest improvement in aerobic fitness and best retention of those gains (gain in peak METs: 0.95 ± 1.1, P < 0.001). Although the improvement was significant (P < 0.001), subjects who were initially classified as obese had the lowest aerobic capacity and poorest retention in CR fitness gains at 1-year follow-up (gain in peak eMETs: 0.69 ± 1.2). Subjects initially classified as overweight by BMI had a peak eMET improvement that was also significantly better (P < 0.05) than obese subjects at 1-year follow-up (gain in peak eMETs: 0.82 ± 1.1). Significant fitness gains, one of the primary beneficial outcomes of CR, can be obtained by all subjects irrespective of BMI classification. However, obese patients have poorer baseline fitness and are more likely to "give back" fitness gains in the long term. Obese CAD patients may therefore benefit from additional interventions to enhance the positive adaptations facilitated by CR.

  8. Abnormal skeletal muscle oxidative capacity after lung transplantation by 31P-MRS.

    PubMed

    Evans, A B; Al-Himyary, A J; Hrovat, M I; Pappagianopoulos, P; Wain, J C; Ginns, L C; Systrom, D M

    1997-02-01

    Although lung transplantation improves exercise capacity by removal of a ventilatory limitation, recipients' postoperative maximum oxygen uptake (VO2max) remains markedly abnormal. To determine if abnormal skeletal muscle oxidative capacity contributes to this impaired aerobic capacity, nine lung transplant recipients and eight healthy volunteers performed incremental quadriceps exercise to exhaustion with simultaneous measurements of pulmonary gas exchange, minute ventilation, blood lactate, and quadriceps muscle pH and phosphorylation potential by 31P-magnetic resonance spectroscopy (31P-MRS). Five to 38 mo after lung transplantation, peak VO2 was decreased compared with that of normal control subjects (6.7 +/- 0.4 versus 12.3 +/- 1.0 ml/min/kg, p < 0.001), even after accounting for differences in age and lean body weight. Neither ventilation, arterial O2 saturation nor mild anemia could account for the decrease in aerobic capacity. Quadriceps muscle intracellular pH (pH(i)) was more acidic at rest (7.07 +/- 0.01 versus 7.12 +/- 0.01 units, p < 0.05) and fell during exercise from baseline values at a lower metabolic rate (282 +/- 21 versus 577 +/- 52 ml/min, p < 0.001). Regressions for pH(i) versus VO2, phosphocreatine/inorganic phosphate ratio (PCr/Pi) versus VO2, and blood lactate versus pH(i) were not different. Among transplant recipients, the metabolic rate at which pH(i) fell correlated closely with VO2max (r = 0.87, p < 0.01). The persistent decrease in VO2max after lung transplantation may be related to abnormalities of skeletal muscle oxidative capacity. PMID:9032203

  9. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats.

    PubMed

    Cox-York, Kimberly A; Sheflin, Amy M; Foster, Michelle T; Gentile, Christopher L; Kahl, Amber; Koch, Lauren G; Britton, Steven L; Weir, Tiffany L

    2015-08-01

    The increased risk for cardiometabolic disease with the onset of menopause is widely studied and likely precipitated by the decline in endogenous estradiol (E2), yet the precise mechanisms are unknown. The gut microbiome is involved in estrogen metabolism and has been linked to metabolic disease, suggesting its potential involvement in the postmenopausal phenotype. Furthermore, menopause-associated risk factors, as well as gut ecology, are altered with exercise. Therefore, we studied microbial changes in an ovariectomized (OVX vs. Sham) rat model of high (HCR) and low (LCR) intrinsic aerobic capacity (n = 8-10/group) in relation to changes in body weight/composition, glucose tolerance, and liver triglycerides (TG). Nine weeks after OVX, HCR rats were moderately protected against regional adipose tissue gain and liver TG accumulation (P < 0.05 for both). Microbial diversity and number of the Bacteroidetes phylum were significantly increased in LCR with OVX, but unchanged in HCR OVX relative to Sham. Plasma short-chain fatty acids (SCFA), produced by bacteria in the gut and recognized as metabolic signaling molecules, were significantly greater in HCR Sham relative to LCR Sham rats (P = 0.05) and were decreased with OVX in both groups. These results suggest that increased aerobic capacity may be protective against menopause-associated cardiometabolic risk and that gut ecology, and production of signaling molecules such as SCFA, may contribute to the mediation. PMID:26265751

  10. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats

    PubMed Central

    Cox-York, Kimberly A; Sheflin, Amy M; Foster, Michelle T; Gentile, Christopher L; Kahl, Amber; Koch, Lauren G; Britton, Steven L; Weir, Tiffany L

    2015-01-01

    The increased risk for cardiometabolic disease with the onset of menopause is widely studied and likely precipitated by the decline in endogenous estradiol (E2), yet the precise mechanisms are unknown. The gut microbiome is involved in estrogen metabolism and has been linked to metabolic disease, suggesting its potential involvement in the postmenopausal phenotype. Furthermore, menopause-associated risk factors, as well as gut ecology, are altered with exercise. Therefore, we studied microbial changes in an ovariectomized (OVX vs. Sham) rat model of high (HCR) and low (LCR) intrinsic aerobic capacity (n = 8–10/group) in relation to changes in body weight/composition, glucose tolerance, and liver triglycerides (TG). Nine weeks after OVX, HCR rats were moderately protected against regional adipose tissue gain and liver TG accumulation (P < 0.05 for both). Microbial diversity and number of the Bacteroidetes phylum were significantly increased in LCR with OVX, but unchanged in HCR OVX relative to Sham. Plasma short-chain fatty acids (SCFA), produced by bacteria in the gut and recognized as metabolic signaling molecules, were significantly greater in HCR Sham relative to LCR Sham rats (P = 0.05) and were decreased with OVX in both groups. These results suggest that increased aerobic capacity may be protective against menopause-associated cardiometabolic risk and that gut ecology, and production of signaling molecules such as SCFA, may contribute to the mediation. PMID:26265751

  11. Optical nonlinearity and structural dynamics of VO2 films

    NASA Astrophysics Data System (ADS)

    Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.

    2009-02-01

    The degenerate-four-wave-mixing, ultrafast optical pump-probe reflection, and scattering techniques were applied to study the nonlinear optical properties of VO2 in insulating and metallic phases. The third-order nonlinear susceptibility was measured for thin films at different excitation regimes. The VO2 recovery dynamics after light-induced phase transition (PT) shows strong sensitivity to optical pump energy and could be governed by pure electronic relaxation excluding thermal contribution at sufficiently low excitation. Increased light scattering during thermally and light-induced PT demonstrates significant VO2 heterogeneity which appears as a coexistence of insulating and metallic phases accompanied by fluctuations of dielectric constants. Different desorption activity was monitored for insulating and metallic VO2 thin solid films under femtosecond optical excitation.

  12. Markers of Human Skeletal Muscle Mitochondrial Biogenesis and Quality Control: Effects of Age and Aerobic Exercise Training

    PubMed Central

    2014-01-01

    Perturbations in mitochondrial health may foster age-related losses of aerobic capacity (VO2peak) and skeletal muscle size. However, limited data exist regarding mitochondrial dynamics in aging human skeletal muscle and the influence of exercise. The purpose of this study was to examine proteins regulating mitochondrial biogenesis and dynamics, VO2peak, and skeletal muscle size before and after aerobic exercise training in young men (20 ± 1 y) and older men (74 ± 3 y). Exercise-induced skeletal muscle hypertrophy occurred independent of age, whereas the improvement in VO2peak was more pronounced in young men. Aerobic exercise training increased proteins involved with mitochondrial biogenesis, fusion, and fission, independent of age. This is the first study to examine pathways of mitochondrial quality control in aging human skeletal muscle with aerobic exercise training. These data indicate normal aging does not influence proteins associated with mitochondrial health or the ability to respond to aerobic exercise training at the mitochondrial and skeletal muscle levels. PMID:23873965

  13. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training.

    PubMed

    Konopka, Adam R; Suer, Miranda K; Wolff, Christopher A; Harber, Matthew P

    2014-04-01

    Perturbations in mitochondrial health may foster age-related losses of aerobic capacity (VO2peak) and skeletal muscle size. However, limited data exist regarding mitochondrial dynamics in aging human skeletal muscle and the influence of exercise. The purpose of this study was to examine proteins regulating mitochondrial biogenesis and dynamics, VO2peak, and skeletal muscle size before and after aerobic exercise training in young men (20 ± 1 y) and older men (74 ± 3 y). Exercise-induced skeletal muscle hypertrophy occurred independent of age, whereas the improvement in VO2peak was more pronounced in young men. Aerobic exercise training increased proteins involved with mitochondrial biogenesis, fusion, and fission, independent of age. This is the first study to examine pathways of mitochondrial quality control in aging human skeletal muscle with aerobic exercise training. These data indicate normal aging does not influence proteins associated with mitochondrial health or the ability to respond to aerobic exercise training at the mitochondrial and skeletal muscle levels.

  14. Utilization of the graded universal testing system to increase the efficiency for assessing aerobic and anaerobic capacity

    NASA Technical Reports Server (NTRS)

    Rodgers, Sandra L.

    1992-01-01

    The in-flight exercise test performed by cosmonauts as part of the Russian Exercise Countermeasure Program is limited to 5 minutes due to communication restrictions. During a recent graded exercise test on a U.S. Shuttle flight, the test was terminated early due to an upcoming loss of signal (LOS) with the ground. This exercise test was a traditional test where the subject's exercise capacity dictates the length of the test. For example, one crew member may take 15 minutes to complete the test, while another may take 18 minutes. The traditional exercise test limits the flight schedulers to large blocks of space flight time in order to provide medical and research personnel information on the fitness capacity (maximal oxygen uptake: VO2max) of crew members during flight. A graded exercise test that would take a finite amount of time and a set preparation and recovery time would ease this problem by allowing flight schedulers to plan exercise tests in advance of LOS. The Graded Universal Testing System (GUTS) was designed to meet this goal. Fitness testing of astronauts before and after flight provides pertinent data on many variables. The Detailed Supplemental Objective (DSO608) protocol (6) is one of the graded exercise tests (GXT) currently used in astronaut testing before and after flight. Test times for this protocol have lasted from 11 to 18 minutes. Anaerobic capacity is an important variable that is currently not being evaluated before and after flight. Recent reports (1,2,5) from the literature have suggested that the oxygen deficit at supramaximal exercise is a measure of anaerobic capacity. We postulated that the oxygen deficit at maximal exercise would be an indication of anaerobic capacity. If this postulate can be accepted, then the efficiency of acquiring data from a graded exercise test would increase at least twofold. To examine this hypothesis anaerobic capacity was measured using a modified treadmill test (3,4) designed to exhaust the anaerobic

  15. The Structural Basis of Action of Vanadyl (VO(2+)) Chelates in Cells.

    PubMed

    Makinen, Marvin W; Salehitazangi, Marzieh

    2014-11-01

    Much emphasis has been given to vanadium compounds as potential therapeutic reagents for the treatment of diabetes mellitus. Thus far, no vanadium compound has proven efficacious for long-term treatment of this disease in humans. Therefore, in review of the research literature, our goal has been to identify properties of vanadium compounds that are likely to favor physiological and biochemical compatibility for further development as therapeutic reagents. We have, therefore, limited our review to those vanadium compounds that have been used in both in vivo experiments with small, laboratory animals and in in vitro studies with primary or cultured cell systems and for which pharmacokinetic and pharmacodynamics results have been reported, including vanadium tissue content, vanadium and ligand lifetime in the bloodstream, structure in solution, and interaction with serum transport proteins. Only vanadyl (VO(2+)) chelates fulfill these requirements despite the large variety of vanadium compounds of different oxidation states, ligand structure, and coordination geometry synthesized as potential therapeutic agents. Extensive review of research results obtained with use of organic VO(2+)-chelates shows that the vanadyl chelate bis(acetylacetonato)oxidovanadium(IV) [hereafter abbreviated as VO(acac)2], exhibits the greatest capacity to enhance insulin receptor kinase activity in cells compared to other organic VO(2+)-chelates, is associated with a dose-dependent capacity to lower plasma glucose in diabetic laboratory animals, and exhibits a sufficiently long lifetime in the blood stream to allow correlation of its dose-dependent action with blood vanadium content. The properties underlying this behavior appear to be its high stability and capacity to remain intact upon binding to serum albumin. We relate the capacity to remain intact upon binding to serum albumin to the requirement to undergo transcytosis through the vascular endothelium to gain access to target tissues in

  16. The Structural Basis of Action of Vanadyl (VO2+) Chelates in Cells

    PubMed Central

    Makinen, Marvin W.; Salehitazangi, Marzieh

    2014-01-01

    Much emphasis has been given to vanadium compounds as potential therapeutic reagents for the treatment of diabetes mellitus. Thus far, no vanadium compound has proven efficacious for long-term treatment of this disease in humans. Therefore, in review of the research literature, our goal has been to identify properties of vanadium compounds that are likely to favor physiological and biochemical compatibility for further development as therapeutic reagents. We have, therefore, limited our review to those vanadium compounds that have been used in both in vivo experiments with small, laboratory animals and in in vitro studies with primary or cultured cell systems and for which pharmacokinetic and pharmacodynamics results have been reported, including vanadium tissue content, vanadium and ligand lifetime in the bloodstream, structure in solution, and interaction with serum transport proteins. Only vanadyl (VO2+) chelates fulfill these requirements despite the large variety of vanadium compounds of different oxidation states, ligand structure, and coordination geometry synthesized as potential therapeutic agents. Extensive review of research results obtained with use of organic VO2+-chelates shows that the vanadyl chelate bis(acetylacetonato)oxidovanadium(IV) [hereafter abbreviated as VO(acac)2], exhibits the greatest capacity to enhance insulin receptor kinase activity in cells compared to other organic VO2+-chelates, is associated with a dose-dependent capacity to lower plasma glucose in diabetic laboratory animals, and exhibits a sufficiently long lifetime in the blood stream to allow correlation of its dose-dependent action with blood vanadium content. The properties underlying this behavior appear to be its high stability and capacity to remain intact upon binding to serum albumin. We relate the capacity to remain intact upon binding to serum albumin to the requirement to undergo transcytosis through the vascular endothelium to gain access to target tissues in the

  17. Electric field induced metal-insulator transition in VO2 thin film based on FTO/VO2/FTO structure

    NASA Astrophysics Data System (ADS)

    Hao, Rulong; Li, Yi; Liu, Fei; Sun, Yao; Tang, Jiayin; Chen, Peizu; Jiang, Wei; Wu, Zhengyi; Xu, Tingting; Fang, Baoying

    2016-03-01

    A VO2 thin film has been prepared using a DC magnetron sputtering method and annealing on an F-doped SnO2 (FTO) conductive glass substrate. The FTO/VO2/FTO structure was fabricated using photolithography and a chemical etching process. The temperature dependence of the I-V hysteresis loop for the FTO/VO2/FTO structure has been analyzed. The threshold voltage decreases with increasing temperature, with a value of 9.2 V at 20 °C. The maximum transmission modulation value of the FTO/VO2/FTO structure is 31.4% under various temperatures and voltages. Optical modulation can be realized in the structure by applying an electric field.

  18. Risk-assessment and Coping Strategies Segregate with Divergent Intrinsic Aerobic Capacity in Rats

    PubMed Central

    Burghardt, Paul R; Flagel, Shelly B; Burghardt, Kyle J; Britton, Steven L; Gerard-Koch, Lauren; Watson, Stanley J; Akil, Huda

    2011-01-01

    Metabolic function is integrally related to an individual's susceptibility to, and progression of, disease. Selective breeding for intrinsic treadmill running in rats has produced distinct lines of high- or low-capacity runners (HCR and LCR, respectively) that exhibit numerous physiological differences. To date, the role of intrinsic aerobic capacity on behavior and stress response in these rats has not been addressed and was the focus of these studies. HCR and LCR rats did not differ in their locomotor response to novelty or behavior in the light/dark box. In contrast, immobility in the forced swim test was higher in LCR rats compared with HCR rats, regardless of desipramine treatment. Although both HCR and LCR rats responded to cat odor with decreased exploration and increased risk assessment, HCR rats showed greater contextual conditioning to cat odor. HCR rats exhibited higher expression of corticotropin-releasing hormone in the central nucleus of the amygdala, as well as heavier adrenal and thymus weight. Corticosterone was comparable among HCR and LCR rats at light/dark transitions, and in response to unavoidable cat odor. HCR rats, however, exhibited a greater corticosterone response following the light/dark box. These experiments show that the LCR phenotype associates with decreased risk assessment in response to salient danger signals and passive coping. In contrast, HCR rats show a more naturalistic strategy in that they employ active coping and a more vigilant and cautious response to environmental novelty and salient danger signals. Within this context, we propose that intrinsic aerobic capacity is a central feature mechanistically linking complex metabolic disease and behavior. PMID:20927049

  19. Effects of Exercise Rehab on Male Asthmatic Patients: Aerobic Verses Rebound Training

    PubMed Central

    Zolaktaf, Vahid; Ghasemi, Gholam A; Sadeghi, Morteza

    2013-01-01

    Background: There are some auspicious records on applying aerobic exercise for asthmatic patients. Recently, it is suggested that rebound exercise might even increase the gains. This study was designed to compare the effects of rebound therapy to aerobic training in male asthmatic patients. Methods: Sample included 37 male asthmatic patients (20-40 years) from the same respiratory clinic. After signing the informed consent, subjects volunteered to take part in control, rebound, or aerobic groups. There was no change in the routine medical treatment of patients. Supervised exercise programs continued for 8 weeks, consisting of two sessions of 45 to 60 minutes per week. Criteria measures were assessed pre- and post exercise program. Peak exercise capacity (VO2peak) was estimated by modified Bruce protocol, Forced vital capacity (FVC), Forced expiratory volume in 1 second (FEV1), and FEV1% were measured by spirometer. Data were analyzed by repeated measure analysis of variance (ANOVA). Results: Significant interactions were observed for all 4 criteria measures (P < 0.01), meaning that both the exercise programs were effective in improving FVC, FEV1, FEV1%, and VO2peak. Rebound exercise produced more improvement in FEV1, FEV1%, and VO2peak. Conclusions: Regular exercise strengthens the respiratory muscles and improves the cellular respiration. At the same time, it improves the muscular, respiratory, and cardio-vascular systems. Effects of rebound exercise seem to be promising. Findings suggest that rebound exercise is a useful complementary means for asthmatic male patients. PMID:23717762

  20. A novel inorganic precipitation-peptization method for VO2 sol and VO2 nanoparticles preparation: Synthesis, characterization and mechanism.

    PubMed

    Li, Yao; Jiang, Peng; Xiang, Wei; Ran, Fanyong; Cao, Wenbin

    2016-01-15

    In this paper, a simple, safe and cost-saving precipitation-peptization method was proposed to prepare VO2 sol by using inorganic VOSO4-NH3⋅H2O-H2O2 reactants system in air under room temperature. In this process, VOSO4 was firstly precipitated to form VO(OH)2, then monometallic species of VO(O2)(OH)(-) were formed through the coordination between VO(OH)2 and H2O2. The rearrangement of VO(O2)(OH)(-) in a nonplanar pattern and intermolecular condensation reactions result in multinuclear species. Finally, VO2 sol is prepared through the condensation reactions between the multinuclear species. After drying the obtained sol at 40°C, VO2 xerogel exhibiting monoclinic crystal structure with the space group of C2/m was prepared. The crystal structure of VO2 nanoparticles was transferred to monoclinic crystal structure with the space group of P21/c (VO2(M)) by annealing the xerogel at 550°C. Both XRD and TEM analysis indicated that the nanoparticles possess good crystallinity with crystallite size of 34.5nm as estimated by Scherrer's method. These results suggest that the VO2 sol has been prepared successfully through the proposed simple method.

  1. Effects of thermal increase on aerobic capacity and swim performance in a tropical inland fish.

    PubMed

    McDonnell, Laura H; Chapman, Lauren J

    2016-09-01

    Rising water temperature associated with climate change is increasingly recognized as a potential stressor for aquatic organisms, particularly for tropical ectotherms that are predicted to have narrow thermal windows relative to temperate ectotherms. We used intermittent flow resting and swimming respirometry to test for effects of temperature increase on aerobic capacity and swim performance in the widespread African cichlid Pseudocrenilabrus multicolor victoriae, acclimated for a week to a range of temperatures (2°C increments) between 24 and 34°C. Standard metabolic rate (SMR) increased between 24 and 32°C, but fell sharply at 34°C, suggesting either an acclimatory reorganization of metabolism or metabolic rate depression. Maximum metabolic rate (MMR) was elevated at 28 and 30°C relative to 24°C. Aerobic scope (AS) increased between 24 and 28°C, then declined to a level comparable to 24°C, but increased dramatically 34°C, the latter driven by the drop in SMR in the warmest treatment. Critical swim speed (Ucrit) was highest at intermediate temperature treatments, and was positively related to AS between 24 and 32°C; however, at 34°C, the increase in AS did not correspond to an increase in Ucrit, suggesting a performance cost at the highest temperature.

  2. Effects of thermal increase on aerobic capacity and swim performance in a tropical inland fish.

    PubMed

    McDonnell, Laura H; Chapman, Lauren J

    2016-09-01

    Rising water temperature associated with climate change is increasingly recognized as a potential stressor for aquatic organisms, particularly for tropical ectotherms that are predicted to have narrow thermal windows relative to temperate ectotherms. We used intermittent flow resting and swimming respirometry to test for effects of temperature increase on aerobic capacity and swim performance in the widespread African cichlid Pseudocrenilabrus multicolor victoriae, acclimated for a week to a range of temperatures (2°C increments) between 24 and 34°C. Standard metabolic rate (SMR) increased between 24 and 32°C, but fell sharply at 34°C, suggesting either an acclimatory reorganization of metabolism or metabolic rate depression. Maximum metabolic rate (MMR) was elevated at 28 and 30°C relative to 24°C. Aerobic scope (AS) increased between 24 and 28°C, then declined to a level comparable to 24°C, but increased dramatically 34°C, the latter driven by the drop in SMR in the warmest treatment. Critical swim speed (Ucrit) was highest at intermediate temperature treatments, and was positively related to AS between 24 and 32°C; however, at 34°C, the increase in AS did not correspond to an increase in Ucrit, suggesting a performance cost at the highest temperature. PMID:27215345

  3. Small-sided game training improves aerobic capacity and technical skills in basketball players.

    PubMed

    Delextrat, A; Martinez, A

    2014-05-01

    The aim of this study was to compare the effects of 2 training interventions based on small-sided games (SGG) and high-intensity interval training (HIT) on physical and technical performance of male junior basketball players. A secondary objective was to investigate if these effects were similar in starting and bench players. 18 players participated in a pre-testing session, 6-weeks intervention period and a post-testing session. Pre- and post-sessions involved assessments of aerobic fitness, repeated sprint ability (RSA), defensive and offensive agility, upper and lower body power, shooting and passing skills. Mixed-design analysis of variance (ANOVA) with Bonferroni corrected pairwise comparisons examined the effects of time and type of intervention on physical and technical performances. The main results showed that both interventions resulted in similar improvements in aerobic capacity (+3.4% vs. +4.1%), with greater improvements in bench players compared to starting players (+7.1% vs. +1.1%, P<0.05). However, RSA was unchanged after both interventions. In addition, compared to HIT, SSG resulted in greater improvements in defensive agility (+4.5% vs. -2.7%, P<0.05), shooting skills (+7.4% vs. -2.4%, P<0.05) and upper body power (+7.9% vs. -2.0%, P<0.05). These results suggest that SSG should be prioritized in physical conditioning of junior basketball players during the season. However, when RSA is targeted, more specific training seems necessary.

  4. Trade-off between aerobic capacity and locomotor capability in an Antarctic pteropod

    PubMed Central

    Rosenthal, Joshua J. C.; Seibel, Brad A.; Dymowska, Agnieszka; Bezanilla, Francisco

    2009-01-01

    At −1.8 °C, the waters of Antarctica pose a formidable physiological barrier for most ectotherms. The few taxa that inhabit this zone have presumably made specific adjustments to their neuromuscular function and have enhanced their metabolic capacity. However, support for this assertion is equivocal and the details of specific compensations are largely unknown. This can generally be attributed to the fact that most Antarctic organisms are either too distantly related to their temperate relatives to permit direct comparisons (e.g., notothenioid fishes) or because they are not amenable to neuromuscular recording. Here, as a comparative model, we take advantage of 2 pelagic molluscs in the genus Clione to conduct a broadly integrative investigation on neuromuscular adaptation to the extreme cold. We find that for the Antarctic congener aerobic capacity is enhanced, but at a cost. To support a striking proliferation of mitochondria, the Antarctic species has shed a 2-gear swim system and the associated specialized neuromuscular components, resulting in greatly reduced scope for locomotor activity. These results suggest that polar animals have undergone substantial tissue-level reorganizations to accommodate their environment, which may reduce their capacity to acclimate to a changing climate. PMID:19325127

  5. Effects of cigarette smoke on aerobic capacity and serum MDA content and SOD activity of animal

    PubMed Central

    Hu, Jian-Ping; Zhao, Xin-Ping; Ma, Xiao-Zhi; Wang, Yi; Zheng, Li-Jun

    2014-01-01

    Objective: Study the effects of cigarette smoke on aerobic capacity, serum MDA content and SOD activity of animal. Methods: 60 male mice are randomly divided into mild smoking group, heavy smoking group, and control group, and the exhausted swimming time, serum SOD activity and MDA content of the three groups of mice are respectively measured before and after the experiment. Results: After the experiment, the exhausted swimming time for the control group, mild smoking and heavy smoking groups is respectively 276.57 min, 215.57 min and 176.54 min, and the serum SOD activities for the three objects are 216.46 U/mL, 169.16 U/mL and 154.91 U/mL, and the MDA contents are respectively 16.41 mol/mL, 22.31 mol/mL and 23.55 mol/mL. According to the comparison, it is found that compared with the control group and pre-intervention, the exhausted swimming time and serum SOD activity of the smoking group decreases obviously, and its MDA content rises sharply, and the difference has significance (P < 0.05), moreover, the heavy smoking group has more obvious changes than the mild group. Conclusion: Cigarette smoke can significantly weaken the aerobic capacity and fatigue resistance of mice, and the more the smoking time is longer, the more the harmful effect is more serious, this is related to the SOD activity drops and MDA content rises due to smoking. PMID:25550969

  6. Single crystalline VO2 nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Jiang, Bo; Hu, Liwen; Lin, Zheshuai; Hou, Jungang; Jiao, Shuqiang

    2014-03-01

    In recent years, with the growing demands for large-scale applications of rechargeable batteries, the eco-friendly sodium-ion batteries with low price and high charge-discharge rates have attracted much attention. In this work, using a simple hydrothermal process, we successfully synthesize single crystalline VO2 parallel ultrathin nanosheets for the cathode material in sodium-ion batteries. Combined the XRD, XPS, electrochemical measurements with the first-principles simulations, the charge-discharge performance and the mechanism of Na insertion and extraction into/from the VO2 structure have systematically studied. The results reveal that the NaxVO2 products possess semiconductor properties and the interlayer distance almost keeps constant during charge and discharge process, which is beneficial to the transmission of Na ions. The charge and discharge process occurs between Na0.3VO2 and NaVO2. Even at a large current density of 500 mA g-1, the discharge capacity can still keep at 108 mAh g-1. As a cathode material for sodium-ion batteries, the results are outstanding and provide a possibility of large-scale applications for rechargeable sodium-ion batteries.

  7. Thermochromic VO2 on Zinnwaldite Mica by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mathevula, L.; Ngom, B. D.; Kotsedi, L.; Sechogela, P.; Doyle, T. B.; Ghouti, M.; Maaza, M.

    2014-09-01

    VO2 thin films have been deposited by pulsed laser deposition on Zinnwaldite Mica substrates. The crystal structure, chemical composition, morphology were determined and the semiconductor/metal transition (SMT) properties of the deposited films were investigated. Without any post annealing, the films exhibit a textured nature with a VO2 (0 1 1) preferred crystallographic orientation and an elevated thermal variation of the electric resistance ratio RS/RM through the SMT at T ≈ 68 °C of the order of 104 and a narrow ∼7 °C hysteresis. In addition, the growth of the VO2 crystallites seem to be governed likely by a Volmer-Weber or Stranski-Krastanov mechanisms and certainly not a Frank-van Der Merwe process.

  8. Effect of intensive aerobic exercise on respiratory capacity and walking ability with chronic stroke patients: a randomized controlled pilot trial

    PubMed Central

    Bang, Dae-Hyouk; Son, Young-Lan

    2016-01-01

    [Purpose] To investigate the effects of intensive aerobic exercise on respiratory capacity and walking ability in chronic stroke patients. [Subjects and Methods] The subjects were randomly assigned to an experimental group (n=6) or a control group (n=6). Patients in the experimental group received intensive aerobic exercise for 30 minutes and traditional physical therapy once a day, five days a week, for four weeks. The control group received aerobic exercise for 30 minutes and traditional physical therapy for 30 minutes a day, five days a week, for four weeks. [Results] After the intervention, both groups showed significant improvements in the forced vital capacity, forced expiratory volume in one second, 10-meter walking test, and six-minute walking test over the baseline results. The comparison of the two groups after the intervention revealed that the experimental group showed more significant improvements in the forced vital capacity, forced expiratory volume in one second, and six-minute walking test. There was no significant difference in saturation pulse oximetry oxygen and 10-meter walking test between the groups. [Conclusion] The results of this study suggest that intensive aerobic exercise has a positive effect on respiratory capacity and walking endurance in patients with chronic stroke. PMID:27630438

  9. Effect of intensive aerobic exercise on respiratory capacity and walking ability with chronic stroke patients: a randomized controlled pilot trial.

    PubMed

    Bang, Dae-Hyouk; Son, Young-Lan

    2016-08-01

    [Purpose] To investigate the effects of intensive aerobic exercise on respiratory capacity and walking ability in chronic stroke patients. [Subjects and Methods] The subjects were randomly assigned to an experimental group (n=6) or a control group (n=6). Patients in the experimental group received intensive aerobic exercise for 30 minutes and traditional physical therapy once a day, five days a week, for four weeks. The control group received aerobic exercise for 30 minutes and traditional physical therapy for 30 minutes a day, five days a week, for four weeks. [Results] After the intervention, both groups showed significant improvements in the forced vital capacity, forced expiratory volume in one second, 10-meter walking test, and six-minute walking test over the baseline results. The comparison of the two groups after the intervention revealed that the experimental group showed more significant improvements in the forced vital capacity, forced expiratory volume in one second, and six-minute walking test. There was no significant difference in saturation pulse oximetry oxygen and 10-meter walking test between the groups. [Conclusion] The results of this study suggest that intensive aerobic exercise has a positive effect on respiratory capacity and walking endurance in patients with chronic stroke.

  10. Beneficial Effects of Exercise on Aerobic Capacity and Body Composition in Adults with Prader-Willi Syndrome.

    ERIC Educational Resources Information Center

    Silverthorn, Kathryn H.; Hornak, James E.

    1993-01-01

    Six adults with Prader Willi syndrome who participated in a six-month walking program showed significant differences in resting heart rate, aerobic capacity, body fat percentage, and weight loss, compared to a control group of five nonparticipants. (Author/JDD)

  11. Effect of intensive aerobic exercise on respiratory capacity and walking ability with chronic stroke patients: a randomized controlled pilot trial.

    PubMed

    Bang, Dae-Hyouk; Son, Young-Lan

    2016-08-01

    [Purpose] To investigate the effects of intensive aerobic exercise on respiratory capacity and walking ability in chronic stroke patients. [Subjects and Methods] The subjects were randomly assigned to an experimental group (n=6) or a control group (n=6). Patients in the experimental group received intensive aerobic exercise for 30 minutes and traditional physical therapy once a day, five days a week, for four weeks. The control group received aerobic exercise for 30 minutes and traditional physical therapy for 30 minutes a day, five days a week, for four weeks. [Results] After the intervention, both groups showed significant improvements in the forced vital capacity, forced expiratory volume in one second, 10-meter walking test, and six-minute walking test over the baseline results. The comparison of the two groups after the intervention revealed that the experimental group showed more significant improvements in the forced vital capacity, forced expiratory volume in one second, and six-minute walking test. There was no significant difference in saturation pulse oximetry oxygen and 10-meter walking test between the groups. [Conclusion] The results of this study suggest that intensive aerobic exercise has a positive effect on respiratory capacity and walking endurance in patients with chronic stroke. PMID:27630438

  12. Effect of intensive aerobic exercise on respiratory capacity and walking ability with chronic stroke patients: a randomized controlled pilot trial

    PubMed Central

    Bang, Dae-Hyouk; Son, Young-Lan

    2016-01-01

    [Purpose] To investigate the effects of intensive aerobic exercise on respiratory capacity and walking ability in chronic stroke patients. [Subjects and Methods] The subjects were randomly assigned to an experimental group (n=6) or a control group (n=6). Patients in the experimental group received intensive aerobic exercise for 30 minutes and traditional physical therapy once a day, five days a week, for four weeks. The control group received aerobic exercise for 30 minutes and traditional physical therapy for 30 minutes a day, five days a week, for four weeks. [Results] After the intervention, both groups showed significant improvements in the forced vital capacity, forced expiratory volume in one second, 10-meter walking test, and six-minute walking test over the baseline results. The comparison of the two groups after the intervention revealed that the experimental group showed more significant improvements in the forced vital capacity, forced expiratory volume in one second, and six-minute walking test. There was no significant difference in saturation pulse oximetry oxygen and 10-meter walking test between the groups. [Conclusion] The results of this study suggest that intensive aerobic exercise has a positive effect on respiratory capacity and walking endurance in patients with chronic stroke.

  13. .VO2max: what do we know, and what do we still need to know?

    PubMed

    Levine, Benjamin D

    2008-01-01

    Maximal oxygen uptake (.VO(2,max)) is a physiological characteristic bounded by the parametric limits of the Fick equation: (left ventricular (LV) end-diastolic volume--LV end-systolic volume) x heart rate x arterio-venous oxygen difference. 'Classical' views of .VO(2,max) emphasize its critical dependence on convective oxygen transport to working skeletal muscle, and recent data are dispositive, proving convincingly that such limits must and do exist. 'Contemporary' investigations into the mechanisms underlying peripheral muscle fatigue due to energetic supply/demand mismatch are clarifying the local mediators of fatigue at the skeletal muscle level, though the afferent signalling pathways that communicate these environmental conditions to the brain and the sites of central integration of cardiovascular and neuromotor control are still being worked out. Elite endurance athletes have a high .VO(2,max) due primarily to a high cardiac output from a large compliant cardiac chamber (including the myocardium and pericardium) which relaxes quickly and fills to a large end-diastolic volume. This large capacity for LV filling and ejection allows preservation of blood pressure during extraordinary rates of muscle blood flow and oxygen transport which support high rates of sustained oxidative metabolism. The magnitude and mechanisms of cardiac phenotype plasticity remain uncertain and probably involve underlying genetic factors, as well as the length, duration, type, intensity and age of initiation of the training stimulus.

  14. Accuracy of the VO2peak prediction equation in firefighters

    PubMed Central

    2014-01-01

    Background A leading contributing factor to firefighter injury and death is lack of fitness. Therefore, the Fire Service Joint Labor Management Wellness-Fitness Initiative (WFI) was established that includes a focus on providing fitness assessments to all fire service personnel. The current fitness assessment includes a submaximal exercise test protocol and associated prediction equation to predict individual VO2peak as a measure of fitness. There is limited information on the accuracy, precision, and sources of error of this prediction equation. This study replicated previous research by validating the accuracy of the WFI VO2peak prediction equation for a group of firefighters and further examining potential sources of error for an individual firefighters’ assessment. Methods The sample consisted of 22 firefighters who completed a maximal exercise test protocol similar to the WFI submaximal protocol, but the test was terminated when firefighters reached a maximal level of exertion (i.e., measured VO2peak). We then calculated the predicted VO2peak based on the WFI prediction equation along with individual firefighters’ body mass index (BMI) and 85% of maximum heart rate. The data were analyzed using paired samples t-tests in SPSS v. 21.0. Results The difference between predicted and measured VO2peak was -0.77 ± 8.35 mL•kg-1•min-1. However, there was a weak, statistically non-significant association between measured VO2peak and predicted VO2peak (R2 = 0.09, F(1,21) = 2.05, p = 0.17). The intraclass correlation coefficient (ICC = 0.215, p > 0.05) and Pearson (r = 0.31, p = 0.17) and Spearman (ρ = 0.28, p = 0.21) correlation coefficients were small. The standard error of the estimate (SEE) was 8.5 mL•kg-1•min-1. Further, both age and baseline fitness level were associated with increased inaccuracy of the prediction equation. Conclusions We provide data on the inaccuracy and sources of error for the WFI VO2peak

  15. Echinacea Supplementation: Does it Really Improve Aerobic Fitness?

    PubMed Central

    Baumann, Cory W.; Kwak, Dongmin

    2016-01-01

    [Purpose] Echinacea is an herbal supplement used by endurance athletes for its performance boosting properties. It is thought that Echinacea improves the blood’s oxygen carrying capacity by increasing production of erythropoietin (EPO), a glycoprotein that regulates red blood cell formation. Subsequently, these changes would lead to an overall improvement in maximal oxygen uptake (VO2max) and running economy (RE), two markers of aerobic fitness. The purpose of this review is to briefly discuss the physiological variables associated with distance running performance and how these variables are influenced by Echinacea supplementation. [Methods] To determine Echinacea’s ergogenic potential, human studies that used Echinacea in conjunction to analyzing the blood’s oxygen carrying capacity and/or aerobic fitness were assessed. [Results] Taken together, the majority of the published literature does not support the claim that Echinacea is a beneficial ergogenic aid. With the exception of one study, several independent groups have reported Echinacea supplementation does not increase EPO production, blood markers of oxygen transport, VO2max or RE in healthy untrained or trained subjects. [Conclusion] To date, the published literature does not support the use of Echinacea as an ergogenic aid to improve aerobic fitness in healthy untrained or trained subjects. PMID:27757381

  16. The Effect of Aerobic Exercise on Intrahepatocellular and Intramyocellular Lipids in Healthy Subjects

    PubMed Central

    Egger, Andrea; Kreis, Roland; Allemann, Sabin; Stettler, Christoph; Diem, Peter; Buehler, Tania; Boesch, Chris; Christ, Emanuel R.

    2013-01-01

    Background Intrahepatocellular (IHCL) and intramyocellular (IMCL) lipids are ectopic lipid stores. Aerobic exercise results in IMCL utilization in subjects over a broad range of exercise capacity. IMCL and IHCL have been related to impaired insulin action at the skeletal muscle and hepatic level, respectively. The acute effect of aerobic exercise on IHCL is unknown. Possible regulatory factors include exercise capacity, insulin sensitivity and fat availability subcutaneous and visceral fat mass). Aim To concomitantly investigate the effect of aerobic exercise on IHCL and IMCL in healthy subjects, using Magnetic Resonance spectroscopy. Methods Normal weight, healthy subjects were included. Visit 1 consisted of a determination of VO2max on a treadmill. Visit 2 comprised the assessment of hepatic and peripheral insulin sensitivity by a two-step hyperinsulinaemic euglycaemic clamp. At Visit 3, subcutaneous and visceral fat mass were assessed by whole body MRI, IHCL and IMCL before and after a 2-hours aerobic exercise (50% of VO2max) using 1H-MR-spectroscopy. Results Eighteen volunteers (12M, 6F) were enrolled in the study (age, 37.6±3.2 years, mean±SEM; VO2max, 53.4±2.9 mL/kg/min). Two hours aerobic exercise resulted in a significant decrease in IMCL (−22.6±3.3, % from baseline) and increase in IHCL (+34.9±7.6, % from baseline). There was no significant correlation between the exercise-induced changes in IMCL and IHCL and exercise capacity, subcutaneous and visceral fat mass and hepatic or peripheral insulin sensitivity. Conclusions IMCL and IHCL are flexible ectopic lipid stores that are acutely influenced by physical exercise, albeit in different directions. Trial Registration ClinicalTrial.gov NCT00491582 PMID:23967125

  17. The association of aerobic fitness with injuries in the fire service.

    PubMed

    Poplin, Gerald S; Roe, Denise J; Peate, Wayne; Harris, Robin B; Burgess, Jefferey L

    2014-01-15

    The aim of the present study was to understand the risk of injury in relation to fitness in a retrospective occupational cohort of firefighters in Tucson, Arizona, from 2005 to 2009. Annual medical evaluations and injury surveillance data were linked to compare levels of aerobic fitness in injured employees with those in noninjured employees. The individual outcomes evaluated included all injuries, exercise-related injuries, and sprains and strains. Time-to-event analyses were conducted to determine the association between levels of fitness and injury likelihood. Fitness, defined by relative aerobic capacity (Vo2max), was associated with injury risk. Persons in the lowest fitness level category (Vo2max <43 mL/kg/minute) were 2.2 times more likely (95% confidence interval: 1.72, 2.88) to sustain injury than were those in the highest fitness level category (Vo2max >48 mL/kg/minute). Those with a Vo2max between 43 and 48 mL/kg/minute were 1.38 times (95% confidence interval: 1.06, 1.78) more likely to incur injury. Hazard ratios were found to be greater for sprains and strains. Our results suggest that improving relative aerobic capacity by 1 metabolic equivalent of task (approximately 3.5 mL/kg/minute) reduces the risk of any injury by 14%. These findings illustrate the importance of fitness in reducing the risk of injury in physically demanding occupations, such as the fire service, and support the need to provide dedicated resources for structured fitness programming and the promotion of injury prevention strategies to people in those fields. PMID:24186973

  18. A minimal model for the structural energetics of VO2

    NASA Astrophysics Data System (ADS)

    Kim, Chanul; Marianetti, Chris; The Marianetti Group Team

    Resolving the structural, magnetic, and electronic structure of VO2 from the first-principles of quantum mechanics is still a forefront problem despite decades of attention. Hybrid functionals have been shown to qualitatively ruin the structural energetics. While density functional theory (DFT) combined with cluster extensions of dynamical mean-field theory (DMFT) have demonstrated promising results in terms of the electronic properties, structural phase stability has not yet been addressed. In order to capture the basic physics of the structural transition, we propose a minimal model of VO2 based on the one dimensional Peierls-Hubbard model and parameterize this based on DFT calculations of VO2. The total energy versus dimerization in the minimal mode is then solved numerically exactly using density matrix renormalization group (DMRG) and compared to the Hartree-Fock solution. We demonstrate that the Hartree-Fock solution exhibits the same pathologies as DFT+U, and spin density functional theory for that matter, while the DMRG solution is consistent with experimental observation. Our results demonstrate the critical role of non-locality in the total energy, and this will need to be accounted for to obtain a complete description of VO2 from first-principles. The authors acknowledge support from FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  19. VO2 prediction and cardiorespiratory responses during underwater treadmill exercise.

    PubMed

    Greene, Nicholas P; Greene, Elizabeth S; Carbuhn, Aaron F; Green, John S; Crouse, Stephen F

    2011-06-01

    We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO2) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion, with 0, 25, 50, 75, and 100% water-jet resistance. All session treadmill velocities increased every 3 min from 53.6 to 187.8 m x min(-1). Cardiorespiratory responses were similar between LTM and UTM when jet resistance for UTM was 50%. Using multiple regression analysis, weight-relative VO2 could be estimated as: VO2 (mLO2 c kg(-1) x min(-1)) = 0.19248 x height (cm) + 0.17422 x jet resistance (% max) + 0.14092 x velocity (m x min(-1)) -0.12794 x weight (kg)-27.82849, R2 = .82. Our data indicate that similar LTM and UTM cardiorespiratory responses are achievable, and we provide a reasonable estimate of UTM VO2.

  20. Adding strength to endurance training does not enhance aerobic capacity in cyclists.

    PubMed

    Psilander, N; Frank, P; Flockhart, M; Sahlin, K

    2015-08-01

    The molecular signaling of mitochondrial biogenesis is enhanced when resistance exercise is added to a bout of endurance exercise. The purpose of the present study was to examine if this mode of concurrent training translates into increased mitochondrial content and improved endurance performance. Moderately trained cyclists performed 8 weeks (two sessions per week) of endurance training only (E, n = 10; 60-min cycling) or endurance training followed by strength training (ES, n = 9; 60-min cycling + leg press). Muscle biopsies were obtained before and after the training period and analyzed for enzyme activities and protein content. Only the ES group increased in leg strength (+19%, P < 0.01), sprint peak power (+5%, P < 0.05), and short-term endurance (+9%, P < 0.01). In contrast, only the E group increased in muscle citrate synthase activity (+11%, P = 0.06), lactate threshold intensity (+3%, P < 0.05), and long-term endurance performance (+4%, P < 0.05). Content of mitochondrial proteins and cycling economy was not affected by training. Contrary to our hypothesis, the results demonstrate that concurrent training does not enhance muscle aerobic capacity and endurance performance in cyclists.

  1. Identifying the active site in nitrogen-doped graphene for the VO2+/VO2(+) redox reaction.

    PubMed

    Jin, Jutao; Fu, Xiaogang; Liu, Qiao; Liu, Yanru; Wei, Zhiyang; Niu, Kexing; Zhang, Junyan

    2013-06-25

    Nitrogen-doped graphene sheets (NGS), synthesized by annealing graphite oxide (GO) with urea at 700-1050 °C, were studied as positive electrodes in a vanadium redox flow battery. The NGS, in particular annealed at 900 °C, exhibited excellent catalytic performance in terms of electron transfer (ET) resistance (4.74 ± 0.51 and 7.27 ± 0.42 Ω for the anodic process and cathodic process, respectively) and reversibility (ΔE = 100 mV, Ipa/Ipc = 1.38 at a scan rate of 50 mV s(-1)). Detailed research confirms that not the nitrogen doping level but the nitrogen type in the graphene sheets determines the catalytic activity. Among four types of nitrogen species doped into the graphene lattice including pyridinic-N, pyrrolic-N, quaternary nitrogen, and oxidic-N, quaternary nitrogen is verified as a catalytic active center for the [VO](2+)/[VO2](+) couple reaction. A mechanism is proposed to explain the electrocatalytic performance of NGS for the [VO](2+)/[VO2](+) couple reaction. The possible formation of a N-V transitional bonding state, which facilitates the ET between the outer electrode and reactant ions, is a key step for its high catalytic activity.

  2. Effects of body fat and dominant somatotype on explosive strength and aerobic capacity trainability in prepubescent children.

    PubMed

    Marta, Carlos C; Marinho, Daniel A; Barbosa, Tiago M; Carneiro, André L; Izquierdo, Mikel; Marques, Mário C

    2013-12-01

    The purpose of this study was to analyze the influence of body fat and somatotype on explosive strength and aerobic capacity trainability in the prepubertal growth spurt, marked by rapid changes in body size, shape, and composition, all of which are sexually dimorphic. One hundred twenty-five healthy children (58 boys, 67 girls), aged 10-11 years (10.8 ± 0.4 years), who were self-assessed in Tanner stages 1-2, were randomly assigned into 2 experimental groups to train twice a week for 8 weeks: strength training group (19 boys, 22 girls), endurance training group (21 boys, 24 girls), and a control group (18 boys, 21 girls). Evaluation of body fat was carried out using the method described by Slaughter. Somatotype was computed according to the Heath-Carter method. Increased endomorphy reduced the likelihood of vertical jump height improvement (odds ratio [OR], 0.10; 95% confidence interval [CI], 0.01-0.85), increased mesomorphy (OR, 6.15; 95% CI, 1.52-24.88) and ectomorphy (OR, 6.52; 95% CI, 1.71-24.91) increased the likelihood of sprint performance, and increased ectomorphy (OR, 3.84; 95% CI, 1.20-12.27) increased the likelihood of aerobic fitness gains. Sex did not affect the training-induced changes in strength or aerobic fitness. These data suggest that somatotype has an effect on explosive strength and aerobic capacity trainability, which should not be disregarded. The effect of adiposity on explosive strength, musculoskeletal magnitude on running speed, and relative linearity on running speed and aerobic capacity seem to be crucial factors related to training-induced gains in prepubescent boys and girls. PMID:24077372

  3. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model.

    PubMed

    Szary, Nicholas; Rector, R Scott; Uptergrove, Grace M; Ridenhour, Suzanne E; Shukla, Shivendra D; Thyfault, John P; Koch, Lauren G; Britton, Steven L; Ibdah, Jamal A

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide "metabolic protection" from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and β-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  4. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers

    PubMed Central

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-01-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379

  5. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers.

    PubMed

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-03-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379

  6. Relationship between body and leg VO2 during maximal cycle ergometry

    NASA Technical Reports Server (NTRS)

    Knight, D. R.; Poole, D. C.; Schaffartzik, W.; Guy, H. J.; Prediletto, R.; Hogan, M. C.; Wagner, P. D.

    1992-01-01

    It is not known whether the asymptotic behavior of whole body O2 consumption (VO2) at maximal work rates (WR) is explained by similar behavior of VO2 in the exercising legs. To resolve this question, simultaneous measurements of body and leg VO2 were made at submaximal and maximal levels of effort breathing normoxic and hypoxic gases in seven trained male cyclists (maximal VO2, 64.7 +/- 2.7 ml O2.min-1.kg-1), each of whom demonstrated a reproducible VO2-WR asymptote during fatiguing incremental cycle ergometry. Left leg blood flow was measured by constant-infusion thermodilution, and total leg VO2 was calculated as the product of twice leg flow and radial arterial-femoral venous O2 concentration difference. The VO2-WR relationships determined at submaximal WR's were extrapolated to maximal WR as a basis for assessing the body and leg VO2 responses. The differences between measured and extrapolated maximal VO2 were 235 +/- 45 (body) and 203 +/- 70 (leg) ml O2/min (not significantly different). Plateauing of leg VO2 was associated with, and explained by, plateauing of both leg blood flow and O2 extraction and hence of leg VO2. We conclude that the asymptotic behavior of whole body VO2 at maximal WRs is a direct reflection of the VO2 profile at the exercising legs.

  7. Intraspecific Correlations of Basal and Maximal Metabolic Rates in Birds and the Aerobic Capacity Model for the Evolution of Endothermy

    PubMed Central

    Swanson, David L.; Thomas, Nathan E.; Liknes, Eric T.; Cooper, Sheldon J.

    2012-01-01

    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, Msum (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; Msum and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and Msum only) and examined correlations among these variables. We also measured BMR and Msum in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either Msum or MMR in juncos. Moreover, no significant correlation between Msum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and Msum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and Msum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic links between

  8. Aerobic Capacity, Physical Activity and Metabolic Risk Factors in Firefighters Compared with Police Officers and Sedentary Clerks

    PubMed Central

    Leischik, Roman; Foshag, Peter; Strauß, Markus; Littwitz, Henning; Garg, Pankaj; Dworrak, Birgit; Horlitz, Marc

    2015-01-01

    Background This study examined the association between the physical work environment and physiological performance measures, physical activity levels and metabolic parameters among German civil servants. A main focus in this study was to examine the group differences rather than measuring the absolute values in an occupational group. Methods We prospectively examined 198 male German civil servants (97 firefighters [FFs], 55 police officers [POs] and 46 sedentary clerks [SCs]). For each parameter, the groups were compared using a linear regression adjusted for age. Results The 97 FFs showed a similar maximal aerobic power (VO2max l/min) of 3.17±0.44 l/min compared with the POs, who had a maximal aerobic power of 3.13±0.62 l/min (estimated difference, POs vs. FFs: 0.05, CI: -0.12-0.23, p=0.553). The maximal aerobic power of the FFs was slightly higher than that of the SCs, who had a maximal aerobic power of 2.85±0.52 l/min (-0.21, CI: -0.39-0.04, p=0.018 vs. FFs). The average physical activity (in metabolic equivalents [METS]/week) of the FFs was 3818.8±2843.5, whereas those of the POs and SCs were 2838.2±2871.9 (-808.2, CI: 1757.6-141.2, p=0.095) and 2212.2±2292.8 (vs. FFs: -1417.1, CI: -2302-531.88, p=0.002; vs. POs: -2974.4, CI: -1611.2-393.5, p=0.232), respectively. For the FFs, the average body fat percentage was 17.7%±6.2, whereas it was 21.4%±5.6 for the POs (vs. FFs: 2.75, CI: 0.92-4.59, p=0.004) and 20.8%±6.5 for the SCs (vs. FFs: 1.98, CI: -0.28-4.25, p=0.086; vs. POs: -0.77, CI: 3.15-1.61, p=0.523). The average waist circumference was 89.8 cm±10.0 for the FFs, 97.8 cm±12.4 (5.63, CI: 2.10-9.15, p=0.002) for the POs, and 97.3±11.7 (vs. FFs: -4.89, CI: 1.24-8.55, p=0.009; vs. POs: -0.73, CI: -5.21-3.74, p=0.747) for the SCs. Conclusions The FFs showed significantly higher physical activity levels compared with the SCs. The PO group had the highest cardiovascular risk of all of the groups because it included more participants with metabolic

  9. Physical Workload and Work Capacity across Occupational Groups.

    PubMed

    Brighenti-Zogg, Stefanie; Mundwiler, Jonas; Schüpbach, Ulla; Dieterle, Thomas; Wolfer, David Paul; Leuppi, Jörg Daniel; Miedinger, David

    2016-01-01

    This study aimed to determine physical performance criteria of different occupational groups by investigating physical activity and energy expenditure in healthy Swiss employees in real-life workplaces on workdays and non-working days in relation to their aerobic capacity (VO2max). In this cross-sectional study, 337 healthy and full-time employed adults were recruited. Participants were classified (nine categories) according to the International Standard Classification of Occupations 1988 and merged into three groups with low-, moderate- and high-intensity occupational activity. Daily steps, energy expenditure, metabolic equivalents and activity at different intensities were measured using the SenseWear Mini armband on seven consecutive days (23 hours/day). VO2max was determined by the 20-meter shuttle run test. Data of 303 subjects were considered for analysis (63% male, mean age: 33 yrs, SD 12), 101 from the low-, 102 from the moderate- and 100 from the high-intensity group. At work, the high-intensity group showed higher energy expenditure, metabolic equivalents, steps and activity at all intensities than the other groups (p<0.001). There were no significant differences in physical activity between the occupational groups on non-working days. VO2max did not differ across groups when stratified for gender. The upper workload limit was 21%, 29% and 44% of VO2max in the low-, moderate- and high-intensity group, respectively. Men had a lower limit than women due to their higher VO2max (26% vs. 37%), when all groups were combined. While this study did confirm that the average workload limit is one third of VO2max, it showed that the average is misrepresenting the actual physical work demands of specific occupational groups, and that it does not account for gender-related differences in relative workload. Therefore, clinical practice needs to consider these differences with regard to a safe return to work, particularly for the high-intensity group. PMID:27136206

  10. Physical Workload and Work Capacity across Occupational Groups

    PubMed Central

    Brighenti-Zogg, Stefanie; Mundwiler, Jonas; Schüpbach, Ulla; Dieterle, Thomas; Wolfer, David Paul; Leuppi, Jörg Daniel; Miedinger, David

    2016-01-01

    This study aimed to determine physical performance criteria of different occupational groups by investigating physical activity and energy expenditure in healthy Swiss employees in real-life workplaces on workdays and non-working days in relation to their aerobic capacity (VO2max). In this cross-sectional study, 337 healthy and full-time employed adults were recruited. Participants were classified (nine categories) according to the International Standard Classification of Occupations 1988 and merged into three groups with low-, moderate- and high-intensity occupational activity. Daily steps, energy expenditure, metabolic equivalents and activity at different intensities were measured using the SenseWear Mini armband on seven consecutive days (23 hours/day). VO2max was determined by the 20-meter shuttle run test. Data of 303 subjects were considered for analysis (63% male, mean age: 33 yrs, SD 12), 101 from the low-, 102 from the moderate- and 100 from the high-intensity group. At work, the high-intensity group showed higher energy expenditure, metabolic equivalents, steps and activity at all intensities than the other groups (p<0.001). There were no significant differences in physical activity between the occupational groups on non-working days. VO2max did not differ across groups when stratified for gender. The upper workload limit was 21%, 29% and 44% of VO2max in the low-, moderate- and high-intensity group, respectively. Men had a lower limit than women due to their higher VO2max (26% vs. 37%), when all groups were combined. While this study did confirm that the average workload limit is one third of VO2max, it showed that the average is misrepresenting the actual physical work demands of specific occupational groups, and that it does not account for gender-related differences in relative workload. Therefore, clinical practice needs to consider these differences with regard to a safe return to work, particularly for the high-intensity group. PMID:27136206

  11. The role of aerobic capacity in high-intensity intermittent efforts in ice-hockey.

    PubMed

    Stanula, A; Roczniok, R; Maszczyk, A; Pietraszewski, P; Zając, A

    2014-08-01

    The primary objective of this study was to determine a relationship between aerobic capacity ([Formula: see text]O2max) and fatigue from high-intensity skating in elite male hockey players. The subjects were twenty-four male members of the senior national ice hockey team of Poland who played the position of forward or defence. Each subject completed an on-ice Repeated-Skate Sprint test (RSS) consisting of 6 timed 89-m sprints, with 30 s of rest between subsequent efforts, and an incremental test on a cycle ergometer in the laboratory, the aim of which was to establish their maximal oxygen uptake ([Formula: see text]O2max). The analysis of variance showed that each next repetition in the 6x89 m test was significantly longer than the previous one (F5,138=53.33, p<0.001). An analysis of the fatigue index (FI) calculated from the times recorded for subsequent repetitions showed that the value of the FI increased with subsequent repetitions, reaching its maximum between repetitions 5 and 6 (3.10±1.16%). The total FI was 13.77±1.74%. The coefficient of correlation between [Formula: see text]O2max and the total FI for 6 sprints on the distance of 89 m (r =-0.584) was significant (p=0.003). The variance in the index of players' fatigue in the 6x89 m test accounted for 34% of the variance in [Formula: see text]O2max. The 6x89 m test proposed in this study offers a high test-retest correlation coefficient (r=0.78). Even though the test is criticized for being too exhaustive and thereby for producing highly variable results it still seems that it was well selected for repeated sprint ability testing in hockey players. PMID:25177097

  12. Mathematical model for the aerobic growth of saccharomyces cerevisiae with a saturated respiratory capacity

    SciTech Connect

    Barford, J.P.; Hall, R.J.

    1981-08-01

    A mathematical model for the aerobic growth of Saccharomyces cerevisiae in both batch and continuous culture is described. It was based on the experimental observation that the respiratory capacity of this organism may become saturated and exhibit a maximum specific oxygen uptake rate after suitable adaptation. This experimental observation led to the possibility that transport into and out of the mitochondrion was of major importance in the overall metabolism of S. cerevisiae and was subject to long-term adaptation. Consistent with this observation a distributed model was proposed which, as its basis, assumed the control of respiration and fermentation to be the result of saturation of respiration without any specific repression or inhibition of the uptake rates of other substrates. No other regulation of fermentation and respiration was assumed. The model provided a suitable structure allowing precise quantification of the changes in rate and stoichiometry of energy production. The model clearly indicated that growth under the wide range of experimental conditions reported could not be predicted using constant values for the maximum specific respiratory rate or constant values of Yatp (g biomass/mol ATP) and PO ratio of (mol ATP/atom oxygen). The causes of the variation in the respiratory rate were not determined and it was concluded that a more detailed analysis (reported subsequently) was required. The variation of Y atp and PO ratio with specific growth rate implied that the efficiency of ATP generation or ATP utilization decreased with increasing specific growth rate. It was concluded that it was not possible to quantify the individual effect of Yatp and PO ratio until independent means for their reliable estimation is available. (Refs. 84).

  13. Stability of Mitochondrial Membrane Proteins in Terrestrial Vertebrates Predicts Aerobic Capacity and Longevity

    PubMed Central

    Kitazoe, Yasuhiro; Kishino, Hirohisa; Hasegawa, Masami; Matsui, Atsushi; Lane, Nick; Tanaka, Masashi

    2011-01-01

    The cellular energy produced by mitochondria is a fundamental currency of life. However, the extent to which mitochondrial (mt) performance (power and endurance) is adapted to habitats and life strategies of vertebrates is not well understood. A global analysis of mt genomes revealed that hydrophobicity (HYD) of mt membrane proteins (MMPs) is much lower in terrestrial vertebrates than in fishes and shows a strong negative correlation with serine/threonine composition (STC). Here, we present evidence that this systematic feature of MMPs was crucial for the evolution of large terrestrial vertebrates with high aerobic capacity. An Arrhenius-type equation gave positive correlations between STC and maximum life span (MLS) in terrestrial vertebrates (with a few exceptions relating to the lifestyle of small animals with a high resting metabolic rate [RMR]) and negative correlations in secondary marine vertebrates, such as cetaceans and alligators (which returned from land to water, utilizing buoyancy with increased body size). In particular, marked STC increases in primates (especially hominoids) among placentals were associated with very high MLS values. We connected these STC increases in MMPs with greater stability of respiratory complexes by estimating the degradation of the Arrhenius plot given by accelerating mtRMR up to mt maximum metabolic rate. Both mtRMR and HYD in terrestrial vertebrates decreased with increasing body mass. Decreases in mtRMR raise MMP stability when high mobility is not required, whereas decreased HYD may weaken this stability under the hydrophobic environment of lipid bilayer. High maximal metabolic rates (5–10 RMR), which we postulate require high MMP mobility, presumably render MMPs more unstable. A marked rise in STC may therefore be essential to stabilize MMPs, perhaps as dynamic supercomplexes, via hydrogen bonds associated with serine/threonine motifs. PMID:21824868

  14. VO2 thermochromic smart window for energy savings and generation

    PubMed Central

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-01-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625

  15. Crossfit-based high-intensity power training improves maximal aerobic fitness and body composition.

    PubMed

    Smith, Michael M; Sommer, Allan J; Starkoff, Brooke E; Devor, Steven T

    2013-11-01

    The purpose of this study was to examine the effects of a crossfit-based high-intensity power training (HIPT) program on aerobic fitness and body composition. Healthy subjects of both genders (23 men, 20 women) spanning all levels of aerobic fitness and body composition completed 10 weeks of HIPT consisting of lifts such as the squat, deadlift, clean, snatch, and overhead press performed as quickly as possible. Additionally, this crossfit-based HIPT program included skill work for the improvement of traditional Olympic lifts and selected gymnastic exercises. Body fat percentage was estimated using whole-body plethysmography, and maximal aerobic capacity (VO2max) was measured by analyzing expired gasses during a Bruce protocol maximal graded treadmill test. These variables were measured again after 10 weeks of training and compared for significant changes using a paired t-test. Results showed significant (p < 0.05) improvements of VO2max in men (43.10 ± 1.40 to 48.96 ± 1.42 ml · kg · min) and women (35.98 ± 1.60 to 40.22 ± 1.62 ml · kg · min) and decreased body fat percentage in men (22.2 ± 1.3 to 18.0 ± 1.3) and women (26.6 ± 2.0 to 23.2 ± 2.0). These improvements were significant across all levels of initial fitness. Significant correlations between absolute oxygen consumption and oxygen consumption relative to body weight was found in both men (r = 0.83, p < 0.001) and women (r = 0.94, p < 0.001), indicating that HIPT improved VO2max scaled to body weight independent of changes to body composition. Our data show that HIPT significantly improves VO2max and body composition in subjects of both genders across all levels of fitness.

  16. Crossfit-based high-intensity power training improves maximal aerobic fitness and body composition.

    PubMed

    Smith, Michael M; Sommer, Allan J; Starkoff, Brooke E; Devor, Steven T

    2013-11-01

    The purpose of this study was to examine the effects of a crossfit-based high-intensity power training (HIPT) program on aerobic fitness and body composition. Healthy subjects of both genders (23 men, 20 women) spanning all levels of aerobic fitness and body composition completed 10 weeks of HIPT consisting of lifts such as the squat, deadlift, clean, snatch, and overhead press performed as quickly as possible. Additionally, this crossfit-based HIPT program included skill work for the improvement of traditional Olympic lifts and selected gymnastic exercises. Body fat percentage was estimated using whole-body plethysmography, and maximal aerobic capacity (VO2max) was measured by analyzing expired gasses during a Bruce protocol maximal graded treadmill test. These variables were measured again after 10 weeks of training and compared for significant changes using a paired t-test. Results showed significant (p < 0.05) improvements of VO2max in men (43.10 ± 1.40 to 48.96 ± 1.42 ml · kg · min) and women (35.98 ± 1.60 to 40.22 ± 1.62 ml · kg · min) and decreased body fat percentage in men (22.2 ± 1.3 to 18.0 ± 1.3) and women (26.6 ± 2.0 to 23.2 ± 2.0). These improvements were significant across all levels of initial fitness. Significant correlations between absolute oxygen consumption and oxygen consumption relative to body weight was found in both men (r = 0.83, p < 0.001) and women (r = 0.94, p < 0.001), indicating that HIPT improved VO2max scaled to body weight independent of changes to body composition. Our data show that HIPT significantly improves VO2max and body composition in subjects of both genders across all levels of fitness. PMID:23439334

  17. Effects of applied training loads on the aerobic capacity of young soccer players during a soccer season.

    PubMed

    Jastrzębski, Zbigniew; Rompa, Paweł; Szutowicz, Marek; Radzimiński, Lukasz

    2013-04-01

    The aim of this study was to examine the effects of applied training loads on the aerobic capacity, speed, power, and speed endurance of young soccer players during 1 soccer season. The participants in the study were 19 young male soccer players (age: 16.61 ± 0.31 years; weight: 64.28 ± 6.42 kg; height: 176.58 ± 5.98 cm). The players completed 150 training sessions and 54 games over the course of 1 soccer season. The training intensity was divided into 4 categories: (a) aerobic performance (61% of the total training duration), (b) mixed aerobic-anaerobic performance (34%), (c) anaerobic lactate performance (3%), and (d) anaerobic nonlactate performance (2%). No significant changes in the V[Combining Dot Above]O2max were observed throughout the season. The players' power level and speed endurance increased significantly with the coincident decrements in their 5-m sprint time. The applied training loads, including 1 high-intensity training session of small-sided games performed during a competitive season, did not significantly change the aerobic capacity of the young soccer players. However, the participants did maintain their V[Combining Dot Above]O2max at the elite level. The first squad players (FSPs) reached the highest level of aerobic fitness in the middle of the season, whereas substitute players (SPs) at the end of the season. Moreover, the V[Combining Dot Above]O2max in FSP was significantly higher (p < 0.003) than in SP in the middle of the season.

  18. CKM Gene G (Ncoi-) Allele Has a Positive Effect on Maximal Oxygen Uptake in Caucasian Women Practicing Sports Requiring Aerobic and Anaerobic Exercise Metabolism

    PubMed Central

    Gronek, Piotr; Holdys, Joanna; Kryściak, Jakub; Stanisławski, Daniel

    2013-01-01

    The search for genes with a positive influence on physical fitness is a difficult process. Physical fitness is a trait determined by multiple genes, and its genetic basis is then modified by numerous environmental factors. The present study examines the effects of the polymorphism of creatine kinase (CKM) gene on VO2max – a physiological index of aerobic capacity of high heritability. The study sample consisted of 154 men and 85 women, who were students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. The study revealed a positive effect of a rare G (NcoI−) allele of the CKM gene on maximal oxygen uptake in Caucasian women practicing sports requiring aerobic and anaerobic exercise metabolism. Also a tendency was noted in individuals with NcoI−/− (GG) and NcoI−/+ (GA) genotypes to reach higher VO2max levels. PMID:24511349

  19. Prediction of aerobic and anaerobic capacities of elite cyclists from changes in lactate during isocapnic buffering phase.

    PubMed

    Hasanli, Mohsen; Nikooie, Rohollah; Aveseh, Malihe; Mohammad, Fashi

    2015-02-01

    This study predicted aerobic and anaerobic capacities using relative changes of arterial blood lactate during the isocapnic buffering phase (relative [La]ISBP). Fourteen male professional cyclists (sprint-trained [n = 6] and endurance [n = 8]) performed 2 exercise sessions to exhaustion on a cycle ergometer; 1 incremental standard test to determine the isocapnic buffering phase, buffering capacities, and relative [La]ISBP and 1 supramaximal exercise test to determine maximal accumulated oxygen deficit (MAOD). The time between Lactate threshold (LT) and respiratory compensatory threshold (RCT) was considered to be the isocapnic buffering phase. Total buffering capacity was calculated as Δ[La]·ΔpH. Bicarbonate buffering was calculated as Δ[HCO3]·ΔpH, and the difference between -Δ[La]·ΔpH and Δ[HCO3]·ΔpH was considered as nonbicarbonate buffering. The lactate concentration for LT (p ≤ 0.05) and RCT (p ≤ 0.05), and relative [La]ISBP (p < 0.01) were significantly lower for endurance cyclists than for sprint-trained cyclists. A significant difference was found for bicarbonate buffering capacity between groups (p < 0.01). A significant correlation was found between relative [La]ISBP with (Equation is included in full-text article.)(r = -0.71, p ≤ 0.05) and MAOD (r = 0.73, p < 0.01). Relative [La]ISBP was useful for predicting aerobic power (R = 51%) and anaerobic capacity (R = 53%). These results demonstrated that relative [La]ISBP is an important variable in intermediary metabolism and in addition to (Equation is included in full-text article.)and LT is recommended for better evaluation of performance of athletes who show nearly equal contributions from the aerobic and anaerobic energy systems during exercise.

  20. The effects of cigarette smoking on aerobic and anaerobic capacity and heart rate variability among female university students

    PubMed Central

    Lee, Chia-Lun; Chang, Wen-Dien

    2013-01-01

    Aim In this study, the effects of cigarette smoking on maximal aerobic capacity, anaerobic capacity, and heart rate variability among female university students were investigated. Materials and methods Twelve smokers and 21 nonsmokers participated in this study. All participants performed an intermittent sprint test (IST) and a 20 m shuttle run test to measure their anaerobic capacity and maximal aerobic capacity. The IST was comprised of 6 × 10-second sprints with a 60-second active recovery between each sprint. Heart rate variability was recorded while the participants were in a supine position 20 minutes before and 30 minutes after the IST. Results The total work, peak power, and heart rate of the smokers and nonsmokers did not differ significantly. However, the smokers’ average power declined significantly during sprints 4 to 6 (smokers versus nonsmokers, respectively: 95% confidence interval =6.2–7.2 joule/kg versus 6.8–7.6 joule/kg; P<0.05), and their fatigue index increased (smokers versus nonsmokers, respectively: 35.8% ± 2.3% versus 24.5% ± 1.76%; P<0.05) during the IST. The maximal oxygen uptake of nonsmokers was significantly higher than that of the smokers (P<0.05). The standard deviation of the normal to normal intervals and the root mean square successive difference did not differ significantly between nonsmokers and smokers. However, the nonsmokers exhibited a significantly higher normalized high frequency (HF), and significantly lower normalized low frequency (LF), LF/HF ratio, and natural logarithm of the LF/HF when compared with those of the smokers (P<0.05). Conclusion Smoking may increase female smokers’ exercise fatigue and decrease their average performance during an IST, while reducing their maximal aerobic capacity. Furthermore, smoking reduces parasympathetic nerve activity and activates sympathetic cardiac control. PMID:24204174

  1. Estimation of VO2 Max: A Comparative Analysis of Five Exercise Tests.

    ERIC Educational Resources Information Center

    Zwiren, Linda D.; And Others

    1991-01-01

    Thirty-eight healthy females measured maximal oxygen uptake (VO2max) on the cycle ergometer and treadmill to compare five exercise tests (run, walk, step, and two tests using heart-rate response on the bicycle ergometer) in predicting VO2max. Results indicate that walk and run tests are satisfactory predictors of VO2max in 30- to 39-year-old…

  2. Lipid profile, BMI, body fat distribution, and aerobic fitness in men with metabolic syndrome.

    PubMed

    Bertoli, A; Di Daniele, N; Ceccobelli, M; Ficara, A; Girasoli, C; De Lorenzo, A

    2003-10-01

    Obesity, impaired glucose tolerance, type 2 diabetes, hyperlipidemia, hypertension, and insulin resistance are wellknown components of metabolic syndrome and are associated to increased cardiovascular morbidity. The present study aimed to evaluate the relationships between cardiorespiratory fitness, body fat distribution, and selected coronary heart disease risk factors. A total of 22 untrained subjects affected by one or more features of metabolic syndrome and without clinical history of cardiovascular disease were studied. Nondiabetic subjects underwent an oral glucose tolerance test for glucose and insulin measurement; fasting glucose and insulin were measured in diabetic patients. Complete lipid profile, thyroid hormones, and thyroid-stimulating hormone were measured in all subjects. Basal energy expenditure and cardiorespiratory fitness were measured using a K4 analyzer. Cardiorespiratory fitness ( VO(2max)/kg) was assessed using a treadmill graded exercise test. Peak aerobic capacity ( VO(2max)/kg) was predicted by body fat distribution, insulin sensitivity index, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol ( p<0.001). A significant relationship was found between cardiorespiratory fitness ( VO(2max)/kg) and body mass index (BMI), insulin sensitivity index, and LDL cholesterol ( r=0.60, p<0.05; r=0.66, p<0.01 and r=0.54, p<0.05, respectively). Data demonstrated that aerobic fitness is related to metabolic parameters and to body fat distribution, and suggest that its modification may improve well-known predictors of coronary artery disease.

  3. Efficacy of a Ventilatory Training Mask to Improve Anaerobic and Aerobic Capacity in Reserve Officers' Training Corps Cadets.

    PubMed

    Sellers, John H; Monaghan, Taylor P; Schnaiter, Jessica A; Jacobson, Bert H; Pope, Zachary K

    2016-04-01

    The purpose of this study was to examine the efficacy of a ventilatory training mask to improve anaerobic and aerobic fitness in reserve officers' training corps (ROTC) cadets. Seventeen ROTC cadets from a Midwest university completed pre- and postassessments consisting of anthropometry, a 30-second Wingate Anaerobic Test (WAnT), and a maximal aerobic capacity test (V[Combining Dot Above]O2max). A 6-week intervention training period was used during which time participants completed their mandatory physical training (PT) sessions. Participants were randomly assigned to either the experimental group (MASK; n = 9) or the control group (CON; n = 8). The ventilatory training masks were adjusted to simulate an altitude of 2,750 m. There was no significant effect (p ≤ 0.05) between groups on fatigue index, anaerobic capacity, peak power, V[Combining Dot Above]O2max, or time to exhaustion. These results suggest that the use of the ventilatory training mask during mandatory PT did not elicit superior aerobic or anaerobic adaptations in ROTC cadets. Therefore, it is recommended that more established simulated altitude training methods be used when incorporating intermittent hypoxic training.

  4. Aerobic training in persons who have recovered from juvenile dermatomyositis.

    PubMed

    Riisager, M; Mathiesen, P R; Vissing, J; Preisler, N; Ørngreen, M C

    2013-12-01

    A recent study has shown that 36 persons who had recovered from juvenile dermatomyositis (JDM) have on average an 18% decrease in maximal oxygen uptake. The objective of this study was to investigate the effect of a 12-week aerobic training program in this group, and assess whether aerobic training can normalize aerobic capacity to the expected level for age and gender. The patients participating in the study, one male and nine females (16-42 years of age), were in remission from JDM, defined as no clinical or biochemical evidence of disease activity and no medical treatment for 1 year. The patients had a median disease duration of 3.4 years (1.4-10.3), a median treatment duration of 2.4 years (0.4-9.3) and a median duration of remission of 7.0 years (1.2-30.0). Patients trained at home on a cycle ergometer for 12 weeks at a heart rate interval corresponding to 65% of their maximal oxygen uptake (VO(2max)). VO(2max) and maximal workload (W(max)) were determined before and after the 12-week training period through an incremental cycling test to exhaustion. The patients served as their own controls. Eight patients with JDM in remission completed the 12-week exercise program; one patient completed 9 weeks out of the 12-week program and one dropped out of the study. Training increased VO(2max) and W(max) by 26% and 30% (P < 0.001). Creatine kinase (CK) levels were normal pre-training and did not change with training, reflecting no muscle damage. We also found that at a given workload, heart rate was lowered significantly after the 12-week training period, indicating an improvement in cardiovascular fitness. This study shows that 12 weeks of moderate-intensity aerobic training is an effective and safe method to increase oxidative capacity and fitness in persons who have recovered from JDM. The results indicate that the low oxidative capacity in JDM patients in remission is reversible and can be improved. Thus, we recommend frequent aerobic training to be incorporated

  5. [Effect of training on treadmill performance, aerobic capacity and body reactions to acute cold exposure].

    PubMed

    Iakushkin, A V; Akimov, E B; Andreev, R S; Kalenov, Iu N; Kozlov, A V; Kuznetsova, O V; Son'kin, V D

    2014-01-01

    An attempt was made to test the hypothesis that regular physical activity at the anaerobic threshold is able to stimulate an increase in the amount of body fat brown or beige, which can manifest itself in increasing lactate utilization during exercise and increase the reactivity in response to acute regional cooling. The methods used are: ramp test, regional acute cold exposure, measurement of gas exchange, lactate and glucose in the blood, heart rate, and heart rate variability, blood pressure and respiration variability at rest and during standard functional tests; infrared thermal imaging, statistical methods of results analysis. Workout 10 physically active volunteers (7 males and 3 females) on a treadmill at a speed corresponding to 75-80% of the persona VO2max for 30 minutes 3 times per week at a fixed ambient temperature 21-22°C for 6 weeks resulted in a significant (from 19 to 39%) increase in test work duration but VO2max on average changed little. The increase in power of anaerobic threshold was associated with a sharp slowdown in the accumulation of lactate in progress of ramp test. Lactate utilization rate during the recovery period, on the contrary, increased. In general, significantly increased work efficiency at a test load. Not revealed noticeable changes in the condition and response to a standard functional tests of autonomic systems, as judged by heart rate variability, blood pressure and respiration variability at rest and during orthostatic tests and imposed breathing rhythm. The functional response of the body to acute cold exposure (1 minute cooling of the feet in ice water) is not changed after a cycle of training--either in terms of metabolism (oxygen consumption, etc.), or the dynamics of the skin temperature in areas of most probable location of brown adipose tissue (BAT). These data do not confirm the previously expressed (2010) hypothesis about the function of BAT as a universal homeostatic instrument in the body. Probably, if under

  6. The 577X allele of the ACTN3 gene is associated with improved exercise capacity in women with McArdle's disease.

    PubMed

    Lucia, Alejandro; Gómez-Gallego, Félix; Santiago, Catalina; Pérez, Margarita; Maté-Muñoz, José L; Chamorro-Viña, Carolina; Nogales-Gadea, Gisela; Foster, Carl; Rubio, Juan C; Andreu, Antoni L; Martín, Miguel A; Arenas, Joaquín

    2007-08-01

    We assessed the possible association existing between alpha-actinin-3 (ACTN3) R577X genotypes and the capacity for performing aerobic exercise in McArdle's patients. Forty adult McArdle's disease patients and forty healthy, age and gender-matched sedentary controls (21 men, 19 women in both groups) performed a graded test until exhaustion and a constant-load test on a cycle-ergometer to determine clinically relevant indices of exercise capacity as peak oxygen uptake (VO(2peak)) and the ventilatory threshold (VT). In the group of diseased women, carriers of the X allele had a higher (P<0.01) VO(2peak) (15.0+/-1.2 ml/kg/min) and a higher (P<0.05) oxygen uptake (VO(2)) at the VT (11.2+/-1 ml/kg/min) than R/R homozygotes (VO(2peak): 9.6+/-0.5 ml/kg/min; VO(2) at the VT: 8.2+/-0.7 ml/kg/min). No differences were found in male patients. In women with McArdle's disease, ACTN3 genotypes might partly explain the large individual variability that exists in the phenotypic manifestation of this disorder.

  7. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    SciTech Connect

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  8. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using 15N isotopic tracer technique

    NASA Astrophysics Data System (ADS)

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-01

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct 15N isotope tracer method was used in this study, whereby the 15N isotope was utilized as a tracer for nitrogen nutrient uptake. 15N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. 15N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  9. Expression of angiogenic regulators and skeletal muscle capillarity in selectively bred high aerobic capacity mice.

    PubMed

    Audet, Gerald N; Meek, Thomas H; Garland, Theodore; Olfert, I Mark

    2011-11-01

    Selective breeding for high voluntary wheel running in untrained mice has resulted in a 'mini muscle' (MM) phenotype, which has increased skeletal muscle capillarity compared with muscles from non-selected control lines. Vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) are essential mediators of skeletal muscle angiogenesis; thus, we hypothesized that untrained MM mice with elevated muscle capillarity would have higher basal VEGF expression and lower basal TSP-1 expression, and potentially an exaggerated VEGF response to acute exercise. We examined skeletal muscle morphology and skeletal muscle protein expression of VEGF and TSP-1 in male mice from two (untrained) mouse lines selectively bred for high exercise capacity (MM and Non-MM), as well as one non-selected control mouse line (normal aerobic capacity). In the MM mice, gastrocnemius (GA) and plantaris (PLT) muscle capillarity (i.e. capillary-to-fibre ratio and capillary density) were greater compared with control mice (P < 0.05). In Non-MM mice, only muscle capillarity in PLT was greater than in control mice (P < 0.001). The soleus (SOL) showed no statistical differences in muscle capillarity among groups. In the GA, MM mice had 58% greater basal VEGF (P < 0.05), with no statistical difference in basal TSP-1 when compared with control mice. In the PLT, MM mice had a 79% increase in basal VEGF (P < 0.05) and a 39% lower basal TSP-1 (P < 0.05) compared with the control animals. Non-MM mice showed no difference in basal VEGF in either the GA or the PLT compared with control mice. In contrast, basal TSP-1 was elevated in the PLT, but not in the GA, of Non-MM mice compared with control mice. Neither VEGF nor TSP-1 was significantly different in SOL muscle among the three mouse lines. In response to acute exercise, MM mice displayed a 41 and 28% increase (P < 0.05) in VEGF in the GA and PLT, respectively, whereas neither control nor Non-MM mice showed a significant VEGF response to acute

  10. Ultrafast dynamics during the photoinduced phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  11. Thermochromic light scattering from particulate VO2 layers

    NASA Astrophysics Data System (ADS)

    Montero, José; Ji, Yu-Xia; Granqvist, Claes G.; Niklasson, Gunnar A.

    2016-02-01

    Particulate layers of thermochromic (TC) VO2 were made by reactive DC magnetron sputtering of vanadium onto In2O3:Sn-coated glass. The deposits were characterized by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Specular and diffuse optical transmittance and reflectance were recorded in the 300-2500-nm wavelength range and displayed pronounced TC effects. These properties could be reconciled with a semi-quantitative model based on Lorentz-Mie theory applied to the distribution of particle sizes and accounting for particle shapes by the Grenfell-Warren approach with equal-volume-to-area spheres.

  12. Cross-Validation of a PACER Prediction Equation for Assessing Aerobic Capacity in Hungarian Youth

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Welk, Gregory J.; Finn, Kevin J.; Kaj, Mónika

    2015-01-01

    Purpose: The purpose of this article was to evaluate the validity of the Progressive Aerobic Cardiovascular and Endurance Run (PACER) test in a sample of Hungarian youth. Method: Approximately 500 participants (aged 10-18 years old) were randomly selected across Hungary to complete both laboratory (maximal treadmill protocol) and field assessments…

  13. Changes of aerobic capacity, fat ratio and flexibility in older TCC practitioners: a five-year follow-up.

    PubMed

    Lan, Ching; Chen, Ssu-Yuan; Lai, Jin-Shin

    2008-01-01

    The objective of this study was to evaluate the 5-year changes of aerobic capacity, fat ratio and flexibility in older Tai Chi Chuan (TCC) practitioners and sedentary controls. Sixty-nine community-dwelling elderly individuals (mean age: 68.6 +/- 6.3 years) completed this study. The TCC group (18 M; 17 F) had been practicing TCC regularly for 6.3 +/- 3.7 years at baseline and continued training in the study interval. The control group (16 M; 18 F) did not participate in any regular exercise program. A graded bicycle exercise testing was conducted at the baseline and at 5-year to evaluate the age-related decline in aerobic capacity. Triceps and subscapular skinfolds, and thoracolumbar flexibility were also measured. At baseline, the TCC group displayed higher peak oxygen uptake $({\\dot{\\rm V}}{\\rm O}_{2{\\rm peak}})$ and thoraolumbar flexibility, and lower fat ratio than the control group. At the 5-year follow-up, the TCC group displayed a smaller decrease in $\\dot{\\rm V}{\\rm O}_{2{\\rm peak}}$ than the sedentary group. The annual decrease of $\\dot{\\rm V}{\\rm O}_{2{\\rm peak}}$ in TCC men and women was 0.32 and 0.22 ml . kg(-1) . min(-1), respectively. In the control group, the annual decrease of $\\dot{\\rm V}{\\rm O}_{2{\\rm peak}}$ was 0.50 and 0.36 ml . kg(-1) . min(-1) in men and women, respectively. The TCC group also showed a smaller increase of body fat ratio, and a less decrease of flexibility than the control group. In conclusion, long-term practice of TCC attenuates the age-related decline of aerobic capacity, and it also reduces the increase of body fat ratio in older individuals. TCC may be prescribed as a conditioning exercise for the elderly to maintain their health fitness.

  14. The Effect of β-Hydroxy-β-Methylbutyrate on Aerobic Capacity and Body Composition in Trained Athletes.

    PubMed

    Durkalec-Michalski, Krzysztof; Jeszka, Jan

    2016-09-01

    Durkalec-Michalski, K and Jeszka, J. The effect of β-hydroxy-β-methylbutyrate on aerobic capacity and body composition in trained athletes. J Strength Cond Res 30(9): 2617-2626, 2016-The aim of this study was to investigate whether supplementation with β-hydroxy-β-methylbutyrate (HMB) affects body composition, aerobic capacity, or intramuscular enzymes activity, as well as in anabolic and/or catabolic hormones and lactate concentrations. A cohort of 58 highly trained males was subjected to 12-week supplementation with HMB (3 × 1 gHMB·d) and a placebo (PLA) in randomized, PLA controlled, double-blind crossover trials, with a 10-day washout period. Body composition and aerobic capacity were recorded, whereas the levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol, and lactate, as well as the T/C ratio, in blood samples were measured. After HMB supplementation, fat-free mass increased (+0.2 kgHMB vs. -1.0 kgPLA, p = 0.021), with a simultaneous reduction of fat mass (-0.8 kgHMB vs. +0.8 kgPLA, p < 0.001). In turn, after HMB supplementation, in comparison to PLA, maximal oxygen uptake (V[Combining Dot Above][Combining Dot Above]O2max: +0.102 L·minHMB vs. -0.063 L·minPLA, p = 0.013), time to reach ventilatory threshold (VT) (TVT: +1.0 minHMB vs. -0.4 minPLA, p < 0.0001), threshold load at VT (WVT: +20 WHMB vs. -7 WPLA, p = 0.001), and the threshold heart rate at VT (HRVT: +8 b·minHMB vs. -1 b·minPLA, p < 0.0001) increased significantly. Analysis of the tested biochemical markers shows significant differences only in relation to the initial concentration. In HMB group, testosterone levels increased (p = 0.047) and in both groups (HMB: p = 0.008; PLA: p = 0.008) higher cortisol levels were observed. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic capacity, although seeming not to significantly affect the levels of the analyzed blood markers. PMID:26849784

  15. Pressure-induced phase transitions and metallization in VO2

    NASA Astrophysics Data System (ADS)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  16. Scaling matters: incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities.

    PubMed

    Shero, Michelle R; Costa, Daniel P; Burns, Jennifer M

    2015-10-01

    Adult Weddell seals (Leptonychotes weddellii) haul-out on the ice in October/November (austral spring) for the breeding season and reduce foraging activities for ~4 months until their molt in the austral fall (January/February). After these periods, animals are at their leanest and resume actively foraging for the austral winter. In mammals, decreased exercise and hypoxia exposure typically lead to decreased production of O2-carrying proteins and muscle wasting, while endurance training increases aerobic potential. To test whether similar effects were present in marine mammals, this study compared the physiology of 53 post-molt female Weddell seals in the austral fall to 47 pre-breeding females during the spring in McMurdo Sound, Antarctica. Once body mass and condition (lipid) were controlled for, there were no seasonal changes in total body oxygen (TBO2) stores. Within each season, hematocrit and hemoglobin values were negatively correlated with animal size, and larger animals had lower mass-specific TBO2 stores. But because larger seals had lower mass-specific metabolic rates, their calculated aerobic dive limit was similar to smaller seals. Indicators of muscular efficiency, myosin heavy chain composition, myoglobin concentrations, and aerobic enzyme activities (citrate synthase and β-hydroxyacyl CoA dehydrogenase) were likewise maintained across the year. The preservation of aerobic capacity is likely critical to foraging capabilities, so that following the molt Weddell seals can rapidly regain body mass at the start of winter foraging. In contrast, muscle lactate dehydrogenase activity, a marker of anaerobic metabolism, exhibited seasonal plasticity in this diving top predator and was lowest after the summer period of reduced activity. PMID:26164426

  17. Scaling matters: incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities.

    PubMed

    Shero, Michelle R; Costa, Daniel P; Burns, Jennifer M

    2015-10-01

    Adult Weddell seals (Leptonychotes weddellii) haul-out on the ice in October/November (austral spring) for the breeding season and reduce foraging activities for ~4 months until their molt in the austral fall (January/February). After these periods, animals are at their leanest and resume actively foraging for the austral winter. In mammals, decreased exercise and hypoxia exposure typically lead to decreased production of O2-carrying proteins and muscle wasting, while endurance training increases aerobic potential. To test whether similar effects were present in marine mammals, this study compared the physiology of 53 post-molt female Weddell seals in the austral fall to 47 pre-breeding females during the spring in McMurdo Sound, Antarctica. Once body mass and condition (lipid) were controlled for, there were no seasonal changes in total body oxygen (TBO2) stores. Within each season, hematocrit and hemoglobin values were negatively correlated with animal size, and larger animals had lower mass-specific TBO2 stores. But because larger seals had lower mass-specific metabolic rates, their calculated aerobic dive limit was similar to smaller seals. Indicators of muscular efficiency, myosin heavy chain composition, myoglobin concentrations, and aerobic enzyme activities (citrate synthase and β-hydroxyacyl CoA dehydrogenase) were likewise maintained across the year. The preservation of aerobic capacity is likely critical to foraging capabilities, so that following the molt Weddell seals can rapidly regain body mass at the start of winter foraging. In contrast, muscle lactate dehydrogenase activity, a marker of anaerobic metabolism, exhibited seasonal plasticity in this diving top predator and was lowest after the summer period of reduced activity.

  18. Aerobic fitness ecological validity in elite soccer players: a metabolic power approach.

    PubMed

    Manzi, Vincenzo; Impellizzeri, Franco; Castagna, Carlo

    2014-04-01

    The aim of this study was to examine the association between match metabolic power (MP) categories and aerobic fitness in elite-level male soccer players. Seventeen male professional soccer players were tested for VO2max, maximal aerobic speed (MAS), VO2 at ventilatory threshold (VO2VT and %VO2VT), and speed at a selected blood lactate concentration (4 mmol·L(-1), V(L4)). Aerobic fitness tests were performed at the end of preseason and after 12 and 24 weeks during the championship. Aerobic fitness and MP variables were considered as mean of all seasonal testing and of 16 Championship home matches for all the calculations, respectively. Results showed that VO2max (from 0.55 to 0.68), MAS (from 0.52 to 0.72), VO2VT (from 0.72 to 0.83), %VO2maxVT (from 0.62 to 0.65), and V(L4) (from 0.56 to 0.73) were significantly (p < 0.05 to 0.001) large to very large associated with MP variables. These results provide evidence to the ecological validity of aerobic fitness in male professional soccer. Strength and conditioning professionals should consider aerobic fitness in their training program when dealing with professional male soccer players. The MP method resulted an interesting approach for tracking external load in male professional soccer players.

  19. Maximal aerobic power during running and cycling in obese and non-obese children.

    PubMed

    Maffeis, C; Schena, F; Zaffanello, M; Zoccante, L; Schutz, Y; Pinelli, L

    1994-01-01

    The maximal aerobic capacity while running and cycling was measured in 22 prepubertal children (mean age +/- SD 9.5 +/- 0.8 years): 14 obese (47.3 +/- 10 kg) and 8 non-obese (31.1 +/- 6.1 kg). Oxygen consumption (VO2) and carbon dioxide production were measured by an open circuit method. Steady state VO2 was determined at different levels of exercise up to the maximal power on the cycloergometer (92 W in obese and 77 W in non-obese subjects) and up to the maximal running speed on the treadmill at a 2% slope (8.3 km/h in obese and 9.0 km/h in lean children). Expressed in absolute values, the VO2max in obese children was significantly higher than in controls (1.55 +/- 0.29 l/min versus 1.23 +/- 0.22 l/min, p < 0.05) for the treadmill test and comparable in the two groups (1.4 +/- 0.2 l/min versus 1.16 +/- 0.2 l/min, ns) for the cycloergometer test. When VO2max was expressed per kg fat free mass, the difference between the two groups disappeared for both tests. These data suggest that obese children had no limitation of maximal aerobic power. Therefore, the magnitude of the workload prescribed when a physical activity program is intended for the therapy of childhood obesity, it should be designed to increase caloric output rather than to improve cardiorespiratory fitness.

  20. Effect of W addition on the electrical switching of VO2 thin films

    NASA Astrophysics Data System (ADS)

    Rajeswaran, Bharathi; Umarji, Arun M.

    2016-03-01

    Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size ˜ 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 o C to 25 o C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration.

  1. High-intensity interval training every second week maintains VO2max in soccer players during off-season.

    PubMed

    Slettaløkken, Gunnar; Rønnestad, Bent R

    2014-07-01

    Reduced endurance training among semiprofessional soccer players during off-season may have negative effect on game performance during the competition season. This negative effect can be prevented by adding high-intensity interval training (HIT) to normal activity. In this study, we want to compare 2 different frequencies of HIT (5 bouts of 4 minutes on 87-97% peak heart rate) session on maintenance of aerobic fitness among semiprofessional soccer players during a 6-week off-season period. Seventeen male players at second and third highest soccer division in Norway participated. The subjects were randomized into 1 HIT session every second week (HIT 0.5) or 1 HIT session per week (HIT 1). All participants performed a 20-m shuttle run test and a maximal oxygen uptake (VO2max) test on treadmill before and after the training intervention. VO2max (HIT 0.5, 63.4 ± 5.9 ml·kg-1·min-1; HIT 1, 65.6 ± 2.1 ml·kg-1·min-1) and 20-m shuttle run performance (HIT 0.5, 2335 ± 390 m, HIT 1, 2531 ± 106 m) were not different between the groups before the training intervention. VO2max was maintained after the training intervention in both HIT 0.5 and HIT 1 (64.0 ± 5.9 ml·kg-1·min-1 and 64.3 ± 1.3 ml·kg-1·min-1, respectively). There was a reduction in distance covered during the 20-m shuttle run test in HIT 1 and when groups were pooled (-7.9 ± 5.7% and -6.4 ± 7.9%, respectively, p ≤ 0.05). In conclusion, HIT 1 did not maintain VO2max better than HIT 0.5 when added to normal off-season activity. However, performance in 20-m shuttle run, which is a more soccer-specific fitness test than VO2max test, was slightly reduced when both groups was pooled.

  2. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency

    NASA Technical Reports Server (NTRS)

    Poole, D. C.; Gaesser, G. A.; Hogan, M. C.; Knight, D. R.; Wagner, P. D.

    1992-01-01

    Insights into muscle energetics during exercise (e.g., muscular efficiency) are often inferred from measurements of pulmonary gas exchange. This procedure presupposes that changes of pulmonary O2 (VO2) associated with increases of external work reflect accurately the increased muscle VO2. The present investigation addressed this issue directly by making simultaneous determinations of pulmonary and leg VO2 over a range of work rates calculated to elicit 20-90% of maximum VO2 on the basis of prior incremental (25 or 30 W/min) cycle ergometry. VO2 for both legs was calculated as the product of twice one-leg blood flow (constant-infusion thermodilution) and arteriovenous O2 content difference across the leg. Measurements were made 3-5 min after each work rate imposition to avoid incorporation of the VO2 slow component above the lactate threshold. For all 17 subjects, the slope of pulmonary VO2 (9.9 +/- 0.2 ml O2.W-1.min-1) was not different (P greater than 0.05) from that for leg VO2 (9.2 +/- 0.6 ml O2.W-1.min-1). Estimation of "delta" efficiency (i.e., delta work accomplished divided by delta energy expended, calculated from slope of VO2 vs. work rate and a caloric equivalent for O2 of 4.985 cal/ml) using pulmonary VO2 measurements (29.1 +/- 0.6%) was likewise not significantly different (P greater than 0.05) from that made using leg VO2 measurements (33.7 +/- 2.4%). These data suggest that the net VO2 cost of metabolic "support" processes outside the exercising legs changes little over a relatively broad range of exercise intensities. Thus, under the conditions of this investigation, changes of VO2 measured from expired gas reflected closely those occurring within the exercising legs.

  3. Indirect estimation of VO2max in athletes by ACSM’s equation: valid or not?

    PubMed Central

    Koutlianos, N; Dimitros, E; Metaxas, T; Cansiz, M; Deligiannis, AS; Kouidi, E

    2013-01-01

    Aim: The purpose of this study was to assess the indirect calculation of VO2max using ACSM’s equation for Bruce protocol in athletes of different sports and to compare with the directly measured; secondly to develop regression models predicting VO2 max in athletes. Methods: Fifty five male athletes of national and international level (mean age 28.3 ± 5.6 yrs) performed graded exercise test with direct measurement of VO2 through ergospirometric device. Moreover, 3 equations were used for the indirect calculation of VO2max: a) VO2max= (0.2 · Speed) + (0.9 · Speed · Grade) + 3.5 (ACSM running equation), b) regression analysis model using enter method and c) stepwise method based on the measured data of VO2. Age, BMI, speed, grade and exercise time were used as independent variables. Results: Regression analysis using enter method yielded the equation (R=.64, standard error of estimation [SEE] = 6.11): VO2max (ml·kg-1·min-1) = 58.443 - (0.215 · age) - (0.632 · BMI) - (68.639 · grade) + (1.579 · time) while stepwise method (R = .61, SEE = 6.18) led to: VO2max (ml·kg-1·min-1) = 33.971 - (0.291 · age) + (1.481 · time). The calculated values of VO2max from these regression models did not differ significantly from the measured VO2max (p>.05). On the contrary, VO2max calculated from the ACSM’s running equation was significantly higher from the actually measured value by 14.6% (p <.05). Conclusions: In conclusion, it seems that ACSM’s equation is not capable of accurately predicting VO2max in athletes aged 18-37 years using Bruce protocol. Only the regression models were correlated moderately with the actually measured values of VO2max. PMID:24376318

  4. In situ Raman spectroscopy study of metal-enhanced hydrogenation and dehydrogenation of VO2.

    PubMed

    Wu, Hao; Fu, Qiang; Bao, Xinhe

    2016-11-01

    Vanadium dioxide (VO2) has a phase transition from insulator to metal at 340 K, and this transition can be strongly modified by hydrogenation. In this work, two dimensional (2D) VO2 sheets have been grown on Si(1 1 1) surfaces through chemical vapor deposition, and metal (Au, Pt) thin films were deposited on VO2 surfaces by sputtering. The hydrogenation and dehydrogenation of VO2 and metal-decorated VO2 structures in H2 and in air were in situ studied by Raman. We found that hydrogenation and dehydrogenation temperatures have been significantly decreased with the VO2 surface decorated by Au and Pt. The enhanced hydrogenation and dehydrogenation reactions can be attributed to catalytic dissociation of H2 and O2 molecules on metal surfaces and subsequent spillover of dissociated H and O atoms to the oxide surfaces. PMID:27603090

  5. In situ Raman spectroscopy study of metal-enhanced hydrogenation and dehydrogenation of VO2

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Fu, Qiang; Bao, Xinhe

    2016-11-01

    Vanadium dioxide (VO2) has a phase transition from insulator to metal at 340 K, and this transition can be strongly modified by hydrogenation. In this work, two dimensional (2D) VO2 sheets have been grown on Si(1 1 1) surfaces through chemical vapor deposition, and metal (Au, Pt) thin films were deposited on VO2 surfaces by sputtering. The hydrogenation and dehydrogenation of VO2 and metal-decorated VO2 structures in H2 and in air were in situ studied by Raman. We found that hydrogenation and dehydrogenation temperatures have been significantly decreased with the VO2 surface decorated by Au and Pt. The enhanced hydrogenation and dehydrogenation reactions can be attributed to catalytic dissociation of H2 and O2 molecules on metal surfaces and subsequent spillover of dissociated H and O atoms to the oxide surfaces.

  6. Performance of Healthy Braced Participants During Aerobic and Anaerobic Capacity Tasks

    PubMed Central

    Rishiraj, Neetu; Taunton, Jack E.; Niven, Brian; Lloyd-Smith, Robert; Regan, William; Woollard, Robert

    2011-01-01

    Context: Knee braces were introduced in sports approximately 30 years ago. However, the effects of a functional knee brace (FKB) on aerobic and anaerobic performance after fatigue are unknown. Objective: To investigate whether FKB use in noninjured participants hindered performance during aerobic (Léger beep test) and anaerobic (repeated high-intensity shuttle test [RHIST]) tasks. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty-seven healthy male provincial and national basketball and field hockey athletes (age = 19.4 ± 3.0 years, range, 17–26 years; height = 182.6 ± 6.8 cm, range, 168–196 cm; mass = 80.0 ± 9.1 kg, range, 66–108 kg). Interventions : Each participant was provided a custom-fitted FKB and performed 5 nonbraced (NBR) testing sessions over 3 days, followed by 5 braced (BR) testing sessions over 3 days, for a total of 17.5 hours of testing per condition. During each testing session, participants performed 1 trial of the Léger beep test and 1 trial of the RHIST in each condition. Main Outcome Measure(s): Predicted maximal oxygen consumption (V˙o2max) and time performance measures were recorded for each NBR and BR trial. Results: Initial performance levels were lower for BR than NBR for both the Léger beep test (BR = 44.3 mL/kg/min, NBR = 47.3 mL/kg/min; F1,26 = 8.726; P = .007) and the RHIST (BR = 16.5 seconds, NBR = 16.2 seconds; F1,26 = 13.98, P = .001). However, with continued FKB use, the aerobic performance measure remained higher for only the first 2 BR testing sessions (NBR = 46.9 mL/kg/min, BR = 42.4 mL/kg/min; F3.0,79.8 = 4.95, P = .003). For the anaerobic test, no performance difference was noted between the testing conditions (NBR = 16.2 seconds, BR = 16.4 seconds; P = .7), whereas fatigue levels were lower during BR testing sessions (NBR = 33%, BR = 31%). After 14.0 hours of FKB use, performance levels were almost equal between the testing conditions (NBR = 47.6 mL/kg/min, BR = 46.1 m

  7. A comparison of practical assessment methods to determine treadmill, cycle and elliptical ergometer VO2peak

    PubMed Central

    Mays, Ryan J.; Boér, Nicholas F.; Mealey, Lisa M.; Kim, Kevin H.; Goss, Fredric L.

    2015-01-01

    This investigation compared estimated and predicted peak oxygen consumption (VO2peak) and maximal heart rate (HRmax) among the treadmill, cycle ergometer and elliptical ergometer. Seventeen women (mean ± SE: 21.9 ± .3 yrs) exercised to exhaustion on all modalities. ACSM metabolic equations were used to estimate VO2peak. Digital displays on the elliptical ergometer were used to estimate VO2peak. Two individual linear regression methods were used to predict VO2peak: 1) two steady state heart rate (HR) responses up to 85% of age-predicted HRmax, and 2) multiple steady state/non-steady state HR responses up to 85% of age-predicted HRmax. Estimated VO2peak for the treadmill (46.3 ± 1.3 ml · kg−1 · min−1) and the elliptical ergometer (44.4 ± 1.0 ml · kg−1 · min−1) did not differ. The cycle ergometer estimated VO2peak (36.5 ± 1.0 ml · kg−1 · min−1) was lower (p < .001) than the estimated VO2peak values for the treadmill and elliptical ergometer. Elliptical ergometer VO2peak predicted from steady state (51.4 ± .8 ml · kg−1 · min−1) and steady state/non-steady state (50.3 ± 2.0 ml · kg−1 · min−1) models were higher than estimated elliptical ergometer VO2peak, p < .01. HRmax and estimates of VO2peak were similar between the treadmill and elliptical ergometer, thus cross-modal exercise prescriptions may be generated. The use of digital display estimates of submaximal oxygen uptake for the elliptical ergometer may not be an accurate method for predicting VO2peak. Health-fitness professionals should use caution when utilizing submaximal elliptical ergometer digital display estimates to predict VO2peak. PMID:20393357

  8. A comparison of practical assessment methods to determine treadmill, cycle, and elliptical ergometer VO2 peak.

    PubMed

    Mays, Ryan J; Boér, Nicholas F; Mealey, Lisa M; Kim, Kevin H; Goss, Fredric L

    2010-05-01

    This investigation compared estimated and predicted peak oxygen consumption (VO2 peak) and maximal heart rate (HRmax) among the treadmill, cycle ergometer, and elliptical ergometer. Seventeen women (mean +/- SE: 21.9 +/- 0.3 y) exercised to exhaustion on all modalities. American College of Sports Medicine metabolic equations were used to estimate VO2 peak. Digital displays on the elliptical ergometer were used to estimate VO2 peak. Two individual linear regression methods were used to predict VO2 peak: (a) 2 steady state heart rate (HR) responses up to 85% of age-predicted HRmax and (b) multiple steady state/nonsteady state HR responses up to 85% of age-predicted HRmax. Estimated VO2 peak for the treadmill (46.3 +/- 1.3 ml x kg(-1) x min(-1)) and the elliptical ergometer (44.4 +/- 1.0 ml x kg(-1) x min(-1)) did not differ. The cycle ergometer estimated VO2 peak (36.5 +/- 1.0 ml x kg(-1) x min(-1)) was lower (p < 0.001) than the estimated VO2 peak values for the treadmill and elliptical ergometer. Elliptical ergometer VO2 peak predicted from steady-state (51.4 +/- .8 ml x kg(-1) x min(-1)) and steady-state/nonsteady-state (50.3 +/- 2.0 ml x kg(-1) x min(-1)) models were higher than estimated elliptical ergometer VO2 peak, p < 0.01. HRmax, and estimates of VO2 peak were similar between the treadmill and elliptical ergometer; thus, crossmodal exercise prescriptions may be generated. The use of digital display estimates of submaximal oxygen uptake for the elliptical ergometer may not be an accurate method for predicting VO2 peak. Health-fitness professionals should use caution when utilizing submaximal elliptical ergometer digital display estimates to predict VO2 peak.

  9. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    PubMed

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  10. Temperature dependence of thermal conductivity of VO2 thin films across metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Kizuka, Hinako; Yagi, Takashi; Jia, Junjun; Yamashita, Yuichiro; Nakamura, Shinichi; Taketoshi, Naoyuki; Shigesato, Yuzo

    2015-05-01

    Thermal conductivity of a 300-nm-thick VO2 thin film and its temperature dependence across the metal-insulator phase transition (TMIT) were studied using a pulsed light heating thermoreflectance technique. The VO2 and Mo/VO2/Mo films with a VO2 thickness of 300 nm were prepared on quartz glass substrates: the former was used for the characterization of electrical properties, and the latter was used for the thermal conductivity measurement. The VO2 films were deposited by reactive rf magnetron sputtering using a V2O3 target and an Ar-O2 mixture gas at 645 K. The VO2 films consisted of single phase VO2 as confirmed by X-ray diffraction and electron beam diffraction. With increased temperature, the electrical resistivity of the VO2 film decreased abruptly from 6.3 × 10-1 to 5.3 × 10-4 Ω cm across the TMIT of around 325-340 K. The thermal conductivity of the VO2 film increased from 3.6 to 5.4 W m-1 K-1 across the TMIT. This discontinuity and temperature dependence of thermal conductivity can be explained by the phonon heat conduction and the Wiedemann-Franz law.

  11. EPR study of VO2+ doped glycine zinc sulphate single crystal

    NASA Astrophysics Data System (ADS)

    Prabakaran, R.; Subramanian, P.

    2015-06-01

    Single crystals Of GZS:VO2+ were grown by slow evaporation of solvent at room temperature. The EPR study was carried out at room temperature. Single crystal rotations in each of the three mutually orthogonal planes indicate single site occupation of VO2+ in the lattice. g and A tensors were calculated from the recorded EPR spectra. The principal values of g and A indicates existence of rhombic symmetry around the VO2+ ion. From the direction cosines of the g and A tensors, the locations of VO2+ in the lattice have been identified as substitutional site.

  12. Retrospective Study of the Hungarian National Transplant Team's Cardiorespiratory Capacity.

    PubMed

    Trájer, E; Bosnyák, E; Komka, Z S; Kováts, T; Protzner, A; Szmodis, M; Tóth, S Z; Udvardy, A; Tóth, M

    2015-01-01

    The low availability of donor organs requires long-term successful transplantation as an accepted therapy for patients with end-stage renal and liver diseases. The health benefits of regular physical activity are well known among healthy individuals as well as patients under rehabilitation programs. Our aim was to describe the cardiorespiratory capacity of the Hungarian National Transplant Team. Twenty-five kidney (n = 21) or liver (n = 4) transplant athletes participated in this study. Maximal cardiorespiratory capacity (VO2max) was measured on a treadmill with the use of gas analysis. After a resting pulmonary function test, subjects completed a vita maxima test until exhaustion. Aerobic capacity of transplant athletes was higher than the age- and sex-predicted cardiorespiratory fitness (VO2max, 109.9 ± 21.7% of the predicted values; P = .0101). Resting respiratory function indicators exceeded 80% of predicted age- and sex-matched normal values. There were positive correlations between VO2max and workload (r(2) = 0.40; P = .0463), metabolic equivalent (r(2) = 0.72; P < .0001), and oxygen pulse (r(2) = 0.30; P = .0039). However, age showed negative correlation with VO2max (r(2) = 0.32; P = .0031), and there was no significant correlation between graft age and maximal oxygen consumption (r(2) = 0.15; P = .4561). Although the small amount of participants can not represent the general kidney and liver transplant population, the excellent cardiorespiratory performance suggests that a normal level of physical capacity is available after transplantation and can be even higher with regular physical activity. This favorable physiologic background leads to a state that provides proper graft oxygenization, which is an important factor in long-term graft survival. PMID:26293020

  13. Deep mineral water accelerates recovery after dehydrating aerobic exercise: a randomized, double-blind, placebo-controlled crossover study

    PubMed Central

    2014-01-01

    Background The effect of deep mineral water (DMW) with moderate mineralization on the recovery of physical performance after prolonged dehydrating aerobic exercise in the heat was studied in nine healthy, physically active (VO2max = 45.8 ± 8.4 mL kg−1 min−1) women aged 24.0 ± 3.7 years. Methods We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of ingestion of natural mineral water extracted from a depth of 689 m on recovery from prolonged fatiguing aerobic running conducted at 30°C. Results Mean body weight decreased by 2.6–2.8% following dehydrating exercise. VO2max was 9% higher after 4 h of recovery after rehydrating with DMW compared with plain water. Leg muscle power recovered better during the slow phase of recovery and was significantly higher after 48 h of recovery after rehydrating with DMW compared with plain water. Conclusions DMW with moderate mineralization was more effective in inducing recovery of aerobic capacity and leg muscle power compared with plain water following prolonged dehydrating aerobic running exercise. PMID:25002835

  14. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2014-01-01

    Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.

  15. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2014-01-01

    Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities. PMID:25538694

  16. Seasonal variations in VO2max, O2-cost, O2-deficit, and performance in elite cross-country skiers.

    PubMed

    Losnegard, Thomas; Myklebust, Håvard; Spencer, Matt; Hallén, Jostein

    2013-07-01

    Long-term effects of training are important information for athletes, coaches, and scientists when associating changes in physiological indices with changes in performance. Therefore, this study monitored changes in aerobic and anaerobic capacities and performance in a group of elite cross-country skiers during a full sport season. Thirteen men (age, 23 ± 2 years; height, 182 ± 6 cm; body mass, 76 ± 8 kg; V2 roller ski skating VO2max, 79.3 ± 4.4 ml·kg·min or 6.0 ± 0.5 L·min) were tested during the early, middle, and late preparation phase: June (T1), August (T2), and October (T3); during the competition phase: January/February (T4); and after early precompetition phase: June (T5). O2-cost during submaximal efforts, V[Combining Dot Above]O2peak, accumulated oxygen deficit (ΣO2-deficit), and performance during a 1,000-m test were determined in the V2 ski skating technique on a roller ski treadmill. Subjects performed their training on an individual basis, and detailed training logs were categorized into different intensity zones and exercise modes. Total training volume was highest during the summer months (early preseason) and decreased toward and through the winter season, whereas the volume of high-intensity training increased (all p < 0.05). There was a significant main effect among testing sessions for 1,000 m time, O2-cost, and ΣO2-deficit (Cohen's d effect size; ES = 0.63-1.37, moderate to large, all p < 0.05). In general, the changes occurred between T1 and T3 with minor changes in the competitive season (T3 to T4). No significant changes were found in V[Combining Dot Above]O2peak across the year (ES = 0.17, trivial). In conclusion, the training performed by elite cross-country skiers induced no significant changes in V[Combining Dot Above]O2peak but improved performance, O2-cost, and ΣO2-deficit.

  17. Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair

    PubMed Central

    Sarga, Linda; Hart, Nikolett; Koch, Lauren; Britton, Steve; Hajas, Gyorgy; Boldogh, Istvan; Ba, Xuequing; Radak, Zsolt

    2013-01-01

    Regular exercise promotes brain function via a wide range of adaptive responses, including the increased expression of antioxidant and oxidative DNA damage-repairing systems. Accumulation of oxidized DNA base lesions and strand breaks is etiologically linked to for example aging processes and age-associated diseases. Here we tested whether exercise training has an impact on brain function, extent of neurogenesis, and expression of 8-oxoguanine DNA glycosylase-1 (Ogg1) and SIRT1 (silent mating type information regulation 2 homolog). To do so, we utilized strains of rats with low- and high- running capacity (LCR and HCR) and examined learning and memory, DNA synthesis, expression, and posttranslational modification of Ogg1 hippocampal cells. Our results showed that rats with higher aerobic/running capacity had better spatial memory, and expressed less Ogg1, when compared to LCR rats. Furthermore, exercise increased SIRT1 expression and decreased acetylated Ogg1 (AcOgg1) levels, a post-translational modification important for efficient repair of 8-oxoG. Our data on cell cultures revealed that nicotinamide, a SIRT1-specific inhibitor, caused the greatest increase in the acetylation of Ogg1, a finding further supported by our other observations that silencing SIRT1 also markedly increased the levels of AcOgg1. These findings imply that high-running capacity is associated with increased hippocampal function, and SIRT1 level/activity and inversely correlates with AcOgg1 levels and thereby the repair of genomic 8-oxoG. PMID:23973402

  18. Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp.

    PubMed

    Hawkins, Thomas D; Hagemeyer, Julia C G; Hoadley, Kenneth D; Marsh, Adam G; Warner, Mark E

    2016-01-01

    Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, such as the partitioning of total respiration between the host and symbiont, remains incomplete. Specifically, we know little about how the relationship between host and symbiont respiration varies between different holobionts (host-symbiont combinations). We applied molecular and biochemical techniques to investigate aerobic respiratory capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of Symbiodinium minutum (ITS2-type B1). In naturally symbiotic anemones, host, symbiont, and total holobiont mitochondrial citrate synthase (CS) enzyme activity, but not host mitochondrial copy number, were reliable predictors of holobiont respiration. There was a positive association between symbiont density and host CS specific activity (mg protein(-1)), and a negative correlation between host- and symbiont CS specific activities. Notably, partitioning of total CS activity between host and symbiont in this natural E. pallida population was significantly different to the host/symbiont biomass ratio. In re-infected anemones, we found significant between-holobiont differences in the CS specific activity of the algal symbionts. Furthermore, the relationship between the partitioning of total CS activity and the host/symbiont biomass ratio differed between holobionts. These data have broad implications for our understanding of cnidarian-algal symbiosis. Specifically, the long-held assumption of equivalency between symbiont/host biomass and respiration ratios can result in significant overestimation of symbiont respiration and potentially erroneous conclusions regarding the percentage of carbon translocated to the host. The interspecific variability in symbiont aerobic capacity provides further evidence

  19. Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp.

    PubMed Central

    Hawkins, Thomas D.; Hagemeyer, Julia C. G.; Hoadley, Kenneth D.; Marsh, Adam G.; Warner, Mark E.

    2016-01-01

    Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, such as the partitioning of total respiration between the host and symbiont, remains incomplete. Specifically, we know little about how the relationship between host and symbiont respiration varies between different holobionts (host-symbiont combinations). We applied molecular and biochemical techniques to investigate aerobic respiratory capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of Symbiodinium minutum (ITS2-type B1). In naturally symbiotic anemones, host, symbiont, and total holobiont mitochondrial citrate synthase (CS) enzyme activity, but not host mitochondrial copy number, were reliable predictors of holobiont respiration. There was a positive association between symbiont density and host CS specific activity (mg protein−1), and a negative correlation between host- and symbiont CS specific activities. Notably, partitioning of total CS activity between host and symbiont in this natural E. pallida population was significantly different to the host/symbiont biomass ratio. In re-infected anemones, we found significant between-holobiont differences in the CS specific activity of the algal symbionts. Furthermore, the relationship between the partitioning of total CS activity and the host/symbiont biomass ratio differed between holobionts. These data have broad implications for our understanding of cnidarian-algal symbiosis. Specifically, the long-held assumption of equivalency between symbiont/host biomass and respiration ratios can result in significant overestimation of symbiont respiration and potentially erroneous conclusions regarding the percentage of carbon translocated to the host. The interspecific variability in symbiont aerobic capacity provides further evidence

  20. Changes in Biochemical, Strength, Flexibility, and Aerobic Capacity Parameters after a 1700 km Ultraendurance Cycling Race

    PubMed Central

    2014-01-01

    The purpose of the present research was to study the organic response after ultraendurance cycling race. Selected biochemical, leg strength, flexibility, and aerobic capacity parameters were analyzed in 6 subjects 5 days before and 5 days after completing a 1700 km ultraendurance cycling race. After the race, participants presented a significant decrease in Hb (167.8 ± 9.5 versus 141.6 ± 15.7 mg/dL), strength (29.4 ± 2.7 versus 25.5 ± 3.7 cm in a countermovement jump), and oxygen uptake and heart rate at ventilatory threshold (1957.0 ± 458.4 versus 1755.2 ± 281.5 mL/kg/min and 140.0 ± 9.7 versus 130.8 ± 8.3 bpm, resp.). Testosterone presented a decrease tendency (4.2 ± 2.5 versus 3.9 ± 2.6 ng/L) in opposition to the increase tendency of cortisol and ammonium parameters. Transferrin and iron levels presented high values related to an overstimulation of the liver, a normal renal function, a tendency to decrease flexibility, and an increase in aerobic capacity, finding a tendency to increase the absolute maximal oxygen uptake (37.2 ±2.4 versus 38.7 ± 1.8 mL/min) in contrast to previous studies conducted with subjects with similar age. These results can be used to program training interventions, recovery times between probes, and nutritional and/or ergonomic strategies in ultraendurance events. PMID:25180188

  1. Effect of Change in VO2max on Daily Total Energy Expenditure in a Cohort of Norwegian Men: A Randomized Pilot Study

    PubMed Central

    Zisko, Nina; Stensvold, Dorthe; Hordnes-Slagsvold, Katrine; Rognmo, Øivind; Nauman, Javaid; Wisløff, Ulrik; Karlsen, Trine

    2015-01-01

    Objective: To investigate how a change in VO2max induced through 6 weeks of high intensity aerobic interval training affects daily total energy expenditure (TEE), active energy expenditure (AEE) and mitochondrial function in people not previously exposed to structured high intensity aerobic interval training (AIT). Methods: Thirty healthy males (39±6 yrs) not exposed to structured exercise training were randomized to either 1x4 min AIT (1-AIT), 4x4 min AIT (4-AIT), both at 90-95% maximum heart rate (HRmax) or 47 min of MCT at 70% HRmax. TEE, AEE, number of steps, active time, sedentary time, VO2max and mitochondrial function in m. vastus lateralis were measured before and after intervention. Results: TEE increased 14% (p=0.014) and AEE increased 43% (p= 0.004) after MCT. There was no change in TEE or AEE after 1-AIT or 4-AIT, but 1-AIT had significantly lower TEE (p=0.033) and step-count (p=0.011) compared to MCT post intervention. VO2max increased 7% after 1-AIT (p= 0.004) and 9% after 4-AIT (p=0.004), with no change after MCT. No change was observed in maximal mitochondrial respiration (VMAX) or Citrate Synthase (CS) activity within or between interventions. Basal respiration (V0) increased after 1-AIT (p=0.029) and 4-AIT (p=0.022), with no significant change after MCT. Conclusion: AIT interventions that increase VO2max, do not stimulate subjects to increase TEE or AEE. The intensity of exercise seems to play apart, as MCT increased TEE and AEE and AIT did not. Emphasis should be placed on the importance of maintaining everyday activities when introducing structured exercise training to untrained individuals. PMID:25969700

  2. Assessment of aerobic and anaerobic demands of dinghy sailing at different wind velocities.

    PubMed

    Vogiatzis, I; Spurway, N C; Wilson, J; Boreham, C

    1995-06-01

    The aim of this study was to assess the oxygen uptake (VO2), heart rate (HR) and blood lactate concentration ([Lab]) during actual dinghy sailing at different wind velocities. Eight top class Laser sailors volunteered to participate in the study. In the laboratory, each subject performed an incremental exercise test on a cycle ergometer to the point of exhaustion. Maximum oxygen uptake (VO2max) and maximum heart rate (HR max) were assessed by means of a Cosmed K2 (K2) portable oxygen analyser while the accuracy of the K2 was simultaneously examined by comparing it with the Douglas bag method. On water each subject underwent a 10 minute continuous upwind sailing test. The average percentages of VO2max and HR max during sailing and the post-test [La(b)] were 39 +/- 6%, 74 +/- 11% and 2.3 +/- 0.8 mM, respectively. Values of the three measured variables for each subject were significantly correlated to wind velocity (r = 0.73, 0.87 and 0.88, respectively). The results of the study suggest that the metabolic and cardiorespiratory demands of dinghy sailing predominantly depend on the wind conditions. Aerobic capacity is only moderately taxed in dinghy sailing and should not be emphasized in training, whereas anaerobic metabolism plays an increasing role in stronger winds.

  3. Exercise volume and aerobic fitness in young adults: the Midwest Exercise Trial-2.

    PubMed

    Schubert, Matthew M; Washburn, Richard A; Honas, Jeffery J; Lee, Jaehoon; Donnelly, Joseph E

    2016-01-01

    To examine the effect of exercise volume at a fixed intensity on changes in aerobic fitness. Ninety-two overweight/obese individuals (BMI 25-40 kg m(2)), age 18-30 years, 50 % women, completed a 10 mo, 5 d wk(-1) supervised exercise intervention at 2 levels of exercise energy expenditure (400 or 600 kcal session(-1)) at 70-80 % heart rate (HR) max. Exercise consisted primarily of walking/jogging on motor-driven treadmills. The duration and intensity of all exercise sessions were verified by a downloadable HR monitor set to collect HR in 1-min epochs. All participants were instructed to continue their typical patterns of non-exercise physical activity and dietary intake over the duration of the 10 mo intervention. Maximal aerobic capacity (indirect calorimetry) was assessed on a motor-driven treadmill using a modified Balke protocol at baseline, mid-point (5 mo), and following completion of the 10 mo intervention. VO2 max (L min(-1)) increased significantly in both the 400 (11.3 %) and 600 kcal session(-1) groups (14 %) compared to control (-2.0 %; p < 0.001); however, the differences between exercise groups were not significant. Similar results were noted for change in relative VO2 max (mL kg(-1) min(-1)); however, the magnitude of change was greater than for absolute VO2 max (L min(-1)) (400 group = 18.3 %; 600 group = 20.2 %) due to loss of body weight over the 10-mo intervention in both exercise groups. Our results indicate that exercise volume was not associated with change in aerobic fitness in a sample of previously sedentary, overweight and obese young adults. PMID:27026879

  4. Switchable vanadium dioxide (VO2) metamaterials fabricated from tungsten doped vanadia-based colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher

    2013-03-01

    We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.

  5. Effect of fasting on the VO2-fh relationship in king penguins, Aptenodytes patagonicus.

    PubMed

    Fahlman, A; Handrich, Y; Woakes, A J; Bost, C-A; Holder, R; Duchamp, C; Butler, P J

    2004-10-01

    King penguins (Aptenodytes patagonicus) may fast for up to 30 days during their breeding period. As such extended fasting may affect the relationship between the rate of O(2) consumption (Vo(2)) and heart rate (f(H)), five male king penguins were exercised at various speeds on repeated occasions during a fasting period of 24-31 days. In addition, Vo(2) and f(H) were measured in the same animals during rest in cold air and water (4 degrees C). Vo(2) and f(H) at rest and Vo(2) during exercise decreased with fasting. There was a significant relation between Vo(2) and f(H) (r(2) = 0.56) that was improved by including speed, body mass (M(b)), number of days fasting (t), and a cross term between f(H) and t (r(2) = 0.92). It was concluded that there was a significant change in the Vo(2)-f(H) relationship with fasting during exercise. As t is measurable in the field and was shown to be significant and, therefore, a practical covariate, a regression equation for use when birds are ashore was obtained by removing speed and M(b). When this equation was used, predicted Vo(2) was in good agreement with the observed data, with an overall error of 3.0%. There was no change in the Vo(2)-f(H) relationship in penguins at rest in water. PMID:15178544

  6. VO2 Semishells/Au Nanohemispheres Hybrid Nanostructure with Tunable Optical Property

    NASA Astrophysics Data System (ADS)

    Nam, Gi-Wan; Maroof, Abbas; Cho, Dong-Guk; Kim, Bong-Jun; Kim, Hyun-Tak; Hong, Seunghun

    2015-03-01

    Vanadium dioxide (VO2) has been drawing much attention due to its unique property of a reversible phase transition accompanying significant changes in electrical and optical properties. In addition, the optical property of VO2 can be tuned by depositing metal on the VO2, and thus VO2-metal hybrid structures have been intensively studied to develop smart materials with tunable optical properties. Herein, we developed hybrid nanostructures based on VO2 semishells (SSs) and Au nanohemispheres (NHs) as tunable plasmonic nanostructures. The hybrid structure exhibited an enhanced optical absorbance compared to that of the VO2 SSs alone, which could be attributed to a strong plasmonic coupling between VO2 SSs and Au NHs. Furthermore, the positions of peaks in their absorbance spectra can be adjusted by controlling temperatures, presumably due to the phase transition of the VO2 SS structures. Our hybrid nanostructures with tunable optical properties can be useful for various optoelectronic applications such as photothermal nanoregulators and ultrafast optical switches

  7. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    NASA Astrophysics Data System (ADS)

    Slusar, Tetiana; Cho, Jin-Cheol; Kim, Bong-Jun; Yun, Sun Jin; Kim, Hyun-Tak

    2016-02-01

    We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT) of vanadium dioxide (VO2) thin films synthesized on aluminum nitride (AlN)/Si (111) substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010) ‖ AlN (0001) with VO2 [101] ‖ AlN [ 2 1 ¯ 1 ¯ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ˜130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  8. Effect of Toe Clips During Bicycle Ergometry on VO2 max.

    ERIC Educational Resources Information Center

    Moffat, Roger S.; Sparling, Phillip B.

    1985-01-01

    Eight men participated in three randomized maximal oxygen uptake tests to investigate the hypothesis that the use of toe clips on bicycle ergometers produced a higher VO2 max. No significant difference in mean VO2 max or performance time was observed. (Author/MT)

  9. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments.

  10. Effects of 8-Week Training on Aerobic Capacity and Swimming Performance of Boys Aged 12 Years

    ERIC Educational Resources Information Center

    Zarzeczny, Ryszard; Kuberski, Mariusz; Deska, Agnieszka; Zarzeczna, Dorota; Rydz, Katarzyna; Lewandowska, Anna; Balchanowski, Tomasz; Bosiacki, Janusz

    2011-01-01

    Study aim: To assess the effects of 8-week endurance training in swimming on work capacity of boys aged 12 years. Material and methods: The following groups of schoolboys aged 12 years were studied: untrained control (UC; n = 14) and those training swimming for two years. The latter ones were subjected to 8-week training in classical style (CS; n…

  11. Effects of aerobic exercise on ectopic lipids in patients with growth hormone deficiency before and after growth hormone replacement therapy

    PubMed Central

    Christ, Emanuel R.; Egger, Andrea; Allemann, Sabin; Buehler, Tania; Kreis, Roland; Boesch, Chris

    2016-01-01

    Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50–60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn’t significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids. PMID:26792091

  12. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women.

    PubMed

    Murawska-Cialowicz, E; Wojna, J; Zuwala-Jagiello, J

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is a protein that stimulates processes of neurogenesis, the survival of neurons and microglia, stimulates neuroplasticity, and takes part in the differentiation of cells developed in the hippocampus. BDNF is also released from skeletal muscles during exercise and can facilitate cross-talk between the nervous and muscular system. Irisin, the exercise hormone, is also released from skeletal muscles and is involved in oxidation processes in the organism. It is a vital issue from the point of view of prophylaxis and treatment through exercise of age-related diseases (e.g. senile dementia), obesity, type-2 diabetes. The aim of the study was to assess the changes in BDNF and irisin levels in young people after a 3-month CrossFit training program. At baseline and after the training, levels of BDNF and irisin were assayed before and after Wingate and progressive tests. Physical performance, body mass and composition, and muscle circumferences were also measured. There were noted: an improvement in aerobic capacity, an increase in VO2max, a reduction in adipose tissue percentage in women and an increase in LBM in all subjects. After CrossFit training the resting BDNF level increased significantly in all subjects while the resting level of irisin decreased in women, without changes in men. The resting level of BDNF at baseline was higher in men than in women. At baseline we observed an increased level of BDNF in women after Wingate and progressive tests, but in men only after the progressive test. After 3 months of CrossFit training the level of BDNF increased in all subjects, and also was higher in men than in women. In women we did not observe significant differences after both tests in comparison to rest. After the training BDNF was lower in men after Wingate and progressive tests than at rest. At baseline irisin level decreased in women after the Wingate and progressive tests. Changes in men were not observed after both tests

  13. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women.

    PubMed

    Murawska-Cialowicz, E; Wojna, J; Zuwala-Jagiello, J

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is a protein that stimulates processes of neurogenesis, the survival of neurons and microglia, stimulates neuroplasticity, and takes part in the differentiation of cells developed in the hippocampus. BDNF is also released from skeletal muscles during exercise and can facilitate cross-talk between the nervous and muscular system. Irisin, the exercise hormone, is also released from skeletal muscles and is involved in oxidation processes in the organism. It is a vital issue from the point of view of prophylaxis and treatment through exercise of age-related diseases (e.g. senile dementia), obesity, type-2 diabetes. The aim of the study was to assess the changes in BDNF and irisin levels in young people after a 3-month CrossFit training program. At baseline and after the training, levels of BDNF and irisin were assayed before and after Wingate and progressive tests. Physical performance, body mass and composition, and muscle circumferences were also measured. There were noted: an improvement in aerobic capacity, an increase in VO2max, a reduction in adipose tissue percentage in women and an increase in LBM in all subjects. After CrossFit training the resting BDNF level increased significantly in all subjects while the resting level of irisin decreased in women, without changes in men. The resting level of BDNF at baseline was higher in men than in women. At baseline we observed an increased level of BDNF in women after Wingate and progressive tests, but in men only after the progressive test. After 3 months of CrossFit training the level of BDNF increased in all subjects, and also was higher in men than in women. In women we did not observe significant differences after both tests in comparison to rest. After the training BDNF was lower in men after Wingate and progressive tests than at rest. At baseline irisin level decreased in women after the Wingate and progressive tests. Changes in men were not observed after both tests

  14. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance

    PubMed Central

    Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo

    2016-01-01

    The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows. PMID:27296772

  15. Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires

    PubMed Central

    Cheng, Chun; Guo, Hua; Amini, Abbas; Liu, Kai; Fu, Deyi; Zou, Jian; Song, Haisheng

    2014-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have attracted an intense research interest recently because of their unique single-domain metal-insulator phase transition property. Synthesis of these nanostructures in the past was limited in density, alignment, or single-crystallinity. The assembly of VO2 nanowires (NWs) is desirable for a “bottom-up” approach to the engineering of intricate structures using nanoscale building blocks. Here, we report the successful synthesis of horizontally aligned VO2 NWs with a dense growth mode in the [1-100]quartz direction of a polished x-cut quartz surface using a simple vapor transport method. Our strategy of controlled growth of VO2 NWs promisingly paves the way for designing novel metal-insulator transition devices based on VO2 NWs. PMID:24965899

  16. Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires

    NASA Astrophysics Data System (ADS)

    Cheng, Chun; Guo, Hua; Amini, Abbas; Liu, Kai; Fu, Deyi; Zou, Jian; Song, Haisheng

    2014-06-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have attracted an intense research interest recently because of their unique single-domain metal-insulator phase transition property. Synthesis of these nanostructures in the past was limited in density, alignment, or single-crystallinity. The assembly of VO2 nanowires (NWs) is desirable for a ``bottom-up'' approach to the engineering of intricate structures using nanoscale building blocks. Here, we report the successful synthesis of horizontally aligned VO2 NWs with a dense growth mode in the [1-100]quartz direction of a polished x-cut quartz surface using a simple vapor transport method. Our strategy of controlled growth of VO2 NWs promisingly paves the way for designing novel metal-insulator transition devices based on VO2 NWs.

  17. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance

    NASA Astrophysics Data System (ADS)

    Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo

    2016-06-01

    The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows.

  18. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance.

    PubMed

    Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo

    2016-01-01

    The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows. PMID:27296772

  19. Photoinducing the hidden M2 phase in VO2

    NASA Astrophysics Data System (ADS)

    Walko, D. A.; Smith, R. K.; Wen, Haidan; Dichiara, A. D.; Jeong, Jaewoo; Samant, Mahensh G.; Parkin, Stuart S. P.

    We used time-resolved x-ray diffraction to study photoinduced structural phase transitions in a 170-nm-thick VO2 film grown on sapphire (1,0,-1,0). Heating the unstrained film from room temperature induces the well-known phase transition from the monoclinic (M1) phase directly to the high-temperature tetragonal rutile (R) phase. In contrast, upon ultrafast optical excitation, the phase transition depends strongly on the laser intensity. At low fluences, the film is partially transformed into the monoclinic M2 phase, a phase which generally is observed only in doped or strained materials. Above a threshold at higher fluences, a small portion of the film is transformed into the M2 phase, decaying on a time scale of a few nanoseconds, while the majority of the film is transformed into the R phase which can persist for tens of nanoseconds. We further discuss the effects of laser wavelength on the efficiency of producing the M2 phase. Work at the Advanced Photon Source supported by DOE Contract No. DE-AC02-06CH11357.

  20. Spontaneous Activity, Economy of Activity, and Resistance to Diet-Induced Obesity in Rats Bred for High Intrinsic Aerobic Capacity

    PubMed Central

    Novak, Colleen M.; Escande, Carlos; Burghardt, Paul R.; Zhang, Minzhi; Barbosa, Maria Teresa; Chini, Eduardo N.; Britton, Steven L.; Koch, Lauren G.; Akil, Huda; Levine, James A.

    2010-01-01

    Though obesity is common, some people remain resistant to weight gain even in an obesogenic environment. The propensity to remain lean may be partly associated with high endurance capacity along with high spontaneous physical activity and the energy expenditure of activity, called non-exercise activity thermogenesis (NEAT). Previous studies have shown that high-capacity running rats (HCR) are lean compared to low-capacity runners (LCR), which are susceptible to cardiovascular disease and metabolic syndrome. Here, we examine the effect of diet on spontaneous activity and NEAT, as well as potential mechanisms underlying these traits, in rats selectively bred for high or low intrinsic aerobic endurance capacity. Compared to LCR, HCR were resistant to the sizeable increases in body mass and fat mass induced by a high-fat diet; HCR also had lower levels of circulating leptin. HCR were consistently more active than LCR, and had lower fuel economy of activity, regardless of diet. Nonetheless, both HCR and LCR showed a similar decrease in daily activity levels after high-fat feeding, as well as decreases in hypothalamic orexin-A content. The HCR were more sensitive to the NEAT-activating effects of intra-paraventricular orexin-A compared to LCR, especially after high-fat feeding. Lastly, levels of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in the skeletal muscle of HCR were consistently higher than LCR, and the high-fat diet decreased skeletal muscle PEPCK-C in both groups of rats. Differences in muscle PEPCK were not secondary to the differing amount of activity. This suggests the possibility that intrinsic differences in physical activity levels may originate at the level of the skeletal muscle, which could alter brain responsiveness to neuropeptides and other factors that regulate spontaneous daily activity and NEAT. PMID:20350549

  1. The high aerobic capacity of a small, marsupial rat-kangaroo (Bettongia penicillata) is matched by the mitochondrial and capillary morphology of its skeletal muscles.

    PubMed

    Webster, Koa N; Dawson, Terence J

    2012-09-15

    We examined the structure-function relationships that underlie the aerobic capacities of marsupial mammals that hop. Marsupials have relatively low basal metabolic rates (BMR) and historically were seen as 'low energy' mammals. However, the red kangaroo, Macropus rufus (family Macropodidae), has aerobic capacities equivalent to athletic placentals. It has an extreme aerobic scope (fAS) and its large locomotor muscles feature high mitochondrial and capillary volumes. M. rufus belongs to a modern group of kangaroos and its high fAS is not general for marsupials. However, other hopping marsupials may have elevated aerobic capacities. Bettongia penicillata, a rat-kangaroo (family Potoroidae), is a small (1 kg), active hopper whose fAS is somewhat elevated. We examined the oxygen delivery system in its muscles to ascertain links with hopping. An elevated fAS of 23 provided a relatively high maximal aerobic oxygen consumption ( ) in B. penicillata; associated with this is a skeletal muscle mass of 44% of body mass. Ten muscles were sampled to estimate the total mitochondrial and capillary volume of the locomotor muscles. Values in B. penicillata were similar to those in M. rufus and in athletic placentals. This small hopper had high muscle mitochondrial volume densities (7.1-11.9%) and both a large total capillary volume (6 ml kg(-1) body mass) and total capillary erythrocyte volume (3.2 ml kg(-1)). Apparently, a considerable aerobic capacity is required to achieve the benefits of the extended stride in fast hopping. Of note, the ratio of to total muscle mitochondrial volume in B. penicillata was 4.9 ml O(2) min(-1) ml(-1). Similar values occur in M. rufus and also placental mammals generally, not only athletic species. If such relationships occur in other marsupials, a fundamental structure-function relationship for oxygen delivery to muscles likely originated with or before the earliest mammals. PMID:22660784

  2. The high aerobic capacity of a small, marsupial rat-kangaroo (Bettongia penicillata) is matched by the mitochondrial and capillary morphology of its skeletal muscles.

    PubMed

    Webster, Koa N; Dawson, Terence J

    2012-09-15

    We examined the structure-function relationships that underlie the aerobic capacities of marsupial mammals that hop. Marsupials have relatively low basal metabolic rates (BMR) and historically were seen as 'low energy' mammals. However, the red kangaroo, Macropus rufus (family Macropodidae), has aerobic capacities equivalent to athletic placentals. It has an extreme aerobic scope (fAS) and its large locomotor muscles feature high mitochondrial and capillary volumes. M. rufus belongs to a modern group of kangaroos and its high fAS is not general for marsupials. However, other hopping marsupials may have elevated aerobic capacities. Bettongia penicillata, a rat-kangaroo (family Potoroidae), is a small (1 kg), active hopper whose fAS is somewhat elevated. We examined the oxygen delivery system in its muscles to ascertain links with hopping. An elevated fAS of 23 provided a relatively high maximal aerobic oxygen consumption ( ) in B. penicillata; associated with this is a skeletal muscle mass of 44% of body mass. Ten muscles were sampled to estimate the total mitochondrial and capillary volume of the locomotor muscles. Values in B. penicillata were similar to those in M. rufus and in athletic placentals. This small hopper had high muscle mitochondrial volume densities (7.1-11.9%) and both a large total capillary volume (6 ml kg(-1) body mass) and total capillary erythrocyte volume (3.2 ml kg(-1)). Apparently, a considerable aerobic capacity is required to achieve the benefits of the extended stride in fast hopping. Of note, the ratio of to total muscle mitochondrial volume in B. penicillata was 4.9 ml O(2) min(-1) ml(-1). Similar values occur in M. rufus and also placental mammals generally, not only athletic species. If such relationships occur in other marsupials, a fundamental structure-function relationship for oxygen delivery to muscles likely originated with or before the earliest mammals.

  3. VO2+-hydroxyapatite complexes as models for vanadyl coordination to phosphate in bone

    NASA Astrophysics Data System (ADS)

    Dikanov, Sergei A.; Liboiron, Barry D.; Orvig, Chris

    2013-10-01

    We describe a 1D and 2D electron spin echo envelope modulation investigation of VO2+ adsorbed on hydroxyapatite (HA) at different concentrations and compare with VO2+-triphosphate (TPH) complexes studied previously in detail, in an effort to provide more insight into the structure of VO2+ coordination in bone. Structures of this interaction are important because of the role of bone in the long-term storage of administered vanadium, and the likely role of bone in the steady-state release of vanadium leading to the chronic insulin-enhancing anti-diabetic effects of vanadyl complexes. Three similar sets of cross-peaks from phosphorus nuclei observed in the 31P hyperfine sublevel correlation (HYSCORE) spectra of VO2+-HA, VO2+-TPH and VO2+-bone suggest a common tridentate binding motif for triphosphate moieties to the vanadyl ion. The similarities between the systems present the possibility that in vivo vanadyl coordination in bone is relatively uniform. Experiments with HA samples containing different amounts of adsorbed VO2+ demonstrate additional peculiarities of the ion-adsorbent interaction which can be expected in vivo. The HYSCORE spectra of HA samples show varying relative intensities of 31P lines from phosphate ligands and 1H lines, especially lines from protons of coordinated water molecules. This result suggests that the number of equatorial phosphate ligands in HA could be different depending on the water content of the sample and the VO2+ concentration; complexes of different structures probably contribute to the spectra of VO2+-HA. Similar behaviour can also be expected in vivo during VO2+ accumulation in bones.

  4. VO2+-hydroxyapatite complexes as models for vanadyl coordination to phosphate in bone

    PubMed Central

    Dikanov, Sergei A.; Liboiron, Barry D.; Orvig, Chris

    2013-01-01

    We describe a 1D and 2D ESEEM investigation of VO2+ adsorbed on hydroxyapatite (HA) at different concentrations and compare with VO2+-triphosphate (TPH) complexes studied previously in detail, in an effort to provide more insight into the structure of VO2+coordination in bone. Structures of this interaction are important because of the role of bone in the long-term storage of administered vanadium, and the likely role of bone in the steady-state release of vanadium leading to the chronic insulin-enhancing anti-diabetic effects of vanadyl complexes. Three similar sets of cross-peaks from phosphorus nuclei observed in the 31P HYSCORE spectra of VO2+-HA, VO2+-TPH, and VO2+-bone suggest a common tridentate binding motif for triphosphate moieties to the vanadyl ion. The similarities between the systems present the possibility that in vivo vanadyl coordination in bone is relatively uniform. Experiments with HA samples containing different amounts of adsorbed VO2+ demonstrate additional peculiarities of the ion-adsorbent interaction which can be expected in vivo. HYSCORE spectra of HA samples show varying relative intensities of 31P lines from phosphate ligands and 1H lines, especially lines from protons of coordinated water molecules. This result suggests that the number of equatorial phosphate ligands in HA could be different depending on the water content of the sample and the VO2+ concentration; complexes of different structure probably contribute to the spectra of VO2+-HA. Similar behavior can be also expected in vivo during VO2+ accumulation in bones. PMID:24829511

  5. Gut microbiota are linked to increased susceptibility to hepatic steatosis in low aerobic capacity rats fed an acute high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that low capacity running (LCR) rats fed acute high fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with...

  6. Conditional independence mapping of DIGE data reveals PDIA3 protein species as key nodes associated with muscle aerobic capacity

    PubMed Central

    Burniston, Jatin G.; Kenyani, Jenna; Gray, Donna; Guadagnin, Eleonora; Jarman, Ian H.; Cobley, James N.; Cuthbertson, Daniel J.; Chen, Yi-Wen; Wastling, Jonathan M.; Lisboa, Paulo J.; Koch, Lauren G.; Britton, Steven L.

    2014-01-01

    Profiling of protein species is important because gene polymorphisms, splice variations and post-translational modifications may combine and give rise to multiple protein species that have different effects on cellular function. Two-dimensional gel electrophoresis is one of the most robust methods for differential analysis of protein species, but bioinformatic interrogation is challenging because the consequences of changes in the abundance of individual protein species on cell function are unknown and cannot be predicted. We conducted DIGE of soleus muscle from male and female rats artificially selected as either high- or low-capacity runners (HCR and LCR, respectively). In total 696 protein species were resolved and LC–MS/MS identified proteins in 337 spots. Forty protein species were differentially (P < 0.05, FDR < 10%) expressed between HCR and LCR and conditional independence mapping found distinct networks within these data, which brought insight beyond that achieved by functional annotation. Protein disulphide isomerase A3 emerged as a key node segregating with differences in aerobic capacity and unsupervised bibliometric analysis highlighted further links to signal transducer and activator of transcription 3, which were confirmed by western blotting. Thus, conditional independence mapping is a useful technique for interrogating DIGE data that is capable of highlighting latent features. PMID:24769234

  7. Effects of Aerobic Exercise Training on Fitness and Walking Related Outcomes in Ambulatory Individuals with Chronic Incomplete Spinal Cord Injury

    PubMed Central

    DiPiro, Nicole D.; Embry, Aaron E.; Fritz, Stacy L.; Middleton, Addie; Krause, James S.; Gregory, Chris M.

    2015-01-01

    Study Design Single group, pretest-posttest study. Objectives To determine the effects of a non-task-specific, voluntary, progressive aerobic exercise training (AET) intervention on fitness and walking-related outcomes in ambulatory adults with chronic motor-incomplete SCI. Setting Rehabilitation research center. Methods Ten ambulatory individuals (50% female; 57.94 ± 9.33 years old; 11.11 ± 9.66 years post injury) completed voluntary, progressive moderate-to-vigorous intensity AET on a recumbent stepper three days per week for six weeks. The primary outcome measures were aerobic capacity (VO2peak) and self-selected overground walking speed (OGWS). Secondary outcome measures included: walking economy, six-minute walk test (6MWT), daily step counts, Walking Index for Spinal Cord Injury (WISCI-II), Dynamic Gait Index (DGI), and Berg Balance Scale (BBS). Results Nine participants completed all testing and training. Significant improvements in aerobic capacity (P=0.011), OGWS (P=0.023), the percentage of VO2peak utilized while walking at self-selected speed (P=0.03), and daily step counts (P=0.025) resulted following training. Conclusions The results indicate that total-body, voluntary, progressive AET is safe, feasible, and effective for improving aerobic capacity, walking speed, and select walking-related outcomes in an exclusively ambulatory SCI sample. This study suggests the potential for non-task-specific aerobic exercise to improve walking following incomplete SCI and builds a foundation for further investigation aimed at the development of exercise based rehabilitation strategies to target functionally limiting impairments in ambulatory individuals with chronic SCI. PMID:26666508

  8. Feed restriction and a diet's caloric value: The influence on the aerobic and anaerobic capacity of rats

    PubMed Central

    2012-01-01

    Background The influence of feed restriction and different diet's caloric value on the aerobic and anaerobic capacity is unclear in the literature. Thus, the objectives of this study were to determine the possible influences of two diets with different caloric values and the influence of feed restriction on the aerobic (anaerobic threshold: AT) and anaerobic (time to exhaustion: Tlim) variables measured by a lactate minimum test (LM) in rats. Methods We used 40 adult Wistar rats. The animals were divided into four groups: ad libitum commercial Purina® diet (3028.0 Kcal/kg) (ALP), restricted commercial Purina® diet (RAP), ad libitum semi-purified AIN-93 diet (3802.7 Kcal/kg) (ALD) and restricted semi-purified AIN-93 diet (RAD). The animals performed LM at the end of the experiment, 48 h before euthanasia. Comparisons between groups were performed by analysis of variance (p < 0,05). Results At the end of the experiment, the weights of the rats in the groups with the restricted diets were significantly lower than those in the groups with ad libitum diet intakes. In addition, the ALD group had higher amounts of adipose tissue. With respect to energetic substrates, the groups subjected to diet restriction had significantly higher levels of liver and muscle glycogen. There were no differences between the groups with respect to AT; however, the ALD group had lower lactatemia at the AT intensity and higher Tlim than the other groups. Conclusions We conclude that dietary restriction induces changes in energetic substrates and that ad libitum intake of a semi-purified AIN-93 diet results in an increase in adipose tissue, likely reducing the density of the animals in water and favouring their performance during the swimming exercises. PMID:22448911

  9. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.

    PubMed

    Pan, Jing; Zhong, Li; Li, Ming; Luo, Yuanyuan; Li, Guanghai

    2016-01-22

    Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template-free microwave-assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self-transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium-ion batteries, the V2O5 hollow spheres display a diameter-dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg(-1) at a current density of 50 mAg(-1) , and are better than the corresponding solid spheres and nanorod assemblies.

  10. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance.

    PubMed

    Wang, Ning; Duchamp, Martial; Dunin-Borkowski, Rafal E; Liu, Shiyu; Zeng, XianTing; Cao, Xun; Long, Yi

    2016-01-26

    Vanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τ(c) = 68°C), low luminous transmission (T(lum)), and weak solar modulating ability (ΔT(sol)). In this paper, the terbium cation (Tb(3+)) doping was first reported to reduce τ(c) and increase T(lum) of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced T(lum) and ΔT(sol) from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The T(lum) increases with continuous Tb(3+) doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials. PMID:26729057

  11. Pacing strategy and VO2 kinetics during a 1500-m race.

    PubMed

    Hanon, C; Leveque, J-M; Thomas, C; Vivier, L

    2008-03-01

    We investigated the oxygen uptake response (V.O (2)) to a 1500-m test conducted using a competition race strategy. On an outdoor track, eleven middle-distance runners performed a test to determine V.O (2max), velocity associated with V.O (2max) (v-V.O (2max)) and a supramaximal 1500-m running test (each test at least two days apart). V.O (2max) response was measured with the use of a miniaturised telemetric gas exchange system (Cosmed, K4, Roma, Italy). The 1500-m running test was performed at a mean velocity of 107. 6 + 2 % v-V.O (2max). The maximal value of oxygen uptake recorded during the 1500-m test (V.O (2peak)) was reached by subjects at 75.9 + 7.5 s (mean + SD) (i.e., 459 +/- 59 m). The time to reach V.O (2max) (TV.O (2peak)) and the start velocity (200- to 400-m after the onset of the 1500 m) expressed in % v-V.O (2max) were negatively and significantly correlated (p < 0.05), but our results indicate that a fast start does not necessarily induce a good performance. These results suggest that V.O (2max) is reached by all the subjects at the onset of a simulated 1500-m running event and are therefore in contrast with previous results obtained during treadmill running.

  12. Microstructure and Transport properties of epitaxial VO2 thin films on TiO2 substrates

    NASA Astrophysics Data System (ADS)

    Lu, Jiwei

    2008-10-01

    Vanadium oxides are paradigms of strongly correlated oxides and have attracted attention because of the metal insulator transitions (MIT) that several of the oxides and sub-oxides exhibit. In particular, VO2 has a metal--semiconductor transition at 340 K. This transition in VO2 combines the properties of a pure Mott Hubbard electronic transition with those of a Peierls structural transition. The Mott transition is responsible for the extreme speed of the optical switching that has been observed (faster than 100 fs). Understanding this transition and how to control it remains a challenge for both theory and experimental physics. We used a novel deposition technique, Reactive Bias Target Ion Beam Deposition, to grow 40 nm epitaxial VO2 thin films on rutile TiO2 substrates with various crystal orientations. X-ray diffraction (XRD) was used to explore the epitaxy of VO2 and we found that all VO2 thin films on TiO2 substrates showed tetragonal symmetry at room temperature due to the constrain from rutile substrates. We also characterized the metal-insulator transition of VO2 films as the function of the crystal orientation of rutile TiO2. We also characterized the anisotropy of VO2 thin films. In collaboration with Kevin West and Stuart Wolf, University of Virginia.

  13. Effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone and N-terminal telopeptide in the postmenopausal women

    PubMed Central

    Shin, Hyun-Jae; Lee, Ha-Yan; Cho, Hye-Young; Park, Yun-Jin; Moon, Hyung-Hoon; Lee, Sung-Hwan; Lee, Sung-Ki; Kim, Myung-Ki

    2014-01-01

    Menopause is characterized by rapid decreases in bone mineral density, aerobic fitness, muscle strength, and balance. In the present study, we investigated the effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone (FSH) and N-terminal telopeptide (NTX) in the postmenopausal women. Subjects were consisted of 20 postmenopausal women, who had not menstruated for at least 1 yr and had follicle-stimulating hormone levels > 35 mIU/L, estradiol levels< 40 pg/mL. The subjects were randomly divided into two groups: control group (n= 10), new sports tennis type exercise group (n= 10). New sports tennis type exercise was consisted of warm up (10 min), new sports tennis type exercise (40 min), cool down (10 min) 3 days a per week for 12 weeks. The aerobic capacities were increased by 12 weeks new sports tennis type exercise. New sports tennis type exercise significantly increased FSH and NTx levels, indicating biochemical markers of bone formation and resorption. These findings indicate that 12 weeks of new sports tennis type exercise can be effective in prevention of bone loss and enhancement of aerobic capacity in postmenopausal women. PMID:24877043

  14. Expression of VO2peak in Children and Youth, with Special Reference to Allometric Scaling.

    PubMed

    Loftin, Mark; Sothern, Melinda; Abe, Takashi; Bonis, Marc

    2016-10-01

    The aim of this review was to highlight research that has focused on examining expressions of peak oxygen uptake (VO2peak) in children and youth, with special reference to allometric scaling. VO2peak is considered the highest VO2 during an increasing workload treadmill or bicycle ergometer test until volitional termination. We have reviewed scholarly works identified from PubMed, One Search, EBSCOhost and Google Scholar that examined VO2peak in absolute units (L·min(-1)), relative units [body mass, fat-free mass (FFM)], and allometric expressions [mass, height, lean body mass (LBM) or LBM of the legs raised to a power function] through July 2015. Often, the objective of measuring VO2peak is to evaluate cardiorespiratory function and fitness level. Since body size (body mass and height) frequently vary greatly in children and youth, expressing VO2peak in dimensionless units is often inappropriate for comparative or explanatory purposes. Consequently, expressing VO2peak in allometric units has gained increased research attention over the past 2 decades. In our review, scaling mass was the most frequent variable employed, with coefficients ranging from approximately 0.30 to over 1.0. The wide variance is probably due to several factors, including mass, height, LBM, sex, age, physical training, and small sample size. In summary, we recommend that since skeletal muscle is paramount for human locomotion, an allometric expression of VO2peak relative to LBM is the best expression of VO2peak in children and youth.

  15. Aerobic response to exercise of the fastest land crab.

    PubMed

    Full, R J; Herreid, C F

    1983-04-01

    To view the aerobic response to exercise, the ghost crab Ocypode guadichaudii was run in a treadmill respirometer at three velocities (0.13, 0.19, and 0.28 km/h) while oxygen consumption (VO2) was monitored. A steady-state VO2 that increased linearly with velocity was attained. VO2 transient periods at the beginning and end of exercise were extremely rapid with half times from 50 to 150 s. The magnitude of oxygen deficit and debt were small and both showed increases with an increase in velocity. Oxygen debt was measured at each velocity after 4-, 10-, and 20-min exercise bouts. No change in the magnitude of oxygen debt was observed with respect to exercise duration. Maximal VO2 was 11.9 times the average resting VO2. Oxygen uptake kinetics have shown only very sluggish and reduced rates in five other more sedentary crab species previously tested. The aerobic response pattern observed in the present study is more comparable to that of exercising mammals and highly aerobic ectothermic vertebrates. This suggests that the ghost crab meets the energy demand of sustained exercise by aerobic ATP production in contrast to many other crab species.

  16. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men.

    PubMed

    Ziemann, Ewa; Grzywacz, Tomasz; Łuszczyk, Marcin; Laskowski, Radoslaw; Olek, Robert A; Gibson, Ann L

    2011-04-01

    We investigated the aerobic and anaerobic benefits of high-intensity interval training performed at a work-to-rest ratio of 1:2 because little performance enhancement data exist based on this ratio. Recreationally active male volunteers (21 years, 184 cm, 81.5 kg) were randomly assigned to a training (interval training [IT] n = 10) or control group (n = 11). Baseline assessments were repeated after the last training session. Each participant underwent basic anthropometric assessment and performed a VO2max test on an electronically braked cycle ergometer and a 30-second Wingate test. Venous samples were acquired at the antecubital vein and subsequently processed for lactate (LA); samples were obtained at rest, and 5 and 15-minute post-Wingate test. The interval training used a cycling power output equivalent to 80% of VO2max (80% p VO2max) applied for 6 90-second bouts (each followed by 180-second rest) per session, 3 sessions per week, for 6 weeks. The control group maintained their normal routine for the 6-week period. Group × time repeated-measures analyses of variance revealed that IT improved VO2max (5.5 ml · kg(-1) · min), anaerobic threshold (3.8 ml · kg(-1) · min), work output (12.5 J · kg(-1)), glycolytic work (11.5 J · kg(-1)), mean power (0.3 W · kg), peak power (0.4 W · kg(-1)), and max power (0.4 W · kg(-1)); p < 0.05. Posttesting LA was lower on average for IT at the 5-minute mark but significantly so at the 15-minute mark. Twenty-seven minutes of cycling at 80% p VO2max applied with a work-to-rest ratio of 1:2 and spread over 3 sessions per week for 6 weeks provided sufficient stimulus to significantly improve markers of anaerobic and aerobic performance in recreationally active college-aged men. Inclusion of such a protocol into a training program may rapidly restore or improve a client's or athlete's maximal functional capacity.

  17. Inhomogeneous electronic state near the insulator-to-metal transition in the correlated oxide VO2

    NASA Astrophysics Data System (ADS)

    Frenzel, A.; Qazilbash, M. M.; Brehm, M.; Chae, Byung-Gyu; Kim, Bong-Jun; Kim, Hyun-Tak; Balatsky, A. V.; Keilmann, F.; Basov, D. N.

    2009-09-01

    We investigate the percolative insulator-to-metal transition (IMT) in films of the correlated material vanadium dioxide (VO2) . Scattering-type scanning near-field infrared microscopy and atomic force microscopy were used to explore the relationship between the nucleation of metallic regions and the topography in insulating VO2 . We demonstrate that the IMT begins within 10 nm from grain boundaries and crevices by using mean curvature and statistical analysis. We also observe coexistence of insulating and metallic domains in a single crystalline grain that points to intrinsic inhomogeneity in VO2 due to competing electronic phases in the IMT regime.

  18. Influence of prior exercise on VO2 kinetics subsequent exhaustive rowing performance.

    PubMed

    Sousa, Ana; Ribeiro, João; Sousa, Marisa; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2014-01-01

    Prior exercise has the potential to enhance subsequent performance by accelerating the oxygen uptake (VO2) kinetics. The present study investigated the effects of two different intensities of prior exercise on pulmonary VO2 kinetics and exercise time during subsequent exhaustive rowing exercise. It was hypothesized that in prior heavy, but not prior moderate exercise condition, overall VO2 kinetics would be faster and the VO2 primary amplitude would be higher, leading to longer exercise time at VO2max. Six subjects (mean ± SD; age: 22.9±4.5 yr; height: 181.2±7.1 cm and body mass: 75.5±3.4 kg) completed square-wave transitions to 100% of VO2max from three different conditions: without prior exercise, with prior moderate and heavy exercise. VO2 was measured using a telemetric portable gas analyser (K4b(2), Cosmed, Rome, Italy) and the data were modelled using either mono or double exponential fittings. The use of prior moderate exercise resulted in a faster VO2 pulmonary kinetics response (τ1 = 13.41±3.96 s), an improved performance in the time to exhaustion (238.8±50.2 s) and similar blood lactate concentrations ([La(-)]) values (11.8±1.7 mmol.L(-1)) compared to the condition without prior exercise (16.0±5.56 s, 215.3±60.1 s and 10.7±1.2 mmol.L(-1), for τ1, time sustained at VO2max and [La(-)], respectively). Performance of prior heavy exercise, although useful in accelerating the VO2 pulmonary kinetics response during a subsequent time to exhaustion exercise (τ1 = 9.18±1.60 s), resulted in a shorter time sustained at VO2max (155.5±46.0 s), while [La(-)] was similar (13.5±1.7 mmol.L(-1)) compared to the other two conditions. Although both prior moderate and heavy exercise resulted in a faster pulmonary VO2 kinetics response, only prior moderate exercise lead to improved rowing performance. PMID:24404156

  19. Influence of prior exercise on VO2 kinetics subsequent exhaustive rowing performance.

    PubMed

    Sousa, Ana; Ribeiro, João; Sousa, Marisa; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2014-01-01

    Prior exercise has the potential to enhance subsequent performance by accelerating the oxygen uptake (VO2) kinetics. The present study investigated the effects of two different intensities of prior exercise on pulmonary VO2 kinetics and exercise time during subsequent exhaustive rowing exercise. It was hypothesized that in prior heavy, but not prior moderate exercise condition, overall VO2 kinetics would be faster and the VO2 primary amplitude would be higher, leading to longer exercise time at VO2max. Six subjects (mean ± SD; age: 22.9±4.5 yr; height: 181.2±7.1 cm and body mass: 75.5±3.4 kg) completed square-wave transitions to 100% of VO2max from three different conditions: without prior exercise, with prior moderate and heavy exercise. VO2 was measured using a telemetric portable gas analyser (K4b(2), Cosmed, Rome, Italy) and the data were modelled using either mono or double exponential fittings. The use of prior moderate exercise resulted in a faster VO2 pulmonary kinetics response (τ1 = 13.41±3.96 s), an improved performance in the time to exhaustion (238.8±50.2 s) and similar blood lactate concentrations ([La(-)]) values (11.8±1.7 mmol.L(-1)) compared to the condition without prior exercise (16.0±5.56 s, 215.3±60.1 s and 10.7±1.2 mmol.L(-1), for τ1, time sustained at VO2max and [La(-)], respectively). Performance of prior heavy exercise, although useful in accelerating the VO2 pulmonary kinetics response during a subsequent time to exhaustion exercise (τ1 = 9.18±1.60 s), resulted in a shorter time sustained at VO2max (155.5±46.0 s), while [La(-)] was similar (13.5±1.7 mmol.L(-1)) compared to the other two conditions. Although both prior moderate and heavy exercise resulted in a faster pulmonary VO2 kinetics response, only prior moderate exercise lead to improved rowing performance.

  20. Electrical control of terahertz nano antennas on VO2 thin film.

    PubMed

    Jeong, Young-Gyun; Bernien, Hannes; Kyoung, Ji-Soo; Park, Hyeong-Ryeol; Kim, Hyun-Sun; Choi, Jae-Wook; Kim, Bong-Jun; Kim, Hyun-Tak; Ahn, Kwang Jun; Kim, Dai-Sik

    2011-10-24

    We demonstrate an active metamaterial device that allows to electrically control terahertz transmission over more than one order of magnitude. Our device consists of a lithographically defined gold nano antenna array fabricated on a thin film of vanadium dioxide (VO(2)), a material that possesses an insulator to metal transition. The nano antennas let terahertz (THz) radiation funnel through when the VO(2) film is in the insulating state. By applying a dc-bias voltage through our device, the VO(2) becomes metallic. This electrically shorts the antennas and therefore switches off the transmission in two distinct regimes: reversible and irreversible switching. PMID:22108973

  1. Effects of aerobic fitness on oxygen uptake kinetics in heavy intensity swimming.

    PubMed

    Reis, Joana F; Alves, Francisco B; Bruno, Paula M; Vleck, Veronica; Millet, Gregoire P

    2012-05-01

    This study aimed to characterise both the VO2 kinetics within constant heavy-intensity swimming exercise, and to assess the relationships between VO2 kinetics and other parameters of aerobic fitness, in well-trained swimmers. On separate days, 21 male swimmers completed: (1) an incremental swimming test to determine their maximal oxygen uptake (VO2 max), first ventilatory threshold (VT), and the velocity associated with VO2max (vVO(2 max)) and (2) two square-wave transitions from rest to heavy-intensity exercise, to determine their VO2 kinetics. All the tests involved breath-by-breath analysis of freestyle swimming using a swimming snorkel. VO2 kinetics was modelled with two exponential functions. The mean values for the incremental test were 56.0 ± 6.0 ml min(-1) kg(-1), 1.45 ± 0.08 m s(-1); and 42.1 ± 5.7 ml min(-1) kg(-1) for VO2 max, vVO(2 max) and VT, respectively. For the square-wave transition, the time constant of the primary phase (sp) averaged 17.3 ± 5.4 s and the relevant slow component (A'sc) averaged 4.8 ± 2.9 ml min(-1) kg(-1) [representing 8.9% of the end-exercise VO2 (%A'sc)]. sp was correlated with vVO(2 max) (r = -0.55, P = 0.01), but not with either VO2max (r = 0.05, ns) or VT (r = 0.14, ns). The %A' sc did not correlate with either VO2max (r = -0.14, ns) or vVO(2 max) (r = 0.06, ns), but was inversely related with VT (r = -0.61, P < 0.01). This study was the first to describe the VO2 kinetics in heavy-intensity swimming using specific swimming exercise and appropriate methods. As has been demonstrated in cycling, faster VO2 kinetics allow higher aerobic power outputs to be attained. The slow component seems to be reduced in swimmers with higher ventilatory thresholds.

  2. Does the aerobic capacity of fish muscle change with growth rates?

    PubMed

    Pelletier, D; Guderley, H; Dutil, J D

    1993-08-01

    To ascertain whether growth rate modifies the oxidative capacity of fish white muscle, we examined the effects of individual growth rate on the activities of four mitochondrial enzymes in white muscle of the fast growing Atlantic cod,Gadus morhua. Growth rates were individually monitored in cod held at three acclimation temperatures during experiments repeated in four seasons. The size dependence of citrate synthase (CS), cytochrome C oxidase (CCO) and β-hydroxyacyl CoA dehydrogenase (HOAD) activities was established using wild cod ranging from 115 to 17,350 g. Given their negative allometry, CS and CCO activities in the experimental cod were corrected to those expected for a 1.2 kg animal. HOAD activities did not change with size. The specific activities of CCO and CS were positively correlated with growth rate. However, for both enzymes, season explained more of the variability than growth rate or temperature. Season was the only factor to significantly affect the activity of HOAD, while temperature and season interacted to determine glutamate dehydrogenase activity. CS activity was positively correlated with the initial condition of the cod, which differed among the seasons. The other enzymes did not show this relationship. The independent changes of these enzymes suggest that mitochondria undergo qualitative modifications with changes in growth rate, season and size. Although growth rate and the activities of CCO and CS are positively correlated, the activity of the mitochondrial enzymes is more affected by size, physical condition and season. PMID:24202687

  3. A comparative study of aerobic capacity and fitness in three different horse breeds (Andalusian, Arabian and Anglo-Arabian).

    PubMed

    Castejón, F; Rubio, D; Tovar, P; Vinuesa, M; Riber, C

    1994-11-01

    Aerobic capacity and fitness was studied in three different horse breeds (Andalusian, Arabian and Anglo-Arabian) using a four-level exercise test of gradually increasing intensity (15, 20, 25 and 30 km/h). The lactate concentration at the first three exercise levels was significantly lower for Arabian and Anglo-Arabian horses relative to Andalusian horses, but similar for the three breeds at the last level. Arabian and Anglo-Arabian horses reached a higher rate than Andalusian horses at plasma lactate concentration of 2 mmol/l (VLA2) and 4 mmol/l (VLA4). Andalusian horses exhibited a significantly lower heart rate at rest than the other two breeds, but the differences virtually disappeared at 15 km/h. At 20 km/h, Andalusian horses reached a higher heart rate than Arabian and Anglo-Arabian horses; at 25 km/h, however, their heart rate only exceeded that of Anglo-Arabian horses. Finally, no significant differences between breeds were observed at 30 km/h. No differences between breeds as regards heart rate were found if this was expressed as a function of lactate plasma concentrations of 2 mmol/l (HRLA2) and 4 mmol/l (HRLA4). At a heart rate of 150 (VHR150) and 200 beta/min (VHR200), Andalusian horses achieved the lowest speeds.

  4. "Weighing" the effects of exercise and intrinsic aerobic capacity: are there beneficial effects independent of changes in weight?

    PubMed

    Thyfault, John P; Wright, David C

    2016-09-01

    It has been known for centuries that regularly performed exercise has beneficial effects on metabolic health. Owing to its central role in locomotion and the fact that it accounts for a large majority of whole-body glucose disposal and fatty acid oxidation, the effects of exercise on skeletal muscle has been a central focus in exercise physiology research. With this being said it is becoming increasingly well recognized that both adipose tissue and liver metabolism are robustly modified by exercise, especially in conditions of obesity and insulin resistance. One of the difficult questions to address is if the effects of exercise are direct or occur secondary to exercise-induced weight loss. The purpose of this review is to highlight recent work that has attempted to tease out the protective effects of exercise, or intrinsic aerobic capacity, against metabolic and inflammatory challenges as it relates to the treatment and prevention of obesity and insulin resistance. Recent studies reporting improvements in liver and adipose tissue insulin action following a single bout of exercise will also be discussed. The research highlighted in this review sheds new insight into protective, anti-inflammatory effects of exercise that occur largely independent of changes in adiposity and body weight. PMID:27512815

  5. Influence of thermal boundary conditions on the current-driven resistive transition in VO2 microbridges

    NASA Astrophysics Data System (ADS)

    Manca, Nicola; Kanki, Teruo; Tanaka, Hidekazu; Marré, Daniele; Pellegrino, Luca

    2015-10-01

    We investigate the resistive switching behaviour of VO2 microbridges under current bias as a function of temperature and thermal coupling with the heat bath. Upon increasing the electrical current bias, the formation of the metallic phase can progress smoothly or through sharp jumps. The magnitude and threshold current values of these sharp resistance drops show random behaviour and are dramatically influenced by thermal dissipation conditions. Our results also evidence how the propagation of the metallic phase induced by electrical current in VO2, and thus the shape of the resulting high-conductivity path, are not predictable. We discuss the origin of the switching events through a simple electro-thermal model based on the domain structure of VO2 films that can be useful to improve the stability and controllability of future VO2-based devices.

  6. Temperature-driven and photo-induced MIT behaviors of VO2 nanowires

    NASA Astrophysics Data System (ADS)

    Sohn, Ahrum; Kim, Dong-Wook; Byun, Ji-Won; Baik, Jeong Min

    2014-03-01

    VO2 shows a metal-insulator transition (MIT) and structural phase transition (SPT) at critical temperature (Tc) of 343K. It has been known that the MIT and SPT behaviors of VO2 can be tuned by external stimuli such as light, electric-field, and strain. We carried out comparative studies of MIT behaviors of VO2 nanowires during heating-cooling cycles with and without illumination using several light sources (red, blue, and UV). Light can induce change in Tc and hysteresis width of the resistance change. We have investigated influences of light on SPT during MIT. In this presentation, we will discuss possible physical origins for the photo-induced effects on the MIT behaviors of the VO2 nanowires.

  7. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  8. Selective scanning tunneling microscope light emission from rutile phase of VO2.

    PubMed

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-28

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes. PMID:27460183

  9. Selective scanning tunneling microscope light emission from rutile phase of VO2

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-01

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes.

  10. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    PubMed

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT. PMID:26861983

  11. Aerobic Capacity, Activity Levels and Daily Energy Expenditure in Male and Female Adolescents of the Kenyan Nandi Sub-Group

    PubMed Central

    Gibson, Alexander R.; Ojiambo, Robert; Konstabel, Kenn; Lieberman, Daniel E.; Reilly, John J.; Speakman, John R.; Pitsiladis, Yannis P.

    2013-01-01

    The relative importance of genetic and socio-cultural influences contributing to the success of east Africans in endurance athletics remains unknown in part because the pre-training phenotype of this population remains incompletely assessed. Here cardiopulmonary fitness, physical activity levels, distance travelled to school and daily energy expenditure in 15 habitually active male (13.9±1.6 years) and 15 habitually active female (13.9±1.2) adolescents from a rural Nandi primary school are assessed. Aerobic capacity () was evaluated during two maximal discontinuous incremental exercise tests; physical activity using accelerometry combined with a global positioning system; and energy expenditure using the doubly labelled water method. The of the male and female adolescents were 73.9±5.7 ml. kg−1. min−1 and 61.5±6.3 ml. kg−1. min−1, respectively. Total time spent in sedentary, light, moderate and vigorous physical activities per day was 406±63 min (50% of total monitored time), 244±56 min (30%), 75±18 min (9%) and 82±30 min (10%). Average total daily distance travelled to and from school was 7.5±3.0 km (0.8–13.4 km). Mean daily energy expenditure, activity-induced energy expenditure and physical activity level was 12.2±3.4 MJ. day−1, 5.4±3.0 MJ. day−1 and 2.2±0.6. 70.6% of the variation in was explained by sex (partial R2 = 54.7%) and body mass index (partial R2 = 15.9%). Energy expenditure and physical activity variables did not predict variation in once sex had been accounted for. The highly active and energy-demanding lifestyle of rural Kenyan adolescents may account for their exceptional aerobic fitness and collectively prime them for later training and athletic success. PMID:23805234

  12. Comparative Effects of Vigorous-Intensity and Low-Intensity Blood Flow Restricted Cycle Training and Detraining on Muscle Mass, Strength, and Aerobic Capacity.

    PubMed

    Kim, Daeyeol; Singh, Harshvardhan; Loenneke, Jeremy P; Thiebaud, Robert S; Fahs, Christopher A; Rossow, Lindy M; Young, Kaelin; Seo, Dong-Il; Bemben, Debra A; Bemben, Michael G

    2016-05-01

    Traditional high-intensity aerobic training has been shown to improve muscle protein synthesis and aerobic capacity; however, recent research indicates that low-intensity aerobic training with blood flow restriction (BFR) may have similar effects. The purpose of this study was to compare the effects of vigorous-intensity (VI) cycling vs. low-intensity cycling with BFR (LI-BFR) on muscle mass, strength, and aerobic capacity after training and subsequent detraining. Thirty-one physically active subjects were assigned to one of 3 groups: VI (n = 10, 60-70% heart rate reserve [HRR]), LI-BFR (n = 11, 30% HRR with BFR at 160-180 mm Hg), and no exercise control (n = 10, no exercise). Subjects in VI and LI-BFR cycled 3 times per week for 6 weeks (total 18 sessions). Body composition, muscle mass, strength, and aerobic capacity were measured pre, post, and after 3 weeks of detraining. A group × time interaction (p = 0.019) effect for both knee flexion and leg lean mass was found. For both VI and LI-BFR groups, knee flexion strength was significantly increased between pre and post (p = 0.024, p = 0.01) and between pre and 3 week-post (p = 0.039, p = 0.003), respectively. For the LI-BFR group, leg lean mass was significantly increased between pre and 3 week-post (p = 0.024) and between post and 3 week-post (p = 0.013). However, there were no significant differences between groups for any variables. The LI-BFR elicits an increase in the knee flexion muscle strength over time similar to the VI. An increase in the leg lean mass over time was seen in the LI-BFR, but not in VI and CON.

  13. Polycrystalline VO2 thin films via femtosecond laser processing of amorphous VO x

    NASA Astrophysics Data System (ADS)

    Charipar, N. A.; Kim, H.; Breckenfeld, E.; Charipar, K. M.; Mathews, S. A.; Piqué, A.

    2016-05-01

    Femtosecond laser processing of pulsed laser-deposited amorphous vanadium oxide thin films was investigated. Polycrystalline VO2 thin films were achieved by femtosecond laser processing in air at room temperature. The electrical transport properties, crystal structure, surface morphology, and optical properties were characterized. The laser-processed films exhibited a metal-insulator phase transition characteristic of VO2, thus presenting a pathway for the growth of crystalline vanadium dioxide films on low-temperature substrates.

  14. Resistance modulation in VO2 nanowires induced by an electric field via air-gap gates

    NASA Astrophysics Data System (ADS)

    Kanki, Teruo; Chikanari, Masashi; Wei, Tingting; Tanaka, Hidekazu; The Institute of Scientific; Industrial Research Team

    Vanadium dioxide (VO2) shows huge resistance change with metal-insulator transition (MIT) at around room temperature. Controlling of the MIT by applying an electric field is a topical ongoing research toward the realization of Mott transistor. In this study, we have successfully switched channel resistance of VO2 nano-wire channels by a pure electrostatic field effect using a side-gate-type field-effect transistor (SG-FET) viaair gap and found that single crystalline VO2 nanowires and the channels with narrower width enhance transport modulation rate. The rate of change in resistance ((R0-R)/R, where R0 and R is the resistance of VO2 channel with off state and on state gate voltage (VG) , respectively) was 0.42 % at VG = 30 V in in-plane poly-crystalline VO2 channels on Al2O3(0001) substrates, while the rate in single crystalline channels on TiO2 (001) substrates was 3.84 %, which was 9 times higher than that using the poly-crystalline channels. With reducing wire width from 3000 nm to 400 nm of VO2 on TiO2 (001) substrate, furthermore, resistance modulation ratio enhanced from 0.67 % to 3.84 %. This change can not be explained by a simple free-electron model. In this presentation, we will compare the electronic properties between in-plane polycrystalline VO2 on Al2O3 (0001) and single crystalline VO2 on TiO2 (001) substrates, and show experimental data in detail..

  15. Broadband terahertz generation using the semiconductor-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Kim, Heungsoo; Mathews, Scott A.; Piqué, Alberto

    2016-01-01

    We report the design, fabrication, and characterization of broadband terahertz emitters based on the semiconductor-metal transition in thin film VO2 (vanadium dioxide). With the appropriate geometry, picosecond electrical pulses are generated by illuminating 120 nm thick VO2 with 280 fs pulses from a femtosecond laser. These ultrafast electrical pulses are used to drive a simple dipole antenna, generating broadband terahertz radiation.

  16. Size and composition-controlled fabrication of VO2 nanocrystals by terminated cluster growth

    SciTech Connect

    Anders, Andre; Slack, Jonathan

    2013-05-14

    A physical vapor deposition-based route for the fabrication of VO2 nanoparticles is demonstrated, consisting of reactive sputtering and vapor condensation at elevated pressures. The oxidation of vanadium atoms is an efficient heterogeneous nucleation method, leading to high nanoparticle throughtput. Fine control of the nanoparticle size and composition is obtained. Post growth annealing leads to crystalline VO2 nanoparticles with optimum thermocromic and plasmonic properties.

  17. Patterns of Senescence in Human Cardiovascular Fitness: VO2max in Subsistence and Industrialized Populations

    PubMed Central

    Pisor, Anne C.; Gurven, Michael; Blackwell, Aaron D.; Kaplan, Hillard; Yetish, Gandhi

    2014-01-01

    Objectives This study explores whether cardiovascular fitness levels and senescent decline are similar in the Tsimane of Bolivia and Canadians, as well as other subsistence and industrialized populations. Among Tsimane, we examine whether morbidity predicts lower levels and faster decline of cardiovascular fitness, or whether their lifestyle (e.g., high physical activity) promotes high levels and slow decline. Alternatively, high activity levels and morbidity might counterbalance such that Tsimane fitness levels and decline are similar to those in industrialized populations. Methods Maximal oxygen uptake (VO2max) was estimated using a step test heart rate method for 701 participants. We compared these estimates to the Canadian Health Measures Survey and previous studies in industrialized and subsistence populations. We evaluated whether health indicators and proxies for market integration were associated with VO2max levels and rate of decline for the Tsimane. Results The Tsimane have significantly higher levels of VO2max and slower rates of decline than Canadians; initial evidence suggests differences in VO2max levels between other subsistence and industrialized populations. Low hemoglobin predicts low VO2max for Tsimane women while helminth infection predicts high VO2max for Tsimane men, though results might be specific to the VO2max scaling parameter used. No variables tested interact with age to moderate decline. Conclusions The Tsimane demonstrate higher levels of cardiovascular fitness than industrialized populations, but levels similar to other subsistence populations. The high VO2max of Tsimane is consistent with their high physical activity and few indicators of cardiovascular disease, measured in previous studies. PMID:24022886

  18. Correlation between surface morphology and electrical properties of VO2 films grown by direct thermal oxidation method

    NASA Astrophysics Data System (ADS)

    Yoon, Joonseok; Park, Changwoo; Park, Sungkyun; Mun, Bongjin Simon; Ju, Honglyoul

    2015-10-01

    We investigate surface morphology and electrical properties of VO2 films fabricated by direct thermal oxidation method. The VO2 film prepared with oxidation temperature at 580 °C exhibits excellent qualities of VO2 characteristics, e.g. a metal-insulator transition (MIT) near 67 °C, a resistivity ratio of ∼2.3 × 104, and a bandgap of 0.7 eV. The analysis of surface morphology with electrical resistivity of VO2 films reveals that the transport properties of VO2 films are closely related to the grain size and surface roughness that vary with oxidation annealing temperatures.

  19. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Hyojin; Choi, Minseok; Lim, Tae-Won; Kwon, Hyunah; Ihm, Kyuwook; Kim, Jong Kyu; Choi, Si-Young; Son, Junwoo

    2016-10-01

    Hydrogen, the smallest and the lightest atomic element, is reversibly incorporated into interstitial sites in vanadium dioxide (VO2), a correlated oxide with a 3d1 electronic configuration, and induces electronic phase modulation. It is widely reported that low hydrogen concentrations stabilize the metallic phase, but the understanding of hydrogen in the high doping regime is limited. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process allows us to elucidate electronic phase modulation of vanadium oxyhydride, demonstrating two-step insulator (VO2)-metal (HxVO2)-insulator (HVO2) phase modulation during inter-integer d-band filling. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.

  20. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows.

    PubMed

    Batista, Carlos; Ribeiro, Ricardo M; Teixeira, Vasco

    2011-01-01

    Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elements--regardless of the concentration, within the studied range-- formed a solid solution with VO2, which was the only compound observed by X-ray diffractometry. Nb showed a clear detrimental effect on the crystal structure of VO2. The undoped films presented a marked thermochromic behavior, specially the one prepared by pulsed-DC sputtering. The dopants effectively decreased the transition of VO2 to the proximity of room temperature. However, the IR modulation efficiency is markedly affected as a consequence of the increased metallic character of the semiconducting phase. Tungsten proved to be the most effective element on the reduction of the semiconducting-metal transition temperature, while Mo and Nb showed similar results with the latter being detrimental to the thermochromism. PMID:21711813

  1. Tailoring of the thermomechanical performance of VO2 nanowire bimorph actuators by ion implantation

    NASA Astrophysics Data System (ADS)

    Karl, H.; Peyinghaus, S. C.

    2015-12-01

    Vanadium dioxide VO2 nanowire bimorph actuators work on the basis of the large abrupt length change at the metal-insulator phase transition (MIT). A key parameter for the bimorph performance and efficiency is the bending curvature and the width of the temperature hysteresis of the MIT which is inherently large for single domain VO2 metal side coated nanowires. In this work we present single-clamped Ir side coated VO2 bimorphs which show unprecedented high bending curvatures of up to 105 m-1 and new type of side ion-implanted VO2 nanowire bimorph actuators with a nearly completely suppressed temperature hysteresis. It is assumed that ion-beam induced radiation defects in the VO2 crystal structure act as nucleation sites for the MIT. Moreover it will be shown that mechanical strain intentionally built-in during VO2 nanowire bimorph fabrication allows to direct phase transformation via a strain stabilized metastable phase and thus allows to control bending response on temperature change.

  2. Straining to observe the M2 phase in epitaxial VO2 films

    NASA Astrophysics Data System (ADS)

    Quackenbush, Nicholas; Wahila, Matthew; Piper, Louis; Paik, Hanjong; Holtz, Megan; Huang, Xin; Brock, Joel; Muller, David; Schlom, Darrell; Woicik, Joseph; Arena, Dario

    It has been more than a decade since it was shown that the transition temperature TMIT of VO2 in epitaxial thin films can be tuned by compressive and tensile strain along the rutile c-axis. Since this discovery, uniaxial strain studies of VO2 nanobeams have demonstrated that compressive strain indeed lowers TMIT, thus stabilizing the metallic rutile phase. However, even minor tensile strain induces an intermediate insulating monoclinic M2 phase. Whether this phase can be stabilized in thin films remains contentious owing to the constraints of sample and/or interface quality. Here, we present hard x-ray photoelectron spectroscopy and temperature-dependent soft x-ray absorption spectroscopy of high quality ultrathin epitaxial VO2 films on TiO2 (001) and (100) substrates. The VO2/TiO2(001) are absent of intermediate phases and maintain a MIT similar to unstrained VO2, while the VO2/TiO2(100) films display a stable M2 phase between the M1 and rutile endpoint phases. We discuss our findings in terms of differences between uniaxial and biaxial strain. This research is supported by the National Science Foundation under DMR-1409912.

  3. Band Theory for the Electronic and Magnetic Properties of VO2 Phases

    NASA Astrophysics Data System (ADS)

    Shen, Xiao; Xu, Sheng; Hallman, Kent; Haglund, Richard; Pantelides, Sokrates

    VO2 is widely studied for the insulator-metal transition between the monoclinic M1 (insulator) and rutile R (metal) phases. Recent experiments show that in addition to the M1 and R phases, VO2 has a rich phase diagram including a recently identified metallic monoclinic phase, making the material particularly intriguing. The origin of the band gap in the insulating phase of VO2 has been a subject of debate. It was suggested that the insulating phase cannot be described by band theory and thus strong correlations must be invoked. However, recent band calculations using density functional theory (DFT) with a hybrid functional and standard pseudopotentials correctly obtains a band gap for the M1 insulating phase. Subsequent calculations, however, found that the magnetic properties of VO2 phases are not correctly described by such calculations. Here we present DFT calculations using a tuned hybrid functional and hard pseudopotentials that reproduce both the band gaps and the magnetic properties of the known VO2 phases. Thus, it is appropriate to use band theory to describe VO2 phases without invoking strong correlations. Furthermore, using the band theory treatment, we identify a candidate for the metallic monoclinic phase. Doe DE-FG02-09ER46554, NSF EECS-1509740.

  4. Influence of lattice distortion on phase transition properties of polycrystalline VO2 thin film

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen; Yu, Yonghao

    2016-08-01

    In this work, high power impulse magnetron sputtering was used to control the lattice distortion in polycrystalline VO2 thin film. SEM images revealed that all the VO2 thin films had crystallite sizes of below 20 nm, and similar configurations. UV-vis-near IR transmittance spectra measured at different temperatures showed that most of the as-deposited films had a typical metal-insulator transition. Four-point probe resistivity results showed that the transition temperature of the films varied from 54.5 to 32 °C. The X-ray diffraction (XRD) patterns of the as-deposited films revealed that most were polycrystalline monoclinic VO2. The XRD results also confirmed that the lattice distortions in the as-deposited films were different, and the transition temperature decreased with the difference between the interplanar spacing of the as-deposited thin film and standard rutile VO2. Furthermore, a room temperature rutile VO2 thin film was successfully synthesized when this difference was small enough. Additionally, XRD patterns measured at varied temperatures revealed that the phase transition process of the polycrystalline VO2 thin film was a coordinative deformation between grains with different orientations. The main structural change during the phase transition was a gradual shift in interplanar spacing with temperature.

  5. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films.

    PubMed

    Yoon, Hyojin; Choi, Minseok; Lim, Tae-Won; Kwon, Hyunah; Ihm, Kyuwook; Kim, Jong Kyu; Choi, Si-Young; Son, Junwoo

    2016-10-01

    Hydrogen, the smallest and the lightest atomic element, is reversibly incorporated into interstitial sites in vanadium dioxide (VO2), a correlated oxide with a 3d(1) electronic configuration, and induces electronic phase modulation. It is widely reported that low hydrogen concentrations stabilize the metallic phase, but the understanding of hydrogen in the high doping regime is limited. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process allows us to elucidate electronic phase modulation of vanadium oxyhydride, demonstrating two-step insulator (VO2)-metal (HxVO2)-insulator (HVO2) phase modulation during inter-integer d-band filling. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.

  6. VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport.

    PubMed

    Ade, Carl J; Broxterman, Ryan M; Barstow, Thomas J

    2015-07-01

    Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health. PMID:25380479

  7. Formation energies of intrinsic point defects in monoclinic VO2 studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Cui, Yuanyuan; Liu, Bin; Chen, Lanli; Luo, Hongjie; Gao, Yanfeng

    2016-10-01

    VO2 is an attractive candidate for intelligent windows and thermal sensors. There are challenges for developing VO2-based devices, since the properties of monoclinic VO2 are very sensitive to its intrinsic point defects. In this work, the formation energies of the intrinsic point defects in monoclinic VO2 were studied through the first-principles calculations. Vacancies, interstitials, as well as antisites at various charge states were taken into consideration, and the finite-size supercell correction scheme was adopted as the charge correction scheme. Our calculation results show that the oxygen interstitial and oxygen vacancy are the most abundant intrinsic defects in the oxygen rich and oxygen deficient condition, respectively, indicating a consistency with the experimental results. The calculation results suggest that the oxygen interstitial or oxygen vacancy is correlated with the charge localization, which can introduce holes or electrons as free carriers and subsequently narrow the band gap of monoclinic VO2. These calculations and interpretations concerning the intrinsic point defects would be helpful for developing VO2-based devices through defect modifications.

  8. VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport.

    PubMed

    Ade, Carl J; Broxterman, Ryan M; Barstow, Thomas J

    2015-07-01

    Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health.

  9. Training effects on endurance capacity in maximal intermittent exercise: comparison between continuous and interval training.

    PubMed

    Tanisho, Kei; Hirakawa, Kazufumi

    2009-11-01

    The purpose of this study was to examine the effects of 2 different training regimens, continuous (CT) and interval (IT), on endurance capacity in maximal intermittent exercise. Eighteen lacrosse players were divided into CT (n = 6), IT (n = 6), and nontraining (n = 6) groups. Both training groups trained for 3 days per week for 15 weeks using bicycle ergometers. Continuous training performed continuous aerobic training for 20-25 minutes, and IT performed high-intensity pedaling comprising 10 sets of 10-second maximal pedaling with 20-second recovery periods. Maximal anaerobic power, maximal oxygen uptake (V(O2max)), and intermittent power output were measured before and after the training period. The intermittent exercise test consisted of a set of ten 10-second maximal sprints with 40-second intervals. Maximal anaerobic power significantly increased in IT (p aerobic training reduced lactate production and increased the mean power output, but there was little effect on high-power endurance capacity in maximal intermittent exercise. In contrast, although lactate production did not decrease, IT improved fatigability and mean power output in the last stage. These results indicated that the endurance capacities for maximal intermittent and continuous exercises were not identical. Ball game players should therefore improve their endurance capacity with high-intensity intermittent exercise, and it is insufficient to assess their capacity with only V(O2max) or continuous exercise tests.

  10. Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior.

    PubMed

    Xie, Junfeng; Wu, Changzheng; Hu, Shuanglin; Dai, Jun; Zhang, Ning; Feng, Jun; Yang, Jinlong; Xie, Yi

    2012-04-14

    Modulating the interaction between small gas molecules and solid host materials is becoming increasingly important for the future society due to the alternative energy resources especially for the hydrogen energy. As is known, two catalogues of materials such as two-dimensional (2D) lamellar cavity structures and three-dimensional (3D) infinite tunnel structures have received intensive considerations during the past decades. Herein, we put forward a new alternative that the solid materials with synergic effects of grain-boundary-rich (GBR) structure and 3D hierarchical hollow structure would also be a promising candidate for modulating the gas molecules in solid adsorbents. As expected, our constructed novel 3D hollow hierarchitectures with GBR shells standing on the hollow spherical cavity indeed resulted in the enhanced hydrogen adsorption behavior. The as-prepared 3D hollow hierarchitectures were very uniform in large scale, and the very simple reaction process offers high convenience, short reaction time, and no need for any complex manipulations or equipments. The hollow outlook of the rutile VO(2)(R) 3D hierarchitectures is the reminiscence of the hollow cavity of nsutite-type VO(2), while the formation of the VO(2)(R) GBR structure is attributed to volume shrink from a unique intergrowth structure of nsutite-type VO(2). The novel gas modulation model with the synergic effect of GBR structure and hierarchical hollow structure may pave a new way for developing materials in energy and environmental fields in the near future.

  11. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  12. Critical velocity, anaerobic distance capacity, maximal instantaneous velocity and aerobic inertia in sprint and endurance young swimmers.

    PubMed

    Zacca, Rodrigo; Wenzel, Bruno München; Piccin, Jeferson Steffanello; Marcilio, Nilson Romeu; Lopes, André Luiz; de Souza Castro, Flávio Antônio

    2010-09-01

    Critical velocity (CV), anaerobic distance capacity (ADC), maximal instantaneous velocity (V (max)), and aerobic inertia (tau) were calculated from two (CV(2par) and ADC(2par)), three (CV(3par), ADC(3par), and V (max 3par)), and four-parameter model data (CV(4par), ADC(4par), V (max 4par), and tau), which were obtained from six different times and distances (50, 100, 200, 400, 800, and 1,500 m) swum in front crawl stroke under maximal intensity. Fourteen swimmers (14-15-year-old; sprint and endurance groups, each group n = 7) volunteered in this study. CV values were not influenced by the groups. The model effects showed that CV(2par) was higher than CV(3par) and CV(4par) regardless of the group used. In addition, CV(3par) and CV(4par) were similar. ADC seems to be better estimated using both three- and four-parameter models. V (max) was higher in the sprint group regardless of the model used. The models effects showed that the V (max 4par) was higher than the V (max 3par) regardless of the group. Sprint and endurance groups showed similar tau values. The analysis of the models (F test, coefficient of determination R (2), and adjusted coefficient of determination R (adjusted) (2) ) showed that the three-parameter model was more appropriate among the applied models. Although the four-parameter model showed better correlation for the endurance group, the inclusion of tau (fourth parameter) did not significantly improve the quality of adjustment. However, it is important to emphasize the availability of another parameter for the study of bioenergetics in swimming and other sports.

  13. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice.

    PubMed

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min(-1) speed and increases by 3 m.min(-1) every 3 min. (b) a ramp protocol with slow acceleration (3 m.min(-2)), and (c) a ramp protocol with fast acceleration (12 m.min(-2)). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg (0.75).min(-1)) for the 3 m.min(-2) 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l(-1) and a respiratory exchange ratio >1). The total duration of the 3 m.min(-2) 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope. PMID:27621709

  14. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice

    PubMed Central

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L.; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min−1 speed and increases by 3 m.min−1 every 3 min. (b) a ramp protocol with slow acceleration (3 m.min−2), and (c) a ramp protocol with fast acceleration (12 m.min−2). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg 0.75.min−1) for the 3 m.min−2 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l−1 and a respiratory exchange ratio >1). The total duration of the 3 m.min−2 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope. PMID:27621709

  15. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice.

    PubMed

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min(-1) speed and increases by 3 m.min(-1) every 3 min. (b) a ramp protocol with slow acceleration (3 m.min(-2)), and (c) a ramp protocol with fast acceleration (12 m.min(-2)). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg (0.75).min(-1)) for the 3 m.min(-2) 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l(-1) and a respiratory exchange ratio >1). The total duration of the 3 m.min(-2) 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope.

  16. The role of cadence on the VO2 slow component in cycling and running in triathletes.

    PubMed

    Billat, V L; Mille-Hamard, L; Petit, B; Koralsztein, J P

    1999-10-01

    The purpose of this study was to compare the effect of two different types of cyclic severe exercise (running and cycling) on the VO2 slow component. Moreover we examined the influence of cadence of exercise (freely chosen [FF] vs. low frequency [LF]) on the hypothesis that: 1) a stride frequency lower than optimal and 2) a pedalling frequency lower than FF one could induce a larger and/or lower VO2 slow component. Eight triathletes ran and cycled to exhaustion at a work-rate corresponding to the lactate threshold + 50% of the difference between the work-rate associated with VO2max and the lactate threshold (delta 50) at a freely chosen (FF) and low frequency (LF: - 10 % of FF). The time to exhaustion was not significantly different for both types of exercises and both cadences (13 min 39 s, 15 min 43 s, 13 min 32 s, 15 min 05 s for running at FF and LF and cycling at FF and LF, respectively). The amplitude of the VO2 slow component (i.e. difference between VO2 at the last and the 3rd min of the exercise) was significantly smaller during running compared with cycling, but there was no effect of cadence. Consequently, there was no relationship between the magnitude of the VO2 slow component and the time to fatigue for a severe exercise (r = 0.20, p = 0.27). However, time to fatigue was inversely correlated with the blood lactate concentration for both modes of exercise and both cadences (r = - 0.42, p = 0.01). In summary, these data demonstrate that: 1) in subjects well trained for both cycling and running, the amplitude of the VO2 slow component at fatigue was larger in cycling and that it was not significantly influenced by cadence; 2) the VO2 slow component was not correlated with the time to fatigue. If the nature of the linkage between the VO2 slow component and the fatigue process remains unclear, the type of contraction regimen depending on exercise biomechanic characteristics seems to be determinant in the VO2 slow component phenomenon for a same level of

  17. VO2 kinetics in the horse during moderate and heavy exercise.

    PubMed

    Langsetmo, I; Weigle, G E; Fedde, M R; Erickson, H H; Barstow, T J; Poole, D C

    1997-10-01

    The horse is a superb athlete, achieving a maximal O2 uptake (approximately 160 ml . min-1 . kg-1) approaching twice that of the fittest humans. Although equine O2 uptake (VO2) kinetics are reportedly fast, they have not been precisely characterized, nor has their exercise intensity dependence been elucidated. To address these issues, adult male horses underwent incremental treadmill testing to determine their lactate threshold (Tlac) and peak VO2 (VO2 peak), and kinetic features of their VO2 response to "square-wave" work forcings were resolved using exercise transitions from 3 m/s to a below-Tlac speed of 7 m/s or an above-Tlac speed of 12.3 +/- 0.7 m/s (i.e., between Tlac and VO2 peak) sustained for 6 min. VO2 and CO2 output were measured using an open-flow system: pulmonary artery temperature was monitored, and mixed venous blood was sampled for plasma lactate. VO2 kinetics at work levels below Tlac were well fit by a two-phase exponential model, with a phase 2 time constant (tau1 = 10.0 +/- 0.9 s) that followed a time delay (TD1 = 18.9 +/- 1.9 s). TD1 was similar to that found in humans performing leg cycling exercise, but the time constant was substantially faster. For speeds above Tlac, TD1 was unchanged (20.3 +/- 1.2 s); however, the phase 2 time constant was significantly slower (tau1 = 20.7 +/- 3.4 s, P < 0.05) than for exercise below Tlac. Furthermore, in four of five horses, a secondary, delayed increase in VO2 became evident 135.7 +/- 28.5 s after the exercise transition. This "slow component" accounted for approximately 12% (5.8 +/- 2.7 l/min) of the net increase in exercise VO2. We conclude that, at exercise intensities below and above Tlac, qualitative features of VO2 kinetics in the horse are similar to those in humans. However, at speeds below Tlac the fast component of the response is more rapid than that reported for humans, likely reflecting different energetics of O2 utilization within equine muscle fibers.

  18. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice

    PubMed Central

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L.; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min−1 speed and increases by 3 m.min−1 every 3 min. (b) a ramp protocol with slow acceleration (3 m.min−2), and (c) a ramp protocol with fast acceleration (12 m.min−2). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg 0.75.min−1) for the 3 m.min−2 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l−1 and a respiratory exchange ratio >1). The total duration of the 3 m.min−2 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope.

  19. Antidepressant Efficacy of Adjunctive Aerobic Activity and Associated Biomarkers in Major Depression: A 4-Week, Randomized, Single-Blind, Controlled Clinical Trial

    PubMed Central

    Siqueira, Cristiana Carvalho; Valiengo, Leandro L.; Carvalho, André F.; Santos-Silva, Paulo Roberto; Missio, Giovani; de Sousa, Rafael T.; Di Natale, Georgia; Gattaz, Wagner F.; Moreno, Ricardo Alberto; Machado-Vieira, Rodrigo

    2016-01-01

    Background Major depressive disorder (MDD) is a highly prevalent, heterogeneous and systemic medical condition. Treatment options are limited, and recent studies have suggested that physical exercise can play an important role in the therapeutics of MDD. The aim of this study was to evaluate the antidepressant efficacy of adjunctive aerobic activity in association with pharmacotherapy (selective serotonin reuptake inhibitor) in symptomatic MDD as well as its association with physiological biomarkers. Methods In this randomized, single-blind, add-on, controlled clinical trial, 57 patients (18–55 years of age) were followed-up for 28 days. All patients were drug-free, had been diagnosed with symptomatic MDD and received flexible dose of sertraline during the trial. Patients were randomized to either a 4-week program (4x/week) of add-on aerobic exercise (exercise group, N = 29) or no activity (control group, N = 28). Depression severity was assessed using the Hamilton Rating Scale for Depression (HAM-D) as the primary outcome. At baseline and endpoint, all patients underwent a comprehensive metabolic/cardiopulmonary exercise testing—including determination of maximal oxygen uptake (VO2max), VO2 at the second ventilatory threshold (VO2-VT2), and oxygen pulse (O2 pulse). Results Depression scores significantly decreased in both groups after intervention. Importantly, patients in the aerobic exercise group required lower sertraline dose compared to the control group (sertraline monotherapy). The VO2max and O2 pulse parameters increased over time only in the exercise group and remained unchanged in the control group. Conclusions The present findings suggest that a 4-week training of aerobic exercise significantly improves functional capacity in patients with MDD and may be associated with antidepressant efficacy. This approach may also decrease the need for higher doses of antidepressants to achieve response. Further studies in unmedicated and treatment-resistant MDD

  20. Increases in .VO2max with "live high-train low" altitude training: role of ventilatory acclimatization.

    PubMed

    Wilhite, Daniel P; Mickleborough, Timothy D; Laymon, Abigail S; Chapman, Robert F

    2013-02-01

    The purpose of this study was to estimate the percentage of the increase in whole body maximal oxygen consumption (.VO(2max)) that is accounted for by increased respiratory muscle oxygen uptake after altitude training. Six elite male distance runners (.VO(2max) = 70.6 ± 4.5 ml kg(-1) min(-1)) and one elite female distance runner (.VO(2max)) = 64.7 ml kg(-1) min(-1)) completed a 28-day "live high-train low" training intervention (living elevation, 2,150 m). Before and after altitude training, subjects ran at three submaximal speeds, and during a separate session, performed a graded exercise test to exhaustion. A regression equation derived from published data was used to estimate respiratory muscle .VO(2) (.VO(2RM)) using our ventilation (.VE) values. .VO(2RM) was also estimated retrospectively from a larger group of distance runners (n = 22). .VO(2max) significantly (p < 0.05) increased from pre- to post-altitude (196 ± 59 ml min(-1)), while (.VE) at .VO(2max) also significantly (p < 0.05) increased (13.3 ± 5.3 l min(-1)). The estimated .VO(2RM) contributed 37 % of Δ .VO(2max). The retrospective group also saw a significant increase in .VO(2max) from pre- to post-altitude (201 ± 36 ml min(-1)), along with a 10.8 ± 2.1 l min(-1) increase in (.VE), thus requiring an estimated 27 % of Δ .VO(2max) Our data suggest that a substantial portion of the improvement in .VO(2max) with chronic altitude training goes to fuel the respiratory muscles as opposed to the musculature which directly contributes to locomotion. Consequently, the time-course of decay in ventilatory acclimatization following return to sea-level may have an impact on competitive performance.

  1. Electrodynamics of the vanadium oxides VO2 and V2O3

    NASA Astrophysics Data System (ADS)

    Qazilbash, M. M.; Schafgans, A. A.; Burch, K. S.; Yun, S. J.; Chae, B. G.; Kim, B. J.; Kim, H. T.; Basov, D. N.

    2008-03-01

    The optical and infrared properties of films of vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) have been investigated via ellipsometry and near-normal incidence reflectance measurements from far infrared to ultraviolet frequencies. Significant changes occur in the optical conductivity of both VO2 and V2O3 across the metal-insulator transitions at least up to (and possibly beyond) 6eV . We argue that such changes in optical conductivity and electronic spectral weight over a broad frequency range are evidence of the important role of electronic correlations to the metal-insulator transitions in both of these vanadium oxides. We observe a sharp optical transition with possible final state (exciton) effects in the insulating phase of VO2 . This sharp optical transition occurs between narrow a1g bands that arise from the quasi-one-dimensional chains of vanadium dimers. Electronic correlations in the metallic phases of both VO2 and V2O3 lead to reduction of the kinetic energy of the charge carriers compared to band theory values, with paramagnetic metallic V2O3 showing evidence of stronger correlations compared to rutile metallic VO2 .

  2. Transmission of reactive pulsed laser deposited VO2 films in the THz domain

    NASA Astrophysics Data System (ADS)

    Émond, Nicolas; Hendaoui, Ali; Ibrahim, Akram; Al-Naib, Ibraheem; Ozaki, Tsuneyuki; Chaker, Mohamed

    2016-08-01

    This work reports on the characteristics of the insulator-to-metal transition (IMT) of reactive pulsed laser deposited vanadium dioxide (VO2) films in the terahertz (THz) frequency range, namely the transition temperature TIMT, the amplitude contrast of the THz transmission over the IMT ΔA, the transition sharpness ΔT and the hysteresis width ΔH. XRD analysis shows the sole formation of VO2 monoclinic structure with an enhancement of (011) preferential orientation when varying the O2 pressure (PO2) during the deposition process from 2 to 25 mTorr. THz transmission measurements as a function of temperature reveal that VO2 films obtained at low PO2 exhibit low TIMT, large ΔA, and narrow ΔH. Increasing PO2 results in VO2 films with higher TIMT, smaller ΔA, broader ΔH and asymmetric hysteresis loop. The good control of the VO2 IMT features in the THz domain could be further exploited for the development of advanced smart devices, such as ultrafast switches, modulators, memories and sensors.

  3. Non-exercise estimation of VO2max using the International Physical Activity Questionnaire

    PubMed Central

    Schembre, Susan M.; Riebe, Deborah A.

    2011-01-01

    Non-exercise equations developed from self-reported physical activity can estimate maximal oxygen uptake (VO2max) as well as submaximal exercise testing. The International Physical Activity Questionnaire (IPAQ) is the most widely used and validated self-report measure of physical activity. This study aimed to develop and test a VO2max estimation equation derived from the IPAQ-Short Form (IPAQ-S). College-aged males and females (n = 80) completed the IPAQ-S and performed a maximal exercise test. The estimation equation was created with multivariate regression in a gender-balanced subsample of participants, equally representing five levels of fitness (n = 50) and validated in the remaining participants (n = 30). The resulting equation explained 43% of the variance in measured VO2max (SEE = 5.45 ml·kg-1·min-1). Estimated VO2max for 87% of individuals fell within acceptable limits of error observed with submaximal exercise testing (20% error). The IPAQ-S can be used to successfully estimate VO2max as well as submaximal exercise tests. Development of other population-specific estimation equations is warranted. PMID:21927551

  4. Evidence for a magnetic metallic R phase in Vanadium dioxide VO2

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Taheri, Payam; Zhang, Peihong; Zeng, Hao

    2015-03-01

    Vanadium dioxide VO2 has garnered extensive research interests for over decades due to its metal-insulator transition (MIT) around 340 K (Ref. 1). Much is known for the physics behind the MIT (including a correlated structural transition and the involvement of several intermediate states). On the other hand, the magnetic property across the MIT is much less known. Although there are no fundamental arguments against the possibility of forming local magnetic moments in VO2. So far, only the M2 phase has been confirmed to possess local magnetic moments. However, our temperature-dependent magnetic susceptibility measurements of VO2 show a sudden jump at the MIT that cannot be attributed to a simple Pauli susceptibility from conducting electrons. In a recent paper2, we pointed out local magnetic moments may form in the metallic R phase. The formation of local moment would naturally explain the extremely high magnetic susceptibility of VO2 above the phase transition temperature. We further discuss the magnetoresistance (MR) measured across the MIT, which shows different magnitude and field dependence in M1 and R phase, including the MR in the metallic phase suppressed to lower temperature in a VO2 electric double layer transistor device using ionic liquid as gate dielectrics. 1. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959). 2. Xun Yuan et al., Phys. Rev. B 86, 235103 (2012).

  5. Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries

    SciTech Connect

    Lawton, Jamie; Jones, Amanda; Zawodzinski, Thomas A

    2013-01-01

    The VO2+ crossover, or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick s law that allows for the effect of concentration change on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30 60 C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved.

  6. Nanoporous thermochromic VO(2) films with low optical constants, enhanced luminous transmittance and thermochromic properties.

    PubMed

    Kang, Litao; Gao, Yanfeng; Luo, Hongjie; Chen, Zhang; Du, Jin; Zhang, Zongtao

    2011-02-01

    Nanoporous thermochromic VO(2) films with low optical constants and tunable thicknesses have been prepared by polymer-assisted deposition. The film porosity and thickness change the interference relationship of light reflected from the film-substrate and the air-film interfaces, strongly influencing the optical properties of these VO(2) films. Our optimized single-layered VO(2) films exhibit high integrated luminous transmittance (T(lum,l) = 43.3%, T(lum,h) = 39.9%) and solar modulation (ΔT(sol) = 14.1%, from T(sol,l) = 42.9% to T(sol,h) = 28.8%), which are comparable to those of five-layered TiO(2)/VO(2)/TiO(2)/VO(2)/TiO(2) films (T(lum,l) = 45%, T(lum,h) = 42% and ΔT(sol) = 12%, from T(sol,l) = 52% to T(sol,h) = 40%, from Phys. Status Solidi A2009, 206, 2155-2160.). Optical calculations suggest that the performance could be further improved by increasing the porosity.

  7. Field Effect and Strongly Localized Carriers in the Metal-Insulator Transition Material VO(2).

    PubMed

    Martens, K; Jeong, J W; Aetukuri, N; Rettner, C; Shukla, N; Freeman, E; Esfahani, D N; Peeters, F M; Topuria, T; Rice, P M; Volodin, A; Douhard, B; Vandervorst, W; Samant, M G; Datta, S; Parkin, S S P

    2015-11-01

    The intrinsic field effect, the change in surface conductance with an applied transverse electric field, of prototypal strongly correlated VO(2) has remained elusive. Here we report its measurement enabled by epitaxial VO(2) and atomic layer deposited high-κ dielectrics. Oxygen migration, joule heating, and the linked field-induced phase transition are precluded. The field effect can be understood in terms of field-induced carriers with densities up to ∼5×10(13)  cm(-2) which are trongly localized, as shown by their low, thermally activated mobility (∼1×10(-3)  cm(2)/V s at 300 K). These carriers show behavior consistent with that of Holstein polarons and strongly impact the (opto)electronics of VO(2). PMID:26588400

  8. Photoluminescence response of colloidal quantum dots on VO2 film across metal to insulator transition

    PubMed Central

    2014-01-01

    We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. PACS 71.30. + h; 73.21.La; 78.47.jd PMID:25404877

  9. Memristive devices from porous silicon - ZnO/VO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ocampo, O.; Antúnez, E. E.; Agarwal, V.

    2015-12-01

    As metal oxides act as an active media for oxygen vacancies transport after their infiltration/confinement in the submicron porous structure, we report the memristive device fabrication from nanostructured porous silicon - metal oxide (ZnO and VO2) composites. Scanning electron microscopy and X-ray diffraction were used for morphological and structural characterization, respectively. Predominant crystal phase of metal oxides was found to be wurtzite for ZnO and monoclinic for VO2. Electrical characterization reveals that both devices present symmetrical zero-crossing pinched hysteresis curves, typical of memristive systems. Although both the devices reveal significant endurance and stable switching ratio, ZnO-based device exhibits relatively better stability and 86% higher resistive switching ratio with respect to VO2-based device. The proposed memristive devices have potential applications as practical and economical structures that could be integrated in current silicon based microtechnology.

  10. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition

    NASA Astrophysics Data System (ADS)

    Lv, T. T.; Li, Y. X.; Ma, H. F.; Zhu, Z.; Li, Z. P.; Guan, C. Y.; Shi, J. H.; Zhang, H.; Cui, T. J.

    2016-03-01

    Polarization manipulations of electromagnetic waves can be obtained by chiral and anisotropic metamaterials routinely, but the dynamic and high-efficiency modulations of chiral properties still remain challenging at the terahertz range. Here, we theoretically demonstrate a new scheme for realizing thermal-controlled chirality using a hybrid terahertz metamaterial with embedded vanadium dioxide (VO2) films. The phase transition of VO2 films in 90° twisted E-shaped resonators enables high-efficiency thermal modulation of linear polarization conversion. The asymmetric transmission of linearly polarized wave and circular dichroism simultaneously exhibit a pronounced switching effect dictated by temperature-controlled conductivity of VO2 inclusions. The proposed hybrid metamaterial design opens exciting possibilities to achieve dynamic modulation of terahertz waves and further develop tunable terahertz polarization devices.

  11. Ab Initio Infrared Spectra and Electronic Response Calculations for the Insulating Phases of VO2

    NASA Astrophysics Data System (ADS)

    Hendriks, Christopher; Huffman, Tyler; Walter, Eric; Qazilbash, Mumtaz; Krakauer, Henry

    Previous studies have shown that, under doping or tensile strain and upon heating, the well-known vanadium dioxide (VO2) transition from an insulating monoclinic (M1) to a metallic rutile (R) phase progresses through a triclinic symmetry (T) phase and a magnetic monoclinic phase (M2), both of which are insulating. Structurally, this progression from M1 to R through T and M2 can be characterized by the progressive breaking of the V dimers. Investigation of the effect of these structural changes on the insulating phases of VO2 may help resolve questions surrounding the long-debated issue of the respective roles of electronic correlation and Peierls mechanisms in driving the MIT. We investigated electronic and vibrational properties of the insulating phases of VO2 in the framework of DFT+U. We will present ab initio calculations of infrared spectra and optical electronic responses for the insulating phases and compare these to available experimental measurements. Supported by ONR.

  12. Directional switching of surface plasmon polaritons by VO2-gold hybrid antennas

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Je; Lee, Kyookeun; Lee, Seung-Yeol; Lee, Byoungho

    2016-03-01

    We propose a novel type of dual surface plasmon polariton (SPP) gap nano-antennas which can excite SPPs directionally and switch the direction according to the device temperature. The device consists of a vanadium dioxide (VO2)- insulator-metal resonator and a metal-insulator-metal resonator with slightly different antenna width. Phase of SPPs generated by the VO2 gap antenna changes as the temperature increases, so that interference between SPPs generated from two separated gap antennas makes its launching direction switched. In case of 624 nm wavelength, directional intensity distinction ratios of coupled SPPs are about 1:5 and 7:1 when VO2 is in insulator phase and metallic phase, respectively.

  13. Low-temperature fabrication of VO2 thin film on ITO glass with a Mott transition

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2016-09-01

    Polycrystalline Vanadium dioxide (VO2) thin film can be fabricated on glass substrates by high power impulse magnetron sputtering at a relative high temperature. In order to apply an effective bias voltage on substrate and control the energy of the ions impinged to the substrate, conductive indium-tin oxide (ITO) glass was used as the substrate. UV-visible-near IR transmittance spectra and X-ray diffraction (XRD) patterns of the as-deposited films exhibited that M-VO2 thin film with a metal-insulator transition temperature of 37∘C was fabricated successfully at 300∘C with a bias voltage of ‑200V, and the calculated average crystalline size of this film was about 12nm. XRD patterns at varied temperatures showed that the structural change of MIT of the VO2 thin film was suppressed during the phase transition process, and a pure Mott transition was obtained.

  14. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition

    PubMed Central

    Lv, T. T.; Li, Y. X.; Ma, H. F.; Zhu, Z.; Li, Z. P.; Guan, C. Y.; Shi, J. H.; Zhang, H.; Cui, T. J.

    2016-01-01

    Polarization manipulations of electromagnetic waves can be obtained by chiral and anisotropic metamaterials routinely, but the dynamic and high-efficiency modulations of chiral properties still remain challenging at the terahertz range. Here, we theoretically demonstrate a new scheme for realizing thermal-controlled chirality using a hybrid terahertz metamaterial with embedded vanadium dioxide (VO2) films. The phase transition of VO2 films in 90° twisted E-shaped resonators enables high-efficiency thermal modulation of linear polarization conversion. The asymmetric transmission of linearly polarized wave and circular dichroism simultaneously exhibit a pronounced switching effect dictated by temperature-controlled conductivity of VO2 inclusions. The proposed hybrid metamaterial design opens exciting possibilities to achieve dynamic modulation of terahertz waves and further develop tunable terahertz polarization devices. PMID:27000427

  15. Negative capacitance switching via VO2 band gap engineering driven by electric field

    NASA Astrophysics Data System (ADS)

    He, Xinfeng; Xu, Jing; Xu, Xiaofeng; Gu, Congcong; Chen, Fei; Wu, Binhe; Wang, Chunrui; Xing, Huaizhong; Chen, Xiaoshuang; Chu, Junhao

    2015-03-01

    We report the negative capacitance behavior of an energy band gap modulation quantum well with a sandwich VO2 layer structure. The phase transition is probed by measuring its capacitance. With the help of theoretical calculations, it shows that the negative capacitance changes of the quantum well device come from VO2 band gap by continuously tuning the temperature or voltage. Experiments reveal that as the current remains small enough, joule heating can be ignored, and the insulator-metal transition of VO2 can be induced by the electric field. Our results open up possibilities for functional devices with phase transitions induced by external electric fields other than the heating or electricity-heat transition.

  16. High TIMT insulator-to-metal transition of the VO2 films on AlN/Si substrate

    NASA Astrophysics Data System (ADS)

    Slusar, Tetiana; Cho, Jin-Cheol; Kim, Bong-Jun; Kim, Hyun-Tak

    Electronical and structural properties of the VO2 thin films are strongly affected by growth conditions and underlying substrate providing a flexibility of their functional parameters. We present a new VO2/AlN/Si heterostructure, where VO2 is characterized by an excellent insulator-to-metal transition (IMT) occurred at a higher temperature TIMT than that typical for single crystals. Mentioned characteristics are associated with growth mechanism of the film and its epitaxial alignment with respect to the substrate. In particular, the TIMT upshift in VO2/AlN/Si is explained by a stable crystallographic configuration in the plane of the VO2 film as well as a tensile deformation of a monoclinic a-axis formed by tilted and dimerized V4+-V4+, responsible for strong electron correlations. Moreover, proposed synergy of VO2 and Si is able to make new results for advanced materials fabrication and development of switching devices of new generation.

  17. Characterization of polycrystalline VO2 thin film with low phase transition temperature fabricated by high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2016-04-01

    VO2 is a unique material that undergoes a reversible phase transformation around 68∘C. Currently, applications of VO2 on smart windows are limited by its high transition temperature. In order to reduce the temperature, VO2 thin film was fabricated on quartz glass substrate by high power impulse magnetron sputtering with a modulated pulsed power. The phase transition temperature has been reduced to as low as 32∘C. In addition, the VO2 film possesses a typical metal-insulator transition. X-ray diffraction and selected area electron diffraction patterns reveal that an obvious lattice distortion has been formed in the as-deposited polycrystalline VO2 thin film. X-ray photoelectron spectroscopy proves that oxygen vacancies have been formed in the as-deposited thin film, which will induce a lattice distortion in the VO2 thin film.

  18. Anthropometry, somatotypes, and aerobic power in ballet, contemporary dance, and dancesport.

    PubMed

    Liiv, Helena; Wyon, Matthew A; Jürimäe, Toivo; Saar, Meeli; Mäestu, Jarek; Jürimäe, Jaak

    2013-12-01

    This study compared anthropometric variables, somatotypes, and aerobic capacity between three groups of dancers: classical ballet dancers (M 33, F 56), contemporary dancers (M 28, F 109), and dancesport dancers (M 30, F 30). The assumption was that different functional requirements should produce differences in the anthropometric and aerobic capacity variables among the three groups. Anthropometric data for body mass index (BMI) and somatotypes were measured. Body fat percentage was measured by dual-energy x-ray absorptiometry. Maximal oxygen consumption and aerobic power were measured during an incremental treadmill test until exhaustion. Dancesport athletes were taller compared with same gender contemporary dancers (p<0.05). Female ballet dancers had a lower body mass and BMI compared with their contemporary dance and dancesport equivalents (p<0.001). There was significant difference between dance styles in endomorphy (F2,221 = 8.773, p<0.001) and mesomorphy (F2,221 = 21.458, p<0.001) scores. Dancesport dancers had significantly greater VO2max values (p<0.01). It was concluded that female contemporary dancers are generally more muscular than their ballet counterparts, while dancesport dancers are taller and heavier, less muscular, with slightly greater adioposity compared to the classical ballet dancers. Ballet dancers had the lowest body fat percentage, weight, and BMI values. Dancesport dancers had greater aerobic capacity than the ballet dancers. Based on this study, we conclude that dancers in these three styles differ in some aspects of anthropometric variables, somatotypes, and aerobic capacity, but we cannot say is it because of the training or selection or both. PMID:24337032

  19. The effects of aerobic and anaerobic exercise conditioning on resting metabolic rate and the thermic effect of a meal.

    PubMed

    Schmidt, W D; Hyner, G C; Lyle, R M; Corrigan, D; Bottoms, G; Melby, C L

    1994-12-01

    This study examined resting metabolic rate (RMR) and thermic effect of a meal (TEM) among athletes who had participated in long-term anaerobic or aerobic exercise. Nine collegiate wrestlers were matched for age, weight, and fat-free weight with 9 collegiate swimmers. Preliminary testing included maximal oxygen consumption, maximal anaerobic capacity (MAnC) for both the arms and the legs, and percent body fat. On two separate occasions, RMR and TEM were measured using indirect calorimetry. VO2max was significantly higher in the swimmers while MAnC was significantly higher in the wrestlers for both the arms and the legs. RMR adjusted for fat-free weight was not significantly different between groups. The differences in total and percentage of TEM between the groups were not statistically significant, and there were no differences in baseline thyroid hormones. These data suggest that despite significant differences in VO2max and WAnT values following long-term aerobic and anaerobic exercise training, resting energy expenditure does not differ between these college athletes. PMID:7874150

  20. Influences of chemical sympathectomy, demedullation, and hindlimb suspension on the VO2max of rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Stump, C. S.; Sebastian, L. A.; Tipton, C. M.

    1992-01-01

    Results from previous studies have shown that the reduction in maximal oxygen consumption (VO2max) with simulated microgravity is attenuated in chemically sympathectomized rats. To determine the contributions of the catecholamines from the adrenal medulla in this process, investigations were conducted with 65 saline injected (SAL) and chemically sympathectomized (SX) female rats that were either surgically demedullated (DM), or intact (IN). Microgravity conditions were simulated by head-down suspension (HDS) while controls were assigned to individual cages (CC). The experimental period was 14 d. The rats were tested for VO2max, treadmill run time (RT), and submaximal mechanical efficiency (ME) prior to suspension and on days 7 and 14. Saline injected rats that had intact adrenal medullas (SAL-IN) exhibited significantly reduced measures of VO2max after 7 and 14 d by 15% and 21%, respectively. No significant reduction in VO2max was observed with HDS in the SX-IN animals. Sympathectomized rats that were demedullated (SX-DM) also exhibited a significant reduction in VO2max (12%). In addition, HDS was associated with a marked and significant reduction in RT in all groups. ME for submaximal exercise was significantly reduced after HDS in SAL-IN rats but not in the SX-IN rats. SX-DM rats experienced significant reductions in ME similar in magnitude to the SAL-IN rats. These results confirm that chemical sympathectomy attenuates the expected decrease in VO2max with HDS and suggests that circulating epinephrine contributes to this response.

  1. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Miao, Yanyan; Zhang, Yunjiao; Liu, Liang; Lin, Jun; Yang, James Y.; Xie, Yi; Wen, Longping

    2013-04-01

    A variety of inorganic nanomaterials have been shown to induce autophagy, a cellular degradation process critical for the maintenance of cellular homeostasis. The overwhelming majority of autophagic responses elicited by nanomaterials were detrimental to cell fate and contributed to increased cell death. A widely held view is that the inorganic nanoparticles, when encapsulated and trapped by autophagosomes, may compromise the normal autophagic process due to the inability of the cells to degrade these materials and thus they manifest a detrimental effect on the well-being of a cell. Here we show that, contrary to this notion, nano-sized paramontroseite VO2 nanocrystals (P-VO2) induced cyto-protective, rather than death-promoting, autophagy in cultured HeLa cells. P-VO2 also caused up-regulation of heme oxygenase-1 (HO-1), a cellular protein with a demonstrated role in protecting cells against death under stress situations. The autophagy inhibitor 3-methyladenine significantly inhibited HO-1 up-regulation and increased the rate of cell death in cells treated with P-VO2, while the HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) enhanced the occurrence of cell death in the P-VO2-treated cells while having no effect on the autophagic response induced by P-VO2. On the other hand, Y2O3 nanocrystals, a control nanomaterial, induced death-promoting autophagy without affecting the level of expression of HO-1, and the pro-death effect of the autophagy induced by Y2O3. Our results represent the first report on a novel nanomaterial-induced cyto-protective autophagy, probably through up-regulation of HO-1, and may point to new possibilities for exploiting nanomaterial-induced autophagy for therapeutic applications.

  2. Relationship between Maximal Oxygen Consumption (VO2max) and Home Range Area in Mammals.

    PubMed

    Albuquerque, Ralph L; Sanchez, Gabriela; Garland, Theodore

    2015-01-01

    Home range is defined as the area traversed during normal daily activities, such as foraging, avoiding predators, and social or antagonistic behaviors. All else being equal, larger home ranges should be associated with longer daily movement distances and/or higher average movement speeds. The maximal rate of oxygen consumption (VO2max) generally sets an upper limit to the intensity of work (e.g., speed of locomotion) that an animal can sustain without fatigue. Therefore, home range area and VO2max are predicted to evolve in concert (coadapt). We gathered literature data on home range and VO2max for 55 species of mammals. We computed residuals from log-log (allometric) regressions on body mass with two different regression models: ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS). Residuals were weakly positively related for both the OLS (r = 0.278, one-tailed P < 0.05) and PGLS (r = 0.210, P > 0.05) regressions. For VO2max, the PGLS regression model had a slightly higher likelihood than the OLS model, but the situation was reversed for home range area. In addition, for both home range area and VO2max, models that fit better than either OLS or PGLS were obtained by modeling residual variation with the Ornstein-Uhlenbeck process to mimic stabilizing selection (RegOU), indicating that phylogenetic signal is present in both size-adjusted traits, consistent with findings of previous studies. (However, residuals from the RegOU models cannot be tested for correlation due to mathematical complexities.) We conclude that the best estimate of the residual correlation is probably somewhere between these two values reported above. Possible reasons for the low correlation between residual home range area and VO2max are discussed. PMID:26658413

  3. Assessment of measurement properties of peak VO2 in children with pulmonary arterial hypertension

    PubMed Central

    2012-01-01

    Background The 6-minute walk test evaluates the effect of pharmacologic intervention in adults with pulmonary arterial hypertension (PAH) but, for reasons of compliance or reliability, may not be appropriate for children at all ages. Thus, peak oxygen consumption (VO2, maximal exercise test) was used instead in a pediatric PAH trial (STARTS-1) to evaluate pharmacologic intervention with sildenafil. This was the first large placebo-controlled trial to use the peak VO2 endpoint in this population. Our working hypothesis was that, as with other populations, percentage changes in peak VO2 in pediatric patients with PAH are reliable and are associated with changes in other clinical endpoints. Methods Using data from the subpopulation of 106 patients who were developmentally and physically able to perform exercise testing, all of whom were World Health Organization Functional Class (WHO FC) I, II, or III, reliability was assessed using the intraclass correlation coefficient and Bland-Altman plot on screening and baseline data. Relationships between percentage change in peak VO2 from baseline to end of treatment and other endpoints were evaluated using correlation coefficients and regression analyses. Results The intraclass correlation was 0.79 between screening and baseline peak VO2, an agreement that was supported by the Bland-Altman plot. Percentage change in peak VO2 correlated well (r ≥0.40) and showed responsiveness to a physician global assessment of change and with change in WHO FC (for baseline classes I and III). Percentage change in peak VO2 did not correlate with change in the Family Cohesion of the Child Health Questionnaire (r = 0.04) or with a subject global assessment of change (r = 0.12). The latter may have been influenced by child and parental-proxy response and instrument administration. Conclusion In pediatric PAH patients who are developmentally and physically able to perform exercise testing, peak VO2 measurements exhibited good

  4. Frequency of the VO2max plateau phenomenon in world-class cyclists.

    PubMed

    Lucía, A; Rabadán, M; Hoyos, J; Hernández-Capilla, M; Pérez, M; San Juan, A F; Earnest, C P; Chicharro, J L

    2006-12-01

    We aimed to determine the frequency of the VO2max plateau phenomenon in top-level male professional road cyclists (n = 38; VO2max [mean +/- SD]: 73.5 +/- 5.5 ml.kg(-1).min(-1)) and in healthy, sedentary male controls (n = 37; VO2max: 42.7 +/- 5.6 ml.kg(-1).min(-1)). All subjects performed a continuous incremental cycle-ergometer test of 1-min workloads until exhaustion. Power output was increased from a starting value of 25 W (cyclists) or 20 W (controls) at the rate of 25 W.min(-1) (cyclists) or 20 W.min(-1) (controls) until volitional exhaustion. We measured gas-exchange and heart rate (HR) throughout the test. Blood concentrations of lactate (BLa) were measured at end-exercise in both groups. We defined maximal exercise exertion as the attainment of a respiratory exchange rate (RER) >or= 1.1; HR > 95 % age-predicted maximum; and BLa > 8 mmo.l(-1). The VO2max plateau phenomenon was defined as an increase in two or more consecutive 1-min mean VO2 values of less than 1.5 ml.kg(-1).min(-1). Most cyclists met our criteria for maximal exercise effort (RER > 1.1, 100 %; 95 % predicted maximal HR [HRmax], 82 %; BLa > 8 mmol.l(-1), 84 %). However, the proportion of cyclists attaining a V.O (2max) plateau was considerably lower, i.e., 47 %. The majority of controls met the criteria for maximal exercise effort (RER > 1.1, 100 %; predicted HRmax, 68 %; BLa > 8 mmol. l(-1), 73 %), but the proportion of these subjects with a VO2max plateau was only 24 % (significantly lower proportion than in cyclists [p < 0.05]). Scientists should consider 1) if typical criteria of attainment of maximal effort are sufficiently stringent, especially in elite endurance athletes; and 2) whether those humans exhibiting the VO2max plateau phenomenon are those who perform an absolute maximum effort or there are additional distinctive features associated with this phenomenon.

  5. The characteristics of semiconductor-to-metal transition in VO2 of different morphology

    NASA Astrophysics Data System (ADS)

    Petukhova, Yu V.; Osmolowskaya, O. M.; Osmolowsky, M. G.

    2015-11-01

    Vanadium dioxide nanoparticles (NPs) of different morphologies were obtained using the hydrothermal technique. Their shape and size were studied by SEM, XRD and SSA estimation. The functional properties, structural changes and thermal behavior of samples obtained were investigated to clarify the SMPT peculiarities. It is shown that the introduction of a doping element changes a mechanism of the nanoparticles growth and so that the SMPT becomes less expressed. The detailed study of SMPT in undoped VO2 showed the steps of the transition process. The testing of VO2 coating on glass for «smart» windows was successfully performed.

  6. Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture.

    PubMed

    Wagner, Andreas Otto; Schwarzenauer, Thomas; Illmer, Paul

    2013-11-15

    Trichoderma viride is known as a potent cellulose decomposer and was successfully used to improve and accelerate the decomposition process of aerobic composting. In contrast, the role of fungi as pre-treatment organisms for anaerobic digestion is not clear, since the fast aerobic decomposition is thought to be responsible for a rapid depletion of easily available nutrients, leading to a lack of these for the anaerobic community. In the present study carried out in lab-scale, the application of T. viride for the aerobic pre-incubation of organic matter derived from the inlet port of a 750,000 L anaerobic digester led to an increase in total gas and methane production in a subsequent anaerobic digestion step. A high cellulase activity caused by the addition of T. viride seemed to be responsible for a better nutrient availability for anaerobic microorganisms. Therefore, aerobic pre-incubation of organic residues with T. viride for subsequent anaerobic digestion is a promising approach in order to increase methane yields. PMID:23988521

  7. Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture.

    PubMed

    Wagner, Andreas Otto; Schwarzenauer, Thomas; Illmer, Paul

    2013-11-15

    Trichoderma viride is known as a potent cellulose decomposer and was successfully used to improve and accelerate the decomposition process of aerobic composting. In contrast, the role of fungi as pre-treatment organisms for anaerobic digestion is not clear, since the fast aerobic decomposition is thought to be responsible for a rapid depletion of easily available nutrients, leading to a lack of these for the anaerobic community. In the present study carried out in lab-scale, the application of T. viride for the aerobic pre-incubation of organic matter derived from the inlet port of a 750,000 L anaerobic digester led to an increase in total gas and methane production in a subsequent anaerobic digestion step. A high cellulase activity caused by the addition of T. viride seemed to be responsible for a better nutrient availability for anaerobic microorganisms. Therefore, aerobic pre-incubation of organic residues with T. viride for subsequent anaerobic digestion is a promising approach in order to increase methane yields.

  8. Step aerobic vs. cycle ergometer training: effects on aerobic capacity, coordinative tasks, and pleasure in untrained adults--a randomized controlled trial.

    PubMed

    Kerschan-Schindl, Katharina; Wiesinger, Günther; Zauner-Dungl, Andrea; Kollmitzer, Josef; Fialka-Moser, Veronika; Quittan, Michael

    2002-12-30

    The purpose of the study was to evaluate the impact of step aerobic (StA) and cycle ergometer training (CET) on physical performance, coordination, and pleasure, during workout. Forty untrained persons (40-70 years) were randomly assigned to either of the two regimens. Prior to and after three months of training, we investigated the participants' physical performance with a cycle ergometer test and by testing coordinative tasks (upper extremities: tapping test; lower extremities: one-leg stance). After the training period, visual analog scales were used to evaluate personal assessment (pleasure, wellbeing, team spirit, interest in prolongation of training). StA increased the relative oxygen uptake at the anaerobic threshold (RVO2AT) while CET increased the relative maximal oxygen uptake (RVO2max) to a statistically significant extent. However, intergroup comparison failed to show group-specific differences. Concerning coordinative tasks, the members of the StA group achieved a significant time reduction for both hands' tapping test. However, only the improvement in left-handed tapping was significantly higher than that achieved by members of the CET group. Despite the absence of group-specific differences, CET members showed a statistically significant change when comparing the duration of pre- with post-training time for one-leg stance under proprioceptive conditions. Team spirit was significantly higher in the StA group than in the CET group. Except for the time reduction in left-handed tapping, the present study found no group-specific differences in physical performance and coordination. Participating in a StA class has a more cohesive effect on the individual members than attending a CET group.

  9. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-03-01

    The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs) were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour) for 8 weeks. Training intensity was determined within non-specific (cycling or running) and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m) and one non-specific (30s cycling or 200m running) all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa) and glucose (BGL) 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak) was significantly increased (+17%; p = 0.01) in both groups and highly correlated with the sprint performance (r = -0.71). BLa values decreased significantly (-18%, p = 0.02) after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04) in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group. Key pointsIn addition to a highly developed aerobic performance inline speed skaters also require a highly trained anaerobic capacity to be effective in the sprint sections such as the mass start, tactical attacks

  10. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating

    PubMed Central

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K.

    2016-01-01

    The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs) were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour) for 8 weeks. Training intensity was determined within non-specific (cycling or running) and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m) and one non-specific (30s cycling or 200m running) all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa) and glucose (BGL) 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak) was significantly increased (+17%; p = 0.01) in both groups and highly correlated with the sprint performance (r = -0.71). BLa values decreased significantly (-18%, p = 0.02) after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04) in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group. Key points In addition to a highly developed aerobic performance inline speed skaters also require a highly trained anaerobic capacity to be effective in the sprint sections such as the mass start, tactical attacks

  11. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-03-01

    The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs) were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour) for 8 weeks. Training intensity was determined within non-specific (cycling or running) and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m) and one non-specific (30s cycling or 200m running) all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa) and glucose (BGL) 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak) was significantly increased (+17%; p = 0.01) in both groups and highly correlated with the sprint performance (r = -0.71). BLa values decreased significantly (-18%, p = 0.02) after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04) in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group. Key pointsIn addition to a highly developed aerobic performance inline speed skaters also require a highly trained anaerobic capacity to be effective in the sprint sections such as the mass start, tactical attacks

  12. Robot-assisted gait training improves brachial–ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation

    PubMed Central

    Han, Eun Young; Im, Sang Hee; Kim, Bo Ryun; Seo, Min Ji; Kim, Myeong Ok

    2016-01-01

    Abstract Objective: Brachial–ankle pulse wave velocity (baPWV) evaluates arterial stiffness and also predicts early outcome in stroke patients. The objectives of this study were to investigate arterial stiffness of subacute nonfunctional ambulatory stroke patients and to compare the effects of robot-assisted gait therapy (RAGT) combined with rehabilitation therapy (RT) on arterial stiffness and functional recovery with those of RT alone. Method: The RAGT group (N = 30) received 30 minutes of robot-assisted gait therapy and 30 minutes of conventional RT, and the control group (N = 26) received 60 minutes of RT, 5 times a week for 4 weeks. baPWV was measured and calculated using an automated device. The patients also performed a symptom-limited graded exercise stress test using a bicycle ergometer, and parameters of cardiopulmonary fitness were recorded. Clinical outcome measures were categorized into 4 categories: activities of daily living, balance, ambulatory function, and paretic leg motor function and were evaluated before and after the 4-week intervention. Results: Both groups exhibited significant functional recovery in all clinical outcome measures after the 4-week intervention. However, peak aerobic capacity, peak heart rate, exercise tolerance test duration, and baPWV improved only in the RAGT group, and the improvements in baPWV and peak aerobic capacity were more noticeable in the RAGT group than in the control group. Conclusion: Robot-assisted gait therapy combined with conventional rehabilitation therapy represents an effective method for reversing arterial stiffness and improving peak aerobic capacity in subacute stroke patients with totally dependent ambulation. However, further large-scale studies with longer term follow-up periods are warranted to measure the effects of RAGT on secondary prevention after stroke. PMID:27741123

  13. Aerobic fitness, micronutrient status, and academic achievement in Indian school-aged children.

    PubMed

    Desai, Ishaan K; Kurpad, Anura V; Chomitz, Virginia R; Thomas, Tinku

    2015-01-01

    Aerobic fitness has been shown to have several beneficial effects on child health. However, research on its relationship with academic performance has been limited, particularly in developing countries and among undernourished populations. This study examined the association between aerobic fitness and academic achievement in clinically healthy but nutritionally compromised Indian school-aged children and assessed whether micronutrient status affects this association. 273 participants, aged 7 to 10.5 years, were enrolled from three primary schools in Bangalore, India. Data on participants' aerobic fitness (20-m shuttle test), demographics, anthropometry, diet, physical activity, and micronutrient status were abstracted. School-wide exam scores in mathematics and Kannada language served as indicators of academic performance and were standardized by grade level. The strength of the fitness/achievement association was analyzed using Spearman's rank correlation, multiple variable logistic regression, and multi-level models. Significant positive correlations between aerobic capacity (VO2 peak) and academic scores in math and Kannada were observed (P < 0.05). After standardizing scores across grade levels and adjusting for school, gender, socioeconomic status, and weight status (BMI Z-score), children with greater aerobic capacities (mL * kg(-1) * min(-1)) had greater odds of scoring above average on math and Kannada exams (OR=1.08, 95% CI: 1.02 to 1.15 and OR=1.11, 95% CI: 1.04 to 1.18, respectively). This association remained significant after adjusting for micronutrient deficiencies. These findings provide preliminary evidence of a fitness/achievement association in Indian children. While the mechanisms by which aerobic fitness may be linked to academic achievement require further investigation, the results suggest that educators and policymakers should consider the adequacy of opportunities for physical activity and fitness in schools for both their physical and

  14. Physical self-perceptions, aerobic capacity and physical activity in male and female members of a corporate health and fitness club.

    PubMed

    Daley, A J; Parfitt, G

    1996-12-01

    As physical activity and fitness are believed to influence esteem and self-perceptions positively, the purpose of the study was to examine the relationships among participation in physical activity, aerobic capacity, and physical self-perceptions in 40 men and 33 women, members of a British corporate health and fitness club. Hierarchical multiple regression analyses indicated a significant linear relationship for men between scores on Physical Self-worth and composite scores on Participation in Physical Activity. Men's feelings regarding general physical self-worth may be an important determinant of their subsequent levels of physical exercise.

  15. High muscle mitochondrial volume and aerobic capacity in a small marsupial (Sminthopsis crassicaudata) reveals flexible links between energy-use levels in mammals.

    PubMed

    Dawson, Terence J; Webster, Koa N; Lee, Enhua; Buttemer, William A

    2013-04-01

    We investigated the muscle structure-function relationships that underlie the aerobic capacity of an insectivorous, small (~15 g) marsupial, Sminthopsis crassicaudata (Family: Dasyuridae), to obtain further insight into energy use patterns in marsupials relative to those in placentals, their sister clade within the Theria (advanced mammals). Disparate hopping marsupials (Suborder Macropodiformes), a kangaroo (Macropus rufus) and a rat-kangaroo (Bettongia penicillata), show aerobic capabilities as high as those of 'athletic' placentals. Equivalent muscle mitochondrial volumes and cardiovascular features support these capabilities. We examined S. crassicaudata to determine whether highly developed aerobic capabilities occur elsewhere in marsupials, rather than being restricted to the more recently evolved Macropodiformes. This was the case. Treadmill-trained S. crassicaudata attained a maximal aerobic metabolic rate ( or MMR) of 272 ml O2 min(-1) kg(-1) (N=8), similar to that reported for a small (~20 g), 'athletic' placental, Apodemus sylvaticus, 264 ml O2 min(-1) kg(-1). Hopping marsupials have comparable aerobic levels when body mass variation is considered. Sminthopsis crassicaudata has a basal metabolic rate (BMR) about 75% of placental values but it has a notably large factorial aerobic scope (fAS) of 13; elevated fAS also features in hopping marsupials. The of S. crassicaudata was supported by an elevated total muscle mitochondrial volume, which was largely achieved through high muscle mitochondrial volume densities, Vv(mt,f), the mean value being 14.0±1.33%. These data were considered in relation to energy use levels in mammals, particularly field metabolic rate (FMR). BMR is consistently lower in marsupials, but this is balanced by a high fAS, such that marsupial MMR matches that of placentals. However, FMR shows different mass relationships in the two clades, with the FMR of small (<125 g) marsupials, such as S. crassicaudata, being higher than that in

  16. Successive orbital ordering transitions in NaVO_2

    SciTech Connect

    Klimczuk, Tomasz W; Mcqueen, T; Stephens, P W; Huang, Q; Ronning, Filip; Cava, R

    2008-01-01

    Temperature-dependent dc susceptibility, heat capacity, and x-ray and neutron diffraction measurements on powder samples of the layered triangular-lattice material NaY02 reveal two successive phase transitions. At high temperature the structure is rhomobohedral, with all six inplane V-V distances equivalent. At T = 98K, the system undergoes a second order phase transition to a monoclinic intermediate temperature phase in which the in-plane Y -Y distances separate into four short and two long bonds, corresponding to orbital ordering of one electron per y3+. Below T 93K, there is a first order phase transition to a low temperature monoclinic phase, in which there are four long and two short in-plane Y -Y distances, consistent with orbital ordering of two electrons per y 3+ on a triangular lattice. Long range magnetic ordering of 0.98(2),uB per y 3 + (3d2) sets in at the T 93K structural transition. The low temperature structure ofNa Y02 displays orbital ordering that, although predicted by first principle calculations, has not previously been observed in this class of materials.

  17. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2.

    PubMed

    Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley

    2013-11-13

    Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current.

  18. Ultrathin Films of VO2 on r-Cut Sapphire Achieved by Postdeposition Etching.

    PubMed

    Yamin, Tony; Wissberg, Shai; Cohen, Hagai; Cohen-Taguri, Gili; Sharoni, Amos

    2016-06-15

    The metal-insulator transition (MIT) properties of correlated oxides thin films, such as VO2, are dramatically affected by strain induced at the interface with the substrate, which usually changes with deposition thickness. For VO2 grown on r-cut sapphire, there is a minimum deposition thickness required for a significant MIT to appear, around 60 nm. We show that in these thicker films an interface layer develops, which accompanies the relaxation of film strain and enhanced electronic transition. If these interface dislocations are stable at room temperature, we conjectured, a new route opens to control thickness of VO2 films by postdeposition thinning of relaxed films, overcoming the need for thickness-dependent strain-engineered substrates. This is possible only if thinning does not alter the films' electronic properties. We find that wet etching in a dilute NaOH solution can effectively thin the VO2 films, which continue to show a significant MIT, even when etched to 10 nm, for which directly deposited films show nearly no transition. The structural and chemical composition were not modified by the etching, but the grain size and film roughness were, which modified the hysteresis width and magnitude of the MIT resistance change.

  19. Thermally driven sign switch of static dielectric constant of VO2 thin film

    NASA Astrophysics Data System (ADS)

    Kana Kana, J. B.; Vignaud, G.; Gibaud, A.; Maaza, M.

    2016-04-01

    Smart multifunctional materials exhibiting phase transition and tunable optical and/electrical properties provide a new direction towards engineering switchable devices. Specifically, the reversible, tunable and sign switch dielectric constants via external temperature stimuli observed in vanadium dioxide (VO2) make it a candidate of choice for tunable and switchable technologies devices. Here we report new aspect of the metal-insulator transition (MIT) through the sign switch of the static dielectric constant εS of pure VO2. As it is shown, the static dielectric constant showed an abrupt change from positive at T < 70 °C to negative at T > 70 °C. εS > 0 confirms the insulating phase where charges are localized while εS < 0 confirms the metallic phase of VO2 where charges are delocalized. We report for the first time the tunability of the dielectric constant from a negative sign for the static dielectric constant of VO2 thin film rarely found in real physical systems. We also demonstrate the tunability and switchability of the real and imaginary part of the dielectric constant (ε) via external temperature stimuli. More specifically, the real (ε) and Imaginary (ε) showed an abrupt thermal hysteresis which clearly confirms the phase transition.

  20. Nano-optical investigations of the metal-insulator phase behavior of individual VO(2) microcrystals.

    PubMed

    Jones, Andrew C; Berweger, Samuel; Wei, Jiang; Cobden, David; Raschke, Markus B

    2010-05-12

    Despite the relatively simple stoichiometry and structure of VO(2), many questions regarding the nature of its famous metal-insulator transition (MIT) remain unresolved. This is in part due to the prevailing use of polycrystalline film samples and the limited spatial resolution in most studies, hindering access to and control of the complex phase behavior and its inevitable spatial inhomogeneities. Here, we investigate the MIT and associated nanodomain formation in individual VO(2) microcrystals subject to substrate stress. We employ symmetry-selective polarization Raman spectroscopy to identify crystals that are strain-stabilized in either the monoclinic M1 or M2 insulating phase at room-temperature. Raman measurements are further used to characterize the phase dependence on temperature, identifying the appearance of the M2 phase during the MIT. The associated formation and spatial evolution of rutile (R) metallic domains is studied with nanometer-scale spatial resolution using infrared scattering-scanning near-field optical microscopy (s-SNOM). We deduce that even for small crystals of VO(2), the MIT is influenced by the competition between the R, M1, and M2 crystal phases with their different lattice constants subjected to the external substrate-induced stress. The results have important implications for the interpretation of the investigations of conventional polycrystalline thin films where the mutual interaction of constituent crystallites may affect the nature of the MIT in VO(2).

  1. Voltage mediated metal to insulator transition in VO2 and V2O3 nanodevices

    NASA Astrophysics Data System (ADS)

    Valmianski, Ilya; Ramirez, J. Gabriel; Wang, Siming; Guenon, Stefan; Schuller, Ivan K.

    We investigate the mechanism of the voltage mediated MIT in a series of vanadium oxides (VO2 and V2O3) nano-scopic devices. All films presented ~4 orders of magnitude resistance change at the MIT. The devices consist of in-plane gold electrodes with 200 nm wide tip on top of lithographically defined vanadium oxide films. The gap size between electrodes was fixed at 140 nm. Unlike micron-scale devices, the current-voltage characteristics in nano-scale V2O3 cannot be accounted solely by an inhomogeneous joule-heating model, suggesting additional mechanisms may be playing a role in the switching behavior. However, in the case of nano-scopic VO2 devices, it may be possible to explain the results with only inhomogeneous heating. We perform detailed electrical and thermal Finite Element Method (FEM) calculations on both the VO2 and V2O3 devices. We couple the FEM analysis with a variety of theoretical models, which can shed light on the nanoscopic nature of the MIT in VO2 and V2O3. Work supported by AFOSR.

  2. Strain-dependent ultrafast dynamics of insulator-to-metal phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Lysenko, Sergiy; Rua, Armando; Figueroa, Jose; Fernandez, Felix

    Much attention has been devoted recently to visualize and understand the strain effects in phase transition dynamics of vanadium oxide materials. In this study, using femtosecond angle-resolved light scattering technique we show strong influence of internal misfit strain in epitaxial VO2(M1) films on insulator-to-metal phase transition within less than 1 ps. Anisotropic strain in twinned domains and in domains of different size results mostly in antiphase oscillatory dynamics of coherent phonons. Depending on domain pattern and type of the substrate, this dynamics was found to be dependent on azimuthal angle and/or on spatial frequency of surface roughness. The origin of observed photoinduced antiphase oscillations is associated with compressive and tensile strain in VO2 domains which alters the initial phase of the oscillations. In contrast to pure VO2(M1), the Cr-doped VO2(M2) shows strong phonon scattering signatures with noticeable random component in the phase of coherent phonons. This material is based upon work supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under Contract Number W911NF-15-1-0448.

  3. Surface charge sensing by altering the phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y.

    2014-08-01

    Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20 K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2.

  4. Acculturation is Associated With Higher VO2max in Overweight Hispanic Children

    PubMed Central

    Crespo, Noé C.; Ball, Geoff D.C.; Shaibi, Gabriel Q.; Cruz, Martha L.; Weigensberg, Marc J.; Goran, Michael I.

    2011-01-01

    Acculturation has been implicated to be associated with physical activity (PA) behaviors in adults; little is known, however, with respect to the pediatric population. The purpose of this study was to determine whether cardiorespiratory fitness (VO2max) and/or PA were associated with acculturation status in overweight Hispanic children. In a sample of 144 children 8–13 years old, acculturation status was determined by place of birth: foreign born (n = 17), 1st generation (n = 101), or 2nd/3rd generation (n = 26), and by questionnaire: less assimilated (n = 76) or more assimilated (n = 34). VO2max was measured using a treadmill protocol, PA was assessed by questionnaire, and body composition by DEXA. ANOVA and ANCOVA were used to determine unadjusted and adjusted group differences, respectively. After adjusting for covariates, the 2nd/3rd generation group had significantly higher VO2max compared with the 1st generation group: 2.26 ± 0.20 L/min vs. 2.15 ± 0.19 L/min, p = .03. No differences were noted for PA, however. Acculturation to the U.S. is associated with higher VO2max in overweight Hispanic children. Longitudinal analyses are needed to determine whether these fitness differences confer protective health effects in this at-risk population. PMID:25197163

  5. The slow component of VO(2) kinetics in very heavy and fatiguing square-wave exercise.

    PubMed

    Bearden, S E; Henning, P C; Bearden, T A; Moffatt, R J

    2004-05-01

    We hypothesized that oxygen consumption ( VO(2)) rises incrementally in very heavy and fatiguing exercise where the slow component gain increases with higher work rates. Eight trained males completed a graded exercise test and bouts of square-wave cycle ergometry at 40% and 60% of the difference between the estimated lactate threshold (LT) and VO(2peak) (designated 40%D and 60%D). Exhaled gases were collected and analyzed every breath using models that allowed for a linear slow component or a slow component with one or more exponential increments. All subjects were able to complete 30 min at 40%D but not at 60%D. The slow component was generally best fit with two increments at 40%D and two or three increments at 60%D. In further (, our results question the reliability of determining parameters of multiple slow component increments when repeated bouts are averaged together. This study demonstrates that VO(2) can continue to rise incrementally beyond the onset of the slow component in very heavy and fatiguing exercise. These results support the concept of a recurring mechanism underlying the slow component of VO(2) kinetics during square-wave exercise and suggest that the dynamics (time of onset, rate of development, magnitude) of this mechanism may vary from day to day.

  6. Electrically controllable terahertz square-loop metamaterial based on VO2 thin film

    NASA Astrophysics Data System (ADS)

    Shin, Jun-Hwan; Park, Kyung Hyun; Ryu, Han-Cheol

    2016-05-01

    An electrically controllable square-loop metamaterial based on vanadium dioxide (VO2) thin film was proposed in the terahertz frequency regime. The square-loop shaped metamaterial was adopted to perform roles not only as a resonator but also as a micro-heater for the electrical control of the VO2. A dual-resonant square-loop structure was designed to realize band-pass characteristics in the desired frequency band. The measured Q-factors of the basic and scaled-down metamaterials fabricated on VO2 thin films were 2.22 and 1.61 at the center frequencies of 0.44 and 1.14 THz in the passbands, respectively. The transmittances of the proposed metamaterial were successfully controlled by applying a bias voltage without an external heater. The measured transmittance on-off ratios of the metamaterials were over 40 at the center frequencies in the passbands. In the future, electrically controllable terahertz metamaterial based on VO2 metamaterial could be employed as high-performance active filters or sensors.

  7. Non-Congruence of Thermally Induced Structural and Electronic Transitions in VO2

    SciTech Connect

    Nag, Joyeeta; HaglundJr., Richard F; Payzant, E Andrew; More, Karren Leslie

    2012-01-01

    The multifunctional properties of vanadium dioxide (VO2) arise from coupled first-order phase transitions: an insulator-to-metal transition (IMT) and a structural phase transition (SPT) from monoclinic to tetragonal. The characteristic signatures of the IMT and SPT are the hysteresis loops that track the phase transition from nucleation to stabilization of a new phase and back. A long-standing question about the mechanism of the VO2 phase transition is whether and how the almost-simultaneous electronic and structural transitions are related. Here we report independent measurements of the IMT and SPT hystereses in epitaxial VO2 films with differing morphologies. We show that, in both cases, the hystereses are not congruent, that the structural change requires more energy to reach completion. This result is independent of nanoscale morphology, so that the non- congruence is an intrinsic property of the VO2 phase transition. Our conclusion is supported by effective-medium calculations of the dielectric function incorporating the measured volume fractions of the monoclinic and tetragonal states. The results are consistent with the existence of an monoclinic correlated metallic state in which the electron- electron correlations characteristic of the monoclinic state begin to disappear before the transition to the tetragonal structural state.

  8. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Benqin; Tao, Haizheng; Zhao, Xiujian

    2016-03-01

    As a well-developed industrial fabricating method, magnetron sputtering technique has its distinct advantages for the large-scale production. In order to investigate the effect of buffer layer on the formation and thermochromic performances of VO2 films, using RF magnetron sputtering method, we fabricated three kinds of buffer layers SiO2, TiO2 and SnO2 on soda lime float-glass. Then according to the reactive DC magnetron sputtering method, VO2 films were deposited. Due to the restriction of heat treatment temperature when using soda lime float-glass as substrates, dense rutile phase TiO2 cannot be formed, leading to the formation of vanadium oxide compounds containing Na ions. When using SnO2 as buffer layer, we found that relatively high pure VO2 can be deposited more easily. In addition, compared with the effect of SiO2 buffer layer, we observed an enhanced visible transparency, a decreased infrared emissivity, which should be mainly originated from the modified morphology and/or the hetero-structured VO2/SnO2 interface.

  9. Functional fiber mats with tunable diffuse reflectance composed of electrospun VO2/PVP composite fibers.

    PubMed

    Li, Shaotang; Li, Yamei; Qian, Kun; Ji, Shidong; Luo, Hongjie; Gao, Yanfeng; Jin, Ping

    2014-01-01

    Thermochromic VO2 nanoparticles have been dispersed into polyvinyl pyrrolidone (PVP) fibers by electrospinning of a VO2-PVP blend solution. The structure and optical properties of the obtained composite fiber mat were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis) spectrophotometry, and Fourier transform infrared (FT-IR) spectroscopy. The fiber mat revealed two diffuse reflectance states in infrared spectral region at temperatures under and above the phase transition temperature of VO2 and its IR reflectance is smaller in high temperature. The difference of diffuse reflectance between the two states (ΔRdif) was obvious to be more than 25% in the wavelengths from 1.5 μm to 6 μm. The diffuse reflectance of the fiber mat could be controlled by adjusting the diameter of the fiber or the content of VO2 in the fibers and this particular optical property was explained by a multiple scattering-absorbing process.

  10. VO2 Max in Variable Type Exercise Among Well-Trained Upper Body Athletes.

    ERIC Educational Resources Information Center

    Seals, Douglas R.; Mullin, John P.

    1982-01-01

    The maximal oxygen consumption (VO2 max) of well-trained upper body athletes was compared to that of untrained individuals in four types of exercise: arm cranking, legs only cycling, graded treadmill running, and combined arm cranking and leg cycling. Results of the study showed that well-trained upper body athletes attained a significantly higher…

  11. Mediated proton transport through Nafion 117 membranes imbibed with varying concentrations of aqueous VOSO4 (VO2+) and NH4VO3 (VO2+) in 2 M H2SO4

    NASA Astrophysics Data System (ADS)

    Suarez, Sophia; Paterno, Domenec

    2016-11-01

    We performed an extensive study on Nafion 117 membrane imbibed with various concentrations of aqueous ammonium metavanadate (NH4VO3), and vanadyl sulfate (VOSO4), in 2 M H2SO4 over the temperature range of 20-100 °C, using 1H NMR and AC Impedance spectroscopies. The objective was to determine the effect of the tetravalent (VO2+) and pentavalent (VO2+) vanadium ions on the proton transport of Nafion 117.1H NMR chemical shift and linewidth data show greater short-range proton transport for the VO2+ imbibed membranes compared with the VO2+. However, the local environments seem to differ in that while the data for VO2+ imbibed membranes seem to follow more the trends observed for water hydrated Nafion 117, those for the VO2+ followed the trend of its aqueous bulk vanadium solvents, indicating that viscosity plays a larger role for the VO2+ imbibed membranes compared to the VO2+.

  12. Body composition and physical capacity of elite adolescent female tennis players.

    PubMed

    Ziemann, Ewa; Sledziewska, Ewelina; Grzywacz, Tomasz; Gibson, Ann L; Wierzba, Tomasz H

    2011-01-01

    The study was performed to evaluate relationships among the major anthropological parameters: (body mass - BM, height, body mass index - BMI, lean body mass - FFM, proportion of fat mass -Fat%), physical capacity, and the tennis federations ranking position as an index of the temporal sport success. Seventeen elite female tennis players, divided into three age-matched groups (15, 16, and 17 yr) participated in this study. All the players had a national singles ranking (positions between 1st-80th) and in International Tennis Federation's Junior Circuit ranking (ITFJC; 21st to 990th position of ITF). Body composition was assessed via bioelectrical impedance. Maximal aerobic capacity (VO2max) was calculated from the distance covered in 12-min run test via Cooper's formula. Wingate test with lactate assay was used as an index of anaerobic capacity. There was a significant age-related trend for an increase in BM, height, FFT, and Fat%, associated with impressive shift of the anthropological indexes of body weight and height, assessed by the percentile chart analysis. The unexpected body growth spurt evidently observed between aged 15 and 17 is supposed to reflect a delay in somatic development, related to extensive exercise load. Body composition did not correlate to the ranking positions. All tested tennis players revealed excellent aerobic capacity associated with poor indices of anaerobic fitness. The position in the tennis federations rankings correlated to VO2max but not with maximal power or maximal work output assessed by Wingate test. In the whole group the maximal power and work output were proportional to BMI and FFM, but not to Fat%. In conclusion, in light of the contradictory reports concerning a possible link between strenuous regular exercise performed by young children and adolescent elite sportsmen our data indicate a delayed growth spurt in the elite female tennis players to occur between ages 15 and 17. The other important finding in terms of

  13. Earbud-Based Sensor for the Assessment of Energy Expenditure, Heart Rate, and VO2max

    PubMed Central

    LeBoeuf, Steven F.; Aumer, Michael E.; Kraus, William E.; Johnson, Johanna L.; Duscha, Brian

    2014-01-01

    Introduction/Purpose The goal of this program was to determine the feasibility of a novel noninvasive, highly miniaturized optomechanical earbud sensor for accurately estimating total energy expenditure (TEE) and maximum oxygen consumption (VO2max). The optomechanical sensor module, small enough to fit inside commercial audio earbuds, was previously developed to provide a seamless way to measure blood flow information during daily life activities. The sensor module was configured to continuously measure physiological information via photoplethysmography (PPG) and physical activity information via accelerometry. This information was digitized and sent to a microprocessor where digital signal processing (DSP) algorithms extract physiological metrics in real-time. These metrics were streamed wirelessly from the earbud to a computer. Methods In this study, 23 subjects of multiple physical habitus were divided into a training group of 14 subjects and a validation group of 9 subjects. Each subject underwent the same exercise measurement protocol consisting of treadmill-based cardiopulmonary exercise (CPX) testing to reach VO2max. Benchmark sensors included a 12-lead electrocardiography (ECG) sensor for measuring heart rate, a calibrated treadmill for measuring distance and speed, and a gas-exchange analysis instrument for measuring TEE and VO2max. The earbud sensor was the device under test (DUT). Benchmark and DUT data collected from the 14-person training dataset study were integrated into a preconceived statistical model for correlating benchmark data with earbud sensor data. Coefficients were optimized, and the optimized model was validated in the 9-person validation dataset. Results It was observed that the earbud sensor estimated TEE and VO2max with mean ± SD percent estimation errors of −0.7 ± 7.4% and −3.2 ± 7.3% respectively. Conclusion The earbud sensor can accurately estimate TEE and VO2max during CPX testing. PMID:24743110

  14. Effect of repeated sodium phosphate loading on cycling time-trial performance and VO2peak.

    PubMed

    Brewer, Cameron P; Dawson, Brian; Wallman, Karen E; Guelfi, Kym J

    2013-04-01

    Research into supplementation with sodium phosphate has not investigated the effects of a repeated supplementation phase. Therefore, this study examined the potential additive effects of repeated sodium phosphate (SP) supplementation on cycling time-trial performance and peak oxygen uptake (VO2peak). Trained male cyclists (N = 9, M ± SD VO2peak = 65.2 ± 4.8 ml · kg-1 · min-1) completed baseline 1,000-kJ time-trial and VO2peak tests separated by 48 hr, then ingested either 50 mg · kg fat-free mass-1 · d-1 of tribasic SP or a combined glucose and NaCl placebo for 6 d before performing these tests again. A 14-d washout period separated the end of one loading phase and the start of the next, with 2 SP and 1 placebo phase completed in a counterbalanced order. Although time-trial performance (55.3-56.5 min) was shorter in SP1 and SP2 (~60-70 s), effect sizes and smallest-worthwhile-change values did not differ in comparison with baseline and placebo. However, mean power output was greater than placebo during time-trial performance at the 250-kJ and 500-kJ time points (p < .05) after the second SP phase. Furthermore, mean VO2peak values (p < .01) were greater after the SP1 (3.5-4.3%), with further improvements (p < .01) found in SP2 (7.1-7.7%), compared with baseline and placebo. In summary, repeated SP supplementation, ingested either 15 or 35 d after initial loading, can have an additive effect on VO2peak and possibly time-trial performance.

  15. Time course for recovery of peak aerobic power after blood donation.

    PubMed

    Judd, Tyler B; Cornish, Stephen M; Barss, Trevor S; Oroz, Irina; Chilibeck, Philip D

    2011-11-01

    Peak aerobic power (VO2peak) is decreased after blood donation, but the time course for full recovery is unknown. We measured VO2peak and exercise time to fatigue before and weekly for 4 weeks after 450-ml blood donation at a blood donor clinic, to determine the time course of recovery. Twelve moderately active individuals (2 women, 10 men; 24.3 ± 5.2 years) of average aerobic fitness (based on their VO2peak relative to normative values) completed VO2peak exercise tests before donation, the day after donation, and at weekly intervals for 4 weeks after donation. VO2peak was determined by an incremental exercise test on a cycle ergometer. At baseline, mean absolute and relative VO2peak values were 4.06 ± 0.92 L·min(-1) and 46.6 ± 7.0 ml·kg(-1)·min(-1), respectively. VO2peak was significantly decreased on day 1 (3.85 ± 0.89 L·min(-1); 44.0 ± 6.5 ml·kg(-1)·min(-1)) and during week 2 (3.91 ± 0.97 L·min(-1); 44.5 ± 7.2 ml·kg(-1)·min(-1)) after blood donation (p < 0.05), and recovered at week 3 after donation. Time to fatigue and peak heart rate were not significantly affected by blood donation. We conclude that blood donation causes a significant decrease in VO2peak for between 2 and 3 weeks. The practical application of this study is that aerobic power in people of average fitness will be decreased, up to 3 weeks after donating blood. Despite this, there is no effect of blood donation on performance as measured by time to fatigue during an incremental test on a cycle ergometer.

  16. Logistic Risk Model for the Unique Effects of Inherent Aerobic Capacity on (+)G(sub z) Tolerance Before and After Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Ludwig, David A.; Convertino, Victor A.; Goldwater, Danielle J.; Sandler, Harold

    1987-01-01

    Small sample size (n less than 1O) and inappropriate analysis of multivariate data have hindered previous attempts to describe which physiologic and demographic variables are most important in determining how long humans can tolerate acceleration. Data from previous centrifuge studies conducted at NASA/Ames Research Center, utilizing a 7-14 d bed rest protocol to simulate weightlessness, were included in the current investigation. After review, data on 25 women and 22 men were available for analysis. Study variables included gender, age, weight, height, percent body fat, resting heart rate, mean arterial pressure, Vo(sub 2)max and plasma volume. Since the dependent variable was time to greyout (failure), two contemporary biostatistical modeling procedures (proportional hazard and logistic discriminant function) were used to estimate risk, given a particular subject's profile. After adjusting for pro-bed-rest tolerance time, none of the profile variables remained in the risk equation for post-bed-rest tolerance greyout. However, prior to bed rest, risk of greyout could be predicted with 91% accuracy. All of the profile variables except weight, MAP, and those related to inherent aerobic capacity (Vo(sub 2)max, percent body fat, resting heart rate) entered the risk equation for pro-bed-rest greyout. A cross-validation using 24 new subjects indicated a very stable model for risk prediction, accurate within 5% of the original equation. The result for the inherent fitness variables is significant in that a consensus as to whether an increased aerobic capacity is beneficial or detrimental has not been satisfactorily established. We conclude that tolerance to +Gz acceleration before and after simulated weightlessness is independent of inherent aerobic fitness.

  17. Strength training improves supramaximal cycling but not anaerobic capacity.

    PubMed

    Minahan, Clare; Wood, Catherine

    2008-04-01

    This study examined supramaximal cycling performed to exhaustion at 120% of peak O(2) uptake (120% VO(2)peak) before and after 8 weeks of strength training. Eight previously untrained men completed 8 weeks of leg-strength training 3 days week(-1) on a hack-squat machine; four sets, five repetitions at 85% of one repetition maximum each session. Anaerobic capacity was quantified by determining the maximal accumulated O(2) deficit during supramaximal cycling. After 8 weeks of strength training, one repetition maximum for the hack squat significantly increased by 90 +/- 33% when compared to before training. However, 8 weeks of strength training did not increase the maximal accumulated O(2) deficit. Nevertheless, after 8 weeks of strength training, there was a significant increase in time to exhaustion for cycling at 120% VO(2)peak. The increase in time to exhaustion after 8 weeks of strength training was accompanied by a significant increase in accumulated O(2) uptake. In conclusion, 8 weeks of strength training improves supramaximal cycling performance in previously untrained subjects. However, increases in time to exhaustion for supramaximal cycling following strength training are associated with an increase in the contribution of the aerobic energy system rather than an improvement in anaerobic capacity.

  18. Formation of highly ordered VO2 nanotubular/nanoporous layers and their supercooling effect in phase transitions.

    PubMed

    Yang, Yang; Lee, Kiyoung; Zobel, Mirijam; Maćković, Mirza; Unruh, Tobias; Spiecker, Erdmann; Schmuki, Patrik

    2012-03-22

    The fabrication of self-organized VO(2) nanotubular/nanoporous layers is demonstrated by self-organizing anodization, followed by a suitable heat treatment. These VO(2) layers show a reversible metal to insulator transition (MIT) at 70 and 44 °C, when heating and cooling, respectively.

  19. A randomized trial on the effect of a multimodal intervention on physical capacity, functional performance and quality of life in adult patients undergoing allogeneic SCT.

    PubMed

    Jarden, M; Baadsgaard, M T; Hovgaard, D J; Boesen, E; Adamsen, L

    2009-05-01

    The aim of this randomized controlled trial was to investigate the effect of a 4- to 6-week multimodal program of exercise, relaxation and psychoeducation on physical capacity, functional performance and quality of life (QOL) in allogeneic hematopoietic cell transplantation (allo-HSCT) adult recipients. In all, 42 patients were randomized to a supervised multimodal intervention or to a control group receiving usual care. The primary end point was on aerobic capacity measured in VO(2) max. Secondary end points were muscle strength, functional performance, physical activity level, QOL, fatigue, psychological well-being and clinical outcomes. The multimodal intervention had a significant effect on physical capacity: VO(2) max (P<0.0001) and muscle strength: chest press (P<0.0001), leg extension (P=0.0003), right elbow flexor (P=0.0009), right knee extensor (P<0.0001) and functional performance (stair test) (0.0008). Moreover, the intervention group showed significantly better results for the severity of diarrhea (P=0.014) and fewer days of total parenteral nutrition (P=0.019). Longitudinal changes in QOL, fatigue and psychological well-being favored the intervention group, but did not reach statistical significance. Assignment of a multimodal intervention during allo-HSCT did not cause untoward events, sustained aerobic capacity and muscle strength and reduced loss of functional performance during hospitalization.

  20. Effects of body composition and exercise capacity on glucose tolerance, insulin, and lipoprotein lipids in healthy older men: a cross-sectional and longitudinal intervention study.

    PubMed

    Coon, P J; Bleecker, E R; Drinkwater, D T; Meyers, D A; Goldberg, A P

    1989-12-01

    The relationships of age, body composition, and physical conditioning status to glucose tolerance, insulin, and lipoprotein levels were examined in 77 healthy, nonsmoking white male volunteers, aged 46 to 73 years with no evidence of coronary artery or endocrine-metabolic disease. The men had a wide range of body fat (13% to 39%), indexed as waist-to-hip ratio (WHR, 0.84 to 1.08), and maximal aerobic capacity (VO2max, 17 to 48 mL/kg.min). Multiple regression analysis with age, VO2max, WHR, and percent body fat as independent variables demonstrated that fasting plasma insulin, triglyceride (TG), and high density lipoprotein cholesterol (HDL-C) levels were independently related to both percent body fat and WHR. In contrast, fasting plasma glucose levels and insulin responses during oral glucose tolerance tests (OGTT) correlated independently with percent body fat, and glucose responses to OGTT correlated only with WHR. Although fasting plasma TG and HDL-C correlated with glucose and insulin levels, in multiple regression analyses only percent body fat and WHR were the significant independent variables. Fasting total and low density lipoprotein cholesterol values were not related to these variables. To test the effects of weight loss and exercise training on these relationships, 20 obese men of comparable age, percent body fat, WHR, and VO2max were randomly assigned to weight loss or aerobic exercise training programs. A 12% +/- 3% loss in body weight (P less than .01, mean +/- SD) resulted in a 19% +/- 9% decline in body fat (P less than .01) with no change in fat free mass, WHR, or VO2max.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Exercise Responses to Gravity-Independent Flywheel Aerobic and Resistance Training

    PubMed Central

    Owerkowicz, Tomasz; Cotter, Joshua A.; Haddad, Fadia; Yu, Alvin M.; Camilon, Marinelle L.; Hoang, Theresa; Jimenez, Daniel; Kreitenberg, Arthur; Tesch, Per A.; Caiozzo, Vincent J.; Adams, Gregory R.

    2016-01-01

    Background Although a number of exercise systems have been developed to mitigate the physiological deconditioning that occurs in microgravity, few have the capacity to positively impact multiple physiological systems and still meet the volume/mass requirements needed for missions beyond low earth orbit. The purpose of this study was to test the gravity-independent Multi-Mode Exercise Device (M-MED) for both resistance (RE) and aerobic (AE) training stimuli. Methods Eight men and nine women (mean age 22.0±0.4 years) completed five weeks of training on the M-MED: RE 4×7 squats two days a week, and AE 4×4-min rowing bouts at ~90% VO2max three days a week. Pre- and post-training data collection included an aerobic capacity test, MR imaging, strength testing, and vastus lateralis muscle biopsy. Results VO2max increased 8%, 3RM strength 18%, and quadriceps femoris cross-sectional area (CSA) 10%. Knee extensor strength increased at all isokinetic speeds tested. Subjects also demonstrated improved resistance to fatigue in knee extension. At the cellular and molecular level, the biopsy revealed increases in mixed myofiber CSA (13%), citrate synthase activity (26%), total RNA concentration (24%), IGF-I mRNA (77%), Type IIa Myosin Heavy Chain (MHC) mRNA (8%), and concomitant decrease in Type IIx MHC mRNA (−23%). None of the changes were gender-specific. Discussion Both the functional outcomes and biomarker changes indicate that a very low volume of M-MED exercise results in robust adaptation in the cardiovascular and musculoskeletal systems. The M-MED has the potential to provide a wide range of countermeasure exercises and should be considered for testing in ground-based spaceflight simulation. PMID:26802373

  2. High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats.

    PubMed

    Moreira, José B N; Bechara, Luiz R G; Bozi, Luiz H M; Jannig, Paulo R; Monteiro, Alex W A; Dourado, Paulo M; Wisløff, Ulrik; Brum, Patricia C

    2013-04-01

    Poor skeletal muscle performance was shown to strongly predict mortality and long-term prognosis in a variety of diseases, including heart failure (HF). Despite the known benefits of aerobic exercise training (AET) in improving the skeletal muscle phenotype in HF, the optimal exercise intensity to elicit maximal outcomes is still under debate. Therefore, the aim of the present study was to compare the effects of high-intensity AET with those of a moderate-intensity protocol on skeletal muscle of infarcted rats. Wistar rats underwent myocardial infarction (MI) or sham surgery. MI groups were submitted either to an untrained (MI-UNT); moderate-intensity (MI-CMT, 60% Vo(2)(max)); or matched volume, high-intensity AET (MI-HIT, intervals at 85% Vo(2)(max)) protocol. High-intensity AET (HIT) was superior to moderate-intensity AET (CMT) in improving aerobic capacity, assessed by treadmill running tests. Cardiac contractile function, measured by echocardiography, was equally improved by both AET protocols. CMT and HIT prevented the MI-induced decay of skeletal muscle citrate synthase and hexokinase maximal activities, and increased glycogen content, without significant differences between protocols. Similar improvements in skeletal muscle redox balance and deactivation of the ubiquitin-proteasome system were also observed after CMT and HIT. Such intracellular findings were accompanied by prevented skeletal muscle atrophy in both MI-CMT and MI-HIT groups, whereas no major differences were observed between protocols. Taken together, our data suggest that despite superior effects of HIT in improving functional capacity, skeletal muscle adaptations were remarkably similar among protocols, leading to the conclusion that skeletal myopathy in infarcted rats was equally prevented by either moderate-intensity or high-intensity AET.

  3. Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.

    PubMed

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2013-09-01

    The computer model of the bioenergetic system in skeletal muscle, developed previously, was used to study the effect of the characteristic decay time of the parallel activation of oxidative phosphorylation [τ(OFF)] during muscle recovery on the muscle oxygen consumption rate (Vo2) and phosphocreatine (PCr) work-to-rest transition (off)-kinetics and on the relationship between the Vo2 and PCr rest-to-work transition (on)- and off-kinetics in moderate and heavy exercise. An increase in τ(OFF) slows down the initial phase of the muscle Vo2 off-kinetics and accelerates the PCr off-kinetics. As a result, the relationship between the initial phase of the Vo2 off-kinetics (lasting approximately 3-60 s in computer simulations) and the PCr off-kinetics is inverse: the slower the former, the faster the latter. A faster initial phase of the Vo2 off-kinetics is associated with a slower late phase of the Vo2 off-kinetics, and as a result, the integral of Vo2 above baseline during recovery, representing the oxygen debt, is identical in all cases [values of τ(OFF)] for a given PCr decrease. Depending on τ(OFF), the muscle Vo2 on-kinetics was either equally fast or slower than the Vo2 off-kinetics in moderate exercise and always slower in heavy exercise. PCr on-kinetics was always faster than PCr off-kinetics. This study clearly demonstrates that τ(OFF) has a pronounced impact on the mutual relations between the muscle Vo2 and PCr on- and off-kinetics.

  4. Graphene‐Nanowall‐Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2 +/VO2+ Couple for All Vanadium Redox Flow Battery

    PubMed Central

    Li, Wenyue; Zhang, Zhenyu; Bian, Haidong; Ng, Tsz‐Wai

    2015-01-01

    3D graphene‐nanowall‐decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO2 +/VO2+ redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging–discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode.

  5. Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, Z. A.; Wu, X. W.; Yuan, X. H.; Hu, J. P.; Zhou, Q. M.; Liu, Z. H.; Wu, Y. P.

    2015-12-01

    Functional porous carbon (PC) derived from bio-friendly shaddock peel has been firstly explored as catalyst for vanadium redox flow battery (VRB). The prepared PC is micro-mesoporous with high BET surface area of 882.7 m2 g-1, has some surface oxygen-containing functional groups, and is doped with N and P heteroatoms. These three factors greatly favor the electrochemical reactions of VO2+/VO2+ on the PC modified glass carbon (PC-GC). Compared with the naked GC and graphite modified GC, the PC-GC presents a lower peak separation (66 mV), higher anodic current density (17.1 mA cm-2) and cathodic current density (15.0 mA cm-2). The VRB using PC modified graphite felt (GF) as positive electrode demonstrates an enhanced voltage efficiency of 82.7% at the current density of 60 mA cm-2, and a better rate performance than that from the virginal GF.

  6. Electron and hole dynamics in the electronic and structural phase transitions of VO2

    NASA Astrophysics Data System (ADS)

    Haglund, Richard

    2015-03-01

    The ultrafast, optically induced insulator-to-metal transition (IMT) and the associated structural phase transition (SPT) in vanadium dioxide (VO2) have been studied for over a decade. However, only recently have effects due to the combined presence of electron-hole pairs and injected electrons been observed. Here we compare and contrast IMT dynamics when both hot electrons and optically excited electron-hole pairs are involved, in (1) thin films of VO2 overlaid by a thin gold foil, in which hot electrons are generated by 1.5 eV photons absorbed in the foil and accelerated through the VO2 by an applied electric field; (2) VO2 nanoparticles covered with a sparse mesh of gold nanoparticles averaging 20-30 nm in diameter in which hot electrons are generated by resonant excitation and decay of the localized surface plasmon; and (3) bare VO2 thin films excited by intense near-single-cycle THz pulses. In the first case, the IMT is driven by excitation of the bulk gold plasmon, and the SPT appears on a few-picosecond time scale. In the second case, density-functional calculations indicate that above a critical carrier density, the addition of a single electron to a 27-unit supercell drives the catastrophic collapse of the coherent phonon associated with, and leading to, the SPT. In the third case, sub-bandgap-energy photons (approximately 0.1 eV) initiate the IMT, but exhibit the same sub-100 femtosecond switching time and coherent phonon dynamics as observed when the IMT is initiated by 1.5 eV photons. This suggests that the underlying mechanism must be quite different, possibly THz-field induced interband tunneling of spatially separated electron-hole pairs. The implications of these findings for ultrafast switching in opto-electronic devices - such as hybrid VO2 silicon ring resonators - are briefly considered. Support from the National Science Foundation (DMR-1207407), the Office of Science, U.S. Department of Energy (DE-FG02-01ER45916) and the Defense Threat

  7. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  8. Effects of epinephrine and lactate on the increase in oxygen consumption of non-exercising skeletal muscle after aerobic exercise

    NASA Astrophysics Data System (ADS)

    Murakami, Motohide; Katsumura, Toshihito; Hamaoka, Takatumi; Osada, Takuya; Sako, Takayuki; Higuchi, Hiroyuki; Esaki, Kazuki; Kime, Ryotaro; Shimomitsu, Teruichi

    2000-10-01

    The purpose of this study was to measure O2 consumption of nonexercising skeletal muscles (VO2nonex) at rest and after aerobic exercise and to investigate the stimulant factors of O2 consumption. In experiment 1, we measured the resting metabolic rate of the finger flexor muscles in seven healthy males by 31P-magnetic resonance spectroscopy during a 15 min arterial occlusion. In experiment 2, the VO2nonex of the finger flexor muscles was measured using near infrared continuous wave spectroscopy at rest, immediate postexercise, and 3, 5, 10, 15, and 20 min following a cycling exercise at a workload corresponding to 50% of peak pulmonary O2 uptake for 20 min. We also monitored deep tissue temperature in the VO2nonex measurement area and determined catecholamines and lactate concentrations in the blood at rest and immediate postexercise. VO2nonex at rest was 1.1 +/- 0.1 (mu) M O2/s (mean +/- standard error) and VO2nonex after exercise increased 59.6 +/- 7.2% (p < 0.001) from the resting values. There were significant correlations between the increase in VO2nonex and the increase in epinephrine concentration (p < 0.01), and between the increase in VO2nonex and the increase in lactate concentration (p < 0.05). These results suggest that epinephrine and lactate concentrations are important VO2nonex stimulant factors.

  9. The impact of electronic mail versus print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes.

    PubMed

    Taylor, J David

    2008-09-01

    Previous research indicates that the Internet, electronic mail (e-mail), and printed materials can be used to deliver interventions to improve physical activity in people with type 2 diabetes. However, no studies have been conducted investigating the effect of e-mail or print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. The purpose of this clinical trial was to investigate the impact of e-mail vs. print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. Nineteen participants with type 2 diabetes were allocated to either a group that was delivered a prescribed exercise program using e-mail (e-mail group, n = 10) or a group that was delivered the same prescribed exercise program in print form (print group, n = 9). Chest press and leg press estimated one-repetition maximum (1-RM) scores as well as estimated peak oxygen uptake ([latin capital V with dot above]O2peak) were measured at baseline and follow-up. Intention-to-treat analysis indicated significant improvements in chest press (mean = 7.00 kg, p = 0.001, effect size = 2.22) and leg press (mean = 19.32 kg, p = 0.002, effect size = 1.98) 1-RM scores and [latin capital V with dot above]O2peak (mean = 9.38 mL of oxygen uptake per kilogram of body mass per minute, p = 0.01, effect size = 1.45) within the e-mail group. Within the print group, significant improvements in chest press (mean = 9.13 kg, p = 0.01, effect size = 1.49) and leg press (mean = 16.68 kg, p = 0.01, effect size = 1.31) 1-RM scores and [latin capital V with dot above]O2peak (mean = 5.14 ml of oxygen uptake per kilogram of body mass per minute, p = 0.03, effect size = 1.14) were found. No significant between-group differences in improvements were found. Clinicians can deliver a prescribed exercise program, either by e-mail or in print form, to significantly improve muscular strength and aerobic capacity in people with type 2 diabetes

  10. Postfabrication annealing effects on insulator-metal transitions in VO2 thin-film devices.

    PubMed

    Rathi, Servin; Lee, In-yeal; Park, Jin-Hyung; Kim, Bong-Jun; Kim, Hyun-Tak; Kim, Gil-Ho

    2014-11-26

    In order to investigate the metal-insulator transition characteristics of VO2 devices annealed in reducing atmosphere after device fabrication at various temperature, electrical, chemical, and thermal characteristics are measured and analyzed. It is found that the sheet resistance and the insulator-metal transition point, induced by both voltage and thermal, decrease when the devices are annealed from 200 to 500 °C. The V 2p3/2 peak variation in X-ray photoelectron spectroscopy (XPS) characterization verifies the reduction of thin-films. A decrease of the transition temperature from voltage hysteresis measurements further endorse the reducing effects of the annealing on VO2 thin-film.

  11. Visualization of local phase transition behaviors in ultrathin VO2/TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Sohn, Ahrum; Kanki, Terou; Tanaka, Hidekazu; Kim, Dong-Wook

    VO2 undergoes the first order phase transition and two electronic phases can coexist near the critical temperature. We investigated evolution of the surface work function maps of epitaxial VO2/TiO2 thin films (thickness: 15, 30, and 45 nm) using Kelvin probe force microscopy (KPFM) measurements in the temperature range of 285-330 K. Fully strained thin films were almost free of grain boundaries and thicker films had dislocations caused by strain relaxation. The sample's work function decreases, while spanning the metal-insulator transition (MIT). The work function maps clearly revealed coexistence of the two distinct phase domains. The surface area fraction of the insulating phase near the dislocations was higher than that in other regions. Thicker films have complicated domain patterns; hence, the three-dimensional percolation model properly described the MIT behaviors. In contrast, the two-dimensional percolation model well explained the transition behaviors of uniformly strained thinner films.

  12. Nanoscale dynamics of the Insulator-to-Metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Sternbach, Aaron

    We have improved upon the technique of time resolved scanning near-field optical microscopy to study the development of inhomogeneous phase transitions in the time domain with 20 nanometer spatial resolution and 100 femtosecond temporal resolution. In our present work, we study Vanadium Dioxide (VO2) , which is a canonical correlated electron system that exhibits an insulator-to-metal transition (IMT) above room temperature. We observe inhomogeneous dynamics that are related to mesoscopic strain variations. Our measurement resolves the dynamical evolution of the IMT on length scales that are short compared with the typical sizes of metallic domains in VO2. By using Near-Infrared radiation, measured on a pulse-to-pulse basis, we are able to achieve an unprecedented Signal-to-Noise ratio. Our advances pave a pathway to study a wide range of systems with inhomogeneities properties on the nanoscale with high sensitivity, nanoscopic spatial, and ultrafast temporal resolution.

  13. Local Peltier-effect-induced reversible metal-insulator transition in VO2 nanowires

    NASA Astrophysics Data System (ADS)

    Takami, Hidefumi; Kanki, Teruo; Tanaka, Hidekazu

    2016-06-01

    We report anomalous resistance leaps and drops in VO2 nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal-insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO2 nanowires because one straight current path through the electronic domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.

  14. Photoemission Study of VO2 Above and Below the Transition Temperature

    NASA Astrophysics Data System (ADS)

    Moreschini, Luca; Chang, Young Jun; Innocenti, Davide; Walter, Andrew L.; Denlinger, Jonathan; Bostwick, Aaron; Rotenberg, Eli

    2012-02-01

    Angle-resolved photoemission (ARPES) experiments on VO2 have traditionally been hindered by the quality of cleaved single crystals. The lack of a clear metal-insulator transition (MIT) in low photon energy measurements has even lead to the assumption of a surface region with a different electronic structure. WIth the in situ pulsed-laser-deposition (PLD) system available on beamline 7.0.1 at the Advanced Light Source we have grown VO2(001) films on a TiO2 substrate and measured the band structure above and below the transition temperature. We discuss our results in comparison with the available calculations, and we show that the MIT is clearly visible for photon energies within the UV range.

  15. Pulsed Laser Deposition of VO2 Single Crystal Thin Films on Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Pei-ran; S, Yamamoto; A, Miyashita; H, Naramoto

    1998-12-01

    Thin films of VO2 single-crystalline on (0001) sapphire substrates have been prepared by visible pulsed laser ablation technique. The crystal quality and properties of the films are evaluated through electrical resistance measurement, x-ray diffraction (XRD), and Rutherford-backscattering spectroscopy/channeling (RBS/C) analysis. The dependence of the surface electrical resistance of the films on the temperature shows semiconductor-to-metal transitions with the resistance change of 7 × 103-2 × 104. The hysteresis widths are from less than 1 to 3 K. XRD and RBS/C data reveal that the films prepared in particular conditions are single-crystalline VO2 with the (010) planes parallel to the surface of the sapphire substrate.

  16. Reconfigurable anisotropy and functional transformations with VO2-based metamaterial electric circuits

    NASA Astrophysics Data System (ADS)

    Savo, Salvatore; Zhou, You; Castaldi, Giuseppe; Moccia, Massimo; Galdi, Vincenzo; Ramanathan, Shriram; Sato, Yuki

    2015-04-01

    We demonstrate an innovative multifunctional artificial material that combines exotic metamaterial properties and the environmentally responsive nature of phase-change media. The tunable metamaterial is designed with the aid of two interwoven coordinate-transformation equations and implemented with a network of thin-film resistors and vanadium dioxide (VO2). The strong temperature dependence of VO2 electrical conductivity results in a significant modification of the resistor network behavior, and we provide experimental evidence for a reconfigurable metamaterial electric circuit that not only mimics a continuous medium, but is also capable of responding to thermal stimulation through dynamic variation of its spatial anisotropy. Upon external temperature change, the overall effective functionality of the material switches between a "truncated cloak" and a "concentrator" for electric currents. Possible applications may include adaptive matching resistor networks, multifunctional electronic devices, and equivalent artificial materials in the magnetic domain. Additionally, the proposed technology could also be relevant for thermal management of integrated circuits.

  17. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  18. Investigation of VO2 kinetics in humans with pseudorandom binary sequence work rate change.

    PubMed

    Hughson, R L; Winter, D A; Patla, A E; Swanson, G D; Cuervo, L A

    1990-02-01

    The dynamic response of oxygen uptake (VO2) was investigated with two different cycle ergometer tests in which the work rate changed as a pseudorandom binary sequence (PRBS). One sequence had 15 units, each of 30-s duration for a total of 450 s (PRBS1). The second had 63 units, each of 5-s duration for a total of 315 s (PRBS2). The useful range of frequencies available for investigation of the dynamic characteristics of the VO2 response as described by their bandwidth were 0.002-0.013 Hz for PRBS1 and 0.003-0.089 Hz for PRBS2. Eight subjects each completed both PRBS tests. Data from four or five consecutive sequences were ensemble averaged to reduce the biological noise. A Fourier analysis was then conducted, with the range of frequencies investigated spanning those of the bandwidth for PRBS2. This was up to the 28th harmonic. For PRBS1, the VO2 response could be adequately reconstructed by including Fourier coefficients only up to the 5th harmonic. In contrast, for PRBS2, there was still a clear pattern in the residuals at the 5th harmonic. The data were not adequately reconstructed until higher-frequency components up to the 28th harmonic were included. Evidence for this came from analysis of the mean square error. The mean square error at the 28th harmonic was reduced to 83 +/- 8% of the mean square error at the 5th harmonic for PRBS1 and to 31 +/- 3% for PRBS2 (P less than 0.0001). These data obtained by Fourier analysis and reconstructed for comparison with the original VO2 response indicate the presence of a high-frequency component that was not apparent when a test with a smaller bandwidth was used as the work rate forcing.

  19. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.

    PubMed

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.

  20. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production

    PubMed Central

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939

  1. Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Zhao, Y.; Kuryatkov, V. V.; Fan, Z. Y.; Bernussi, A. A.; Holtz, M.

    2013-01-01

    Spectroscopic ellipsometry studies are reported for vanadium dioxide grown on c-, m-, and r-plane sapphire substrates. The crystallographic orientation of the VO2 depends strongly on the substrate, producing diverse strains in the layers which affect the interband transition energies and the phase transition temperatures. These structural differences correlate with distinct variations of the optical transitions observed in the ellipsometry results. For the m- and r-plane substrates, the VO2 appears to transform abruptly from the monoclinic phase to the rutile R structure as temperature is increased. In contrast, VO2 deposited on c-plane sapphire exhibits a sluggish transformation. For the m-plane sample, the energy gap collapses over a narrow temperature range. For the c-plane case, a broad temperature range is obtained between the onset and completion of the transformation. Raman studies of the vibrational structure show that internal stresses due to expansion and contraction across the phase transitions impacts the observed phonon energies.

  2. A novel solution process for the synthesis of VO2 thin films with excellent thermochromic properties.

    PubMed

    Kang, Litao; Gao, Yanfeng; Luo, Hongjie

    2009-10-01

    This article describes a novel and simple route to preparing VO(2) thermochromic films by using a VOCl(2) solution with poly(vinylpyrrolidone) (PVP). X-ray diffraction and Raman spectra showed that the VO(2) films deposited with PVP consisted of a nearly pure monoclinic/rutile (M/R) phase. Conversely, films prepared without PVP contained obviously impure crystalline phases. The as-prepared films with PVP showed excellent optical properties compared to those prepared by common gas-phase methods: an integral visible transmittance of 54.5% and an IR reduction (change in transmittance) of 41.5% at 2000 nm. The phase-transition temperatures were adjusted from 69 to 54 degrees C by tungsten doping. Equipment analyses revealed that PVP plays two roles in the film formation. First, it fundamentally acts as a film-forming promoter to improve physical gelation via interactions among oppositely charged carbonyl groups and amine groups of the polymer. Second, the negatively charged carbonyl groups can interact with VO(2+) to form a uniform mixed-gel film after solvent evaporation. Thus, the addition of PVP can stabilize the solution and improve the as-prepared film quality and phase purity. The current study suggests that the process has promise in applications of smart windows. PMID:20355855

  3. Photonic and plasmonic modulators based on optical switching in VO2

    NASA Astrophysics Data System (ADS)

    Haglund, Richard F.; Weiss, Sharon M.; Appavoo, Kannatassen

    2015-01-01

    Researchers all over the world are competing in a technology-driven quest to develop the next generation of ultrasmall, low-power photonic and plasmonic devices. One route to this objective involves hybrid structures that incorporate a phase-changing material into the structure, creating a nanocomposite material in which the optical response of a plasmonic or photonic structure is modulated by a change in phase, crystallinity or dielectric function induced by thermal, optical or electrical stimulus. Vanadium dioxide (VO2) has been considered as a potential electro-optic switching material for electronic and photonic applications ever since its semiconductor-to-metal transition (SMT) was first described half a century ago. This review describes the application of vanadium dioxide as the switching element in (i) a hybrid silicon ring resonator and (ii) a polarization-sensitive, multifunctional plasmonic modulator in the form of a nanoscale heterodimer. As is now widely known, the SMT in VO2 is also accompanied by a structural phase transition (SPT) from the M1 (monoclinic) to a rutile (tetragonal, R) crystalline form that was believed to prevent a fast recovery after switching. However, recent research has shown that this picture is oversimplified, and that there is a monoclinic metallic state that enables true ultrafast switching. That understanding, in turn, is leading to new concepts in developing hybrid nanocomposites that incorporate VO2 in silicon photonics and plasmonic modulators, enabling the construction of ultrafast optical switches, modulators and memory elements.

  4. Metal-Insulator Transition in VO_{2}: A DFT+DMFT Perspective.

    PubMed

    Brito, W H; Aguiar, M C O; Haule, K; Kotliar, G

    2016-07-29

    We present a theoretical investigation of the electronic structure of rutile (metallic) and M_{1} and M_{2} monoclinic (insulating) phases of VO_{2} employing a fully self-consistent combination of density functional theory and embedded dynamical mean field theory calculations. We describe the electronic structure of the metallic and both insulating phases of VO_{2}, and propose a distinct mechanism for the gap opening. We show that Mott physics plays an essential role in all phases of VO_{2}: undimerized vanadium atoms undergo classical Mott transition through local moment formation (in the M_{2} phase), while strong superexchange within V dimers adds significant dynamic intersite correlations, which remove the singularity of self-energy for dimerized V atoms. The resulting transition from rutile to dimerized M_{1} phase is adiabatically connected to the Peierls-like transition, but is better characterized as the Mott transition in the presence of strong intersite exchange. As a consequence of Mott physics, the gap in the dimerized M_{1} phase is temperature dependent. The sole increase of electronic temperature collapses the gap, reminiscent of recent experiments. PMID:27517782

  5. Ultrafast dynamics of VO2 thin films measured in pump-probe configuration

    NASA Astrophysics Data System (ADS)

    Radue, Elizabeth; Kittiwatanakul, Salinporn; Lu, Jiwei; Wolf, S. A.; Fu, Zhengping; Yamaguchi, Masashi; Rossi, Enrico; Lukaszew, R. A.; Novikova, Irina

    The semiconductor-metal transition of VO2 continues to be a vigorously studied phenomenon due to complicated interplay between the structural change and the electronic bands. It is also potentially a very useful material, particularly because of its ultrafast transition to the metallic state excited with a femtosecond pulse. We have been exploring the effects of polarization of the pump in relation to the probe affects the sub-picosecond response of VO2 thin films, which will be important in designing ultrafast switches. We have also been looking at pumping our VO2 films with a THz source that directly pumps the lattice, and have found the film responds optically on a slower scale than when pumped with 800 nm, suggesting that there is an electronic response from disturbing the lattice. This project was sponsored by the NSF, DMR-1006013: Plasmon Resonances and Metal Insulator Transitions in Highly Correlated Thin Film Systems, and the NASA Virginia Space Grant Consortium. We also acknowledge support from the NRI/SRC sponsored ViNC center.

  6. Metal-Insulator Transition in VO2 : A DFT +DMFT Perspective

    NASA Astrophysics Data System (ADS)

    Brito, W. H.; Aguiar, M. C. O.; Haule, K.; Kotliar, G.

    2016-07-01

    We present a theoretical investigation of the electronic structure of rutile (metallic) and M1 and M2 monoclinic (insulating) phases of VO2 employing a fully self-consistent combination of density functional theory and embedded dynamical mean field theory calculations. We describe the electronic structure of the metallic and both insulating phases of VO2 , and propose a distinct mechanism for the gap opening. We show that Mott physics plays an essential role in all phases of VO2 : undimerized vanadium atoms undergo classical Mott transition through local moment formation (in the M2 phase), while strong superexchange within V dimers adds significant dynamic intersite correlations, which remove the singularity of self-energy for dimerized V atoms. The resulting transition from rutile to dimerized M1 phase is adiabatically connected to the Peierls-like transition, but is better characterized as the Mott transition in the presence of strong intersite exchange. As a consequence of Mott physics, the gap in the dimerized M1 phase is temperature dependent. The sole increase of electronic temperature collapses the gap, reminiscent of recent experiments.

  7. Observation of Voltage Oscillations in VO2 with Negative Differential Resistance

    NASA Astrophysics Data System (ADS)

    Kang, Dae-Joon; Yang, Hyoung Woo; Bae, Garam

    Many strongly correlated electron systems exhibit complex nonlinear behaviors with electric fields. The origin of the electrical instabilities is closely related to a negative differential resistance (NDR). Here, we report electrical characteristics of two-terminal devices based on vanadium dioxide (VO2) thin films fabricated on c-cut sapphire substrates, exhibiting NDR behavior in their I-V characteristics that may work as a voltage oscillator of high efficiency. We show that the NDR behavior can be better understood in the context of metal-insulator phase transition. Furthermore, we found that the source voltage and frequency affect greatly the NDR behaviors, which is indicated by an evident shift of oscillation voltage from 10 V to 1 V. Based on the experimental results, with the source voltage and the frequency systematically varied, the mechanism of the oscillation was found to be the ascribed to an alternate occurrence of an electric-field-induced resistance switching in the MIT of VO2. We discuss herein, the origin and potential applications of NDR based devices in detail and investigated the voltage oscillation behaviors of VO2 to elucidate the underlying physics of its metal insulator transition behavior.

  8. The band structure of VO2 measured by angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Moreschini, Luca; Chang, Young Jun; Innocenti, Davide; Walter, Andrew L.; Kim, Young Su; Gaines, Geoffrey; Bostwick, Aaron; Denlinger, Jonathan; Rotenberg, Eli

    2011-03-01

    The origin of the 340K metal-insulator transition (MIT) in VO2 is still under debate. the main reason is that no direct experimental verifications of the electronic structure of VO2 exist up to this point. The quality of the available single crystals is not sufficient for ARPES measurements, so that photoemission is limited to angle-integrated mode. New opportunities are offered by oxide films, on which data of equal or even higher quality have been reported (Saeki et al., PRB 2009). WIth the in situ pulsed-laser-deposition (PLD) system available on beamline 7.0.1 at the Advanced Light Source we have grown VO2(001) films on a TiO2 substrate and measured the Fermi surface of the metallic phase. These results will permit a direct comparison with the existing band calculations and open the way to the study of the MIT as a function, e.g., of film thickness or electron doping with Cr. Work supported by U.S. DOE (DE-AC02-05CH11231 for ALS), the Max Planck Society, and the Swiss National Science Foundation (PBELP2-125484).

  9. Tuning phase transition temperature of VO2 thin films by annealing atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Xingxing; Wang, Shao-Wei; Chen, Feiliang; Yu, Liming; Chen, Xiaoshuang

    2015-07-01

    A simple new way to tune the optical phase transition temperature of VO2 films was proposed by only controlling the pressure of oxygen during the annealing process. Vanadium films were deposited on glass by a large-scale magnetron sputtering coating system and then annealed in appropriate oxygen atmosphere to form the VO2 films. The infrared transmission change (at 2400 nm) is as high as 58% for the VO2 thin film on the glass substrate, which is very good for tuning infrared radiation and energy saving as smart windows. The phase transition temperature of the films can be easily tuned from an intrinsic temperature to 44.7 °C and 40.2 °C on glass and sapphire by annealing oxygen pressure, respectively. The mechanism is: V3+ ions form in the film when under anaerobic conditions, which can interrupt the V4+ chain and reduce the phase transition temperature. The existence of V3+ ions has been observed by x-ray photoelectron spectroscopy (XPS) experiments as proof.

  10. Thermochromic VO2 nanorods made by sputter deposition: Growth conditions and optical modeling

    NASA Astrophysics Data System (ADS)

    Li, Shu-Yi; Namura, Kyoko; Suzuki, Motofumi; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-07-01

    Reactive dc magnetron sputtering onto glass-based substrates yielded deposits of thermochromic VO2 with well-developed nanorods and nanowires. Their formation was promoted by high substrate temperature (above ˜500 °C), sufficient film thickness, proper inlet of the reactive gas, dispersed gold "seeds," and pronounced substrate roughness. Rutherford back scattering ascertained mass thicknesses, scanning electron microscopy depicted the nanostructures, and glancing incidence X-ray diffraction proved that single-phase VO2 was normally formed. Spectrophotometric measurements of total and diffuse transmittance and reflectance on VO2 thin films, at room temperature and ˜100 °C, allowed us to determine complex dielectric functions below and above the "critical" temperature for thermochromic switching (˜68 °C). These data were then used in computations based on the Bruggeman effective medium theory applied to randomly oriented prolate spheroidal structural units to derive the optical properties of the deposits. Experimental and computed data on spectral absorptance were found to be in good qualitative agreement.

  11. Effects of 12 weeks of aerobic training on autonomic modulation, mucociliary clearance, and aerobic parameters in patients with COPD

    PubMed Central

    Leite, Marceli Rocha; Ramos, Ercy Mara Cipulo; Kalva-Filho, Carlos Augusto; Freire, Ana Paula Coelho Figueira; de Alencar Silva, Bruna Spolador; Nicolino, Juliana; de Toledo-Arruda, Alessandra Choqueta; Papoti, Marcelo; Vanderlei, Luiz Carlos Marques; Ramos, Dionei

    2015-01-01

    Introduction Patients with chronic obstructive pulmonary disease (COPD) exhibit aerobic function, autonomic nervous system, and mucociliary clearance alterations. These parameters can be attenuated by aerobic training, which can be applied with continuous or interval efforts. However, the possible effects of aerobic training, using progressively both continuous and interval sessions (ie, linear periodization), require further investigation. Aim To analyze the effects of 12-week aerobic training using continuous and interval sessions on autonomic modulation, mucociliary clearance, and aerobic function in patients with COPD. Methods Sixteen patients with COPD were divided into an aerobic (continuous and interval) training group (AT) (n=10) and a control group (CG) (n=6). An incremental test (initial speed of 2.0 km·h−1, constant slope of 3%, and increments of 0.5 km·h−1 every 2 minutes) was performed. The training group underwent training for 4 weeks at 60% of the peak velocity reached in the incremental test (vVO2peak) (50 minutes of continuous effort), followed by 4 weeks of sessions at 75% of vVO2peak (30 minutes of continuous effort), and 4 weeks of interval training (5×3-minute effort at vVO2peak, separated by 1 minute of passive recovery). Intensities were adjusted through an incremental test performed at the end of each period. Results The AT presented an increase in the high frequency index (ms2) (P=0.04), peak oxygen uptake (VO2peak) (P=0.01), vVO2peak (P=0.04), and anaerobic threshold (P=0.02). No significant changes were observed in the CG (P>0.21) group. Neither of the groups presented changes in mucociliary clearance after 12 weeks (AT: P=0.94 and CG: P=0.69). Conclusion Twelve weeks of aerobic training (continuous and interval sessions) positively influenced the autonomic modulation and aerobic parameters in patients with COPD. However, mucociliary clearance was not affected by aerobic training. PMID:26648712

  12. The aerobic demand of backstroke swimming, and its relation to body size, stroke technique, and performance.

    PubMed

    Smith, H K; Montpetit, R R; Perrault, H

    1988-01-01

    Few studies have examined the aerobic demand of backstroke swimming, and its relation to body morphology, technique, or performance. The aims of this study were thus to: i) describe the aerobic demand of backstroke swimming in proficient swimmers at high velocities; ii) assess the effects of body size and stroke technique on submaximal and maximal O2 costs, and; iii) test for a relationship between submaximal O2 costs and maximal performance. Sixteen male competitive swimmers were tested during backstroke swimming at velocities from 1.0 to 1.4 m.s-1. Results showed that VO2 increased linearly with velocity (m.s-1) following the equation VO2 = 6.28v - 3.81 (r = 0.77, SEE/Y = 14.9%). VO2 was also related to the subjects' body mass, height, and armspan. Longer distances per stroke were associated with lower O2 costs, and better maximal performances. A significant relation was found between VO2 at 1.1 m.s-1, adjusted for body mass, and 400 m performance (r = -0.78). Submaximal VO2 was also related to reported times for 100 m and 200 m races. Multiple correlation analyses indicated that VO2 at 1.1 m.s-1 and VO2max accounted for up to 78% of the variance in maximal performances. These results suggest that the assessment of submaximal and maximal VO2 during backstroke swimming may be of value in the training and testing programs of competitive swimmers. PMID:3203665

  13. Effects of Home-Based Interval Walking Training on Thigh Muscle Strength and Aerobic Capacity in Female Total Hip Arthroplasty Patients: A Randomized, Controlled Pilot Study

    PubMed Central

    Morishima, Yutaka; Mizushima, Takashi; Yamauchi, Katsuya; Morikawa, Mayuko; Masuki, Shizue; Nose, Hiroshi

    2014-01-01

    Due to the reduced physical activity of patients who have undergone total hip arthroplasty (THA), there are no home-based exercise training regimens for preventing muscle atrophy and aerobic capacity impairment in these patients. We examined whether interval walking training (IWT) could prevented these issues. Twenty-eight female patients (∼60 years of age) who had undergone THA more than 2 months prior were randomly divided into IWT (n = 14) and control (CNT, n = 14) groups. The IWT subjects trained at a target of 60 min of fast walking at >70% peak aerobic capacity for walking (O2peak) per wk for 12 wk, while those in the CNT maintained their previous sedentary life during the same period. We measured the energy expenditure of the daily physical activity, except during sleeping and bathing, every minute and every day during the intervention. We also measured the isometric knee extension (FEXT) and flexion (FFLX) forces, O2peak, and anaerobic threshold during the graded cycling exercise (O2AT) before and after the intervention. All subjects, except for one in IWT, completed the protocol. FFLX increased by 23% on the operated side (P = 0.003) and 14% on the non-operated side of IWT (P = 0.006), while it only increased on the operated side of CNT (P = 0.03). The O2peak and O2AT in IWT increased by 8% (P = 0.08) and 13% (P = 0.002), respectively, and these changes were significantly higher in the IWT than in CNT group (both, P<0.05). In conclusion, IWT might be an effective home-based training regimen for preventing the muscle atrophy from reduced daily physical activity in THA patients. Trial Registration UMIN-CTR UMIN000013172 PMID:25268505

  14. Testing the Jacob's ladder of density functionals for electronic structure and magnetism of rutile VO2

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sun, Jianwei; Ruzsinszky, Adrienn; Perdew, John P.

    2014-08-01

    We employ semilocal density functionals [local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and meta-GGAs)], LSDA plus Hubbard U (LSDA+U) theory, a nonlocal range-separated Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), and the random-phase approximation (RPA) to assess their performances for the ground-state magnetism and electronic structure of a strongly correlated metal, rutile VO2. Using recent quantum Monte Carlo results as the benchmark, all tested semilocal and hybrid functionals as well as the RPA (with PBE inputs) predict the correct magnetic ground states for rutile VO2. The observed paramagnetism could arise from temperature-disordered local spin moments or from the thermal destruction of these moments. All semilocal functionals also give the correct ground-state metallicity for rutile VO2. However, in the ferromagnetic (FM) and antiferromagnetic (AFM) phases, LSDA+U and HSE06 incorrectly predict rutile VO2 to be a Mott-Hubbard insulator. For the computed electronic structures of FM and AFM phases, we find that the Tao-Perdew-Staroverov-Scuseria (TPSS) and revised TPSS (revTPSS) meta-GGAs give strong 2p-3d hybridizations, resulting in a depopulation of the 2p bands of O atoms, in comparison with other tested meta-GGAs. The regularized TPSS (regTPSS) and meta-GGAs made simple, i.e., MGGA_MS0 and MGGA_MS2, which are free of the spurious order-of-limits problem of TPSS and revTPSS, give electronic states close to those of the PBE GGA and LSDA. In comparison to experiment, semilocal functionals predict better equilibrium cell volumes for rutile VO2 in FM and AFM states than in the spin-unpolarized state. For meta-GGAs, a monotonic decrease of the exchange enhancement factor Fx(s,α) with α for small s, as in the MGGA_MS functionals, leads to large (probably too large) local magnetic moments in spin-polarized states.

  15. Measuring aerobic fitness of Hispanic youth 10 to 12 years of age.

    PubMed

    Suminski, R R; Ryan, N D; Poston, C S; Jackson, A S

    2004-01-01

    Obesity is a major health problem in the U.S., especially for Hispanic youth. Because maximal/peak oxygen consumption (V.O (2)peak) is one predictor of future weight gain in children, valid field-based methods for determining V.O (2)peak in Hispanic children are needed. The purpose of this study was to validate a field-based aerobic fitness test, the 20-m shuttle test (20-MST), in Hispanic boys (n = 58) and girls (n = 67), 10 - 12 years old (mean age +/- SD, 10.7 +/- 0.6 y). Measured V.O (2)peak was determined during a maximal, graded treadmill test using the Bruce protocol. The 20-MST was administered per a standard protocol. Maximal speed attained on the 20-MST and age were used to estimate V.O (2)peak. An intraclass coefficient of 0.82 was obtained on 35 students (16 boys; r = 0.85 and 19 girls; r = 0.79) who completed the 20-MST twice, 1-wk apart. Estimated (44.3 ml x kg (-1) x min (-1) ) and measured (45.1 ml x kg (-1) x min (-1)) V.O (2)peak were not significantly different (p = 0.33). The correlation between the two V.O (2)peak parameters was r = 0.62; p < 0.001, the standard error of the estimate (SEE) was 3.91 ml x kg (-1) x min (-1), and 85.5 % of the measured V.O (2)peak values fell within 5.9 ml x kg (-1) x min (-1) of estimated V.O (2)peak. The weight status of the child did not significantly change these results. The 20-MST combined with the Leger et al. equation is a valid method for predicting V.O (2)peak in Hispanic youth. The test can be used to provide valuable information for intervention design and disease prevention.

  16. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments.

    PubMed

    Moreira dos Santos, Margarida; Raghevendran, Vijayendran; Kötter, Peter; Olsson, Lisbeth; Nielsen, Jens

    2004-10-01

    The yeast Saccharomyces cerevisiae is an attractive cell factory, but in many cases there are constraints related with balancing the formation and consumption of redox cofactors. In this work, we studied the effect of having an additional source of NADPH in the cell. In order to do this, two strains were engineered by overexpression of malic enzyme. In one of them, malic enzyme was overexpressed as its wild-type mitochondrial form, and in the other strain a short form lacking the mitochondrial targeting sequence was overexpressed. The recombinant strains were analyzed in aerobic batch and continuous cultivations, and the basic growth characteristics were generally not affected to a great extent, even though pleiotropic effects of the manipulations could be seen by the altered in vitro activities of selected enzymes of the central metabolism. Moreover, the decreased pentose-phosphate pathway flux and the ratios of redox cofactors showed that a net transhydrogenase effect was obtained, which can be directed to the cytosol or the